<table>
<thead>
<tr>
<th>Title</th>
<th>Conics on a generic hypersurface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Jinzenji, Masao; Nakamura, Iku; Suzuki, Yasuki</td>
</tr>
<tr>
<td>Citation</td>
<td>Hokkaido University Preprint Series in Mathematics, 710, 1-18</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2005</td>
</tr>
<tr>
<td>DOI</td>
<td>10.14943/83861</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/69515</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
</tbody>
</table>

File Information:
pre710.pdf

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
CONICS ON A GENERIC HYPERSURFACE

MASAOS JINZENJI, IKU NAKAMURA AND YASUKI SUZUKI

ABSTRACT. In this paper, we compute the contributions from double cover maps to genus 0 degree 2 Gromov-Witten invariants of general type projective hypersurfaces. Our results correspond to a generalization of Aspinwall-Morrison formula to general type hypersurfaces in some special cases.
MSC-class: 14H99, 14N35, 32G20

1. INTRODUCTION

In this paper, we discuss a generalization of the multiple cover formula for rational Gromov-Witten invariants of Calabi-Yau manifolds [AM], [M] to double cover maps of a line L on a degree k hypersurface M^k_N in \mathbb{P}^{N-1}. Naively, for a given finite set of elements $\alpha_j \in H^*(M^k_N, \mathbb{Z})$, the rational Gromov-Witten invariant $\langle \mathcal{O}_{\alpha_1} \mathcal{O}_{\alpha_2} \cdots \mathcal{O}_{\alpha_n} \rangle_{0,d}$ of M^k_N counts the number of degree d (possibly singular and reducible) rational curves on M^k_N that intersect real sub-manifolds of M^k_N that are Poincaré-dual to α_j.

Recently, the mirror computation of rational Gromov-Witten invariants of M^k_N with negative first Chern class $(k-N>0)$ was established in [CG], [Iri], [J]. Using the method presented in these articles, we can compute $\langle \mathcal{O}_{c_1} \mathcal{O}_{c_2} \cdots \mathcal{O}_{c_m} \rangle_{0,d}$ where c is the generator of $H^{1,1}(M^k_N, \mathbb{Z})$. Briefly, mirror computation of M^k_N $(k > N)$ in [J] goes as follows. We start from the following ODE:

$$(1) \quad \left((\partial_x)^{N-1} - k \cdot \exp(x) \cdot (k\partial_x + k - 1)(k\partial_x + k - 2) \cdots (k\partial_x + 1) \right) w(x) = 0,$$

and construct the virtual Gauss-Manin system associated with (1):

$$(2) \quad \partial_x \tilde{w}_{N-2-m}(x) = \tilde{w}_{N-1-m}(x) + \sum_{d=1}^{\infty} \exp(dx) \cdot \tilde{L}_{m}^{N,k,d} \cdot \tilde{w}_{N-1-m-(N-k)d}(x),$$

where m runs through all the integers and $\tilde{L}_{m}^{N,k,d}$ is non-zero only if $0 \leq m \leq N-1+(k-N)d$. From the compatibility of (1) and (2), we can derive the recursive formulas that determine all the $\tilde{L}_{m}^{N,k,d}$:

$$\sum_{n=0}^{k-1} \tilde{L}_{m}^{N,k,1}w^n = k \cdot \prod_{j=1}^{k-1} (jw + (k-j)),$$

$$\sum_{m=0}^{N-1+(k-N)d} \tilde{L}_{m}^{N,k,d} \cdot \tilde{w}_{N-1-m} = \sum_{l=2}^{d} (-1)^{l-1} \sum_{0=i_0 < \cdots < j_l = d} \times$$

$$\sum_{j_l = 0}^{j_0} \cdots \sum_{j_2 = 0}^{j_1} \sum_{j_1 = 0}^{j_2} l \left(\frac{i_{j_l-1} + (d-i_{j_l-1})z}{d} j_{j_l} - j_{j_l-1} \right) \tilde{L}_{m}^{N,k,1} \tilde{w}_{N-1-(N-k)d}.$$
With these data, we can construct the formulas that represent rational three point Gromov-Witten invariant \(\langle \mathcal{O}_c, \mathcal{O}_{e,N-2-m}, \mathcal{O}_{e,m-1-(k-N)d} \rangle_d \) in terms of \(\tilde{L}^{N,k,d}_m \). These three point Gromov-Witten invariants are enough for reconstruction of all the rational Gromov-Witten invariants \(\langle \mathcal{O}_{e_1, \ldots, e_m} \rangle_0, d \) [KM]. In particular, we obtain the following formula in the \(d = 2 \) case:

\[
(3) \quad \langle \mathcal{O}_c, \mathcal{O}_{e,N-2-m}, \mathcal{O}_{e,m-1-(k-N)d} \rangle_2 = k \cdot \left(\tilde{L}^{N,k,2}_m - \tilde{L}^{N,2}_1 + (k-N) 2 \tilde{L}^{N,k,1}_m - \sum_{j=0}^{k-N} (\tilde{L}^{N,k,1}_n - \tilde{L}^{N,k,1}_{n+j}) \right).
\]

According to the results of this procedure, rational three point Gromov-Witten invariants can be rational numbers with large denominator if \(k > N \), in contrast to the Calabi-Yau case where rational three point Gromov-Witten invariants are always integers.

One of the reasons of this rationality (non-integrality) comes from the contributions of multiple cover maps to Gromov-Witten invariants. In the Calabi-Yau case \((N = k) \), for any divisor \(m \) of \(d \) there are some contributions from degree \(m \) multiple cover maps \(\phi \) of a rational curve \(\mathbb{P}^1 \) onto a degree \(\frac{d}{m} \) rational curve \(C \hookrightarrow M^k_0 \). The contributions from the multiple cover maps are expressed in terms of the virtual fundamental class of Gromov-Witten invariants. Let \(C \) be a general degree \(d \) rational curve in \(M^k_0 \). Its normal bundle \(N_{C/M^k_0} \) is decomposed into a direct sum of line bundles as follows:

\[
N_{C/M^k_0} \simeq \mathcal{O}_C(-1) \oplus \mathcal{O}_C(-1) \oplus \mathcal{O}_C^\oplus(k-5).
\]

Let \(\phi : \mathbb{P}^1 \to C \) be a holomorphic map of degree \(m \). Since the pull-back \(\phi^*(N_{C/M^k_0}) \) is given by

\[
\phi^*(N_{C/M^k_0}) \simeq \mathcal{O}_{\mathbb{P}^1}(-m) \oplus \mathcal{O}_{\mathbb{P}^1}(-m) \oplus \mathcal{O}_{\mathbb{P}^1}^\oplus(k-5),
\]

we obtain \(h^1(\phi^*(N_{C/M^k_0})) = 2m - 2 \). On the other hand, let \(\overline{M}_{0,0}(M,d) \) be the moduli space of 0-pointed stable maps of degree \(d \) from genus 0 curve to \(M \). Then the moduli space of \(\phi \) is the fiber space \(\pi : \overline{M}_{0,0}(C,m) \to \overline{M}_{0,0}(M^k, \frac{d}{m}) \), whose fibre \(\overline{M}_{0,0}(C,m) \) over \(C \) (fixed) has complex dimension \(2m - 2 \). Then the push-forward of the virtual fundamental class \(\pi_*([c_{0,0}(H^1(\phi^*(N_{C/M^k_0}))))] \) can be computed only by intersection theory on the fiber \(\overline{M}_{0,0}(C,m) \), which turns out to be equal to \(\frac{1}{m^k} \). This depends on neither the structure of the base \(\overline{M}_{0,0}(M^k, \frac{d}{m}) \) nor the global structure of the fibration.

But when \(k < N \), the situation is more complicated than \(M^k_0 \) because of negative first Chern class. Let us concentrate on the case of \(d = 2, m = 2 \) that we discuss in this paper. In this case, \(C \) is just a line \(L \) on the hypersurface \(M^k_0 \). The moduli space \(\overline{M}_{0,0}(M^k_0,1) \) is a sub-manifold of \(\overline{M}_{0,0}(P^{N-1},1) \), while \(\overline{M}_{0,0}(P^{N-1},1) \) is the Grassmannian \(G(2,N) \), the moduli space of rank 2 quotients of \(V = \mathbb{C}^N \). As will be shown later, for a generic line \(L, N_{L/M^k_0} \) is decomposed into

\[
N_{L/M^k_0} \simeq \mathcal{O}_L(-1)^{\oplus k-N+2} \oplus \mathcal{O}_L^\oplus(2N-k-5).
\]
By pulling back it by the degree 2 map $\phi : \mathbb{P}^1 \to L$, we obtain,

$$\phi^* N_{L/M_k^k} \simeq O_{\mathbb{P}^1}(-2) \oplus O_{\mathbb{P}^1} \oplus O_{\mathbb{P}^1} \oplus O_{\mathbb{P}^1} \oplus O_{\mathbb{P}^1}$$

Therefore, $h^1(\phi^* (N_{L/M_k^k})) = k - N + 2$, which is strictly greater than two, the complex dimension of the fiber $\mathbb{M}_{0,0}(L, 2)$. Thus we need to know the global structure of the fibration π in order to compute the multiple cover contribution to degree 2 rational Gromov-Witten invariants of M_k^k.

