DIFFUSED INTERFACE WITH THE CHEMICAL
POTENTIAL IN THE SOBOLEV SPACE

YOSHIHIRO TONEGAWA

Abstract. We study a singular perturbation problem arising in
the scalar two-phase field model. Given a sequence of functions
with a uniform bound on the surface energy, assume the Sobolev
norms $W^{1,p}$ of the associated chemical potential fields are bounded
uniformly, where $p > \frac{n}{2}$ and n is the dimension of the domain. We
show that the limit interface as ε tending to zero is an integral var-
ifold with the sharp integrability condition on the mean curvature.

1. Introduction

In this paper, we study the asymptotic behavior of phase interfaces
in the van der Waals-Cahn-Hilliard theory of phase transitions. Let
$u : U \subset \mathbb{R}^n \to \mathbb{R}$ ($n \geq 2$) be a function which, in the context of
phase transitions, represents the normalized density distribution of a
two-phase fluid and let $W : \mathbb{R} \to \mathbb{R}_+$ be a double well potential with
strict minima at ± 1. Here, W corresponds to the Helmholtz free energy
density [8]. With $\varepsilon \approx 0$ given, define

$$E_\varepsilon(u) = \int_U \frac{\varepsilon}{2} |\nabla u|^2 + \frac{W(u)}{\varepsilon}.$$

Here, ε is a parameter giving roughly the order of thickness of phase
interface region. It is well known that $\{E_\varepsilon\}_{\varepsilon > 0}$ Γ-converge to the in-
terface area as $\varepsilon \to 0$ [11, 16]. That is, the interfaces of the energy
minimizers converge to area minimizing surfaces as $\varepsilon \to 0$, and $\frac{1}{2\sigma} E_\varepsilon$
for small ε approximates the area of $U \cap \partial\{u \approx 1\}$, where

$$\sigma = \int_{-1}^1 \sqrt{W(s)/2} \, ds$$

is the surface energy constant. Even without the energy minimality,
but with the uniform bounds on E_ε and

$$|| - \varepsilon \Delta u + \varepsilon^{-1}W'(u) ||_{W^{1,n}(U)},$$

it is proved [17] that, the limit interface has finite area with well-defined
mean curvature. Here, $-\varepsilon \Delta u + \varepsilon^{-1}W'(u)$ in the limit is found to be

Partly supported by Grant-in-Aid for Young Scientist, no. 14702001.
the mean curvature times σ of the limit interface, and in the context of phase transitions, corresponds to the chemical potential field of the two phase fluid. $W^{1,n}(U)$ is the usual Sobolev space with L^n integrable first derivatives.

In this paper, we improve the result of [17] in that, one only needs to assume uniform bounds on E_{ε} and

\begin{equation}
|| -\varepsilon \Delta u + \varepsilon^{-1}W'(u)||_{W^{1,p}(U)}
\end{equation}

for some $p > \frac{n}{2}$ to conclude that the limit interface as $\varepsilon \to 0$ has a good measure-theoretic properties (see Theorem 1 for the precise statements). The result is sharp in the sense that if (1.3) is uniformly bounded only for $p < \frac{n}{2}$ but not for $p \geq \frac{n}{2}$, then, limits of interface regions can be diffused over all U, losing the "surface-like" property. If one heuristically regards E_{ε} as the interface area and $-\varepsilon \Delta u + \varepsilon^{-1}W'(u)$ as the mean curvature field, the $W^{1,p}(U)$ norm control for $p > \frac{n}{2}$ gives $L^{(n-1)/(n-1)}$ trace norm control of the mean curvature with respect to the surface measure on the interface. Note that $\frac{(n-1)}{n-p} > n-1$ for $p > \frac{n}{2}$. It is well-known that $(n-1)$-dimensional surface with its mean curvature in L^q, $q > n-1$, behaves well measure-theoretically [1]. The related results for sharp interface case are discussed by Schätzle [14], and one may also regard the results of this paper to be the ‘ε-version’ of [14].

Instead of assuming (1.3), another interesting assumption is an ε independent bound on E_{ε} and

\begin{equation}
\frac{1}{\varepsilon} \int_U \left(-\varepsilon \Delta u + \frac{W'(u)}{\varepsilon} \right)^2.
\end{equation}

Note that (1.4) corresponds to, at least heuristically, the uniform L^2 bound of the mean curvature of the interface with respect to the surface measure. The problem is motivated by the Willmore functional and Allen-Cahn action, and has been studied recently in [2, 5, 12, 10].

In our analysis, the key point of the proof rests on showing the energy monotonicity formula, which is well known in the context of geometric measure theory. In [17], to control the positive part of $\xi = \frac{\varepsilon}{2} |\nabla u|^2 - \frac{W}{\varepsilon}$, which appears as a major obstacle for establishing the monotonicity formula in our setting, we used Aleksandrov-Bakelman-Pucci (ABP) estimate to the differential inequality satisfied by ξ. There, it appears essential to have $W^{1,n}$ norm control of (1.3) to apply ABP estimate. The improvement of the present paper rests on the observation that one can regularize the problem in a “sub ε scale” so the estimate in [17] can be used, where the error terms originating from the nonlinear term W can be controlled. Once the monotonicity formula is established,
the rectifiability and integrality of the limit varifold follow, with some modifications, from the argument in [9].

2. Assumptions and main results

2.1. Assumptions and notations. We consider the problem with the following assumptions. The function $W : \mathbb{R} \to [0, \infty)$ is C^3 and $W(\pm 1) = 0$. For some $\gamma \in (-1, 1)$, $W' \leq 0$ on $(\gamma, 1)$ and $W' \geq 0$ on $(-1, \gamma)$. For some $\alpha \in (0, |\gamma|)$ and $\kappa > 0$,

\begin{equation}
W''(s) \geq \kappa
\end{equation}

for all $|s| \geq \alpha$. $U \subset \mathbb{R}^n$ is a bounded domain with Lipschitz boundary ∂U. Assume

\begin{equation}
n > p > \frac{n}{2}.
\end{equation}

For any sequence of $W^{3,p}(U)$ functions $\{u^i\}_{i=1}^\infty$ and $\{\varepsilon_i\}_{i=1}^\infty$ ($\varepsilon_i > 0$), define

\begin{equation}
f^i = -\varepsilon_i \Delta u^i + \frac{W'(u^i)}{\varepsilon_i}.
\end{equation}

Assume that $\lim_{i \to \infty} \varepsilon_i = 0$ and that there exist constants c_0, λ_0 and E_0 such that

\begin{equation}
\sup_U |u^i| \leq c_0,
\end{equation}

\begin{equation}
||f^i||_{W^{1,p}(U)} = \left(\int_U |f^i|^p + |\nabla f^i|^p \right)^{\frac{1}{p}} \leq \lambda_0,
\end{equation}

\begin{equation}
\int_U \frac{\varepsilon_i}{2} |\nabla u^i|^2 + \frac{W(u^i)}{\varepsilon_i} \leq E_0,
\end{equation}

for all i.

Notation 2.1. We denote

- the open ball in \mathbb{R}^n of radius r and center at x by $B_r(x)$,
- the Lebesgue measure by \mathcal{L}^n,
- $\omega_n = \mathcal{L}^n(B_1(x))$,
- the $(n-1)$-dimensional Hausdorff measure by \mathcal{H}^{n-1}.
- We often write B_r for $B_r(x)$ or $B_r(0)$ when no ambiguity should arise.
2.2. **Immediate consequences.** By the Sobolev inequality,

\[(2.7) \quad \|f^i\|_{L^{\frac{np}{n-p}}(U)} \leq c_1\lambda_0,\]

where \(c_1\) depends only on \(n, p\) and \(U\). For \(x \in \varepsilon_i^{-1}U\), define \(\tilde{u}^i(x) = u^i(\varepsilon_i x)\) and \(\tilde{f}^i(x) = f^i(\varepsilon_i x)\). \(\tilde{u}^i\) and \(\tilde{f}^i\) satisfy

\[(2.8) \quad \varepsilon_i \tilde{f}^i = -\Delta \tilde{u}^i + W'(\tilde{u}^i)\]
on \(\varepsilon_i^{-1}U\) and

\[(2.9) \quad \|\varepsilon_i \tilde{f}^i\|_{L^{\frac{np}{n-p}}(\varepsilon_i^{-1}U)} + \|\varepsilon_i \nabla \tilde{f}^i\|_{L^p(\varepsilon_i^{-1}U)} \leq \varepsilon_i^{2-n\frac{p}{n}}(c_1 + 1)\lambda_0.\]

Thus, by the standard elliptic estimates, (2.4), (2.8) and (2.9), there exists a constant \(c_2\) depending only on \(c_0, n, p, W, U\) and \(\lambda_0\) such that, for any \(B_1 \subset \varepsilon_i^{-1}U\),

\[(2.10) \quad \|\tilde{u}^i\|_{W^{3,p}(B_1)} \leq c_2.\]

By the Sobolev inequality and (2.10),

\[(2.11) \quad \|\tilde{u}^i\|_{C^{1,\frac{2-n\frac{p}{n}}{3}}(B_1)} \leq c_3.\]

