CONICS ON A GENERIC HYPERSURFACE

MASAIO JINZENJI, IKU NAKAMURA AND YASUKI SUZUKI

ABSTRACT. In this paper, we compute the contributions from double cover maps to genus 0 degree 2 Gromov-Witten invariants of general type projective hypersurfaces. Our results correspond to a generalization of Aspinwall-Morrison formula to general type hypersurfaces in some special cases.
MSC-class: 14H99, 14N35, 32G20

1. INTRODUCTION

In this paper, we discuss a generalization of the multiple cover formula for rational Gromov-Witten invariants of Calabi-Yau manifolds [AM], [M] to double cover maps of a line L on a degree k hypersurface M_N^k in \mathbb{P}^{N-1}. Naïvely, for a given finite set of elements $\alpha_j \in H^*(M_N^k, \mathbb{Z})$, the rational Gromov-Witten invariant $\langle \mathcal{O}_{\alpha_1} \mathcal{O}_{\alpha_2} \cdots \mathcal{O}_{\alpha_s} \rangle_{0,d}$ of M_N^k counts the number of degree d (possibly singular and reducible) rational curves on M_N^k that intersect real sub-manifolds of M_N^k that are Poincaré-dual to α_j.

Recently, the mirror computation of rational Gromov-Witten invariants of M_N^k with negative first Chern class $(k-N > 0)$ was established in [CG], [IR], [J]. Using the method presented in these articles, we can compute $\langle \mathcal{O}_{e_1} \mathcal{O}_{e_2} \cdots \mathcal{O}_{e_m} \rangle_{0,d}$ where e is the generator of $H^{1,1}(M_N^k, \mathbb{Z})$. Briefly, mirror computation of M_N^k ($k > N$) in [J] goes as follows. We start from the following ODE:

$$\left((\partial_x)^N - k \cdot \exp(x) \cdot (k\partial_x + k - 1)(k\partial_x + k - 2) \cdots (k\partial_x + 1) \right) w(x) = 0,$$

and construct the virtual Gauss-Manin system associated with (1):

$$\partial_x \tilde{\psi}_{N-2-m}(x) = \tilde{\psi}_{N-1-m}(x) + \sum_{d=1}^{\infty} \exp(dx) \cdot \tilde{L}_{N,k,d} \cdot \tilde{\psi}_{N-1-m-(N-k)d}(x),$$

where m runs through all the integers and $\tilde{L}_{N,k,d}$ is non-zero only if $0 \leq m \leq N - 1 + (k-N)d$. From the compatibility of (1) and (2), we can derive the recursive formulas that determine all the $\tilde{L}_{N,k,d}$:

$$\sum_{n=0}^{k-1} \tilde{L}_{N,k,1} w_n = k \cdot \prod_{j=1}^{k-1} (jw + (k - j)),$$

$$\sum_{m=0}^{N-1+(k-N)d} \tilde{L}_{N,k,d} w_m = \sum_{l=2}^{d} (-1)^{l-1} \sum_{0 \leq \ell_0 < \cdots < \ell_l = d} \times$$

$$\sum_{j_0=0}^{\ell_0} \cdots \sum_{j_l=0}^{\ell_l} \sum_{n=1}^{l} \left(\frac{\ell_n - 1 + (d - \ell_n - 1)z}{d} \cdot \tilde{L}_{N,k,j_0 + (N-k)j_{n-1}} \right).$$
With these data, we can construct the formulas that represent rational three point Gromov-Witten invariant \(\langle O_0, O_{e,N-2-m}, O_{e,m-1-(k-N)d} \rangle_d \) in terms of \(\bar{L}^N_{m,k,d} \). These three point Gromov-Witten invariants are enough for reconstruction of all the rational Gromov-Witten invariants \(\langle O_{e,m_1} O_{e,m_2} \cdots O_{e,m_n} \rangle_0 \) [KM]. In particular, we obtain the following formula in the \(d = 2 \) case:

\[
\langle O_0, O_{e,N-2-m}, O_{e,m-1-(k-N)d} \rangle_2 = k \cdot \left(\bar{L}^N_{m,k,2} - \bar{L}^N_{1+2(k-N)} - 2 \bar{L}^N_{1+i(k-N)} \sum_{j=0}^{k-N} (\bar{L}^N_{m-j} - \bar{L}^N_{1+i(k-N)-j}) \right).
\]

According to the results of this procedure, rational three point Gromov-Witten invariants can be rational numbers with large denominator if \(k > N \), in contrast to the Calabi-Yau case where rational three point Gromov-Witten invariants are always integers.

One of the reasons of this rationality (non-integrality) comes from the contributions of multiple cover maps to Gromov-Witten invariants. In the Calabi-Yau case \((N = k) \), for any divisor \(m \) of \(d \) there are some contributions from degree \(m \) multiple cover maps \(\phi \) of a rational curve \(\mathbb{P}^1 \) onto a degree \(\frac{d}{m} \) rational curve \(C \hookrightarrow M^k \). The contributions from the multiple cover maps are expressed in terms of the virtual fundamental class of Gromov-Witten invariants. Let \(C \) be a general degree \(d \) rational curve in \(M^k \). Its normal bundle \(N_{C/M^k} \) is decomposed into a direct sum of line bundles as follows:

\[
N_{C/M^k} \simeq O_C(-1) \oplus O_C(-1) \oplus O_C^{\oplus(k-5)}.
\]

Let \(\phi : \mathbb{P}^1 \to C \) be a holomorphic map of degree \(m \). Since the pull-back \(\phi^*(N_{C/M^k}) \) is given by

\[
\phi^*(N_{C/M^k}) \simeq O_{\mathbb{P}^1}(-m) \oplus O_{\mathbb{P}^1}(-m) \oplus O_{\mathbb{P}^1}^{\oplus k-5},
\]

we obtain \(h^1(\phi^*(N_{C/M^k})) = 2m - 2 \). On the other hand, let \(\bar{M}_{0,0}(M,d) \) be the moduli space of 0-pointed stable maps of degree \(d \) from genus 0 curve to \(M \). Then the moduli space of \(\phi \) is the fiber space \(\pi : \bar{M}_{0,0}(C,m) \to \bar{M}_{0,0}(M_k, \frac{d}{m}) \), whose fibre \(\bar{M}_{0,0}(C,m) \) over \(C \) (fixed) has complex dimension \(2m - 2 \). Then the push-forward of the virtual fundamental class \(\pi_*c_{top}(H^1(\phi^*N_{C/M^k}))) \) can be computed only by intersection theory on the fiber \(\bar{M}_{0,0}(C,m) \), which turns out to be equal to \(\frac{1}{2} \). This depends on neither the structure of the base \(\bar{M}_{0,0}(M_k, \frac{d}{m}) \) nor the global structure of the fibration.

But when \(k < N \), the situation is more complicated than \(M^k \) because of negative first Chern class. Let us concentrate on the case of \(d = 2, m = 2 \) that we discuss in this paper. In this case, \(C \) is just a line \(L \) on the hypersurface \(M^k \). The moduli space \(\bar{M}_{0,0}(M^k,1) \) is a sub-manifold of \(\bar{M}_{0,0}(P^{N-1},1) \), while \(\bar{M}_{0,0}(P^{N-1},1) \) is the Grassmannian \(G(2,N) \), the moduli space of rank 2 quotients of \(V = C^N \). As will be shown later, for a generic line \(L, N_{L/M^k} \) is decomposed into

\[
N_{L/M^k} \simeq O_L(-1)^{\oplus k-N+2} \oplus O_L^{\oplus 2N-k-5}.
\]
By pulling back it by the degree 2 map $\phi : \mathbb{P}^1 \to L$, we obtain,
\[
\phi^* N_{L/M^k_N} \simeq O_{\mathbb{P}^1}((-2)^{g_k - N + 2} \oplus O_{\mathbb{P}^1}^{g_k - N - 1}.
\]
Therefore, $h^1(\phi^*(N_{L/M^k_N})) = k - N + 2$, which is strictly greater than two, the complex dimension of the fiber $\overline{M}_{0,0}(L, 2)$. Thus we need to know the global structure of the fibration π in order to compute the multiple cover contribution to degree 2 rational Gromov-Witten invariants of M^k_N.

In order to estimate the contributions from double cover maps $\phi : \mathbb{P}^1 \to L$ to $\langle O_c \cup_c O_c \cup_c \rangle_{0,2}$, we first computed the number of conics, that intersect cycles Poicaré dual to e^a, e^b and e^c, on M^k_N (whose normal bundle are of the same type) by using the method in [K2]. Then we found the following formula by comparing these integers with the results obtained from (3):

\[
\langle O_c \cup_c O_c \cup_c \rangle_{0,2} = \text{(number of corresponding conics)} + \int_{G(2,N)} c_{top}(S_k^2 Q) \wedge \left[c_1(Q)^{g_k - 1} \right]_{k-N} \wedge \sigma_{a-1} \wedge \sigma_{b-1} \wedge \sigma_{c-1},
\]
where Q is the universal rank 2 quotient bundle of $G(2,N)$, σ_a is a Schubert cycle defined by $\sum_{a=0}^{\infty} \sigma_a := \frac{1}{\pi_a^N}$ and $[\ast]_{k-N}$ is the operation of picking up degree $2(k - N)$ part of Chern classes.

