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Variational approach for identifying the coefficient of wave
equation

Cheok Choi* Gen Nakamura, ' Kenji Shirotat

Abstract

An inverse boundary value problem for identifying the coefficient of some second order hyperbolic
equation by one boundary measurement is considered. The problem is transformed to a minimization
problem of a functional. By computing the Gateaux derivative of the functional, an algorithm for
identifying the coefficient is given based on the projected gradient method. A numerical result is
given testing the algorithm.

1 Introduction

Let Q@ C R™ (n =2 or 3) be a bounded domain with smooth boundary 99Q. Let K(xz) € L>(Q) satisfy

0<Cr < K(z)<Cy im0
K(x)is C in Q\F (1)
IVK(z)| < Cs in Q\ F,

where C1, Cs, C3 are fixed positive constants and F' C € is a compact set with 9Q N F = (). For a given
u € CG([O,T];H(%)(BQ)) with dfu(z,0) = 0 (z € Q,0 < i < 5), we consider an initial boundary value
problem :

0?u :
u(0) = 0, %(0) —0 noQ (2)
u="1a on 0Q x (0,T).

8
Here H(5)(0R) is the Sobolev space of order % defined over 92 and C™([0,T]; X) with m € Z :=

N U {0} denotes the set of all C™ class functions defined in [0,7] taking their values in some Banach
space X.

(2) admits a unique solution u € Hs)((0,T); H1)(2)). We denote this u by u = u[K](z,t) to clarify
the dependency on K.

Here and hereafter, we define H(,)(Q2) for s € R by g € H(,)(Q2) if and only if there exists an extension
f € H(5(R™) of g to the ambient space R” of 2 and the norm ||g|| 7, (o) is defined by ||gl|7,,, () := inf
U rr sy mnys flo = g} We also define H(,)(2) == {g € H(5)(22); supp g C 2} with norm ||g||H(S)(Q) =
ll9ll 7 () These kind of Sobolev spaces are discussed systematically in [3].

0
Now, suppose we do not know K (x), but we are given q := K(a:)a—z on 9Q x (0,T) beside @ for T

large enough. Then, we are interested in the following inverse problem (IP):
Inverse problem (IP): Reconstruct K(z) from {&,G}.

Let K be the set of all K(x) € L*>°(Q) satisfying (1). For any L € K, we define J(L) by

_ r Oul[L] _12
J(L) = / /8 L) T~ af dod,
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where u[L] is the solution of (2) for K = L.

Since the absolute minimum of J(L) is attained when L(z) = K(x), we can expect to recover K (z)
by minimizing J(L).

One of our coauthor Shirota started the numerical study of the inverse problem (IP) in his paper
[9]. He used the projected gradient method to minimize the functional J(L). There are many methods
for minimizing J(L). The projected gradient method is one of them. It needs to compute the Gateaux
derivative J'(L) of J(L). Shirota computed J'(L) approximately by a formal argument. Some of the
numerical results in [9] were quite good.

The aim of this paper is to justify his formal argument, give the complete form of J'(L) and provide
some numerical results using J'(L).

The complete form of J'(L) is given by

Theorem 1.1
J(L+eM)—J(L)=eJ (L)M + o(¢)

) (" oU
J(L)M = MVulL] - Vudzdt + | =(T)wdz,
o Ja q Ot

where w € Ef(l)(Q) is the weak solution of the elliptic equation

V- (LVw) =0 in  Q
B ou _ (3)
w=2 (L o (T) q(T)> on 00
and v € L*((0,T); Hq1)()) is the weak solution of the equation
ok .
@U—V-(LVU)ZO in  Qx(0,7)
o(T) =0, %(T) -0 n  Q (4)
sz(L%—‘) on o0 x (0,T)
and U € Hz ((0,T); L?(Q)) is the weak solution of the equation
2
%ﬂwwr@vm:v-wmmu) in Qx(0,T)
U(0) =0, %—g(o) —0 in  Q (5)
U=0 on o0 x (0,T).