Note that \(0 < 2 - \frac{n}{p} < 1\) by (2.2). For \(u^i\), (2.11) implies

\[(2.12) \quad \sup_{U} |\nabla u^i| \leq c_3\varepsilon_i^{-1},\]

\[(2.13) \quad \sup_{x,y \in U, 0 < |x-y| < \varepsilon_i} \frac{|\nabla u^i(x) - \nabla u^i(y)|}{|x-y|^{2-n\frac{p}{n}}} \leq c_3\varepsilon_i^{\frac{2-n}{p}}.\]

Let

\[\Phi(s) = \int_0^s \sqrt{W(s)/2} \ ds\]

and define new functions

\[w^i(x) = \Phi(u^i(x))\]

for \(i = 1, \ldots\). The Cauchy-Schwarz inequality and (2.6) shows

\[(2.14) \quad \int_U |\nabla w^i| \leq \frac{1}{2} \int_U \frac{\varepsilon_i |\nabla u^i|^2}{2} + \frac{W(u^i)}{\varepsilon_i} \leq \frac{1}{2} E_0.\]

The compactness theorem for bounded variation functions, (2.4) and (2.14) show that there exist a converging subsequence which we denote by the same notation as \(\{w^i\}\) and the \(L^1\) (and a.e.) limit \(w^\infty\). Then, define

\[u^\infty(x) = \Phi^{-1}(w^\infty(x)),\]
where Φ^{-1} is the inverse function of Φ. By the a.e. convergence of w^i to w^∞, $u^i \rightarrow u^\infty$ in L^1 and by Fatou’s lemma and (2.6), $u^\infty = \pm 1$ a.e. on U. Moreover,

$$||\partial \{u^\infty = 1\}||_1(U) = \frac{1}{2} \int_U |Du^\infty| = \frac{1}{\sigma} \int_U |Dw^\infty| \leq \frac{E_0}{2\sigma},$$

where $|Dw^\infty|$ is the total variation of the vector-valued Radon measure Dw^∞, and where $||\partial A||$ is the perimeter of A ([6]).

2.3. The associated varifolds.

We associate to each u^i (and w^i) a varifold in a natural way. We refer to [1, 15] for a comprehensive treatment of varifolds.

Let $G(n, n - 1)$ be the Grassmann manifold of unoriented $(n - 1)$-dimensional planes in \mathbb{R}^n. We say that V is an $(n - 1)$-dimensional varifold in $U \subset \mathbb{R}^n$ if V is a Radon measure on $G_{n-1}(U) = U \times G(n, n - 1)$. Let $V_{n-1}(U)$ be the set of all $(n - 1)$-dimensional varifolds in U. **Convergence in the varifold sense** means convergence in the usual sense of measure on $G_{n-1}(U)$. For $V \in V_{n-1}(U)$, we let the weight $||V||$ be the Radon measure in U defined by

$$||V||(A) = V(\{(x, S) \mid x \in A, S \in G(n, n - 1)\})$$

for each Borel set $A \subset U$. If M is a $(n - 1)$-rectifiable subset ([15]) of U, we define $v(M) \in V_{n-1}(U)$ by

$$v(M)(A) = \mathcal{H}^{n-1}(\{x \in M \mid (x, \text{Tan}^{n-1}(\mathcal{H}^{n-1}|_M, x)) \in A\})$$

for each Borel set $A \subset G_{n-1}(U)$, where $\text{Tan}^{n-1}(\mathcal{H}^{n-1}|_M, x)$ is the approximate tangent plane to M at x, which exists for \mathcal{H}^{n-1} a.e. $x \in M$.

We associate to each function u^i a varifold V^i defined naturally as follows. By Sard’s theorem, $\{w^i = t\} \subset U$ is a $C^{1,2-\frac{1}{p}}$ hypersurface for L^1 a.e. t. Define $V^i \in V_{n-1}(U)$ by

$$V^i(A) = \int_{-\infty}^\infty v(\{w^i = t\})(A) \, dt$$

$$= \int_{-\infty}^\infty \mathcal{H}^{n-1}(\{w^i = t\} \cap \{x \in \{(x, (\nabla w^i(x))^\perp) \in A\}\}) \, dt$$

for each Borel set $A \subset G_{n-1}(U)$. Here, $(a)^\perp$ denotes the orthogonal hyperplane to the vector a. By the co-area formula [6], we have

$$V^i(A) = \int_{\{x \mid (x, (\nabla w^i(x))^\perp) \in A\}} |\nabla w^i|$$

for each Borel set $A \subset G_{n-1}(U)$. Note that $||V^i||$ is a measure concentrating around the transition region. As a result of the present paper...
(Theorem 1 (1)), we may define an essentially equivalent varifold by
\[\tilde{V}^i(A) = \int_{\{x \in U \mid (x, (\nabla u^i(x))) \in A\}} \frac{\varepsilon_i}{2} |\nabla u^i|^2 \]
for \(A \subset G_{n-1}(U) \). We prove that \(\frac{\varepsilon_i}{2} |\nabla u^i|^2 - |\nabla w^i| \) converges \(L^1 \) locally to 0, and thus
\[\lim_{i \to \infty} (V^i - \tilde{V}^i) = 0. \]
The first variation of \(V^i \) is given by [13, Sec. 2.1]
\[\delta V^i(g) = \int_U \left(\text{div} g - \sum_{j,k=1}^n \frac{w^i_{x_j} w^i_{x_k}}{|\nabla u^i|^2} g^j_{x_k} \right) |\nabla w^i| \]
for each \(g \in C^1_c(U; \mathbb{R}^n) \), and
\[\delta \tilde{V}^i(g) = \int_U \left(\text{div} g - \sum_{j,k=1}^n \frac{w^i_{x_j} w^i_{x_k}}{|\nabla u^i|^2} g^j_{x_k} \right) \frac{\varepsilon_i}{2} |\nabla u^i|^2. \]

2.4. Main results. With the above assumptions and notations, we show

Theorem 1. Let \(V^i \) be the varifold associated with \(u^i \). On passing to a subsequence, we can assume that \(f^i \to f^\infty \) weakly in \(W^{1,p} \), \(u^i \to u^\infty \) a.e., \(V^i \to V \).

Then,
1. For each \(\phi \in C_c(U) \),
 \[||V|||((\phi) = \lim_{i \to \infty} \int_U \frac{\varepsilon_i}{2} |\nabla u^i|^2 \phi = \lim_{i \to \infty} \int_U \frac{W(u^i)}{\varepsilon_i} \phi \]
 \[= \lim_{i \to \infty} \int_U |\nabla w^i| \phi. \]
2. \(\text{supp} ||\partial\{u^\infty = 1\}|| \subset \text{supp} ||V|| \) and \(\{u^i\} \) converges locally uniformly to \(\pm 1 \) on \(U \setminus \text{supp} ||V|| \).
3. For each \(U \subset \subset U \), \(0 < b < 1 \), \(\{|u^i| \leq 1 - b\} \cap U \) converges to \(U \cap \text{supp} ||V|| \) in the Hausdorff distance sense.
4. \(\sigma^{-1}V \) is an integral varifold. Moreover, the density \(\theta(x) = \sigma N(x) \) of \(V \) satisfies
 \[N(x) = \begin{cases}
 \text{odd}, & \mathcal{H}^{n-1}\text{a.e.} \ x \in M^\infty, \\
 \text{even}, & \mathcal{H}^{n-1}\text{a.e.} \ x \in \text{supp} ||V|| \setminus M^\infty,
 \end{cases} \]
 where \(M^\infty \) is the reduced boundary of \(\{u^\infty = 1\} \).
(5) The generalized mean curvature vector H of V is given by

$$H(x) = \begin{cases} \frac{f^\infty}{\theta}(x), & \mathcal{H}^{n-1} \text{a.e. } x \in M^\infty, \\ 0, & \mathcal{H}^{n-1} \text{a.e. } x \in \text{supp}||V|| \setminus M^\infty, \end{cases}$$

where ν^∞ is the inward normal for M^∞.

(6) The generalized mean curvature vector H belongs to $L^{\frac{n-1}{n-p}}_{\text{loc}}$ with respect to $||V||$.

Note that $\frac{p}{n-1} > n-1$ by (2.2). Various results known for integral varifolds with the mean curvature in this class apply [1, 15]. The density function

$$\theta(x) = \lim_{r \to 0} \frac{1}{\omega_{n-1} r^{n-1}} ||V||(B_r(x))$$

exists for all $x \in \text{supp}||V||$ and is upper-semicontinuous. $\sigma^{-1}\theta$ is integer-valued for \mathcal{H}^{n-1} a.e. on $\text{supp}||V||$. There exists an open dense set $\mathcal{O} \subset U$ such that $\mathcal{O} \cap \text{supp}||V||$ is a $C^{1,2-\frac{p}{n}}$ submanifold. The special, but interesting case is

Corollary 1. Suppose $\sigma^{-1}\theta = 1$ for \mathcal{H}^{n-1} a.e. on $\text{supp}||V||$ (which is equivalent in this case to $\mathcal{H}^{n-1}(\{\sigma^{-1}\theta \geq 2\}) = 0$). Then, $\text{supp}||V||$ is a $C^{1,2-\frac{p}{n}}$ manifold outside of a closed set with \mathcal{H}^{n-1} measure 0. The mean curvature vector of $\text{supp}||V||$ is given by $\sigma^{-1}f^\infty\nu^\infty$.

