<table>
<thead>
<tr>
<th>Title</th>
<th>L^q estimates of weak solutions to the stationary Stokes equations around a rotating body</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hishida, Toshiaki</td>
</tr>
<tr>
<td>Citation</td>
<td>Hokkaido University Preprint Series in Mathematics, 691, 1-29</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2005</td>
</tr>
<tr>
<td>DOI</td>
<td>10.14943/83842</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/69496</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
Abstract

We establish the existence, uniqueness and L^q estimates of weak solutions to the stationary Stokes equations with rotation effect both in the whole space and in exterior domains. The equation arises from the study of viscous incompressible flows around a body that is rotating with a constant angular velocity, and it involves an important drift operator with unbounded variable coefficient that causes some difficulties.

Mathematics Subject Classification (2000). 35Q30, 76D07.

Keywords. Stokes flow, rotating body, exterior domain, L^q estimate.

1 Introduction

Consider the motion of a viscous incompressible fluid around a compact rigid body $B = \mathbb{R}^3 \setminus D$ (with smooth boundary ∂D), that is formulated as the exterior problem for the Navier-Stokes equations. The case that the body B is rotating with a prescribed angular velocity ω is of particular interest. Assume that ω is a constant vector, say, $\omega = (0,0,1)^T$. The problem is then to solve the Navier-Stokes equations in the domain $D(t) = O(t)D$, that depends on the time-variable unless the body B is axisymmetric, subject to the inhomogeneous nonslip boundary condition, where $O(t)$ is the rotation matrix below. It is reasonable to reduce the problem to an equivalent one in

*Supported in part by Grant-in-Aid for Scientific Research, No. 16540143, from the Japan Society for the Promotion of Science.
the exterior domain D by using the coordinate system attached to the body B and by making a change of unknown functions. The reduced problem is ([12, subsection 2.1]; see also [1], [4], [5], [7])

\[
\begin{align*}
\partial_t u + u \cdot \nabla u &= \Delta u + (\omega \wedge x) \cdot \nabla u - \omega \wedge u - \nabla p, & \text{in } D \times (0, \infty), \\
\nabla \cdot u &= 0, & \text{in } D \times [0, \infty),
\end{align*}
\]

subject to

\[
u|_{\partial D} = \omega \wedge x, \quad u \rightarrow 0 \text{ as } |x| \rightarrow \infty, \quad u|_{t=0} = a,
\]

where $u = (u_1, u_2, u_3)^T$ and p are unknown velocity and pressure, respectively, and \wedge stands for the usual exterior product of three-dimensional vectors; so, $\omega \wedge x = (-x_2, x_1, 0)^T$.

The most interesting and difficult feature is that the drift term $(\omega \wedge x) \cdot \nabla u$ is not subordinate to the viscous term Δu and thus cannot be treated as a simple perturbation. In fact, the fundamental solution of the linear operator

\[
L = -\Delta - (\omega \wedge x) \cdot \nabla + \omega \wedge
\]

cannot be estimated from above by $C/|x - y|$ unlike the Laplace operator, see Proposition 3.1. Furthermore, the generated semigroup $e^{-tL}f(x) = O(t)^T (e^{t\Delta}f)(O(t)x)$ on $L^2(\mathbb{R}^3)^3$ is not analytic unlike the heat semigroup $e^{t\Delta}$, see Proposition 3.7 of [12], where

\[
O(t) = \left(\begin{array}{ccc}
\cos t & -\sin t & 0 \\
\sin t & \cos t & 0 \\
0 & 0 & 1
\end{array}\right)
\]

and $O(t)^T = O(-t)$, although it possesses some smoothing properties (the related semigroup [11] for the exterior problem enjoys such properties as well, see [12], [13], [14]).

There are some studies on the nonlinear problem above in exterior domains within the framework of L^2 space; weak solution [1], local unique solution [12], stationary solution (time-periodic solution of the original problem) [8], [20], local and global strong solution [9]. Among them, Galdi [8] has derived some pointwise estimates at infinity such as $|u(x)| \leq C/|x|$ for stationary solutions provided the angular velocity of the body is sufficiently small.
In the present paper, toward an analysis of the problem above in general \(L^q\) spaces, we prove the fundamental estimate
\[
\|\nabla u\|_q + \|p\|_q \leq C\|f\|_{-1,q}
\] (1.2)
of weak solutions to the linearized stationary problem
\[
Lu + \nabla p = f, \quad \nabla \cdot u = 0.
\] (1.3)
See Theorem 2.1 (whole space problem) and Theorem 2.2 (exterior problem) in the next section. Note that, when one ignores the crucial term \((\omega \wedge x) \cdot \nabla u\), a multiplier theory leads to some \(L^q\) estimates; in fact, this was done by [18] to estimate \(\{\nabla^2 u, \nabla p\}\). However, such a theory does not work well for the operator \(L\) with variable coefficient.

In section 3, we first discuss the whole space problem by real analytic method based on dyadic decomposition, square function and maximal function to derive the estimate (1.2) for \(1 < q < \infty\). We make use of an explicit representation formula of the solution and consider the integral operator \(F \mapsto \nabla u\), which does not seem to be of Calderón-Zygmund type, where \(f = \nabla \cdot F\) with \(F \in C^\infty_0(\mathbb{R}^3)^9\). The argument is a development of the previous study [6], in which the \(L^q\) estimate of \(\{\nabla^2 u, \nabla p\}\) for (1.3) in the whole space \(\mathbb{R}^3\) was provided. See also Farwig [5], in which the translation of the body as well as its rotation has been taken into account and the \(L^q\) estimate of \(\partial_{x_3} u\), that arises from the translation, as well as \(\{\nabla^2 u, \nabla p\}\) has been derived.

The final section is devoted to the analysis of the exterior problem by means of a localization procedure, which was developed in [2], [15] and [16]. Unlike the whole space problem, there is the restriction \(n/(n-1) = 3/2 < q < 3 = n\) so that the estimate (1.2) holds. For the usual Stokes problem (the case \(\omega = 0\)) in general space dimensions \(n \geq 3\), Theorem 2.2 is due to Borchers and Miyakawa [2], Galdi and Simader [10], Kozono and Sohr [15], [16], where the restriction above is optimal; that is, \(q > n/(n-1)\) is necessary for the solvability in the class \(\{u, p\} \in \widetilde{W}^{1,q}_0(D)^n \times L^q(D)\) for all \(f \in \widetilde{W}^{-1,q}(D)^n\), and so is \(q < n\) for the uniqueness in that class. For the function spaces, see the next section. Indeed the behavior of the fundamental solution of (1.1) is a little worse than that of the Laplace operator, but Theorem 2.2 tells us that the same result as in the case \(\omega = 0\) holds true as far as we are concerned with \(L^q\) theory.

We note, owing to the restriction \(q > 3/2\) in Theorem 2.2, that our theory for the exterior problem is not sufficient to solve the stationary Navier-Stokes equations because \(\|u \cdot \nabla u\|_{-1,q} \leq C\|\nabla u\|_q^2\) holds if and only if \(q = 3/2 = n/2\).

In the case of the usual Navier-Stokes problem, this difficulty was overcome
by [17] and, later on, [19] with use of the Lorentz spaces, especially $L^{3/2}_w$ (weak $L^{3/2}$ space) that is larger than the usual $L^{3/2}$. A right space to find a nonlinear solution seems to be $L^{3/2}_w(\nabla u)$ for our problem as well and this will be discussed elsewhere.

2 Results

To begin with, we introduce notation. Given a domain $\Omega (= \mathbb{R}^3, D, \cdots)$, the class $C^{0,\infty}_c(\Omega)$ consists of C^1 functions with compact supports contained in Ω. By $L^q(\Omega)$ we denote the usual Lebesgue space with norm $\| \cdot \|_{q,\Omega}$. For $\Omega = \mathbb{R}^3, D$ and $1 < q < \infty$, we need the homogeneous Sobolev spaces

$$
\widetilde{W}^{-1,q}(\mathbb{R}^3) = \frac{C_0^\infty(\mathbb{R}^3)}{|\nabla|_q,\mathbb{R}^3} = \{ v \in L^q_{loc}(\mathbb{R}^3); \nabla v \in L^q(\mathbb{R}^3)^3 \}/\mathbb{R},
$$

$$
\widetilde{W}^{-1,q}(D) = \frac{C_0^\infty(D)}{|\nabla|_q,D} = \left\{ \begin{array}{ll}
\{ v \in L^{3q/(3-q)}(D); \nabla v \in L^q(D)^3, v|_{\partial D} = 0 \} & \text{for } 1 < q < 3 (= n), \\
\{ v \in L^q_{loc}(D); \nabla v \in L^q(D)^3, v|_{\partial D} = 0 \} & \text{for } 3 \leq q < \infty,
\end{array} \right.
$$

(2.1)

and their dual spaces

$$
\widetilde{W}^{-1,q}(\mathbb{R}^3) = \widetilde{W}^{-1,q/(q-1)}(\mathbb{R}^3)^*, \quad \widetilde{W}^{-1,q}(D) = \widetilde{W}^{-1,q/(q-1)}(D)^*;
$$

with norms $\| \cdot \|_{-1,q,\mathbb{R}^3}$ and $\| \cdot \|_{-1,q,D}$, respectively. The characterization above of the space $\widetilde{W}^{-1,q}(D)$ is due to Galdi and Simader [10] (see also Kozono and Sohr [16]). For a bounded domain Ω, we use the usual Sobolev spaces $W_0^{1,q}(\Omega)$ and $W^{-1,q}(\Omega) = W_0^{1,q/(q-1)}(\Omega)^*$ with norm $\| \cdot \|_{-1,q,\Omega}$. For simplicity, we use the abbreviations $\| \cdot \|_q = \| \cdot \|_{q,D}$ and $\| \cdot \|_{-1,q} = \| \cdot \|_{-1,q,D}$ for the exterior domain D.

