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Remarks on proofs of conservation laws
for nonlinear Schrödinger equations

Dedicated to Professor Nakao Hayashi on his fiftieth birthday

T. Ozawa

Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan

Abstract

Conservation laws of the charge and of the energy are proved for nonlinear
Schrödinger equations with nonlinearities of gauge invariance in a way independent
of approximate solutions.

1 Introduction

In this paper we consider the Cauchy problem for nonlinear Schödinger equations of the

form

i∂tu+
1

2
∆u = f(u), (NLS)

where u is a complex-valued function of (t, x) ∈ R × Rn, ∂t = ∂/∂t, ∆ is the Laplacian

in Rn, and f(u) is a nonlinear interaction given by a complex-valued function f on C.
There is a large literature on the Cauchy problem for (NLS) (see for instance [1, 2, 6]

and references therein). The standard treatment proceeds in two steps. Frist, by a

contraction argument we prove the existence and uniqueness of local solutions to the

integral equations associated with (NLS) with prescribed Cauchy data. Local solutions

on the time intervals of the form [−T, T ] with T > 0 are given as fixed points of the

integral equations as contraction mappings on closed balls in function spaces on [−T, T ].

Basic tools here are provided by the Strichartz estimates. The corresponding contraction

factor in that argument can be smaller than one by taking T sufficiently small. The

next step is to extend the local solutions beyond the time interval [−T, T ] on the basis

of a priori estimates of the solutions, given by conservation laws. Conservation laws of

the charge and of the energy are of particular interest via direct relations to L2 and H1
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solutions, respectively. According to [2, 5], we specify the assumptions on nonlinearities

as follows.

(H1) f ∈ C1(C;C), f(0) = 0, and for some p with 1 < p < ∞ f satisfies the

estimate

|f ′(z)| ≤ C(1 + |z|p−1)

for all z ∈ C, where |f ′(z)| = max
(∣∣∂f

∂z

∣∣, ∣∣∂f
∂z̄

∣∣).
(H2) Im (z̄f(z)) = 0 for all z ∈ C.
(H3) There exists V ∈ C1(C;R) such that V (0) = 0 and f(z) = ∂V/∂z̄.

We denote by (·, ·) the scalar product in L2 as well as its extension to a duality coupling

on B ×B′, where B is a Banach space such that B ↪→ L2 ↪→ B′ with dense embeddings.

Under the assumption (H2), a formal proof of the conservation law of the charge is given

by taking the real part of the scalar product between iu and (NLS) as follows:

0 = 2 Re
(
i∂tu+ 1

2
∆u− f(u), iu

)
= 2 Re(∂tu, u) + Im(∆u, u)− 2 Im(f(u), u) =

d

dt
∥u∥22

(1.1)

For an L2-solution, (1.1) does not make sense since (∂tu, u) and (∆u, u) do not make

sense. To justify (1.1) in a duality argument, we require that u is at least an H1-solution.

Under the assumption (H3), a formal proof of the conservation law of the energy is

given by taking the real part of the scalar product between −∂tu and (NLS) as follows:

0 = 2 Re
(
i∂tu+ 1

2
∆u− f(u), −∂tu

)
= −Re(∆u, ∂tu) + 2 Re(f(u), ∂tu) =

d

dt
E(u),

(1.2)

where

E(u) =
1

2
∥∇u∥22 +

∫
Rn

V (u)dx. (1.3)

For an H1-solution, (1.2) does not make sense since (∂tu, ∂tu) and (∂tu,∆u) do not make

sense. To justify (1.2), we require that u is at least an H2-solution.

There is a natural question how one can prove those conservation laws in a framework

of regularity of solutions where everything makes sense. As is pointed out by Ginibre

[2], to appreciate the difficulty of the question, we may think of the uniqueness of so-

lutions constructed by compactness methods for NLS with defocusing nonlinearities of

supercritical Sobolev exponents (see also Remark 9.4.7 in [1]).

