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SMALL DATA SCATTERING FOR THE
KLEIN-GORDON EQUATION WITH CUBIC

CONVOLUTION NONLINEARITY

HIRONOBU SASAKI∗

DEPARTMENT OF MATHEMATICS, HOKKAIDO UNIVERSITY,
060-0810, JAPAN.

Abstract. We consider the scattering problem for the Klein-
Gordon equation with cubic convolution nonlinearity. We give
some estimates for the nonlinearity, and prove the existence of
the scattering operator, which improves the known results in some
sense. Our proof is based on the Strichartz estimates for the inho-
mogeneous Klein-Gordon equation.

1. Introduction

This paper is concerned with the scattering problem for the nonlinear
Klein-Gordon equation of the form

∂2
t u − ∆u + u = Fγ(u) (1.1)

in space-time R × R
n, where u is a real-valued or a complex-valued

unknown function of (t, x) ∈ R×R
n, ∂t = ∂/∂t and ∆ is the Laplacian

in R
n. The nonlinearity Fγ(u) is a cubic convolution term Fγ(u) =

−(Vγ ∗ |u|2)u with

|Vγ(x)| ≤ C|x|−γ. (1.2)

Here, 0 < γ < n and ∗ denotes the convolution in the space variables.
The term Fγ(u) is an approximative expression of the nonlocal inter-
action of specific elementary particles. Menzala and Strauss started to
study this equation in [5].

In order to treat the scattering problem, we define the scattering
operator for (1.1). First, we list some notation to give the definition.
Let Hs be the usual Sobolev space (1−∆)−s/2L2(R

n) and let Hs,σ be the
weighted Sobolev space (1−∆)−s/2 〈x〉−σ L2(R

n). A Hilbert space Xs,σ
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2 H. SASAKI

is denoted by Hs,σ ⊕ Hs−1,σ. For a positive number δ and a Banach
space A, we denote the set

{
a ∈ A; ‖a|A‖ ≤ δ

}
by B(δ; A). Then

the scattering operator is defined as the mapping S : B(δ; Xs,σ) �
(f−, g−) 	→ (f+, g+) ∈ Xs,0 if the following condition holds for some
δ > 0:

For any (f−, g−) ∈ B(δ; Xs,σ), there uniquely exist a time-global so-
lution u ∈ C(R; Hs) of (1.1), and data (f+, g+) ∈ Xs,0 such that u(t)
approaches u±(t) in Hs as t tends to ±∞, where u±(t) are solutions of
linear Klein-Gordon equations whose initial data are (f±, g±), respec-
tively.

We call that “(S,Xs,σ) is well-defined” if we can define the scattering
operator S : B(δ; Xs,σ) → Xs,0 for some δ > 0.

By Mochizuki [6], it is shown that if n ≥ 3, s ≥ 1, γ < n and
2 ≤ γ ≤ 2s+2, then (S, Xs,0) is well-defined. By using the methods of
Mochizuki and Motai [7] and Strauss [11], we see that if n ≥ 2, s ≥ 1,
4/3 < γ < 2 and σ > 1/3, then (S, Xs,σ) is well-defined. In view of
the condition of σ, there is a gap between the two cases γ ≥ 2 and
γ < 2. Our aim of this paper is to fill the gap. By using the Strichartz
estimate for pre-admissible pair and the complex interpolation method
for the weighted Sobolev space, we show that (S, Xs,σ) is well-defined
if 4/3 < γ < 2 and σ > (2−γ)/2, which improves the condition above.

In order to state our results, we give notation which will be used in
this paper.

For s ∈ R and (1/p,1/q) ∈ [0, 1] × [0, 1], let Hs
p be the Sobolev

space (1 − ∆)−s/2Lp(R
n) and let Bs

p be the Besov space Bs
p,2(R

n) (see,
e.g., [1] for the definition of the Besov space). For s ∈ R, we set
Es[u](t) = ‖(u(t), ∂tu(t)

)|Xs,0‖. For s0 ∈ R and Q = (1/q, 1/r) ∈
[0, 1]× [0, 1], L(s0, Q) denotes either Lq(R; Hs0

r (Rn)) or Lq(R; Bs0
r (Rn)).

