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Abstract

The convergence of solutions of anisotropic Allen–Cahn equations is studied
when the interface thickness parameter (denoted by ε) tends to zero. It is shown
that the convergence to a level set solution of the corresponding anisotropic inter-
face equations is uniform with respect to the derivatives of a surface energy density
function. As an application a crystalline motion of interfaces is shown to be ap-
proximated by anisotropic Allen–Cahn equations.

2000 Mathematics Subject Classification: 35B25, 35K57, 53C44.

Keywords: anisotropic Allen–Cahn equation; anisotropic mean curvature flow; vis-
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1. Introduction

In this paper we consider an anisotropic Allen–Cahn equation with kinetic term. The
convergence of solutions of anisotropic Allen–Cahn equations is already proved by [ElS1]
(in the case the kinetic term is isotropic), [ElPS], and [ElS2]. However, their estimate
of the convergence depend on the derivative of a surface energy density function which
denotes an anisotropy of an equilibrium form of interfaces. In this paper we obtain the
uniform estimate of the convergence with respect to the derivative of a surface energy
density function. One of applications of our result is approximation of a crystalline
motion of interfaces by anisotropic Allen–Cahn equations. We also propose the way to
approximate a crystalline motion of interfaces by anisotropic Allen–Cahn equations.
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An anisotropic Allen–Cahn equation is proposed by [MWBCS]. We consider the
functional of the form

Fε(v) =

∫

Rn

[

1

2
γ(∇v)2 +

1

ε2
(W (v) − ελfv)

]

dx.

Here γ ∈ C2(Rn\{0}) is positive on Sn−1, convex, positively homogeneous of degree one.
Moreover, we assume that γ2 is strictly convex. The function W is a double-well potential
of the form W (v) = (v2 − 1)2/2. The quantity λ is a normalization constant determined
by W . The quantity f is a given constant. We consider a weighted L2-gradient flow of
this functional, and obtain an anisotropic Allen–Cahn equation. Its explicit form is

β(∇v)∂tv − divγ(∇v)ξ(∇v) +
1

ε2
(W ′(v) − ελf) = 0. (1.1)

Here β ∈ C(Rn \ {0}) is a positive on Sn−1 and positively homogeneous of degree zero,
and ξ = Dγ = (∂p1

γ(p), . . . , ∂pnγ(p)) for p = (p1, . . . , pn). A formal asymptotic analysis
provided by [MWBCS], [WM] and [BP1] (the case β ≡ 1) says that the internal transition
layer of (1.1) approximates the evolving interface {Γt}t≥0 under the evolution law of the
form

β(n)V = −γ(n){divΓtξ(n) + f} on Γt, (1.2)

where n denotes the outer unit normal vector field of Γt, V denotes the normal velocity
in the direction of n, and the divergence operator in this equation denotes the surface
divergence on Γt. The constant λ is taken so that the multiple constant in front of f
in (1.2) equals one. Physically, the function γ is called a surface energy density, which
induces an anisotropy of the equilibrium form of interfaces. The function ξ is called the
Cahn–Hoffman vector. The function β expresses an anisotropy of kinetics. The quantity
f is a driving force of the evolution. The quantity γ/β is called mobility.

If the initial data v(x, 0) of (1.1) is positive in a region O0 enclosed by Γ0 and negative
in Rn \ (O0 ∪ Γ0), then one expects that

v −→
{

+1 in a region Ot enclosed by Γt,
−1 in Rn \ (Ot ∩ Γt)

(1.3)

locally uniformly as ε → 0. This fact is rigorously proved by [ElS1] locally in time at
least if the initial interface is smooth. Using a level set method due to [CGG1] and
[ES] the authors of [ElPS] and [ElS2] proved (1.3) globally-in-time by interpreting Γt as
a generalized solution of (1.2). They introduced a signed anisotropic distance function
from Γt as outlined by [BP2] (see section 3). By using this distance, they constructed a
sub- and supersolution of (1.1) to prove the convergence (1.3).

We here note that their convergence results depend on the smoothness of γ. One can
find in [ElS2] that the way to determine ε for the estimate to obtain (1.3) depends at
least on the 2nd derivatives of γ. Physically, however, there is a situation such that γ
is not smooth so that an equilibrium form of interface of (1.2) may have a flat portion
called a facet. If one tries to consider such a situation by (1.1) with γa approximating
nonsmooth γ, their results are not enough.

In this paper we will show the convergence of internal transition layer is in some
sense ‘uniform’ with respect to derivatives of γ provided that γ, 1/γ, β, 1/β on the unit
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sphere is bounded. No control of derivatives of γ is necessary. This gives a way to
approximate crystalline motion [T], [AG] in the plane by an anisotropic Allen-Cahn type
equation in conjunction with a general level set method for nondifferentiable γ in [GG4],
[GG5]. This will be explained in §2.5 as an application of our main result. In [BGN]
anisotropic Allen–Cahn equations with crystalline γ and β ≡ 1 is considered. They
derived even convergence rate of internal layer of the Allen–Cahn equation when the
limit evolution is a crystalline motion. By the assumption β ≡ 1, (2.6) is considered as
a variational inequality. (Several examples of solution are proposed in [TC].) Although
we mollify γ and β, one advantage of our theory is that anisotropic β can be handled.
Moreover, our uniform convergence result itself holds for arbitrary dimensional spaces.
We approximate nonsmooth γ by smoother γτ while [BGN] studied the Allen–Cahn
equation with nonsmooth γ.

The difficulty treating (1.1) directly is that (1.1) does not enjoy a comparison prin-
ciple. This is caused by singularities at ∇v = 0 which are due to nonconstant kinetic
factor β. This difficulty is overcome in [ElS2] by adjusting a definition of solution to have
a comparison principle. In this paper we overcome the difficulty caused by singularities
of β by a way different from [ElS2]. We introduce a modified equation of (1.1) to remove
singularities. The advantage of our idea is that the usual theory of viscosity solutions
is available for a modified equation. We prove that the solution of a modified equation
satisfies (1.3) and the convergence is ‘uniform’ with respect to derivatives of γ.

The basic strategy of the proof of (1.3) is a combination of the method of [ESS]
and [ElS2]. However, we need to estimate the time derivative of an anisotropic distance
function in a different way. We construct a viscosity supersolution of (1.1) for estimate to
obtain the convergence result by combining three ingredients: a distance function induced
by Finsler geometry as in [BP2], its truncation as in [ESS] and the traveling wave as in
[BSS]. The key estimate why we are able to prove the uniform convergence result with
respect to the modulus of derivative of γ is in an estimate of the time derivative of a
distance function from Γt. Although the time derivative is estimated by [ElS2], their
bound depends on the second derivatives of γ on Sn−1. In this paper we will prove such
an estimate by using a duality between γ and a support function of {p ∈ Rn; γ(p) ≤ 1}
so that no derivatives of γ are involved.

Recently, [BS] and [BDL] provide the geometrical approach to approximate the motion
of interfaces. However, their method do not provide our uniform convergence.

Finally, we note that, for the isotropic case (β(p) ≡ 1, γ(p) = |p|), the convergence
problem has been well studied in various contexts, e.g., [BK], [C], [ESS], [BSS], [I], [S],
etc.

Acknowledgments. The work of the first author was partly supported by a Grant-in-
Aid for Scientific Research, No. 14204011, the Japan Society of the Promotion of Science
and the Grant-in-Aid for formation of COE ‘Mathematics of Nonlinear Structures via
Singularities’ (Hokkaido University). The second author is grateful to Professor Hitoshi
Ishii, Professor Tôru Nakajima and Dr. Okihiro Sawada for the valuable discussions and
advice. The work of the second author was partly supported by the 21 century COE
program at Graduate School of Mathematical Sciences, the University of Tokyo.
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2. Main Result

2.1. Equations

We now recall an anisotropic mean curvature flow. Let {Γt}t≥0 be a family of closed
hypersurfaces in Rn. We consider an evolution law for Γt of the form

β(n)V = −γ(n){divΓtξ(n) + f} on Γt, (2.1)

where V denotes the normal velocity of the surface Γt and n denotes the outer unit
normal vector field of Γt. In this paper we assume that

(β1) β ∈ C(Rn \ {0}),

(β2) β is positively homogeneous of degree 0,

(β3) there exists a positive constant Λβ satisfying Λ−1
β ≤ β ≤ Λβ on Sn−1,

(γ1) γ ∈ C2(Rn \ {0}),

(γ2) γ is positively homogeneous of degree 1,

(γ3) there exists a positive constant Λγ satisfying Λ−1
γ ≤ γ ≤ Λγ on Sn−1,

(γ4) γ is convex,

(γ5) α := γ2/2 is strictly convex,

(f1) f is a given constant satisfying |f | ≤ Λf with some Λf > 0,

(ε1) ε ∈ (0, ε̄), where ε̄ is such that the function σ 7→ W ′(σ) − ελΛf has exactly three
zeros,

where Sn−1 is a unit sphere. The vector field ξ is the gradient field of γ i.e., ξ = Dγ =
(∂p1

γ, . . . , ∂pnγ), ∂piγ = ∂γ/∂pi, 1 ≤ i ≤ n. The divergence operator in (2.1) denotes
the surface divergence on Γt. In this paper, we only consider the driving force term f is
constant.

A level set formulation for (2.1) gives one of generalized notations of the motion of
Γt (see [CGG1]). We introduce an auxiliary function u : Rn × [0, T ) → R and define

Γt = {x ∈ Rn; u(x, t) = 0}. (2.2)

The level set equation obtained from (2.1) is of the form

β(∇u)∂tu− γ(∇u){divξ(∇u) + f} = 0 in Rn × (0, T ). (2.3)

Here div denotes the divergence in Rn, and ∇ denotes the spatial derivatives, i.e., ∇v =
(∂x1

v, . . . , ∂xnv), so we distinguish between the differential operator D and spatial
derivative ∇. We define that {Γt}t∈[0,T ) is a generalized solution of (2.1) if Γt is given
by (2.2) for an auxiliary function u ∈ C(Rn × [0, T )) which is a viscosity supersolution
of (2.3).
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We are interested in the motion of Γt, which started from some compact Γ0, in finite
time interval (0, T ). Then, since the viscosity solution of (2.4) is continuous, we may
assume that there exists a big cube

∏n
j=1[aj , bj ] satisfying Γt ⊂

∏n
j=1[aj , bj ] for t ∈ [0, T ).

Therefore we consider the all equation with the periodic boundary condition, i.e., the
equality u(x+ (bj − aj)ej , t) = u(x, t) holds for (x, t) ∈ Rn × [0, T ) and j = 1, 2, . . . , n.
We now set Tn =

∏n
j=1 R/(bj − aj)Z. We consider (2.3) on Tn × (0, T ), i.e.,

β(∇u)∂tu− γ(∇u){divξ(∇u) + f} = 0 in Tn × (0, T ) (2.4)

with initial data
u(·, 0) = u0(·) on Tn. (2.5)

Since (2.4) is degenerate parabolic and geometric, it is well-known that, for the periodic
initial data, there exists a unique global periodic viscosity solution of (2.4) (See [CGG1]
or [G2]).