On the other hand, we have the following formula which directly follows from the definition of the virtual fundamental class of $\overline{M}_{0,0}(M^k_N, 2)$:

\[
\langle O_c \cup_c O_c \cup_c \rangle_{0,2} = \text{(number of corresponding conics)} + 8 \int_{G(2,N)} c_{top}(S_k^2 Q) \wedge \left[\pi_*(c_{top}(H^1(\phi^* N_{L/M^k_N}))) \right]_{k-N} \wedge \sigma_{a-1} \wedge \sigma_{b-1} \wedge \sigma_{c-1}.
\]
where $\pi : \overline{M}_{0,0}(L, 2) \to \overline{M}_{0,0}(M^k_N, 1)$ is the natural projection. Here, the factor 8 comes from the divisor axiom of Gromov-Witten invariants.

In this paper, we prove the following formula

\[
\pi_*(c_{top}(H^1(\phi^* N_{L/M^k_N}))) = \frac{1}{8} \left[\frac{c_1(Q)^{g_k - 1}}{1 - c_1(Q)} \right]_{k-N}.
\]

By combining (5) with (6), we can derive the formula (4) immediately.

From (4), we see that $\langle O_c \cup_c O_c \cup_c \rangle_{0,2}$ of M^k_N is a rational number with denominator at most 2^{k-N}. Therefore rationality (non-integrality) of the Gromov-Witten invariant $(O_c \cup_c O_c \cup_c)_{0,2}$ is caused by the effect of multiple cover map in this case.

We note here that the total moduli space of double cover maps of lines is isomorphic to $\mathbb{P}(S^2 Q)$ over $G := \overline{M}_{0,0}(M^k_N, 1) \leftrightarrow G(2,N)$, which is an algebraic Q-stack $\mathbb{P}(S^2 Q)^{stack}$ (in the sense of Mumford). As a consequence, the union of all $H^1(\phi^* N_{C_{/M^k_N}})$ turns out to be a coherent sheaf on $\mathbb{P}(S^2 Q)^{stack}$ with fractional Chern class in (6), as was suggested in [BT]. See [V, Section 9].

We also did some numerical experiments on degree 3 Gromov-Witten invariants of M^k_N by using the results of [ES]. For $k - N > 0$, there is a new contribution from multiple cover maps to nodal conics in M^k_N that did not appear in the Calabi-Yau case. Therefore, multiple cover map contributions are far more complicated than Calabi-Yau, and we leave general analysis on this problem to future works.
This paper is organized as follows. In Section 1, we analyze characteristics of moduli space of lines in \(M^k_N \) and derive \(N_{L/M^k_N} \simeq O_L(-1)^{g(k-N+2)} \circ O_L^{g2N-k-5} \). In Section 2, we study the moduli space \(\mathcal{M}_{0,0}(\mathbb{P}^1, 2) \) from the point of view of stability and identify it with \(\mathbb{P}^2 \) and show that the moduli space \(\mathcal{M}_{0,0}(\mathbb{P}^1, 2) \) is isomorphic to \(\mathbb{P}(S^2 Q) \) over \(G \). In section 4, we describe \(H^1(\phi^* N_{L/M^k_N}) \) as an coherent sheaf over \(\mathbb{P}(S^2 Q)^{\text{stack}} \). In section 5, we derive the main theorem (6) of this paper by using Segre-Witten classes. In Section 6, we mention some generalization to degree 3 Gromov-Witten invariants.

2. Lines on a hypersurface

Let \(M \) be a generic hypersurface of degree \(k \) of the projective space \(\mathbb{P}^N = \mathbb{P}(V) \). We assume \(2N - 5 \geq k \geq N - 2 \geq 2 \) throughout this note. In this note we count the number of rational curves of virtual degree two, namely rational curves which doubly cover lines on \(M \).

Let \(\mathcal{P} = \mathbb{P}(V) \) be the projective space parameterizing all one-dimensional quotients of \(V \), which is usually denoted by \(\mathcal{P}(V) \) in the standard notation in algebraic geometry. In this notation let \(W \) be a subspace of \(V \). Then \(\mathcal{P}(W) \) is naturally a linear subspace of \(\mathcal{P}(V) \) of dimension \(\text{dim } W - 1 \).

Let \(G(2, V) \) be the Grassmann variety of lines in \(\mathcal{P}(V) \), the scheme parameterizing all lines of \(\mathcal{P} = \mathbb{P}(V) \). This is also the universal scheme parameterizing all one-dimensional quotient linear spaces of \(V \). Let \(W \) be a two dimensional quotient linear space, \(\psi \in G(2, V) \), namely \(\psi : \mathcal{P}(W) \to \mathcal{P}(V) \) the natural immersion and \(i_\psi : V \to W \) the quotient homomorphism. The space \(W \) is denoted by \(W(\psi) \) when necessary.

There exists the universal bundle \(Q_{G(2,V)} \) over \(G(2, V) \) and a homomorphism \(i_{\text{univ}}^* : O_{G(2,V)} \otimes V \to Q_{G(2,V)} \) whose fiber \(i_{\psi}^* : V \to Q_{G(2,V)} \) is the quotient \(i_\psi : V \to W(\psi) \) of \(V \) corresponding to \(\psi \).

2.1. Existence of a line on \(M \). Let \(L = \mathcal{P}(W) \) be a line of \(\mathcal{P} \), equivalently \(W \in G(2, V) \). Then the condition \(L \subset M \) imposes at most \(k + 1 \) conditions on \(W \), while the number of moduli of lines of \(\mathcal{P} \) equals \(\text{dim } G(2, V) = 2N - 4 \). Hence we infer

Lemma 2.2. If \(2N \geq k + 5 \), then there exists at least a line on \(M \).

See also [Katz,p.152]. Let \(G \) be the subscheme of \(G(2, V) \) parameterizing all lines of \(\mathcal{P}(V) \) lying on \(M \), \(Q = (Q_{G(2,V)})_G \) the restriction of \(Q_{G(2,V)} \) to \(G \). By Lemma 2.2, \(G \) is nonempty. Let \(i^* : O_G \otimes V \to Q \) be the restriction of \(i_{\text{univ}}^* \) to \(G \). Let \(P = \mathcal{P}(Q) \) and \(\pi : P \to G \) the natural projection. Then \(\pi \) is the universal line of \(M \) over \(G \), to be more exact, the universal family over \(G \) of lines lying on \(M \). In other words, the natural epimorphism \(i^* : O_G \otimes V \to Q \) induces a morphism \(i : P \to \mathcal{P}_G(V) := G \times \mathcal{P}(V) \), which is a closed immersion into \(\mathcal{P}_G(V) \), thus \(P \) is a subscheme of \(\mathcal{P}_G(V) \) such that \(\pi = (p_1)p \). Let \(L_\psi = \mathcal{P}(Q_\psi) \). Note that

\[
L_\psi = P_\psi := \pi^{-1}(\psi) \simeq \mathcal{P}(Q_\psi) \times \{\psi\} \times \mathcal{P}(V) \simeq \mathcal{P}(V).
\]
2.3. The normal bundle $N_{L/M}$. The argument of this section is standard and well known. Let $P = P(V)$, $L = P(W)$ and $i_W: V \to W \in G$. Let us recall the following exact sequence:

$$
0 \to O_P \to O_P(1) \otimes V^\vee \xrightarrow{D} T_P \to 0
$$

where the homomorphism D is defined by

$$
D(a \otimes v^\vee) := aD_{(v^\vee)} \quad (a \in O_P(1))
$$

$$(D_{v^\vee}F)(u^\vee) := \frac{d}{dt}F(u^\vee + tv^\vee)|_{t=0}
$$

for a homogeneous polynomial $F \in S(V)$ and $u^\vee, v^\vee \in V^\vee$. We note $H^0(O_P(1)) \otimes V^\vee = V \otimes V^\vee = \text{End}(V, V)$ and that the image of $H^0(O_P)$ in $\text{End}(V, V)$ is Cid_V.

We also have the following exact sequences:

$$
0 \to T_L \to (T_P)_L \to N_{L/P} \to 0
$$

$$
0 \to O_L \to O_L(1) \otimes V^\vee \xrightarrow{D_L} (T_P)_L \to 0
$$

Lemma 2.4. Let $L = P(W)$. Then

$$
N_{L/P} \simeq O_L(1) \otimes (V^\vee/W^\vee), \quad H^0(N_{L/P}) \simeq W \otimes (V^\vee/W^\vee).
$$

Proof. The assertion is clear from the following commutative diagram with exact rows and columns:

$$
\begin{array}{ccccccc}
0 & \to & O_L & \to & O_L(1) \otimes W^\vee & \xrightarrow{(D_L)_{W^\vee}} & T_L & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \to & O_L & \to & O_L(1) \otimes V^\vee & \xrightarrow{D_L} & (T_P)_L & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \to & O_L(1) \otimes (V^\vee/W^\vee) & \to & N_{L/P} & \to & 0
\end{array}
$$

The second assertion is clear from $H^0(L, O_L(1)) = W$. \hfill \Box

Since $T_L \simeq O_L(2)$, there follow exact sequences

$$
0 \to H^0(T_L) \to H^0((T_P)_L) \to H^0(N_{L/P}) \to 0
$$

$$
0 \to H^0(O_L) \to H^0(O_L(1)) \otimes V^\vee \xrightarrow{H^0(D_L)} H^0((T_P)_L) \to 0.
$$

We also note

$$
H^0(T_L) = \text{Lie Aut}^0(L) = \text{End}(W, W)/\text{center} = \text{End}(W, W)/\text{Cid}_W.
$$