In order to estimate the contributions from double cover maps $\phi : \mathbb{P}^1 \to \mathbb{P}^2$ to $(\mathcal{O}_{\mathbb{P}^2} \mathcal{O}_{\mathbb{P}^2} \mathcal{O}_{\mathbb{P}^2})_{0,2}$, we first computed the number of conics, that intersect cycles Poâncaré dual to e^a, e^b and $\mathcal{O}_{\mathbb{P}^2}$, on M_k^k (whose normal bundle are of the same type) by using the method in [K2]. Then we found the following formula by comparing these integers with the results obtained from (3):

$$\langle \mathcal{O}_{\mathbb{P}^2} \mathcal{O}_{\mathbb{P}^2} \mathcal{O}_{\mathbb{P}^2} \rangle_{0,2} = \text{(number of corresponding conics)} +$$

$$\int_{G(2, N)} c_{\text{top}}(S^k Q) \wedge \left[\frac{c(S^k Q)}{1 - \frac{1}{2}c_1(Q)} \right]_{k-N} \wedge \sigma_{a-1} \wedge \sigma_{b-1} \wedge \sigma_{c-1},$$

where Q is the universal rank 2 quotient bundle of $G(2, N)$, σ_a is a Schubert cycle defined by $\sum_{a=0}^{1} \sigma_a := \frac{1}{\pi \sqrt{\mathbb{V}}} \text{ and } \#_{k-N}$ is the operation of picking up degree $2(k-N)$ part of Chern classes.

On the other hand, we have the following formula which directly follows from the definition of the virtual fundamental class of $\mathbb{M}_{0,0}(M_k^k, 2)$:

$$\langle \mathcal{O}_{\mathbb{P}^2} \mathcal{O}_{\mathbb{P}^2} \mathcal{O}_{\mathbb{P}^2} \rangle_{0,2} = \text{(number of corresponding conics)} +$$

$$8 \int_{G(2, N)} c_{\text{top}}(S^k Q) \wedge \left[\pi_*(c_{\text{top}}(H^1(\phi^* N_{L/M_k^k}))) \right]_{k-N} \wedge \sigma_{a-1} \wedge \sigma_{b-1} \wedge \sigma_{c-1},$$

where $\pi : \mathbb{M}_{0,0}(L, 2) \to \mathbb{M}_{0,0}(M_k^k, 1)$ is the natural projection. Here, the factor 8 comes from the divisor axiom of Gromov-Witten invariants.

In this paper, we prove the following formula

$$\pi_*(c_{\text{top}}(H^1(\phi^* N_{L/M_k^k}))) = \frac{1}{8} \left[\frac{c(S^k Q)}{1 - \frac{1}{2}c_1(Q)} \right]_{k-N}.$$

By combining (5) with (6), we can derive the formula (4) immediately.

From (4), we see that $\langle \mathcal{O}_{\mathbb{P}^2} \mathcal{O}_{\mathbb{P}^2} \mathcal{O}_{\mathbb{P}^2} \rangle_{0,2}$ of M_k^k is a rational number with denominator at most 2^{k-N}. Therefore rationality (non-integrality) of the Gromov-Witten invariant $(\mathcal{O}_{\mathbb{P}^2} \mathcal{O}_{\mathbb{P}^2} \mathcal{O}_{\mathbb{P}^2})_{0,2}$ is caused by the effect of multiple cover map in this case.

We note here that the total moduli space of double cover maps of lines is isomorphic to $\mathbb{P}(S^2 Q)$ over $G := \mathbb{M}_{0,0}(M_k^k, 1) \to G(2, N)$, which is an algebraic \mathbb{Q}-stack $\mathbb{P}(S^2 Q)^{\text{stack}}$ (in the sense of Mumford). As a consequence, the union of all $H^1(\phi^* N_{\mathbb{P}(S^2 Q)^{\text{stack}}})$ turns out to be a coherent sheaf on $\mathbb{P}(S^2 Q)^{\text{stack}}$ with fractional Chern class in (6), as was suggested in [BT]. See [V, Section 9].

We also did some numerical experiments on degree 3 Gromov-Witten invariants of M_k^k by using the results of [ES]. For $k - N > 0$, there is a new contribution from multiple cover maps to nodal conics in M_k^k that did not appear in the Calabi-Yau case. Therefore, multiple cover map contributions are far more complicated than Calabi-Yau, and we leave general analysis on this problem to future works.
This paper is organized as follows. In Section 1, we analyze characteristics of moduli space of lines in M^k_N and derive $N^{L/M}_k \simeq O_L(-1)^{2k-N+2} \oplus O_L^{2N-k-5}$. In Section 2, we study the moduli space $\mathcal{M}_{0,0}(\mathbb{P}^1, 2)$ from the point of view of stability and identify it with \mathbb{P}^2 and show that the moduli space $\mathcal{M}_{0,0}(\mathbb{P}^1, 2)$ is isomorphic to $\mathbb{P}(S^2 Q)$ over G. In section 4, we describe $H^1(\mathfrak{g} N_{L/M_k})$ as a coherent sheaf over $\mathbb{P}(S^2 Q)^{stack}$. In section 5, we derive the main theorem (6) of this paper by using Segre-Witten classes. In section 6, we mention some generalization to degree 3 Gromov-Witten invariants.

2. Lines on a hypersurface

Let M be a generic hypersurface of degree k of the projective space $\mathbb{P}^{N-1} = \mathbb{P}(V)$. We assume $2N - 5 \geq k \geq N - 2 \geq 2$ throughout this note. In this note we count the number of rational curves of virtual degree two, namely rational curves which doubly cover lines on M.

Let $\mathcal{P} = \mathbb{P}(V)$ be the projective space parameterizing all one-dimensional quotients of V, which is usually denoted by $\mathcal{P}(V)$ in the standard notation in algebraic geometry. In this notation let W be a subspace of V. Then $\mathcal{P}(W)$ is naturally a linear subspace of $\mathcal{P}(V)$ of dimension $\dim W - 1$.

Let $G(2, V)$ be the Grassmann variety of lines in $\mathcal{P}(V)$, the scheme parameterizing all lines of $\mathcal{P} = \mathbb{P}(V)$. This is also the universal scheme parameterizing all one-dimensional quotient linear spaces of V. Let W be a two dimensional quotient linear space, $\psi \in G(2, V)$, namely $\psi : \mathcal{P}(W) \to \mathbb{P}(V)$ the natural immersion and $i_\psi : V \to W$ the quotient homomorphism. The space W is denoted by $W(\psi)$ when necessary.

There exists the universal bundle $Q_{G(2, V)}$ over $G(2, V)$ and a homomorphism $i_{\text{univ}}^* : O_{G(2, V)} \otimes V \to Q_{G(2, V)}$ whose fiber $i_{\psi}^* : V \to Q_{G(2, V), \psi}$ is the quotient $i_\psi^* : V \to W(\psi)$ of V corresponding to ψ.

2.1. Existence of a line on M. Let $L = \mathcal{P}(W)$ be a line of \mathcal{P}, equivalently $W \in G(2, V)$. Then the condition $L \subset M$ imposes at most $k + 1$ conditions on W, while the number of moduli of lines of \mathcal{P} equals $\dim G(2, V) = 2N - 4$. Hence we infer

Lemma 2.2. If $2N \geq k + 5$, then there exists at least a line on M.