There is another way to analyze the motion of Γt. In fact, there is the approxima-
tion of Γt by the internal transition layer of an anisotropic Allen–Cahn type equation
introduced by [MWBCS]. The explicit form of the equation is

β(∇v)∂tv − div{γ(∇v)ξ(∇v)} +
1

ε2
(W ′(v) − ελf) = 0 in Tn × (0, T ), (2.6)

with initial data
v(·, 0) = v0(·) on Tn. (2.7)

Here W is a double-well potential of the form W (σ) = (σ2 − 1)2/2, and λ is a constant
determined by W , in our case λ = 2/3. We choose a suitable v0 to approximate an
interfaces moving by (2.1). See section 2.4 and Theorem 2.2 to know how to choose v0.
The internal transition layers of (2.6) approximates the motion of Γt. This fact is already
established rigorously by [ElS1], [ElPS] and [ElS2].

Our aim in this paper is to prove that an estimate of the convergence of internal
transition layers is uniform with respect to modulus of derivatives of γ. For this purpose,
we have to clarify quantities which determine the speed of the convergence of internal
transition layers.

Traditionally as in [ElS2] or [ESS], we construct a supersolution and a subsolution of
(2.6) for the estimate of the convergence. The key tool of this method is the comparison
principle for viscosity solutions. Unfortunately, however, (2.6) has singularities so that
we cannot apply the usual comparison principle for viscosity solutions. To overcome
this difficulty, we modify the equation. We introduce a cut-off function ζ ∈ C∞([0,∞))
satisfying

ζ(σ) =

{

1 if σ ≤ 1/2,
0 if σ ≥ 3/4,

and ζ ′ ≤ 0. Let β̃ be a function defined by

β̃(p) = (1 − ζ(|p|))β(p) + Λβζ(|p|). (2.8)

We take the coefficient β̃(∇v) in front of ∂tv in (2.6) instead of β(∇v), i.e.,

β̃(∇v)∂tv − div{γ(∇v)ξ(∇v)} +
1

ε2
(W ′(v) − ελf) = 0 in Tn × (0, T ). (2.9)
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The same type of modification appears in [ElPS]. The main advantage of (2.9) over (2.6)
is that the singularity at ∇v = 0 in the term involving β is removed. Since β̃ is positive
and continuous on Rn, we can apply the usual theory of viscosity solutions, in particular
the comparison principle (see [CGG1] or [G2]). We treat (2.9) as the approximation
model of an anisotropic mean curvature flow instead of (2.6). The solvability of (2.9)
with initial data v0 ∈ C(Tn) is already mentioned by [ElS2]. (See section 2.3 and
Theorem 2.8 in [ElS2].)

2.2. Anisotropic distance function

We now recall an anisotropic distance function induced by Finsler (Minkowski) metric as
in [BP2]. The distance is useful to construct an initial datum for (2.4) or (2.9).

We introduce the support function γ◦ of the convex set {p ∈ Rn; γ(p) ≤ 1} defined
by

γ◦(p) = sup{〈p, q〉; γ(q) ≤ 1}.
Here we remark that γ◦ ∈ C2(Rn\{0}), γ◦ is convex, positively homogeneous of degree 1.
Moreover we observe that, for p ∈ Rn\{0}, there exists uniquely q ∈ {p ∈ Rn; γ(p) ≤ 1}
satisfying γ◦(p) = 〈p, q〉 since γ2 is strictly convex. The important property of γ◦ for
studying (2.6) or (2.9) is obtained by [BP2]. Here we shall list a part of them in section
3.

We define an anisotropic distance Ξ by

Ξ(x, y) = γ◦(x− y).

We remark that only the symmetry in the definition of distance does not hold for Ξ since
γ◦ is not assumed to be symmetric. For the subset Γ ⊂ Rn we define

Ξ(x,Γ) = inf{Ξ(x, y); y ∈ Γ}.

For later convenience we take an order of x and a subset Γ ⊂ Rn in the definition of
Ξ. The following argument also apply to the reversed version of the anisotropic distance
function of the form Ξ(Γ, x).

2.3. Travelling wave

To derive an estimate for the convergence of internal transition layer of (2.9), it is con-
venient to introduce a traveling wave solution of (2.9) with initial data which has a layer
around of Γ0. In general, we consider a solution of (2.9) of the form v(x, t) = Q(x ·e− ct)
for the function Q, constant c and fixed e ∈ Sn−1. Then we observe that Q satisfies some
ordinary differential equation. However, here it suffices to consider a equation of Q for
the isometric case as in [BSS].

Here we introduce a generalized notion of a travelling wave. We shall consider the
double-well potential of the form W (σ) − zσ for z ∈ R. For z satisfying |z| < 4

√
3/9,

the function σ 7→W ′(σ) − z has exactly three zeros if and only if |z| < 4
√

3/9. We shall
denote them by h− = h−(z), h0 = h0(z) and h+ = h+(z), which satisfy h− < h0 < h+.
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Here we assume that z satisfies |z| < 4
√

3/9, and set

m(z) = h+(z) − h−(z),

c(z) = 2h0(z) − (h+(z) + h−(z)),

Q(σ, z) = h−(z) +
m(z)

1 + exp{−m(z)(σ − σ0(z))}
,

where σ0(z) is taken so that Q satisfies Q(0, z) = h0(z). Since h± and h0 are smooth,
we observe that Q ∈ C∞(R× (−4

√
3/9, 4

√
3/9)) and it solves

Qσσ(σ, z) + c(z)Qσ(σ, z) = W ′(Q(σ, z)) − z for σ ∈ R, (2.10)

limσ→±∞Q(σ, z) = h±(z), Q(0, z) = h0(z).

Moreover, we observe that

h±(z) = ±1 +O(z), h0(z) = 0 + O(z),

m(z) = 2 +O(z2), in particular
√

3 < m(z) ≤ 2,

lim
ε→0

c(z)

z
=

2

W ′′(0)
−
(

1

W ′′(1)
+

1

W ′′(−1)

)

+O(z) = − 1

λ
+O(z),

as z → 0.
In our case we fix z = ελf and set Q(σ) = Q(σ, ελf). Here and hereafter we shall

omit the dependence of z when z = ελf , and we express Q′(σ) = Qσ(σ, ελf) and
Q′′(σ) = Qσσ(σ, ελf). We shall list properties of these.

Proposition 2.1. Assume that f satisfies (f1) and ε satisfies (ε1). Then,

(i) limε→0 sup|f |≤Λf
|c/ε+ f | = 0,

(ii) limε→0 sup{|Q(σ) − tanhσ|; σ ∈ R, f ∈ [−Λf ,Λf ]} = 0,

(iii) inf{Q′(σ); σ ∈ [−b, b], ε ∈ (0, ε̄), f ∈ [−Λf ,Λf ]} > 0 for b > 0,

(iv) There exist constants C1, C2 and C3, which depend only on Λf , satisfying

|Q(σ)2 − 1| ≤ C1 exp(−C2|σ|) + C3ε, (2.11)

|Q′(σ)|, |Q′′(σ)| ≤ C1 exp(−C2|σ|). (2.12)

2.4. Main result

We now determine the moving interfaces by (2.1). Let O0 be an open subset in Tn and
Γ0 = ∂O0. Let d0 be a signed anisotropic distance function from an initial interface Γ0

defined by

d0(x) =

{

Ξ(x,Γ0) if x ∈ O0 ∪ Γ0,
−Ξ(x,Γ0) otherwise.

(2.13)

We note that d0 is continuous on Tn and spatially periodic. Let u be a periodic viscosity
solution of (2.4) with initial data u0 = d0. Then we obtain a generalized solution Γt of
(2.1) started from Γ0 by (2.2).
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We assume that Γt 6= ∅ for t ∈ [0, T ). We define a signed anisotropic distance function
d : Tn × [0, T ) → R from Γt by

d(x, t) =

{

Ξ(x,Γt) if x ∈ {y ∈ Tn; u(y, t) ≥ 0},
−Ξ(x,Γt) if x ∈ {y ∈ Tn; u(y, t) < 0}. (2.14)

We are now in position to state our main result.

Theorem 2.2. Assume that β, γ, f , and ε satisfy (β1)–(β3), (γ1)–(γ5), (f1), and
(ε1) respectively. Let O0 be an open set in Tn and Γ0 = ∂O0. Let d0, d(x, t) be the
anisotropic signed distance function from Γ0, Γt defined by (2.13), (2.14), respectively.
Let v be a viscosity solution of (2.9) satisfying (2.8) with initial data v0(x) = Q(d0(x)/ε)
for ε < ε̄. For θ > 0, there exist positive constants δ = δ(θ), ε1 = ε1(θ,Λβ ,Λγ ,Λf ) and
C = C(θ,Λβ ,Λγ ,Λf ) satisfying

v(x, t) ≤ −1 + C1 exp

(

−C2δ

ε

)

+ Cε (2.15)

if (x, t) ∈ {(y, s) ∈ Tn × (0, T ); d(y, s) ≤ −θ} provided that ε ∈ (0, ε1), where C1 and C2

are numerical constants.

We remark that this result is a refined version of [ElS2] since the constants C1, C2, C and
ε0 are independent of first and 2nd derivatives of γ. It is useful to treat the approximating
problem of (2.4) and (2.9) for nonsmooth γ.

The main strategy of the proof stems from [ESS] and [ElS2]. We construct a function
ψ = ψε,δ satisfying:

(i) for θ > 0, there exist positive constants δ = δ(θ) and C = C(θ,Λβ ,Λγ) such that
ψ(x, t) satisfies (2.15) for (x, t) ∈ {(y, s) ∈ Tn × (0, T ); d(y, s) < −θ},

(ii) for δ, there exists a positive constant ε0 such that ψ is a supersolution of (2.9)
provided that ε ∈ (0, ε0),

(iii) ψ(x, t) ≥ Q(d0(x)/ε),

Then, by the comparison principle, we obtain Theorem 2.2. Unfortunately the construc-
tion by [ESS] and [ElS2] is suitable only to construct a supersolution of the unmodified
equation (2.6). It is not enough to construct a supersolution of (2.9). To clarify the
difficulty to obtain (i) we shall give a formal calculation. Set

Rε = β(∇ψ) − div{γ(∇ψ)ξ(∇ψ)} +
1

ε2
(W ′(ψ) − ελf),

R̃ε = β̃(∇ψ) − div{γ(∇ψ)ξ(∇ψ)} +
1

ε2
(W ′(ψ) − ελf).

Clearly the first quantity Rε is easy to calculate. However we have to calculate R̃ε. We
observe that

R̃ε = Rε + (Λβ − β(∇ψ))ζ(|∇ψ|)∂tψ.

Thus it suffices to derive the suitable estimate for ∂tψ to calculate R̃ε.
We summarize the way for constructing ψ:
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(i) (in §3.1 and §3.2) We verify that the anisotropic signed distance function d is a
viscosity supersolution of (2.4) in {(x, t) ∈ Rn × (0, T ); d(x, t) > 0}. We also give
an estimate of ∂td.

(ii) (in §3.3) For fixed δ, we introduce the truncating function η as in [ESS] and consider
ω = η(d). We give an estimate of β(∇ω)∂tω− div{γ(∇ω)ξ(∇ω)}. We also give an
estimate of ∂tω.

(iii) (in §4) We construct a function ψ by using ω. We verify that, for δ, there exists a
positive constant ε0 = ε0(δ,Λβ,Λγ) such that ψ is a viscosity supersolution of (2.6)
provided that ε ∈ (0, ε0).

(iv) (in §4) We verify that, for δ, there exists a positive constant ε1 = ε1(δ,Λβ,Λγ) such
that ψ is a viscosity supersolution of (2.9) provided that ε ∈ (0, ε1).