There are basically two methods of proofs for conservation laws of the charge and of

the energy. One is based on the continuous dependence of solutions on the Cauchy data,

by which Hj-solutions are approximated by a sequence of Hj+1-solutions for j = 0, 1, so

that formal computations such as (1.1) and (1.2) are justified for approximate solutions

and actual conserved quantities are realized in a limiting procedure [4, 5]. The other is
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based on a sequence of regularized equations which are compatible with methods for local

resolution and with formal computations such as (1.1) and (1.2) [3, 7]. Note that both

methods involve a limiting procedure on approximate solutions.

The purpose in this paper is to prove conservation laws of the charge and of the energy

in a way essentially independent of approximating procedure.

Instead, we exploit additional properties of solutions provided by the Strichartz esti-

mates. To be specific, the Strichartz estimates are formulated in the following lemma (see

[1, 2, 5, 6] for instance).

Definition. A pair of two exponents (q, r) is called an admissible pair if and only if

0 ≤ 2/q = n/2− n/r ≤ 1 with the exception (n, q, r) = (2, 2,∞).

Lemma. Let (q, r), (qj, rj), j = 1, 2, be admissible pairs. Then the free propagator

U(t) = exp(i(t/2)∆) satisfies the following estimates.

∥U(t)ϕ;Lq(R;Lr(Rn))∥ ≤ Cr∥ϕ;L2(Rn)∥,
∥(Gv)(t);Lq1(I;Lr1(Rn))∥ ≤ Cr1Cr2∥v;Lq′2(I;Lr′2(Rn))∥,

where G is the integral operator defined by

(Gv)(t) =

∫ t

0

U(t− t′)v(t′)dt′,

I ⊂ R is an interval with 0 ∈ Ī , Cr is a constant independent of I, and q′ is the dual

exponent defined by 1/q + 1/q′ = 1.

The main results in this paper are as follows.

Proposition 1. Let f satisfy (H1) and (H2). Let ϕ ∈ L2. Let T > 0 and let u be a

solution of the integral equation

u(t) = U(t)ϕ− i

∫ t

0

U(t− t′)f(u(t′))dt′ (1.4)

with u ∈ Lq(−T, T ;Lr) for some admissible pair (q, r). Then ∥u(t)∥2 = ∥ϕ∥2 for all

t ∈ [−T, T ].

Proposition 2. Let f satisfy (H1) and (H3). Let ϕ ∈ H1. Let T > 0 and let u

be a solution of (1.4) with u ∈ Lq(−T, T ;H1
r ) for some admissible pair (q, r). Then

E(u(t)) = E(ϕ) for all t ∈ [−T, T ], where E(u) is as in (1.3).

Remarks 1. Concerning L2 solutions, it is known that if u is a solution of (1.4) with

u ∈ Lq
tL

r for some admissible pair (q, r), then u ∈ Ct(L
2) ∩ Lq

tL
r for all admissible pair

(q, r). A similar result holds for H1 solutions. See [1] for instance.
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Remarks 2. Typical examples of admissible pairs are

(q, r) = (∞, 2) and (q, r) = (4(p+ 1)/(n(p− 1)), p+ 1).

The existence and uniqueness of local L2[resp.H1] solutions of (1.4) is well-known if

p ≤ 1+4/n [resp.(n−2)p ≤ n+2]. See [1, 2, 5, 6]. In the next section we prove Propositions

1 and 2 in a way independent of approximate solutions. The proofs depend on the integral

representation (1.4) of solutions and on regularity and integrability properties of local

solutions given by the Strichartz estimates.