See also [Katz p.152]. Let G be the subscheme of $G(2, V)$ parameterizing all lines of $\mathcal{P}(V)$ lying on M. $Q = (Q_{G(2, V)})_G$ the restriction of $Q_{G(2, V)}$ to G. By Lemma 2.2, G is nonempty. Let $i^* : O_G \otimes V \to Q$ be the restriction of i_{univ}^* to G. Let $P = \mathcal{P}(Q)$ and $\pi : P \to G$ the natural projection. Then π is the universal line of M over G, to be more exact, the universal family over G of lines lying on M. In other words, the natural epimorphism $i : O_G \otimes V \to Q$ induces a morphism $i : P \to \mathcal{P}_G(V) := G \times \mathcal{P}(V)$, which is a closed immersion into $\mathcal{P}_G(V)$, thus P is a subscheme of $\mathcal{P}_G(V)$ such that $\pi = (p_1)_p$. Let $L_\psi = \mathcal{P}(Q_\psi)$. Note that

$$L_\psi = P_\psi := \pi^{-1}(\psi) \subset \mathcal{P}(Q_\psi) \subset \{\psi\} \times \mathcal{P}(V) \subset \mathcal{P}(V).$$
2.3. The normal bundle $N_{L/M}$. The argument of this section is standard and well known. Let $P = P(V)$, $L = P(W)$ and $i_W^*: V \to W \in G$. Let us recall the following exact sequence:

$$0 \longrightarrow O_P \longrightarrow O_P(1) \otimes V^\vee \xrightarrow{D} T_P \longrightarrow 0$$

where the homomorphism D is defined by

$$D(a \otimes v^\vee) := aD_{(v^\vee)} \quad (a \in O_P(1))$$

$$(D_{v^\vee}F)(u^\vee) := \left(\frac{d}{dt}F(u^\vee + tv^\vee)\right)_{t=0}$$

for a homogeneous polynomial $F \in S(V)$ and $u^\vee, v^\vee \in V^\vee$. We note $H^0(O_P(1)) \otimes V^\vee = V \otimes V^\vee = \text{End}(V, V)$ and that the image of $H^0(O_P)$ in $\text{End}(V, V)$ is Cid_V. We also have the following exact sequences:

$$0 \longrightarrow T_L \longrightarrow (T_P)_L \longrightarrow N_{L/P} \longrightarrow 0$$

$$0 \longrightarrow O_L \longrightarrow O_L(1) \otimes V^\vee \xrightarrow{D_L} (T_P)_L \longrightarrow 0.$$

Lemma 2.4. Let $L = P(W)$. Then

$$N_{L/P} \simeq O_L(1) \otimes (V^\vee/W^\vee), \; H^0(N_{L/P}) \simeq W \otimes (V^\vee/W^\vee).$$

Proof. The assertion is clear from the following commutative diagram with exact rows and columns:

$$\begin{array}{ccccccccc}
0 & \longrightarrow & O_L & \longrightarrow & O_L(1) \otimes W^\vee & \xrightarrow{(D_L)_{W^\vee}} & T_L & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow_{\text{id} \otimes v^\vee} & & \downarrow & & \\
0 & \longrightarrow & O_L & \longrightarrow & O_L(1) \otimes V^\vee & \xrightarrow{D_L} & (T_P)_L & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \longrightarrow & 0 & \longrightarrow & O_L(1) \otimes (V^\vee/W^\vee) & \longrightarrow & N_{L/P} & \longrightarrow & 0
\end{array}$$

The second assertion is clear from $H^0(L, O_L(1)) = W$. \qed

Since $T_L \simeq O_L(2)$, there follow exact sequences

$$0 \longrightarrow H^0(T_L) \longrightarrow H^0((T_P)_L) \longrightarrow H^0(N_{L/P}) \longrightarrow 0$$

$$0 \longrightarrow H^0(O_L) \longrightarrow H^0(O_L(1)) \otimes V^\vee \xrightarrow{H^0(D_L)} H^0((T_P)_L) \longrightarrow 0.$$

We also note

$$H^0(T_L) = \text{LieAut}^0(L) = \text{End}(W, W)/\text{center} = \text{End}(W, W)/\text{Cid}_W.$$

Since $H^0(O_L(1)) = W$, we see

$$H^0((T_P)_L) = W \otimes V^\vee/\text{Im} H^0(O_L) = \text{Hom}(V, W)/\text{Cid}_W.$$

Hence we again see

$$H^0(N_{L/P}) = \frac{\text{Hom}(V, W)/\text{Cid}_W}{\text{Hom}(W, W)/\text{Cid}_W} = W \otimes (V^\vee/W^\vee) = \text{Hom}(V/W, W).$$

For any line $L = P(W)$ of P the following sequence is exact:

$$0 \rightarrow N_{L/M} \rightarrow N_{L/P} \rightarrow (N_{M/P})_L \simeq O_L(k) \rightarrow 0.$$
Hence so is the following sequence as well:

\[0 \rightarrow H^0(N_{L/M}) \rightarrow H^0(N_{L/P}) \xrightarrow{H^0(D_L)} H^0(O_L(k)) \rightarrow 0. \]

Hence we have

Lemma 2.5. The following is exact:

\[(8) \quad 0 \rightarrow H^0(N_{L/M}) \rightarrow W \otimes (V^\vee/W^\vee) \xrightarrow{H^0(D_L)} S^k W \rightarrow H^1(N_{L/M}) \rightarrow 0. \]

Corollary 2.6. \(\dim G \geq 2N - k - 5 \), equality holding if \(H^1(N_{L/M}) = 0. \)

Proof. As is well known, \(\dim G \geq h^0(N_{L/M}) - h^1(N_{L/M}) \). Note \(\dim W \otimes (V^\vee/W^\vee) = 2(N - 2) \) and \(\dim S^k W = k + 1 \). Hence the corollary follows from Lemma 2.5. \(\square \)

Lemma 2.7. For a generic line \(L \) on a generic hypersurface \(M \) of degree \(k \)

(i) \(N_{L/M} \cong O_L^a \oplus O_L(-1)^b \), where \(a = 2N - k - 5 \) and \(b = k - N + 2 \),

(ii) \(\text{Coker} H^0(D_L) \cong S^{k-1} W/(V^\vee/W^\vee) \) where \(D_L := D_L \oplus O_L(-1). \)

Proof. Let \(M \) be a generic hypersurface of degree \(k \) and \(L \) a generic line on \(M \). Without loss of generality we may assume that \(W^\vee \) is generated by \(e_1^\vee \) and \(e_2^\vee \). In other words, \(\psi : L \rightarrow P \) is given by

\[\psi : [s : t] \rightarrow [x_1, \ldots, x_N] = [s, t, 0, \ldots, 0]. \]

Then \(F \), the polynomial of degree \(k \) defining \(M \), is written as

\[F = x_3 f_3 + x_4 f_4 + \cdots + x_N f_N \]

for some polynomials \(f_j \) of degree \(k - 1 \). Let \(f_j = \psi^* f_j = f_j(s, t, 0, \ldots, 0). \)

Now we consider the exact sequence

\[0 \rightarrow H^0(N_{L/M}(-1)) \rightarrow H^0(N_{L/P}(-1)) \xrightarrow{H^0(D_L^-)} H^0(O_L(k - 1)) \rightarrow 0. \]

where we note \(H^0(N_{L/P}(-1)) = V^\vee/W^\vee \). Hence the following is exact:

\[(9) \quad 0 \rightarrow H^0(N_{L/M}(-1)) \rightarrow V^\vee/W^\vee \xrightarrow{H^0(D_L^-)} S^{k-1} W \rightarrow H^1(N_{L/M}(-1)) \rightarrow 0. \]

where \(H^0(D_L^-) \) is given by \(H^0(D_L^-)(e_j^\vee) = f_j \) \((j = 3, 4, \cdots, N)\). A generic choice of \(F \) implies a generic choice of degree \(k - 1 \) polynomials \(f_j \) \((j = 3, 4, \cdots, N)\) in \(s \) and \(t \). By the assumptions

\[\dim S^{k-1} W = k \geq N - 2 = \dim V^\vee/W^\vee, \]

\[\dim W \otimes V^\vee/W^\vee = 2(N - 2) \geq k + 1 = \dim S^k W, \]

the generic choice of \(F \) implies that we can choose \(f_j \in S^{k-1} W \) \((j = 3, 4, \cdots, N)\) (and fix once for all) such that

(iii) \(f_j \) \((j = 3, 4, \cdots, N)\) are linearly independent,

(iv) \(W f_3 + W f_4 + \cdots + W f_N = S^k W. \)
Hence $H^0(D^*_{\mathcal{L}})$ is injective by (iii). It follows that $H^0(N_{L/M}(-1)) = 0$. Hence (ii) is clear. Next we consider $H^0(D_L)$. By (iv), we see

$$S^kW = W \cdot H^0(D^*_L)(V^*/W^*).$$

whence $H^0(D_L)$ is surjective. It follows that $H^1(N_{L/M}) = 0$. Hence $N_{L/M} \cong O_L^{b-a} \oplus O_L(-1)^{b+b}$ for some a and b. Since $a + b = \text{rank}(N_{L/M}) = N - 3$ and $b = \text{deg}(N_{L/M}) = N - 2 - k$, we have (i). \hfill \Box

2.8. Lines on a quintic hypersurface in \mathbb{P}^4. See [Katz, Appendix A] for the subsequent examples. Let $N = 5$ and $k = 5$. Hence M is a hypersurface of degree 5 in \mathbb{P}^4, a Calabi-Yau 3-fold. Let

$$F = x_4x_1^4 + x_5x_2^3 + x_3^3 + x_4^2 + x_5^2.$$

First we note that $M = \{F = 0\}$ is nonsingular. Let $L = \{x_3 = x_4 = x_5 = 0\}$. In this case $f_3 = 0$, $f_4 = s^4$ and $f_5 = t^4$. In the exact sequence (1) we see $H^0(N_{L/M}(-1)) = \text{Ker} H^0(D_{\mathcal{L}}) = C_{\mathcal{L}}^0$ and $H^1(N_{L/M}(-1)) = \text{Coker} H^0(D_{\mathcal{L}})$ is 3-dimensional. Hence $N_{L/M} = O_L(1) \oplus O_L(-3)$. We summarize the above. If $\text{dim Ker} H^0(D^*_L) = 1$ and if M is nonsingular, then $N_{L/M} = O_L(1) \oplus O_L(-3)$. Hence $H^0(N_{L/M}) = \text{Ker} H^0(D_L) = W \oplus \text{Ker} H^0(D^*_L)$ is 2-dimensional. Therefore we can choose $f_3 = 0$ and a linearly independent pair f_4 and f_5 in S^4W so that $W f_4 + W f_5$ is 4-dimensional. The choice $f_4 = s^4$ and $f_5 = t^4$ satisfies the conditions. This enables us to find a nonsingular hypersurface M as above. However if we choose $f_3 = 0$, $f_4 = s^4$ and $f_5 = s^2 t$, then $W f_4 + W f_5$ is 3-dimensional. Hence M is singular.