We give the proof of Theorem 2.2 in §5.
Hereafter, we often use another representation of the second terms of (2.4), (2.6) and

(2.9), i.e.,

div{ξ(∇u)} = tr{D2γ(∇u)∇2u},
div{γ(∇v)ξ(∇v)} = tr{D2α(∇v)∇2v},

where α(p) = γ(p)2/2. We remark that α is positively homogeneous of degree 2.
Finally we remark that we only mention the estimate for solutions from above. This

is because that the estimate from below is essentially same as this by considering (2.6)
and (2.9) with β̃(p) = β(−p), α̃(p) = α(−p), W̃ (σ) = W (−σ), and f̃ = −f instead of
β(p), α(p), W (σ), and f , respectively. By a standard argument, Theorem 2.2 and this
remark yields (1.3).

2.5. Application

We now give an application of Theorem 2.2. Our result is useful to approximate solutions
of (2.1) by (2.9) even when γ is not differentiable provided that (2.4) fulfills the following
convergence ansatz.

Convergence ansatz. Assume that βτ ∈ C(Rn\{0}), γτ ∈ C2(Rn\{0}) are positive
outside of the origin, and f τ ∈ R. Assume that βτ and γτ is positively homogeneous
of degree 0 and 1, respectively. Assume that γτ is convex. (We do not assume the

differentiability of γ.) Assume that βτ → β̂, γτ → γ̂ locally uniformly in Rn \ {0} and

fτ → f̂ as τ → 0. Let uτ be the periodic viscosity solution of

βτ (∇uτ )∂tu
τ − γτ (∇uτ ){divξτ (∇uτ ) + fτ} = 0 in Rn × (0, T ),

with continuous periodic initial data uτ (x, 0) = uτ
0(x), where ξτ = Dγτ . Assume that

period is independent of τ . Assume that uτ
0 → u0 uniformly in Rn. Then uτ converges

to û ∈ C(Rn × [0,∞)) which “solves” (2.4) with β = β̂, γ = γ̂ and û(x, 0) = u0(x). The
convergence is uniform in Rn × [0, T ] for every T > 0.
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If we further assume that there exists a function H ∈ C(Sn−1;Sn), where Sn denotes the
space of real symmetric n×n matrices, such that Dξτ → H on Sn−1, then γ is C2(Sn−1)
and Dξ = H . In this case, the convergence of a solution uτ to (2.4) with β = βτ , γ = γτ

and f = f τ is well-known (cf. [CGG1], [Ca], and [GG5]). However, if do not assume the
convergence of derivatives of γτ , it is quite recent that the convergence ansatz has been
proved for n = 2 in [GG4] and [GG5]. Note that meaning of a solution to (2.4) is not
clear at all for all nondifferentiable γ since the term divξ(∇u) is not well-defined even
for smooth u. The papers [GG4] and [GG5] provide a proper notion of the solution.

Theorem 2.3. ([GG4], [GG5]) Assume that n = 2. Assume that γ|S1 is C2 except
finitely many points P = {Pi}m

i=1. Assume that the angular second derivatives of γ|S1 is
bounded on S1 \ P . Then the convergence ansatz is actually verified.

This is a very special version of results in [GG4] or [GG5], where level set equations to
more general equation of the form V = g(n,−divΓt(n)) is studied. The main idea of the
proof is to reduce the problem to graph-like solutions of (2.1) which is studied in [GG2]
and [GG3]. If the convergence ansatz is fulfilled, by a standard argument, Theorem 2.2
yields:

Theorem 2.4. Assume that the convergence ansatz is true. Assume that βτ , γτ and fτ

satisfy (β1)–(β3), (γ1)–(γ5), (f1) and (ε1) with β = βτ , γ = γτ and f = f τ uniformly
in τ . Let vτ be a solution of (2.9) with β = βτ , γ = γτ and f = f τ with initial data
vτ (x, 0) = Q(d(x, 0)/ε). Then

vτ (x, t) →
{

1 if x ∈ {y ∈ Rn; u(y, t) > 0},
−1 if x ∈ {y ∈ Rn; u(y, t) < 0}

as τ , ε→ 0. Here u is a solution of (2.4) with β and γ.

Of course, there is always a way to approximate γ by γτ having required properties.
Let γ ∈ C(Rn) be convex, positive outside of the origin, and positively homogeneous of
degree one. This situation includes, for examples, γ(p) = max{|pj |; j = 1, . . . , n} or
γ(p) =

∑n
j=1 |pj |. We shall approximate γ by smooth γτ with (γ1)–(γ5).

We take the heat kernel G(p, τ) = (4πτ)−n/2 exp(−|p|2/4τ) and define

γ̃(p, τ) := (γ ∗G(·, τ))(p) =

∫

Rn

γ(q)G(p− q, τ)dq.

We get γ̃ ∈ C∞(Rn × (0,∞)) and γ̃(·, τ) → γ as τ → 0 locally uniformly by standard
arguments. Moreover we see that γ̃ is strictly convex, more strongly, 〈∇2γ̃(p, τ)ξ, ξ〉 > 0
for (p, τ) ∈ Rn × (0,∞) and ξ ∈ Rn \ {0}. In fact, we obtain the strict convexity of γ̃
by the convexity of γ since G > 0. To see 〈∇2γ̃(p, τ)ξ, ξ〉 > 0 for (p, τ) ∈ Rn × (0,∞)

and ξ ∈ Rn \ {0}, we define the function φ(p, τ) := 〈∇2γ̃(p, τ)ξ, ξ〉 = (γ ∗ ∂2G
∂ξ2 (·, τ))(p).

We shall assume that there exists (p0, τ0) ∈ Rn × (0,∞) with φ(p0, τ0) = 0 and derive

10



a contradiction. We observe that φ is a solution of the heat equation and φ ≥ 0 in
Rn × (0,∞). Using the strong maximum principle for the heat equation, we get φ ≡ 0
for Rn × (0, τ0]. This implies that the function σ 7→ γ̃(p+ σξ, τ) is linear for τ ∈ (0, τ0]
which contradicts the strict convexity of γ̃.

The sequence {γ̃(·, τ)} gives an approximation of γ. However, unfortunately γ̃(·, τ)
is not positively homogeneous of degree 1. By using γ̃, we shall give a function which
satisfies (γ1)–(γ5) and approximates γ. We take τ̄ > 0 satisfying 0 ∈ Fτ \∂Fτ for τ ≤ τ̄ ,
where Fτ = {p; γ̃(p, τ) ≤ 1}. We define

γτ (p) = inf{r; r > 0, p/r ∈ Fτ}.

As we see later, γτ is a desired function, i.e., γτ satisfies the properties (γ1)–(γ5), there
exists a uniform bound Λγ in (γ3) for γτ , and γτ → γ as τ → 0 locally uniformly.

The homogeneity (γ2) and the convexity (γ4) easily follow from definition of γτ .
The smoothness (γ1) follows from an estimate of Dγ̃ on ∂Fτ . Since γ̃ is strictly

convex and γ̃(0, τ) < 1 for τ < τ̄ , we get |Dγ̃(p, τ)| 6= 0, in particular, 〈Dγ̃(p, τ), p〉 > 0
for (p, τ) ∈ ∂Fτ × (0, τ̄). We define g(r, q) = f(rq, τ)− 1 for r > 0 and q ∈ Sn−1, and get

∂g

∂r
(r, q) =

1

r
〈Dγ̃(p, τ), p〉 > 0

for p = rq ∈ ∂Fτ . This implies that there exists a smooth function ϕ = ϕ(q) for q ∈ Sn−1

with g(ϕ(q), q) = 0 so that ϕ(q)q ∈ ∂Fτ since ∂Fτ = {p; γ̃(p, τ) = 1} = {p; γτ (p) = 1}.
This yields that γτ (p) = |p|(ϕ(p/|p|))−1 so that γτ is smooth outside the origin.

The property (γ5) follows from the strict convexity of Fτ . In fact, these two conditions
are equivalent. (See revised version of [G2, Remark 1.7.5]) We indicate here the proof that
the strict convexity of Fτ implies the strict convexity of γ2

τ . By (γ4) we get {p; γτ (p) ≤
c} = {cp; γτ (p) ≤ 1} = {cp; γ̃(p, τ) ≤ 1} for c > 0. This and D2γ̃ > 0 yield that

〈RξD
2γτ (p)Rξη, η〉 > 0 for p, η ∈ Rn \ {0} with 〈ξ, η〉 = 0,

where ξ = Dγτ (p) and Rξ = I − (ξ ⊗ ξ)/|ξ|2. Since Rξη = η we obtain

〈RξD
2γτ (p)Rξη, η〉 = 〈D2γτ (p)η − |ξ|−2ξ ⊗ ξD2γτ (p)η, η〉

= 〈D2γτ (p)η, η〉 − |ξ|−2〈ξ,D2γτ (p)η〉〈ξ, η〉
= 〈D2γτ (p)η, η〉,

i.e., 〈D2γτ (p)η, η〉 > 0 for p, η ∈ Rn \ {0} with 〈ξ, η〉 = 0. By using this inequality we
get KerD2γτ (p) = Rp = {cp; c ∈ R}. (See revised version of [G2, Remark 1.7.5].) In
fact, we obtain D2γτ (p)p = 0 since γτ is positively homogeneous of degree 1. To see
KerD2γτ (p) = Rp we shall assume that there exists q ∈ KerD2γτ (p) with 〈p, q〉 = 0 and
derive a contradiction. We set x := −〈ξ, q〉p + γτ (p)q. = −〈ξ, q〉p + 〈ξ, p〉q. Then we
obtain x 6= 0, 〈ξ, x〉 = 0 and D2γτ (p)x = 0. However, we get 〈D2γτ (p)x, x〉 > 0 since
〈ξ, x〉 = 0. This is a contradiction.

For x 6= 0, we set x = c1p + c2q for p, q ∈ Rn and c1, c2 ∈ R with 〈p, q〉 = 0
and shall prove that 〈D2γτ (p)2x, x〉 > 0. If c2 = 0, then we obtain 〈D2γτ (p)2x, x〉 =
2c21γτ (p)2 > 0. If c2 6= 0, then we observe that 〈D2γ(p)2x, x〉 ≥ c22〈D2γτ (p)q, q〉 > 0 since
KerD2γτ (p) = Rp. We thus establish (γ5).
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The uniform bound (γ3) and the convergence γτ → γ as τ → 0 locally uniformly easily
follow from the convergence γ̃(·, τ) → γ as τ → 0 locally uniformly and the homogeneity
of each functions.

3. Properties of anisotropic distance function

In this section, we prepare some properties of the anisotropic distance function, which
follow from those of the support function. Most of them are already been proved by [BP2]
for the support function and by [ElS2] for the anisotropic distance function. However, we
need to refine some of them for our purpose. Especially, a refined version of an estimate
of ∂td is crucial for the proof of our uniform convergence result.

We list some properties of γ◦.

γ(Dγ◦(p)) = γ◦(Dγ(p)) = 1 for p 6= 0, (3.1)

γ(p)Dγ◦(Dγ(p)) = γ◦(p)Dγ(Dγ◦(p)) = p for p 6= 0, (3.2)

D2γ◦(p)Dγ(Dγ◦(p)) = D2γ(p)Dγ◦(Dγ(p)) = 0 for p 6= 0. (3.3)

We only give a few remarks for the proof; see [BP2] for the detailed proof.
Since {p ∈ Rn; γ(p) ≤ 1} is convex, we see that (γ◦)◦ = γ by the convex analysis.