Let $B_r(x)$ be the open ball centered at x with radius $r > 0$. For sufficiently large $r > 0$, we set $D_r = D \cap B_r$ as well as $B_r = B_r(0)$.

Let us consider the boundary value problem for the linearized equation

$$
\begin{cases}
-\Delta u - (\omega \wedge x) \cdot \nabla u + \omega \wedge u + \nabla p = f & \text{in } D, \\
\nabla \cdot u = 0 & \text{in } D, \\
\n u = 0 & \text{on } \partial D.
\end{cases}
$$

(2.2)

Let $1 < q < \infty$. Given $f \in \widetilde{W}^{-1,q}(D)^3$, we call $\{ u, p \} \in \widetilde{W}^{-1,q}(D)^3 \times L^q(D)$ weak solution to (2.2) if
1. $\nabla \cdot u = 0$ in $L^q(D)$;
2. $(\omega \wedge x) \cdot \nabla u - \omega \wedge u \in \hat{W}^{-1,q}(D)^3$;
3. \{u, p\} satisfies (2.2) in the sense of distributions, that is,
\[
\langle \nabla u, \nabla \varphi \rangle - \langle (\omega \wedge x) \cdot \nabla u - \omega \wedge u, \varphi \rangle - \langle p, \nabla \varphi \rangle = \langle f, \varphi \rangle \quad (2.3)
\]
holds for all $\varphi \in C_0^\infty(D)^3$, where $\langle \cdot, \cdot \rangle$ stands for various duality pairings; by continuity, \{u, p\} satisfies (2.3) for all $\varphi \in \hat{W}^{1,q/(q-1)}(D)^3$.

Since we make use of a cut-off technique, we first consider the whole space problem with the inhomogeneous divergence condition
\[
-\Delta u - (\omega \wedge x) \cdot \nabla u + \omega \wedge u + \nabla p = f, \quad \nabla \cdot u = g \quad \text{in } \mathbb{R}^3, \quad (2.4)
\]
a weak solution of which is defined in the same way as above.

The results on the existence, uniqueness and L^q estimates of weak solutions to (2.4) and to (2.2) are, respectively, as follows.

Theorem 2.1 Let $1 < q < \infty$ and suppose that
\[
f \in \hat{W}^{-1,q}(\mathbb{R}^3)^3, \quad g \in L^q(\mathbb{R}^3), \quad (\omega \wedge x)g \in \hat{W}^{-1,q}(\mathbb{R}^3)^3.
\]
Then the problem (2.4) possesses a weak solution $\{u, p\} \in \hat{W}^{1,q}(\mathbb{R}^3)^3 \times L^q(\mathbb{R}^3)$ subject to the estimate
\[
\|\nabla u\|_{q,\mathbb{R}^3} + \|p\|_{q,\mathbb{R}^3} + \|(\omega \wedge x) \cdot \nabla u - \omega \wedge u\|_{-1,q,\mathbb{R}^3} \leq C (\|f\|_{-1,q,\mathbb{R}^3} + \|g\|_{q,\mathbb{R}^3} + \|(\omega \wedge x)g\|_{-1,q,\mathbb{R}^3}),
\]
with some $C > 0$. The solution is unique in the class above up to a constant multiple of ω for u.

Theorem 2.2 Let $3/2 < q < 3$. For every $f \in \hat{W}^{-1,q}(D)^3$, there exists a unique weak solution $\{u, p\} \in \hat{W}^{1,q}(D)^3 \times L^q(D)$ of the problem (2.2) subject to the estimate
\[
\|\nabla u\|_q + \|p\|_q + \|(\omega \wedge x) \cdot \nabla u - \omega \wedge u\|_{-1,q} \leq C\|f\|_{-1,q},
\]
with some $C > 0$.

Remark 2.1. In Theorem 2.2, we have the embedding relation $\hat{W}^{1,q}_0(D) \hookrightarrow L^{3q/(3-q)}(D)$ by (2.1). In this sense, u is small at infinity.
3 Whole space problem

This section is devoted to the analysis of the whole space problem (2.4). Theorem 2.1 is implied by the following.

Theorem 3.1 Let $1 < q < \infty$ and $f \in \widetilde{W}^{-1,q}(\mathbb{R}^3)^3$. Then the equation

$$Lu \equiv -\Delta u - (\omega \wedge x) \cdot \nabla u + \omega \wedge u = f \quad \text{in } \mathbb{R}^3$$

possesses a weak solution $u \in \widetilde{W}^{1,q}(\mathbb{R}^3)^3$ subject to the estimate

$$\|\nabla u\|_{q,\mathbb{R}^3} + \|((\omega \wedge x) \cdot \nabla u - \omega \wedge u)\|_{-1,q,\mathbb{R}^3} \leq C\|f\|_{-1,q,\mathbb{R}^3},$$

with some $C > 0$. The solution is unique in $\widetilde{W}^{1,q}(\mathbb{R}^3)^3$ up to a constant multiple of ω for u.

For $f \in \mathcal{S}(\mathbb{R}^3)^3$, the equation (3.1) admits a solution of the form [6]

$$u(x) = \int_{\mathbb{R}^3} \Gamma(x,y)f(y)dy = \int_0^\infty O(t)^T (e^{t\Delta}f)(O(t)x)dt$$

(3.3)

with the non-symmetric kernel

$$\Gamma(x,y) = \int_0^\infty O(t)^T E^t(O(t)x - y)dt,$$

(3.4)

where $e^{t\Delta} = E^t*$ is the heat semigroup and

$$E^t(x) = t^{-3/2}E(x/\sqrt{t}), \quad E(x) = (4\pi)^{-3/2}e^{-|x|^2/4}.$$

On the Fourier side, the solution (3.3) is written as

$$\widehat{u}(\xi) \equiv (2\pi)^{-3/2}\int_{\mathbb{R}^3} e^{-ix\cdot\xi} u(x)dx$$

$$= \int_0^\infty O(t)^T e^{-|\xi|^2 t} \hat{f}(O(t)\xi)dt,$$

(3.5)

where $i = \sqrt{-1}$. As mentioned in section 1, we have the following negative assertion on a pointwise estimate of $\Gamma(x,y)$, which shows that the operator $(\omega \wedge x) \cdot \nabla$ is not subordinate to the Laplacian.
Proposition 3.1 There is no constant $C > 0$ such that
\[|x - y| |\Gamma(x, y)| \leq C, \quad \forall (x, y) \in \mathbb{R}^3 \times \mathbb{R}^3. \]

Proof. This was shown in [6], but we give the proof for completeness. We intend to estimate the right-hand side of
\[|\Gamma(x, y)| > \Gamma_{33}(x, y) = \int_0^\infty E^t(O(t)x - y) dt. \]

We take, for instance, $x_\rho = (\rho, 0, 0)^T$ and $y_\rho = (0, \rho, 0)^T$ to show
\[\Gamma_{33}(x_\rho, y_\rho) = \int_0^\infty (4\pi t)^{-3/2} e^{-\rho^2(1 - \sin t)/2t} dt \geq \frac{C \log \rho}{\rho}, \]
for all $\rho > 1$ with $C > 0$ independent of ρ. In fact, we have
\[\Gamma_{33}(x_\rho, y_\rho) \geq \sum_{k=0}^\infty J_k(\rho) \geq \sum_{k=1}^{[\rho^2]} J_k(\rho) \]
with
\[J_k(\rho) = \int_{-\pi/6}^{\pi/6} \{4\pi(t + \pi/2 + 2k\pi)\}^{-3/2} e^{-\rho^2(1 - \cos t)/2(t + \pi/2 + 2k\pi)} dt, \]
which is estimated from below as
\[J_k(\rho) \geq (12k\pi^2)^{-3/2} \int_{-\pi/6}^{\pi/6} e^{-\rho^2(1 - \cos t)/4k\pi} dt \]
\[\geq 2(12k\pi^2)^{-3/2} \int_0^{\pi/2} e^{-\rho^2t^2/8k\pi} dt = \frac{C}{k\rho} \int_0^{\sqrt{\pi\rho/12\sqrt{2}}} e^{-t^2} dt \]
for $k \geq 1$. If in particular $k \leq \rho^2$, we then find
\[J_k(\rho) \geq \frac{C}{k\rho} \int_0^{\sqrt{\pi/12\sqrt{2}}} e^{-t^2} dt = \frac{C}{k\rho}. \]
As a consequence,
\[\Gamma_{33}(x_\rho, y_\rho) \geq \frac{C}{\rho} \sum_{k=1}^{[\rho^2]} \frac{1}{k} \geq \frac{C}{\rho} \int_1^{\rho^2} \frac{ds}{s} = \frac{C \log \rho}{\rho}, \]
which completes the proof. □

For the proof of Theorem 3.1, an essential step is to show

\[\|\nabla u\|_{q,\mathbb{R}^3} \leq C \|F\|_{q,\mathbb{R}^3}, \tag{3.6} \]

for the force of the form \(f = \nabla \cdot F \) with \(F \in C_0^\infty(\mathbb{R}^3)^9 \) on account of the following density property.