Next in the same manner we find L on a nonsingular hypersurface M with $N_{L/M} = O_L \oplus O_L(-2)$ or $N_{L/M} = O_L(-1)^{\oplus 2}$. Let

$$F = x_3x_1^4 + x_4x_2^3 + x_5x_2^2 + x_3^3 + x_4^2 + x_5^2.$$

Then we have $f_3 = s^4$, $f_4 = s^3 t$ and $f_5 = t^4$. Since $W f_3 + W f_4 + W f_5$ is 5-dimensional, $H^0(N_{L/M}(-1)) = \text{Ker} H^0(D_L) = 0$, $H^0(N_{L/M}) = \text{Ker} H^0(D_L) = C(\mathcal{L}^0 - s \mathcal{L}^0)$. We see also that $\text{dim} H^1(N_{L/M}) = \text{dim Coker} H^0(D_L) = 1$ and $N_{L/M} = O_L \oplus O_L(-2)$. The hypersurface $M = \{F = 0\}$ is easily shown to be nonsingular.

If $F = x_3x_1^4 + x_4x_2^3 + x_5x_2^2 + x_3^3 + x_4^2 + x_5^2$ and $M = \{F = 0\}$, then $N_{L/M} = O_L(-1)^{\oplus 2}$. 2.9. Lines on a generic hypersurface M^8 of \mathbb{P}^6. Let $N = 7$ and $k = 8$. In view of Lemma 2.2 there exists a line L on any generic hypersurface M of degree 8 in $\mathbb{P}(V) = \mathbb{P}^6$. In view of Lemma 2.7, $a = 1$, $b = 3$ and $N_{L/M} \cong O_L \oplus O_L(-1)^{\oplus 3}$. For example let $L : x_j = 0$ ($j \geq 3$) and we take

$$F_3 = 8x_1^2, \quad F_4 = 8x_1^2 x_2, \quad F_5 = 8x_1^2 x_2^2, \quad F_6 = 8x_1^2 x_2^3, \quad F_7 = 8x_1^2,$$

$$F = x_3F_3 + x_4F_4 + x_5F_5 + x_6F_6 + x_7F_7 + x_3^8 + x_4^8 + x_5^8.$$

and let $M = M^8 : F = 0$. We see that M is nonsingular near L and has at most isolated singularities. However it is still unclear to us whether $M = M^8$ is
nonsingular everywhere. The space $H^0(N_{L/M})$ is spanned by te_N^*, hence an
infinitesimal deformation L_e of L is given by

$$\delta t \mapsto \delta t, \varepsilon, -\delta t, 0, 0, 0$$

which yields $F|L_e = \varepsilon (s^8 t^8) \equiv 0 \mod \varepsilon ^8$. Since $H^1(N_{L/M}) = 0$, this
infinitesimal deformation is integrable and $G := \text{moduli of lines of } \mathbf{P}^6 \text{ contained in } M$ is
nonsingular and one dimensional at the point $[L]$.

We note that M also contains 8 lines

$$L^i := L_{e_8} : \varepsilon_8 x_1 - x_2 = x_3 + \varepsilon_8 x_4 = x_5 = 0 \quad (j \geq 5),$$

with $N_{L/M} = O_L(1)^{\oplus 3} \oplus O_L(-6)$ where $\varepsilon_8 = -1$.

3. Stability

Definition 3.1. Suppose that a reductive algebraic group G acts on a vector space V. Let $v \in V$, $v \neq 0$.

1. the vector v is said to be semi-stable if there exists a G-invariant homogeneous polynomial F on V such that $F(v) \neq 0$.

2. the vector v is said to be stable if p has a closed G-orbit in X_{ss} and the stabilizer subgroup of v in G is finite.

Let $\pi : V \setminus \{0\} \to \mathbf{P}(V^\vee)$ be the natural surjection. Then $v \in V$ is semi-stable (resp.
stable) if and only if $\pi(v)$ is semi-stable (resp. stable).

3.2. Grassmann variety. Let V be an N-dimensional vector space, and $G(r, N)$
the Grassmann variety parameterizing all r-dimensional quotient spaces of V. Here
is a natural way of understanding $G(r, N)$ via GIT-stability. Let U be an r-
dimensional vector space, $X = \text{Hom}(V, U)$ and $\pi : X \setminus \{0\} \to \mathbf{P}(X^\vee)$ the natural
map. Then $\text{SL}(U)$ acts on X from the left by:

$$(g \cdot \phi^*)(v) = g \cdot (\phi^*(v)) \quad \text{for } \phi^* \in X, \ v \in V.$$

We see that for $\phi^* \in X$

ϕ^* is $\text{SL}(U)$-stable \iff rank $\phi^* = r$,

ϕ^* is $\text{SL}(U)$-semi-stable \iff ϕ^* is $\text{SL}(U)$-stable.

In fact, if rank $\phi^* = r - 1$, then there is a one-parameter torus T of $\text{SL}(U)$ such
that the closure of the orbit $T \cdot \phi$ contains the zero vector as the following simple
example ($r = 2$) shows

$$\lim_{t \to 0} \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1N} \\ 0 & 0 & \cdots & 0 \end{pmatrix} = \lim_{t \to 0} \begin{pmatrix} ta_{11} & ta_{12} & \cdots & ta_{1N} \\ 0 & 0 & \cdots & 0 \end{pmatrix}.$$

Let X_s be the set of all (semi)stable points and P_s the image of X_s by π. It is, as
we saw above, just the set of all $\phi \in X$ with rank $\phi^* = r$. Therefore the GIT-orbit
space $P_s/\text{SL}(U)$ is the orbit space $P_s/\text{SL}(U)$ by the free action, the Grassmann
variety $G(r, N)$.
3.3. Moduli of double coverings of \mathbf{P}^1 (1). Let W and U be a pair of two dimensional vector spaces, $X = \text{Hom}(W,S^2U)$, and $\pi : X \setminus \{0\} \to \mathbf{P}(X^\vee)$ the natural morphism. Note that $\text{SL}(U)$ acts on S^2U from the left via the natural action: $\sigma(u_1u_2) = \sigma(u_1)\sigma(u_2)$ for $\forall u_1, u_2 \in U$. Thus $\text{SL}(U)$ acts on X from the left in the same manner in the subsection 3.2.

Lemma 3.4. Let $\phi^* \in X$.

(i) ϕ^* is unstable iff $\phi^*(w)$ has a double root for any $w \in W$.

(ii) ϕ^* is semistable iff $\phi^*(w)$ has no double roots for some nonzero $w \in W$.

(iii) ϕ^* is stable iff $\phi^*(W)$ is a base-point free linear subsystem of S^2U on $\mathbf{P}(U)$.

Proof. We note that ϕ^* is unstable iff there is a suitable basis s and t of U such that $\phi^*(w) = a(w)s^2$ for any $w \in W$ since a torus orbit $T \cdot \phi^*$ contains the zero vector. This proves (i). This also proves (ii). Next we prove (iii). If $\phi^*(W)$ has a base point, then it is clear that ϕ^* is not stable. If ϕ^* is semistable and it is not stable, then we choose a basis s, t of U and a basis w_1, w_2 of W such that $\phi^*(w_1) = st$. If $\phi(w_2) = as^2 + bst$, then ϕ^* is not stable. This proves the lemma. □

Theorem 3.5. Let X_{ss} be the Zariski open subset of X consisting of all semistable points of X, $\pi(X_{ss})$ the image of X_{ss} by π, and $Y := \pi(X_{ss})/\text{SL}(U)$. Then $Y \simeq \mathbf{P}^2$.

Proof. First consider a simplest case. We choose a basis s, t of U. Let w_1 and w_2 be a basis of W, T the subgroup of $\text{SL}(U)$ of diagonal matrices and $X^t = \{\phi^* \in X; \phi^*(w_1) = 2st\}$. Let $Z^t = \text{SL}(U) \cdot X^t$.