The first equalities of (3.1)–(3.3) easily follow from this duality formulas. Moreover the
identity of (3.3) follows from (3.1) by its differentiation. In [BP2], to prove (3.1), one
needs to assume that, for p 6= 0, there exists unique q ∈ {p ∈ Rn; γ(p) ≤ 1} satisfying
γ◦(p) = 〈p, q〉. In our situation, it is fulfilled since γ2 is strictly convex.

3.1. Properties of d

We state the general properties of the anisotropic distance from a subset in Rn.

Lemma 3.1. Assume that γ satisfies (γ1)–(γ5). Let Γ ⊂ Rn be a closed subset. We
define d(x) = Ξ(x,Γ). Then d is a viscosity supersolution of

γ(∇d) = 1, −γ(∇d) = −1,
−〈∇2dDγ(∇d), Dγ(∇d)〉 = 0,

}

in {x ∈ Rn; d(x) > 0}.

Lemma 3.1 stems from (3.1) and the derivative of (3.1) in the direction Dγ(∇d). Fortu-
nately, however, we can prove the first equation without the differentiability of d by using
a viscosity sense. We shall give the proof for completeness. In the theory of viscosity
solutions, we often consider the upper and lower semicontinuous envelope of functions
to show it is a viscosity subsolution and a supersolution of an equation, respectively.
However, since

−γ◦(y − x) ≤ d(x) − d(y) ≤ γ◦(x− y) for all x, y ∈ Rn,

d is Lipschitz continuous. Therefore we do not have to consider a lower semicontinuous
envelope.
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Proof. Fix x0 ∈ {x; d(x) > 0}. Let ϕ ∈ C2(Rn) satisfy

d(x) − ϕ(x) ≥ d(x0) − ϕ(x0) for x ∈ Rn.

Since Γ is closed, then there exists y0 ∈ Γ satisfying

d(x0) = γ◦(x0 − y0).

Then we observe that

γ◦(x− y0) − ϕ(x) ≥ d(x) − ϕ(x) ≥ d(x0) − ϕ(x0) = γ◦(x0 − y0) − ϕ(x0).

We first shall show the first equation. Since γ is strictly convex, for x, there exists
an unique vector qx ∈ {p; γ(p) ≤ 1} satisfying

γ(x− y0) = 〈x− y0, qx〉, and γ(qx) = 1.

We set q0 = qx0
. Then we observe that qx → q0 as x → x0 by taking a sequence of {qx}

if it is necessary. By a calculation we observe that

〈x− y0, qx〉 − ϕ(x) = γ◦(x − y0) − ϕ(x)

≥ γ◦(x0 − y0) − ϕ(x0) ≥ 〈x0 − y0, qx〉 − ϕ(x).

Thus we obtain

〈x− x0, qx〉 ≥ ϕ(x) − ϕ(x0) = 〈x− x0,∇ϕ(x0)〉 + o(|x − x0|)

as |x− x0| → 0. We now divide by |x− x0| and send x→ x0 to get for e ∈ Sn−1,

〈e, q0 −∇ϕ(x0)〉 ≥ 0.

Thus we obtain q0 = ∇ϕ(x0). We obtain from γ(q0) = 1,

γ(∇ϕ(x0)) ≥ 1, and − γ(∇ϕ(x0)) ≥ −1.

Next we shall show the second equation. We differentiate (3.1) in the direction
Dγ(Dγ◦(p)), to get

〈D2γ◦(p)Dγ(Dγ◦(p)), Dγ(Dγ◦(p))〉 = 0 for p 6= 0.

Here we remark that x0 ∈ {x; d(x) > 0} implies x0 6= y0. We now can calculate the
derivatives of γ◦(· − y0) at x0 and obtain

Dγ◦(x0 − y0) = ∇ϕ(x0), D
2γ◦(x0 − y0) ≥ ∇ϕ(x0).

We thus obtain

− 〈∇2ϕ(x0)Dγ(∇ϕ(x0)), Dγ(∇ϕ(x0))〉
≥ 〈D2γ◦(x0 − y0)Dγ(Dγ

◦(x0 − y0)), Dγ(Dγ
◦(x0 − y0))〉 = 0,

which yields the second equation. 2
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We remark that, for reversed version of the orientation of x and Γ such as d(x) =
Ξ(Γ, x), we obtain a similar result. However, the sign of ∇d is reversed, i.e., the reversed
version of a distance is a viscosity supersolution of γ(−∇d) = 1, −γ(−∇d) = −1, and
−〈∇2dDγ(−∇d), Dγ(−∇d)〉 = 0. We remark that we do not treat the reversed version
of a distance in this paper.

We next obtain properties of anisotropic distance functions from the moving interface
Γt.

Lemma 3.2. Assume that β, γ and f satisfy (β1)–(β3), (γ1)–(γ5), and (f1), respec-
tively. Let u be a viscosity solution of (2.4) with initial data u(x, 0) = d0(x). Let d(x, t)
be an anisotropic distance function defined by

d(x, t) =

{

Ξ(x,Γt) for x ∈ {u(x, t) ≥ 0},
−Ξ(x,Γt) for x ∈ {u(x, t) < 0},

where Γt = {x ∈ Rn; u(x, t) = 0}.
Then d is a viscosity supersolution of (2.4) in {(x, t) ∈ Rn × (0, T ); d(x, t) > 0}.

This lemma is already proved by [ElS2]. (See Lemma 3.3 in [ElS2].) Their lemma has an
error term C(Λγ)|∇d|d. However this term is disappeared if f is independent of space
variable x.

3.2. Estimate of ∂td

In this section we prepare an estimate of ∂td which is useful to construct our supersolu-
tion.

Lemma 3.3. Assume that β, γ and f satisfy (β1)–(β3), (γ1)–(γ5) and (f1), respec-
tively. Let d be the anisotropic distance function defined by Lemma 3.2.

(i) Let µ be a function defined by µ(σ) =
∫ σ

0
s/(1 + s)ds. Then the following holds;

µ(d(x̂, t)) ≥ µ(d(x̂, t̂)) − Lβ,f (t− t̂)

for (x̂, t), (x̂, t̂) ∈ {(x, t); d(x, t) > 0} provided that 0 ≤ t̂ ≤ t < T , where Lβ,f is a
positive constant depends only on n, Λβ, and Λf .

(ii) The anisotropic distance function d is a viscosity supersolution of

∂td = −Lβ,f

(

1 +
1

d

)

in {(x, t); d(x, t) > 0}.

This lemma is a refined version of that in [ElS2]. Especially, the constant Lβ,f is inde-
pendent of any derivatives of γ. This is the main advantage over [ElS2] so that we obtain
our uniform convergence result.
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Proof. Fix (x̂, t̂) ∈ {(x, t); d(x, t) > 0} and let r̂ = d(x̂, t̂). We define the function
z : Rn × [0, T ) → R by

z(x, t) = µ(r̂) − L(t− t̂) − µ(γ◦(x̂− x)),

where L is a positive constant determined later. Since γ◦ ∈ C2(Rn \ {0}) we observe
that z ∈ C2,1((Rn \{x̂})× [0, T ))∩C1,1(Rn× [0, T )). By the straightforward calculation
we obtain

∂tz(x, t) = −L,
∇z(x, t) = µ′(γ◦(q̂))Dγ◦(q̂),

∇2z(x, t) = −µ′′(γ◦(q̂))Dγ◦(q̂) ⊗Dγ◦(q̂) − µ′(γ◦(q̂))D2γ◦(q̂)

for x 6= x̂, where q̂ = x̂− x. We observe that z ∈ C1,1(Rn × [0, T )) and ∇z(x̂, t) = 0.
In the following argument, we shall verify that z is a viscosity subsolution of (2.4).

For this purpose, we give an estimate of the second term of (2.4) for z provided that
x̂− x 6= 0. First we remark that µ′ > 0 on R. Then we obtain

γ(∇z) = µ′(γ◦(q̂))γ(Dγ◦(q̂)) = µ′(γ◦(q̂)),

Dγ(∇z) = Dγ(Dγ◦(q̂)),

D2γ(∇z) =
1

µ′(γ◦(q̂))
D2γ(Dγ◦(q̂)).

Therefore, by straightforward calculation, we obtain

tr{γ(∇z)D2γ(∇z)∇2z} = − µ′′(γ◦(q̂))〈D2γ(Dγ◦(q̂))Dγ◦(q̂), Dγ◦(q̂)〉
+ µ′(γ◦(q̂))div{Dγ(Dγ◦(q̂))}. (3.4)

By calculating the derivative of the second equality of (3.1), we obtain

D2γ(p)Dγ◦(Dγ(p)) = 0 for p 6= 0.

By taking p = Dγ◦(q̂) we obtain

D2γ(Dγ◦(q̂))Dγ◦(Dγ(Dγ◦(q̂))) = 0.

By (3.2) and since Dγ◦ is positively homogeneous of degree 0, we obtain

D2γ(Dγ◦(q̂))Dγ◦(q̂) = 0,

i.e., the first term of (3.4) is disappeared. Moreover, from (3.2) and since γ◦ is positively
homogeneous of degree 1, we obtain

divDγ(Dγ◦(p)) = div

(

p

γ◦(p)

)

=
nγ◦(p) − 〈p,Dγ◦(p)〉

γ◦(p)2
=
n− 1

γ◦(p)
.

Combining these and µ′(σ) = σ/(1 + σ) we obtain

tr{γ(∇z)D2γ(∇z)∇2z} = −µ′(γ◦(q̂))
n− 1

γ◦(q̂)
= − n− 1

1 + γ◦(q̂)
≥ −(n− 1). (3.5)
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We are now in position to verify that z is a viscosity subsolution of (2.4). First we
verify it in (Rn \ {x̂}) × (0, T ). By (3.5) and µ′ < 1 we obtain

β(∇z)∂tz − tr{γ(∇z)D2γ(∇z)∇2z} − γ(∇z)f ≤ − L

Λβ
+ n− 1 + |f |.

We take L > 0 satisfying −L/Λβ + n − 1 + |f | ≤ 0 so that we obtain z is a viscosity
subsolution of (2.4) in (Rn \ {x̂}) × (0, T ). Here we take L = Λβ(n+ Λf ) =: Lβ,f .

Next we verify that z is a viscosity subsolution including {x̂}× (0, T ). Let ŝ ∈ (0, T )
and let ϕ ∈ C2(Rn × (0, T )) satisfy

z(x, t) − ϕ(x, t) < z(x̂, ŝ) − ϕ(x̂, ŝ) for (x, t) ∈ Rn × (0, T ) \ {(x̂, ŝ)}.

Then we observe that ∇ϕ(x̂, ŝ) = ∇z(x̂, ŝ) = 0. Fix e ∈ Sn−1 and define

ϕτ (x, t) = ϕ(x, t) + τ〈e, x〉.

Then, for sufficiently small τ > 0, there exists xτ ∈ {x; d(x, ŝ) > 0} satisfy

z(·, ŝ) − ϕτ (·, ŝ) ≤ z(xτ , ŝ) − ϕτ (xτ , ŝ) in some neighborhood of x̂,

xτ 6= x̂, and xτ → x̂ as τ → 0.

We now verify only that xτ 6= x̂. If xτ = x̂, then we obtain ∇ϕτ (xτ , ŝ) = ∇ϕ(x̂, ŝ)+τe =
τe 6= 0. However we also obtain ∇ϕτ (xτ , ŝ) = ∇z(xτ , ŝ) = ∇z(x̂, ŝ) = 0. This is a
contradiction.

