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Abstract

The unique local existence is established for the Cauchy problem of the
incompressible Navier-Stokes equations with the Coriolis force. The Coriolis
operator restricted to divergence free vector fields is a zero order pseudo-
differential operator with the skew-symmetric matrix symbol related to the
Riesz operator. It leads to the additional term in the Navier-Stokes equations
which has real parameter being proportional to the speed of rotation. For
initial data as Fourier preimage of the space of all finite Radon measures with
no point mass at the origin we prove uniform estimate for the existence time
in the speed of rotation.

1 Introduction

In this paper we consider the Cauchy problem for the three dimensional
Navier-Stokes equations with the Coriolis force:

ur+(u-V)u+Qes xu—Au=—-Vp, V-u=0, uft==up, (1.1

where u = u(x,t) = (uy(z,t),uz(x,t),us(x,t)) is the unknown velocity vec-
tor field and p = p(x,t) is the unknown scalar pressure at the point z =



(21,22, 73) € R? in space and time ¢ > 0, while uy = ug(z) is the given initial
velocity vector field. Here, the real constant €2 represents the speed of rota-
tion around the vertical unit vector es = (0,0, 1) and it is called the Coriolis
parameter. By X we denote the exterior product, hence, the Coriolis term
is represented by e3 X u = Ju with the corresponding skew-symmetric 3 x 3
matrix J.

For the equations (1.1) global existence and regularity results for large
fixed €2 were obtained in L? setting for the periodic domains such as cylinder
with infinite length rotating axis or spatial lattices ([2], [6]). In this regard,
for the Euler equations, Nicolaenko, Bardos, Golse and the third author [7]
proved uniform local existence and long-time regularity for initial data in H*.

In the case of unbounded domains without periodicity nor decay at space
infinity Sawada [9] and Hieber and Sawada [5] proved unique local existence
for initial data in a homogeneous Besov space Bgo’l which is strictly smaller
than BUC, the space of all bounded uniformly continuous functions (see also
[3] for recent improvement). However, they do not get uniform estimate for
the existence time in the speed of rotation 2 € R, the precondition to consider
fast singular oscillating limits 2 — 400 and proving global existence for large
fixed €.

In this paper we take initial data in a new space F'M, (Fourier preimage
of the space of all finite Radon measures with no point mass at the origin)
that ensures uniform local solvability of (1.1). The space for initial data F M,
is strictly smaller than the homogeneous Besov space Bgo’l and its precise
definition will be given in section 2.

Our key observation is a bound of exp(tR;) in the space F'My uniform in
time ¢, where R; is a Riesz operator. This enables us to construct a local
solution uniform in Q.

Now we state the main result of this paper.

Theorem 1.1. Assume that ug € FMy with div ug = 0. Then there exist
To(> ¢/||uol|%y;) > 0 independent of the Coriolis parameter Q and a unique
mild solution uw = u(t) € C([0,Ty]; FMy) of (1.1), where ¢ > 0 is a numer-
ical constant (given in Remark 3.1). Moreover, the solution u(t) belongs to
C(0, To); FM).

From the above theorem on a mild solution we also have the following
theorem on existence and uniqueness of the classical solution of (1.1). The
proof is carried out in the same manner as [3].

Theorem 1.2. Assume that uy € F My with div ug = 0.
(1) Let uw = u(t) be the mild solution obtained in Theorem 1.1. If we set the
pressure p = p(z,t) as

3
Oip(t) = 0; > RiRpuuF(t) + QR; (Ryu' — Ryu?)(t) (1.2)
jk=1



for t > 0 and i = 1,2,3, then the pair (u, Vp) is a classical solution of (1.1).
(2) Let u € L*°((0,T) x R?) and p € L},.([0,T); BMO) be a solution of (1.1)
in a distributional sense for some T > 0. Then the pair (u,Vp) is unique.

Moreover, the relation (1.2) holds.

Before concluding the introduction we remark that u(z,t) is almost peri-
odic in z if ug is almost periodic. This can be proved along the line of [4,
Section 3| if one observes that F'M-norm is invariant under translation in
spatial variables = € R3.