Put J = (0, t) or (−∞, t) or (t,∞), ω =
√

1 − ∆ and U(t) = exp(±itω).
For a Banach space A, B0(R; A) is the set of all A-valued, continuous
and bounded functions on R. Moreover, if f in B0(R; A) has its de-
rivative, and if ∂tf ∈ B0(R; A), then we write f ∈ B1(R; A). For
s ∈ R, Hs denotes B0(R; Hs) ∩ B1(R; Hs−1) with the norm ‖u|Hs‖ =
‖u|L(s, (0, 1/2))‖ + ‖∂tu|L(s − 1, (0, 1/2))‖. Furthermore, we set

Hs =
{
u ∈ Hs; there exist f, g ∈ Ś(Rn) such that

u(t) = cos tωf + ω−1 sin tωg, ω−1∂tu(t) ∈ Hs
}
.
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We call u = u(t, x) a free solution if u ∈ Hs for some s ∈ R. For a free

solution u0, u ∈ Ś(Rn) is said to be a u0-solution if

u(t) = u0(t) +

∫ t

0

sin(t − τ )ω

ω
F (u(τ ))dτ.

For s, s0 ∈ R and Q = (1/q, 1/r) ∈ [0, 1]×[0, 1], we denote L(s0, Q)∩Hs

and L(s0, Q) ∩ Hs by Z(s0, s, Q) and Z(s0, s, Q), respectively. Define
1/qε = 1/3− ε and 1/rθ = 1/2− (1+ θ)/3n. Assume that 4/3 < γ < 2.
Then we can easily show that there exist sufficiently small ε(γ) > 0
and θ(γ) ∈ (0, 1) such that

1

6
<

n

2

(1

2
− 1

rθ(γ)

)
<

1

qε(γ)

< n
(1

2
− 1

rθ(γ)

)
,

γ = 2 − 2
{ 2

qε(γ)

− n
(1

2
− 1

rθ(γ)

)}
.

For Qγ = (1/qε(γ), 1/rθ(γ)), we set

s(Qγ) = max
{n + 2

n

(
1 − 3

qε(γ)

)
,
2 − γ

4

}
.

We are now ready to state our main results.

Theorem 1.1. Assume that n ≥ 2, 4/3 < γ < 2, s ≥ 1, and put
sγ = s(Qγ), Z = Z(sγ + s − 1, s, Qγ). Then there exist some positive
numbers δ0, δ+, δ− satisfying the following properties:

(i) If u0 ∈ B(δ0; Z), then there uniquely exist u ∈ Z and u+, u− ∈ Z
such that u is a u0-solution and we have

lim
t→±∞

Es[u − u±](t) = 0. (1.3)

Moreover, the operators Ṽ± : B(δ0; Z) � u0 	→ u± ∈ Z are well
defined, injective and continuous.

(ii) If u± ∈ B(δ±; Z), then there uniquely exist u ∈ Z and u0 ∈ Z
such that u is a u0 − solution and (1.3) holds.
Moreover, the operators W± : B(δ±; Z) � u± 	→ u0 ∈ Z are well
defined, injective and continuous.

(iii) The numbers δ± satisfy B(δ−; Z) ⊂ B(δ0; Z), W−(B(δ−; Z)) ⊂
B(δ0; Z) and B(δ+; Z) ⊂ V+ ◦ W−(B(δ−; Z)). In particular, the

operator S̃ = V+ ◦ W− : B(δ−; Z) → Z is well defined, injective
and continuous.

The following result follows from Theorem 1.1.

Corollary 1.2. Assume that n ≥ 2, 4/3 < γ < 2, σ > (2 − γ)/2,
s ≥ 1 and put sγ = s(Qγ), Z = Z(sγ + s− 1, s, Qγ), u�(t) = cos tωf�+



4 H. SASAKI

ω−1 sin tωf�, where 	 denotes either 0,+ or −. Then there exist some
positive numbers η0 and η− satisfying the following properties:

(i) If (f0, g0) ∈ B(η0; X
s,σ), then there uniquely exist u ∈ Z and

(f+, g+), (f−, g−) ∈ Xs,0 such that u is a u0 − solution and (1.3)
holds.
Moreover, the operators V± : B(η0; X

s,σ) � (f0, g0) 	→ (f±, g±) ∈
Xs,0 are well defined, injective and continuous.