We now observe that

∂tz(xτ , ŝ) → ∂tz(x̂, ŝ) = ∂tϕ(x̂, ŝ),
∇ϕτ (xτ , ŝ) → ∇ϕ(x̂, ŝ),
∇2ϕτ (xτ , ŝ) → ∇2ϕ(x̂, ŝ)







as τ → 0.

Moreover we observe that ∇ϕτ (xτ , ŝ) = ∇z(xτ , ŝ) and ∇2ϕτ (xτ , ŝ) ≥ ∇2z(xτ , ŝ) since
z − ϕτ (·, ŝ) attains its maximum at x̂. Therefore we now obtain that

[β(∇ϕ)∂tϕ− tr{γ(∇ϕ)D2γ(∇ϕ)∇2ϕ} − γ(∇ϕ)f ]∗(x̂, ŝ)

≤ lim
τ→0

[β(∇ϕτ )∂tz − tr{γ(∇ϕτ )D2γ(∇ϕτ )∇2ϕτ} − γ(∇ϕτ )f ](xτ , ŝ)

≤ lim
τ→0

[β(∇z)∂tz − tr{γ(∇z)D2γ(∇z)∇2z} − γ(∇z)f ](xτ , ŝ)

≤ 0.

We now conclude that z is a viscosity subsolution of (2.4) in Rn × (0, T ).
We now verify (i). From [CGG1], we know that u+

k (x, t) := min(kmax(u(x, t), 0), 1)
is a viscosity solution of (2.4) for k > 0 since u(x, t) is a viscosity solution of (2.4).
Moreover, u∞(x, t) := χ{u>0}(x, t) = limk→∞ inf{u+

j (y, s); |y−x|+ |s−t| < 1/k, j > k},
is a viscosity supersolution of (2.4) (see [CIL, Lemma 6.1]). We now consider the set
U = {x; γ◦(x̂− x) < r̂}. Then we obtain

z(x, t̂) = µ(r̂) − µ(γ◦(x̂− x)) ≤ µ(r̂) = µ(r̂)u∞(x, t̂) for x ∈ U
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since µ > 0 and d(x, t̂) > 0 for x ∈ U . Moreover, we obtain for (x, t) ∈ ∂U × [t̂, T ),

z(x, t) = −Lβ,f(t− t̂) ≤ 0 ≤ µ(r̂)u∞(x, t).

Therefore, by the comparison principle, we obtain

z(x, t) ≤ µ(r̂)u∞(x, t) for (x, t) ∈ U × [t̂, T ).

For t ∈ [t̂, T ), fix ŷ ∈ Rn satisfying u(ŷ, t) = 0 and d(x̂, t) = γ◦(x̂− ŷ). If ŷ ∈ U , then we
obtain

0 = µ(r̂)u∞(ŷ, t) ≥ z(ŷ, t)

= µ(r̂) − Lβ,f (t− t̂) − µ(γ◦(x̂− ŷ))

= µ(d(x̂, t̂)) − Lβ,f (t− t̂) − µ(d(x̂, t))

or
µ(d(x̂, t)) ≥ µ(d(x̂, t̂)) − Lβ,f (t− t̂).

If ŷ /∈ U , then we observe

µ(d(x̂, t)) = µ(γ◦(x̂ − ŷ)) ≥ µ(r̂) = µ(d(x̂, t̂)) ≥ µ(d(x̂, t̂)) − Lβ,f (t− t̂),

which yields (i).
Finally we verify (ii). Let (x0, t0) ∈ {(x, t); d(x, t) > 0} and let ϕ ∈ C2(Rn × (0, T ))

satisfy

d(x, t) − ϕ(x, t) ≥ d(x0, t0) − ϕ(x0, t0) = 0 for (x, t) ∈ Rn × (0, T ).

From (i) we observe that d(x, t) is left continuous in time in the sense

lim
x→x0

lim
t↑t0

d(x, t) = d(x0, t0).

(see [ElS2], Proposition 3.5.) Then there exists a constant r > 0 satisfying

d(x0, t) > 0 for t ∈ (t0 − r, t0].

By using (i) we see

µ(ϕ(x0, t0)) = µ(d(x0, t0)) ≥ µ(d(x0, t)) − Lβ,f (t0 − t) ≥ µ(ϕ(x0, t)) − Lβ,f (t0 − t)

or
µ(ϕ(x0, t0)) − µ(ϕ(x0, t))

t0 − t
≥ −Lβ,f .

Sending t→ t0 yields
µ′(ϕ(x0, t0))∂tϕ(x0, t0) ≥ −Lβ,f .

Since ϕ(x0, t0) = d(x0, t0) and µ′(σ) = σ/(1 + σ) we obtain

∂tϕ(x0, t0) ≥ −Lβ,f

(

1 +
1

d(x0, t0)

)

. 2
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3.3. Truncated anisotropic distance function

In this section we shall prepare several estimates of truncated anisotropic distance func-
tions to construct our supersolution having an uniform estimate.

We first recall a function η introduced by [ESS]. We fix δ ∈ (0, 1) and we consider
the function η ∈ C∞(R) satisfying

η(σ) =

{

σ − δ if σ ≥ δ/2,
−δ if σ ≤ δ/4,

(3.6)

0 ≤ η′ ≤ Cη, |η′′| ≤ Cη

δ
, (3.7)

where Cη is a constant independent of σ and δ.
We now introduce a truncated anisotropic distance function. Let u be a viscosity

solution of (2.4) with initial data u0(x) = d0(x), where d0 is the anisotropic signed
distance function defined by (2.13). We determine subsets Ot, Dt and Γt by

Ot = {x ∈ Rn; u(x, t) > 0},
Dt = {x ∈ Rn; u(x, t) < 0},
Γt = {x ∈ Rn; u(x, t) = 0}.

We now define the anisotropic signed distance function d : Rn × [0, T ) → R from moving
interface Γt by

d(x, t) =

{

Ξ(x,Γt) if x ∈ Ot ∪ Γt,
−Ξ(x,Γt) if x ∈ Dt.

The truncated anisotropic distance function ω : Rn × [0, T ) → R is defined by

ω(x, t) = η(d(x, t)).

Here we state some properties of ω.

Lemma 3.4. Assume that β, γ and f satisfy (β1)–(β3), (γ1)–(γ5) and (f1), respec-
tively. Then the truncated anisotropic distance function ω(x, t) = η(d(x, t)) is a viscosity
supersolution of

β(∇ω)∂tω − tr{D2α(∇ω)∇2ω} − γ(∇ω)f = −Cη

δ
,

−|∇ω| = −Cγ







in Rn × (0, T ), (3.8)

where Cγ is a positive constant depends only on Λγ. Moreover ω is a viscosity superso-
lution of

β(∇ω)∂tω − tr{D2α(∇ω)∇2ω} − γ(∇ω)f = 0,

±γ(∇ω) = ±1

}

in

{

(x, t); d(x, t) >
δ

2

}

. (3.9)
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We remark that the equation in Lemma 3.4 is a different from (2.4). We replace the
second term of (2.4) by that of the Allen–Cahn equation (2.6) to get (3.8) or (3.9). This
estimate is useful to construct a supersolution for (2.9).

Proof. Let (x0, t0) ∈ Rn × (0, T ) and let ϕ ∈ C2(Rn × (0, T )) satisfy

ω(x, t) − ϕ(x, t) > ω(x0, t0) − ϕ(x0, t0) whenever (x, t) 6= (x0, t0).

We divide the situation into two cases: d(x0, t0) > 0 and d(x0, t0) ≤ 0.

Case 1. Assume that d(x0, t0) > 0. Let τ ∈ (0, 1) be a small parameter. We introduce
a function ητ approximating η, defined by

ητ (σ) = η(σ) + τσ.

Then there exist a neighborhood U = U(x0, t0) of (x0, t0) and (xτ , tτ ) ∈ U satisfying

ητ (d(x, t)) − ϕ(x, t) ≥ ητ (d(xτ , tτ )) − ϕ(xτ , tτ ) for (x, t) ∈ U,

(xτ , tτ ) → (x0, t0) as τ → 0.

Since η′τ = η′ + τ ≥ τ > 0, there exists ρτ = (ητ )−1 and ρ′τ > 0. Here we define the
function ϕ̄τ by

ϕ̄τ (x, t) = ρτ (ϕ(x, t) − ϕ(xτ , tτ ) + ητ (d(xτ , tτ ))).

Then we obtain

d(x, t) − ϕ̄τ (x, t) ≥ d(xτ , tτ ) − ϕ̄τ (xτ , tτ ) = 0 for (x, t) ∈ U.

By straightforward calculation we obtain

∂tϕ̄τ = ρ′τ (κ)∂tϕ, (3.10)

∇ϕ̄τ = ρ′τ (κ)∇ϕ, (3.11)

∇2ϕ̄τ = ρ′′τ (κ)∇ϕ ⊗∇ϕ+ ρ′(κ)∇2ϕ, (3.12)

where κ = κ(x, t) = ϕ(x, t) − ϕ(xτ , tτ ) + ητ (d(xτ , tτ )).
By Lemmas 3.1 and 3.2 we observe that

γ(∇ϕ̄τ ) = 1, in particular, ∇ϕ̄τ 6= 0,

β(∇ϕ̄τ )∂tϕ̄τ − tr{γ(∇ϕ̄τ )D2γ(∇ϕ̄τ )∇2ϕ̄τ} − γ(∇ϕ̄τ )f ≥ 0

}

at (xτ , tτ ), (3.13)

where we remark that we do not need to consider the place where the gradient of unknown
of (3.13) equals zero since ∇ϕ̄τ 6= 0 at (xτ , tτ ). By calculating the term including trace
and using Lemma 3.1, we observe that

tr{γ(∇ϕ̄τ )D2γ(∇ϕ̄τ )∇2ϕ̄τ} =tr{D2α(∇ϕ̄τ )∇2ϕ̄τ}
− 〈∇2ϕ̄τDγ(∇ϕ̄τ ), Dγ(∇ϕ̄τ )〉

≥tr{D2α(∇ϕ̄τ )∇2ϕ̄τ}.
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From (3.13) it now follows

β(∇ϕ̄τ )∂tϕ̄τ − tr{D2α(∇ϕ̄τ )∇2ϕ̄τ} − γ(∇ϕ̄τ )f ≥ 0 at (xτ , tτ ). (3.14)

By the homogeneity of β, γ and α we obtain

β(∇ϕ̄τ ) = β(∇ϕ), γ(∇ϕ̄τ ) = ρ′τ (κ)γ(∇ϕ), D2α(∇ϕ̄τ ) = D2α(∇ϕ).

Combining (3.10)–(3.12) and above, we obtain from (3.14)

β(∇ϕ)∂tϕ− tr{D2α(∇ϕ)∇2ϕ} − γ(∇ϕ)f

≥ ρ′′τ (κ)

ρ′τ (κ)
tr{D2α(∇ϕ)∇ϕ ⊗∇ϕ} at (xτ , tτ ).

Since α is positively homogeneous of degree 2, we obtain

tr{D2α(∇ϕ)∇ϕ ⊗∇ϕ} = 〈D2α(∇ϕ)∇ϕ,∇ϕ〉 = 2α(∇ϕ) = γ(∇ϕ)2.