Lemma 3.1 (Kozono and Sohr [15, Lemma 2.2, Corollary 2.3]) Let \(\Omega \subset \mathbb{R}^n(n \geq 2) \) be any domain and let \(1 < q < \infty \). For all \(g \in \dot{W}^{-1,q}(\Omega) \), there is \(G \in L^q(\Omega)^n \) such that

\[\nabla \cdot G = g, \quad \|G\|_{q,\Omega} \leq C \|g\|_{-1,q,\Omega} \]

with some \(C > 0 \). As a result, the space \(\{\nabla \cdot G; G \in C_0^\infty(\Omega)^n\} \) is dense in \(\dot{W}^{-1,q}(\Omega) \).

Let us thus derive the \(L^q \) estimate of the operator \(T \) defined by

\[TF(x) = \nabla u(x) = -\int_{\mathbb{R}^3} \nabla_x \nabla_y \Gamma(x,y) : F(y) dy \tag{3.7} \]

to show (3.6), where

\[(\nabla_y \Gamma(x,y) : F(y))_\ell = \sum_{1 \leq \mu,\nu \leq 3} \partial_{y_\mu} \Gamma_{\ell \mu}(x,y) F_{\mu \nu}(y) \quad (1 \leq \ell \leq 3). \]

As in Proposition 3.1, the kernel of (3.7) does not seem to enjoy the pointwise estimate \(|\nabla_x \nabla_y \Gamma(x,y)| \leq C/|x-y|^3 \); that is, the operator \(T \) does not seem to be of Calderón-Zygmund type. Nevertheless, the \(L^2 \) estimate is quite easy.

Proposition 3.2 The operator \(T \) enjoys

\[\|TF\|_{2,\mathbb{R}^3} \leq \|F\|_{2,\mathbb{R}^3}, \]

for all \(F \in C_0^\infty(\mathbb{R}^3)^9 \).

Proof. By the solution formula (3.5) we have

\[(TF)(\xi) = -\xi \otimes \int_0^\infty O(t)^T e^{-|\xi|^2 t} (O(t)\xi) \cdot \hat{F}(O(t)\xi) dt. \]

The Planchrel theorem thus leads us to
\[\| TF \|_{2,\mathbb{R}^3}^2 = \| \hat{T} F \|_{2,\mathbb{R}^3}^2 \leq \int_{\mathbb{R}^3} |\xi|^4 \left\{ \int_0^\infty e^{-|\xi|^2 t} |\hat{F}(O(t)\xi)| dt \right\}^2 d\xi \]
\[\leq \int_{\mathbb{R}^3} |\xi|^2 \int_0^\infty e^{-|\xi|^2 t} |\hat{F}(O(t)\xi)|^2 dt d\xi \]
\[= \int_0^\infty \int_{\mathbb{R}^3} |\xi|^2 e^{-|\xi|^2 t} |\hat{F}(\xi)|^2 d\xi dt = \| \hat{F} \|_{2,\mathbb{R}^3}^2 = \| F \|_{2,\mathbb{R}^3}^2, \]

which completes the proof. \(\square \)

We rewrite (3.7) as the form
\[TF = (T^{(t,m)} F)_{1 \leq \ell,m \leq 3} \quad \text{for} \quad F = (F_{\mu\nu})_{1 \leq \mu,\nu \leq 3} \]

with
\[T^{(t,m)} F(x) = \partial_{x_\ell} u_t(x) \]
\[= \sum_{\mu,\nu,k} \int_0^\infty O(t)T_{\mu t} O(t)_{km}(H_{k\nu} F_{\mu\nu})(O(t)x) dt \frac{dt}{t}, \quad (3.8) \]

where \(H = (H_{k\nu})_{1 \leq k,\nu \leq 3} \) is the Hessian matrix of \(E \), that is,
\[H_{k\nu}(x) = \partial_{x_\nu} \partial_{x_k} E(x), \quad H_{k\nu}^t(x) = t^{-3/2} H_{k\nu}(x/\sqrt{t}). \quad (3.9) \]

We need also the adjoint operator
\[T^* G = (T^{(s,\rho)} G)_{1 \leq \mu,\rho \leq 3} \quad \text{for} \quad G = (G_{\ell m})_{1 \leq \ell, m \leq 3} \]

with
\[T^{(s,\rho)} G(y) = \sum_{k,\ell,m} \int_0^\infty O(t)_{s k} T_{\ell t} O(t)_{km} \int_{\mathbb{R}^3} H_{k\rho}^t(O(t)x - y)G_{\ell m}(x) dx dt \frac{dt}{t}, \quad (3.10) \]

for which the argument will be parallel to that for the operator \(T \).

We now introduce the Littlewood-Paley dyadic decomposition
\[\sum_{j=-\infty}^\infty \hat{\eta}_j(\xi) = 1 \quad (\xi \in \mathbb{R}^3 \setminus \{0\}) \]
with

$$\hat{\eta}_j(\xi) = \beta(2^{-j}|\xi|) - \beta(2^{-j+1}|\xi|),$$

where $\beta \in C^\infty((0, \infty); [0, 1])$ is a fixed function so that $\beta \equiv 1$ on $(0, 1]$ and $\beta \equiv 0$ on $[2, \infty)$. Note that

$$\text{supp } \hat{\eta}_j \subset \{\xi; \ 2^{j-1} \leq \|\xi\| \leq 2^{j+1}\}. \quad (3.11)$$

By use of η_j, we decompose the function H in (3.9) as

$$H_{kv} = \sum_{j=-\infty}^{\infty} H_{kv,j}, \quad H_{kv,j} = (2\pi)^{-3/2} \eta_j * H_{kv} \quad \left(\hat{H}_{kv,j} = \hat{\eta}_j \hat{H}_{kv}\right).$$

In (3.8) and (3.10), respectively, we replace H by $H_j = (H_{kv,j})_{1 \leq k, \nu \leq 3}$ to define the decomposed operator

$$T_j = \left(T_j^{(\ell,m)} \right)_{1 \leq \ell, m \leq 3}, \quad T^*_j = \left(T^*_j^{(\mu,\nu)} \right)_{1 \leq \mu, \nu \leq 3},$$

with

$$T_j^{(\ell,m)} F(x) = \sum_{\mu, \nu, k} \int_0^\infty O(t)_{\ell \mu} O(t)_{k \nu} (H_{kv,j}^T * F_{\mu\nu})(O(t)x) \frac{dt}{t}, \quad (3.12)$$

$$T^*_j^{(\mu,\nu)} G(y) = \sum_{k, \ell, m} \int_0^\infty O(t)_{k \ell} O(t)_{m \nu} \int_{R^3} H_{kv,j}^T(O(t)x - y) G_{\ell m}(x) dx \frac{dt}{t},$$

$$\quad (3.13)$$

where

$$H_{kv,j}^T(x) = t^{-3/2} H_{kv,j}(x/\sqrt{t}),$$

namely,

$$\hat{H}_{kv,j}^T(\xi) = \hat{H}_{kv,j}(\sqrt{t} \xi) = \hat{\eta}_j(\sqrt{t} \xi) \hat{H}_{kv}(\sqrt{t} \xi),$$

so that (3.11) leads to

$$\text{supp } \hat{H}_{kv,j}^T \subset \{\xi; \ \frac{2^{j-1}}{\sqrt{t}} \leq \|\xi\| \leq \frac{2^{j+1}}{\sqrt{t}}\}. \quad (3.14)$$
In order to estimate \(T_j^{(\ell,m)F} \) and \(T_j^{(\mu,\nu)G} \) defined by (3.12) and (3.13), respectively, we make use of the square function (see Stein [23])

\[
Sv(x) = \left(\int_0^\infty |(\phi^s * v)(x)|^2 \frac{ds}{s} \right)^{1/2},
\]

where \(\{\phi^s\}_{s>0} \subset \mathcal{S}(\mathbb{R}^3) \) is a fixed family of radially symmetric functions constructed in the following way: we take \(f_{\phi^s} \in C_0^\infty(1/2,2) \) so that

\[
\int_{1/2}^2 \gamma(\sigma)^2 \frac{d\sigma}{\sigma} = \frac{1}{2}.
\]

define \(\phi(x) \) by \(\hat{\phi}(\xi) = \gamma(|\xi|) \) and set

\[
\phi^s(x) = s^{-3/2}\phi(x/\sqrt{s}) \quad \left(\hat{\phi^s}(\xi) = \gamma(\sqrt{s}|\xi|) \right)
\]

for \(s > 0 \). Then we have

\[
\int_{\mathbb{R}^3} \phi^s(x)dx = 0; \quad \int_0^\infty \hat{\phi^s}(\xi)^2 \frac{ds}{s} = 1 \quad (\xi \in \mathbb{R}^3 \setminus \{0\}), \quad (3.15)
\]

and

\[
\text{supp} \ \hat{\phi^s} \subset \left\{ \xi; \frac{1}{2\sqrt{s}} < |\xi| < \frac{2}{\sqrt{s}} \right\}. \quad (3.16)
\]

It is known that \(\|S \cdot \|_{q,\mathbb{R}^3} \) is equivalent to \(\| \cdot \|_{q,\mathbb{R}^3} \) on the space \(L^q(\mathbb{R}^3) \), \(1 < q < \infty \) [23, Chapter I, 8.23]. Hence,

\[
\|T_j^{(\ell,m)F}\|_{q,\mathbb{R}^3}^2 \leq C \|ST_j^{(\ell,m)F}\|_{q,\mathbb{R}^3}^2 = C \|(ST_j^{(\ell,m)F})^2\|_{q/2,\mathbb{R}^3}. \quad (3.17)
\]