Remark 1.2 In the proof of Theorem 1.1 given later, we showed that the mapping ® : L=(Q) > M +—

/ %—Z(T)w dx € R is bounded linear. Hence, by Fxample 5 in page 118 of [12], there exists a unique
Q

h € LY(Q) such that

/Q aa—[tJ(T) dr = /Q Mhde. (6)

The proof of this theorem is given in section 5, the existence of u,v and w are given in Appendix and
that of U given in section 3.

To the best of our knowledge, there is not any paper other than [9] which tried projected gradient
method to obtain some good numerical results for the inverse problem (IP). The inverse problem (IP) is
only a prototype. The same method can be applied to similar inverse problem with different equation.
When we consider an elastic equation, the problem becomes more practical because it really models the
nondestructive testing of a material using ultrasound.

The rest of our paper is organized as follows. In section 2, we will show preliminary computation of
the variation of J(L) with respect to L as an intermediate step to get the complete form of the Gateaux
derivative J'(L) of J(L). In section 3, we will present some theorems, which play a major role to prove
Theorem 1.1. In sections 4 and 5, using the theorems given in section 3, we will prove Theorem 1.1.
Finally in the last section, we show a numerical algorithm based on the complete form of J'(L) and its
example.



2 Preliminary computation for J'(L)

In this section, we prove

Lemma 2.1
J(L+ EM) J(L)

—s/ /MVu L] - Vudxdt + dou

— (T wdzx

/ /EMV(Su Vvda:dt+/ / |6q|*dodt,
0
u[L

OulL 4+ eM] ouf

where du = u[L + eM] — u[L], 6q = (L 4+ M) o —L B ,
w E Ef(l)(ﬂ) is the weak solution of the elliptic equation
V- (LVw) =0 in Q
w =2 <Lg—u(T) - (j(T)> on 01, )
n

and v € L*((0,T); Hq1)()) is the weak solution of the equation

0 .
Frr ki V- (LVv) = n Qx (0,7)
v(T) =0, %(T):o in Q (9)
ou _
v= <L% - q> on o0 x (0,T).
Proof Let ¢[L] := La ulL] For L,M € K
on 0% (0,T)
( J(L—i—sM —J(L)
/ / glL + M) — 9)? — (q[L] — 9)*]dodt
0. /oo
/ / q[L + eM] + q[L] — 2q)6qdodt
0. /oo
/ / 2(q[L] — q (5qdo+/ / |6g|2dodt.
\ 0o Joo
Integrating by parts and reminding 813[;/] (0) =0 and v(T) = w,
oulL] 17 [T 9L
[ / at m /Q([ U]O_/O A 1)
=/, wdx — / 8t2 vda:dt.

By another integration by parts,

/OT /Q LZu[L] - Vodzdt
_ /O /8 vl - /Q V-(LVu[L])vda;) dt.

/ /< 8t 8t >dazdt o)
/ wdx —/ /3qu |dodt.

3

Hence,




By the similar way, we have

/ /<8“L+€M g?; (L + eM)Vu[L + eM] - w) dadt

/ M( )wda;—/ / vg[L + eM]dodt.
Q ot o Joa
Using (10) and (11), we get

/ / [85? ?t) (L+eM)VulL +eM] - LVU[L]-VU)]da:dt

(%u wda;—/ / voqdodt.
oQ

Moreover, applying the integratlon by parts, we have

ddu v 31} T 9%
82
— 6u—da;dt,
[ /Q =

LVéu - Vodxdt

Q . .

—/ L/ 6u< >da—/6uv LVv)da;} dt
0 a0 on
/ /6uV (LVv)dzxdt.

T
/ /<3‘5_“@—Lv5u w) dadt = 0.
. Jo \ot

T

0

Hence,

Therefore, from (12) and (14

/ / eMVulL 4+ eM] - Vudxdt

8(5u wdx — / / véqdodt.
JQ o0
Reminding v|sox 0,1 = 2(q[L] — @),

/ / L] — §)bqdodt = / /€MVU Vudzdt
o0

/ /EMV(M Vudzdt + dou — (T)wdz.
qQ Ot

Then, substituting (15) into (13), we get (7).