Moreover, we remark that ρ′′τ (κ)/ρ′τ (κ) = −η′′τ (ρτ (κ))ρ′τ (κ)2 = −η′′τ (ϕ̄τ )ρ′τ (κ)2. Then we
obtain

ρ′′τ (κ)

ρ′τ (κ)
tr{D2α(∇ϕ)∇ϕ ⊗∇ϕ} = −η′′τ (ϕ̄τ )(ρ′τ (κ)γ(∇ϕ))2

= −η′′τ (ϕ̄τ )γ(∇ϕ̄τ )2 = −η′′τ (ϕ̄τ ).

Combining these, we obtain

β(∇ϕ)∂tϕ− tr{D2α(∇ϕ)∇2ϕ} − γ(∇ϕ)f ≥ −η′′τ (ϕ̄τ ) at (xτ , tτ ). (3.15)

Case 1.1. We verify (3.8) for the case (x0, t0) ∈ {(x, t); d(x, t) > 0}.
By (3.7) we obtain

−η′′τ (ϕ̄τ ) ≥ −Cη

δ
at (xτ , tτ ).

We apply this estimate to (3.15) and send τ → 0 to get

β(∇ϕ)∂tϕ− tr{D2α(∇ϕ)∇2ϕ} − γ(∇ϕ)f ≥ −Cη

δ
at (x0, t0).

Moreover, by (3.13) we observe that

1 = γ(∇ϕ̄τ ) = |∇ϕ̄τ |γ
( ∇ϕ̄τ

|∇ϕ̄τ |

)

≥ |∇ϕ̄τ |
Λγ

at (xτ , tτ ).

By definition we have |∇ϕ| = |∇ϕ̄τ |/ρ′τ (κ) and 1/ρ′τ(·) = η′τ (ρτ (·)) ≤ Cη + τ . We thus
obtain

|∇ϕ| ≤ (Cη + τ)|∇ϕ̄τ | ≤ (Cη + τ)Λγ at (xτ , tτ ).

We send τ → 0 to get
|∇ϕ| ≤ CηΛγ =: Cγ at (x0, t0).
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Case 1.2. We verify (3.9).
Since d is lower semicontinuous, there exists a positive constant τ0 > 0 such that

τ < τ0 implies d(xτ , tτ ) > δ/2. Since η′′τ (σ) = 0 for σ > δ/2, we obtain

η′′τ (ϕτ (xτ , tτ )) = η′′τ (d(xτ , tτ )) = 0 for τ < τ0.

We apply this equality to (3.15) and send τ → 0 to get

β(∇ϕ)∂tϕ− tr{D2α(∇ϕ)∇2ϕ} − γ(∇ϕ)f ≥ 0 at (x0, t0).

Moreover, since ∇ϕ = η′τ (ϕ̄τ )∇ϕ̄τ = (1 + τ)∇ϕ̄τ we obtain by (3.13)

1 = γ

( ∇ϕ
1 + τ

)

at (xτ , tτ ).

Sending τ → 0, we obtain
γ(∇ϕ) = 1 at (x0, t0).

Case 2. Assume that d(x0, t0) ≤ 0. Since d is left continuous in time in the sense

lim
x→x0

lim
t↑t0

d(x, t) = d(x0, t0),

there exist a positive constant r0 and a some neighborhood U0(x0) of x0 satisfying

d(x, t) ≤ δ

4
for (x, t) ∈ U0(x0) × (t0 − r0, t0).

For (x, t) ∈ U0(x0) × (t0 − r0, t0) we have ω(x, t) = −δ, i.e., ω is a constant there. This
implies

∂tϕ(x0, t0) ≥ 0, ∇ϕ(x0, t0) = 0, ∇2ϕ(x0, t0) ≤ 0.

Since ∇ϕ(x0, t0) = 0, we need to take an upper semicontinuous envelope of the equation
(3.8).

We observe that

β(p)∂tϕ ≥ 0, −tr{D2α(p)∇2ϕ(x0, t0)} ≥ 0 for p 6= 0,

since β > 0 and γ2 is strictly convex. We have limp→0 γ(p)f = 0. Therefore we obtain

[β(∇ϕ)∂tϕ− tr{D2α(∇ϕ)∇2ϕ} − γ(∇ϕ)f ]∗(x0, t0)

≥ lim
p→0

[β(p)∂tϕ(x0, t0) − tr{D2α(p)∇2ϕ(x0, t0)} − γ(p)f ] ≥ 0 ≥ −Cη

δ
.

Moreover we obtain |∇ϕ(x0, t0)| = 0 ≤ Cγ . 2

We next give an estimate of ∂tω by using Lemma 3.3.

21



Lemma 3.5. Assume that β, γ and f satisfy (β1)–(β3), (γ1)–(γ5), and (f1), respec-
tively. There exists a positive constant Cβ,f which depends only on n, Λβ, and Λf such
that the truncated anisotropic distance function ω(x, t) = η(d(x, t)) is a viscosity super-
solution of

∂tω = −Cβ,f

δ
in Rn × (0, T ). (3.16)

Proof. We continue to use notations in the proof of Lemma 3.4.

Case 1. Assume that d(x0, t0) > δ/8. Since d is a lower semicontinuous, there exists a
positive constant τ1 > 0 satisfying

d(xτ , tτ ) ≥ δ

8
for τ < τ1.

Then we obtain from Lemma 3.3 that

∂tϕ̄τ ≥ −Lβ,f

(

1 +
1

d

)

at (xτ , tτ ).

Since ∂tϕ̄τ = ρ′τ (κ)∂tϕ and d(xτ , tτ ) ≥ δ/8, we obtain

∂tϕ ≥ − Lβ,f

ρ′τ (κ)

(

1 +
8

δ

)

≥ −9Lβ,f(‖η′‖∞ + 1)

δ
at (xτ , tτ ),

where we have invoked that τ ∈ (0, 1) and δ ∈ (0, 1). We take Cβ,f = 9Lβ,f(Cη + 1) and
send τ → 0 to get a desired conclusion in {(x, t); d(x, t) ≥ δ/8}.

Case 2. Assume that d(x0, t0) ≤ δ/8. By the similar argument as in Case 2 in the proof
of Lemma 3.4, we obtain, in particular,

∂tϕ(x0, t0) ≥ 0 ≥ −Cβ,f

δ
. 2

4. Supersolution estimating internal layer

In this section we construct a supersolution for estimating a solution of (2.9). The basic
strategy for the construction stems from [ESS]. We shall follow them.

Let u be a viscosity solution of (2.4) with initial data u(x, 0) = d0(x). We remark that
the set Γδ

t = {x; u(x, t) = −2δ} is also a generalized solution of (2.1). So we introduce
an anisotropic signed distance function dδ(x, t) defined by

dδ(x, t) =

{

Ξ(x,Γδ
t ) if x ∈ {y; u(y, t) ≥ −2δ},

−Ξ(x,Γδ
t ) if x ∈ {y; u(y, t) < −2δ}.

By the definition of dδ the properties in §3 still hold for dδ and ωδ = η(dδ).
Combining this and the traveling wave in §2.3 we introduce a candidate of our viscosity

supersolution for (2.9). We define a function ψε : Rn × (0, T ) → R by

ψε(x, t) = Q

(

ωδ(x, t) +K1t

ε

)

+ εK2,
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where K1 and K2 are positive constants determined later. We shall verify the following
propositions.

Proposition 4.1. Assume that β, γ, f and ε satisfy (β1)–(β3), (γ1)–(γ5), (f1) and
(ε1), respectively. Then, for δ > 0, there exist positive constants K1 = K1(δ), K2 =
K2(δ,Λβ,Λf ) and ε0 = ε0(δ,Λβ,Λγ ,Λf ) such that ψε is a viscosity supersolution of

β(∇ψε)∂tψε − div{γ(∇ψε)ξ(∇ψε)} +
1

ε2
(W ′(ψε) − ελf) =

Kβ,δ,f

ε
in Rn × (0, T )

provided that ε ∈ (0, ε0), where Kβ,δ,f is a numerical positive constant depending only on
Λβ, Λf and δ.

This proposition says not only ψε is a viscosity supersolution of (2.6) but also the left
hand side of (2.6) with v = ψε goes up to +∞ by the order 1/ε.

Proof. We shall take ε0 small 7 times in our proof; i.e., (4.5), (4.10), (4.11), (4.12),
(4.14), (4.18), and (4.19). It suffices to take a minimum of these choices to obtain a
conclusion.

Let (xε, tε) ∈ Rn × (0, T ) and let ϕ ∈ C2(Rn × (0, T )) satisfy

ψε(x, t) − ϕ(x, t) > ψε(xε, tε) − ϕ(xε, tε) = 0 whenever (x, t) 6= (xε, tε).

Since Q′ > 0 in R we have Q−1 ∈ C∞(R) and (Q−1)′ > 0. Then we observe that a
function ϕ̃ defined by

ϕ̃(x, t) = εQ−1(ϕ(x, t) − εK2) −K1t

satisfy ϕ̃ ∈ C2,1(Rn × (0, T )) and

ωδ(x, t) − ϕ̃(x, t) ≥ ωδ(xε, tε) − ϕ̃(xε, tε) for (x, t) ∈ Rn × (0, T ),

ϕ(x, t) = Q

(

ϕ̃(x, t) +K1t

ε

)

+ εK2.

By the straightforward calculation we obtain

∂tϕ =
1

ε
Q′(h)(∂tϕ̃+K1), (4.1)

∇ϕ =
1

ε
Q′(h)∇ϕ, (4.2)

∇2ϕ =
1

ε2
Q′′(h)∇ϕ̃⊗∇ϕ̃+

1

ε
Q′(h)∇2ϕ̃, (4.3)

where h = h(x, t) = (ϕ̃(x, t) +K1t)/ε. Moreover, we observe that

W ′(ψε) = W ′(ϕ) = W ′(Q(h)) + εK2W
′′(Q(h)) +O(ε2K2

2 ) at (xε, tε) (4.4)

as ε→ 0. We now take ε0 = ε0(K2) small so that

|εK2| ≤ 1 provided ε ∈ (0, ε0). (4.5)
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Case 1. We assume that (xε, tε) satisfies dδ(xε, tε) > δ/2. By Lemma 3.4 we have

γ(∇ϕ̃) = 1, in particular ∇ϕ̃ 6= 0,

β(∇ϕ̃)∂tϕ̃− tr{D2α(∇ϕ̃)∇2ϕ̃} − γ(∇ϕ̃)f ≥ 0

}

at (xε, tε). (4.6)

We observe that ∇ϕ 6= 0 since ∇ϕ̃ 6= 0. We set

Rε = Rε(x, t) = β(∇ϕ)∂tϕ− tr{D2α(∇ϕ)∇2ϕ} +
1

ε2
(W ′(ψε) − ελf). (4.7)

Our aim is to show that there exists a positive constant Kβ,δ,f , which depends only on
Λβ, Λf and δ, satisfying Rε ≥ Kβ,δ,f/ε at (xε, tε).

By the homogeneity of β, γ and α we observe that

β(∇ϕ) = β(∇ϕ̃), γ(∇ϕ) =
1

ε
Q′(h)γ(∇ϕ̃), D2α(∇ϕ) = D2α(∇ϕ̃).

By (4.1)–(4.3) we now obtain

β(∇ϕ)∂tϕ = β(∇ϕ̃)Q′(h)
∂tϕ̃+K1

ε
,

and

tr{D2α(∇ϕ)∇2ϕ} =
Q′′(h)

ε2
〈D2α(∇ϕ̃)∇ϕ̃,∇ϕ̃〉 +

Q′(h)

ε
tr{D2α(∇ϕ̃)∇2ϕ̃}

=
Q′′(h)

ε2
γ(∇ϕ̃)2 +

Q′(h)

ε
tr{D2α(∇ϕ̃)∇2ϕ̃}.