(ii) If (f−, g−) ∈ B(η−; Xs,σ), there uniquely exist u ∈ Z and (f+, g+) ∈
Xs,0 such that u satisfies

u(t) = u−(t) +

∫ ∞

t

sin(t − τ )ω

ω
F (u(τ ))dτ (1.4)

and (1.3) holds.
Moreover, the scattering operator S : B(η−; Xs,σ) � (f−, g−) 	→
(f+, g+) ∈ Xs,0 is well defined, injective and continuous.

Remark 1. If V satisfies V (x) = V (−x), and 0 < γ < 3, then we
can easily show small data global existence for (1.1) using the energy
equality (see, e.g.,[5]) and an a priori estimate. However, the existence
of the scattering operator is not known.

Remark 2. For recent results on the wave equation with a cubic con-
volution, see, e.g., Hidano [3] and Tsutaya [13].

2. Preliminaries

In this section, we prove the key lemma for our main results. We
first state the generalized Hölder inequality in [10].

Proposition 2.1. If s ≥ 0, 1 < pj < ∞ , j = 1, · · · , 5 and 1/p1 =
1/p2 + 1/p3 = 1/p4 + 1/p5, then we have

‖fg|Hs
p1
‖ � ‖f |Hs

p2
‖‖g|Lp3‖ + ‖f |Lp4‖‖g|Hs

p5
‖. (2.1)

We need the Strichartz estimates proved by Nakamura and Ozawa
[9] (see also [8]).

Proposition 2.2. (i) If 2/qj = n(1/2 − 1/rj), 2ρj = (n + 2)(1/2 −
1/rj), 2 ≤ qj, rj ≤ ∞, (qj, rj) �= (2,∞), j = 1, 2, then we have

‖
∫

J

U(t − τ )h(τ )dτ |Lq1B
−ρ1
r1

‖ � ‖h|Lq́2B
ρ2

ŕ2
‖. (2.2)

(ii) If 1/ŕ4 +2/nq́4 = 1/r3 +2/nq3 +2/n, max(0, 1/2−1/n) < 1/rj <
1/2, 0 < 1/qj < n(1/2 − 1/rj), 1/q3 < 1/q́4, ρ3 + ρ4 = (n +
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2)(1/ŕ4 − 1/r3)/2, then we have

‖
∫

J

U(t − τ )h(τ )dτ |Lq3B
−ρ1
r3

‖ � ‖h|Lq́4B
ρ4

ŕ4
‖. (2.3)

We next state the estimates of the nonlinearity.

Lemma 2.3. Assume that 0 ≤ ρ ≤ ρ̃, 0 < 1/r̃ < 1/2 ≤ 1/r < 1,
0 < γ < n. If there exist some θj ∈ [0, 1], j = 1, 2, satisfying

1 +
1

r
=

γ

n
+ (

1

r̃
− θ1

ρ̃ − ρ

n
) + 2(

1

r̃
− θ2

ρ̃

n
), (2.4)

1

r̃
− θ1

ρ̃ − ρ

n
,
1

r̃
− θ2

ρ̃

n
> 0, (2.5)

then we have

‖F (u)|Hρ
r‖ � ‖u|H ρ̃

r̃ ‖3 (2.6)

and

‖F (u)|Bρ
r‖ � ‖u|B ρ̃

r̃‖3. (2.7)

Proof. Put

1

p1
= −1 +

γ

n
+ (

1

r̃
− θ1

ρ̃ − ρ

n
) + (

1

r̃
− θ2

ρ̃

n
),

1

p2
=

1

r̃
− θ2

ρ̃

n
,

1

p3
= −1 +

γ

n
+ 2(

1

r̃
− θ2

ρ̃

n
),

1

p4
=

1

r̃
− θ1

ρ̃ − ρ

n
,

1

p5
=

1

p4
+

1

p2
.