3 Continuous dependence of the solution on the coefficient

Fix M € K and take a small ¢ > 0. We write L.(x) := L(z) + eM (x),

82

.AL = w AL7
82

ALE = @ ALga

(12)

(14)



where the notation Ar, Ay, are defined as in (37) of Appendix.
Let v € H(5)((0,T); H1)(Q2)) and v. € Hs)((0,T); Hi1y(§2)) be the solutions to

Apv = f(L) € CX[0,T); Hy () in Qx(0,T)
v=20 on o0 x (O,T) (16)
0 —
v(0) = wug, EU(O) = u
and
ALEUE = f(LE) € 04([07T]7H(1)(Q)) in Q x (OvT)
Ve = 0 on o0 x (O,T) (17)

0 _
ve(0) = g, avs(O) = uq,

respectively. Here, f(L), f(L.), uo and uj are defined by the formula given in (40) of Appendix.
Then, we the following continuous dependency of the solution on the coefficient in a Gelfand triple
(V, H,V'), which is defined as in (40) of Appendix.

Theorem 3.1
ve — v (e — 0)in C([0,T); V)N CY[0,T]; H)

Proof If the inhomogeneous terms of the equations (16) and (17) are same, the continuous dependency
of the solution on the coefficient is given as Theorem 2.8.1 and Theorem 2.8.2 in [10]. The proof for them
can be also applied to the present situation without any essential change. So we omit giving further
details of the proof.

Now, for given ug € H, u; € V' and f € L?((0,T); V"), we consider the Cauchy problem :

Agu = f in Q x (O,T)
0 18
u(0) = uwg, —u(0) = ug in Q. (18)
ot

In order to define a weak solution u to (18), we first define the test function space X.

Definition 3.2 (test function space) The test function space X is the set of all p € L2((0,T);V) satis-
Jying
{ Axep € L*((0,T); H)

dp
T = —(T) = 0.
P(T) = ZE(T)
The definition of the weak solution is as follows.

Definition 3.3 v € L2((0,7T); H) with u’ € L2((0,T); V') is called a weak solution of (18) if it satisfies

T
//uAKgpdxdt
0o Ja
T 8@
z/ /f(pdxdt—F/ <u1<p(0)—u0—(0)> dr for Vpe X.
0o Ja Q ot

Then, we have the following existence and uniqueness result from [4].

Theorem 3.4 Given (f,ug,u1) € L2((0,T); V') x H x V'. Then there is a unique weak solution u with

<u, %) e C([0,T]; H) x C(0, T]; V).

For the continuous dependence of the solution to (18) on the coefficient, we have

Theorem 3.5 Let v. and v be the weak solution of (18) with K = L + M and K = L, respectively.
Then, v — v (e — 0) in L2((0,T); H) and v. —v' (e —0) in L?((0,T);V").

a



Proof Let )
E(t) = §(<U,U>H + (Ale’ vV )

and .
E.(t) = 2(<U57U5>H+ <A I'UI v >H)

Then, from the proof of Theorem 9.3 of chapter 3 in [4] and the same argument with Lemma 2.4.1 in
[10], we have

T
E(t), E.(t) §C<||u0||il+||ul||%/’+/o ||f||%w> (19)
and
E(t) - E(©0)= [ (A7 f,v)m
/ (20)
B.(t /0 A
respectively.

(1) Weak convergence of v, to v.
From the coercivity in (36), we have

E(t) = C(|[vell3r + lvzl[3)

So, by (19), v. and v’ is uniformly bounded independent of ¢ in L2((0,T); H), L?((0,T); V'), respectively.
Therefore, by the weak compactness of these spaces, there are {£(1)}, which is the subsequence of {e},
a € L%((0,T); H) and 3 € L%((0,T); V') satisfying

Very — @ in L2((0,T); H) (21)
! y — I6] in L2((0,T); V).
Furthermore, 3 = o/, where ’ means the derivative in distribution sense.
Now, we will prove this « is same with v by showing
T
/ / aArp dxdt
0 (22)

Q
T
:/ /fcpdxdt—i—/ <U1<,0(0)—u08—(p(0)> dr for Ve e X.
0o Ja Q ot

Let g := App € L?((0,T); H) and extend g to the whole time interval by putting g = 0 in (—oco, 0]U[T’, 00).
Also, let ¢! := Xjo,r-119 € L%((0,T); H), with the characteristic function Xjo,r—1y of [0, — 1] and
g™ = pmx gt € C([0,T), H), where p,, is a mollifier p,,(t) := m~1p(m~1t) with p € C$°(R) satisfying
0<p<l, /p(t) dt = 1. Then, gb™ is flat at T" and we have
R
g™ — gt (m—0) in L2((0,T); H)

(23)
= (1—0) in Lz((O,T);H).