We note that Z^t is an $\text{SL}(U)$-invariant subset of X_{ss}. We prove $\pi(Z^t)/\text{SL}(U) \simeq \mathbf{C}^2$. Let ϕ^* and ψ^* be points of X^t. Let $\phi^*(w_2) = As^2 + 2Bst + Ct^2$ and $\psi^*(w_2) = as^2 + 2bst + ct^2$. Then it is easy to check

$$g \cdot \phi^* = \psi^*$$

for $\exists g \in \text{SL}(U) \iff g \cdot \phi^* = \psi^* \text{ for } \exists g \in T$

$$\iff A = au^2, \ B = b, \ C = u^{-2}c \text{ for } \exists u \neq 0.$$ Therefore each equivalence class of $\pi(Z)/\text{SL}(U)$ is represented by the pair (A, B), which proves $\pi(Z)/\text{SL}(U) \simeq \mathbf{C}^2$.

Now we prove the lemma. Let $\phi^* \in X_{ss}$, $\phi_j = \phi^*(w_j)$ and $\phi_0 = -(\phi_1 + \phi_2)$. Let

$$\phi_0 = r_1s^2 + 2r_2st + r_3t^2,$$

$$\phi_1 = p_1s^2 + 2p_2st + p_3t^2,$$

$$\phi_2 = q_1s^2 + 2q_2st + q_3t^2,$$

and we define

$$D_1 = p_2^2 - p_1p_3, \ D_2 = q_2^2 - q_1q_3,$$

$$D_0 = r_2^2 + r_1r_3 = D_1 + D_2 + 2p_2q_2 - (p_1q_3 + p_3q_1).$$

To show the lemma, we prove the more precise isomorphism

$$\pi(X_{ss})/\text{SL}(U) \cong \text{Proj} \mathbf{C}[D_0, D_1, D_2]$$

For this purpose we define $Y_j = \pi(\{\phi^* \in X_{ss}; \phi_j \text{ has no double roots}\})/\text{SL}(U)$. It suffices to prove $Y_1 = \text{Spec} \mathbf{C}[D_1^a, D_1^b]$ by reducing it to the first simplest case.
Let $\phi^* \in Y_1$. Let α and β be the roots of $\phi_1 = 0$. By the assumption ϕ_1 has no double roots, hence $\alpha \neq \beta$. Let
\[
u = \frac{1}{\gamma} (s - \alpha t), \quad v = \frac{1}{\gamma} (s - \beta t), \quad g = \frac{1}{\gamma} \left(\frac{1 - \alpha}{1 - \beta} \right)
\]
where $\gamma = \sqrt{\alpha - \beta}$. Note that $g \in SL(U)$. Hence we see
\[(\phi_1(s,t), \phi_2(s,t)) \equiv (p_1\gamma^4 uv, A_1u^2 + 2B_1uv + C_1v^2)\]
where
\[A_1 = q_1^2 \beta^2 + 2q_2 \beta + q_3,\]
\[-B_1 = q_1 \alpha + q_2 (\alpha + \beta) + q_3,\]
\[C_1 = q_1^2 \alpha^2 + 2q_2 \alpha + q_3.
\]
Thus we see
\[(\phi_1(s,t), \phi_2(s,t)) \equiv (2st, As^2 + 2Bst + Ct^2)\]
where
\[A = \frac{2A_1}{p_1^2}, \quad B = \frac{2B_1}{p_1^2}, \quad C = \frac{2C_1}{p_1^4}, \quad p_1 = 4D_1,
\]
\[AC = B^2 - \frac{D_1}{D_1}, \quad B = \frac{D_0 - D_1 - D_2}{2D_1}.
\]
Therefore by the first half of the proof
\[Y_1 \simeq \text{Spec } \mathbb{C}[AC, B] = \text{Spec } \mathbb{C}^{D_0, D_1, D_2}.
\]
This completes the proof of the lemma. \qed

Corollary 3.6. Let $Y^s = \pi(X_s)/SL(U)$. Then $Y \setminus Y^s$ is a conic of Y defined by
\[Y \setminus Y^s : D_0^2 + D_1^2 + D_2^2 - 2D_0D_1 - 2D_1D_2 - 2D_2D_0 = 0.
\]

Proof. In view of Theorem 3.5, $Y_1 \simeq \text{Spec } \mathbb{C}[AC, B]$. The complement of Y_s in Y_1 is then the curve defined by $AC = 0$, which is easily identified with the above conic. \qed

Corollary 3.7. Let X^0 be the Zariski open subset of X consisting of all semistable points ϕ^* of X with rank $\phi^* = 2$, and let $Y^0 := \pi(X^0)/SL(U)$. Then $Y^0 \simeq \pi(X^0)/SL(U) \simeq Y \simeq \mathbb{P}^2$.

Proof. It suffices to compare Y_1 and $Y^0 \cap Y_1$. As in the proof of Theorem 3.5 we let $X' = \{ \phi^* \in X; \phi^*(w_1) = 2st \}$. Let $Z = SL(U) \cdot X'$ and $Z^0 = SL(U) \cdot (X' \cap X^0)$.

Then with the notation in Theorem 3.5, we recall $X' = \{ \phi^* \in X; \phi^*(w_1) = 2st, \phi^*(w_2) = As^2 + 2Bst + Ct^2 \}, \pi(Z)/SL(U) \simeq \text{Spec } \mathbb{C}[AC, B]$ where
\[X' \cap X^0 = \{ \phi^* \in X'; A \neq 0 \text{ or } C \neq 0 \} \]
In the same manner as before we see $\pi(Z^0)/SL(U) \simeq \text{Spec } \mathbb{C}[AC, B]$, whence $\pi(Z^0)/SL(U) = \pi(Z)/SL(U)$. This proves $Y^0 \cap Y_1 = Y_1$. This completes the proof of the corollary. \qed
3.8. **Moduli of double coverings of** $\mathbb{P}(W)$ (2). There is an alternative way of understanding $\pi(X_2)/\text{SL}(U) \simeq \mathbb{P}^2$ by using the isomorphism $S^2\mathbb{P}^1 \simeq \mathbb{P}^2$. We use the following convention to denote a point of $\mathbb{P}(U) = U^\vee \setminus \{0\}/G_m$: $(u : v) = u^s v^t + v^t \in U^\vee$ where s^\vee and t^\vee are a basis dual to s and t. In what follows we fix a basis w_1 and w_2 of W. Let $P := (a_1 : a_2)$ and $Q := (b_1 : b_2)$ be a pair of points of $\mathbb{P}(W) \simeq \mathbb{P}^1$. If $P \neq Q$, there is a double covering $\phi : \mathbb{P}(U) \to \mathbb{P}(W)$ ramifying at P and Q, unique up to isomorphism once we fix the base w_1 and w_2:

$$\frac{b_2 w_1 - b_1 w_2}{a_2 w_1 - a_1 w_2} = \left(\frac{s}{t}\right)^2.$$

Thus ϕ is given explicitly by

$$\phi_1 := \phi^*(w_1) = b_1 s^2 - a_1 t^2, \quad \phi_2 := \phi^*(w_2) = b_2 s^2 - a_2 t^2, \quad \phi_0 = -(\phi_1 + \phi_2)$$

for which we have

$$D_1 = a_1 b_1, \quad D_2 = a_2 b_2, \quad D_0 = (a_1 + a_2)(b_1 + b_2).$$

The isomorphism $S^2\mathbb{P}^1 \simeq \mathbb{P}^2$ is given by $(P, Q) \mapsto (D_0, D_1, D_2)$. This shows

Corollary 3.9. We have a natural isomorphism: $Y \simeq \mathbb{P}(S^2W)$.

4. **The virtual normal bundle of a double covering**

4.1. **The case** $N = 7$ and $k = 8$ revisited. We revisit the example in the subsection 2.9. Let $N = 7$ and $k = 8$. Let $L : x_j = 0$ ($j \geq 3$) and we take

$$F_3 = 8x_1^7, F_4 = 8x_2^6x_2, F_5 = 8x_1^4x_3^2, F_6 = 8x_1^2x_2^2, F_7 = 8x_7^2,$$

$$F = x_3F_3 + x_4F_4 + x_5F_5 + x_6F_6 + x_7F_7 + x_8^4 + x_8^4 + x_8^4 + x_8^4 + x_8^4.$$

and let $M = M_8^8 : F = 0$. We often denote L also by $\mathbb{P}(W)$ with W a two dimensional vector space for later convenience. Since $H^0(D_L^-)$ is injective and $H^0(D_L)$ is surjective, we have $N_{L/M} \simeq O_L \oplus O_L(-1)^{\mathbb{G}_m}$. Hence $H^1(N_{L/M}(-1)) = H^1(O_L(-2)^{\mathbb{G}_m})$ is 3-dimensional. As we see easily, this follows also from the fact that $\text{Coker}H^0(D_L^-)$ is freely generated by $x_1^4x_2^4, x_1^4x_2^4$ and $x_1^4x_2^4$.

