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PARTIAL REGULARITY FOR A SELECTIVE SMOOTHING
FUNCTIONAL FOR IMAGE RESTORATION IN BV SPACE

YUNMEI CHEN, M. RAO, Y. TONEGAWA, T. WUNDERLI

Abstract.

In this paper we study the partial regularity of a functional on BV space proposed by Chambolle
and Lions [3] for the purposes of image restoration. The functional is designed to smooth corrupted
images using isotropic diffusion via the Laplacian where the gradients of the image are below a certain
threshold ε and retain edges where gradients are above the threshold using the total variation. Here
we prove that if the solution u ∈ BV of the model minimization problem, defined on an open set
Ω, is such that the Lebesgue measure of the set where the gradient of u is below the threshold ε is
positive, then there exists a non-empty open region E for which u ∈ C1,α on E and |∇u| < ε, and
|∇u| ≥ ε on Ω\E a.e. Thus we indeed have smoothing where |∇u| < ε.

Key words. bounded variation, selective smooothing, image processing, image restoration,
noise removal, partial regularity

AMS subject classifications. 49J40, 35K65

1. Introduction. In this paper we investigate the partial regularity for the prob-
lem

min
u∈BV (Ω)∩L2(Ω)

{∫
Ω

ϕ(Du) +
1
2

∫
Ω

(u− I)2dx

}
(1.1)

where ϕ is the following C1 convex function defined on Rn

ϕ(p) =


1
2
|p|2 if |p| < 1

|p| − 1
2

if |p| ≥ 1,

Ω ⊂ Rn is a bounded domain with Lipschitz boundary, and I ∈ L∞(Ω) ∩ BV (Ω)
is given. This functional has been proposed for use in image restoration in [3]. For
problems of image restoration, we consider an image to be a real valued function
defined on an open rectangle Ω ⊂ Rn. We are then given an image I corrupted by
noise, that is,

I = uoriginal + η,

where uoriginal is the true image and η is noise. We thus want to recover uoriginal as
much as possible from the given I.

TV-based diffusion for image restoration was introduced in [13] as a method of
preserving features while removing noise (see also [2, 3, 15, 12]). The definition of the
total variation seminorm for u ∈ L1(Ω), given by

TV (u) = sup
{∫

Ω

u div(ϕ)dx : ϕ ∈ C1
0 (Ω,Rn), |ϕ| ≤ 1

}
,

does not require differentiability or even continuity of u. Thus images with discon-
tinuities are allowed as solutions in the space of BV (Ω), which is the space of the
functions u ∈ L1(Ω) with TV (u) < ∞. In [3] the restored image is taken to be the
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minimizer of a combination of the total variation and the squared L2(Ω) norm of the
gradient. That is, we minimize

1
2a

∫
|∇u|<a

|∇u|2dx+
∫
|∇u|≥a

(|∇u| − a

2
) +

1
2

∫
Ω

(u− I)2dx.

Using the above functional we then expect to have isotropic diffusion where the
image is more uniform (|∇u| < a), and feature preservation via TV-based diffusion
where the boundaries of features are present (the locations where the image gradients
most likely have high magnitude: |∇u| ≥ a). Without loss of generality we take a = 1
as in (1.1).

For u ∈ BV (Ω) the gradient of u is a measure Du; it can be decomposed into its
absolutely continuous and singular parts with respect to Lebesgue measure, that is

Du = ∇u dx+Dsu.

See [5] for a complete discussion. Then we define ([8])

J(u) ≡
∫

Ω

ϕ(Du) ≡
∫

Ω

ϕ(∇u)dx+
∫

Ω

|Dsu|

with ∫
Ω

|Dsu| ≡
∫

Ω

d|Dsu| = |Dsu|(Ω).

It is important to note ([16] or [8]) that the functional J can also be written as

J(u) = sup
φ∈C1

0 (Ω,Rn)

{
−
∫

Ω

(
1
2
|φ|2 + u div(φ)

)
dx : |φ(x)| ≤ 1 ∀x ∈ Ω

}
.

Using this, we see that the functional J is lower semicontinuous with respect to
convergence in L1(Ω). Then by a standard argument we can show that there is a
unique solution u ∈ BV (Ω) ∩ L2(Ω) to (1.1). Now we are interested as to whether
or not this solution u ∈ BV is smooth on the region where |∇u| < 1. If so, it shows
that the denoising governed by (1.1) smoothes out lower gradients while preserving
the boundaries of features, which are the discontinuities in an image.

We now state the two main partial regularity results of this paper.
Theorem 1.1. ¿ If u is the solution to (1.1), then for any given 0 < µ < 1 there

exist positive constants ε0 and κ0 depending only on n and µ such that if

1
|Br|

∫
Br(a)

|Du− l| ≤ ε0

holds for some ball Br(a) ⊂⊂ Ω and for some l ∈ Rn, with

rC
(
1 + ‖I‖L∞(Ω)

)
< κ0 and |l| < 1− 2µ,

for some constant C depending only on n and Ω then,

|Dsu|(Br/2(a)) = 0 and |∇u| < 1− µ on Br/2(a)

and u solves

−∆u = I − u on Br/2(a).
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Hence u ∈ C1,α(Br/2(a)) for any α < 1.
Theorem 1.2. ¿ Let u be as in Theorem (1.1). If Ln({|∇u| < 1}) > 0, then

there exists a nonempty open region E on which u is C1,α, |∇u| < 1 and u solves

−∆u = I − u on E.