As is pointed out in [9, Section 5], it is possible that $\sigma^{-1}\theta \geq 2$ has positive measure in general.

3. Monotonicity formula

In this section, we denote u^i, f^i, ε_i by u, f, ε and assume all the assumptions set in 2.1 are satisfied. We assume \bar{U} is open and $\bar{U} \subset U$. For $x \in U$ and $0 < r < \text{dist}(x, \partial U)$, define

$$E(r, x) = \frac{1}{r^{n-1}} \int_{B_r(x)} \frac{\varepsilon}{2} |\nabla u|^2 + \frac{W(u)}{\varepsilon}.$$

The key point of this section is show that E is almost monotone increasing function of r (Proposition 3.4).

We denote $W - \varepsilon fu$ by \tilde{W}. First, we need the following Lemma. The statement and the proof are identical to [17, Lemma 3.1], so we simply cite the result.

Lemma 3.1. For $B_r(x) \subset U$, we have

$$\frac{d}{dr} \left\{ \frac{1}{r^{n-1}} \int_{B_r(x)} \left(\frac{\varepsilon}{2} |\nabla u|^2 + \frac{\tilde{W}}{\varepsilon} \right) \right\}$$
Lemma 3.2. There exist constants \(0 < \beta_1 < 1 \) and \(\varepsilon_1 > 0 \) which depends only on \(c_0, \lambda_0, W, n, p \) and \(\text{dist}(\tilde{U}, \partial U) \) such that, if \(\varepsilon < \varepsilon_1 \),
\[
(3.2) \quad \sup_{\tilde{U}} \left(\frac{\varepsilon}{2} |\nabla u|^2 - \frac{W(u)}{\varepsilon} \right) \leq \varepsilon^{-\beta_1}.
\]

Lemma 3.1 and 3.2 give a lower energy density ratio bound for \(r < O(\varepsilon^{\beta_1}) \).

Lemma 3.3. There exist constants \(0 < \varepsilon_2, c_4, c_5 < 1 \) which depend only on \(c_0, \lambda_0, W, n, p \) and \(\text{dist}(\tilde{U}, \partial U) \) such that, if \(B_{\varepsilon \lambda_1}(x) \subset \tilde{U} \), \(|u(x)| \leq \alpha \) and \(\varepsilon < \varepsilon_2 \), then,
\[
(3.3) \quad E(r, x) \geq c_4 \quad \text{for } \varepsilon \leq r \leq c_5 \varepsilon^{\beta_1}.
\]

Proof. By integrating (3.1) over \([\varepsilon, r]\) and dropping the positive terms, we have
\[
E(r, x) - E(\varepsilon, x) - \frac{1}{r^{n-1}} \int_{B_r} u f + \frac{1}{\varepsilon^{n-1}} \int_{B_\varepsilon} u f
\]
\[
\geq - \int_\varepsilon^r \frac{d\tau}{\tau^n} \int_{B_r} \left\{ \left(\frac{\varepsilon}{2} |\nabla u|^2 - \frac{W}{\varepsilon} \right)_+ + uf + ((y - x) \cdot \nabla f)u \right\}.
\]
By the Hölder inequality, (2.4) and (2.7),
\[
(3.5) \quad \left| \frac{1}{r^{n-1}} \int_{B_r} u f \right| \leq c_0 c_1 \lambda_0 r^{-\frac{n}{p}}, \quad \left| \frac{1}{\varepsilon^{n-1}} \int_{B_\varepsilon} u f \right| \leq c_0 c_1 \lambda_0 \varepsilon^{-\frac{n}{p}}.
\]

Similarly,
\[
(3.6) \quad \left| \int_\varepsilon^r \frac{d\tau}{\tau^n} \int_{B_r} u f \right| \leq c_0 c_1 \lambda_0 \int_\varepsilon^r \tau^{1 - \frac{n}{p}} d\tau \leq \frac{c_0 c_1 \lambda_0}{2 - \frac{n}{p}} r^{2 - \frac{n}{p}},
\]
\[
(3.7) \quad \left| \int_\varepsilon^r \frac{d\tau}{\tau^n} \int_{B_r} ((y - x) \cdot \nabla f) u \right| \leq c_0 \lambda_0 \int_\varepsilon^r \tau^{1 - \frac{n}{p}} d\tau \leq \frac{c_0 \lambda_0}{2 - \frac{n}{p}} r^{2 - \frac{n}{p}}.
\]
By (3.2),
\[
(3.8) \quad \int_\varepsilon^r \frac{d\tau}{\tau^n} \int_{B_r} \left(\frac{\varepsilon}{2} |\nabla u|^2 - \frac{W}{\varepsilon} \right)_+ \leq \omega_\lambda \varepsilon^{-\beta_1} r.
\]
Since $|u(x)| \leq \alpha$, and by (2.12), $|u(y)| \leq \frac{4}{2} \frac{\sqrt{c_3(1-\alpha)}}{3}$ for all $y \in B_{c_3(1-\alpha)}(x)$. Here, we assume $c_3(1-\alpha) \geq 1$ (by choosing c_3 large if necessary) without loss of generality. Let

$$c_4 = \frac{\omega_n}{2(c_3(1-\alpha))^n} \min_{|t| \leq \frac{4}{2} \frac{\sqrt{c_3(1-\alpha)}}{3}} W(t).$$

Note that $c_4 > 0$. Since $W(u(y)) \geq \min_{|t| \leq \frac{4}{2} \frac{\sqrt{c_3(1-\alpha)}}{3}} W(t)$ on $B_{c_3(1-\alpha)}(x)$,

$$E(\varepsilon, x) = \frac{1}{\varepsilon^{n-1}} \int_{B_r} \frac{\varepsilon}{2} |\nabla u|^2 + \frac{W}{\varepsilon} \geq \frac{1}{\varepsilon^{n-1}} \int_{B_{c_3(1-\alpha)}(x)} \frac{W}{\varepsilon} \geq \frac{\omega_n}{(c_3(1-\alpha))^n} \min_{|t| \leq \frac{4}{2} \frac{\sqrt{c_3(1-\alpha)}}{3}} W(t) = 2c_4.$$

We now restrict r so that terms in (3.5)-(3.8) remain smaller than c_4, i.e., we choose c_5 small so that $r \leq c_5 \varepsilon^\beta \leq \frac{\sqrt{c_3(1-\alpha)}}{3}$ (so $c_5 = \frac{\sqrt{c_3(1-\alpha)}}{3}$). Then, by restricting ε depending on c_4, c_5, c_0, c_1, α, n and p, we have (3.5) + (3.6) + (3.7) $\leq \frac{c_4}{2}$. Then, we have the desired inequality (3.3) from (3.4).

Proposition 3.1. There exist constants $0 < \beta_2 < 1$, $0 < c_6$ and $0 < \varepsilon_3$ which depend only on c_0, λ_0, W, n, p and $\text{dist}(\bar{U}, \partial U)$ such that, if $B_r(x) \subset \bar{U}$, $c_6 \varepsilon^{\beta_1} \leq r \leq 1$ and $\varepsilon \leq \varepsilon_3$, then

$$\frac{1}{r^n} \int_{B_r(x)} \left(\frac{\varepsilon}{2} |\nabla u|^2 - \frac{W}{\varepsilon} \right) \geq \frac{c_6}{r^{n-\beta_2}} (E(r, x) + 1).$$

Proof. First set $\beta_2 = \frac{1-\beta_1}{2\beta_1}$ and $\beta_3 = \frac{1+\beta_1}{2}$. β_2 and β_3 are chosen so that

$$\beta_1 \beta_2 = \beta_3 - \beta_1,$$

(3.12) $0 < \beta_2 < 1$, $0 < \beta_1 < \beta_3 < 1$.

Here, we re-define β_1 such that $\beta_1 > \frac{1}{3}$, if necessary, so that $\beta_2 < 1$ is satisfied. We estimate the integral of (3.10) by separating $B_r(x)$ into three disjoint sets. Set

$$\mathcal{A} = \{ x \in B_r \setminus B_{r-\varepsilon^\beta_3} \},$$

$$\mathcal{B} = \{ x \in B_{r-\varepsilon^\beta_3} \mid \text{dist}(\{|u| \leq \alpha\}, x) < \varepsilon^\beta_3 \},$$

$$\mathcal{C} = \{ x \in B_{r-\varepsilon^\beta_3} \mid \text{dist}(\{|u| \leq \alpha\}, x) \geq \varepsilon^\beta_3 \}.$$

Note that $r \geq c_6 \varepsilon^\beta_1 > \varepsilon^\beta_3$ for all small ε by (3.12).