2 Key function spaces

In this section we introduce a function space on which the semigroup gener-
ated by the Riesz operator is uniformly bounded; moreover, it contains various
almost periodic functions, not necessarily periodic. Furthermore, operation of
spatial averaging is defined for the elements of this space. The latter property
and uniform boundedness with respect to spatial translations and rotations
are essential in studies of statistical properties of turbulence (e.g. [8], [11]).
We now recall an important connection between the Coriolis rotation oper-
ator restricted to divergence free vector fields and classical Riesz operators.
For the sake of clarity of notations, we present formulas for symbols of the
corresponding pseudo-differential operators in R? which is the main case. Let
P be the projection operator on divergence free vector fields, represented by
P = (P;j)ij = (0ij + RiRj)1<i j<3. Here, §;; denotes the Kronecker delta. Ap-
plying P to (1.1), we note that the Coriolis term is represented by the Coriolis
operator S = PJP (PJPu = PJu since u is solenoidal).

Let £ = (£1,£2,&3) € R®. The operator S is a zero order pseudo-differential
operator with the 3 x 3 matrix symbol S(¢) ([1], [3]):

o(S) = S(¢) = f§—| ©, (2.1)

where R(&) is the skew-symmetric matrix such that R(&)v = |—é|§ x v for every
vector v € R®. The symbol of the operator exp(2St) is given by

exp(QS()1) = cos(ZH)T + sin(%ﬁt)R(f), (2.2)

iy
where I is the identity matrix. We remark that dependence on the parameter
) appears only in scalar terms cos(%ﬁt) and sin(%Qt), which are functions

of the classical scalar Riesz operator R3, o(R3) = Z% Then our goal in
this section is to construct function spaces for initial data in which Fourier

;€3
operators with the symbols e M are uniformly bounded in €.

2.1 Spaces of measures



Let M = M (R™) be the space of all complex-valued finite Radon measures
on R™. This space is the (complex) Banach space equipped with the total
variation norm || - ||5;. By the Riesz representation theorem M is identified
with the dual space of C(R™), the space of all (complex-valued) continu-
ous functions that converge to zero at the space infinity (equipped with the
supremum norm || - ||«.) Moreover, for p € M

| i llar= sup{[{p, V) ;¥ € Coo(R"), || ¥ || < 1},

where (,) denotes a canonical pairing. Since the (Schwartz) space & = S(R")
of all rapidly decreasing functions in R” is dense in C, (R™), u € M is regarded
as a tempered distribution, i.e. p € 8’ = §'(R™). In other words, M C §'.
Let |u| denote the total variation measure of u. It is a nonnegative Radon
measure defined by

1|(0) = sup{|(w, ¥)[; % € Co(O), || ¢ [[oo< 1}

for an open set O, where Cy(O) denotes the space of all (complex-valued)
continuous functions with compact support in O. Since Cy(R™) is dense in
Cso(RY), we see that [u|(R") =|| u ||ar. For C?-valued (complex vector-valued)
finite Radon measure 1 = (u1,- - , 1q) we still denote its total variation mea-
sure |u| by the above duality by understanding that ||9||cc = || |¥] ||eo for
Y = (a1, -+ ,1bq), where |-| denotes the Euclidean norm in R?. The totality of
C?-valued finite Radon measures on R is denoted by M = (M (R"))%. (We
often write M? simply by M unless confusion is caused.) There are several
ways to define a norm in (M (R"))¢. The most convenient one for our purpose
is

lillage = [l (R™).

Another norm we use here is
d
il e = O il i)',
i=1

In the case that p; is absolutely continuous with respect to the Lebesgue
measure, i.e. u; = p;d¢, then

d

d !
lollass = [ (DI s = (2] sy 2
=1

=1

As we shall see later these norms are equivalent. For the definition of total
variations as well as several elementary properties of measures, the reader is
referred to, for example, a book [10] of L. Simon.