Since $H^0(O_L(1)) = W$, we see

$$
H^0((T_P)_L) = W \otimes V^\vee/\text{Im} H^0(O_L) = \text{Hom}(V, W)/\text{Cid}_W^*.
$$

Hence we again see

$$
H^0((N_{L/P})) = (\text{Hom}(V, W)/\text{Cid}_W^*)/(\text{Hom}(W, W)/\text{Cid}_W)
$$

$$
= W \otimes (V^\vee/W^\vee) = \text{Hom}(V/W, W).
$$

For any line $L = P(W)$ of P the following sequence is exact:

$$
0 \to N_{L/M} \to N_{L/P} \to (N_{M/P})_L(\simeq O_L(k)) \to 0.
$$
Hence so is the following sequence as well:

\[
\begin{align*}
0 \longrightarrow & H^0(N_{L/M}) \longrightarrow H^0(N_{L/P}) \xrightarrow{H^0(D_L)} H^0(O_L(k)) \\
\quad & \longrightarrow H^1(N_{L/M}) \longrightarrow 0.
\end{align*}
\]

Hence we have

Lemma 2.5. The following is exact:

\[
(8) \quad 0 \rightarrow H^0(N_{L/M}) \rightarrow W \otimes (V^\vee/W^\vee) \xrightarrow{H^0(D_L)} S^kW \rightarrow H^1(N_{L/M}) \rightarrow 0.
\]

Corollary 2.6. \(\dim G \geq 2N - k - 5\), equality holding if \(H^1(N_{L/M}) = 0\).

Proof. As is well-known, \(\dim G \geq h^0(N_{L/M}) - h^1(N_{L/M})\). Note \(\dim W \otimes (V^\vee/W^\vee) = 2(N - 2)\) and \(\dim S^kW = k + 1\). Hence the corollary follows from Lemma 2.5. \(\square\)

Lemma 2.7. For a generic line \(L\) on a generic hypersurface \(M\) of degree \(k\)

(i) \(N_{L/M} \cong O_L^{a_0} \oplus O_L(-1)^{b_b}\), where \(a = 2N - k - 5\) and \(b = k - N + 2\);

(ii) \(\text{Coker } H^0(D_L^-) \cong S^{k-1}W/(V^\vee/W^\vee)\) where \(D_L^- := D_L \oplus O_L(-1)\).

Proof. Let \(M\) be a generic hypersurface of degree \(k\) and \(L\) a generic line on \(M\). Without loss of generality we may assume that \(W^\vee\) is generated by \(e_1^y\) and \(e_2^y\), in other words, \(\psi : L \rightarrow \mathbb{P}\) is given by

\[
\psi : [s : t] \rightarrow [x_1, \ldots, x_N] = [s, t, 0, \ldots, 0].
\]

Then \(F\), the polynomial of degree \(k\) defining \(M\), is written as

\[
F = x_3F_3 + x_4F_4 + \cdots + x_NF_N
\]

for some polynomials \(F_j\) of degree \(k - 1\). Let \(f_j = \psi^*F_j = F_j(s, t, 0, \ldots, 0)\).

Now we consider the exact sequence

\[
\begin{align*}
0 \longrightarrow & H^0(N_{L/M}(-1)) \longrightarrow H^0(N_{L/P}(-1)) \xrightarrow{H^0(D_L^-)} H^0(O_L(k - 1)) \\
\quad & \longrightarrow H^1(N_{L/M}(-1)) \longrightarrow 0,
\end{align*}
\]

where we note \(H^0(N_{L/P}(-1)) = V^\vee/W^\vee\). Hence the following is exact:

\[
(9) \quad 0 \longrightarrow H^0(N_{L/M}(-1)) \longrightarrow V^\vee/W^\vee \xrightarrow{H^0(D_L^-)} S^{k-1}W \\
\quad \longrightarrow H^1(N_{L/M}(-1)) \longrightarrow 0
\]

where \(H^0(D_L^-)\) is given by \(H^0(D_L^-)(e_j^y) = f_j\) \((j = 3, 4, \ldots, N)\).

A generic choice of \(F\) implies a generic choice of degree \(k - 1\) polynomials \(f_j\) \((j = 3, 4, \ldots, N)\) in \(s\) and \(t\). By the assumptions

\[
\dim S^{k-1}W = k \geq N - 2 = \dim V^\vee/W^\vee,
\]

\[
\dim W \otimes V^\vee/W^\vee = 2(N - 2) \geq k + 1 = \dim S^kW,
\]

the generic choice of \(F\) implies that we can choose \(f_j \in S^{k-1}W\) \((j = 3, 4, \ldots, N)\) (and fix once for all) such that

(iii) \(f_j\) \((j = 3, 4, \ldots, N)\) are linearly independent,

(iv) \(Wf_3 + Wf_4 + \cdots + Wf_N = S^kW\).
Hence $H^0(D_L^*)$ is injective by (iii). It follows that $H^0(N_{L/M}(-1)) = 0$. Hence (ii) is clear. Next we consider $H^0(D_L)$. By (iv), we see

$$S^kW = W - H^0(D_L^*)(V/W) = H^0(D_L)(W \oplus V/W),$$

whence $H^0(D_L)$ is surjective. It follows that $H^1(N_{L/M}) = 0$. Hence $N_{L/M} \simeq O_L^{ba} \oplus O_L(-1)^{gb}$ for some a and b. Since $a + b = \text{rank}(N_{L/M}) = N - 3$ and $-b = \text{deg}(N_{L/M}) = N - 2 - k$, we have (i).

\[\square\]

2.8. Lines on a quintic hypersurface in \mathbb{P}^4. See [Katz, Appendix A] for the subsequent examples. Let $N = 5$ and $k = 5$. Hence M is a hypersurface of degree 5 in \mathbb{P}^4, a Calabi-Yau 3-fold. Let

$$F = x_4x_1^3 + x_5x_2^2 + x_3x_2^5 + x_4x_5^2 + x_5^3.$$

First we note that $M = \{F = 0\}$ is nonsingular. Let $L = \{x_3 = x_4 = x_5 = 0\} = \{[s, t, 0, 0, 0]\}$. In this case $f_3 = 0$, $f_4 = s^4$ and $f_5 = t^4$. In the exact sequence (1) we see $H^0(N_{L/M}(-1)) = \text{Ker} H^0(D_L^*) = Cc_3^{(5)}$ and $H^1(N_{L/M}(-1)) = \text{Coker} H^0(D_L^*)$ is 3-dimensional. Hence $N_{L/M} = O_L(1) \oplus O_L(-3)$.

We summarize the above. If $\dim \text{Ker} H^0(D_L^*) = 1$ and if M is nonsingular, then $N_{L/M} = O_L(1) \oplus O_L(-3)$. Hence $H^0(N_{L/M}) = \text{Ker} H^0(D_L) = W \oplus \text{Ker} H^0(D_L^*)$ is 2-dimensional. Therefore we can choose $f_3 = 0$ and a linearly independent pair f_4 and $f_5 \in S^4W$ so that $Wf_4 + Wf_5$ is 4-dimensional. The choice $f_4 = s^4$ and $f_5 = t^4$ satisfies the conditions. This enables us to find a nonsingular hypersurface M as above. However if we choose $f_3 = 0$, $f_4 = s^4$ and $f_5 = s^3t$, then $Wf_4 + Wf_5$ is 3-dimensional. Hence M is singular.

Next in the same manner we find L on a nonsingular hypersurface M with $N_{L/M} = O_L \oplus O_L(-2)$ or $N_{L/M} = O_L(-1)^{gb}$. Let

$$F = x_3x_1^4 + x_4x_1^2x_2 + x_5x_2^3 + x_3^5 + x_4^5 + x_5^5.$$

Then we have $f_3 = s^4$, $f_4 = s^3t$ and $f_5 = t^4$. Since $Wf_3 + Wf_4 + Wf_5$ is 5-dimensional, $H^0(N_{L/M}(-1)) = \text{Ker} H^0(D_L^*) = 0$, $H^0(N_{L/M}) = \text{Ker} H^0(D_L) = C(c_3^{(2)} - sc_1^{(2)})$. We see also that $\dim H^1(N_{L/M}) = \dim \text{Coker} H^0(D_L) = 1$ and $N_{L/M} = O_L \oplus O_L(-2)$. The hypersurface $M = \{F = 0\}$ is easily shown to be nonsingular.

If $F = x_3x_1^4 + x_4x_1^2x_2 + x_5x_2^3 + x_3^5 + x_4^5 + x_5^5$ and $M = \{F = 0\}$, then $N_{L/M} = O_L(-1)^{gb}$.

2.9. Lines on a generic hypersurface M^8 of \mathbb{P}^6. Let $N = 7$ and $k = 8$. In view of Lemma 2.2 there exists a line L on any generic hypersurface M of degree 8 in $\mathbb{P}(V) = \mathbb{P}^6$. In view of Lemma 2.7, $a = 1$, $b = 3$ and $N_{L/M} \simeq O_L \oplus O_L(-1)^{gb}$. For example let $L : x_j = 0$ $(j \geq 3)$ and we take

$$F = x_3x_1^4 + x_4x_1^2x_2 + x_5x_2^3 + x_3^5 + x_4^5 + x_5^5,$$

and let $M = M^8 : F = 0$. We see that M is nonsingular near L and has at most isolated singularities. However it is still unclear to us whether $M = M^8$ is
nonsingular everywhere. The space $H^0(N_{L/M})$ is spanned by $te^\epsilon - se^\epsilon$, hence an infinitesimal deformation L_c of L is given by

$$[s,t] \mapsto [s,t, \epsilon s, 0, 0, 0]$$

which yields $F|_{L_c} = \epsilon^8(s^8 + t^8) \equiv 0 \mod \epsilon^8$. Since $H^1(N_{L/M}) = 0$, this infinitesimal deformation is integrable and $G (:= \text{the moduli of lines of } P^6 \text{ contained in } M)$ is nonsingular and one dimensional at the point $[L]$.