In addition we have |∇u| ≥ 1 a.e. on Ω \E.
It is actually straightforward to show that Theorem 1.2 is a direct consequence of

Theorem 1.1. Thus from Theorem 1.2, we do indeed have smoothing where |∇u| < 1.
Here we should point out that partial regularity results were obtained in [1] for

minimizers in BV (Ω) of functionals of the form
∫

Ω
(F (x,Du)+G(x, u)) where F (x, p)

is a convex function in p with c1|p| ≤ F (x, p) ≤ c2(1 + |p|) for all p ∈ Rn, F is locally
Hölder continuous in x, and G(x, z) satisfies Hölder continuity conditions in both x
and z. In our case, G(x, z) = 1/2(z − I(x))2 with only the stated assumption on
I, and therefore their results can not directly be applied in our case. Moreover, our
approach is quite different from theirs, and can be applied to more general cases.

The partial regularity results for the flow associated with the minimization prob-
lem (1) is also discussed in [11] for more general ϕ. However, these hold only Ω ⊂ Rn

for n = 1 and n = 2. We also apply some different techniques to get our results.

2. Proof of Theorem 1.1 and Theorem 1.2. First we will show that the
solution u to (1.1) is in L∞(Ω). To prove this we could consider the time evolution
problem corresponding to (1.1), prove an L∞ bound for the time dependent solution
u(x, t), and then consider the time asymptotic limit u, which is the solution to (1.1).
We would then conclude that u ∈ L∞(Ω). The following, however, provides a proof
of this without having to consider the time evolution of (1.1).

Lemma 2.1. If u is the solution to (1.1), then u ∈ L∞(Ω). In fact, we have
‖u‖L∞(Ω) ≤ ‖I‖L∞(Ω).

Proof. Let ϕε be defined on Rn by

ϕε(p) =


1
2
|p|2 if |p| < 1
1

1 + ε
|p|1+ε + (

1
2
− 1

1 + ε
) if |p| ≥ 1,

for ε > 0, and consider the following minimization problem:

min
u∈W 1,1+ε(Ω)∩L2(Ω)

{∫
Ω

ϕε(∇u) +
1
2

∫
Ω

(u− I)2dx

}
.

By standard methods, there is a unique solution uε to this problem. We follow a
standard truncation argument where we fix ε and t ≥ 0 and let v = min(uε, t).
Noting that v ∈W 1,1+ε(Ω) ∩ L2(Ω) with

∇v =

 ∇uε if uε < t

0 if uε ≥ t,

we have ∫
Ω

ϕε(∇uε) +
1
2

∫
Ω

(uε − I)2 dx ≤
∫

Ω

ϕε(∇v) +
1
2

∫
Ω

(v − I)2dx,(2.1)
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and thus after subtracting∫
{uε≥t}

ϕε(∇uε) dx+
∫
{uε≥t}

(uε − I)2dx ≤
∫
{uε≥t}

(t− I)2dx.

Hence ∫
{uε≥t}

(uε − I)2dx ≤
∫
{uε≥t}

(t− I)2dx.

But setting t = ‖I‖L∞(Ω) we see that if ess sup uε > t then∫
{uε≥t}

(t− I)2dx <

∫
{uε≥t}

(uε − I)2dx

which contradicts the above, hence ess sup uε ≤ ‖I‖L∞(Ω). Applying a similar ar-
gument to v = max(uε,−t) for t = ‖I‖L∞(Ω) we get ess inf uε ≥ −‖I‖L∞(Ω) and
thus ‖uε‖L∞(Ω) ≤ ‖I‖L∞(Ω). Furthermore, letting v = 0 in (2.1) we see that uε is
bounded in W 1,1+ε(Ω) ∩ L2(Ω) ⊂ BV (Ω) ∩ L2(Ω) independent of ε. Thus there is a
ũ ∈ BV (Ω)∩L2(Ω) and a subsequence of {uε}, still denoted by {uε}, such that uε → ũ
strongly in L1(Ω), uε ⇀ ũ weakly in L2(Ω), and uε → ũ a.e in Ω. Letting ε → 0 in
(2.1), noting that ϕ(p) ≤ ϕε(p) for all p,

∫
Ω
ϕε(∇v)→

∫
Ω
ϕ(∇v), lower semicontinuity

of the functional
∫

Ω
ϕ(∇u) defined on BV (Ω), and weak lower semicontinuity of the

second term on the left hand side, we get∫
Ω

ϕ(∇ũ) +
1
2

∫
Ω

(ũ− I)2dx ≤
∫

Ω

ϕ(∇v) +
1
2

∫
Ω

(v − I)2dx

for all v ∈ W 1,1+ε(Ω) ∩ L2(Ω). We now note ([8]) that for any v ∈ BV (Ω) ∩ L2(Ω)
there exists a sequence vn in C∞(Ω) such that∫

Ω

ϕ(∇vn)dx→
∫

Ω

ϕ(∇v)

and vn → v in L1(Ω), and since v ∈ L2(Ω) from the construction of vn ([8]) we
can also take vn → v in L2(Ω). Therefore we see that the above holds for all v ∈
BV (Ω) ∩ L2(Ω) as well. Hence ũ solves (1.1). By uniqueness, ũ = u. By the uniform
L∞ bound for uε and the convergence of uε to u a.e. in Ω we have u ∈ L∞(Ω) with
‖u‖L∞(Ω) ≤ ‖I‖L∞(Ω)

Throughout the rest of the paper, we fix µ > 0 and unless otherwise stated, all
constants depend at most on n, µ, u, Ω, ϕ, and possibly I.

We begin with a local lower bound estimate for any BV function u and C1

function h with gradient strictly less than 1.
Lemma 2.2. Let u ∈ BV (Br(a)) for Br(a) ⊂⊂ Ω and h ∈ C1(Br(a)) with

sup
Br(a)

|∇h| ≤ 1− µ,

then ∫
Br(a)

ϕ(Du)−
∫
Br(a)

ϕ(∇h)dx ≥ µ
∫
Br(a)

|Dsu|+
∫
Br(a)

∇(u− h) · ∇hdx
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+
∫
Br(a)

Dsu · ∇h+
µ2

2

∫
Br(a)∩{|∇u|≥1}

|∇u|dx

+
1
2

∫
Br(a)∩{|∇u|<1}

|∇(u− h)|2dx.