For a bounded Borel measurable function ¢ and p € M we associate a
new Radon measure p|1y € M defined by

WWW%=A¢®M%)
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If 4 is a characteristic function xp of a Borel set B, we simply write u|xp
by w|B. Note that ¢ is allowed to be any |u|-measurable functions. We here
prove that above two norms of M? are equivalent. More precisely,

el < etllnge < Vellpl[ypa » 1 € MO

Indeed, let h; be the Radon-Nikodym derivative of p; with respect to |p| ; this
is |p|-a.e. well-defined since pu; is absolutely continuous with respect to |u|.
Then

il oy = {Z / ] 1] (dE))?} /2.

Applying Minkowski’s inequality, we have

d

1l < /Rn(2|hz‘|2)1/2|ﬂ|(df) = [l (R*) = [l g

=1

since % [hi[?(€) = 1for |p|-a.e. €. Ifis easy to see that ||| yra < S0, [|pillar
so we have ||p||e < \/3||u||;wd by Schwarz’ inequality.

We next consider an important subspace M, of M (R"™) for our purpose
defined by

My = {p € M ; p[{0} =0}

(By M¢ we mean (Mp(R"))4). In other words u € M belongs to My if and
only if there is no point mass at the origin. The condition {0} = 0 is

equivalent to say that
lim|p B =0 2.3
rlJ,O | | ( r ( )) ) ( )

where E}T (0) is the open ball of radius r centered at the origin. Thus the space
My is a closed subspace of My. Indeed, if p,, — p in M and p,, satisfies (2.3),
then

11l (Br (0)) < |t — p|(Br (0)) + |t (B: (0))
<I| ptm = 1 ar +lptm] (Br (0)).

Sending r to 0, we have
limf(;)up|,u|(Br (0)) <Il o — e Iz -
r

Since [, — p in M, this implies that p satisfies (2.3), i.e., u € M.

Lemma 2.1. Let o € C(R"\{0}) be bounded on R*\{0}. Assume that p € My
and that {op }°_; C S(R") is an approximate sequence of o in the sense that
om — o pointwise in R"\{0} and || oy, ||cc is uniformly bounded. Then



{plom}so_; C M is a convergent sequence in My. Moreover, its limit equals
(1| (R"\{0})) o € My and is independent of the choice of the approximate
sequence {om }o0_,.

Remark 2.1. Let & be any extension of o € C(R" \ {0}) to the origin. Since
1 € My so that p = p[(R*\{0}), we see that (u[(R*\{0}))|lc = plo. In
particular, the measure ;| is independent of the way of the extension of o.

We shall denote (u|(R*\{0}))|o simply by ulo € My for p € My. (The
measure x|o in general depends on the value |0 when p € M.)
Proof. By the Lebesgue dominated convergence theorem we see that

lim |om — olu(d€) = 0.
m7ro0 SR\ {0}

Since p € My so that p|oy = (1| om) [(R*\{0}), this implies
ilom = (u[(R\(OD) Lo € Mo.

2.2. Fourier images and Riesz operator

We shall consider Fourier (pre)image of spaces M and M introduced
above. For f € § we define its Fourier transform and its inverse Fourier
transform by

L / e_ig"”f(w)dw,

2m)"/? Jr

@) = 10 = g [ S

Ff(&)=f(&) =

where ¢ - 2 denotes the standard inner product in R"® and i = y/—1. The
operator F and F~! can be extended to an isomorphism of S’ as topological
vector spaces. Let F'M be the image of M by F. It is the preimage of M by
F~'. Since F~lf(x) = (Ff)(—=), the space FM is also the preimage of M
by F, i.e.,

FM={feS8;feM.

This space is a Banach space equipped with the norm
1 f lear= @m) 2 f llar -
Let F'M, be the closed subspace of FM of the form
FMy = {f €8';f € My}.