2 Proofs of the propositions

Proof of Proposition 1. We rewrite (1.4) as

U(−t)u(t) = ϕ− i

∫ t

0

U(−t′)f(u(t′))dt′. (2.1)

By the unitarity of the free propagator, we have

∥u(t)∥22
= ∥U(−t)u(t)∥22
= ∥ϕ∥22 − 2 Im

(
ϕ,

∫ t

0

U(−t′)f(u(t′))dt′) + ∥
∫ t

0

U(−t′)f(u(t′))dt′∥22.
(2.2)

The middle term on the RHS of (2.2) is equal to

−2 Im

∫ t

0

(U(t′)ϕ, f(u(t′)))dt′,

where the time integral of the scalar product is understood to be the duality coupling on

(L∞
t L2 ∩Lq

tL
p+1)× (L1

tL
2 +Lq′

t L
(p+1)/p) with q = 4(p+1)/(n(p− 1)), while the last term

on the RHS of (2.2) is equal to

2 Re

∫ t

0

(f(u(t′)),

∫ t′

0

U(t′ − t′′)f(u(t′′))dt′′)dt′

= −2 Im

∫ t

0

(f(u(t′)), u(t′) + i

∫ t′

0

U(t− t′′)f(u(t′′))dt′′)dt′

= −2 Im

∫ t

0

(f(u(t′)), U(t′)ϕ)dt′

= 2 Im

∫ t

0

(U(t′)ϕ, f(u(t′)))dt′,

where we have used (H2) and (1.4) in the first and second equalities, respectively. We

have thus proved that the middle and last terms on the RHS of (2.2) cancel out. This

completes the proof.
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Proof of Proposition 2. In a way similar to the preceding argument, we compute

∥∇u(t)∥22
= ∥∇U(−t)u(t)∥22

= ∥∇ϕ− i

∫ t

0

U(−t′)∇(f(u(t′)))dt′∥22

= ∥∇ϕ∥22 − 2 Im (∇ϕ,

∫ t

0

U(−t′)∇(f(u(t′)))dt′)

+ ∥
∫ t

0

U(−t′)∇(f(u(t′)))dt′∥22

= ∥∇ϕ∥22 − 2 Im

∫ t

0

(U(t′)∇ϕ, ∇(f(u(t′))))dt′

+ 2 Re

∫ t

0

(∇(f(u(t′))),

∫ t′

0

U(t′ − t′′)∇(f(u(t′′)))dt′′)dt′

= ∥∇ϕ∥22 + 2 Im

∫ t

0

(∇(f(u(t′)), U(t′)∇ϕ)dt′

+ 2 Im

∫ t

0

(∇(f(u(t′))),−i

∫ t′

0

U(t′ − t′′)∇(f(u(t′′)))dt′′)dt′

= ∥∇ϕ∥22 + 2 Im

∫ t

0

(∇(f(u(t′))),∇u(t′))dt′

= ∥∇ϕ∥22 − 2 Im

∫ t

0

(f(u(t′)),∆u(t′))dt′

= ∥∇ϕ∥22 − 4 Re

∫ t

0

(f(u(t′)), ∂tu(t
′))dt′

= ∥∇ϕ∥22 − 2

∫ t

0

d

dt

∫
Rn

V (u(t′))dxdt′

= ∥∇ϕ∥22 − 2

∫
Rn

V (u(t))dx+ 2

∫
Rn

V (ϕ)dx,

where the last two time integrals of the scalar products are understood to be the duality

coupling on (L1
tH

1 + Lq′

t H
1
(p+1)/p)× (L∞

t H1 ∩ Lq
tH

1
p+1) with q = 4(p+ 1)/(n(p− 1)), and

Im(f(u),∆u) = lim
ε↓0

Im((1− ε∆)−1f(u), (1− ε∆)−1∆u)

= lim
ε↓0

Im((1− ε∆)−1f(u), (1− ε∆)−1(−2i∂tu+ 2f(u)))

= lim
ε↓0

Im((1− ε∆)−1f(u), (1− ε∆)−1(−2i∂tu))

= 2 Re(f(u), ∂tu).

This completes the proof.

Acknowledgments. The author is grateful to the referee for useful suggestions.
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