Proof. Where |∇u| ≥ 1, we have

ϕ(∇u)− ϕ(∇h)−∇(u− h) · ∇h

= |∇u| − 1
2

+
1
2
|∇h|2 −∇u · ∇h

≥ 1
2

(2|∇u| − 1− 2|∇u||∇h|+ |∇h|2)

=
1
2

(2|∇u| − 1− |∇h|)(1− |∇h|) ≥ µ2

2
|∇u|.

Where |∇u| < 1, we have

ϕ(∇u)− ϕ(∇h)−∇(u− h) · ∇h =
1
2
|∇(u− h)|2.

We now obtain the lemma by using∫
Br(a)

|Dsu| ≥
∫
Br(a)

Dsu · ∇h+
∫
Br(a)

|Dsu|(1− |∇h|),

the assumption on h, and the above estimates.
We now fix B2r(a) ⊂⊂ Ω. Let v be a Lipschitz function defined on B2r(a) and

assume there exists an l ∈ Rn with |l| ≤ 1−2µ, such that supB2r(a) |∇v− l| ≤ β2δ for
δ > 0 and 0 < β < 1 to be chosen later. Also let v be defined by v(x) = v(x)− l · x.
Let ηε be the usual mollifier on Rn and denote vβ = ηrβ ∗ v and vβ = ηrβ ∗ v. We
have the following estimates from [14]:

sup
Br(a)

|∇vβ − l| = sup
Br(a)

|∇vβ | ≤ β2δ,(2.2)

sup
Br(a)

|vβ − v| = sup
Br(a)

|vβ − v| ≤ rβ sup
Br(a)

|∇vβ | ≤ rβ1+2δ,(2.3)

rδ sup
Br(a)

|x− y|−δ|∇vβ(x)−∇vβ(y)|(2.4)

≤ c1rδ sup
Br(a)

|∇v − l| sup
x′ 6=y′

|x′ − y′|−δ|η1((rβ)−1x′)− η1((rβ)−1y′)|

≤ c2β2δβ−δ = c2β
δ.
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Now for any r̃ ∈ [ r2 , r] there exists a unique solution ([7]) w ∈ H1(Br̃(a))∩C1,δ(Br̃(a))
with δ ∈ (0, 1) for the problem

−∆w = I − w on Br̃(a), w = vβ on ∂Br̃(a).(2.5)

Lemma 2.3. For I ∈ L∞(Ω), the solution w to (2.5) satisfies

‖w‖L∞(Br̃(a)) ≤ ‖vβ‖L∞(∂Br̃(a)) + ‖I‖L∞(Ω).(2.6)

sup
Br̃(a)

|∇w − l| ≤ c3(βδ + r(‖I‖L∞(Ω) + ‖vβ‖L∞(∂Br̃(a)))), for any l ∈ Rn.(2.7)

sup
x,y∈Br̃/2(a)

|∇w(x)−∇w(y)|
|x− y|1/2

≤ c4(
1

rn+1/2

∫
∂Br̃(a))

|vβ | dHn−1(2.8)

+r1/2(‖I‖L∞(Ω) + ‖vβ‖L∞(∂Br̃(a)))).

Proof. The estimate (2.6) is from Theorem 8.16 in [7]. To prove (2.7) and (2.8),
we decompose w as w = w1 + w2, such that

−∆w1 = I − w on Br̃(a), w1 = 0, on ∂Br̃(a).(2.9)

and

−∆w2 = 0 on Br̃(a), w = vβ on ∂Br̃(a).(2.10)

Let w̃2 ≡ w2 − vβ . Then w̃2 solves

−∆w̃2 = −div(∇vβ − l) on Br̃(a), w̃2 = 0 on ∂Br̃(a),(2.11)

for any l ∈ Rn. Representing the solution of (2.9) using Green’s function, i.e., w1(x) =∫
Br̃(a)

Γ(x−y)(I−w)(y)dy, where Γ is the fundamental solution of Laplace’s equation,
it is not difficult to get

‖∇w1‖L∞(Br̃(a)) ≤ cr‖I − w‖L∞(Br̃(a))(2.12)

where c is independent of r.
Moreover, by Sobolev imbedding theorem, Theorem 9.9 in [7], and (2.6),

‖∇w1‖C0,1/2(Br̃(a)) ≤ c‖w1‖W 2,2n(Br̃(a)) ≤ c‖I − w‖L2n(Br̃(a))(2.13)

≤ cr1/2‖I − w‖L∞(Br̃(a)) ≤ cr1/2(‖vβ‖L∞(∂Br̃(a)) + ‖I‖L∞(Ω)).

Next we shall estimate w2. Multiplying by w̃2 to the both sides of (2.11) and
integrating over Br̃(a), by a simple computation and using (2.2), one can have for
any l ∈ Rn, ∫

Br̃(a)

|∇w2 − l|2dx ≤ c
∫
Br̃(a)

|∇vβ − l|2dx ≤ crnβ4δ,(2.14)
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where c > 0 is a constant independent of r.
Furthermore, applying Theorem 8.16 and 8.33 (with a rescaling argument) in [7]

to (2.11), we get the following estimates:

‖w̃2‖L∞(Br̃) ≤ c‖∇vβ − l‖L∞(Br̃),(2.15)

and

rδ[Dw̃2]C0,δ(Br̃) ≤ c(‖w̃2‖L∞(Br̃) + ‖∇vβ − l‖L∞(Br̃) + rδ[Dvβ ]C0,δ(Br̃)),(2.16)

where c > 0 is a constant independent of r. Inserting (2.15) into (2.16), and using
(2.2) and (2.4), it yields

rδ[Dw2]C0,δ(Br̃) ≤ (rδ[Dw̃2]C0,δ(Br̃) + rδ[Dvβ ]C0,δ(Br̃))(2.17)

≤ c(‖∇vβ − l‖L∞(Br̃) + rδ[Dvβ ]C0,δ(Br̃)) ≤ cβδ.