Then we have 1/r = 1/p1 + 1/p2 = 1/p3 + 1/p4, 1 < r, pj < ∞,
j = 1, · · · , 5. By Proposition 2.1 and the Hardy-Littlewood-Sobolev
inequality, we have

‖F (f)|Hρ
r ‖ = ‖(V ∗ |f |2)f |Hρ

r ‖
�‖V ∗ |f |2|Hρ

p1
‖‖f |Lp2‖ + ‖V ∗ |f |2|Lp3‖‖f |Hρ

p4
‖,

‖V ∗ |f |2|Hρ
p1
‖ �‖V ∗ ωρ|f |2|Lp1‖

�‖ωρ|f |2|Lp5‖
=‖|f |2|Hρ

p5
‖

�‖f |Hρ
p4
‖‖f |Lp2‖

and

‖V ∗ |f |2|Lp3‖ � ‖f |Lp2‖2.

By the embedding H ρ̃
r̃ ↪→ Lp2 and H ρ̃

r̃ ↪→ Hρ
p4

, we obtain (2.6). From

(2.6), we see that (2.7) holds since Hρ
r ↪→ Bρ

r and B ρ̃
r̃ ↪→ H ρ̃

r̃ . �
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Finally we state the key lemma to prove Theorem 1.1.

Lemma 2.4. Assume that n ≥ 2, 4/3 < γ < 2, s ≥ 1 and put
L = L(sγ + s − 1, Qγ). Then there exists some δ > 0 satisfying as
follows: If u0 ∈ Bδ(L), then there uniquely exists u ∈ L such that we
have

u(t) = u0(t) +

∫
J

sin(t − τ )ω

ω
F (u(τ ))dτ, (2.8)

‖u|L‖ ≤ 4

3
‖u0|L‖, (2.9)

‖
∫

J

U(t − τ )F (u(τ ))dτ |L(s− 1, (0, 1/2))‖ ≤ 1

3
‖u0|L‖. (2.10)

Proof. (Step I.) In order to show the existence of a time-global solution,
we define the contraction mapping on the suitable complete metric
space. Put Y = B(4

3
‖u0|L‖; L) and d(u, v) = ‖u − v|L‖. Then (Y, d)

is a nonempty complete metric space. We define a mapping Φ by

Φ : u 	−→ u0 +

∫
J

sin(t − τ )ω

ω
F (u(τ ))dτ.

By Proposition 2.2,(2), we have

‖
∫

J

sin(t − τ )ω

ω
F (u(τ ))dτ |L‖ � ‖F (u)|L(sγ + s − 2 + ρ̃, (

3

qε
,

1

r̃θ
))‖.

Here (ε, θ) denotes (ε(γ), θ(γ)) and (r̃θ, ρ̃) satisfies

1

r̃θ
+

6

nqε
=

1

rθ
+

2

nqε
+

2

n
,

ρ̃ =
n + 2

2
(

1

r̃θ
− 1

rθ
) =

n + 2

2
(
2

n
− 4

nqε
) =

n + 2

3n
+ 2

n + 2

n
ε.

Remark that max(0, 1/2 − 1/n) < 1/rθ, 1/ ´̃rθ < 1/2, 0 < 1/qε <

n(1/2 − 1/rθ) and 0 < 1 − 3/qε < n(1/2 − 1/ ´̃rθ) since

1

2
<

1

r̃θ
=

1

rθ
− 4

nqε
+

2

n
=

1

2
+

1 − θ

3n
+

4ε

n
<

1

2
+

1

n
,

0 < 1 − 3

qε
= 3ε <

1 − θ

3
+ 4ε = n(

1

r̃θ
− 1

2
).

Since ρ̃ ≤ 1, we have

‖F (u)|L(sγ + s − 2 + ρ̃, (
3

qε
,

1

r̃θ
))‖ � ‖F (u)|L(sγ + s − 1, (

3

qε
,

1

r̃θ
))‖.
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It follows from Lemma 2.3 that

‖F (u)|L(sγ + s − 1, (
3

qε
,

1

r̃θ
))‖ � ‖u|L‖3

since 1 + 1/r̃θ = γ/n + 3/rθ.
(Step II.) We estimate the left hand side of (2.10). By Proposition
2.2,(2),

‖
∫

J

U(t − τ )F (u(τ ))dτ |L(s− 1, (0, 1/2))‖ � ‖F (u)|L(s− 1 + ρ̇, (
3

qε
,

1

ṙθ
))‖,

where
1

ṙθ
=

1

2
+

2

n
(1 − 3

qε
), ρ̇ =

n + 2

n
(1 − 3

qε
).