The space F'M is included in the space BUC, the space of all bounded uni-
formly continuous functions. The space F'My does not contain nonzero con-
stant function. In fact, F'M has a topological direct sum decomposition of
the form

FM =FM, & C,



where C denotes the space of all (complex) constant functions. Moreover, as
we shall see in Appendix, F' My is strictly included in the Besov space Bgo,l'
However, F'Mj still includes various almost periodic functions not necessarily
periodic. For example,

o
f(x) = Zozjei’\f"" )\j S Rn\{()}, aj € C, Aj £\ if JF£E
j=1
belongs to F'My if 3322, || < co. Indeed,

F(6) = @m)"/23 (e = Aj) € My,

i=1

Its norm || f |[rar= D272, || if Aj # Ay, for j # k.
We next study an operator whose symbol may not be continuous at the
origin. We shall prove that

(Ef)(x) = F’I(U(ﬁ)((Ff)(f))) (z)

is a well-defined operator for f € FM, if the symbol o0 € C(R"\{0}) is
bounded. We approximate o by {o,,} C S such that || 0, || is bounded
and o, — o pointwise in R*\{0}. (This is of course possible.) The quantity
F Yo, Ff) is well-defined quantity in &' if f € S’. By Lemma 2.1 F~ ', Ff
converges to F'~! ((Ff)[o) in FMy if f € FMy. So we shall define X f by

Sf=F"(Ff)lo). (2.3)

Lemma 2.2. Assume that o € C(R"\{0}) is bounded in R*\{0}. Then ¥ in
(2.3) is a bounded linear operator in F' My and

I Zf lrm<ll o llooll £ l7m (2.4)

for f € FMy. If, moreover o is continuous at the origin, then Y is a bounded
linear operator in F'M and (2.4) holds for all f € FM.
This is clear by definition of the norm. As a simple application we obtain the

boundedness on F' M of the Riesz operator

(Rif) = F~H(Fflo(Ry)) , o(Ry) = i&/Iel,j =1, ,n

although the symbol o(R;) is not continuous at & = 0.

Lemma 2.3. The Riesz operator R; is bounded in F My for j = 1,2,--- ,n.
Moreover,

@) N Rif lpm < fllear £>0, (@) || €5 f [lpp < f lpme £>0



for all f € FM,.

2.3 Multiplication and heat operators

It is rather clear that F'M is an algebra whose unit is a constant function
1. The space F My is not an algebra since the multiplication of '** —iAw
equals 1 ¢ F M, for \ € R"\{0}.

and e

Lemma 2.4. If f and g are in FM, so is fg. The norm of the unit 1 equals 1.
Moreover,

I fallem<Il f lpall g lpas -
Proof. Since E = (27) ™/2f « §, Fubini’s theorem implies that

I g llar< @m) =2 11 £ llacll § o,

which yields the desired estimate. Since 1 = (27)™2§(x), by definition
11 lrar= 1. O
We next study the heat semigroup on FM and FMy. For f € FM we
define
A f = F (e () = FH(fle ), ¢>o0.

Similarly, we also define
—1y/- _ 2 _ o _ 2
Oy e f = PN igge™ 0 (Ff) = F7(fligge™ ), 120,
which is of course consistent with 9, (e'® f).

Lemma 2.5.

(i) The family {e'®};>¢ is a bounded Cy-semigroup in F M and F M. More-
over, H 6tAf ||FM§|| f ||FM for f e FM, t>0.

(i) Let A be a closed linear operator defined by
Af =Af

for f € D(A) = {f € FM; 3.2 f € FM, (1 < i, j <n)}, Then A
10T

is the infinitesimal generator of the semigroup {e'®};>o in FM. The

restriction A on F My (denoted by Ay) is the infinitesimal generator of

{etA}tZO in FMO

(i) The semigroup {e'®},;>o is an analytic semigroup in FM and FM.
Moreover,

|| 8:vjetAf ||FMS (2t€)_1/2 || f ||FM3 f EFM,t>0,i=1,---,n

and O, e!®f € FMy, where Oz, = 0/0x;.



Proof. All properties are easy to prove if one works on the Fourier images
of f and e!® f. Necessary estimates are obtained by Lemma, 2.2.