Estimate on \mathcal{A}

Since $\mathcal{L}^n(\mathcal{A}) \leq n \omega_n r^{n-1} \varepsilon^\beta_3$, with (3.2),

$$\frac{1}{r^n} \int_{\mathcal{A}} \left(\frac{\varepsilon}{2} |\nabla u|^2 - \frac{W}{\varepsilon} \right) \geq \frac{\varepsilon^{-\beta_1}}{r^n} \mathcal{L}^n(\mathcal{A}) \leq \frac{n \omega_n}{r} \varepsilon^\beta_3 - \beta_1.$$

(3.13)
Since \(r \geq c_5 \varepsilon^{\beta_1} \) and by (3.11),

\[
(3.14) \quad \frac{1}{r^{\beta_2}} \leq \frac{1}{c_5^{\beta_2} \varepsilon^{\beta_1 \beta_2}} = \frac{1}{c_5^{\beta_2} \varepsilon^{\beta_3 - \beta_1}}.
\]

Thus, (3.13) and (3.14) show

\[
(3.15) \quad \frac{1}{r^n} \int_A \left(\frac{\varepsilon}{2} |\nabla u|^2 - \frac{W}{\varepsilon} \right)_+ \leq \frac{n \omega_n}{c_5^{\beta_2} r^{\beta_1 - \beta_2}}.
\]

Estimate on \(B \)

We estimate \(L^n(B) \) first. Apply the Vitali covering lemma [6] to the family of balls \(\{ B_\varepsilon^{\beta_3}(x) \}_{x \in \{|u| \leq \alpha\} \cap \mathcal{B}} \) so that \(\{ B_\varepsilon^{\beta_3}(x_i) \}_{i=1}^N \) is a disjoint family of balls and so that \(B \subset \bigcup_{i=1}^N B_\varepsilon^{\beta_3}(x_i) \). Then,

\[
(3.16) \quad L^n(B) \leq \omega_n \varepsilon^{n \beta_3} N.
\]

Since \(x_i \in \{|u| \leq \alpha\} \) and \(\varepsilon \leq \varepsilon^{\beta_3} \leq c_5 \varepsilon^{\beta_1} \), (3.3) gives \(E(\varepsilon^{\beta_3}, x_i) \geq c_4 \) for \(i = 1, \ldots, N \), that is,

\[
(3.17) \quad c_4 \varepsilon^{(n-1)\beta_3} \leq \int_{B_\varepsilon^{\beta_3}(x_i)} \left(\frac{\varepsilon}{2} |\nabla u|^2 + \frac{W}{\varepsilon} \right).
\]

Since they are disjoint balls, by summing (3.17) over \(i \),

\[
N c_4 \varepsilon^{(n-1)\beta_3} \leq \int_{\bigcup_{i=1}^N B_\varepsilon^{\beta_3}(x_i)} \left(\frac{\varepsilon}{2} |\nabla u|^2 + \frac{W}{\varepsilon} \right)
\]

\[
\leq \int_{B_r} \left(\frac{\varepsilon}{2} |\nabla u|^2 + \frac{W}{\varepsilon} \right) = r^{n-1} E(r, x).
\]

Using (3.16) and (3.18), we obtain

\[
(3.19) \quad L^n(B) \leq \frac{\omega_n \varepsilon^{n \beta_3} r^{n-1}}{c_4} E(r, x).
\]

We now estimate the integral on \(B \) using (3.2), (3.14) and (3.19),

\[
\frac{1}{r^n} \int_B \left(\frac{\varepsilon}{2} |\nabla u|^2 - \frac{W}{\varepsilon} \right)_+ \leq \frac{\varepsilon^{-\beta_1}}{r^n} L^n(B) \leq \frac{\omega_n \varepsilon^{\beta_3 - \beta_1}}{c_4} \frac{\varepsilon^{\beta_1}}{r} E(r, x)
\]

\[
\leq \frac{\omega_n \varepsilon^n}{c_4 c_5^{\beta_2} r^{\beta_1 - \beta_2}} E(r, x).
\]

Estimate on \(C \)

Define a Lipschitz function \(\phi \) as follows:

\[
\phi(x) = \min\{1, \varepsilon^{-\beta_3} \text{dist}(\{|y| \geq r\} \cup \{|u| \leq \alpha\}, x)\}.
\]

\(\phi \) is 0 on the set \(\{|u| \leq \alpha\} \cup \{|y| \geq r\} \), 1 on \(C \) and \(|\nabla \phi| \leq \varepsilon^{-\beta_3} \).

Using this \(\phi \), we estimate \(\frac{\varepsilon}{2} |\nabla u|^2 \) which is larger than \(\frac{\varepsilon}{2} |\nabla u|^2 - \frac{W}{\varepsilon} \).
Differentiate (2.3) with respect to x_j, multiply it by $u_{x_j} \phi^2$ and sum over j. Then,

\[
\int \sum_{j=1}^{n} \varepsilon u_{x_j} \Delta u_{x_j} \phi^2 = \int \frac{W''}{\varepsilon} |\nabla u|^2 \phi^2 - \nabla f \cdot \nabla u \phi^2.
\]

Integrate by parts the left-hand side of (3.21) as well as the second term of the right-hand side to obtain

\[
\int \varepsilon |\nabla^2 u|^2 \phi^2 + \frac{W''}{\varepsilon} |\nabla u|^2 \phi^2
\]

(3.22) \[
= \int - \sum_{i,j=1}^{n} 2\varepsilon u_{x_i} u_{x_j} \phi \phi_{x_i} - f (\Delta u \phi^2 + 2\phi \nabla u \cdot \nabla \phi).
\]

We estimate the right-hand side of (3.22) by the Cauchy-Schwarz inequality,

\[
\leq \frac{1}{2} \int \varepsilon |\nabla^2 u|^2 \phi^2 + c_7(n) \int |\nabla u|^2|\nabla \phi|^2 + f^2 \phi^2 \varepsilon^{-1}).
\]

Since $|u| \geq \alpha$ on the support of ϕ, $W'' \geq \kappa$ by (2.1). Thus,

\[
\int \frac{\varepsilon}{\varepsilon} |\nabla u|^2 |\nabla \phi|^2 \leq c_7 \int (\varepsilon |\nabla u|^2|\nabla \phi|^2 + f^2 \phi^2 \varepsilon^{-1}).
\]

Since $|\nabla \phi| \leq \varepsilon^{-\beta_3}$, and using (2.7) and the Hölder inequality,

\[
\int \frac{\varepsilon}{\varepsilon} |\nabla u|^2 \phi^2 \leq c_7 \left(\varepsilon^{-2\beta_3} \int_{B_r} \varepsilon |\nabla u|^2 + \varepsilon^{-1} ||f||^2_{L_2^{n-p}} (\mathcal{L}^n(B_r))^{\frac{np-2(n-p)}{np}} \right)
\]

(3.24) \[
\leq c_8 \left(\varepsilon^{-2\beta_3} \int_{B_r} \varepsilon |\nabla u|^2 + \varepsilon^{-1} c_1^2 \lambda_0^2 r^{2-n-p} \right).
\]

Since $\phi = 1$ on \mathcal{C}, multiplying (3.24) by $\frac{\alpha^2}{\kappa r^n}$,

\[
\frac{1}{r^n} \int_{\mathcal{C}} \varepsilon |\nabla u|^2 \leq \frac{c_8}{\kappa} \left(\frac{\varepsilon^{-2\beta_3}}{r^{n-p}} E(r, x) + \varepsilon c_1^2 \lambda_0^2 r^{2-2n} \right).
\]

Using the definition of β_1, β_2, β_3 and $r \geq c_5 \varepsilon^{\beta_1}$, one can check that

\[
\frac{\varepsilon^{2-2\beta_3}}{r} \leq \frac{\varepsilon^{\beta_1} \beta_2}{r^{1-\beta_2 c_5} \beta_2},
\]

and using $\varepsilon \leq r$,

\[
\varepsilon^{2-2\beta_3} \leq \frac{1}{r^{1-2\beta_2} c_5} E(r, x) + \frac{c_1^2 \lambda_0^2}{r^{2-2n} - 3},
\]

(3.27)

where $\frac{2n}{p} - 3 < 1$ by (2.2). Thus, (3.25), (3.26) and (3.27) show

\[
\frac{1}{r^n} \int_{\mathcal{C}} \varepsilon |\nabla u|^2 \leq \frac{c_8}{\kappa} \left(\frac{\varepsilon^{\beta_1} \beta_2}{c_5 \beta_2 r^{1-\beta_2}} E(r, x) + \frac{c_1^2 \lambda_0^2}{r^{2-2n} - 3} \right).
\]

(3.28)
Finally, re-defining \(\beta_2 = \min \{ \beta_2, 4 - \frac{2n}{p} \} \) and (3.15), (3.20) and (3.28), we obtain (3.10) with an appropriate choice of \(c_6 \).