Let $\phi^* = (\phi_1, \phi_2) \in X^0$. Then $\text{Coker}H^0(\phi^*D_L)$ is generated by a single element $\phi_2 x_3^8 + \phi_1 x_4^8$, while $\text{Coker}H^0(\phi^*D_L)$ is generated by $S^2U \cdot \phi_1 \phi_2^3$, $S^2U \cdot \phi_1 \phi_2^3$ and $S^2U \cdot \phi_1 \phi_2^3$. To be more precise, we see

$$\text{Coker}H^0(\phi^*D_L) = \{\phi_1 \phi_2^3, \phi_1 \phi_2^3, \phi_1 \phi_2^3\} \otimes S^2U / \{\phi_1, \phi_2\}.$$

In fact, this is proved as follows: first we consider the case where ϕ_1 and ϕ_2 has no common zeroes. In this case ϕ^* gives rise to a double covering $\phi : \mathbb{P}(U) \to \mathbb{P}(W)$ ($= L$), which we denote by L_ϕ for brevity. By pulling back by ϕ^* the normal sequence $0 \to N_{L/M} \to N_{L/P} \to O_L(k) \to 0$ ($k = 8$) for the line L we infer an exact sequence

$$0 \to \phi^*N_{L/M} \to \phi^*N_{L/P} \xrightarrow{\phi^*D_L} \phi^*O_L(k) \to 0,$$

which yields an exact sequence

$$0 \longrightarrow H^0(\phi^*N_{L/M}) \longrightarrow S^2U \otimes (V^\vee/W^\vee) \xrightarrow{H^0(\phi^*D_L)} H^0(O_L(2k)) \longrightarrow 0.$$
Let $\eta = q_3 e^\eta_3 + \cdots + q_7 e^\eta_7 \in \text{Ker } H^0(\phi^* D_L)$, $q_j \in S^2 U$. Then we have

$$\phi_1^2(q_3 \phi_1^2 + q_4 \phi_1^2 \phi_2 + q_5 \phi_1^2 \phi_2^2 + q_6 \phi_2^2) = -q_7 \phi_2^2.$$

Since ϕ_1 and ϕ_2 are mutually prime and q_j is of degree two, we have $q_7 = 0$ and

$$\phi_1^2(q_3 \phi_1^2 + q_4 \phi_1^2 \phi_2 + q_5 \phi_1^2 \phi_2^2) = -q_6 \phi_2^2.$$

Hence $q_6 = 0$ and similarly we infer also $q_7 = 0$. Thus we have $q_3 \phi_1 + q_4 \phi_2 = 0$. This proves that $\text{Ker } H^0(\phi^* D_L)$ is generated by $\phi_2 e^\eta_2 - \phi_1 e^\eta_1$.

Next we prove that $\text{Coker } H^0(\phi^* D_L)$ is generated by $\phi^* \text{Coker } H^0(D_L^-)$ over $S^2 U$, in fact over $S^2 U / \phi^*(W)$. Without loss of generality we may assume that $\phi_1 = 2st$ and $\phi_2 = \lambda s^2 + 2\nu st + t^2$ for some $\lambda \neq 0$ and $\nu \in \mathbb{C}$. Let $\phi^* W = \{ \phi_1, \phi_2 \}$. Then one checks $U \cdot \phi^* W = S^2 U$, and hence $S^2 U \cdot \phi^* W = S^4 U$, $S^2 m - 2 U \cdot \phi^* W = S^2 m U$ for $m \geq 2$. It follows $S^2 U \cdot \phi^*(S^{m-1} W) = S^2 m U$ for $m \geq 1$. In fact, by the induction on m

$$S^2 U \cdot \phi^*(S^{m} W) = S^2 U \cdot \phi^*(W) \cdot \phi^*(S^{m-1} W)$$

$$= S^4 U \cdot \phi^*(S^{m-1} W)$$

$$= S^2 U \cdot (S^2 U \cdot \phi^*(S^{m-1} W))$$

$$= S^2 U \cdot S^{2m} U = S^{2m+2} U.$$

Therefore $H^0(OL_2(2k)) = S^16 U = S^2 U \cdot \phi^*(S^7 W)$. Hence

$$\text{Coker } H^0(\phi^* D_L) = S^16 U / \text{Im } H^0(\phi^* D_L)$$

$$= S^2 U \cdot \phi^*(S^7 W) / S^2 U \cdot \phi^*(\text{Im } H^0(D_L^-))$$

$$= (S^2 U / \phi^*(W)) \cdot \phi^*(S^7 W / \text{Im } H^0(D_L^-)).$$

because $\text{Coker } H^0(D_L^-) = S^7 W / \text{Im } H^0(D_L^-)$ and $W \cdot S^7 W \subset W \cdot \text{Im } H^0(D_L^-) = S^8 W$ by the choice of L. This proves that $\text{Coker } H^0(\phi^* D_L)$ is generated by $\phi^* \text{Coker } H^0(D_L^-)$ over $S^2 U / \phi^*(W)$. It follows $\text{Coker } H^0(\phi^* D_L) = (\phi^* \text{Coker } H^0(D_L^-)) \otimes (S^2 U / \phi^* W)$.

Finally we consider the case where ϕ_1 and ϕ_2 has a common zero. In this case we may assume $\phi_1 = 2st$ and $\phi_2 = 2\nu st + t^2$. In this case L_ϕ is a chain of two rational curves C_ϕ and C°_ϕ where C_ϕ is the proper transform of $\mathbb{P}(U)$, where the double covering map from L_ϕ to $\mathbb{P}(W)$ is the union of the isomorphisms ϕ^i and ϕ^μ, say, $\phi = \phi^i \cup \phi^\mu$. Let $\psi_1 = 2s$ and $\psi_2 = 2\nu s + t$. Then ϕ^i is induced by the homomorphism $(\phi^i)^* \in \text{Hom}(W, U)$ such that $(\phi^i)^*(w_j) = \psi_j$. On the other hand let $U^\mu_\phi = C\phi + C\mu$, $\psi_1^\mu = 2t$ and $\psi_2^\mu = \lambda + 2t$ where we note ψ_j^μ is the linear part of ϕ_j in t with $s = 1$. Then $C_\phi = \mathbb{P}(U^\mu_\phi)$ and ϕ^μ is induced by the homomorphism $(\phi^\mu)^* \in \text{Hom}(W, U^\mu_\phi)$ such that $(\phi^\mu)^*(w_j) = \psi_j^\mu$. Furthermore the pull back by ϕ^μ of the normal sequence for L

$$0 \to \phi^\mu N_{L/M} \to \phi^\mu N_{L/P} \xrightarrow{\phi^* D_L} \phi^\mu O_L(k) \to 0,$$
yields exact sequences with natural vertical homomorphisms:

\[
\begin{array}{c}
0 \longrightarrow \phi^* N_{L/M} \longrightarrow (\phi')^* N_{L/M} \oplus (\phi'')^* N_{L/M} \longrightarrow C \longrightarrow 0 \\
\downarrow \quad \downarrow \\
0 \longrightarrow \phi^* N_{L/P} \longrightarrow (\phi')^* N_{L/P} \oplus (\phi'')^* N_{L/P} \longrightarrow V^\vee /W^\vee \longrightarrow 0 \\
\downarrow \quad \downarrow \\
0 \longrightarrow \phi^* O_L(k) \longrightarrow O_{C_{\phi}}(k) \oplus O_{C_{\psi}}(k) \longrightarrow C \longrightarrow 0.
\end{array}
\]

This yields the following long exact sequences:

\[
\begin{array}{c}
0 \longrightarrow H^0((\phi')^* N_{L/M}) \longrightarrow U \otimes V^\vee /W^\vee \xrightarrow{H^0((\phi')^* D_L)} S^k U \\
\longrightarrow H^1((\phi')^* N_{L/M}) \longrightarrow 0 \\
0 \longrightarrow H^0((\phi'')^* N_{L/M}) \longrightarrow U''_\phi \otimes V^\vee /W^\vee \xrightarrow{H^0((\phi'')^* D_L)} S^k U''_\phi \\
\longrightarrow H^1((\phi'')^* N_{L/M}) \longrightarrow 0
\end{array}
\]

whence \(H^1((\phi')^* N_{L/M}) = H^1((\phi'')^* N_{L/M}) = 0 \), and both \(H^0((\phi')^* N_{L/M}) \) and \(H^0((\phi'')^* N_{L/M}) \) are one-dimensional. Let \(U^t \) be the subspace of \(U \) consisting of elements vanishing at \(C_{\phi} \cap C_{\psi} \), namely the subspace spanned by \(t \). Then the restriction of \(H^0((\phi')^* D_L) \) to \(U^t \otimes V^\vee /W^\vee \) equals \(t \cdot H^0((\phi')^* D_L) \). Hence

\[
\text{Coker } H^0(\phi^* D_L) \simeq t \cdot S^2 U/t \cdot \text{Im } H^0((\phi')^* D_L) \oplus \text{Coker } H^0((\phi'')^* D_L) \\
\simeq S^2 U/t \cdot \text{Im } H^0((\phi')^* D_L) \simeq \text{Coker } H^0((\phi')^* D_L).
\]

One could understand the above isomorphism as

\[
\text{Coker } H^0(\phi^* D_L) = \text{Coker } (\phi^* H^0(D_L)) \otimes (S^2 U/\phi^* W).
\]

Thus \(H^0(\phi^* N_{L/M}) \) is one-dimensional, while \(H^1(\phi^* N_{L/M}) \) is 3-dimensional. This is immediately generalized into the following

Lemma 4.2. For any \(\phi^* \in X^0 \) we have

\[
\begin{align*}
\text{Ker } H^0(\phi^* D_L) &= \phi^* \text{Ker } H^0(D_L), \\
\text{Coker } H^0(\phi^* D_L) &= (\phi^* \text{Coker } H^0(D_L^-)) \oplus (S^2 U/\phi^* W).
\end{align*}
\]

Lemma 4.3. We define a line bundle \(L_0 \) (resp. \(L_1 \)) on \(Y \) (\(\simeq \mathbf{P}(S^2 W) \)) by the assignment:

\[
X^0 \ni \phi^* \mapsto \phi^* \text{Ker } H^0(D_L) \ (\text{resp. } \phi^* \text{Coker } H^0(D_L^-)).
\]

Then \(L_k \simeq O_{\mathbf{P}(S^2 W)} \).