Remark that 2(1−3/qε) = n(1/ṙθ −1/2) and 2ρ̇ = (n+2)(1/ṙθ −1/2).
Put

ϑ =
1

s − 1 + sγ

{ 1

qε

− n

2

(1

2
− 1

rθ

)}
.

Then we have 0 ≤ ρ̇ ≤ sγ, 0 ≤ ϑ ≤ 1,

1 +
1

ṙθ
=

γ

n
+

1

rθ
+ 2(

1

rθ
− ϑ

s − 1 + sγ

n
),

1

rθ

− ϑ
s − 1 + sγ

n
> 0.

Thus, by Lemma 2.3, we have

‖F (u)|L(s− 1 + ρ̇, (
3

qε

,
1

ṙθ

))‖ � ‖u|L‖3.

(Step III.) We prove (2.9) and (2.10). By Steps I and II, we have

‖Φu|L‖ ≤ ‖u0|L‖ + C‖u|L‖3,

‖Φu − Φv|L‖ ≤ C
(‖u|L‖2 + ‖v|L‖2

)‖u− v|L‖
and

‖
∫

J

U(t − τ )F (u(τ ))dτ |L(s− 1, (0, 1/2))‖
≤ C‖u|L‖3

for all u, v ∈ Y . Thus, if we put ‖u0|L‖ ≤ δ and δ ≤ 3/(8
√

C), then
we obtain

‖Φu|L‖ ≤ (1 +
64

27
Cδ2)‖u0|L‖ ≤ 4

3
‖u0|L‖, (2.11)

d(Φu,Φv) ≤ 32

9
Cδ2‖u − v|L‖ ≤ 1

2
d(u, v) (2.12)
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and

‖
∫

J

U(t − τ )F (u(τ ))dτ |L(s− 1, (0, 1/2))‖ ≤ 64

27
Cδ2‖u0|L‖ ≤ 1

3
‖u0|L‖.
(2.13)

By (2.11) and (2.12), Φ is a contraction mapping from (Y, d) into itself.
Thus, there exists a unique fixed point u ∈ Y . By (2.13), we obtain
(2.10). �

3. Proof of theorem 1.1

In this section, we give a proof of Theorem 1.1 dividing into five
steps.
(Step I.) For all u0 ∈ Bδ(Z(sγ + s − 1, s, Qγ)), by Lemma 2.4, there
uniquely exists u0-solution satisfying (2.9) and (2.10). We have

‖u|Hs‖ ≤‖u0|Hs‖ + ‖
∫ t

0

U(t − τ )F (u(τ ))dτ |L(s− 1, (0, 1/2))‖
≤‖u0|Hs‖ + ‖u0|L‖/3

≤‖u0|Z‖.
Thus, ‖u|Z‖ ≤ 3‖u0|Z‖. Put

u± = u0 +

∫ ±∞

0

sin(t − τ )ω

ω
F (u(τ ))dτ.

Then we have

‖u±|Z‖ ≤‖u0|Z‖ + ‖(
∫ t

0

+

∫ ±∞

t

)
sin(t − τ )ω

ω
F (u(τ ))dτ |Z‖

≤5/3‖u0|Z‖
and u± ∈ Hs.
(Step II.) It follows from Lemma 2.4 that

E[u − u±](t) �‖χ(t,±∞)u|L‖ → 0

as t → ±∞.
Assume that there exist some ũ± ∈ Hs such that E[u − ũ±](t) → 0 as
t → 0. By the energy equality, we have

E[u± − ũ±](0) � E[u± − ũ±](t) → 0

as t → 0. Hence u± = ũ±. Thus, V± : Bδ(Z) � u0 	→ u± ∈ Z is well
defined.



SMALL DATA SCATTERING FOR KLEIN-GORDON EQUATION 9

(Step III.) It is clear to see u0 	→ u is injective. If we put u 	→ u± and
ũ 	→ u±, then we have

u0 +

∫ ±∞

0

sin(t − τ )ω

ω
F (u(τ ))dτ = ũ0 +

∫ ±∞

0

sin(t − τ )ω

ω
F (ũ(τ ))dτ.