We note that M also contains 8 lines

$$L' := L_{c_8} : \epsilon s x_1 - x_2 = x_3 + \epsilon s x_4 = x_j = 0 \ (j \geq 5),$$

with $N_{L/M} = O_L(-1)^{\mathbb{R}^3} \oplus O_L(-6)$ where $\epsilon^8 = -1$.

3. Stability

Definition 3.1. Suppose that a reductive algebraic group G acts on a vector space V. Let $v \in V$, $v \neq 0$.

1. the vector v is said to be semi-stable if there exists a G-invariant homogeneous polynomial F on V such that $F(v) \neq 0$,
2. the vector v is said to be stable if p has a closed G-orbit in X_{ss} and the stabilizer subgroup of v in G is finite.

Let $\pi : V \setminus \{0\} \to P(V^\vee)$ be the natural surjection. Then $v \in V$ is semi-stable (resp. stable) if and only if $\pi(v)$ is semi-stable (resp. stable).

3.2. Grassmann variety.** Let V be an N-dimensional vector space, and $G(r,N)$ the Grassmann variety parameterizing all r-dimensional quotient spaces of V. Here is a natural way of understanding $G(r,N)$ via GIT-stability. Let U be an r-dimensional vector space, $X = \text{Hom}(V,U)$ and $\pi : X \setminus \{0\} \to P(X^\vee)$ the natural map. Then $SL(U)$ acts on X from the left by:

$$(g \cdot \phi^*)(v) = g \cdot (\phi^*(v)) \quad \text{for } \phi^* \in X, \ v \in V.$$

We see that for $\phi^* \in X$

- ϕ^* is $SL(U)$-stable \iff rank $\phi^* = r$,
- ϕ^* is $SL(U)$-semi-stable \iff ϕ^* is $SL(U)$-stable.

In fact, if rank $\phi^* = r - 1$, then there is a one-parameter torus T of $SL(U)$ such that the closure of the orbit $T \cdot \phi$ contains the zero vector as the following simple example $(r = 2)$ shows

$$\begin{aligned}
\lim_{t \to 0} \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1N} \\ 0 & 0 & \cdots & 0 \end{pmatrix} = \\
\lim_{t \to 0} \begin{pmatrix} ta_{11} & ta_{12} & \cdots & ta_{1N} \\ 0 & 0 & \cdots & 0 \end{pmatrix}.
\end{aligned}$$

Let X_s be the set of all (semi)stable points and P_s the image of X_s by π. It is, as we saw above, just the set of all $\phi \in X$ with rank $\phi^* = r$. Therefore the GIT-orbit space $P_s/SL(U)$ is the orbit space $P_s/SL(U)$ by the free action, the Grassmann variety $G(r,N)$.

3.3. Moduli of double coverings of \mathbb{P}^1 (1). Let W and U be a pair of two dimensional vector spaces, $X = \text{Hom}(W, S^2 U)$, and $\pi : X \setminus \{0\} \to \mathbb{P}(X')$ the natural morphism. Note that $\text{SL}(U)$ acts on S^2U from the left via the natural action: $\sigma(u_1 u_2) = \sigma(u_1) \sigma(u_2)$ for $\forall u_1, u_2 \in U$. Thus $\text{SL}(U)$ acts on X from the left in the same manner in the subsection 3.2.

Lemma 3.4. Let $\phi^* \in X$.

(i) ϕ^* is unstable iff $\phi^*(w)$ has a double root for any $w \in W$.

(ii) ϕ^* is semistable iff $\phi^*(w)$ has no double roots for some nonzero $w \in W$.

(iii) ϕ^* is stable iff $\phi^*(W)$ is a base-point free linear subsystem of S^2U on $\mathbb{P}(U)$.

Proof. We note that ϕ^* is unstable iff there is a suitable basis s and t of U such that $\phi^*(w) = a(w)s^2$ for any $w \in W$ since a torus orbit $T \cdot \phi^*$ contains the zero vector. This proves (i). This also proves (ii). Next we prove (iii). If $\phi^*(W)$ has a base point, then it is clear that ϕ^* is not stable. If ϕ^* is semistable and it is not stable, then we choose a basis s, t of U and a basis w_1, w_2 of W such that $\phi^*(w_1) = st$. If $\phi^*(w_2) = as^2 + bst$, then ϕ^* is not stable. This proves the lemma. □

Theorem 3.5. Let X_{ss} be the Zariski open subset of X consisting of all semistable points of X, $\pi(X_{ss})$ the image of X_{ss} by π, and $Y := \pi(X_{ss})//\text{SL}(U)$. Then $Y \simeq \mathbb{P}^2$.

Proof. First consider a simplest case. We choose a basis s, t of U. Let w_1 and w_2 be a basis of W, T the subgroup of $\text{SL}(U)$ of diagonal matrices and $X^t = \{ \phi^* \in X; \phi^*(w_1) = 2st \}$. Let $Z' = \text{SL}(U) \cdot X'$.

We note that Z' is an $\text{SL}(U)$-invariant subset of X_{ss}. We prove $\pi(Z')//\text{SL}(U) \simeq \mathbb{C}^2$. Let ϕ^* and ψ^* be points of X'. Let $\phi^*(w_2) = As^2 + 2Bst + Ct^2$ and $\psi^*(w_2) = as^2 + bst + ct^2$. Then it is easy to check

$$g \cdot \phi^* = \psi^* \quad \text{for } \exists g \in \text{SL}(U) \iff g \cdot \phi^* = \psi^* \quad \text{for } \exists g \in T \iff \begin{array}{c} A = au^2, \quad B = b, \quad C = u^{-2}c \quad \text{for } \exists u \neq 0. \end{array}$$

Therefore each equivalence class of $\pi(Z')//\text{SL}(U)$ is represented by the pair (AC, B), which proves $\pi(Z)//\text{SL}(U) \simeq \mathbb{C}^2$.

Now we prove the lemma. Let $\phi^* \in X_{ss}$, $\phi_j = \phi^*(w_j)$ and $\phi_0 = - (\phi_1 + \phi_2)$. Let

$$\begin{align*}
\phi_0 &= r_1 s^2 + 2r_2 st + r_3 t^2, \\
\phi_1 &= p_1 s^2 + 2p_2 st + p_3 t^2, \\
\phi_2 &= q_1 s^2 + 2q_2 st + q_3 t^2,
\end{align*}$$

and we define

$$D_1 = p_2^2 - p_1 p_3, \quad D_2 = q_2^2 - q_1 q_3,$$

$$D_0 = r_2^2 - r_1 r_3 = D_1 + D_2 + 2p_2 q_2 - (p_1 q_3 + p_3 q_1).$$

To show the lemma, we prove the more precise isomorphism

$$\pi(X_{ss})//\text{SL}(U) = \text{Proj } \mathbb{C}[D_0, D_1, D_2]$$

For this purpose we define $Y_j = \pi(\{ \phi^* \in X_{ss}; \phi_j \text{ has no double roots} \})//\text{SL}(U)$. It suffices to prove $Y_1 = \text{Spec } \mathbb{C}[D_0, D_1]$ by reducing it to the first simplest case.
Let $\phi^* \in Y_1$. Let α and β be the roots of $\phi_1 = 0$. By the assumption ϕ_1 has no double roots, hence $\alpha \neq \beta$. Let

$$u = \frac{1}{\gamma} (s - \alpha t), \quad v = \frac{1}{\gamma} (s - \beta t), \quad g = \frac{1}{\gamma} \left(\frac{1}{\gamma} \begin{vmatrix} -\alpha \\ -\beta \end{vmatrix} \right)$$

where $\gamma = \sqrt{\alpha - \beta}$. Note that $g \in \text{SL}(U)$. Hence we see

$$(\phi_1(s,t), \phi_2(s,t)) \equiv (p_1gamma^4uv, A_1u^2 + 2B_1uv + C_1v^2)$$

where

$$A_1 = q_1^2\beta^2 + 2q_2\beta + q_3,$$

$$-B_1 = q_1\alpha\beta + q_2(\alpha + \beta) + q_3,$$

$$C_1 = q_1^2\alpha^2 + 2q_2\alpha + q_3.$$

Thus we see

$$(\phi_1(s,t), \phi_2(s,t)) \equiv (2st, As^2 + 2Bst + Ct^2)$$

where

$$A = \frac{2A_1}{p_1gamma^4}, \quad B = \frac{2B_1}{p_1gamma^4}, \quad C = \frac{2C_1}{p_1gamma^4}, \quad p_1gamma^4 = 4D_1,$$

$$AC = B^2 - \frac{D_2}{D_1}, \quad B = \frac{D_0 - D_1 - D_2}{2D_1}.$$

Therefore by the first half of the proof

$$Y_1 \cong \text{Spec } \mathbb{C}[AC,B] = \text{Spec } \mathbb{C}[\frac{D_0}{D_1}, \frac{D_2}{D_1}].$$

This completes the proof of the lemma.