Assume now that \(1 < q/2 < \infty \). Then we will estimate

\[
\langle (ST_j^{(\ell,m)F})^2, w \rangle \equiv \int_{\mathbb{R}^3} w(x) \int_0^\infty |(\phi^s * T_j^{(\ell,m)F})(x)|^2 \frac{ds}{s} dx \quad (3.18)
\]

for \(w \in L^{q/(q-2)}(\mathbb{R}^3) \). By (3.12) we see

\[
(\phi^s * T_j^{(\ell,m)F})(x) = \sum_{\mu,\nu,k} \int_{I(s,j)} O(t)|_{\mathcal{K}} \bar{O}(t)_{km} (\phi^s * H_{\mu\nu,j}^k \ast F_{\mu\nu})(O(t)x) \frac{dt}{t}
\]
with

\[I(s, j) = [2^{2j-4}s, 2^{2j+4}s] \]

because (3.14) and (3.16) imply

\[\tilde{\phi}^s(\xi) \overline{H^t_{k;j}}(\xi) \equiv 0, \quad t \notin I(s, j) \]

and because \(\phi^s \) is radially symmetric. We use the Schwarz inequality twice to obtain

\[
\left| (\phi^s * T_j^{(\ell,m)} F)(x) \right|^2 \\
\leq C \sum_{\mu, \nu, k} \frac{dt}{t} \int_{I(s, j)} \left\{ \int_{\mathbb{R}^3} |H^t_{k;j}(O(t)x - y)| \left| (\phi^s * F_{\mu \nu})(y) \right| dy \right\}^2 dt \\
\leq 8(\log 2) C \sum_{\mu, \nu, k} \| H^t_{k;j} \|_{1, \mathbb{R}^3} \int_{I(s, j)} (\| H^t_{k;j} \| \ast |\phi^s \ast F_{\mu \nu}|^2) (O(t)x) dt.
\]

Therefore, (3.18) is estimated as

\[
\left| \langle (ST_j^{(\ell,m)} F)^2, w \rangle \right| \\
\leq C \sum_{\mu, \nu, k} \| H^t_{k;j} \|_{1, \mathbb{R}^3} \int_0^\infty \int_{I(s, j)} \left(\int_{\mathbb{R}^3} |w(O(t)^T x)| (\| H^t_{k;j} \| \ast |\phi^s \ast F_{\mu \nu}|^2) (x) dx \right) \frac{dt}{t} \frac{ds}{s}
\]

\[
= C \sum_{\mu, \nu, k} \| H^t_{k;j} \|_{1, \mathbb{R}^3} \int_0^\infty \int_{\mathbb{R}^3} |(\phi^s \ast F_{\mu \nu})(x)|^2 \\
\times \int_{I(s, j)} \left(\overline{H^t_{k;j}} \ast |w(O(t)^T \cdot)| \right)(x) \frac{dt}{t} \frac{dx}{s},
\]

where \(\overline{H^t_{k;j}} \) is the reflection of \(H^t_{k;j} \), that is, \(\overline{H^t_{k;j}}(x) = H^t_{k;j}(-x) \). Set

\[M_{j}^{(k,\nu)} w(x) = \sup_{r > 0} \int_{2^{-r}}^{2^r} \left(\overline{H^t_{k;j}} \ast |w(O(t)^T \cdot)| \right)(x) \frac{dt}{t}. \tag{3.19} \]

Then we have

\[
\left| \langle (ST_j^{(\ell,m)} F)^2, w \rangle \right| \leq C \sum_{\mu, \nu, k} \| H^t_{k;j} \|_{1, \mathbb{R}^3} \int_{\mathbb{R}^3} M_{j}^{(k,\nu)} w(x) SF_{\mu \nu}(x)^2 dx. \tag{3.20}
\]
Similarly, for the adjoint operator we find

\[\|\langle ST_j^{(\kappa,\nu)} G \rangle^2, w \rangle \| \leq C \sum_{k,\ell,m} \|H_{kv,j}\|_{1,R^3} \int_{R^3} M_j^{(k,\nu)} w(y) S G_{tm}(y)^2 dy, \]

where

\[M_j^{(k,\nu)} w(y) = \sup_{r>0} \int_{2^{-4}r^2}^{2^4 r^2} \left(|H_{kv,j}^t| * |w| \right) (O(t)y) \frac{dt}{t}. \]

To proceed with the estimates, it is necessary to find the behavior of the following for \(j \to \pm \infty \): \(M_j^{(k,\nu)} w \) and \(M_j^{(k,\nu)} w \) as well as \(\|H_{kv,j}\|_{1,R^3} \). For this aim, the following lemma plays an important role (see [6]); that is, we derive a pointwise estimate of \(H_{kv,j}(x) \), independently of \((k, \nu)\), by use of the function \((1 + |x|^2)^{-1}\).

Lemma 3.2 Let \(\psi(x) = (1 + |x|^2)^{-1} \). Then there is a constant \(C > 0 \), independent of \(x \in R^3, j \in Z \) and \(1 \leq k, \nu \leq 3 \), such that

\[|H_{kv,j}(x)| \leq C 2^{-2|j|}\psi^{2^{-2j}}(x), \]

where \(\psi'(x) = t^{-3/2}\psi(x/\sqrt{t}) \).

Proof. The proof is the same as in [6], but we give it for completeness. Since \(\widehat{H_{kv}}(\xi) = -(2\pi)^{-3/2} \xi_k e^{-|\xi|^2} \), we have

\[|\partial^\alpha \widehat{H_{kv}}(\xi)| \leq \left\{ \begin{array}{ll} C_\alpha |\xi|^{\max\{2-|\alpha|,0\}}, & |\xi| < 1, \\ C_\alpha |\xi|^{-6}, & |\xi| \geq 1, \end{array} \right. \]

for multi-index \(\alpha \). On the other hand, there is a nonnegative function \(\zeta \in C^\infty_0(1/4, 4) \) such that, for \(|\alpha| \leq 4 \),

\[|\partial^\alpha \hat{\eta}_j(\xi)| \leq C_\alpha 2^{-j|\alpha|} \zeta(2^{-j}|\xi|). \]

In fact, setting \(b(r) = \beta(r) - \beta(2r) \in C^\infty_0(1/4, 4) \) and writing \(\hat{\eta}_j(\xi) = b(2^{-j}|\xi|) \), we have only to choose \(\zeta \) so that max\{\(|(d/dr)^n b(r)|; 0 \leq n \leq 4 \)\} \(\leq \zeta(r) \), when we take \(|\xi| \sim 2^j \) by (3.11) into account. From (3.25) it follows that
\[
2^{|\alpha|} |\partial_\xi^\alpha \widehat{H_{kv,j}}(\xi)| = 2^{|\alpha|} \left| \sum_{0 \leq \alpha' \leq \alpha} \left(\begin{array}{c} \alpha \\ \alpha' \end{array} \right) \partial_\xi^{\alpha-\alpha'} \hat{f}_j(\xi) \partial_\xi^{\alpha'} \widehat{H_{kv}}(\xi) \right| \\
\leq C_\alpha \sum_{0 \leq \alpha' \leq \alpha} 2^{|\alpha'|} |\zeta(2^{-j}|\xi|)||\partial_\xi^{\alpha'} \widehat{H_{kv}}(\xi)|,
\]
for $|\alpha| \leq 4$. Since $|\xi| \geq 2^{j-1} \geq 1/2$ for $j \geq 0$ and $|\xi| \leq 2^{j+1} \leq 1$ for $j < 0$, we use (3.24) and note $|\xi| \sim 2^j$ again to see
\[
|\partial_\xi^\alpha \widehat{H_{kv,j}}(\xi)| \leq C2^{-j|\alpha|-2j} \zeta(2^{-j}|\xi|).
\]
As a consequence,
\[
|(1 - 2^j \Delta_\xi)^2 \widehat{H_{kv,j}}(\xi)| \leq C2^{-2j}|\zeta(2^{-j}|\xi|)|.
\]
This together with
\[
\frac{H_{kv,j}(x)}{\psi^{2^{-2j}}(x)} = 2^{-3j} (2\pi)^{-3/2} \int_{\mathbb{R}^3} e^{ix\xi} (1 - 2^j \Delta_\xi)^2 \widehat{H_{kv,j}}(\xi) d\xi
\]
implies that
\[
\left| \frac{H_{kv,j}(x)}{\psi^{2^{-2j}}(x)} \right| \leq C2^{-3j-2|\xi|} \int_{\mathbb{R}^3} \zeta(2^{-j}|\xi|) d\xi = C2^{-2|\xi|},
\]
which completes the proof. □

To investigate $M_{j}^{(k,v)}w$ and $\mathcal{M}_{j}^{(k,v)}w$, see Proposition 3.3 after the following lemma, we introduce the Hardy-Littlewood maximal function
\[
Mg(x) = \sup_{r > 0} \frac{1}{|B_r(x)|} \int_{B_r(x)} |g(y)| dy
\]
and need a variant of its L^p-boundedness.

Lemma 3.3 Consider (3.27) in one dimension and let $1 < p \leq \infty$. Then there is a constant $C = C(p) > 0$ such that
\[
\|Mg\|_{p,I} \leq C\|g\|_{p,I}
\]
for all 2π-periodic function g on \mathbb{R} with $g \in L^p(I)$, where $I = (0, 2\pi)$.