Taking ¢t = T as an initial surface and g>™ is flat at ¢t = T into account, we have from Theorem A.1 that
there exist a unique "™ € L2((0,T); V) with enough time regularity to

ALLpl,m — gl,m
ot (T) = (") (T) = 0.
By defining o™ := AE:Achl’m, it has enough time regularity and satisfies

A ob™ = AT AL(GP™) + Apeh™ e L2((0,T); H)

ob™(T) = (k™)' (T) =0,



Hence, L™ is a test function. By (17) and taking u = v, in (3.3),

T
| [ oattmy - avghm) o
0 Q T
- / / folm dadt + / (ur 6™ (0) — uo(£h™Y'(0)) dav.
0 Q Q
From Ay — Ay, = Ay, (AZ: — AZI)AL, we have

llbm™ — phm ||y

= [|AL Aret™ = by = (I(AL! = AL AL ™|lv

(24)
= |A1 (AL — ALt Iy < ClI(AL — AL)e"™|v-
— 0 (¢ —0) uniformly with respect to ¢ € [0,T].
Similarly, we can show
[1(e™) = ("™ llv, ™) = ("™)"|lv — 0. (25)

Using (21), (24), (25) and uniform boundedness of {v.}, we reach

T
[ ] athmy+ angtm) duai
0 Q T
:/ /fcpl’mdxdt—i—/ (ulcpl’m(O)—u(](gpl’m)'(O)) dx.
0 Q Q

Furthermore, by (23) and the continuous dependency on the source term in Theorem A.1, we get (22).
Also, we can show v, itself converges to v weakly. In fact, if not, then, we can find € > 0, one
subsequence {ve(m)} and ¢ € X satisfying

T
/ <’U — Ue(m)» <P>H > €. (26)
0

However, {v.(,,)} is also uniformly bounded in L2((0,7); H). As a result, it has convergent subsequence
to v, which is contradiction to (26).

(2) Strong convergence of v to v.
Reminding (471 f,0) r— (A7 Lf, ') = (AL f, vl ")+ (A7) — A7) £, ul) i and A7 M(Ap— Ap ) A7) =
(A7l — AL"), we can show in (20)

t t
E.(0) — E(0), /0<A;jf,v;>Hdt_>/0 (AT fo )V dt (e — 0).

As aresult, E.(t) — E(t) (¢ — 0).
Now, let £(t) = (ve — v,v. — V) g + (A (v) —v'),v. — v')g. Then, by expanding the right side of
&(t), we have
£(t) = 2B(t) + 2E:(t) — (A7} — A7 vz, vl — 2(v,ve)m + (AL, vl i) (27)
On the other hand, by coercivity (36),
£(t) = C(llve — vlffy + llvz = V'|I5)- (28)

Therefore, using uniform boundedness of {v:} and {v}, (21), (27) and (28), we get the strong convergence
of v. and v’ to v and v in L2((0,T); H), L?((0,T); V"), respectively.



4 Asymptotic of 5_1%(T) (e —0)

This section is devoted to the following theorem which gives a representation formula of the second term
on the right side in (7).
Theorem 4.1

dou

[ s = s/ﬂ %—(Z(T)wda:+o(6),

where U is the weak solution of

ALU = V- (MV)u[L] in Q% (0,T)
{ U(0) = aa—[t](O) =0 in Q.

Proof Let u. := u[L + eM], u := u[L]. Then, likewise (39) and (40) in Appendix, we transform
from u, ue into @, ue through ¢ := A@ with the inverse trace operator A given by (38), respectively, i.e.
Uz = ue — ¢ and % = u — ¢. Then we have V- (MV)u = V- (MV)a+V - (MV)p € H®((0,T);V"),
and v, —u = u, — U.