Corollary 3.6. Let $Y^* = \pi(X_*)//\text{SL}(U)$. Then $Y \setminus Y^*$ is a conic of Y defined by

$$Y \setminus Y^* : D_0^2 + D_1^2 + D_2^2 - 2D_0D_1 - 2D_1D_2 - 2D_2D_0 = 0.$$

Proof. In view of Theorem 3.5, $Y_1 \cong \text{Spec } \mathbb{C}[AC,B]$. The complement of Y_* in Y_1 is then the curve defined by $AC = 0$, which is easily identified with the above conic.

Corollary 3.7. Let X^0 be the Zariski open subset of X consisting of all semistable points ϕ^* of X with rank $\phi^* = 2$, and let $Y^0 := \pi(X^0)//\text{SL}(U)$. Then $Y^0 \cong \pi(X^0)/\text{SL}(U) \cong Y$ or $X^0 \cong \mathbb{P}^2$.

Proof. It suffices to compare Y_1 and $Y^0 \cap Y_1$. As in the proof of Theorem 3.5 we let

$$X' = \{ \phi^* \in X : \phi^*(w_1) = 2st \}. \quad \text{Let } Z = \text{SL}(U) \cdot X' \text{ and } Z^0 = \text{SL}(U) \cdot (X' \cap X^0).$$

Then with the notation in Theorem 3.5, we recall $X' = \{ \phi^* \in X : \phi^*(w_1) = 2st, \phi^*(w_2) = As^2 + 2Bst + Ct^2 \}, \pi(Z)//\text{SL}(U) \cong \text{Spec } \mathbb{C}[AC,B]$ where

$$X' \cap X^0 = \{ \phi^* \in X' : A \neq 0 \text{ or } C \neq 0 \}.$$

In the same manner as before we see $\pi(Z^0)//\text{SL}(U) \cong \text{Spec } \mathbb{C}[AC,B]$, whence $\pi(Z^0)//\text{SL}(U) = \pi(Z)//\text{SL}(U)$. This proves $Y^0 \cap Y_1 = Y_1$. This completes the proof of the corollary.

\[\Box \]
3.8. Moduli of double coverings of $\mathbb{P}(W)$ (2). There is an alternative way of understanding $\pi(X_{s})//\text{SL}(U) \cong \mathbb{P}^{2}$ by using the isomorphism $S^{2}\mathbb{P}^{1} \cong \mathbb{P}^{2}$. We use the following convention to denote a point of $\mathbb{P}(U) = U^{\vee} \setminus \{0\}/\Gamma_{m}$: $(u : v) = us^{\vee} + tv^{\vee} \in U^{\vee}$ where s^{\vee} and t^{\vee} are a basis dual to s and t. In what follows we fix a basis w_{1} and w_{2} of W. Let $P := (a_{1} : a_{2})$ and $Q := (b_{1} : b_{2})$ be a pair of points of $\mathbb{P}(W) \cong \mathbb{P}^{1}$. If $P \neq Q$, there is a double covering $\phi : \mathbb{P}(U) \rightarrow \mathbb{P}(W)$ ramifying at P and Q, unique up to isomorphism once we fix the base w_{1} and w_{2}:

$$
\frac{b_{2}w_{1} - b_{1}w_{2}}{a_{2}w_{1} - a_{1}w_{2}} = \left(\frac{t}{s}\right)^{2}.
$$

Thus ϕ is given explicitly by

$$
\phi_{1} := \phi^{*}(w_{1}) = b_{1}s^{2} - a_{1}t^{2}, \quad \phi_{2} := \phi^{*}(w_{2}) = b_{2}s^{2} - a_{2}t^{2}, \quad \phi_{0} = -(\phi_{1} + \phi_{2})
$$

for which we have

$$
D_{1} = a_{1}b_{1}, \quad D_{2} = a_{2}b_{2}, \quad D_{0} = (a_{1} + a_{2})(b_{1} + b_{2}).
$$

The isomorphism $S^{2}\mathbb{P}^{1} \cong \mathbb{P}^{2}$ is given by $(P, Q) \mapsto (D_{0}, D_{1}, D_{2})$. This shows

Corollary 3.9. We have a natural isomorphism: $Y \cong \mathbb{P}(S^{2}W)$.

4. The virtual normal bundle of a double covering

4.1. The case $N = 7$ and $k = 8$ revisited. We revisit the example in the subsection 2.9. Let $N = 7$ and $k = 8$. Let $L : x_{j} = 0$ ($j \geq 3$) and we take

$$
F_{3} = 8x_{1}^{7}, F_{4} = 8x_{2}^{6}x_{2}, F_{5} = 8x_{1}x_{2}^{3}, F_{6} = 8x_{1}x_{2}^{2}, F_{7} = 8x_{2}^{2},
$$

$$
F = x_{3}F_{3} + x_{4}F_{4} + x_{5}F_{5} + x_{6}F_{6} + x_{7}F_{7} + x_{8}^{3} + x_{9}^{2} + x_{10}^{2} + x_{11}^{2} + x_{12}^{2}.
$$

and let $M = M_{6}^{\phi} : F = 0$. We often denote L also by $b_{0}(W)$ with L a two dimensional vector space for later convenience. Since $H^{0}(D_{-}^{L})$ is injective and $H^{0}(D_{L})$ is surjective, we have $N_{L/M} \cong O_{L} \oplus O_{L}(-1)$. Hence $H^{1}(N_{L/M}(-1)) \cong H^{1}(O_{L}(-2))$ is 3-dimensional. As we see easily, this follows also from the fact that $\text{Coker} H^{0}(D_{L})$ is freely generated by $(x_{1}x_{2}^{2}, x_{1}^{2}x_{2}^{2})$ and $(x_{1}x_{2}^{3})^{2}$.

Let $\phi^{\ast} = (\phi_{1}, \phi_{2}) \in X^{0}$. Then $\text{Coker} H^{0}(\phi^{\ast}D_{L})$ is generated by a single element $\phi_{2}^{\ast}\phi_{3}^{\ast} - \phi_{1}^{\ast}\phi_{4}^{\ast}$, while $\text{Coker} H^{0}(\phi^{\ast}D_{L})$ is generated by $S^{2}U \cdot \phi_{1}^{\ast}\phi_{2}^{\ast}$, $S^{2}U \cdot \phi_{1}^{\ast}\phi_{2}^{\ast}$ and $S^{2}U \cdot \phi_{1}^{\ast}\phi_{2}^{\ast}$. To be more precise, we see

$$
\text{Coker} H^{0}(\phi^{\ast}D_{L}) = \{\phi_{1}^{\ast}\phi_{2}^{\ast}, \phi_{1}^{\ast}\phi_{2}^{\ast}, \phi_{3}^{\ast}\phi_{4}^{\ast}\} \otimes S^{2}U / \{\phi_{1}^{\ast}, \phi_{2}^{\ast}\}.
$$

In fact, this is proved as follows: first we consider the case where ϕ_{1} and ϕ_{2} has no common zeroes. In this case ϕ^{\ast} gives rise to a double covering $\phi : \mathbb{P}(U) \rightarrow \mathbb{P}(W)$ (= L), which we denote by L_{ϕ} for brevity. By pulling back by ϕ^{\ast} the normal sequence

$$
0 \rightarrow N_{L/M} \rightarrow N_{L/P} \rightarrow O_{L}(k) \rightarrow 0 \quad (k = 8)
$$

for the line L we infer an exact sequence

$$
0 \rightarrow \phi^{\ast}N_{L/M} \rightarrow \phi^{\ast}N_{L/P} \xrightarrow{\phi^{\ast}D_{L}} \phi^{\ast}O_{L}(k) \rightarrow 0,
$$

which yields an exact sequence

$$
0 \rightarrow H^{0}(\phi^{\ast}N_{L/M}) \rightarrow S^{2}U \otimes (V^{\vee} / W^{\vee}) \xrightarrow{H^{0}(\phi^{\ast}D_{L})} H^{0}(O_{L}(2k)) \rightarrow 0.
$$
Let $\eta = q_3 e_3^V + \cdots + q_r e_r^V \in \text{Ker} H^0(\phi^* D_L)$, $q_j \in S^2 U$. Then we have

$$\phi_1^2(q_3 \phi_1^3 + q_4 \phi_1^4 \phi_2 + q_5 \phi_1^2 \phi_2^3 + q_6 \phi_2^5) = -q_7 \phi_2^5.$$

Since ϕ_1 and ϕ_2 are mutually prime and q_j is of degree two, we have $q_7 = 0$ and

$$\phi_1^2(q_3 \phi_1^3 + q_4 \phi_1^4 \phi_2 + q_5 \phi_1^2 \phi_2^3) = -q_6 \phi_2^5.$$

Hence $q_6 = 0$ and similarly we infer also $q_7 = 0$. Thus we have $q_3 \phi_1 + q_4 \phi_2 = 0$.

This proves that $\text{Ker} H^0(\phi^* D_L)$ is generated by $\phi_2 e_2^V - \phi_1 e_1^V$.