Proposition 3.2. There exist constants \(0 < c_9, 0 < r_0 \leq 1 \) depending only on \(c_9, \lambda_0, W, n, p \) and \(\text{dist}(\bar{U}, \partial U) \) such that, if \(\varepsilon \leq r \leq r_0, \varepsilon \leq \varepsilon_3, B_r(x) \subset \bar{U} \) and \(|u(x)| \leq \alpha, \) then,

\[
E(r, x) \geq c_9.
\]

Proof. The idea of the proof is to use (3.1), (3.3) and (3.10), and show that \(E(r, x) \) can not decrease much as \(r \) increases from \(r \geq c_5 \varepsilon^{\beta_1} \). Note (3.29) is already proved in Lemma 3.3 with \(c_9 = c_4 \) and \(\varepsilon \leq r \leq c_5 \varepsilon^{\beta_1} \), so we assume \(c_5 \varepsilon^{\beta_1} \leq r \leq 1 \). First, note that the terms coming from \(f \), such as the second term of (3.31) over \([r_1, r_2]\) (which we need to do later),

\[
\int_{r_1}^{r_2} \frac{c_0}{r^{n-1}} \int_{\partial B_r} |f| \leq \frac{c_0}{r^{n-1}} \int_{B_r} |f|^{r_2} + \int_{r_1}^{r_2} \frac{c_0(n-1)}{r^{n}} \int_{B_r} |f| = c_{11} r_2^2 - \frac{n}{p}.
\]

where \(c_{11} \) depends only on \(c_0, c_1, \lambda_0, n \) and \(p \). Similarly, as in (3.5) and (3.7),

\[
\left| \frac{1}{r^n} \int_{B_r} u f \right| \leq c_0 c_1 \lambda_0 r^{1-\frac{n}{p}}, \quad \left| \frac{1}{r^n} \int_{B_r} \left((y - x) \cdot \nabla f \right) u \right| \leq c_0 \lambda_0 r^{1-\frac{n}{p}}.
\]

Combining (3.1), (3.30), (3.31), (3.33) as well as (3.10), we obtain

\[
\frac{d}{dr} E(r, x) \geq -c_{12} r^{1-\frac{n}{p}} - \frac{c_0}{r^{n-1}} \int_{\partial B_r} |f| + \frac{1}{r^n} \int_{B_r} \left(\frac{W}{\varepsilon} - \frac{\varepsilon}{2} |\nabla u|^2 \right) +
\]

\[
-\frac{c_6}{r^{1-\beta_2}} (E(r, x) + 1).
\]

Define \(r_0 \leq \min \{ 1, \text{dist}(x, \partial \bar{U}) \} \) as the supremum such that

\[
E(r, x) \geq \frac{c_4}{2} \quad \text{for } r \in [c_5 \varepsilon^{\beta_1}, r_0]
\]
holds. By (3.10), we know $r_0 > c_5 \varepsilon^{\beta_1}$. Divide both sides of (3.34) by $E(r, x)$ for $r \in [c_5 \varepsilon^{\beta_1}, r_0]$, and using (3.35), we have

$$
\frac{d}{dr} \ln E(r, x) \geq - \frac{2}{c_4} \left(c_{12} r^{1-\frac{\varphi}{p}} + \frac{c_9}{r^{n-1}} \int_{\partial B_r} |f| + \frac{c_6(1 + \frac{\varphi}{p})}{r^{1-\beta_2}} \right).
$$

Integrating (3.36) over $[c_5 \varepsilon^{\beta_1}, r_0]$ gives, with (3.32),

$$
\ln \left(\frac{E(r_0, x)}{E(c_5 \varepsilon^{\beta_1}, x)} \right) \geq -c_{13} \left(\frac{2-\frac{\varphi}{p}}{r_0} + r_0^{\beta_2} \right),
$$

where c_{13} depends only on c_0, c_1, λ_0, n, p and $\text{dist}(\tilde{U}, \partial U)$. If $r_0 = \text{min}\{1, \text{dist}(x, \partial U)\}$, then we are done. If not, we have $E(r_0, x) = \frac{c_4}{2}$, while $E(c_5 \varepsilon^{\beta_1}, x) \geq c_4$ by (3.3). Thus, (3.37) shows

$$
-c_{13} \left(\frac{2-\frac{\varphi}{p}}{r_0} + r_0^{\beta_2} \right) \leq \ln \left(\frac{1}{2} \right),
$$

or

$$
\frac{2-\frac{\varphi}{p}}{r_0} + r_0^{\beta_2} \geq \frac{\ln 2}{c_{13}}.
$$

(3.38) gives a lower bound for r_0 independent of ε, and we proved (3.29) with $c_9 = \frac{\varphi}{2}$ and a small r_0 chosen so that a reverse inequality holds in (3.38), for example, $r_0^{\beta_2} = \frac{\ln 2}{2c_{13}}$.

\begin{proof}
Integrate (3.36) for $[r, r_0], r \geq c_5 \varepsilon^{\beta_1}$. Then, we obtain the same inequality

$$
\ln \left(\frac{E(r_0, x)}{E(r, x)} \right) \geq -c_{13} \left(\frac{2-\frac{\varphi}{p}}{r_0} + r_0^{\beta_2} \right).
$$

Since $B_{r_0}(x) \subset \tilde{U}$, by (2.6),

$$
E(r_0, x) = \frac{1}{r_0^{n-1}} \int_{B_{r_0}(x)} \left(\frac{\varepsilon}{2} |\nabla u|^2 + \frac{W}{\varepsilon} \right) \leq \frac{E_0}{r_0^{n-1}}.
$$

Then, (3.40) and (3.41) show

$$
E(r, x) \leq E_0 r_0^{1-n} \exp \left(-c_{13} \left(\frac{2-\frac{\varphi}{p}}{r_0} + r_0^{\beta_2} \right) \right).
$$

For $\varepsilon \leq r \leq c_5 \varepsilon^{\beta_1}$, in (3.4), replace r there by $c_5 \varepsilon^{\beta_1}$ and ε by r. One checks using the similar estimates as (3.5), (3.6) and (3.8) that

$$
E(c_5 \varepsilon^{\beta_1}, x) \geq E(r, x) - c_4.
$$
(3.42) and (3.43) with an appropriate choice of c_{14} show (3.39).

Proposition 3.4. There exists a constant c_{15} depending only on c_0, c_1, λ_0, W, n, p and $\text{dist}(\bar{U}, \partial U)$ such that, if $\varepsilon \leq \varepsilon_3$, $B_r(x) \subset \bar{U}$, $|u(x)| \leq \alpha$ and $c_5\varepsilon^{\beta_1} \leq s \leq r \leq r_0$, then,

$$E(r, x) - E(s, x) \geq -c_{15} (r^{2-\frac{n}{p}} + r^{\beta_2} + E_0 r^{\beta_2}) + \int_s^r \frac{d\tau}{r^n} \int_{B_r(x)} \left(\frac{W}{\varepsilon} - \frac{\varepsilon}{2} |\nabla u|^2 \right)_+.$$

Proof. In the range $c_5\varepsilon^{\beta_1} \leq r \leq r_0$, (3.34) is valid. Thus, using (3.32) and (3.39) and integrating (3.34) over $[s, r]$, we immediately obtain (3.44) with an appropriate choice of c_{15}.

For the rest of this section, we prove Lemma 3.2. First, it is not hard to show the following, as in [17, Proposition 3.7]. The proof is omitted.

Lemma 3.4. There exist constants ε_4 and $\eta > 0$ depending only on λ_0, c_0, n, p, W and $\text{dist}(\bar{U}, \partial U)$ such that

$$\sup_{\bar{U}} |u| \leq 1 + \varepsilon^n$$

for $\varepsilon \leq \varepsilon_4$.

It is convenient to rescale the problem by $x \mapsto \frac{x}{\varepsilon}$. We define $\bar{u}(x) = u(\varepsilon x)$, $\bar{f}(x) = f(\varepsilon x)$, and subsequently drop \cdot for simplicity. We have

$$-\Delta u + W'(u) = \varepsilon f$$

on $\varepsilon^{-1}U$ and we need to prove

$$\sup_{\varepsilon^{-1}U} \left(\frac{1}{2} |\nabla u|^2 - W(u) \right) \leq \varepsilon^{1-\beta_1}$$

for some $0 < \beta_1 < 1$ for all sufficiently small ε. To do so, we need the following lemma [17, Lemma 3.9]. The statement is changed slightly for the purpose of application here.