By defining U, :=

Ue —

u’ we have
1 — -
ALE U. = E(ALE Ue — -ALE U)

_ %(ALQ + f(Le) — f(L) — Ap, @)

= V- (MV)+ V- (MV§)

U.(0) = U(0) = 0.

Moreover, we have

ai
Ar. 5 Ue
ot -
=35 (V- (MVa)+ V- (MVg))
ai 8i+1 '
%UE(O) = oo U.00=0 (0<i<5).

Therefore, by Theorem 3.5, we have
UE — U (E — 0) in _H(5)((0,T);H).
As a result, we have

oou, . Oz, Ou,. U ,
W(T) =5 (T) - E(T) —fa(T)vLO(E) in H,

which completes the proof. L]

5 Completion of the proof of Theorem 1.1
First, we show that the third and fourth terms on right side in (7) are o(e). That is

Theorem 5.1

T T
/ /eMVéu-Vvda;dt+/ / |6g]2dodt = o(e) (e — 0).
0o Ja 0o Joo



Proof Let u, u., @ and u. be those given in the proof of Theorem 4.1. Using Theorem 3.1, we can
show easily the first term is o(¢).

Let z. :=u. —u=1u. — @ € H)((0,7T); H, ( 1)(€)). If we prove
IEAIFET (0.7):H ) (\F)) = = O(e) (¢ — 0), then the proof is done. To begin proving this, we first observe
Apze = Apue — AL
=Ap u: + (AL — A )ue — ALt
= (f(Le) = f(L)) + (AL — AL, Jue (29)

=¢e(V-(MV¢)+ V- (MVuy))

=ch € H)((0,7); V') N Hes)((0,7); Hay (2\ F)),
where h:=V - (MVu,). From (29), we have, for 0 <i <5,

o' o .
AL%Zs = E%h mn Q x (O,T)

81’ ai+1

%zE(O) = _&iﬂzs(o) =0 in Q.

By (19) together with (36) given in Appendix and the uniform boundedness of {u.}, we can show

<eC (0<i<5). (30)

9t | L2 0,myvry

<ECH

Hat’ - L2((0,T); H)

Now, let Z. := az. where a € C§°(R™) satisfying supp o C R™\ F' and @ = 1 near z € 2. Then,

we have

ApZ. =Z! + ALZ,
=ceah —2.VL-Va—2LVa-Vz, — Lz.Aa.
By defining g := eah — 2.VL-Va — 2LVa - Vz. — Lz A«
ApZ. = a2l +g € L*((0,7); H). (31)
Moreover, reminding ||z || z2((0,1);v) < C||2Y —€hl|L2((0,1);v7) from Apz. = 2! —eh, by (30) we can show
||z + 9lle2(0,1);m) < €C. (32)

To get exact inequality of Z. in L2((0,T); H2)(£2)), we change the coordinate into a boundary normal
coordinate near . For example, in the case of dimension 3, by a transform F : Q — R™ with F(x) :=
y(z) = (y1(2), y2(x),y3(x)), we have near zo

A (iVyZE) =azl +yg

(33)
{y1 >0} = F(Q), {y =0} =F(09),

~ — Oy, 0
where L = (L) = (Lg)(F~(y)), (9rs) Z BZT 8ZS and we used the same notation Z., z., g to
j 0%;

3

denote their pull back F~!. Then, the principal part of V,, - (f/VyZ )is L 82 + Z Gij0y;0y;) due to
3,j=2

g11 =1, g1 = 0(s # 1) where we used the same notation L to denote its pull back by F~!. By defining

Ze ) — Ze . ~ N T BT
Zk = (y+k6]i) ) and letting H := L*(R%), V := Hq)(R7) ((V,H,V’) becomes Gelfand




triple.), we have
Vy - Zvy[zs]k
= [zl + glk = Vy - [LkVy Ze(y + ke;)
= [T + [glk — Vy - [L1kVy Ze(y + kej) € L2((0,T); V7).
Then, from (32),
llazl]k + 9]k = Vy - [LIeVy Ze(y + kej)l| oo i) < €C