Next we prove that $\text{Coker} H^0(\phi^* D_L)$ is generated by $\phi^* \text{Coker} H^0(D_L^-)$ over $S^2 U$ in fact over $S^2 U/\phi^*(W)$. Without loss of generality we may assume that $\phi_1 = 2st$ and $\phi_2 = \lambda s^2 + 2\nu st + t^2$ for some $\lambda \neq 0$ and $\nu \in \mathbb{C}$. Let $\phi^* W = \{ \phi_1, \phi_2 \}$. Then one checks $U \cdot \phi^* W = S^2 U$, and hence $S^2 U \cdot \phi^* W = S^2 U$, $S^{2m-2} U \cdot \phi^* W = S^{2m} U$ for $m \geq 2$. It follows $S^2 U \cdot \phi^* (S^{m-1} W) = S^{2m} U$ for $m \geq 1$. In fact, by the induction on m

$$S^2 U \cdot \phi^* (S^{m-1} W) = S^2 U \cdot \phi^* (W) \cdot \phi^* (S^{m-1} W) = S^2 U \cdot \phi^* (S^{m-1} W)$$

$$= S^2 U \cdot \phi^* (S^{m-1} W)$$

$$= S^2 U \cdot \phi^* (S^{m-1} W)$$

Therefore $H^0(OL_2(2k)) = S^1 U = S^2 U \cdot \phi^*(S^W W)$. Hence

$$\text{Coker} H^0(\phi^* D_L) = S^1 U / \text{Im} H^0(\phi^* D_L^-)$$

$$= S^2 U \cdot \phi^*(S W) / S^2 U \cdot \phi^*(\text{Im} H^0(D_L^-))$$

$$= (S^2 U / \phi^*(W)) \cdot \phi^*(S^W / \text{Im} H^0(D_L^-)).$$

Because $\text{Coker} H^0(D_L^-) = S^W W / \text{Im} H^0(D_L^-)$ and $W \cdot S^W W \subset W \cdot \text{Im} H^0(D_L^-) = S^W W$ by the choice of L, this proves that $\text{Coker} H^0(\phi^* D_L)$ is generated by $\phi^* \text{Coker} H^0(D_L^-)$ over $S^2 U/\phi^*(W)$. It follows $\text{Coker} H^0(\phi^* D_L) = (\phi^* \text{Coker} H^0(D_L^-)) \oplus (S^2 U/\phi^*(W))$.

Finally we consider the case where ϕ_1 and ϕ_2 has a common zero. In this case we may assume $\phi_1 = 2st$ and $\phi_2 = 2\nu st + t^2$. In this case L_ϕ is a chain of two rational curves C^\prime_0 and C^\prime_ϕ where C_ϕ is the proper transform of $\text{P}(U)$, where the double covering map from L_ϕ to $\text{P}(W)$ is the union of the isomorphisms ϕ' and ϕ'', say, $\phi = \phi' \cup \phi''$. Let $\psi_1 = 2s$ and $\psi_2 = 2\nu s + t$. Then ϕ' is induced by the homomorphism $(\phi')^* \in \text{Hom}(W, U)$ such that $(\phi')^*(w_j) = \psi_j$. On the other hand let $U_\phi = C_\lambda + C_t$, $\psi'_1 = 2t$ and $\psi'_2 = \lambda + 2t$ where we note ψ'_2 is the linear part of ϕ_j in t with $s = 1$. Then $C_\phi = \text{P}(U_\phi)$ and ϕ'' is induced by the homomorphism $(\phi'')^* \in \text{Hom}(W, U''_\phi)$ such that $(\phi'')^*(w_j) = \psi''_j$. Furthermore the pull back by ϕ^* of the normal sequence for L

$$0 \to \phi^* N_{L/M} \to \phi^* N_{L/P} \xrightarrow{\phi^* D_L} \phi^* O_L(k) \to 0,$$
yields exact sequences with natural vertical homomorphisms:

\[
\begin{array}{cccccccc}
0 & \longrightarrow & \phi^*N_{L/M} & \longrightarrow & (\phi')^*N_{L/M} \oplus (\phi'')^*N_{L/M} & \longrightarrow & C & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \longrightarrow & \phi^*N_{L/P} & \longrightarrow & (\phi')^*N_{L/P} \oplus (\phi'')^*N_{L/P} & \longrightarrow & V^\vee /W^\vee & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \longrightarrow & \phi^*O_L(k) & \longrightarrow & O_{\mathcal{C}_\wedge}(k) \oplus O_{\mathcal{C}_\wedge}(k) & \longrightarrow & C & \longrightarrow & 0.
\end{array}
\]

This yields the following long exact sequences:

\[
\begin{array}{cccccccc}
0 & \longrightarrow & H^0((\phi')^*N_{L/M}) & \longrightarrow & U \otimes V^\vee /W^\vee & \overset{H^0((\phi')^*D_L)}{\longrightarrow} & S^kU \\
& \longrightarrow & H^1((\phi')^*N_{L/M}) & \longrightarrow & 0 \\
0 & \longrightarrow & H^0((\phi'')^*N_{L/M}) & \longrightarrow & U'' \otimes V^\vee /W^\vee & \overset{H^0((\phi'')^*D_L)}{\longrightarrow} & S^kU'' \\
& \longrightarrow & H^1((\phi'')^*N_{L/M}) & \longrightarrow & 0
\end{array}
\]

whence \(H^1((\phi')^*N_{L/M}) = H^1((\phi'')^*N_{L/M}) = 0 \), and both \(H^0((\phi')^*N_{L/M}) \) and \(H^0((\phi'')^*N_{L/M}) \) are one-dimensional. Let \(U^t \) be the subspace of \(U \) consisting of elements vanishing at \(C'_\phi \cap C''_\phi \), namely the subspace spanned by \(t \). Then the restriction of \(H^0((\phi')^*D_L) \) to \(U^t \otimes V^\vee /W^\vee \) equals \(t \cdot H^0((\phi')^*D_L^-) \). Hence

\[
\text{Coker } H^0(\phi^*D_L) \simeq t \cdot S^2U/t \cdot \text{Im } H^0((\phi')^*D_L^-) \oplus \text{Coker } H^0((\phi'')^*D_L^-) \simeq S^2U/t \cdot \text{Im } H^0((\phi')^*D_L^-) \simeq \text{Coker } H^0((\phi')^*D_L^-).
\]

One could understand the above isomorphism as

\[
\text{Coker } H^0(\phi^*D_L) = \text{Coker } (\phi^*H^0(D_L^-)) \oplus (S^2U/\phi^*W).
\]

Thus \(H^0(\phi^*N_{L/M}) \) is one-dimensional, while \(H^1(\phi^*N_{L/M}) \) is 3-dimensional. This is immediately generalized into the following

Lemma 4.2. For any \(\phi^* \in X^0 \) we have

\[
\begin{align*}
\text{Ker } H^0(\phi^*D_L) &= \phi^* \text{Ker } H^0(D_L), \\
\text{Coker } H^0(\phi^*D_L) &= (\phi^* \text{Coker } H^0(D_L^-)) \oplus (S^2U/\phi^*W).
\end{align*}
\]

Lemma 4.3. We define a line bundle \(L_0 \) (resp. \(L_1 \)) on \(Y \) (\(\cong \mathbb{P}(S^2W) \)) by the assignment:

\[
X^0 \ni \phi^* \mapsto \phi^* \text{Ker } H^0(D_L) \text{ (resp. } \phi^* \text{Coker } H^0(D_L^-)).
\]

Then \(L_k \cong O_{\mathbb{P}(S^2W)} \).

Proof. We know that \(\phi^* \text{Ker } H^0(D_L) \) is generated by \(\phi_2 c'_\wedge - \phi_1 c'_\vee \). By the SL(2)-variable change of \(s \) and \(t \), \(\phi_j \) is transformed into a new quadratic polynomial, which is however the same as the first \(\phi_j \). This shows the generator is unchanged, whence \(L_0 \cong O_{\mathbb{P}(S^2W)} \). The proof for \(L_1 \) is the same. \(\square \)
Lemma 4.4. We define a coherent sheaf \(L \) on the stack \(Y (\simeq \mathbf{P}(S^2 W)) \) (See Remark below) by the assignment:

\[
X^0 \ni \phi^* \mapsto S^2 U/\phi^* W.
\]

Then \(L^2 \simeq O_{\mathbf{P}(S^2 W)}(-1) \).