2.4. Averaging
An element f € FM always has a vertical averaging in the sense that

1
lim

L
= ! I:
L—ooo 2L /—Lf(xl’ axn—laxn)dl'n = fa(l' ), €z ([III, axn—l)

exists at least for almost every 2’ € R*~!. We call the function f, the vertical
average of f. The function f — f, is denoted by f*. Actually, we have a
stronger result. Let y” be a function defined by

1
XL(xn) = EX(—L,L) (zn)

and x(—r,r)(7n) is the characteristic function of (=L, L), i.e., x(—r,)(2n) = 1
for x, € (~L, L) and otherwise x”(z) = 0.

Lemma 2.6.

(i) Assume that f € FM fulfills f|{£, = 0} = 0. (In particular f € FM).
Then x* s f — 0 in FM as L — oco.

(i) Assume that f € FM fulfills f|{€, # 0} = 0. (This means f is inde-
pendent of x,,.) Then x" x f = f for all L > 0.

(ii) The space FM has a direct sum decomposition
FM =FM* & FM,
with FM* = {f € FM;f|{& # 0} =0}
FM, = {f € FM; f|{¢& =0} = 0}.

Proof.

(i) Since YL (&,) = sin(LE,)/LE,, we see that x%(£,) — 0 as L — oo for
&, # 0 and |X*(&,)| < 1. Since

1f X" lear=l X5 F =1 (F X [{€n # O} llar,

the Lebesgue dominated convergence theorem yields that xEx f — 0 for
feFMif fl{& =0} =0.

(i) This is trivial.
(i) For f € FM we define mappings
fo FH (& =0}), [ FH(fL{& #0})

which give projections to FM* and FM,.



2.5. Divergence free spaces

We shall study the space of vector fields in R” whose components belong
to FM. To simplify notation we still denote such a space by F'M. We shall
apply such convention for other spaces like FMy, FM*, FM,.
Let P be defined by

Pf]—ZF fk; O']k )) for f:(fla"'7fn)€FM07j:]-7"'7”

with the symbol o;x(P)(§) = 6 — £i&/|€]?, € € R". By Lemma 2.2 this
operator is bounded in F'My. Let PF M, denote the P-image of FM,. We
set Q = I — P and observe that

cyj—zﬁ’ |—&;&k/|€]?) for f = (f1, -+, fa) € FMy.

Let QF M, denote the Q-image of FF'My. As usual, we have a Helmholtz
decomposition of F'Mj.

Lemma 2.7. The space F' My has a topological direct sum decomposition
FMy=PFMy® QF M.

The space PF M, agrees with the space of all divergence free vector fields in
FM,.

Proof. Since P? = P so that PQ = QP = 0 and since P is bounded in F M,
the first statement is clear. If f satisfies divf = 0 so that Y ,_, I |&x = 0, then
Qf =0so f e PFM,y. If f € PFMj sothat f = Pf, then divf =divPf =0
by a calculation of symbols. We shall estimate norms of several operators
acting in vector valued F M spaces. For f € FM = (FM)? we define

1A lleae = 7)) fllaga s 1F1lpar = 7)1 f |y,

where f = (fi,---,fa) » f = (f1,--, f4). We shall state a vectorial version
of Lemma 2.2. For d x d complex matrix valued function o = (0)1<jr<q We
define

am—ZF (frlog) G =1,---,d) (2.5)

instead of (2.3). For d x d matrix A let |A| be the operator norm form C¢ to
C? equipped with standard inner product.

Lemma 2.8. (i) Assume that o = (0j;) € C(R"\{0}) is bounded in R"\{0}.
Then ¥ in (2.3) is a bounded linear operator in F' My with an estimate

IZf lpare < Aol ool [ f 11 pasa (2.6)

10



for f € FMy. If, moreover o is continuous at the origin, then o is a bounded
linear operator in F'M satistying (2.6) for all f € FM.
Proof. It suffices to estimate Fourier transforms. We notice that

d d
Feloje =[£I huoje,
k=1 k=1
where hy; is the Radon-Nikodym derivative of fr with respect to | f |. Since
|h|(€) =1 for |fl|-a.e., by definition of o

d
1> (&) < lo ()] |h(E)] = o (&)l
k=1

for h = (h1,--- ,hq). We now obtain (2.6) by using the supremum norm of
lo]. O

Lemma 2.8 provides a stronger consequence for P or exp(St) than that
follows from Lemma, 2.3.