Here we have invoked the property that 〈D2α(p)p, p〉 = 2α(p) = γ(p)2 for p 6= 0 since α
is positively homogeneous of degree 2. Combining (4.4) and above, we conclude that

Rε =
1

ε2
I−2 +

1

ε
I−1 +O(K2

2 ),

I−2 = −Q′′(h)γ(∇ϕ̃)2 +W ′(Q(h)) − ελf, (4.8)

I−1 = K2W
′′(Q(h)) +Q′(h)[β(∇ϕ̃)K1

+β(∇ϕ̃)∂tϕ̃− tr{D2α(∇ϕ̃)∇2ϕ̃}]. (4.9)

By (2.10) and since γ(∇ϕ̃) = 1, we obtain

I−2 = −Q′′(h) +W ′(Q(h)) − ελf = cQ′(h).

Then, by using (4.6), we obtain

Rε =
1

ε

(

K2W
′′(Q(h)) +Q′(h)

[

f +
c

ε
+ β(∇ϕ̃)K1

+β(∇ϕ̃)∂tϕ̃− tr{D2α(∇ϕ̃)∇2ϕ̃} − γ(∇ϕ̃)f
])

+O(K2
2 )

≥1

ε

[

K2W
′′(Q(h)) +Q′(h)

(

f +
c

ε
+
K1

Λβ

)]

+O(K2
2 ) at (xε, tε).
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We now determine K1. We take

K1 =
δ

4T
.

The reason why we take such K1 is clarified in the Case 2. By Proposition 2.1(i) we take
ε0 = ε0(δ,Λf ) smaller so that

f +
c

ε
≥ − K1

2Λβ
= − δ

8ΛβT
provided ε ∈ (0, ε0). (4.10)

Then we obtain

Rε ≥ 1

ε
[K2W

′′(Q(h)) +Q′(h)Cβ,δ] +O(K2
2 ) at (xε, tε),

where Cβ,δ = δ/(8ΛβT ).
Here we shall determine K2. We take suitable K2 to estimate Rε in the case that

W ′′(Q(h)) < 0. The basic strategy stems from the fact that Q(σ) → tanhσ uniformly
with respect to σ ∈ R and f satisfying (f1) as ε → 0, W ′(tanhσ) ≥ 0 for enough large
|σ|, and an local uniform bound of Q′ from below with respect to f and ε satisfying (f1)
and (ε1).

By Proposition 2.1(ii) we take ε0 = ε0(Λf ) smaller so that

|Q(σ) − tanhσ| ≤ 1

2

(

1 − 1√
2

)

=: ν for σ ∈ R provided ε ∈ (0, ε0). (4.11)

We take b = − sup{σ; tanhσ + ν ≤ −1/
√

2} = inf{σ; tanhσ − ν ≥ 1/
√

2} and let

K2 =
a2Cβ,δ

2a1
,

a1 = | inf
|σ|≤1+ν

W ′′(σ)|, a2 = inf{Q′(σ); |σ| ≤ b, ε ∈ (0, ε̄), |f | ≤ Λf}.

We remark that there exists such a a2 > 0 by Proposition 2.1 (iii). Moreover, we remark
that ε0 = ε0(K2) implies that ε0 depends on δ, Λβ and Λf .

We divide the situation into two cases.

Case 1.1. Assume that (xε, tε) ∈ {(x, t); |h(x, t)| ≤ b}. Then we observe that
Q(h(xε, tε)) ≤ 1/

√
2 or W ′′(Q(h(xε, tε))) ≤ 1. Therefore we obtain

Rε ≥ 1

ε
(−K2a1 + a2Cβ,δ) +O(K2

2 ) ≥ a2Cβ,δ

2ε
+O(K2

2 ) at (xε, tε).

This is the reason why we take K2 as above. We now take ε0 = ε0(δ,Λβ,Λf ) smaller so
that

|εO(K2
2 )| ≤ a2Cβ,δ

4
provided ε ∈ (0, ε0). (4.12)

Then we obtain

Rε ≥ a2Cβ,δ

4ε
> 0 at (xε, tε). (4.13)
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Case 1.2. Assume that (xε, tε) ∈ {(x, t); |h(x, t)| > b}. Then we observe that
W ′′(Q(h(xε, tε))) > 1 and

Rε ≥ K2

ε
+O(K2

2 ) at (xε, tε).

We now take ε0 = ε0(δ,Λβ,Λf ) smaller so that

|εO(K2
2 )| ≤ K2

2
provided ε ∈ (0, ε0). (4.14)

Then we obtain

Rε ≥ K2

2ε
> 0 at (xε, tε). (4.15)

Case 2. We assume that (xε, tε) ∈ {(x, t); dδ(x, t) ≤ δ/2}. By Lemma 3.4 we have

|∇ϕ̃(xε, tε)| ≤ Cγ ,

[β(∇ϕ̃)∂tϕ̃− tr{D2α(∇ϕ̃)∇2ϕ̃} − γ(∇ϕ̃)f ]∗(xε, tε) ≥ −Cη

δ
.

(4.16)

We first observe that

h(xε, tε) =
η(dδ(xε, tε)) +K1tε

ε
≤ − δ

4ε
< 0, (4.17)

i.e., h→ −∞ as ε→ 0. This is the reason why we set K1 near (4.10). Therefore we take
ε0 = ε0(δ) smaller so that

(xε, tε) ∈ {(x, t); W ′′(Q(h(x, t))) ≥ 1}

for (xε, tε) ∈
{

(x, t); dδ(x, t) <
δ

2

}

provided ε ∈ (0, ε0).
(4.18)

Case 2.1. Assume that ∇ϕ̃(xε, tε) 6= 0. By the same argument in Case 1.1, it suffices
to see

Rε =
1

ε2
I−2 +

1

ε
I−1 +O(K2

2 ) ≥ Kδ,β,f

δ
at (xε, tε),

where Rε, I−2 and I−1 are defined by (4.7), (4.8), and (4.9), respectively. We remark
that γ(∇ϕ̃(xε, tε)) 6= 1 in this case. Therefore we obtain

I−2 = −Q′′(h)(γ(∇ϕ̃)2 − 1) + cQ′(h).

Then we observe from (4.16)

Rε ≥− 1

ε2
Q′′(h)(γ(∇ϕ̃)2 − 1) +

1

ε

[

K2 +Q′(h)

{

Cβ,δ + (γ(∇ϕ̃) − 1)f − Cη

δ

}]

+O(K2
2 ) at (xε, tε).
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By the homogeneity of γ we obtain

γ(∇ϕ̃) = |∇ϕ̃|γ
( ∇ϕ̃
|∇ϕ̃|

)

≤ CγΛγ at (xε, tε).

Therefore we obtain

Rε ≥ − 1

ε2
(C2

γΛ2
γ + 1)|Q′′(h)| + 1

ε
{K2 − Cβ,γ,δ|Q′(h)|} +O(K2

2 ) at (xε, tε),

where Cβ,γ,δ := Cβ,δ + (CγΛγ + 1)|f | + Cη/δ is a constant. By (2.12) and (4.17) we
obtain

Rε ≥ 1

ε

{

K2 −
(

Cβ,γ,δ +
C2

γΛ2
γ + 1

ε

)

C1 exp(−C2|h|)
}

+O(K2
2 )

≥ 1

ε

{

K2 −
(

Cβ,γ,δ +
C2

γΛ2
γ + 1

ε

)

C1 exp

(

−C2δ

4ε

)

}

+O(K2
2 ) at (xε, tε).

We take ε0 = ε0(δ,Λβ ,Λγ ,Λf ) smaller so that

∣

∣

∣

∣

∣

(

Cβ,γ,δ +
C2

γΛ2
γ + 1

ε

)

C1 exp

(

−C2δ

4ε

)

∣

∣

∣

∣

∣

≤ K2

4
,

|εO(K2
2 )| ≤ K2

4



















provided ε ∈ (0, ε0). (4.19)

Then we obtain

Rε ≥ K2

2ε
> 0 at (xε, tε). (4.20)

Case 2.2. Assume that ∇ϕ̃(xε, tε) = 0. We need to consider the equations in week
sense. We now set σ̂ε = ψε(xε, tε), ŝε = ∂tϕ(xε, tε), p̂ε = ∇ϕ(xε, tε), X̂ε = ∇2ϕ(xε, tε),
and

R̄ε = lim
r→0

{β(p)s− tr{D2α(p)X} +
1

ε2
(W ′(σ) − ελf);

|σ − σ̂ε| < r, |s− ŝε| < r, |p− p̂ε| < r, |X − X̂ε| < r},

We shall prove R̄ε ≥ Kβ,δ,f/δ. By (4.16) there exists a sequence {(τj , qj , Yj)}∞j=1 satis-
fying

lim
j→∞

(τj , qj , Yj) = (∂tϕ̃(xε, tε), 0,∇2ϕ̃(xε, tε)),

qj 6= 0, lim
j→∞

|qj | ≤ Cγ ,

lim
j→∞

[β(qj)τj − tr{D2α(qj)Yj} − γ(qj)f ] ≥ 0.
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We now set






































σj = Q(h(xε, tε)) + εK2 = σ̂ε,

sj =
1

ε
Q′(h(xε, tε))(τj +K1) → ŝε,

pj =
1

ε
Q′(h(xε, tε)qj → 0 = p̂ε,

Xj =
1

ε2
Q′′(h(xε, tε))qj ⊗ qj +

1

ε
Q′(h(xε, tε))Yj → X̂ε,

(4.21)

where limits are taken as j → ∞. Moreover, let Rj
ε be defined by

Rj
ε := β(pj)sj − tr{D2α(pj)Xj} +

1

ε2
(W ′(σj) − ελf).

From the arguments in Case 2.1 it follows that

R̄ε ≥ lim
j→∞

Rj
ε ≥ K2

2ε
> 0. (4.22)

Set Kβ,δ,f = min{K2/2, a2Cβ,δ/4}. Then we conclude from (4.13), (4.15), (4.20), and
(4.22),

[

β(∇ϕ)∂tϕ− tr{D2α(∇ϕ)∇2ϕ} +
1

ε2
(W ′(ψε) − ελf)

]∗

(xε, tε) ≥
Kβ,δ,f

ε
> 0. 2 (4.23)

We are now in position to see ψε is a viscosity supersolution of (2.9).

Proposition 4.2. Assume that β, γ, f and ε satisfy (β1)–(β3), (γ1)–(γ5), (f1) and
(ε1), respectively. Then, for δ > 0, there exists a positive constant ε1 = ε1(δ,Λβ,Λγ ,Λf )
such that ψε is a viscosity supersolution of (2.9) in Rn × (0, T ) provided that ε ∈ (0, ε1).

Proof. We continue the proof from Proposition 4.1. We first fix ε1 < ε0. In this proof,
we take ε1 twice, (4.25) and (4.26). It suffices to take their minimum.

Case 1. We assume that (xε, tε) ∈ {(x, t); dδ(x, t) > δ/2}. Since γ(∇ϕ̃) = 1 we observe
that ∇ϕ 6= 0. We now set

R̃ε = β̃(∇ϕ)∂tϕ− tr{D2α(∇ϕ)∇2ϕ} +
1

ε2
(W ′(ϕ) − ελf). (4.24)

Our aim is to show R̃ε ≥ 0 at (xε, tε). By straightforward calculation we obtain

R̃ε = Rε + R̃ε −Rε

≥ Kβ,δ,f

ε
+ (β̃(∇ϕ) − β(∇ϕ))∂tϕ

=
1

ε
[Kβ,δ,f +Q′(h)ζ(|∇ϕ|)(Λβ − β(∇ϕ))(∂tϕ̃+K1)] at (xε, tε).
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We observe that
Q′(h)ζ(|∇ϕ|)(Λβ − β(∇ϕ))K1 ≥ 0.