Hence, ||[Z:]kl| 20,y vy < €C. By uniform boundedness of {[Z.]x}, it has a subset which converges to
a function W e L2((0,T); V) weakly. Moreover, W = Oy, Z= (2 < j < 3) and [|W|| 2o, 1)) < €C- So
08 Z. € L*((0,T), H) for |3] <2 and 2 < j < 3. Also, we can show 92, Z. € L*((0,T), H) from (31) and
observing the principal part of V,, - (LV,Z.). Then, using the interpolation theorem of Proposition 3.8
in [5] we have

Ze (W)l 2 (0,1), 10 (R ) < EC (34)
Since we can easily show ||z L2 (0,1), 80, ) < CllZeW)llL2(0,1). 8 (ry)) With some constant C' > 0
du[L.]

on

and (34), we can prove the second term is o(g). U

independent of €, |[aze||L2((0,1), /14, (2)) < €C with another constant C' > 0. Reminding 6¢ = L.

Ou[L) <8u[LE] 3 8u[L]> N sMau[LE]
0

L on =L on on n

Next we finish the proof of Theorem 1.1. From Lemma 2.1, Theorem 4.1 and Theorem 5.1, we can
have a representation in Theorem 1.1. We clearly have the linearity of the mapping : L>(Q) > M —
J'(L)M € R. By using (19), we easily have the boundedness of this mapping. Furthermore, J'(L) gives
the Gateaux derivative of J(L) at L. U
6 Numerical algorithm and example
To find the minimum of the functional J, we make use of the projected gradient method[6]:

Lk+1 = PC' (Lk - akVJ(Lk)) (k‘ = 0, 1, 2, ...... ) 5 (35)
where oy, (0 < ag < 1) is a suitable step size and VJ(L) is a search direction defined by
(VJ(L), My = J(L)M for VM € L*(Q).

Here the map P is a clip-off operator such that

Cl (L(ilf) < Cl)
Cs (L(x) > C3)

From Theorem 1.1 and Remark 1.2, we notice that
T
VJ(L) = / VulL]- Vodz+h.
0

We have to discuss about obtaining numerically the function & in order to use (35).
Let {B;}Y | be a division of the domain  such that

N
Q:UBZ», B,NB; =0 (i#7).

=1
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We denote by x; a characteristic function, namely,

Xi(x) == {0 (@ ¢ B;)

Then, we consider to find the approximation of the density function h in Xp = span {x1, X2, -+, XN}
By using the relation (6) and the Galerkin method, we can get

/hBXz‘dI:/a—U[Xz‘](T)Wdl’

fori=1,2,..., N. Here hg € Xp is the approximation of the density function and the function Ulx;]
is the solution to (5) with the source term V - (x;Vu[L]). We represent hp by the linear combination of

Xi, namely, hg = Zjvzl hjx;. Then, the linear system can be obtained as follows:

N

oU
> hj/xindw=/—[xz*](T)wd$
o Q o Ot

fori=1,2,..., N. Since x; has the orthogonal relation with respect to L? inner product, we have

1 ou

hi = — | =
|Bi| Jo Ot

where |B;| means the area of B;. Therefore we can get the approximation hg by solving N initial-
boundary value problem (5). By using this approximation, we define the approximated search direction
as follows:

VJ(L) :z/QVu[L]~Vvda:—|—hB.

Here we notice that our method with V.J (L) is not the projected gradient method exactly but its calcu-
lation is very easy.
Hence we summurize an algorithm for our inverse problem as follows:

Algorithm for coefficient identification

Given the division {B;}.

1. Pick an initial coefficient function Lo which belongs to the admissible set K.

2. Fork=0,1,2,...; do

(a) Solve (1) to find Vu[Lg] and Lka—u .
" o0 x (0,T)

(b) Solve the boundary value problem (3) to find w.
(¢) Solve the initial-boundary value problem (4) to find Vv.
(d) Fori=1,2,..., N; do
i. Solve the initial-boundary value problem (5) with the source term V - (x;Vu[Lyg]) to find

ou
E[Xi](T)
1. Calculate h; by
1 ou
= — [ =T .
=157 | g el wds

(e) Calculate the approzimated search direction V.J(Ly) by

T N
0

=1

11



(f) Choose the step size ay, by using some method.
(g) Update the coefficient function: Lii1 = Po (Lk — al%J(Lk)).