Now we can estimate supBr̃(a) |∇w2−l|. Denoting |Br̃(a)|−1
∫
Br̃(a)

fdx by (f)Br̃(a),
and using (2.14) and (2.17), we get

sup
Br̃(a)

|∇w2 − l| ≤ sup
Br̃(a)

{|∇w2 − (∇w2)Br̃(a)|+ |(∇w2)Br̃(a) − l|}(2.18)

≤ rδ[Dw2]C0,δ(Br̃) + |Br̃(a)|−1/2(
∫
Br̃(a)

|∇w2 − l|2)1/2dx ≤ cβδ,

here we used (2.14) and (2.17) in the last inequality.
We then have, from (2.6) and (2.18),

sup
Br̃(a)

|∇w − l| ≤ sup
Br̃(a)

|∇w2 − l|+ sup
Br̃(a)

|∇w1|

≤ c3(βδ + r(‖I‖L∞(Br̃(a)) + ‖vβ‖L∞(∂Br̃(a)))).

(2.7) is proved. To prove (2.8) we represent w2 by the Poisson’s formula on the ball
Br̃(a), i.e.

w2(x) =
r̃2 − |x|2

nαnr

∫
∂Br̃(a)

vβ(y)
|x− y|n

dSy, x ∈ Br̃(a),

where αn represents the volume of n dimensional unit ball. A direct computation
leads to the estimate:

sup
Br̃/2(a)

|D2w2| ≤ cr−n−1

∫
∂Br̃(a)

|vβ(y)|dSy,

where c > 0 dependents only on n. Then we have

sup
x,y∈Br̃/2(a)

|∇w2(x)−∇w2(y)|
|x− y|1/2

≤ ( sup
x,y∈Br̃/2(a)

|D2w2|)|x− y|1/2(2.19)

≤ c

rn+1/2

∫
∂Br̃(a))

|vβ | dHn−1.
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Now (2.8) follows from (2.13) and (2.19) imediately.

Lemma 2.4. Suppose there is a v ∈ C0,1(B2r(a)) and l ∈ Rn with |l| ≤ 1 − 2µ,
supB2r(a) |∇v−l| ≤ β2δ, and supB2r(a) |v| ≤ Cu where Cu is a constant depending only
on u. Let vβ , r̃, and w be as in the previous discussion. Then there exists constants
c5 and c6 such that if β ≤ c5 and r(Cu + ‖I‖L∞(Ω)) ≤ c6 then∫

Br̃(a)

ϕ(Du)−
∫
Br̃(a)

ϕ(∇w)dx ≥
∫
∂Br̃(a)

(u− vβ)
∂w

∂n
dHn−1

+
∫
Br̃(a)

(u− w)(I − w)dx+ µ

∫
Br̃(a)

|Dsu|+ µ2

2

∫
Br̃(a)∩{|∇u|≥1}

|∇u|dx

+
1
2

∫
Br̃(a)∩{|∇u|≤1}

|∇(u− w)|2dx

≥
∫
∂Br̃(a)

(u− vβ)
∂w

∂n
dHn−1 +

1
2

∫
Br̃(a)

(w − I)2dx− 1
2

∫
Br̃(a)

(u− I)2dx

+µ
∫
Br̃(a)

|Dsu|+ µ2

2

∫
Br̃(a)∩{|∇u|≥1}

|∇u|dx

+
1
2

∫
Br̃(a)∩{|∇u|<1}

|∇(u− w)|2dx

Proof. ¿From (2.7)-(2.8), the definition of vβ , and the assumption on l we see
that

sup
Br̃(a)

|∇w| ≤ sup
Br̃(a)

|∇w − l|+ |l|

≤ c3(βδ + r(‖v‖L∞(∂Br̃(a)) + ‖I‖L∞(Ω))) + 1− 2µ

≤ c3(βδ + r(Cu + ‖I‖L∞(Ω))) + 1− 2µ.

Later, v will be chosen (see for instance [10]) to be a Lipschitz approximation of u
so that ‖v‖L∞(B2r(a)) can be bounded by a constant Cu depending only on u. Now
choose c5 and c6 such that βδ ≤ c5 and

r(Cu + ‖I‖L∞(Ω)) ≤ c6

imply

c3(βδ + r(Cu + ‖I‖L∞(Ω))) ≤ µ.
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Thus

sup
Br̃(a)

|∇w| ≤ 1− µ.(2.20)

The conditions of Lemma 2.2 now hold for h = w. Substituting in w for h in the
inequality in Lemma 2.2, integrating by parts, and using Young’s inequality for (u−
w)(I − w) = −(u− I)(w − I) + (I − w)2 the Lemma is proved.

Lemma 2.5. If the function u ∈ BV (Ω) is solution to (1.1), then∫
Br

ϕ(Du)−
∫
Br

ϕ(Dw) ≤ 1/2
∫
Br

(w − I)2dx

−1/2
∫
Br

(u− I)2dx+
∫
∂Br

|Tw − Tu|dHn−1

for any w ∈ BV (Br), Br ⊂⊂ Ω. Here T denotes the trace operator on BV .
Proof. Let w ∈ BV (Br) and define

ζ =


w − u on Br

0 in Ω\Br.