Moreover, we obtain from Lemma 3.5,

Q′(h)ζ(|∇ϕ|)(Λβ − β(∇ϕ))∂tϕ̃ ≥ −Q′(h)ζ(|∇ϕ|)(Λβ − β(∇ϕ))
Cβ

δ

≥ −Q′(h)ζ(|∇ϕ|)
(

Λβ − 1

Λβ

)

Cβ

δ
at (xε, tε).

Thus we obtain

R̃ε ≥ 1

ε
[Kβ,δ,f −Mβ,δQ

′(h)ζ(|∇ϕ|)] at (xε, tε),

where Mβ,δ := (Λβ − 1
Λβ

)
Cβ

δ . We now study R̃ε in two pieces.

Case 1.1. Assume that (xε, tε) ∈ {(x, t); Mβ,δQ
′(h(x, t)) < Kβ,δ,f/2}. In this case it is

easy to see

R̃ε ≥ Kβ,δ,f

2ε
> 0 at (xε, tε).

Case 1.2. Assume that (xε, tε) ∈ {(x, t); Mβ,δQ
′(h(x, t)) ≥ Kβ,δ,f/2}. We remark that

|∇ϕ| = Q′(h)|∇ϕ̃|/ε. Since γ(∇ϕ̃) = 1 we obtain

|∇ϕ̃| ≥ 1

Λγ
at (xε, tε).

Then we obtain

|∇ϕ| =
Q′(h)|∇ϕ̃|

ε
≥ Kβ,δ,f

2εΛγMβ,δ
at (xε, tε).

We take ε1 = ε1(δ,Λβ ,Λf ) smaller so that

Kβ,δ,f

2εΛβMβ,δ
≥ 1 provided ε ∈ (0, ε1). (4.25)

Then we obtain |∇ϕ| ≥ 1 ≥ 3/4, i.e., ζ(|∇ϕ|) = 0 at (xε, tε). Thus we obtain

R̃ε ≥ Kβ,δ,f

ε
> 0 at (xε, tε).

Case 2. We assume that (xε, tε) ∈ {(x, t); dδ(x, t) ≤ δ/2}. By (4.17) there exists
ε1 = ε1(δ,Λβ,Λf ) satisfying

(xε, tε) ∈
{

(x, t); Mβ,δQ
′(h(x, t)) <

Kβ,δ,f

2

}

provided ε ∈ (0, ε1). (4.26)

We take ε1 satisfying (4.26).
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Case 2.1. Assume that ∇ϕ(xε, tε) 6= 0. From the same argument in Case 1.1 of this
proof we obtain

R̃ε ≥ Kβ,δ,f

2ε
> 0 at (xε, tε).

Case 2.2. Assume that ∇ϕ(xε, tε) = 0. Since limj→∞ Rj
ε ≥ Kβ,δ,f/ε, there exists a

positive number N1 ∈ N satisfying

Rj
ε ≥ 7Kβ,δ,f

8ε
for j > N1

by taking a subsequence of {Rj
ε} if it is necessary. Set

R̃j
ε = β̃(pj)sj − tr{D2α(pj)Xj} +

1

ε2
(W ′(σj) − ελf),

where σj , sj , pj and Xj is as in (4.21). By (4.21) there exists a positive number N2 ∈ N
satisfying

Q′(h(xε, tε))

(

Λβ − 1

Λβ

)

τj ≥ −5Kβ,δ,f

8
for j > N2

since τj → ∂tϕ̃(xε, tε) as j → ∞ and by (4.26). Then we obtain

R̃j
ε = Rj

ε + R̃j
ε −Rj

ε ≥ 1

ε

(

7Kβ,δ,f

8
+Mβ,δQ

′(h(xε, tε))ζ(|pj |)τj
)

≥ Kβ,δ,f

4ε
> 0

for j > N = max{N1, N2}. We thus obtain

(R̃ε)
∗(xε, tε) ≥ lim

j→∞
Rj

ε ≥ Kβ,δ,f

4ε
> 0. 2

5. Uniform Estimate

In this section, we shall prove Theorem 2.2

Proof of Theorem 2.2. Let v be a solution of (2.9) with v(x, 0) = Q(d0(x)/ε), and ψε

be that is defined in §4. We first verify that, for δ > 0,

ψε(x, 0) ≥ v(x, 0) for x ∈ Rn. (5.1)

We remark that ωδ(x, 0) = η(dδ(x, 0)) ≥ d0(x). Let y ∈ Γδ
0 be such that dδ(x, 0) =

γ◦(x− y). Then we observe that

d0(x) − d0(y) ≤ γ◦(x− y) = dδ(x, 0).

By the definition of Γδ
0, we observe that d0(y) = −2δ. Then we obtain

dδ(x, 0) ≥ d0(x) + 2δ.
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If dδ(x, 0) ≥ δ/2, then we obtain

η(dδ(x, 0)) = dδ(x, 0) − δ ≥ d0(x) + δ > d0(x).

If dδ(x, 0) < δ/2, then we observe that

d0(x) ≤ dδ(x, 0) − 2δ < −3δ

2
< −δ ≤ η(dδ(x, 0)).

Thus we obtain

ψε(x, 0) = Q

(

ωδ(x, 0)

ε

)

+ εK2 ≥ Q

(

d0(x)

ε

)

= v(x, 0).

By the comparison principle and (5.1) we obtain, for δ > 0,

ψε(x, t) ≥ v(x, t) for (x, t) ∈ Rn × (0, T ).

Fix θ > 0. We take δ satisfying dδ(x, t) < 0 if d(x, t) < −θ. We recall (4.17) that is

ωδ(x, t) +K1t

ε
< − δ

4ε
for (x, t) ∈ {(x, t); dδ(x, t) < δ/2}.

Therefore we obtain from (2.11),

ψε(x, t) = Q

(

ωδ(x, t) +K1t

ε

)

+ εK2

≤ Q

(

− δ

4ε

)

+ εK2 ≤ −1 + C1 exp

(

−C2δ

4ε

)

+ ε(K2 + C3)

for (x, t) ∈ {(x, t); d(x, t) < −θ}. Combining all above inequalities, we consequently
obtain

v(x, t) ≤ −1 + C1 exp

(

−C2δ

4ε

)

+ Cε for (x, t) ∈ {(x, t); d(x, t) < −θ},

provided ε ∈ (0, ε1), where C1 and C2 are numerical constants, C = K2 +C3 is a positive
constant depending only on Λβ and δ, and ε0 is a positive constant depending only on
Λβ, Λγ , |u| and δ. 2

6. Concluding remarks

We shall explain the difference between [ElS2] and ours and also discuss remaining prob-
lems. Here we keep our notation α, γ, β and f which are denoted by A, B, β and u in
[ElS2].

(i) (Essential Difference.) If we further assume the driving force f is constant in [ElS2],
a lot of propositions in ours have something in common with those of [ElS2], for
examples our Lemma 3.2 and [ElS2, Lemma 3.3]. The crucial difference is found in
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the proof of our Lemma 3.3 and [ElS2, Lemma 3.4]. In [ElS2] the authors estimate
that, for F (p,X) = −γ(p){tr(D2γ(p)X) + f},

F (p, I) ≤ C(Λ̃γ)(1 + |p|) for p 6= 0, (6.1)

where C(Λ̃γ) is a constant depending on Λ̃γ := ‖γ‖C2(B2(0)\B1/2(0)). By using this
estimate they prove that z = z(x, t) in the proof of our Lemma 3.3 is a viscosity
subsolution of (2.4), and consequently determine L. In the case f is a constant, this
dependence of L with respect to the second derivatives of γ is the crucial reason
why the estimate of convergence depends on the derivatives of γ. In this paper,
without using the estimate (6.1), we rather calculate the quantity

F (Dγ◦(p), D2γ◦(p)) = −n− 1

γ◦(p)
− f for p 6= 0,

by using the convex analysis and determine the constant Lβ by using this formula.
Evidently, this calculation is independent of the second derivatives of γ.

(ii) (Technical difference.) There is a difference on the strategies between [ElS2] and
ours. In [ElS2] the authors consider the approximation of each problems to clarify
the relation of (2.6) and (2.4). In our paper we introduce a modified Allen–Cahn
equation (2.9) instead of (2.6) to remove some technical difficulties. However, since
we would like to have a detailed estimate rather than the convergence result, we
need more detailed computation.

(iii) (Inhomogeneity.) If the driving force f depends on the spatial variables x even in
C2, the method in our paper is not enough to achieve our goal. In fact, in the case
f = f(x), the traveling wave Q in the §2.3 depends on the spatial variable x, i.e.,
Q = Q(σ, x). Then we obtain formally

∇ψ =
Qσ

ε
∇ω +Qx,

∇2ψ =
Qσσ

ε2
∇ω ⊗∇ω +

1

ε
(Qσx ⊗∇ω +Qxσ ⊗∇ω) +Qxx.

We cannot use the homogeneity of α, β and γ to estimate Rε or R̃ε because of
the form of ∇ψ. Moreover, it is not clear how we estimate the ε−1-term of ∇2ψ.
In [ElS2] the authors assume that the highest order derivative of α, β and γ is
Lipschitz continuous, and calculate that, for examples,

D2α(∇ψ) =
1

ε
D2α(∇ω) +O(1) as ε→ 0.

The bound of the last term depends on the Lipschitz constant of D2α.

(iv) (Time-dependent driving force.) It is easy to apply our methods to the estimate
of internal layer with time-dependent driving force f(t) satisfying, for examples,
f ∈ C1([0, T ]). Essentially, to apply our method for our problem with driving force
f(t), we need the following properties:

32



(a) Q = Q(σ, t), Q−1(σ, t) ∈ C2,1(R× [0, T ]),

(b) ‖Qt‖L∞(R×[0,T ]) <∞,

(c) the convergences as in Proposition 2.1 (i) and (ii) are uniformly with respect
to t ∈ [0, T ].

The traveling wave Q = Q(σ, t) by the equation (2.10) with f ∈ C1([0, T ]) satisfies
above conditions. In the proof of propositions, we should be careful for the limiting
procedure for sequences of times, in particular, in the proof of Propositions 4.1 and
4.2.

Fortunately, when we verify that ψε is a viscosity supersolution of (2.6) and (2.9),
this generalization yields only one extra term of the time derivative of ψε, i.e.,

∂tψε =
Qσ

ε
(∂tωδ +K1) +Qt.

The last term is included only in the term of the order ε0 of Rε.

(v) (Application for the driving force f = f(t).) We remark that an application in
§2.5 is still valid for f = f(t) depending on t. Suppose that f0 is continuous. It is
easy to approximate f0 by a smooth function f τ converging to f0 locally uniformly.
Then convergence ansatz extends to this situation is proved in [GG4] and [GG5].
However, by the remark(iv), we need the bound of ‖f‖C1([0,T ]) to verify that our
function ψε is a viscosity supersolution of (2.9) by the method developed in this
paper. Another method seems to be necessary to prove our uniform convergence
for f = f(t) without a bound for f ′.
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