Lemma 2.9. (i) Let P be defined in the beginning of §2.5. Then P is bounded
from FMg to FMg. Moreover,

1P fllparm < ||fllpamn for all f e FM.

(ii) Let S = PJP be as in (2.1). Then S is bounded from F M into itself and
so is exp(St). Moreover,

llexp (St)fllpas < [|fllpas forall fe FM§, t R,

where exp (St) = > o2 H(tS)F .

Proof. (i) Since o(P) = I —£®£/|€|%, it is an orthogonal projection from C*
into itself. Thus its operator norm is one so that || |o| || = 1. From (2.6)
it now follows the estimate of (i). The property Pf € FM{ for f € FM] is
clear.

(ii) Since o(S) is skew symmetric ([1], [3]), exp(c(S)t) is an unitary matrix
so |exp o(S)t| = 1 as a matrix. Thus (2.6) yields the desired estimate for
exp(St). The boundedness of S follows from boundedness of its symbol with
respect to €. It is clear that its image is in F M. O

3 Proof of Theorem 1.1

We work on the integral equation which is formally equivalent to (1.1) of the
form

u(t) = exp(tA) exp(—QtS)ug + N(u,u)(t) for ¢ > 0. (3.1)

Here exp(tA) = e!® is the heat semigroup and

N(u,u)(t) = —/0 exp((t — s)A) exp(—Q(t — s)S)P div(u ® u)(s)ds.

11



There are two key estimates.
(i) estimate for linear term : By Lemma 2.5 and 2.9 (ii) we have

|lexp(tA) exp(=QtS)uol|prs < [[uollpars-
(ii) estimate for nonlinear term : Since we have by Lemma 2.5 (iii)
V- exp(—QS)P exp(tA)F € FM, for any F = (Fij)1<ij<3 € FM**?,

applying Lemma 2.9 together with Lemma 2.5 (iii) yields

3
|lexp(tA) exp(—QtS)P div Fl[pys  (div F = 0y, Fyj)

i=1
< |lexp(QUS)PV - exp(tA)F||pass
< 1-1-[|V - exp(tA)F||pas
3
< @te) 2 |IFllpyz: »  Fi = (Fa, F, Fis)

=1

for all F € FM3*3.
This estimate enables us to construct the solution of the integral equation
(3.1) by a successive approximation {u;};=12,... given by

ui(t) = exp(tA) exp(—QtS)ug
wjpr(t) = ur(t) + N(uj,ui)(t) j=1,2,---.

We now define

K;(T) = sup |juj(s)|[rar, Lj(T) = sup |luj(s) — uj—1(s)||ra
0<s<T 0<s<T

for T'> 0. Applying (i), (ii), we have
t 3
Kjv1 < |luollpars + (26)1/2/0 (t— 3)71/22 |Fillpagsds (5 > 1)
i=1

with F; = u;u;. By Lemma 2.4 and the equivalence of norms we observe

!
lvullpars < V3| |vul[ e
’
< V3||llparlullpas < V3Iolleal[ullpas

forue FM3, v € FM so

3 3
!
Y ME e < V3 luillealullpars < 3llullpasellullpass < 3llullase-

We thus obtain

Kji < |Juollpars +3(2/e)" PT2K? (> 1).

12



The remaining argument is now standard e.g. [3]. From this estimate one
easily sees the uniform boundedness sup;; K;(T) < 2||uo||pp if T < 1/{4-
3(2/€)"?||up||ppr2}2.  Similar calculation for wjy; — u; and the uniform
boundedness give us

Ly1 < 2-3(2/e) ™2 @fuol|pyy) T2L; for j > 1,

that implies L;1/L; < 1/2 if T < 1/[2{2-3(2/e) /2 (2||uo]| pps3) }?] There-
fore, we see there exists a unique limit v such that u; — u in C([0, To]; F'Mo)
as j — oo. It is easy to see that the limit u solves the equation. Uniqueness
comes from similar calculation for the subtraction w = u — v. Theorem 1.1
has been proved