14
Proof. We first note that Mg is also 2π-periodic. Since
\[
\|Mg\|_{\infty, I} = \|Mg\|_{\infty, R} \leq C\|g\|_{\infty, R} = C\|g\|_{\infty, I}
\]
for all 2π-periodic $g \in L^\infty(I)$, it suffices to show the weak $(1,1)$ estimate; then the Marcinkiewicz interpolation theorem implies the assertion. For 2π-periodic $g \in L^1(I)$ and $\lambda > 0$, we set $E_\lambda = \{\theta \in I; Mg(\theta) > \lambda\}$ and
\[
A_\theta(r) = \frac{1}{2r} \int_{B_r(\theta)} |g(t)|dt, \quad r > 0,
\]
where $B_r(\theta) = (\theta - r, \theta + r)$. We then find
\[
Mg(\theta) \equiv \sup_{r > 0} A_\theta(r) = \sup_{0 < r < 2\pi} A_\theta(r), \quad \theta \in I.
\]
In fact, for $2\pi < r < 4\pi$, 2π-periodicity of g yields
\[
A_\theta(r) = \frac{1}{2r} \left(\int_{\theta-2\pi}^{\theta-2\pi} + \int_{\theta-2\pi}^{\theta+2\pi} + \int_{\theta+2\pi}^{\theta+r} \right)
\]
\[
= \frac{1}{2r} \left(4\pi A_\theta(2\pi) + 2(r - 2\pi)A_\theta(r - 2\pi) \right),
\]
from which together with $A_\theta(2\pi) = A_\theta(\pi)$ it follows that
\[
A_\theta(r) \leq \sup_{0 < \rho < 2\pi} A_\theta(\rho).
\]
Therefore, $\sup_{0 < r < 4\pi} A_\theta(r) = \sup_{0 < r < 2\pi} A_\theta(r)$. The same procedure implies that for all $n \in \mathbb{N}$
\[
\sup_{0 < r < 2^n \pi} A_\theta(r) = \sup_{0 < r < 2\pi} A_\theta(r).
\]
Fix $\lambda > 0$ arbitrarily, and for $\theta \in E_\lambda$ we choose $r \in I$ so that $A_\theta(r) > \lambda$; then, we have
\[
\int_{B_r(\theta)} |g(t)|dt > \lambda |B_r(\theta)| = 2\lambda r.
\]
Since the length of the members of the family $\{B_r(\theta)\}_{\theta \in E_\lambda}$, which is a covering of E_λ, is bounded, the Vitali covering lemma ([22, Chapter I, 1.6]) implies that there is at most countable sub-family $\{B^{(k)}\}_k$, whose members
are disjoint each other, such that \(\sum_k |B^{(k)}| \geq |E_\lambda|/5 \). This combined with (3.28) yields

\[
|E_\lambda| \leq 5 \sum_k |B^{(k)}| < 5 \frac{\lambda}{E} \sum_k \int_{B^{(k)}} |g(t)| dt \leq \frac{5}{\lambda} \int_{-2\pi}^{4\pi} |g(t)| dt = \frac{15}{\lambda} \|g\|_{1,1}.
\]

We thus get

\[
\sup_{\lambda > 0} \lambda |E_\lambda| \leq 15 \|g\|_{1,1},
\]

which is the desired weak (1, 1) estimate. \[\square\]

Proposition 3.3 Let \(1 < p < \infty \). Then the sublinear operators defined by (3.19) and (3.22), respectively, enjoy

\[
\|M^{(k,\nu)}_j w\|_{p, \mathbb{R}^3} \leq C 2^{-2|j|} \|w\|_{p, \mathbb{R}^3}, \quad \|M^{(k,\nu)}_j w\|_{p, \mathbb{R}^3} \leq C 2^{-2|j|} \|w\|_{p, \mathbb{R}^3},
\]

with some \(C = C(p) > 0 \) independent of \(j \in \mathbb{Z} \) and \(1 \leq k, \nu \leq 3 \).

Proof. The reflection \(\widetilde{H_{k\nu,j}}(x) \) also satisfies (3.23) on account of \(\psi(-x) = \psi(x) \). Note that \(\psi^{2-2r}_t(x) \leq C \psi^{2-2r}_t(x) \) for \(2^{-4} \leq t \leq 2^4 r \). Thus, we have

\[
0 \leq M^{(k,\nu)}_j w(x) \leq C 2^{-2|j|} \sup_{r > 0} \int_{2^{-4} r}^{2^4 r} \int_{\mathbb{R}^3} \psi^{2-2r}_t(x - y) |w(O(t)^T y)| dt dy.
\]

Set

\[
Rw(x) = \sup_{r > 0} \int_{2^{-4} r}^{2^4 r} |w(O(t)^T x)| \frac{dt}{t} \quad (3.29)
\]

By use of this together with the maximal function (3.27), we obtain

\[
M^{(k,\nu)}_j w(x) \leq C 2^{-2|j|} \sup_{t > 0} (\psi^t * Rw)(x)
\]

\[
\leq C 2^{-2|j|} (MRw)(x) \int_{\mathbb{R}^3} \psi(y) dy,
\]
see [23, Chapter II, 2.1]. The L^p boundedness of the maximal operator M ([22, Chapter I, 1.3]) implies
\[
\|M_j^{(k,v)}w\|_{p,\mathbb{R}^3} \leq C2^{-2j|v|}\|Rw\|_{p,\mathbb{R}^3},
\]
as long as $Rw \in L^p(\mathbb{R}^3)$. It remains to show that the sublinear operator R is bounded in $L^p(\mathbb{R}^3)$. Using the cylindrical coordinate $x_1 = \rho \cos \theta$, $x_2 = \rho \sin \theta$, $x_3 = z$, we set
\[
w_{(\rho,z)}(\theta) = w(\rho \cos \theta, \rho \sin \theta, z).
\]
Then we have
\[
Rw(x) = \sup_{r>0} \int_{2^{-4}r}^{2^4r} |w(\rho,z)(\theta - t)| \frac{dt}{t} \leq 2^9 (Mw_{(\rho,z)})(\theta).
\]
By Lemma 3.3 we find
\[
\|Mw_{(\rho,z)}\|_{p,I} \leq C\|w_{(\rho,z)}\|_{p,I}, \quad I = (0, 2\pi).
\]
Hence,
\[
\|Rw\|_{p,\mathbb{R}^3}^p \leq C \int_{\mathbb{R}} \int_{0}^{\infty} \rho \int_{0}^{2\pi} (Mw_{(\rho,z)})(\theta)^p d\theta d\rho dz
\]
\[
\leq C \int_{\mathbb{R}} \int_{0}^{\infty} \rho \int_{0}^{2\pi} w_{(\rho,z)}(\theta)^p d\theta d\rho dz = C\|w\|_{p,\mathbb{R}^3}^p,
\]
which implies the estimate for $M_j^{(k,v)}$. By use of
\[
Rw(x) = \sup_{r>0} \int_{2^{-4}r}^{2^4r} |w(O(t)x)| \frac{dt}{t}
\]
instead of (3.29), the same estimate for $M_j^{(k,v)}$ can be proved similarly. □

Proof of Theorem 3.1. In view of (3.20), we use Proposition 3.3 as well as
\[
\|H_{k\nu,j}\|_{1,\mathbb{R}^3} \leq C2^{-2|j|} \int_{\mathbb{R}^3} \psi(x)dx,
\]
which is implied by (3.23), to see that
\[
\|((ST_j^{(\ell,m)}F)^2, w) \| \leq C \sum_{\mu,\nu,k} \|H_{k\nu,j}\|_{1,\mathbb{R}^3} \|M_j^{(k,v)}w\|_{q/(q-2),\mathbb{R}^3} \|SF_{\mu\nu}\|_{q,\mathbb{R}^3}^2
\]
\[
\leq C (2^{-2|j|})^2 \|w\|_{q/(q-2),\mathbb{R}^3} \sum_{\mu,\nu} \|F_{\mu\nu}\|_{q,\mathbb{R}^3}^2,
\]

17
for all $w \in L^{q/(q-2)}(\mathbb{R}^3)$. By duality and by (3.17) we arrive at

$$\|T^{(\ell,m)}_j F\|_{q,\mathbb{R}^3} \leq C 2^{-2|j|} \|F\|_{q,\mathbb{R}^3},$$

(3.30)

with some $C > 0$ independent of $F \in C_0^\infty(\mathbb{R}^3)^9$, $j \in \mathbb{Z}$ and $1 \leq \ell, m \leq 3$. Hence, as long as $2 < q < \infty$,

$$T = (T^{(\ell,m)})_{1 \leq \ell, m \leq 3} \quad \text{with} \quad T^{(\ell,m)} = \sum_{j=-\infty}^{\infty} T_j^{(\ell,m)}$$

is well-defined as a bounded operator on $L^q(\mathbb{R}^3)$. For $1 < q < 2$, we use the adjoint operator T^* given by (3.10). The same argument as above implies that T^* is also a bounded operator on $L^{q/(q-1)}(\mathbb{R}^3)^9$; so, T is L^q-bounded for $1 < q < 2$ as well. We have thus proved (3.6) for $1 < q < \infty$.