Then since u is a solution we have letting v = u+ ζ in (1.1) and using Theorem 1 of
section 5.4 in [5]∫

Ω

ϕ(Du) + 1/2
∫

Ω

(u− I)2dx ≤
∫
Br

ϕ(Dw) +
∫
∂Br

|Tw − Tu|dHn−1

+
∫

Ω\Br
ϕ(Du) + 1/2

∫
Br

(w − I)2dx+ 1/2
∫

Ω\Br
(u− I)2dx.

Hence ∫
Br

ϕ(Du) + 1/2
∫
Br

(u− I)2dx ≤
∫
Br

ϕ(Dw) + 1/2
∫
Br

(w − I)2dx

+
∫
∂Br

|Tw − Tu|dHn−1.

We use the above lemma, Lemma 2.4, and estimates (2.2)-(2.4) to obtain the fol-
lowing inequality for the solution u to (1.1):

Lemma 2.6. Let v, l be as in Lemma 2.4 with

r(Cu + ‖I‖L∞(Ω)) ≤ c6,

w as in (2.5), and u a solution to (1.1). Then∫
Br̃(a)

|Dsu|+
∫
Br̃(a)∩{|∇u|≥1}

|∇u|dx+
∫
Br̃(a)∩{|∇u|<1}

|∇(u− w)|2dx

≤ c7
∫
∂Br̃(a)

|u− v| dHn−1 + c8r
nβ1+2δ.
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where u and v on ∂Br̃(a) is understood in the sense of trace.
Proof. By the previous lemma with w from (2.5) and Lemma 2.4 we have∫

∂Br̃(a)

|u− vβ | dHn−1 ≥
∫
Br̃(a)

ϕ(Du) +
1
2

∫
Br̃(a)

(u− I)2dx

−
∫
Br̃(a)

ϕ(∇w)dx− 1
2

∫
Br̃(a)

(w − I)2dx

≥
∫
∂Br̃(a)

(u− vβ)
∂w

∂n
dHn−1 + µ

∫
Br̃(a)

|Dsu|+ µ2

2

∫
Br̃(a)∩{|∇u|≥1}

|∇u|dx

+
1
2

∫
Br̃(a)∩{|∇u|<1}

|∇(u− w)|2dx.

The lemma is thus proved by using (2.20) and the estimate for |v − vβ | from (2.3).
We have the following first variational formula from Hardt and Kinderlehrer [8]:

if u is a solution to (1.1)∫
Ω

σ · ∇ζdx+
∫

Ω

σ · ξ|Dsu| = −
∫

Ω

(u− I)ζdx(2.21)

where ζ is any function in BV0(Ω) with Dsζ << |Dsu|, ξ is the Radon-Nikodym
derivative of Dsζ with respect to |Dsu|, and σ ∈ L1(Ω) is the stress tensor defined by

σ(u) =

 ϕP (∇u) in Ωa

Dsu/|Dsu| in Ωs.

Here Dsu/|Dsu| denotes the Radon-Nikodym derivative of Dsu with respect to |Dsu|
and Ω = Ωa ∪ Ωs is the decomposition of Ω with respect to the mutually singular
measures Ln and |Dsu|. Clearly |σ(u)| ≤ 1. Note that σ(u) depends only on u. In
the sequel we will write σ instead of σ(u) and write the left hand side of (2.21) as∫

Ω

σ ·Dζ.

We may also note that if ∫
Ω

σ ·Dζ = −
∫

Ω

(u− I)ζdx

holds for arbitrary ζ ∈ BV (Ω) for some u where σ is defined as above, then u solves
(1.1). In fact, for arbitrary v ∈ BV (Ω) we take ζ = v − u, noting that by convexity
of ϕ we have ϕ(∇v)− ϕ(∇u) ≥ ∇(v − u) · ϕP (∇u) on Ωa, and that on Ωs we have∫

Ωs

|Dsv| −
∫

Ωs

|Dsu| ≥
∫

Ωs

Ds(v − u) · D
su

|Dsu|
.

The proof of the following lemma is based on [9], with some necessary modifica-
tions.
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Lemma 2.7. Suppose u is a solution to our minimization problem, B2r(a) ⊂⊂ Ω
and v ∈ C0,1(B2r(a)) with supB2r(a) |∇v| ≤ 1− µ, and

Ln({u 6= v} ∩Bρ(a)) ≤ 1
2
|Bρ| for all r ≤ ρ ≤ 2r,

then there exists positive constants c9 and c10 such that if

Ln({u 6= v} ∩B2r(a)) ≤ c9rn

then

‖u− v‖L∞(Br(a)) ≤ c10 (Ln({u 6= v} ∩B2r(a)))
1
n .

Proof. First we note that the function ϕ satisfies |p| − λ ≤ ϕ(p) ≤ |p| for all
p ∈ Rn, some λ > 0. By convexity of ϕ we have ϕ(p) ≤ ϕP (p) · p + ϕ(0) for all
p ∈ Rn. Hence we have

|Du| = |∇u|dx+ |Dsu| ≤ ϕ(∇u)dx+ |Dsu|+ λdx

≤ ϕP (∇u) · ∇udx+ |Dsu|+ (λ+ ϕ(0))dx = σ ·Du+ λdx.

Let θ : R → R be a bounded, increasing, piecewise differentiable function with
θ′(t) ≤ 1 for almost all t. Let 0 < ρ < h and

η(x) =


1 in Bρ(a)

(h− ρ)−1(h− |x− a|) in Bh(a)\Bρ(a)

0 in Ω\Bh(a).