Remark 3.1. From the above proof the existence time of the solution u,
denoted as Ty in Theorem 1.1, is estimated from below as follows:

Ty > 1/[2{2 - 3(2/e) 22 [uollpar2) 1] = €/ (576]Jug [}, 2)-
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A Appendix

We shall prove that the space F'Mj is strictly included in the Besov space
B3 ;.
Theorem A. The space F' My is continuously embedded in Bgo,l‘ Moreover,

the inclusion F'My — Bgo,l is strict.
Proof. For f € F M, we get

g, = 3 5% flleo= 3 IF ' Gfllec

jzfoo j:*OO

C Y i fllr <C > i fllmey)

jzfoo j:*OO

< 30|fllar = 3C|| fl|Far-

IA
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Here, F; = {27! < |¢| < 277!}, Hence the embedding is continuous. The
inclusion is strict. We shall prove it for n = 1. Consider f = h * '%i sgn = €
L*(R), where h is a smooth bounded function whose Fourier transform h is
supported in {£ € R ; |€ — 1| < 1/2}. Here sgn(s) is the signature function
with value 1 if s > 0 and —1 otherwise. The Fourier transform f equals a
constant multiple of A p.v. 1/(€ — 1), which is not in M ; here p.v. denotes
the Cauchy principal value. So f does not belong to F'M. However, since
the support of f is in {|¢ — 1| < 1/2}, away from the origin and infinity, the
sum Y ¢; * f in the Besov norm is finite. Since f € L°(R), this implies
fe BgoJ. For general n it suffices to consider F' = f(x1)--- f(x,) to observe

that F' ¢ FM but F € B, |. O

References

[1] A. Babin, A. Mahalov and B. Nicolaenko (1997), Global regularity and
integrability of 3D Euler and Navier-Stokes equations for uniformly ro-
tating fluids, Asymptotic Analysis, 15, p. 103-150.

[2] A. Babin, A. Mahalov and B. Nicolaenko (1999), Global regularity of
the 3D Rotating Navier-Stokes Equations for resonant domains, Indiana
University Mathematics Journal, 48, No. 3, p. 1133-1176.

[3] Y. Giga, K. Inui, A. Mahalov and S. Matsui, Navier-Stokes Equations in a
rotating frame in R? with initial data nondecreasing at infinity, Hokkaido
Math. J., to appear.

[4] Y. Giga , A. Mahalov and B. Nicolaenko, The Cauchy problem for the

Navier-Stokes equations with spatially almost periodic initial data, to
appear in Annals of Mathematical Studies, Princeton University.

[5] M. Hieber and O. Sawada (2005), The Navier-Stokes equations in R"
with linearly growing initial data, Arch. Rational Mech. Anal., 175, no.
2, p. 269-285.

[6] A. Mahalov and B. Nicolaenko (2003), Global regularity of the 3D Navier-
Stokes equations with weakly aligned large initial vorticity, Russian
Math. Surveys, 58, No. 2 (350), p. 287-318.

[7] A. Mahalov, B, Nicolaenko, C. Bardos and F. Golse (2004), Regularity of
Euler Equations for a class of three-dimensional initial data, Special Vol-
ume on Trends in Partial Differential Equations of Mathematical Physics,
Nonlinear Analysis Series, Birkhauser-Verlag, 61, p. 161-185.

[8] A.S. Monin and A.M. Yaglom (1971), Statistical fluid mechanics : me-
chanics of turbulence, volume 1 and 2, MIT Press, Cambridge, Mass.

[9] O. Sawada, The Navier-Stokes flow with linearly growing initial velocity
in the whole space, Bol. Soc. Paran. Mat., to appear.

[10] L. Simon (1983), Lecture on geometric measure theory, Proc. of the Cen-
ter for Math. Anal., Australian National University.

14



[11] M.J. Vishik and A.V. Fursikov (1988), Mathematical problems of statis-
tical hydromechanics, Kluwer Academic Publishers, Dordrecht, Nether-
lands, Boston.

15