Let $f \in \tilde{W}^{-1,q}(\mathbb{R}^3)^3$. By Lemma 3.1 there is $F \in L^q(\mathbb{R}^3)^9$ such that

$$\nabla \cdot F = f, \quad \|F\|_{q,\mathbb{R}^3} \leq C \|f\|_{-1,q,\mathbb{R}^3}.$$

(3.31)

We take $F_k \in C_0^\infty(\mathbb{R}^3)^9$ so that $\|F_k - F\|_{q,\mathbb{R}^3} \to 0$ as $k \to \infty$. Let u_k be the solution (3.3) with $f = \nabla \cdot F_k$. For each k and $m \in \mathbb{N}$, we take a constant vector $b^{(m)}_k \in \mathbb{R}^3$ satisfying

$$\int_{B_m} (u_k(x) + b^{(m)}_k) dx = 0$$

so that

$$\|u_k + b^{(m)}_k\|_{q,B_m} \leq C m \|
abla u_k\|_{q,B_m} \leq C m \|
abla u_k\|_{q,\mathbb{R}^3} \leq C m \|F_k\|_{q,\mathbb{R}^3}$$

by the Poincaré inequality and by (3.6). Therefore, there exist $u^{(m)} \in W^{1,q}(B_m)^3$ and $V \in L^q(\mathbb{R}^3)^9$ such that

$$\|u_k + b^{(m)}_k - u^{(m)}\|_{q,B_m} \to 0, \quad \|
abla u_k - V\|_{q,\mathbb{R}^3} \to 0 \quad (k \to \infty)$$

with $\nabla u^{(m)}(x) = V(x)$ (a.a. $x \in B_m$). We first set

$$\tilde{u} = u^{(1)} \quad \text{on} \ B_1; \quad b_k = b^{(1)}_k.$$

Consider next the case $m = 2$; since $\nabla u^{(2)}(x) = V(x) = \nabla u^{(1)}(x) = \nabla \tilde{u}(x)$ for a.a. $x \in B_1 \subset B_2$, the difference $u^{(2)}(x) - \tilde{u}(x) =: a$ is a constant vector and
\[|B_1|^{1/q}|b_k^{(2)} - b_k - a| = \|b_k^{(2)} - b_k - a\|_{q,B_1} \leq \|u_k + b_k - \tilde{u}\|_{q,B_1} + \|u_k + b_k^{(2)} - u^{(2)}\|_{q,B_2} \to 0 \]

as \(k \to \infty \). One extends \(\tilde{u} \) by

\[\tilde{u} = u^{(2)} - a \text{ on } B_2. \]

Then (3.32) implies

\[\|u_k + b_k - \tilde{u}\|_{q,B_2} \leq \|u_k + b_k^{(2)} - u^{(2)}\|_{q,B_2} + |B_2|^{1/q}|b_k^{(2)} - b_k - a| \to 0 \]

as \(k \to \infty \). We repeat this procedure for \(m = 3, 4, \ldots \). By induction there is a function \(\tilde{u} \in W^{1,q}(\mathbb{R}^3)^3 \) so that

\[\|u_k + b_k - \tilde{u}\|_{q,B_m} + \|\nabla u_k - \nabla \tilde{u}\|_{q,\mathbb{R}^3} \to 0 \]

(3.33)

as \(k \to \infty \) for all \(m \in \mathbb{N} \). By use of the operator \(L \), see (1.1), it follows from (3.33) together with \(Lu_k = \nabla \cdot F_k \) that

\[Lb_k = \omega \wedge b_k = L(u_k + b_k) - \nabla \cdot F_k \to L\tilde{u} - \nabla \cdot F \quad \text{in } D'(\mathbb{R}^3)^3 \]

as \(k \to \infty \). But then, there is a constant vector \(b \in \mathbb{R}^3 \) such that

\[\omega \wedge b_k \to \omega \wedge b = Lb \]

as \(k \to \infty \). Consequently, we get

\[L(\tilde{u} - b) = \nabla \cdot F \quad \text{in } D'(\mathbb{R}^3)^3 \]

and \(u = \tilde{u} - b \) is the desired solution. By (3.33) we have \(\|\nabla u_k - \nabla u\|_{q,\mathbb{R}^3} \to 0 \) and, therefore, the estimate (3.6) holds true for the obtained solution \(u \) as well (we note that \(\nabla u = TF \), where \(T \) is the extended operator on \(L^q(\mathbb{R}^3)^9 \), since \(\nabla u_k = TF_k \)). This together with (3.31) implies the estimate (3.2).

It remains to prove the uniqueness. We use the duality method. Let us consider the adjoint equation

\[L^*v \equiv -\Delta v + (\omega \wedge x) \cdot \nabla v - \omega \wedge v = \nabla \cdot F \]

(3.34)

with \(F \in C_0^\infty(\mathbb{R}^3)^9 \). This admits the solution

\[v(x) = \int_0^\infty O(t) \left(e^{t\Delta} \nabla \cdot F \right) (O(t)^T x) dt, \]

19
where one has only to replace \(O(t) \) by \(O(t)^T \) in the formula (3.3). By the same argument as for (3.3) we have \(v \in W^{1,r}(\mathbb{R}^3)^3 \) for all \(r \in (1, \infty) \) with
\[
\| \nabla v \|_{r, \mathbb{R}^3} \leq C \| F \|_{r, \mathbb{R}^3}.
\]
We now let \(u \in \tilde{W}^{1,q}(\mathbb{R}^3)^3 \) be a weak solution of \(Lu = 0 \) in \(\tilde{W}^{-1,q}(\mathbb{R}^3)^3 \). One can take \(v \) as a test function to get
\[
\langle Lu, v \rangle = 0.
\]
Similarly, one takes \(u \) as a test function for (3.34) in \(\tilde{W}^{-1,q/(q-1)}(\mathbb{R}^3)^3 \) to obtain
\[
\langle u, L^*v \rangle = \langle u, \nabla \cdot F \rangle.
\]
Therefore,
\[
\langle u, \nabla \cdot F \rangle = 0.
\]
Since \(F \in C_0^\infty(\mathbb{R}^3)^9 \) is arbitrary, we obtain \(u = 0 \) in \(\tilde{W}^{1,q}(\mathbb{R}^3)^3 \) by Lemma 3.1. Namely, \(u \) is a constant vector; but, it should be a constant multiple of \(\omega \) because \(\omega \wedge u = 0 \). □

To complete the proof of Theorem 2.1, we need

Lemma 3.4 Let \(v \in S'(\mathbb{R}^3) \) be the solution of
\[
-\Delta v - (\omega \wedge x) \cdot \nabla v = 0 \quad \text{in } \mathbb{R}^3.
\]
Then supp \(\hat{v} \subset \{0\} \).

Proof. This was shown in [6], but we give the proof for completeness. We first see that
\[
|\xi|^2 \hat{v} - (\omega \wedge \xi) \cdot \nabla_\xi \hat{v} = 0 \quad \text{in } \mathbb{R}_{\hat{v}}^3.
\]
For any \(\varphi \in C_0^\infty(\mathbb{R}_\xi^3 \setminus \{0\}) \), the adjoint equation
\[
|\xi|^2 \chi + (\omega \wedge \xi) \cdot \nabla_\xi \chi = \varphi \quad \text{in } \mathbb{R}_\xi^3
\]
is solvable; in fact,
\[
\chi(\xi) = \int_0^\infty e^{-|\xi|^2 t} \varphi(O(t)^T \xi) dt \in C_0^\infty(\mathbb{R}_\xi^3 \setminus \{0\})
\]
is a solution. Hence, we have
\[
\langle \hat{v}, \varphi \rangle = \langle \hat{v}, |\xi|^2 \chi + (\omega \wedge \xi) \cdot \nabla_\xi \chi \rangle = \langle |\xi|^2 \hat{v} - (\omega \wedge \xi) \cdot \nabla_\xi \hat{v}, \chi \rangle = 0,
\]
20
which completes the proof. □

Proof of Theorem 2.1. Since

$$\nabla \cdot [(\omega \wedge x) \cdot \nabla u - \omega \wedge u] = (\omega \wedge x) \cdot \nabla (\nabla \cdot u) = \nabla \cdot [(\omega \wedge x) \nabla \cdot u],$$

we formally obtain from the problem (2.4)

$$p = -\nabla \cdot (-\Delta)^{-1}[f + \nabla g + (\omega \wedge x)g].$$

Since $$(-\Delta)^{-1}$$ can be justified as a bounded operator from $$\tilde{W}^{-1,q}(\mathbb{R}^3)$$ to $$\tilde{W}^{1,q}(\mathbb{R}^3)$$ ([10], [16]), we get

$$\|p\|_{q,\mathbb{R}^3} \leq C\|f + \nabla g + (\omega \wedge x)g\|_{-1,q,\mathbb{R}^3},$$

which implies

$$\|f - \nabla p\|_{-1,q,\mathbb{R}^3} \leq C\left(\|f\|_{-1,q,\mathbb{R}^3} + \|\nabla g + (\omega \wedge x)g\|_{-1,q,\mathbb{R}^3}\right).$$

Theorem 3.1 thus provides a solution $$u \in \tilde{W}^{1,q}(\mathbb{R}^3)^3$$. Since

$$(\Delta + (\omega \wedge x) \cdot \nabla)(\nabla \cdot u - g) = 0,$$

Lemma 3.4 yields $$\nabla \cdot u = g$$ in $$L^q(\mathbb{R}^3)$$. The estimate (3.2) together with (3.36) and (3.35) imply (2.5). This completes the proof of Theorem 2.1. □

4 Exterior problem

In this section we will prove Theorem 2.2 for the exterior problem (2.2) by means of a localization procedure. We combine Theorem 2.1 for the whole space problem with the following lemma on the interior one. Let $$\Omega \subset \mathbb{R}^3$$ be a bounded domain with smooth boundary $$\partial \Omega$$, and consider the usual Stokes problem with the inhomogeneous divergence condition

$$-\Delta u + \nabla p = f, \quad \nabla \cdot u = g \quad \text{in} \ \Omega; \quad u|_{\partial \Omega} = 0. \quad (4.1)$$

Lemma 4.1 (Cattabriga [3], Solonnikov [21], Kozono and Sohr [15]) Let $$\Omega$$ be as above and let $$1 < q < \infty$$. Suppose that

$$f \in W^{-1,q}(\Omega)^3, \quad g \in L^q(\Omega), \quad \int_{\Omega} g(x)dx = 0.$$
Then the problem (4.1) possesses a unique (up to an additive constant for p) weak solution $\{u, p\} \in W_0^{1,q}(\Omega)^3 \times L^q(\Omega)$ subject to the estimate

$$\| \nabla u \|_{q, \Omega} + \| p - \bar{p} \|_{q, \Omega} \leq C \left(\| f \|_{-1,q,\Omega} + \| g \|_{q,\Omega} \right), \quad (4.2)$$

where $\bar{p} = \frac{1}{|\Omega|} \int_{\Omega} p(x) dx$.