Proof. We know that \(\phi^* \text{Ker } H^0(D_L) \) is generated by \(\phi_2 e_{\phi}^\vee - \phi_1 e_{\psi}^\vee \). By the SL(2)-variable change of \(s \) and \(t \), \(\phi_j \) is transformed into a new quadratic polynomial, which is however the same as the first \(\phi_j \). This shows the generator is unchanged, whence \(L_0 \simeq O_{\mathbf{P}(S^2 W)} \). The proof for \(L_1 \) is the same. \(\square \)
Lemma 4.4. We define a coherent sheaf L on the stack Y ($\simeq \mathbb{P}(S^2 W)$) (See Remark below) by the assignment:

$$X^0 \ni \phi^* \mapsto S^2 U/\phi^* W.$$

Then $L^2 \simeq O_{\mathbb{P}(S^2 W)}(-1)$.

Proof. The GIT-quotient Y^0 is covered with the images of X'_j:

$$X'_1 = \{ (\phi_1, \phi_2) \in X^0; \phi_1 = 2st, \phi_2 = \lambda s^2 + 2\nu st + t^2, \lambda, \nu \in \mathbb{C} \},$$

$$X'_2 = \{ (\phi_1, \phi_2) \in X^0; \phi_1 = ps^2 + 2qst + t^2, \phi_2 = 2st, p, q \in \mathbb{C} \}.$$

It is clear that the natural image of X'_j in Y is Y_j. The map ϕ given by $\phi^* = (\phi_1, \phi_2) \in Y_1$ has natural \mathbb{Z}_2 involution generated by,

$$r: (\sqrt{\lambda}s + t, \sqrt{\lambda}s - t) \rightarrow (\sqrt{\lambda}s + t, - (\sqrt{\lambda}s - t)).$$

Since

$$2st = \frac{1}{2\sqrt{\lambda}}((\sqrt{\lambda}s + t)^2 - (\sqrt{\lambda}s - t)^2),$$

$$\lambda s^2 + 2\nu st + t^2 = \frac{\nu}{2\sqrt{\lambda}}((\sqrt{\lambda}s + t)^2 - (\sqrt{\lambda}s - t)^2) + \frac{1}{2}((\sqrt{\lambda}s + t)^2 + (\sqrt{\lambda}s - t)^2),$$

it is clear that,

$$r^*(\phi_1) = \phi_1, \quad r^*(\phi_2) = \phi_2, \quad r^*(\lambda s^2 - t^2) = -(\lambda s^2 - t^2).$$

Therefore, we can decompose $S^2 U$ into $\langle \lambda s^2 - t^2 \rangle \odot \langle \phi_1, \phi_2 \rangle \mathbb{C}$ with respect to eigenvalue of r^* and take $\lambda s^2 - t^2$ as canonical generator of $S^2 U/\phi^* W$. Similarly $S^2 U/\phi^* W$ is generated by $ps^2 - t^2$ on Y_2. The problem is therefore to write $\lambda s^2 - t^2$ as an $\Gamma(O_{Y_1})$-multiple of $pu^2 + v^2$ when we write $\phi_2 = 2uv$ by a variable change in $GL(2)$. The following variable change $(s, t) \mapsto (u, v)$ is in $GL(2)$:

$$s = \frac{\sqrt{2\alpha}}{(\beta - \alpha)^2} (2u - \frac{(\beta - \alpha)^2}{2\alpha}v), \quad t = \frac{\sqrt{2\alpha}}{(\beta - \alpha)^2} (2\beta u - \frac{(\beta - \alpha)^2}{2\alpha}v),$$

where α, β are roots of the equation $\lambda s^2 + 2\nu st + t^2 = 0$. Under this coordinate change, ϕ_1 and ϕ_2 are rewritten as follows:

$$\phi_1 = \frac{\lambda}{(\nu^2 - \lambda)^2} u^2 + 2\frac{\nu}{\nu^2 - \lambda} uv + v^2 = pu^2 + 2quv + v^2, \quad \phi_2 = 2uv.$$

Then we have

$$pu^2 - v^2 = -\frac{2}{\beta - \alpha} (\lambda s^2 - t^2) = -\frac{1}{\nu^2 - \lambda} (\lambda s^2 - t^2) = -\sqrt{\frac{D_1}{D_2}} (\lambda s^2 - t^2).$$

Similarly by computing the effect on $S^2 U/\phi^* W$ by the variable change from X'_1 into X'_0, we see that L^2 is isomorphic to $O_{\mathbb{P}(S^2 W)}(-1)$. This completes the proof. \(\square \)

Remark 4.5. We remark that the space X must be regarded as a \mathbb{Q}-stack Y^{stack} as follows: First we define $\phi_0 = -\phi_1 - \phi_2$. For each atlas X'_α, we define an atlas Y'_α of
(α = 0, 1, 2) by
\[Y_0^{stack} = \{(ϕ_0, ϕ_1, ϕ_2, ±ϕ_3) ∈ X^0 × S^2 U; ϕ_0 = 2st, \ ϕ_1 = as^2 + 2bst + t^2, \]
\[ϕ_3 = as^2 - t^2, \ a, b ∈ C, \]
\[Y_1^{stack} = \{(ϕ_0, ϕ_1, ϕ_2, ±ϕ_3) ∈ X^0 × S^2 U; ϕ_1 = 2st, \ ϕ_2 = λs^2 + 2νst + t^2, \]
\[ϕ_3 = λs^2 - t^2, \ λ, ν ∈ C, \]
\[Y_2^{stack} = \{(ϕ_0, ϕ_1, ϕ_2, ±ϕ_3) ∈ X^0 × S^2 U; ϕ_1 = ps^2 + 2qst + t^2, \ ϕ_2 = 2st, \]
\[ϕ_3 = ps^2 - t^2, p, q ∈ C. \]

Since \(L^2 ≃ O_{P(S^2 W)}(-1) \) we have \(c_1(L) = -\frac{1}{2}c_1(O_{P(S^2 W)}(1)) \) in the Chow ring \(A(Y^{stack})_Q = A(X)_Q = A(P(S^2 W))_Q. \)

5. Proof of the main theorem

Theorem 5.1.

\[
π_∗(c_{top}(H^1)) = \frac{1}{8} \left[\frac{c(S^{k-1} Q)}{1 - \frac{1}{2}c_1(Q)} \right]_{k-N},
\]

where \(π \) is the natural projection from \(\tilde{M}_{0,0}(L, 2) \) to \(G \) and \([s]_{k-N} \) is the operation of picking up the degree \(2(k-N) \) part of Chern classes.