Proof. The GIT-quotient \(Y^0 \) is covered with the images of \(X'_j \):

\[
X'_1 = \{ (\phi_1, \phi_2) \in X^0; \phi_1 = 2st, \ \phi_2 = \lambda s^2 + 2\nu st + t^2, \ \lambda, \nu \in \mathbb{C} \},
\]

\[
X'_2 = \{ (\phi_1, \phi_2) \in X^0; \phi_1 = ps^2 + 2qst + t^2, \ \phi_2 = 2st, \ p, q \in \mathbb{C} \}.
\]

It is clear that the natural image of \(X'_j \) in \(Y \) is \(Y_j \). The map \(\phi \) given by \(\phi^* = (\phi_1, \phi_2) \in Y \) has natural \(\mathbb{Z}_2 \) involution generated by,

\[
r : (\sqrt{\lambda}s + t, \sqrt{\lambda}s - t) \mapsto (\sqrt{\lambda}s + t, -(\sqrt{\lambda}s - t)).
\]

Since

\[
2st = \frac{1}{2\sqrt{\lambda}}((\sqrt{\lambda}s + t)^2 - (\sqrt{\lambda}s - t)^2),
\]

\[
\lambda s^2 + 2s \nu t + t^2 = \frac{\nu}{2\sqrt{\lambda}}((\sqrt{\lambda}s + t)^2 - (\sqrt{\lambda}s - t)^2) + \frac{1}{2}((\sqrt{\lambda}s + t)^2 + (\sqrt{\lambda}s - t)^2),
\]

it is clear that,

\[
r^*(\phi_1) = \phi_1, \ r^*(\phi_2) = \phi_2, \ r^*(\lambda s^2 - t^2) = -(\lambda s^2 - t^2).
\]

Therefore, we can decompose \(S^2 U \) into \(\langle \lambda s^2 - t^2 \rangle_{\mathbb{C}} \oplus \langle \phi_1, \phi_2 \rangle_{\mathbb{C}} \) with respect to eigenvalue of \(r^* \) and take \(\lambda s^2 - t^2 \) as canonical generator of \(S^2 U/\phi^* W \). Similarly \(S^2 U/\phi^* W \) is generated by \(ps^2 - t^2 \) on \(Y_2 \). The problem is therefore to write \(\lambda s^2 - t^2 \) as an \(\Gamma(O_Y) \)-multiple of \(pu^2 - v^2 \) when we write \(\phi_2 = 2uv \) by a variable change in \(GL(2) \). The following variable change \((s, t) \mapsto (u, v) \) is in \(GL(2) \):

\[
s = \frac{\sqrt{2\alpha}}{(\beta - \alpha)^2} (2u - \frac{(\beta - \alpha)^2}{2\alpha} v), \quad t = \frac{\sqrt{2\alpha}}{(\beta - \alpha)^2} (2\beta u - \frac{(\beta - \alpha)^2}{2} v),
\]

where \(\alpha, \beta \) are roots of the equation \(\lambda s^2 + 2s \nu t + t^2 = 0 \). Under this coordinate change, \(\phi_1 \) and \(\phi_2 \) are rewritten as follows:

\[
\phi_1 = \frac{\lambda}{(\nu^2 - \lambda)^2} u^2 + 2\frac{\nu}{\nu^2 - \lambda} uv + v^2 = pu^2 + 2quv + v^2, \ \phi_2 = 2uv.
\]

Then we have

\[
pu^2 - v^2 = -\frac{2}{\beta - \alpha} (\lambda s^2 - t^2) = -\frac{1}{\sqrt{\nu^2 - \lambda}} (\lambda s^2 - t^2) = -\sqrt{\frac{D_1}{D_2}} (\lambda s^2 - t^2).
\]

Similarly by computing the effect on \(S^2 U/\phi^* W \) by the variable change from \(X'_1 \) into \(X'_0 \), we see that \(L^2 \) is isomorphic to \(O_{\mathbf{P}(S^2 W)}(-1) \). This completes the proof. \(\square \)

Remark 4.5. We remark that the space \(X \) must be regard as a \(\mathbb{Q} \)-stack \(Y^{stack} \) as follows: First we define \(\phi_0 = -\phi_1 - \phi_2 \). For each atlas \(X^i \) we define an atlas \(Y^{stack} \).
\((\alpha = 0, 1, 2) \) by
\[
Y_{0}^{\text{stack}} = \{(\phi_0, \phi_1, \phi_2, \pm \psi_0) \in X^0 \times S^2 U ; \phi_0 = 2st, \phi_1 = as^2 + 2bst + t^2, \\
\psi_0 = as^2 - t^2 a, b \in C\},
\]
\[
Y_{1}^{\text{stack}} = \{(\phi_0, \phi_1, \phi_2, \pm \psi_1) \in X^0 \times S^2 U ; \phi_1 = 2st, \phi_2 = \lambda s^2 + 2\nu st + t^2, \\
\psi_1 = \lambda s^2 - t^2 \lambda, \nu \in C\},
\]
\[
Y_{2}^{\text{stack}} = \{(\phi_0, \phi_1, \phi_2, \pm \psi_2) \in X^0 \times S^2 U ; \phi_1 = ps^2 + 2qst + t^2, \phi_2 = 2st, \\
\psi_2 = ps^2 - t^2 p, q \in C\}.
\]

Since \(L^2 \cong O_{P(S^2W)}(-1) \) we have \(c_1(L) = -\frac{1}{2}c_1(O_{P(S^2W)}(1)) \) in the Chow ring \(A(Y_{\text{stack}}^0) = A(X)_{Q} = A(P(S^2W))_{Q} \).

5. Proof of the main theorem

Theorem 5.1.

\[
\pi_*(c_{\text{top}}(H^1)) = \frac{1}{8} \left[\frac{c(S^{k-1}Q)}{1 - \frac{1}{2}c_1(Q)} \right]_{k-N},
\]

where \(\pi \) is the natural projection from \(\tilde{M}_{0,0}(L, 2) \) to \(G \) and \([*]_{k-N} \) is the operation of picking up the degree \(2(k-N) \) part of Chern classes.

Proof. From now on we denote the coherent sheaf \(L \) in Lemma 4.4 by \(O_{P}(-\frac{1}{2}) \). In view of the results from the previous section, what remains is to evaluate the top chern class of \((S^{k-1}Q)/(V^\vee \otimes O_{G})/Q^\vee) \otimes O_{P}(-\frac{1}{2}) \) on \(P(S^2Q) \). Since double cover maps parametrized by \(P(S^2Q) \) have natural \(\mathbb{Z}_2 \) involution \(r \) given in the previous section, we have to multiply the result of integration on \(P(S^2Q) \) by the factor \(\frac{1}{2} \) [BT], [FP]. With this set-up, let \(\pi' : P(S^2Q) \to G \) be the natural projection. Then what we have to compute is \(\pi_*(c_{\text{top}}(H^1)) = \frac{1}{2} \pi'_*(c_{\text{top}}(H^1)) = \frac{1}{2} \pi'_*(c_{\text{top}}((S^{k-1}Q)/(V^\vee \otimes O_{G})/Q^\vee)) \otimes O_{P}(-\frac{1}{2})) \). Let \(z \) be \(c_1(O_{P}(1)) \). Then we obtain,

\[
\frac{1}{2} \pi'_*(c_{\text{top}}((S^{k-1}Q)/(V^\vee \otimes O_{G})/Q^\vee)) \otimes O_{P}(-\frac{1}{2}))
\]
\[
= \frac{1}{2} \sum_{j=0}^{k-N+2} c_{k-N+2-j}(S^{k-1}Q \oplus Q^\vee) \cdot \pi_*(z^j) \cdot (-\frac{1}{2})^j
\]
\[
= \frac{1}{8} \sum_{j=0}^{k-N} c_{k-N-j}(S^{k-1}Q \oplus Q^\vee) \cdot s_j(S^2Q) \cdot (-\frac{1}{2})^j
\]
\[
= \frac{1}{8} \left[\frac{c(S^{k-1}Q) \cdot c(Q^\vee)}{1 - \frac{1}{2}c_1(S^2Q) + \frac{1}{4}c_2(S^2Q) - \frac{1}{8}c_3(S^2Q)} \right]_{k-N},
\]

where \(s_j(S^2Q) \) is the \(j \)-th Segre class of \(S^2Q \). But if we decompose \(c(Q) \) into \((1 + \alpha)(1 + \beta) \), we can easily see,

\[
\frac{c(Q^\vee)}{1 - \frac{1}{2}c_1(S^2Q) + \frac{1}{4}c_2(S^2Q) - \frac{1}{8}c_3(S^2Q)} = \frac{(1-\alpha)(1-\beta)}{(1-\alpha)(1-\frac{1}{2}(\alpha+\beta))(1-\beta)} \cdot \frac{1}{1 - \frac{1}{2}c_1(Q)}.
\]
Finally, by combining the above theorem with the divisor axiom of Gromov-Witten invariants, we can prove the decomposition formula of degree 2 rational Gromov-Witten invariants of M^{k}_{N} found from numerical experiments.

Corollary 5.2. \[\langle \mathcal{O}_{e}, \mathcal{O}_{e}, \mathcal{O}_{e} \rangle_{0, 2} = \langle \mathcal{O}_{e}, \mathcal{O}_{e}, \mathcal{O}_{e} \rangle_{0, 2-2} + 8(\pi_{*}(c_{top}(H^{1}))\mathcal{O}_{e}, \mathcal{O}_{e}, \mathcal{O}_{e})_{0, 1}, \]
where $\langle \mathcal{O}_{e}, \mathcal{O}_{e}, \mathcal{O}_{e} \rangle_{0, 2-2}$ is the number of conics that intersect cycles Poincaré dual to e^a, e^b and e^c. We also denote by $\langle \pi_{*}(c_{top}(H^{1}))\mathcal{O}_{e}, \mathcal{O}_{e}, \mathcal{O}_{e} \rangle_{0, 1}$ the integral:
\[\int_{G(2, 3)} c_{top}(S^{k} Q) \wedge \pi_{*}(c_{top}(H^{1})) \wedge \sigma_{a-1} \wedge \sigma_{b-1} \wedge \sigma_{c-1}. \]

6. GENERALIZATION TO TWISTED CUBICS

In this section, we present a decomposition formula of degree 3 rational Gromov-Witten invariants found from numerical experiments using the results of [ES].

Conjecture 6.1. If $k - N = 1$, we have the following equality:
\[\pi_{*}(c_{top}(H^{1})) = \frac{1}{27} \left(\frac{1}{24} (27k^{2} - 55k + 26)k(k - 1) + \frac{2}{9}c_{1}(Q)^{2} + \left(\frac{7}{6} (k + 1)k(k - 1) + \frac{1}{9} \right)c_{2}(Q) \right). \]
where $\pi : \overline{\mathcal{M}}_{0, 0}(L, 3) \to \overline{\mathcal{M}}_{0, 0}(M^{k}_{N}, 1)$ is the natural projection.