Now apply the first variational formula to ζ = ηθ(u− v) to get∫
Bh(a)

ησ ·D[θ(u− v)] = (h− ρ)−1

∫
Bh(a)\Bρ(a)

σ · x− a
|x− a|

θ(u− v)dx

−
∫
Bh(a)

ηθ(u− v)(u− I)dx.(2.22)

In order to obtain a lower bound for ησ ·D[θ(u − v)] we use the above properties of
ϕ. We have D[θ(u− v)] = θ′(u− v)D(u− v) and hence by noting the bound of |∇v|∫

Bρ(a)

|D[θ(u− v)]| ≤
∫
Bρ(a)

θ′(u− v)|Du|+
∫
Bρ(a)

θ′(u− v)

≤
∫
Bρ(a)

θ′(u− v)ϕ(Du) +
∫
Bρ(a)

(λ+ 1)θ′(u− v)

≤
∫
Bρ(a)

θ′(u− v)σ ·Du+
∫
Bρ(a)

(λ+ 1)θ′(u− v)
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=
∫
Bρ(a)

θ′(u− v)σ ·D(u− v) +
∫
Bρ(a)

θ′(u− v)σ ·Dv

+
∫
Bρ(a)

(λ+ 1)θ′(u− v) ≤
∫
Bh(a)

ησ ·D[θ(u− v)] +
∫
Bh(a)

Cλθ
′(u− v)(2.23)

for some constant Cλ depending only on λ. Therefore, by inserting (2.22) into (2.23),
and noting the L∞ bound for u, we get∫

Bρ(a)

|D[θ(u− v)]|

≤ (h− ρ)−1

∫
Bh(a)\Bρ(a)

|θ(u− v)|dx+ Cλ|supp ηθ(u− v)|

+2‖I‖L∞(Ω)

∫
Bh(a)

|θ(u− v)|dx.

Now for 0 < k < s we choose θ as

θ(t) =


0 for t ≤ k

t− k for k < t < s

s− k for t ≥ s.

Now let A(k, h) ≡ Bh ∩ {u− v > k}. Clearly supp [ηθ(u− v)] ⊂ A(k, h). Thus∫
Bρ(a)

|D[θ(u− v)]|

≤ ((h− ρ)−1 + 2‖I‖L∞(Ω))
∫
Bh(a)

|θ(u− v)|dx+ Cλ|A(k, h)|

By assumption, |A(0, ρ)| ≤ 1
2 |Bρ(a)| for r ≤ ρ ≤ 2r. Thus we see that

Ln{{θ(u− v) = 0} ∩Bρ(a)}
|Bρ(a)|

≥ 1
2
.

We can then apply the isoperimetric inequality for s > k > 0 to get

(s− k)|A(s, ρ)|
n−1
n ≤

(∫
Bρ(a)

|θ(u− v)|
n
n−1 dx

)n−1
n

≤ c11

∫
Bρ(a)

|D[θ(u− v)]|
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≤ c12((h− ρ)−1 + ‖I‖L∞(Ω))
∫
Bh(a)

|θ(u− v)|dx+ c13|A(k, h)|.

So since h ≤ 2r we get

(s− k)|A(s, ρ)|
n−1
n ≤ c14(h− p)−1

∫
Bh(a)

|θ(u− v)|dx+ c14|A(k, h)|.

And since ∫
Bh(a)

|θ(u− v)|dx ≤ (s− k)|A(k, h)|,

we arrive at

|A(s, ρ)|
n−1
n ≤ c14((h− p)−1 + (s− k)−1)|A(k, h)|

for every r ≤ ρ < h ≤ 2r and s > k > 0. We now apply Lemma 2.1 in [9] to obtain
the upper bound.

The lower bound for u − v is obtained by using a similar argument for 0 < k <
s <∞,

θ̃(t) =


0 for t ≥ −k

−t− k for − s < t < −k

s− k for t ≤ −s,

and Ã(k, h) ≡ Bh∩{u−v < −k}. The lemma then follows by again applying Lemma
2.1 in [9].

Now define the energy function

Φ(r, l, x) =
1
|Br|

{∫
Br(x)∩{|∇u|≥1}

|∇u|dx

+
∫
Br(x)∩{|∇u|<1}

|∇u− l|2dx+
∫
Br(x)

|Dsu|

}
.

The following theorem provides a decay estimate for Φ:
Theorem 2.8. If u solves (1.1) with Br(a) ⊂⊂ Ω, l1 ∈ Rn with |l1| ≤ 1 − µ,

then there exist positive constants ω, ε, κ, c37, c38, and c39 such that

Φ(4r, l1, a) ≤ ε

and

r ≤ κ

implies

Φ(ωr, l2, a) ≤ 1
2

Φ(4r, l1, a) + c37r
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where

|l1 − l2| ≤ c38Φ(4r, l1, a)
1
2 + c39r.

Proof. For fixed λ > 0, define

Rλ ≡ {x ∈ B2r(a) |Φ(ρ, l1, x) ≤ λ for all 0 < ρ ≤ 2r}.

By Vitali’s covering theorem, there exists disjoint balls {Bri(xi)}∞i=1 such that

B2r(a)\Rλ ⊂ ∪∞i=1B5ri(xi)

and Φ(ri, l1, xi) ≥ λ. Then we have

Ln(B2r(a)\Rλ) ≤ 5n
∞∑
i=1

|Bri(xi)| ≤
5n

λ
|B4r(a)|Φ(4r, l1, a).