Lemma 3.5. Suppose $0 < \eta, \beta_4 < 1$, $\eta \leq \beta_4$, c_{16} are given. Then, there exist $\varepsilon_5 > 0$, $c_{17} > 0$ depending only on η, β_4, c_{16} and W with the following properties:

Suppose $v \in C^3(B_{\varepsilon^{-\beta_4}})$, $g \in C^1(B_{\varepsilon^{-\beta_4}})$, $\varepsilon \leq \varepsilon_5$,

$$-\Delta v + W'(v) = \varepsilon g$$

on $B_{\varepsilon^{-\beta_4}}$ and

$$\sup_{B_{\varepsilon^{-\beta_4}}} |v| \leq 1 + \varepsilon^n, \quad \sup_{B_{\varepsilon^{-\beta_4}}} \left(\frac{1}{2} |\nabla v|^2 - W(v) \right) \leq c_{16}.$$
Then,
\begin{equation}
(3.47) \quad \sup_{B \to B_0} \left(\frac{1}{2} |\nabla v|^2 - W(v) \right) \leq c_{17} \left(\varepsilon^{1-\beta_4} ||g||_{W^{1,n}(B_{-\beta_4})} + \varepsilon^n \right).
\end{equation}

Now, we proceed to prove (3.46). The idea is to regularize \(u \) so that we have a suitable control of \(W^{1,n} \) norm for the regularized problem. Let \(\phi \in C^{\infty}(\mathbb{R}^n) \) be a non-negative, radially symmetric function with support in \(B_1(0) \) and \(f_{B_1(0)} \phi = 1 \). Define \(\phi_s(x) = \frac{1}{s^n} \phi \left(\frac{x}{s} \right) \) for \(s > 0 \), so that \(\lim_{s \to 0} \phi_s \) is the delta function. For \(1 > \beta_5 > 0 \) to be chosen depending only on \(n \) and \(p \) later, define for \(x \in \varepsilon^{-1} \tilde{U} \)
\begin{equation}
(3.48) \quad v(x) = (u \ast \phi_{\varepsilon^{\beta_5}})(x) = \int u(x-y) \phi_{\varepsilon^{\beta_5}}(y) \, dy.
\end{equation}
Using (2.11), we see from the definition (3.48) that
\begin{equation}
(3.49) \quad \sup_{\varepsilon^{-1} \tilde{U}} |v - u| \leq c_3 \varepsilon^{\beta_5},
\end{equation}
\begin{equation}
(3.50) \quad \sup_{\varepsilon^{-1} \tilde{U}} |\nabla v - \nabla u| \leq c_3 \varepsilon^{\beta_5(2-\frac{2}{p})}.
\end{equation}
Next, we define \(g \) to be
\begin{equation}
(3.51) \quad g = f \ast \phi_{\varepsilon^{\beta_5}} + \varepsilon^{-1} \{ W'(v) - (W'(u)) \ast \phi_{\varepsilon^{\beta_5}} \}.
\end{equation}
Note that \(v \) and \(g \) then satisfy
\begin{equation}
(3.52) \quad -\Delta v + W'(v) = \varepsilon g.
\end{equation}
We next estimate \(W^{1,n} \) norm of \(g \) on \(B_{\varepsilon^{-\beta_4}} \subset \varepsilon^{-1} \tilde{U} \). Here, \(\beta_4 \) is not fixed, but we will choose \(0 < \beta_4 < 1 \) later depending only on \(n \) and \(p \). The first term of (3.51) can be estimated as
\begin{equation}
(3.53) \quad \| f \ast \phi_{\varepsilon^{\beta_5}} \|_{W^{1,n}(B_{\varepsilon^{-\beta_4}})} \leq (1 + \varepsilon^{-\beta_5} c_{18}) \| f \|_{L^n(B_{\varepsilon^{-\beta_4}})},
\end{equation}
where \(c_{18} \) depends only on \(\phi \) and \(n \), which are fixed. By the Hölder inequality and (2.7) (note the scaling is different),
\begin{equation}
\| f \|_{L^n(B_{\varepsilon^{-\beta_4}})} \leq \| f \|_{L^n(B_{\varepsilon^{-\beta_4}})} \left\{ \omega_n (2 \varepsilon^{-\beta_4})^n \right\} \frac{\omega_n}{\omega_n}^{\frac{np-n+p}{np}}
\end{equation}
\begin{equation}
(3.54) \quad \leq c_1 \lambda_0 \varepsilon^{1-\frac{2}{p} - \beta_4} \frac{\omega_n}{\omega_n}^{\frac{np-n+p}{np}}.
\end{equation}
(3.55) and (3.54) show
\begin{equation}
(3.55) \quad \| f \ast \phi_{\varepsilon^{\beta_5}} \|_{W^{1,n}(B_{\varepsilon^{-\beta_4}})} \leq c_{19} \varepsilon^{1-\frac{2}{p} - \beta_4} \frac{\omega_n}{\omega_n}^{\frac{np-n+p}{np} - \beta_5},
\end{equation}
where \(c_{19} \) depends only on \(n, c_1, \lambda_0 \) and \(\phi \). To estimate the second term of (3.51), use
\begin{equation}
W'(v) - (W'(u)) \ast \phi_{\varepsilon^{\beta_5}} = (W'(v) - W'(u)) + \{ W'(u) - (W'(u)) \ast \phi_{\varepsilon^{\beta_5}} \}.
\end{equation}
Thus, (3.51), (3.55) and (3.60) show that
\[\sup_{|x| < \eta} |f(x)| \leq C \eta, \]
and note using (3.49) and (3.50) that
\[\begin{align*}
(3.56) \quad & \sup |W'(v) - W'(u)| \leq \sup |W''| \cdot \sup |u - v| \leq c_{20} \varepsilon^{\beta_5}, \\
(3.57) \quad & \sup |\nabla(W'(v) - W'(u))| \leq \sup |W''| \cdot \sup |\nabla v - \nabla u| \\
(3.58) \quad & + \sup |\nabla u| \cdot \sup |W''| \cdot \sup |u - v| \leq c_{21} \varepsilon^{\beta_5(2 - \frac{n}{p})}, \\
(3.59) \quad & \sup |W'(u) - (W'(u))_\varepsilon| \leq c_{22} \varepsilon^{\beta_5}, \\
(3.60) \quad & \sup |\nabla\{W'(u) - (W'(u))_\varepsilon\} \leq c_{23} \varepsilon^{\beta_5(2 - \frac{n}{p})},
\end{align*} \]

where \(c_{20} - c_{23} \) depends only on \(c_3 \) and \(W \). Thus, (3.56)-(3.59) show
\[\|\varepsilon^{-1}\{W'(v) - (W'(u))_\varepsilon\} - \varepsilon^{-1}\{W'(v) - (W'(u))_\varepsilon\} - \varepsilon^{-1}\{W'(v) - (W'(u))_\varepsilon\} \|_{L^{\alpha}} \leq c_{24} \varepsilon^{\beta_5(2 - \frac{n}{p})}. \]

Here, we apply Lemma 3.5 to \(v \) and \(g \). With \(\beta_4 \geq \eta \) and \(c_{16} = \sup \left(\frac{1}{2} \|
abla v\|^2 - W(v) \right) \) which is bounded independent of \(\varepsilon \), we obtain with (3.47) and (3.61) that
\[\sup_{|x| < \eta} \left(\frac{1}{2} \|
abla v\|^2 - W(v) \right) \leq c_{17} \left(c_{19} \varepsilon^{2 - \frac{n}{p} - \beta_4 \frac{np - n + 2p}{p} - \beta_5} + c_{24} \varepsilon^{\beta_5(2 - \frac{n}{p})} \right) \]

Choose \(0 < \beta_4, \beta_5 < 1 \) small so that (note \(2 - \frac{n}{p} > 0 \))
\[\begin{align*}
(3.63) \quad & 2 - \frac{n}{p} - \beta_4 \frac{np - n + 2p}{p} - \beta_5 > 0, \quad \beta_5(2 - \frac{n}{p}) - 2\beta_4 > 0.
\end{align*} \]

Basically, choose \(\beta_4 \) and \(\beta_5 \) small so the first inequality holds, and then choose \(\beta_4 \) even smaller so the second inequality holds. Such choices of \(\beta_4 \) and \(\beta_5 \) can be made depending only on \(n \) and \(p \). Now, the right-hand side of (3.62) is bounded by \(\varepsilon^{1 - \beta_4} \) by further restricting \(\varepsilon \) if necessary and choosing appropriate \(\beta_4 \) close to 1. Finally, note that the difference between \(|\nabla u| \) and \(|\nabla v| \) as well as \(W(u) \) and \(W(v) \) are \(O(\varepsilon^{\beta_5(2 - \frac{n}{p})}) \). Thus, we obtain the estimate (3.46) for \(\frac{1}{2} \|
abla v\|^2 - W(v) \).

Remark 3.1. In the last part of the proof, the requirement for \(f \) is that \(||f||_L^q \) is controlled suitably for some \(q \geq n \), as in (3.54). On the other hand, the gradient bound \(||\nabla f||_L^p \) is essential in the proof for the mean curvature of the limit varifold as in Section 4.
4. Rectifiability and Integrality of the Limit Varifold

Define
\[\mu = \lim_{i \to \infty} \left(\frac{\varepsilon_i}{2} |\nabla u^i|^2 + \frac{W(u^i)}{\varepsilon_i} \right) \, dx. \]

Proposition 4.1. There exist constants \(0 < D_1 \leq D_2 < \infty \) which depend only on \(c_0, \lambda_0, n, p, E_0, \text{dist}(\bar{U}, \partial U) \) and \(W \) such that
\[D_1 r^{n-1} \leq \mu(B_r(x)) \leq D_2 r^{n-1} \]
for all \(0 < r < r_0, x \in \text{supp} \mu \cap \bar{U} \) and \(B_r(x) \subset \bar{U} \).