Proof. From now on we denote the coherent sheaf \(L \) in Lemma 4.4 by \(O_{P}(-\frac{1}{2}) \). In view of the results from the previous section, what remains is to evaluate the top chern class of \((S^{k-1} Q / ((V^Y ⊕ O_G) / Q^Y)) \) or \(O_{P}(S^2 Q) \). Since double cover maps parametrized by \(P(S^2 Q) \) have natural \(Z_2 \) involution \(r \) given in the previous section, we have to multiply the result of integration on \(P(S^2 Q) \) by the factor \(\frac{1}{2} \) [BT], [FP]. With this set-up, let \(π^r : P(S^2 Q) → G \) be the natural projection. Then what we have to compute is \(π_∗(c_{top}(H^1)) = \frac{1}{8}π_∗(c_{top}(H^1)) = \frac{1}{4}π_∗(c_{top}(S^{k-1} Q / ((V^Y ⊕ O_G) / Q^Y)) \) or \(O_{P}(-\frac{1}{2})) \). Let \(z \) be \(c_1(O_{P}(1)) \). Then we obtain,

\[
\frac{1}{2}π_∗(c_{top}(S^{k-1} Q / ((V^Y ⊕ O_G) / Q^Y)) \) or \(O_{P}(-\frac{1}{2}))
\]

\[
= \frac{1}{2} \sum_{j=0}^{k-N+2} c_{k-N+2-j}(S^{k-1} Q ⊕ Q^Y) ∗ π_∗(z^j) ∗ (-\frac{1}{2})^j
\]

\[
= \frac{1}{8} \sum_{j=0}^{k-N} c_{k-N-j}(S^{k-1} Q ⊕ Q^Y) ∗ s_j(S^2 Q) ∗ (-\frac{1}{2})^j
\]

\[
= \frac{1}{8} \left[\frac{c(S^{k-1} Q) ∗ c(Q^Y)}{1 - \frac{1}{2}c_1(S^2 Q) + \frac{1}{3}c_2(S^2 Q) - \frac{1}{5}c_3(S^2 Q)} \right]_{k-N},
\]

where \(s_j(S^2 Q) \) is the \(j \)-th Segre class of \(S^2 Q \). But if we decompose \(c(Q) \) into \((1 + α)(1 + β) \), we can easily see,

\[
\frac{c(Q^Y)}{1 - \frac{1}{2}c_1(S^2 Q) + \frac{1}{3}c_2(S^2 Q) - \frac{1}{5}c_3(S^2 Q)} = \frac{(1 - α)(1 - β)}{(1 - α)(1 - \frac{1}{2}(α + β))(1 - β)}
\]

\[
= \frac{1}{1 - \frac{1}{2}c_1(Q)}.
\]
Finally, by combining the above theorem with the divisor axiom of Gromov-Witten invariants, we can prove the decomposition formula of degree 2 rational Gromov-Witten invariants of M^k_N found from numerical experiments.

Corollary 5.2.
$$\langle O_{c^a}O_{c^b}O_{c^c} \rangle_{0,2} = \langle O_{c^a}O_{c^b}O_{c^c} \rangle_{0,2-2} + 8(\pi_* (c_{\text{top}}(H^1))O_{c^a}O_{c^b}O_{c^c})_{0,1},$$
where $\langle O_{c^a}O_{c^b}O_{c^c} \rangle_{0,2-2}$ is the number of conics that intersect cycles Poincaré dual to e^a, e^b and e^c. We also denote by $\langle \pi_* (c_{\text{top}}(H^1))O_{c^a}O_{c^b}O_{c^c} \rangle_{0,1}$ the integral:
$$\int_{G(2,V)} c_{\text{top}}(S^k Q) \wedge \pi_* (c_{\text{top}}(H^1)) \wedge \sigma_{a-1} \wedge \sigma_{b-1} \wedge \sigma_{c-1}.$$

6. GENERALIZATION TO TWISTED CUBICS

In this section, we present a decomposition formula of degree 3 rational Gromov-Witten invariants found from numerical experiments using the results of [ES].

Conjecture 6.1. If $k - N = 1$, we have the following equality:
$$\pi_* (c_{\text{top}}(H^1)) =$$
$$\frac{1}{27} \left(\frac{1}{24}(27k^2 - 55k + 26)k(k - 1) + \frac{2}{9}c_1(Q)^2 + \left(\frac{7}{6}(k + 1)k(k - 1) + \frac{1}{9}\right)c_2(Q) \right).$$
where $\pi : \overline{M}_{0,0}(L, 3) \to \overline{M}_{0,0}(M^k_N, 1)$ is the natural projection.

In the $k - N > 1$ case, we have not found the explicit formula, because in the $d = 3$ case, we have another contribution from multiple cover maps of type $(2+1) \to (1+1)$. Here multiple cover map of type $(2+1) \to (1+1)$ is the map from nodal curve $\mathbb{P}^1 \vee \mathbb{P}^1$ to nodal conic $L_1 \vee L_2 \subset M^k_N$, that maps the first (resp. the second) \mathbb{P}^1 to L_1 (resp. L_2) by two to one (resp. one to one). In the $k - N = 1$ case, we have also determined the contributions from multiple cover maps of $(2+1) \to (1+1)$ nodal conics.

Corollary 6.2. If $k - N = 1$, $\langle O_{c^a}O_{c^b}O_{c^c} \rangle_{0,3}$ is decomposed into the following contributions:
$$\langle O_{c^a}O_{c^b}O_{c^c} \rangle_{0,3} = \langle O_{c^a}O_{c^b}O_{c^c} \rangle_{0,3-3} + \frac{1}{k} \langle O_{c^a}O_{c^b}O_{c^c} \rangle_{0,1} \langle O_{c^a}O_{c^b}O_{c^c} \rangle_{0,1} + \frac{3}{2} \langle O_{c^a}O_{c^b}O_{c^c} \rangle_{0,1} \langle O_{c^a}O_{c^b}O_{c^c} \rangle_{0,1} + \frac{3}{2} \langle O_{c^a}O_{c^b}O_{c^c} \rangle_{0,1} \langle O_{c^a}O_{c^b}O_{c^c} \rangle_{0,1} + 27(\pi_* (c_{\text{top}}(H^1))O_{c^a}O_{c^b}O_{c^c})_{0,1},$$
where $\langle O_{c^a}O_{c^b}O_{c^c} \rangle_{0,3-3}$ is the number of twisted cubics that intersect cycles Poincaré dual to e^a, e^b and e^c.

Proof. In the $k - N = 1$ case, dimension of moduli space of multiple cover maps of $(2+1) \to (1+1)$ to nodal conics is given by $N - 6 + N - 6 - (N - 4) + 2 = N - 6$, hence the rank of H^1 is given by $N - 6 = (N - 5 - 3) = 2$. On the other hand, dimension of moduli space of $d = 2$ multiple cover maps of $\mathbb{P}^1 \to \mathbb{P}^1$ is 2, the degree of the form of $\pi_* (c_{\text{top}}(H^1))$ equals to $2 - 2 = 0$, where π is the projection map.
that projects out the fiber locally isomorphic to the moduli space of \(d = 2 \) multiple cover maps. This situation is exactly the same as the Calabi-Yau case. Therefore, we can use the well-known result by Aspinwall and Morrison, that says for \(n \)-point rational Gromov-Witten invariants for Calabi-Yau manifold, \(\tilde{\pi}_*(\mathcal{O}_{c_{top}}(H^1)) \) for degree \(d \) multiple cover map is given by,

\[
\tilde{\pi}_*(\mathcal{O}_{c_{top}}(H^1)) = \frac{1}{d^{1/n}}.
\]

With this formula, we add up all the combinatorial possibility of insertion of external operator \(\mathcal{O}_{c_v}, \mathcal{O}_{c_b} \) and \(\mathcal{O}_{c_\ell} \),

\[
\frac{1}{k}((\tilde{\pi}_*(\mathcal{O}_{c_{top}}(H^1)))\mathcal{O}_{c_v}\mathcal{O}_{c_b}\mathcal{O}_{c_\ell})_{0,1}(C_{c_N-\ell})_{0,1}
\]

\[
+ (\tilde{\pi}_*(\mathcal{O}_{c_{top}}(H^1)))\mathcal{O}_{c_v}\mathcal{O}_{c_\ell}C_{c_b}(c_\ell)_{0,1}(C_{c_N-\ell})_{0,1}
\]

\[
+ (\tilde{\pi}_*(\mathcal{O}_{c_{top}}(H^1)))\mathcal{O}_{c_b}\mathcal{O}_{c_\ell}(c_{\ell})_{0,1}(C_{c_N-\ell})_{0,1}
\]

\[
+ (\tilde{\pi}_*(\mathcal{O}_{c_{top}}(H^1)))\mathcal{O}_{c_\ell}C_{c_b}(c_b)_{0,1}(C_{c_N-\ell})_{0,1}
\]

\[
+ (\mathcal{O}_{c_b}C_{c_v}C_{c_\ell})_{0,1}(C_{c_N-\ell})_{0,1}
\]

\[
+ (\mathcal{O}_{c_\ell}C_{c_v}C_{c_b})_{0,1}(C_{c_N-\ell})_{0,1}
\]

\[
+ \frac{1}{2}(\mathcal{O}_{c_v}C_{c_\ell}C_{c_b})_{0,1}(C_{c_N-\ell})_{0,1} + \frac{1}{2}(\mathcal{O}_{c_b}C_{c_v}C_{c_\ell})_{0,1}(C_{c_N-\ell})_{0,1}
\]

\[
+ \frac{1}{4}(\mathcal{O}_{c_v}C_{c_b}C_{c_\ell})_{0,1}(C_{c_N-\ell})_{0,1}.
\]

The last expression is nothing but the formula we want.

Masao Jinzenji†, Iku Nakamura*, Yasuki Suzuki

Division of Mathematics, Graduate School of Science, Hokkaido University
Kita-ku, Sapporo, 060-0810, Japan

e-mail address: † jin.math.sci.hokudai.ac.jp, * nakamura.math.sci.hokudai.ac.jp

References

[Iri] H. Iritani, Quantum D-modules and generalized mirror transformations, math.DG/0411111.