To begin with, we derive the following a priori estimate, which will be refined later, see Proposition 4.2.

Lemma 4.2 Let $3/2 < q < \infty$. Given $f \in \tilde{W}^{-1,q}(D)^3$, let

$$\{u, p\} \in \tilde{W}_0^{1,q}(D)^3 \times L^q(D)$$

be a weak solution to the problem (2.2). Fix $\rho > \rho_0 > 0$ so large that $\mathbb{R}^3 \setminus D \subset B_{\rho_0}$, and take $\psi \in C_0^\infty(B_\rho; [0,1])$ such that $\psi = 1$ on B_{ρ_0}. Then

$$\| \nabla u \|_q + \| p \|_q + \| (\omega \wedge x) \cdot \nabla u - \omega \wedge u \|_{-1,q} \leq C \left(\| f \|_{-1,q} + \| u \|_{q,D_\rho} + \| p \|_{-1,q,D_\rho} + \left| \int_{D_\rho} \psi(x)p(x)dx \right| \right), \quad (4.3)$$

with some $C > 0$, where $D_\rho = D \cap B_\rho$.

Proof. By use of the cut-off function ψ, we decompose the solution $\{u, p\}$ as

$$\begin{cases}
u = U + V, & U = (1 - \psi)u, \\ p = \sigma + \tau, & \sigma = (1 - \psi)p, \quad \tau = \psi p. \end{cases}\quad (4.4)$$

Then $\{U, \sigma\}$ is a weak solution of

$$-\Delta U - (\omega \wedge x) \cdot \nabla U + \omega \wedge U + \nabla \sigma = Z_1, \quad \nabla \cdot U = -u \cdot \nabla \psi \quad \text{in } \mathbb{R}^3,$$

where

$$Z_1 = (1 - \psi)f + 2\nabla \psi \cdot \nabla u + [\Delta \psi + (\omega \wedge x) \cdot \nabla \psi]u - (\nabla \psi)p;$$

in fact, for all $\phi \in C_0^\infty(\mathbb{R}^3)^3$, we see that

$$\langle \nabla U, \nabla \phi \rangle - \langle (\omega \wedge x) \cdot \nabla U - \omega \wedge U, \phi \rangle - \langle \sigma, \nabla \cdot \phi \rangle = \langle Z_1, \phi \rangle,$$
since \(\{u, p\} \) satisfies (2.3) with \(\varphi = (1 - \psi)\phi \). Similarly, \(\{V, \tau\} \) is a weak solution of

\[
-\Delta V + \nabla \tau = Z_2, \quad \nabla \cdot V = u \cdot \nabla \psi \quad \text{in } D_\rho; \quad V|_{\partial D_\rho} = 0,
\]

where

\[
Z_2 = \psi [f + (\omega \wedge x) \cdot \nabla u - \omega \wedge u] - 2\nabla \psi \cdot \nabla u - (\Delta \psi) u + (\nabla \psi)p.
\]

It therefore follows from Theorem 2.1 and Lemma 4.1, respectively, that

\[
\|\nabla U\|_{q, \mathbb{R}^3} + \|\sigma\|_{q, \mathbb{R}^3} \leq C\|Z_1\|_{-1, q, \mathbb{R}^3} + C\|u \cdot \nabla \psi\|_{q, \mathbb{R}^3} + C\|((\omega \wedge x)(u \cdot \nabla \psi))\|_{-1, q, \mathbb{R}^3},
\]

and that

\[
\|\nabla V\|_{q, \mathcal{D}_\rho} + \|\tau\|_{q, \mathcal{D}_\rho}
\leq C\|Z_2\|_{-1, q, \mathcal{D}_\rho} + C\|u \cdot \nabla \psi\|_{q, \mathcal{D}_\rho} + \frac{1}{|D_\rho|^{1-1/q}} \int_{D_\rho} \tau(x) dx,
\]

as long as the right-hand sides are finite. Let \(\phi \in C_0^\infty(\mathbb{R}^3)^3 \). We then have

\[
|\langle (1 - \psi)f, \phi \rangle| \leq \|f\|_{-1,q} \|\nabla[(1 - \psi)\phi]\|_{q/(q-1)}
\leq \|f\|_{-1,q} (\|\nabla \phi\|_{q/(q-1)} + C\|\phi\|_{q/(q-1), D_\rho})
\leq C\|f\|_{-1,q} \|\nabla \phi\|_{q/(q-1), \mathbb{R}^3}.
\]

Here, we have used the condition \(q > 3/2 \), so that \(q/(q - 1) < 3 \), to apply the Sobolev inequality

\[
\|\phi\|_{q/(q-1), D_\rho} \leq C\|\phi\|_{r, D_\rho} \leq C\|\phi\|_{r, \mathbb{R}^3} \leq C\|\nabla \phi\|_{q/(q-1), \mathbb{R}^3},
\]

where \(1/r = (q - 1)/q - 1/3 \). Similarly, we obtain

\[
|\langle 2\nabla \psi \cdot \nabla u + [\Delta \psi + (\omega \wedge x) \cdot \nabla \psi]u, \phi \rangle|
\leq C\|u\|_{q, D_\rho} (\|\nabla \phi\|_{q/(q-1), D_\rho} + \|\phi\|_{q/(q-1), D_\rho})
\leq C\|u\|_{q, D_\rho} \|\nabla \phi\|_{q/(q-1), \mathbb{R}^3},
\]

and
\[
\| \langle (\nabla \psi) p, \phi \rangle \| \leq \| p \|_{-1,q,D^3} \| \nabla (\nabla \psi) \phi \|_{q/(q-1), D^3} \\
\leq C \| p \|_{-1,q,D^3} \| \nabla \phi \|_{q/(q-1), \mathbb{R}^3},
\]
as well as
\[
\| \langle (\omega \cdot x) (u \cdot \nabla \psi), \phi \rangle \| \leq C \| u \|_{q,D^3} \| \phi \|_{q/(q-1), D^3} \\
\leq C \| u \|_{q,D^3} \| \nabla \phi \|_{q/(q-1), \mathbb{R}^3}.
\]
In view of (4.5), we collect the estimates above to find
\[
\| \nabla U \|_{q,\mathbb{R}^3} + \| \sigma \|_{q,\mathbb{R}^3} \leq C \left(\| f \|_{-1,q} + \| u \|_{q,D^3} + \| p \|_{-1,q,D^3} \right).
\] (4.7)
In the same way, we see that
\[
\| \langle Z_2, \phi \rangle \| \leq C \left(\| f \|_{-1,q} + \| u \|_{q,D^3} + \| p \|_{-1,q,D^3} \right) \| \nabla \phi \|_{q/(q-1), D^3}
\]
for all \(\phi \in C_0^\infty (D^3) \); here, we have used the Poincaré inequality and so the condition \(q > 3/2 \) is not necessary. This combined with (4.6) implies that
\[
\| \nabla V \|_{q,D^3} + \| \tau \|_{q,D^3} \leq C \left(\| f \|_{-1,q} + \| u \|_{q,D^3} + \| p \|_{-1,q,D^3} \right) \left| \int_{D^3} \psi(x)p(x)dx \right|.
\] (4.8)
By (4.7) and (4.8) we obtain
\[
\| \nabla u \|_q + \| p \|_q \\
\leq C \left(\| f \|_{-1,q} + \| u \|_{q,D^3} + \| p \|_{-1,q,D^3} \right) \left| \int_{D^3} \psi(x)p(x)dx \right|,
\]
which together with
\[
\| (\omega \cdot x) \cdot \nabla u - \omega \cdot u \|_{-1,q} = \| f \Delta u - \nabla p \|_{-1,q} \leq \| f \|_{-1,q} + \| \nabla u \|_q + \| p \|_q
\]
yields (4.3). \(\square \)

We next show the existence and summability of weak solutions to the problem (2.2) and of those to the adjoint one.
\[
\begin{aligned}
-\Delta v + (\omega \wedge x) \cdot \nabla v - \omega \wedge v - \nabla \pi &= f \quad \text{in } D, \\
-\nabla \cdot v &= 0 \quad \text{in } D, \\
v &= 0 \quad \text{on } \partial D,
\end{aligned}
\]

(4.9)

for nice force terms \(f\), being in a dense subspace of \(\hat{W}^{-1,q}(D)^3\), see Lemma 3.1.