Proof. For any \(x \in \text{supp} \mu \cap \bar{U} \), if we show that there exists a subsequence \(\{x_{i_j}\}_{j=1}^\infty \) such that \(|u^j(x_{i_j})| \leq \alpha \) and \(\lim_{j \to \infty} x_{i_j} = x \), then (3.29) and (3.39) prove (4.1) immediately, since
\[c_9 \leq E(r, x_{i_j}) = \frac{1}{r^{n-1}} \int_{B_r(x_{i_j})} \left(\frac{\varepsilon_{i_j}}{2} |\nabla u^{i_j}|^2 + \frac{W}{\varepsilon_{i_j}} \right) \leq c_{14}(E_0 + 1) \]
and
\[\lim_{j \to \infty} \frac{1}{r^{n-1}} \int_{B_r(x_{i_j})} \left(\frac{\varepsilon_{i_j}}{2} |\nabla u^{i_j}|^2 + \frac{W}{\varepsilon_{i_j}} \right) = \frac{1}{r^{n-1}} \mu(B_r(x)) \]
for \(0 < r < r_0 \) a.e. \(L^1 \). To show above claim, assume the contrary. This means that there exists some \(r > 0 \) such that \(|u^i(x)| \geq \alpha \) on \(B_r(x) \) for all large \(i \). Without loss of generality, assume \(u^i \geq \alpha \) on \(B_r(x) \). Then, one can repeat the argument leading to (3.23) with \(\phi \) there replaced by \(C^1_c(B_r(x)) \). Then, one can show that \(\lim_{i \to \infty} \int \frac{\varepsilon_i}{2} |\nabla u^i|^2 \phi^2 = 0 \). Multiplying \(u^i - 1 \) to the equation (2.3) and using \(W'(u^i)(u^i - 1) \geq \frac{x}{2} (u^i - 1)^2 \), one can derive that \(0 = \lim_{i \to \infty} \int \frac{(u^i - 1)^2}{\varepsilon_i} \phi^2 = \lim_{i \to \infty} \int \frac{W}{\varepsilon_i} \phi^2 \). This contradicts \(x \in \text{supp} \mu \). Thus, we proved the claim. \(\Box \)

The immediate consequence of Proposition 4.1 and its proof is

Proposition 4.2. Either \(u^i \to +1 \) or \(-1 \) uniformly on each compact subset of \(U \setminus \text{supp}||V|| \). In particular, \(\text{supp} ||\partial \{u^\infty = 1\}|| \subset \text{supp}||V||. \)

The vanishing of the so-called discrepancy
\[\xi^i = \frac{\varepsilon_i}{2} |\nabla u^i|^2 - \frac{W(u^i)}{\varepsilon_i} \]
follows by the same proof as in [9, Proposition 4.3].

Proposition 4.3. \(\xi^i \to 0 \) in \(L^1_{\text{loc}}(U) \). Moreover, both \(\frac{\varepsilon_i}{2} |\nabla u^i|^2 - |\nabla w^i| \) and \(\frac{W(u^i)}{\varepsilon_i} - |\nabla w^i| \) also converge to zero in \(L^1_{\text{loc}}(U) \).

The information on the mean curvature of the limit varifold is obtained similarly.
Proposition 4.4. The limit varifold satisfies $\|V\| = \frac{1}{2}\mu$ and is rectifiable. The first variation of V is given by

$$\delta V(g) = \frac{1}{2} \int_U u^\infty \text{div}(f^\infty g) = -\int_{M^\infty} f^\infty \cdot v^\infty \, d\mathcal{H}^{n-1}$$

for any $g \in C_1^1(U; \mathbb{R}^n)$, where $M^\infty \subset \text{supp}\|V\|$ is the reduced boundary of $\{u^\infty = 1\}$ and f^∞ on M^∞ is the trace of $f^\infty \in W^{1,p}(U)$ which is well-defined. The generalized mean curvature vector H is given by

$$H(x) = \begin{cases} \frac{f^\infty(x)}{\theta(x)} v^\infty(x), & \mathcal{H}^{n-1}\text{a.e. } x \in M^\infty, \\ 0, & \mathcal{H}^{n-1}\text{a.e. } x \in \text{supp}\|V\| \setminus M^\infty, \end{cases}$$

where θ is the density function for $\|V\|$ which exist everywhere on $\text{supp}\|V\|$. Moreover,

$$f^\infty|_{M^\infty} \in L^\frac{p(n-1)}{n-p}_{\text{loc}}(U, \mathcal{H}^{n-1}).$$

Proof. The proof is identical to [17, Proposition 4.4], except for the part that $f^\infty|_{M^\infty} \in L^\frac{p(n-1)}{n-p}_{\text{loc}}(U, \mathcal{H}^{n-1})$. This is due to $f^\infty \in W^{1,p}(U)$ instead of $W^{1,n}(U)$, and the modification is straightforward. \(\square\)

The proof of integrality requires some non-trivial modifications from [9, Section 5] for one of the three propositions. Since it may be more confusing to sketch the proof, we more or less write out the details on this point. It is the first proposition which states that the energy is uniformly small in ε in the region $\{|u| \approx 1\}$. Since the integrality is a local question, for simplicity, we assume that $U = B_3$ and $\tilde{U} = B_1$ in the following.

Proposition 4.5. Given $s > 0$, there exist positive constants $b < 1$ and ε_6 depending only on λ_0, c_0, E_0, W and s such that

$$\int_{B_1 \cap \{|u| \geq 1-b\}} \left(\frac{\varepsilon}{2} |\nabla u|^2 + \frac{W}{\varepsilon} \right) \leq s$$

whenever $\varepsilon \leq \varepsilon_6$.

To prove this, we use three lemmata. Define

$$Z_\alpha = \{x \in B_3 \mid u(x) \in [-\alpha, \alpha]\}.$$

Lemma 4.1. Given $0 < \beta_6 < 2 - \frac{n}{p}$, there exist positive constants c_{25} and ε_7 which depend only on λ_0, W and β_6 such that, if $x \in B_1$ and $|u(x)| < 1 - 2\varepsilon^\beta$ for some β with

$$\frac{1}{c_{25}|\ln \varepsilon|} < \beta < \min\left\{\beta_6, \frac{1}{c_{25}|\ln \varepsilon|}\right\},$$

then

$$\int_{B_1 \cap \{|u| \geq 1 - b\}} \left(\frac{\varepsilon}{2} |\nabla u|^2 + \frac{W}{\varepsilon} \right) \leq s$$

whenever $\varepsilon \leq \varepsilon_6$.
then
\[
\text{dist}(x, Z_α) \leq c_{25} β |\ln ε|,
\]
provided \(0 < ε < ε_7\).

Proof. Without loss of generality, assume \(x = 0\). Rescale \(x\) by \(ε\) and write \(\tilde{u}(x) = u(εx)\). We use a radially symmetric function which solves

\[
\begin{aligned}
& \Delta ψ = \frac{κ}{4} ψ & \text{on } \mathbb{R}^n, \\
& ψ(0) = 1,
\end{aligned}
\]

which exists uniquely and also satisfies \(ψ ≥ 1\) on \(\mathbb{R}^n\). The function \(ψ\) grows exponentially as \(|x| → ∞\), so there exists a constant \(c_{25}\) depending only on \(κ\) and \(n\) such that

\[
ψ(x) > \exp(\frac{|x|}{c_{25}}) \quad \text{for } |x| ≥ 1.
\]

Let \(r = c_{25, β}|\ln ε|\). We choose \(r\) so that \(1 − ε^β \exp(r/c_{25}) = 0\), and by the assumption imposed on \(β\), \(1 ≤ r ≤ ε^{-1}\). We are given the assumption that \(\tilde{u}(0) < 1 − 2ε^β\) and without loss, assume \(\tilde{u}(0) < 1 − 2ε^β\). Suppose for a contradiction that

\[
\inf_{B_r} \tilde{u} > α.
\]

Define \(φ(x) = 1 − ε^β ψ(x)\). Then \(φ\) satisfies \(Δ φ = \frac{κ}{4} (φ - 1)\) by (4.2).

By (4.3) and (4.4), \(φ(x) < 1 − ε^β \exp(r/c_{25}) < α < \inf_{B_r} \tilde{u} \text{ on } |x| = r\).