Let g(x) = u(x)− l1 · x. By Poincare’s inequality we have for x ∈ Rλ and 0 < ρ ≤ 2r

1
|Bρ|

∫
Bρ(x)

|g(y)− gx,ρ|dy ≤
c15

ρn−1

∫
Bρ(x)

|Dg|

≤ c15

ρn−1

{
2
∫
Bρ(x)∩{|∇u|≥1}

|∇u|dx+
∫
Bρ(x)

|Dsu|

+|Bρ|1/2
(∫

Bρ(x)∩{|∇u|<1}
|∇u− l1|2dx

)1/2


≤ c16ρΦ(ρ, l1, x)1/2 ≤ c16λ
1/2ρ

where gx,ρ = 1
|Bρ|

∫
Bρ(x)

g(y)dy. Then

|gx,ρ/2k+1 − gx,ρ/2k | ≤
1

|Bρ/2k+1 |

∫
B
ρ/2k+1 (x)

|g(y)− gx,ρ/2k |dy

≤ 2n
1

|Bρ/2k |

∫
B
ρ/2k (x)

|g(y)− gx,ρ/2k |dy ≤ c17ρλ
1/2/2k.

Since g(x) = limρ→0 gx,ρ for Ln a.e. x ∈ Rλ,

|g(x)− gx,ρ| ≤
∞∑
k=1

|gx,ρ/2k+1 − gx,ρ/2k | ≤ c17ρλ
1/2.

For x, y ∈ Rλ with |x− y| ≤ 2r, set ρ = |x− y|. Then

|gx,ρ − gy,ρ| ≤
1

|Bρ(x) ∩Bρ(y)|

∫
Bρ(x)∩Bρ(y)

|gx,ρ − g(z)|+ |g(z)− gy,ρ|dz
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≤ c18
1
Bρ

(∫
Bρ(x)

|g(z)− gx,ρ|dz +
∫
Bρ(y)

|g(z)− gy,ρ|dz

)
≤ c19λ

1/2ρ.

So by combining the above, we have

|g(x)− g(y)| ≤ c20λ
1/2ρ = c20λ

1/2|x− y|

for Ln a.e. x, y ∈ Rλ ⊂ B2r(a). Let λ = c−2
20 β

4δ, so that

|u(x)− l1 · x− u(y) + l1 · y| = |g(x)− g(y)| ≤ β2δ|x− y|,

and let v be a Lipschitz function defined on B2r(a) such that

v = u on Rλ, and sup
B2r(a)

|∇v − l1| ≤ β2δ.(2.24)

Such a v exists by a standard extension for a Lipschitz function. Also note that for
this choice of v we have supB2r(a) |v| ≤ Cu. With this choice of λ, and by choosing

β = Φ(4r, l1, a) and δ =
1

8(n+ 1)
,

we can estimate the size of the non-zero set of u− v as

Ln(B2r(a) ∩ {u 6= v}) ≤ c21r
nβ−4δΦ(4r, l1, a) ≤ c21r

nΦ(4r, l1, a)1−4δ.

We made the choice of δ so that (1− 4δ) · n+1
n = 1 + 1

2n > 1. Now choose r̃ ∈ [ 1
2r, r]

so that both ∫
∂Br̃(a)

|u− v|dHn−1 ≤ 3
r

∫
Br̃(a)

|u− v|dx

and ∫
∂Br̃(a)

|u− ua,r − l1 · (x− a)|dHn−1 ≤ 3
r

∫
Br̃(a)

|u− ua,r − l1 · (x− a)|dx

are satisfied. By the choice of r̃,∫
∂Br̃(a)

|u− v|dHn−1 ≤ 3
r
‖u− v‖L∞(Br(a)) · Ln(Br(a) ∩ {u 6= v}).

Choose r(Cu + ‖I‖L∞(Ω)) ≤ c6. By Lemma 2.7, for Φ(4r, l1, a) ≤ c22, we have

1
r
‖u− v‖L∞(Br(a)) ≤ c10

1
r

(Ln(B2r(a) ∩ {u 6= v}))1/n.

Thus

1
rn

∫
∂Br̃(a)

|u− v|dHn−1 ≤ c23Φ(4r, l1, a)1+ 1
2n .

We now apply Lemma 2.6 to the above, using the estimate for the boundary integral
of u− v, to obtain∫

Brω(a)

|Dsu|+
∫
Brω(a)∩{|∇u|≥1}

|∇u|dx+
∫
Brω(a)∩{|∇u|<1}

|∇(u− w)|2dx(2.25)
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≤ c24r
n
(

Φ(4r, l1, a)1+ 1
2n + Φ(4r, l1, a)1+ 1

4(n+2)

)
for any ω ≤ 1/2. Let l2 ≡ ∇ω(a). By using the gradient estimate, (2.7)-(2.8), for ω,
the choice of r̃, the definition of vβ , the above bound for v, and Poincare’s inequality,

|l1 − l2| ≤
1
|Br̃|

∫
∂Br̃(a)

|vβ − ua,r − l1 · (x− a)|dHn−1 + c25r(‖I‖L∞(Ω) + Cu)

≤ 1
|Br̃|

∫
∂Br̃(a)

|vβ − u|+ |u− ua,r − l1 · (x− a)|dHn−1 + c25r(‖I‖L∞(Ω) + Cu)

≤ c26Φ(4r, l1, a) +
c27

rn

∫
Br(a)

|Du− l1|+ c25r(‖I‖L∞(Ω) + Cu).

By the Hölder inequality, we obtain |l1−l2| ≤ c28Φ(4r, l1, a)1/2 +c25r(‖I‖L∞(Ω) +Cu).
The last term on the left side of inequality (2.25) satisfies∫

Brω(a)∩{|∇u|<1}
|∇(u− w)|2dx ≥

∫
Brω(a)∩{|∇u|<1}

1
2
|∇u− l2|2 − |∇w − l2|2dx.