In the $k-N > 1$ case, we have not found the explicit formula, because in the $d = 3$ case, we have another contribution from multiple cover maps of type $(2+1) \to (1+1)$. Here multiple cover map of type $(2+1) \to (1+1)$ is the map from nodal curve $\mathbb{P}^{1} \cup \mathbb{P}^{1}$ to nodal conic $L_{1} \cup L_{2} \subset M^{k}_{N}$, that maps the first (resp. the second) \mathbb{P}^{1} to L_{1} (resp. L_{2}) by two to one (resp. one to one). In the $k-N = 1$ case, we have also determined the contributions from multiple cover maps of $(2+1) \to (1+1)$ to nodal conics.

Corollary 6.2. If $k - N = 1$, $\langle \mathcal{O}_{e}, \mathcal{O}_{e}, \mathcal{O}_{e} \rangle_{0, 3}$ is decomposed into the following contributions:
\[\langle \mathcal{O}_{e}, \mathcal{O}_{e}, \mathcal{O}_{e} \rangle_{0, 3} = \langle \mathcal{O}_{e}, \mathcal{O}_{e}, \mathcal{O}_{e} \rangle_{0, 3-3} + \frac{1}{k} \langle \mathcal{O}_{e}, \mathcal{O}_{e}, \mathcal{O}_{e}, \mathcal{O}_{e}, \mathcal{O}_{e} \rangle_{0, 1} \langle \mathcal{O}_{e}, N-e \rangle_{0, 1} \]
\[+ \frac{3}{2} \langle \mathcal{O}_{e}, \mathcal{O}_{e}, \mathcal{O}_{e}, \mathcal{O}_{e}, \mathcal{O}_{e}, \mathcal{O}_{e}, \mathcal{O}_{e} \rangle_{0, 1} \langle \mathcal{O}_{e}, N-e-i \rangle_{0, 1} + \frac{3}{2} \langle \mathcal{O}_{e}, \mathcal{O}_{e}, \mathcal{O}_{e}, \mathcal{O}_{e}, \mathcal{O}_{e}, \mathcal{O}_{e}, \mathcal{O}_{e} \rangle_{0, 1} \langle \mathcal{O}_{e}, N-e-i \rangle_{0, 1} \]
\[+ \frac{3}{2} \langle \mathcal{O}_{e}, \mathcal{O}_{e}, \mathcal{O}_{e}, \mathcal{O}_{e}, \mathcal{O}_{e}, \mathcal{O}_{e}, \mathcal{O}_{e} \rangle_{0, 1} \mathcal{O}_{e}, N-e-i \rangle_{0, 1} \]
\[+ 27(\pi_{*}(c_{top}(H^{1}))\mathcal{O}_{e}, \mathcal{O}_{e}, \mathcal{O}_{e})_{0, 1}, \]
where $\langle \mathcal{O}_{e}, \mathcal{O}_{e}, \mathcal{O}_{e} \rangle_{0, 3-3}$ is the number of twisted cubics that intersect cycles Poincaré dual to e^a, e^b and e^c.

Proof. In the $k-N = 1$ case, dimension of moduli space of multiple cover maps of $(2+1) \to (1+1)$ to nodal conics is given by $N-6+(N-6)-(N-4)+2=N-6$, hence the rank of H^{1} is given by $N-6-(N-5-3)=2$. On the other hand, dimension of moduli space of $d=2$ multiple cover maps of $\mathbb{P}^{1} \to \mathbb{P}^{1}$ is 2, the degree of the form of $\pi_{*}(c_{top}(H^{1}))$ equals to $2-2=0$, where π is the projection map.
that projects out the fiber locally isomorphic to the moduli space of \(d = 2\) multiple cover maps. This situation is exactly the same as the Calabi-Yau case. Therefore, we can use the well-known result by Aspinwall and Morrison, that says for \(n\)-point rational Gromov-Witten invariants for Calabi-Yau manifold, \(\tilde{\pi}_*(c_{top}(H^1))\) for degree \(d\) multiple cover map is given by,

\[
\tilde{\pi}_*(c_{top}(H^1)) = \frac{1}{d^{n-1}}.
\]

With this formula, we add up all the combinatorial possibility of insertion of external operator \(\mathcal{O}_{e^s}, \mathcal{O}_{e^h}\) and \(\mathcal{O}_{e^v}\),

\[
\begin{align*}
&\frac{1}{k} \left(\langle \tilde{\pi}_*(c_{top}(H^1)) \mathcal{O}_{e^s} \mathcal{O}_{e^h} \mathcal{O}_{e^v} \rangle_{0,1} \langle \mathcal{O}_{e^{N-s}} \rangle_{0,1} \\
&+ \langle \tilde{\pi}_*(c_{top}(H^1)) \mathcal{O}_{e^h} \mathcal{O}_{e^v} \mathcal{O}_{e^{s+2}} \rangle_{0,1} \langle \mathcal{O}_{e^{N-s-t}} \mathcal{O}_{e^v} \rangle_{0,1} \\
&+ \langle \tilde{\pi}_*(c_{top}(H^1)) \mathcal{O}_{e^v} \mathcal{O}_{e^s} \mathcal{O}_{e^{h+2}} \rangle_{0,1} \langle \mathcal{O}_{e^{N-s-t}} \mathcal{O}_{e^h} \rangle_{0,1} \\
&+ \langle \mathcal{O}_{e^s} \mathcal{O}_{e^h} \mathcal{O}_{e^{s+2}} \rangle_{0,1} \langle \mathcal{O}_{e^{N-s-t}} \tilde{\pi}_*(c_{top}(H^1)) \mathcal{O}_{e^v} \rangle_{0,1} \\
&+ \langle \mathcal{O}_{e^h} \mathcal{O}_{e^v} \mathcal{O}_{e^{s+2}} \rangle_{0,1} \langle \mathcal{O}_{e^{N-s-t}} \tilde{\pi}_*(c_{top}(H^1)) \mathcal{O}_{e^h} \rangle_{0,1} \\
&+ \langle \mathcal{O}_{e^v} \mathcal{O}_{e^s} \mathcal{O}_{e^{h+2}} \rangle_{0,1} \langle \mathcal{O}_{e^{N-s-t}} \tilde{\pi}_*(c_{top}(H^1)) \mathcal{O}_{e^v} \rangle_{0,1} \\
&+ \langle \mathcal{O}_{e^s} \mathcal{O}_{e^h} \mathcal{O}_{e^{v+2}} \rangle_{0,1} \langle \mathcal{O}_{e^{N-s-t}} \mathcal{O}_{e^s} \rangle_{0,1} \right) \\
= \frac{1}{k} \left(2 \langle \mathcal{O}_{e^s} \mathcal{O}_{e^h} \mathcal{O}_{e^{v+2}} \rangle_{0,1} \langle \mathcal{O}_{e^{N-s-t}} \mathcal{O}_{e^v} \rangle_{0,1} + \langle \mathcal{O}_{e^h} \mathcal{O}_{e^v} \mathcal{O}_{e^{s+2}} \rangle_{0,1} \langle \mathcal{O}_{e^{N-s-t}} \mathcal{O}_{e^v} \rangle_{0,1} + \langle \mathcal{O}_{e^v} \mathcal{O}_{e^s} \mathcal{O}_{e^{h+2}} \rangle_{0,1} \langle \mathcal{O}_{e^{N-s-t}} \mathcal{O}_{e^h} \rangle_{0,1} + \frac{1}{2} \langle \mathcal{O}_{e^s} \mathcal{O}_{e^h} \mathcal{O}_{e^{s+2}} \rangle_{0,1} \langle \mathcal{O}_{e^{N-s-t}} \mathcal{O}_{e^v} \rangle_{0,1} \right) \\
&+ \frac{1}{2} \langle \mathcal{O}_{e^h} \mathcal{O}_{e^v} \mathcal{O}_{e^{s+2}} \rangle_{0,1} \langle \mathcal{O}_{e^{N-s-t}} \mathcal{O}_{e^h} \rangle_{0,1} + \frac{1}{2} \langle \mathcal{O}_{e^v} \mathcal{O}_{e^s} \mathcal{O}_{e^{h+2}} \rangle_{0,1} \langle \mathcal{O}_{e^{N-s-t}} \mathcal{O}_{e^v} \rangle_{0,1} + \frac{1}{4} \langle \mathcal{O}_{e^s} \mathcal{O}_{e^h} \mathcal{O}_{e^{v+2}} \rangle_{0,1} \langle \mathcal{O}_{e^{N-s-t}} \mathcal{O}_{e^s} \rangle_{0,1}. \end{align*}
\]

The last expression is nothing but the formula we want. \(\square\)

Masao Jinzenji\(^\dagger\), Iku Nakamura\(^\star\), Yasuki Suzuki

Division of Mathematics, Graduate School of Science, Hokkaido University
Kita-ku, Sapporo, 060-0810, Japan
e-mail address: \(\dagger\) jin@math.sci.hokudai.ac.jp, \(\star\) nakamura@math.sci.hokudai.ac.jp

References

[Iri] H. Iritani, Quantum D-modules and generalized mirror transformations, math.DG/0411111.