Hence,

\[
φ - \tilde{u} < 0 \quad \text{on } |x| = r.
\]

Since \(\tilde{u}(0) < 1 − 2ε^β\) and \(φ(0) = 1 − ε^β\),

\[
\sup_{B_r}(φ - \tilde{u}) ≥ ε^β.
\]

On \(B_r\), we apply the Aleksandrov-Bakelman-Pucci estimate [7, Lemma 9.3] to \((φ - \tilde{u})_+\). By (4.2) and (2.8),

\[
\Delta(φ - \tilde{u}) = -\frac{κ}{4}(1 - φ) - W''(\tilde{u}) + ε \tilde{f}.
\]

Since we use (4.7) only on \(\{φ ≥ \tilde{u}\}\) and \(φ ≤ 1\), by (4.4), we have \(α ≤ \tilde{u} ≤ 1\) on \(\{φ ≥ \tilde{u}\}\). Thus, by (2.1),

\[
-W''(\tilde{u}) ≥ κ(1 - \tilde{u}) ≥ κ(1 - φ)
\]

on \(\{φ ≥ \tilde{u}\}\). (4.8) and (4.7) show that, on \(\{φ ≥ \tilde{u}\}\),

\[
\Delta(φ - \tilde{u}) ≥ \frac{3}{4}κ(1 - φ) + ε \tilde{f} ≥ ε \tilde{f}.
\]

Thus,

\[
\sup_{B_r}(φ - \tilde{u})_+ ≤ c_{26}(n)r||ε \tilde{f}||_{L^∞(B_r)}.
\]
By (2.7), we have
\[
\|\tilde{f}\|_{L^{\frac{np}{p-\beta}}(B_r)} \leq \varepsilon^{1-\frac{\beta}{p}}c_1\lambda_0
\]
and the Hölder inequality applied to (4.10) and (4.11) show
\[
\sup_{B_r}(\phi - \tilde{u})_+ \leq c_{26}\varepsilon r(\omega_n r^n)^{\frac{2p-n}{np}}\|\tilde{f}\|_{L^{\frac{np}{p-\beta}}(B_r)}
\]
(4.12)
\[
\leq c_{27}r^{3-\frac{\beta}{p}}\varepsilon^{2-\frac{\beta}{p}},
\]
where \(c_{27}\) depends only on \(n, p, c_1\) and \(\lambda_0\). By (4.6) and (4.12), and the definition of \(r\),
\[
\varepsilon^{\beta} \leq c_{27}(c_{25}\beta |\ln \varepsilon|)^{3-\frac{\beta}{p}}\varepsilon^{2-\frac{\beta}{p}}.
\]
(4.13)
Since \(\beta \leq \beta_6 < 2 - \frac{n}{p}\), (4.13) leads to
\[
1 \leq c_{27}(c_{25}\beta_6 |\ln \varepsilon|)^{3-\frac{\beta}{p}}\varepsilon^{2-\frac{\beta}{p}-\beta_6}.
\]
(4.14)
This is impossible if \(\varepsilon\) is restricted small enough depending only on \(c_{25}, c_{27}, \beta_6, n\) and \(p\). Thus, we derive a contradiction to (4.4), and we only need to re-scale back to conclude the proof. \(\square\)

Lemma 4.2. There exist positive constants \(c_{28}\) and \(\varepsilon_8\) depending only on \(\lambda_0, c_0, E_0, W, n\) and \(p\) such that, if \(\varepsilon \leq r \leq 1\), then,
\[
\mathcal{L}^n(\{x \in B_2 | \text{dist}(x, Z_\alpha) < r\}) \leq c_{28}r,
\]
provided that \(\varepsilon \leq \varepsilon_8\).

The proof of Lemma 4.2 is exactly the same as [9, Lemma 5.3], so we omit the proof.

Lemma 4.3. Given \(0 < \beta < 1\) and \(0 < s\), there exists a positive constant \(\varepsilon_9\) depending only on \(c_0, \lambda_0, E_0, W, \beta, s, n\) and \(p\) such that
\[
\int_{B_1 \cap \{|u| \geq 1 - \varepsilon^\beta\}} \left(\frac{\varepsilon}{2}|\nabla u|^2 + \frac{W}{\varepsilon}\right) \leq s,
\]
provided that \(\varepsilon \leq \varepsilon_9\).

Proof. Since \(\{|u| \geq 1 - \varepsilon^\beta\} \subset \{|u| \geq 1 - \varepsilon^{\beta'}\}\) for \(\beta > \beta'\), without loss of generality, we may choose smaller \(\beta > 0\) so that \(1 - \beta - \beta_1 > 0\) if necessary. We estimate the integral on three disjoint sets. Define
\[
\mathcal{A} = \{x \in B_1 \mid \text{dist}(x, Z_\alpha) < \varepsilon^{1-\beta}, 1 \geq |u(x)| \geq 1 - \varepsilon^{\beta}\}
\]
\[
\mathcal{B} = \{x \in B_1 \mid \text{dist}(x, Z_\alpha) \geq \varepsilon^{1-\beta}, 1 \geq |u(x)| \geq 1 - \varepsilon^{\beta}\}
\]
\[
\mathcal{C} = \{x \in B_1 \mid |u(x)| \geq 1\}.
\]
By Lemma 4.2, for \(\varepsilon \leq \varepsilon_8\),
\[
\int_{\mathcal{A}} \frac{W(u)}{\varepsilon} \leq c_{28}\varepsilon^{1-\beta} \sup_{\mathcal{A}} \frac{W(u)}{\varepsilon},
\]
(4.15)
Since $W(u) \leq c(1 - |u|)^2$ for a suitable $c > 0$ depending only on W, $W(u) \leq c\varepsilon^{2\beta}$ on A. (4.15) then shows

\[(4.16) \quad \int_A \frac{W}{\varepsilon} \leq c_{29}\varepsilon^\beta.\]

By (3.2),

\[(4.17) \quad \int_A \frac{\varepsilon}{2}|\nabla u|^2 \leq \int_A \varepsilon^{-\beta_1} + \frac{W}{\varepsilon} \leq c_{28}\varepsilon^{1-\beta_1} + c_{29}\varepsilon^\beta.\]

(4.16) and (4.17) show that the contribution from the integration on A can be made small for ε small. Next, define the Lipschitz function ϕ as

$\phi(x) = \min\{1, \varepsilon^{-1+\beta}\text{dist}(x, Z_\alpha \cup (\mathbb{R}^n \setminus B_{1+\varepsilon^{1-\beta}}))\}.$

Then, $\phi = 1$ on B, $\phi = 0$ on Z_α, and $|\nabla \phi| \leq \varepsilon^{-1+\beta}$. In particular, $|u| \geq \alpha$ on the support of ϕ. Then, by (3.24) where we use above ϕ,

\[(4.18) \quad \int_B \varepsilon |\nabla u|^2 \leq c_8 \left(\varepsilon^{-2+2\beta} \int_{B_2} \varepsilon |\nabla u|^2 + \varepsilon^{-1}c_{30}\right).\]

Since $\phi = 1$ on B,

\[(4.19) \quad \int_B \frac{W}{\varepsilon} \leq \int_{B_1} \frac{W}{\varepsilon} - \frac{\varepsilon}{2} |\nabla u|^2 + \int_B \frac{\varepsilon}{2} |\nabla u|^2 \leq \frac{s}{4} + c_8 \varepsilon^{-1}(2\varepsilon^{2\beta}E_0 + \varepsilon c_{30}).\]

(4.18) and (4.19) show that the integration on B can be made smaller than $\frac{s}{4}$ for all small ε. Finally, for the integration on C, multiply $(u - 1) + \phi^2$ to (2.3) and integrate by parts, where $\phi \in C^1_c(B_2)$, $|\nabla \phi| \leq 2$ and $\phi = 1$ on B_1. Then, using Lemma 3.4, one can easily check that the integration on C can be made small. This concludes the proof.

Now we are ready to prove Proposition 4.5. The only difference from the proof of [9, Proposition 5.1] is that one cannot use Lemma 4.1 for β close to 1 (such as $\frac{2}{3}$ used there) because $\beta < \beta_6 < 2 - \frac{n}{p}$ and β_6 can be small. To supplement this difficulty, we have Lemma 4.3 to show the uniform smallness of the energy. Thus, by a simple modification of [9, Proposition 5.1] and Proposition 4.3 show Proposition 4.5. The remaining proof of the integrality can be accomplished by modifying the proof in [9], where one shows that the error term coming from f can be handled as a small term using Hölder inequality and (2.5). Since it is carried out also in [17], we omit the proof.
5. Remarks

(1) Though it is unclear what can be said about the case of \(p = \frac{n}{2} \), it is interesting to know if anything can be said about the limit varifold in general.

(2) As in [17, Section 5.2], the result of this paper shows the following:

For the solutions of the Cahn-Hilliard equation

\[
\begin{aligned}
 u_t &= \Delta f & \quad & \text{on } U \times (0, \infty), \\
 f &= -\varepsilon \Delta u + \frac{W'(u)}{\varepsilon}, \\
 \frac{\partial u}{\partial \nu} = \frac{\partial f}{\partial \nu} &= 0 & \quad & \text{on } \partial U \times (0, \infty), \\
 u(x, 0) &= u_0(x) & \quad & \text{on } U
\end{aligned}
\]

Chen [4, Lemma 3.4] showed that

\[
\int_0^t ||f(\cdot, t)||^2_{W^{1,2}(U)} \, dt \leq C
\]

where \(C \) does not depend on \(\varepsilon \). Moreover, with a suitable growth condition on \(W \), one can also show that \(\sup |u| \) is bounded uniformly in \(\varepsilon \). Thus, given a sequence of \(\{\varepsilon_i\} \) with the finite energy initial data \(\{u_0^i\} \), the assumptions in this paper is satisfied for the solution of the equation for \(n = 2, 3 \) for a.e. \(t \), after choosing a (time-dependent) subsequence. Since we can not conclude any continuity properties of limit varifolds in time direction, the result obtained via our result is not satisfactory.

(3) One can extend our results to the corresponding time-dependent problem such as Allen-Cahn equation with inhomogeneous forcing term. We would like to resolve these problems in the future.

References

Department of Mathematics
Hokkaido University
Sapporo 060-0810
Japan
Email: tonegawa@math.sci.hokudai.ac.jp