Thus by (2.25) and the above inequality,

|Brω|Φ(rω, l2, a) ≤ c29r
nΦ(4r, l1, a)1+ 1

4(n+2) + c30

∫
Brω

|∇w − l2|2dx.(2.26)

To estimate the last term, we again use the estimates for the gradient of w. Note that

sup
x,y∈Br/4(a)

|∇w(x)−∇w(y)|
|x− y|1/2

≤ c4
1

rn+1/2

∫
∂Br̃(a)

|vβ − ua,r − l1 · (x− a)|dHn−1

+c4r1/2(‖I‖L∞(Ω) + Cu).

Thus, similar to the estimate for |l1 − l2|, we have

sup
x,y∈Br/4(a)

|∇w(x)−∇w(y)|
|x− y|1/2

≤ c31(r−1/2Φ(4r, l1, a)1/2 + r1/2(‖I‖L∞(Ω) + Cu).

Using this we then have∫
Brω(a)

|∇w − l2|2dx ≤ c32(rω)n{ωΦ(4r, l1, a)

+rΦ(4r, l1, a)1/2(‖I‖L∞(Ω) + Cu) + r2(‖I‖L∞(Ω) + Cu)2}

≤ c33(rω)n{ωΦ(4r, l1, a) + r(‖I‖L∞(Ω) + Cu)}.
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Hence by combining the above with (2.26) we have

Φ(rω, l2, a) ≤ c34ω
−nΦ(4r, l1, a)1+ 1

4(n+1) + c35ωΦ(4r, l1, a)
+ c36r(‖I‖L∞(Ω) + Cu).

Choose ω < 1/4 so small so that c35ω < 1/4, and again restrict Φ(4r, l1, a) so that
c34ω

−nΦ(4r, l1, a)1+ 1
4(n+1) < 1/4. This now proves the theorem.

We now prove Theorem 1.1 using and iteration argument (see for example [10] or
[1].

Proof. Assume that 1
|Br|

∫
Br(a)

|Du− l1| ≤ ε0 for some l1 ∈ Rn with |l1| ≤ 1− 4µ
and for any r with r ≤ κ. For each x ∈ Br/2(a) we have

Φ(r/2, l1, x) ≤ 2nΦ(r, l1, a) ≤ c40
1
Br

∫
Br(a)|Du− l1| ≤ c40ε0.

We will use Theorem 2.8 iteratively. Choose ε0 so small so that c40ε0 ≤ ε and restrict
r so that c37r ≤ r/2. Assume |lj−1| < 1− 2µ and

Φ
((ω

4

)j−1 r

2
, lj , x

)
≤
(

1
2

)j−1

Φ
(r

2
, l1, x

)

+
j−1∑
i=1

(
1
2

)j−1

ωj−i−1c41r for j = 2, . . . , k.

We need to show Φ
((

ω
4

)k−1 r
2 , lk, x

)
≤ ε and |lk| < 1− 2µ. To continue the inductive

step. Since ω < 1/2,

k−1∑
i=1

(
1
2

)i−1

ωk−i−1 ≤
(

1
2

)k−2

(k − 1) ≤ c42

(
1
2

)k/2
for all k. By further restricting r, we have

Φ
((ω

4

)k−1 r

2
, lk, x

)
≤ ε.

Note that

|lk| ≤
k−1∑
j=1

|lj+1 − lj |+ |l1|

≤
k−1∑
j=1

{
c38Φ

((ω
4

)j−1 r

2
, lj , x

)1/2

+ c39

(ω
4

)j−1

r

}
+ 1− 4µ

≤ c38

k−1∑
j=1

{(
1
2

)(j−1)/2

Φ(
r

2
, l1, x)1/2 + c

1/2
41

(
1
2

)j/4
c
1/2
37 r

1/2

}
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+c39r

k−1∑
j=1

(ω
4

)j−1

+ 1− 4µ

≤ c42Φ
(r

2
, l1, x

)1/2

+ c42r
1/2 + 1− 4µ.

Hence by restricting ε0 and r again, we can see that |lk| < 1−2µ. Thus may continue
the iterative step indefinitely, giving

lim
k→∞

(
Φ
(ω

4

)k r
2
, lk+1, x

)
= 0 for all x ∈ Br/2(a).

Thus

lim
ρ→0

1
|Bρ|

(∫
Bρ(x)

|Dsu|+
∫
Bρ(x)∩{|∇u|≥1}

|∇u|dx

)
= 0

for all x ∈ Br/2(a). We see that (see for instance [5])

|Dsu|
(
Br/2(a)

)
= 0

with |∇u| ≤ 1− µ < 1 a.e on Br/2(a). By (2.21), u also satisfies the stated equation.

¿From this, we easily prove Theorem 1.2.
Proof. Assume that u is a minimizer of (1.1) and that Ẽ = {|∇u| < 1} has

positive Lebesgue measure. ¿From standard measure theory (see for example [5]) we
have

lim
r→0

1
|Br|

∫
Br(x)

|Dsu| = 0(2.27)

for Ln-a.e. x ∈ Ẽ. Also, since |∇u| ∈ L1(Ω),

lim
r→0

1
|Br|

∫
Br(x)

|∇u(y)−∇u(x)|dx = 0(2.28)

for Ln-a.e. x ∈ Ẽ Lebesgue’s differentiation theorem. Now let E be the set of all
points of Ẽ for which either one of the above does not hold. Clearly Ln(Ẽ\E) = 0,
|∇u| < 1 on E, and both (2.27) and (2.28) hold at each point of E. For each fixed
x ∈ E, there exists some µx > 0 such that

|∇u(x)| < 1− 2µx.

Then (2.27) and (2.28) combined with Theorem 1.1 show that there exists an rx such
that

|Dsu|(Brx(x)) = 0 and |∇u| < 1− µx on Brx(x)

and u ∈ C1,α(Brx(x)), giving Brx(x) ⊂ E in particular. Thus E is an open set in Ω
with the required properties.
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