Since u is u0-solution, we have

u +

∫ ±∞

t

sin(t − τ )ω

ω
F (u(τ ))dτ = ũ +

∫ ±∞

t

sin(t − τ )ω

ω
F (ũ(τ ))dτ.

Thus,

‖u− ũ|Z‖ =‖
∫ ±∞

t

sin(t − τ )ω

ω

{
F (u) − F (ũ)

}
dτ |Z‖

≤1

2
‖u− ũ|Z‖

if δ is sufficiently small. Hence V± is injective.
(Step IV.) For sufficiently small δ, we have

‖u − v|Z‖ ≤ ‖u0 − v0|Z‖ +
1

2
‖u − v|Z‖,

‖u± − v±|Z‖ ≤ ‖u0 − v0|Z‖ +
1

2
‖u − v|Z‖.

Thus, u± → v± in Z if u0 → v0 in Z. Hence Theorem 1.1,(i) holds.
Theorem 1.1,(ii) can be proved analogously.
(Step V.) We put δ− = δ0/3. Then we have Bδ−(Z) ↪→ Bδ0(Z) and
W−(Bδ−(Z)) ↪→ Bδ0(Z) since ‖V±(u0)|Z‖ ≤ 3‖u0|Z‖ and ‖W±(u±)|Z‖ ≤
3‖u±|Z‖. Put δ+ = δ−/9 = δ0/27. Then V− ◦ W+(Bδ+(Z)) ⊂ Bδ+(Z).
Thus Bδ+(Z) ↪→ V+◦W−(Bδ−(Z)). Hence we have completed the proof
of Theorem 1.1.

4. Proof of corollary

It is sufficient to show the following lemma:

Lemma 4.1. Assume that n ≥ 2, max(0, 1/2 − 1/n) < 1/r < 1/2 and
(n/2 − n/r)/2 < 1/q < (n/2− n/r). Then we have

‖U(·)f |LqLr‖ � ‖f |Hs,σ‖ (4.1)

if

s >
n + 2

2
(
1

2
− 1

r
) +

n + 2

2n

{2

q
− n(

1

2
− 1

r
)
}

and

σ >
2

q
− n(

1

2
− 1

r
).
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Proof. We can choose ϑ ∈ (0, 1) and sufficiently small δ > 0 which
satisfy

1

q
= (1 − ϑ)

n

2
(
1

2
− 1

r
) + ϑ

{
n(

1

2
− 1

r
) − δ

}
.

By using the Strichartz estimate for the homogeneous Klein-Gordon
equation prove by [4], we have

‖U(·)f |Lq0Lr‖ � ‖f |H(n+2)(1/2−1/r)/2‖,
where 1/q0 = (n/2 − n/r)/2. On the other hand, by [2], we see that

‖U(t)f |Lr‖ � 〈t〉−(n/2−n/r) max
{‖f |Hn(1/2−1/r)‖, ‖f |H(n+2)(1/2−1/r)

r ‖}
� 〈t〉−(n/2−n/r) ‖f |Hs1,σ1‖,

where s1 = (n + 2)(1/2 − 1/r), σ1 = n(1/2 − 1/r) + δ. Thus, it holds

‖U(·)f |Lq1Lr‖ � ‖f |Hs1,σ1‖,
where 1/q1 = n(1/2 − 1/r) − δ. By (24) in [12], we have

[Hs1/2,0, Hs1,σ1]ϑ = H(1+ϑ)s1/2,ϑσ1.

Here, [·, ·] denotes the complex interpolation method and

ϑ =
{n

2
(
1

2
− 1

r
) − δ

}−1{1

q
− n

2
(
1

2
− 1

r
)
}
.

Hence, we obtain

‖U(·)f |LqLr‖ � ‖f |H(1+ϑ)s1/2,ϑσ1‖.
We can put s > (1 + ϑ)s1/2 and σ > ϑσ1 with sufficiently small δ.
Thus, (4.1) holds. �

By substituting q = qε(γ) and r = rθ(γ) for (4.1), we can easily see
that Corollary 1.2 holds.

Acknowledgement The author would like to acknowledge the
helpful guidance and encouragement of Professors T. Ozawa and K.
Tsutaya. The author is grateful to the referee for pointing out some
gaps in the proof and mistakes in the manuscript.

References
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