Lemma 4.3 Let \(F \in C_0^{\infty}(D)^9\). Then the problem (2.2) with \(f = \nabla \cdot F\) has a weak solution \(\{u, p\}\) of class

\[
u \in \hat{W}^{1,r}(D)^3, \quad p \in L^r(D) \quad \text{for } 3/2 < \forall r < \infty.
\]

(4.10)

The same assertion for the adjoint problem (4.9) holds true as well.

Proof. We first employ the standard \(L^2\) technique to show that there is a distribution solution

\[
u \in \hat{W}^{1,2}(D)^3, \quad p \in L^2(D) \quad \text{in each bounded domain } D_R,\]

where \(W^{1,2}(D)^3\) denotes the completion of the class of solenoidal vector fields, whose components are in \(C_0^{\infty}(D)\), under the norm \(\|\nabla \cdot \|\) (\(D_R\)). In fact, the bilinear form

\[
\langle u, \varphi \rangle \mapsto \langle \nabla u, \nabla \varphi \rangle - \langle (\omega \wedge x) \cdot \nabla u - \omega \wedge u, \varphi \rangle
\]

The Lax-Milgram theorem (together with a result of de Rham) provides a distribution solution \(\{u_R, p_R\} \in W^{1,2}_{0,\sigma}(D_R) \times L^2(D_R)\) to the same equations in each bounded domain \(D_R\), where \(W^{1,2}_{0,\sigma}(D_R)\) denotes the completion of the class of solenoidal vector fields, whose components are in \(C_0^{\infty}(D_R)\), under the norm \(\|\nabla \cdot \|_{2,D_R}\). In fact, the bilinear form

\[
\langle u, \varphi \rangle \mapsto \langle \nabla u, \nabla \varphi \rangle - \langle (\omega \wedge x) \cdot \nabla u - \omega \wedge u, \varphi \rangle
\]

25
on \(W^{1,2}_{0}(D_{R}) \times W^{1,2}_{0}(D_{R}) \) is not only continuous but also coercive. Since the a priori estimate \(\| \nabla u_{R} \|_{2} \leq \| F \|_{2} \) is available, where \(u_{R} \) is understood as its extension by setting zero in \(D \setminus D_{R} \), there exist \(u \in \tilde{W}^{1,2}_{0}(D)^{3} \) and a sequence \(\{ R_{n} \} \) such that \(u_{R_{n}} \rightharpoonup u \) weakly in \(\tilde{W}^{1,2}_{0}(D)^{3} \) as \(n \to \infty \). We then find \(\langle Lu - \nabla \cdot F, \phi \rangle = 0 \) for all \(\phi \in C_{0}^{\infty}(D)^{3} \) with \(\nabla \cdot \phi = 0 \). By a result of de Rham, there is a distribution \(p \) such that \(-\nabla p = Lu - \nabla \cdot F \) in \(D'(D)^{3} \). Since the right-hand side belongs to \(W^{-1,2}(D_{R}) \) for every large \(R > 0 \), we see that \(p \in L^{2}(D_{R}) \) and thus \(p \in L^{2}_{\text{loc}}(\mathcal{D}) \).

Now, as in (4.4), we use the cut-off technique to split the solution \(\{ u, p \} \) into flows \(\{ U, \sigma \} \) for the whole space problem and \(\{ V, \tau \} \) for the interior one. Along the same line as in the proof of Lemma 4.2, Theorem 2.1 and Lemma 4.1 lead to

\[
u \in \tilde{W}^{1,\tau}_{0}(D)^{3}, \quad p \in L^{\tau}(D) \quad \text{for } 3/2 < \tau \leq 6.
\]

By the same localization argument once more, we obtain (4.10) for the problem (2.2). The problem (4.9) is nothing but (2.2) with \(\{ p, \omega \} \) replaced by \(\{ -\pi, -\omega \} \), and so the same assertion holds. \(\Box \)

As a corollary, we have the following uniqueness assertion.

Proposition 4.1 (Uniqueness) Let \(1 < q < 3 \). Suppose that \(\{ u, p \} \in \tilde{W}^{1,q}_{0}(D)^{3} \times L^{q}(D) \) is a weak solution to the problem (2.2) with \(f = 0 \). Then \(\{ u, p \} = \{ 0, 0 \} \).

Proof. Consider the adjoint problem (4.9) with \(f = \nabla \cdot F \), where \(F \in C_{0}^{\infty}(D)^{9} \). By Lemma 4.3 there is a weak solution \(\{ v, \pi \} \) of class (4.10). Since \(q/(q - 1) > 3/2 \), one can put \(\varphi = v \) in (2.3) with \(f = 0 \):

\[
\langle \nabla u, \nabla v \rangle - \langle (\omega \land x) \cdot \nabla u - \omega \land x, u \rangle = 0.
\]

Similarly, one can take \(u \) as a test function for (4.9) to get

\[
\langle \nabla v, \nabla u \rangle + \langle (\omega \land x) \cdot \nabla v - \omega \land x, u \rangle = \langle \nabla \cdot F, u \rangle.
\]

From the equalities above it follows that \(\langle \nabla \cdot F, u \rangle = 0 \) for all \(F \in C_{0}^{\infty}(D)^{9} \). By Lemma 3.1 we get \(\langle f, u \rangle = 0 \) for all \(f \in \tilde{W}^{-1,q/(q-1)}(D)^{3} \), which yields \(u = 0 \) in \(\tilde{W}^{-1,q}_{0}(D)^{3} \), and thus \(p = 0 \) in \(L^{q}(D) \). This completes the proof. \(\Box \)

By Lemma 4.2 together with Proposition 4.1 we find the following a priori estimate.

Proposition 4.2 (A priori estimate) Let \(3/2 < q < 3 \). Suppose that \(\{ u, p \} \in \tilde{W}^{1,q}_{0}(D)^{3} \times L^{q}(D) \) is a weak solution to the problem (2.2) with \(f \in \tilde{W}^{-1,q}(D)^{3} \). Then the estimate (2.6) holds.
Proof. Suppose the contrary. Then there exist sequences \(f_k \in \tilde{W}^{-1,q}(D)^3 \) and \(\{u_k, p_k\} \in \tilde{W}_0^{1,q}(D)^3 \times L^q(D) \), the corresponding weak solution, so that
\[
\|\nabla u_k\|_q + \|p_k\|_q + \|\omega \cdot \nabla u_k - \omega \cdot u_k\|_{-1,q} = 1,
\]
while
\[
\|f_k\|_{-1,q} \to 0
\]
as \(k \to \infty \). Then we have
\[
\|u_k\|_{1,q,D_\rho} \leq \|\nabla u_k\|_{q,D_\rho} + C\|u_k\|_{q,D_\rho} \leq C\|\nabla u_k\|_q \leq C
\]
as well as \(\|p_k\|_{q,D_\rho} \leq \|p_k\|_q \leq 1 \), where \(1/q = 1/q - 1/3 \), \(D_\rho = D \cap B_\rho \) (as in Lemma 4.2) and \(\|\cdot\|_{1,q,D_\rho} \) is the norm of \(W^{1,q}(D_\rho) \). There are subsequences, which we denote by \(u_k \) and \(p_k \) again, so that they weakly converge in \(W^{1,q}(D_\rho) \) and \(L^q(D_\rho) \), and by the Rellich compactness theorem, they strongly converge in \(L^2(D_\rho) \) and \(W^{-1,q}(D_\rho) \), respectively. From (4.3) it follows that \(\{u_k, p_k\} \) and \(\{(\omega \cdot x) \cdot \nabla u_k - \omega \cdot u_k\} \) are the Cauchy sequences, respectively, in \(\tilde{W}_0^{1,q}(D)^3 \times L^q(D) \) and in \(\tilde{W}^{-1,q}(D)^3 \); hence, there exists \(\{u, p\} \in \tilde{W}_0^{1,q}(D)^3 \times L^q(D) \) so that
\[
\begin{cases}
\|\nabla u_k - \nabla u\|_q + \|p_k - p\|_q \to 0, \\
\|[(\omega \cdot x) \cdot \nabla u_k - \omega \cdot u_k] - [(\omega \cdot x) \cdot \nabla u - \omega \cdot u]\|_{-1,q} \to 0,
\end{cases}
\]
(4.11)
as \(k \to \infty \). It easily turns out that the pair \(\{u, p\} \) is a weak solution to (2.2) with \(f = 0 \). Since \(q < 3 \), Proposition 4.1 implies that \(\{u, p\} = \{0, 0\} \), which contradicts
\[
\|\nabla u\|_q + \|p\|_q + \|\omega \cdot x\|_q \to 0
\]
This completes the proof. \(\square \)

Proof of Theorem 2.2. The uniqueness part follows from Proposition 4.1. By Lemma 3.1, given \(f \in \tilde{W}^{-1,q}(D)^3 \), we take \(F_k \in C_c^\infty(D)^3 \) so that \(\|\nabla \cdot F_k - f\|_{-1,q} \to 0 \) as \(k \to \infty \). By Lemma 4.3 there is a solution \(\{u_k, p_k\} \) of class (4.10) to the problem (2.2) with the force \(\nabla \cdot F_k \). One can take \(r = q \) in (4.10) since \(q > 3/2 \). By Proposition 4.2 one can use (2.6) to show that there exists \(\{u, p\} \in \tilde{W}_0^{1,q}(D)^3 \times L^q(D) \) so that the same convergence properties as in (4.11) hold. This pair \(\{u, p\} \) is a weak solution to (2.2) with the estimate (2.6). We have completed the proof. \(\square \)
References