We show a numerical example for our algorithm. Let 2 be a unit disk. The coefficient K is given by

(125 (j=| <0.1p)
K() _{ 1.0 <|§| > 0.15)

as shown in Fig.1. Here | - | means the Euclidean norm on R?.

(A R

't —05 o0 05 1

Figure 1: Exact coeflicient

The constants in the constrained condition are given by C; = 0.90 and Cy = 1.35. The Neumann
boundary value for this example are supposed to be given by

a(t) = { —p(t) on 98, x (0, T)

0.0 on (0Q\ 0Q,) x (0, T]
where
o) = [02sin (12.5mt) (0 <t<0.16)
PP =00 (t > 0.16)
Here 0Q,, (m =1, 2, ..., 5) are set as

0y, = {(cos@, sin ) | - % <f0—(m-— 1)% < 5—75} .
The Dirichlet boundary value w is generated by solving numerically the wave equation with the exact
coefficient K and the Neumann boundary value §. In order to solve this problem numerically, we make use
of the Newmark method[2] for time integration with linear triangular finite elements in space. To avoid
the inverse inclusion, the measured value @ is given by T(x, t) = uca(x, t)+6(x, t), where uc, means the
calculated value on the circle and §(z, t) is a random small valued function satisfied |§(z, )| < 10710 |uca]
on the boundary 92 for any ¢t > 0. The length of time is set as T' = 4.0. The division {B;} is supposed
to be given by
Bi={xe]0.1(i-1) <|z| <0.1i}

for 1 < ¢ < 10. We employ the Armijo criterion[1] in order to find the step size ay in our algorithm.

We assume that Lo(x) = K|sq = 1.0 in the whole domain. After 100 times of iterations, we have
the calculated coefficient as shown in Figure 2. Figure 3 shows the distribution of the relative error for
calculated coefficient. The maximum value of the relative error is about 8.94%. These figures show that
calculated coefficient is in good agreement with the exact one.

12
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Figure 3: Relative error

A Proof for existence of the solutions to (2), (4) and (3)

In this Appendix, we show the existence of solutions u € H5((0,T); H1y(R)), v € L*((0,T); H(1)(2))
and w € H(1)(2) to (2), (4) and (3), respectively.

To begin with we cite from [11] the existence and regularity theorem for the abstract hyperbolic
evolution equation of second order in the time variable.

Let V, H be real Hilbert spaces and V be separable. Suppose the embedding i : V — H is continuous,
injective and its image is dense in H. Then, the dual i’ : H — V' of i is continuous, injective and
has a dense range. Such a triple (V, H,V’) is called a Gelfand triple. For T'> 0, k € Z4 and X = H
or V, the Sobolev space W¥((0,T); X) is the collection of measurable functions ¢ : (0,7) — X with
dy
dtt

k T l
. . d (p
p € WH(O.T): X) is given by [l = 3 [ || G20
1=0 70

Let a(p,¥) ((p,1) € V) be a continuous, symmetric sesquilinear form satisfying the coercivity :

€ L3((0,7); X) (0 <1 < k), where the differentiation is in the distributional sense. The norm of

2
dt.
X

there exist ko, a >0 with a(yp, @) + kollp||% > allp|l (¢ € V) (36)

Then, it is well known that there exists a unique Ax € L(V,V’) (i.e. the set of all bounded linear
operators from V to V') such that

d2
For the Cauchy problem for the abstract hyperbolic equation Wg + Agy = f, we have

Theorem A.1 Let yo, y1 € V and f € WETL((0,T); H) with k € N satisfy the compatibility condition
of degree k — 1. That is

13



eV (0<I<k—1),y, €H,

h
e Yot = FED(0) = A fRD(0) -+ (1) 242 f(0) + (— 1)1 ALy,
yor = FE2(0) — Ag fFED(0) 1 4 (~1) 1AL F(0) + (—1) ALy,

Then, the Cauchy problem :

dt?

d%y )
— )+ Agy(t) = f(t) in  (0,T)
y(0) =wo, ¥ (0) =1

admits a unique solution y(t) such that

y € L0, V), % € 12((0,T); )

and they depend linearly and continuously on
(f,y0,y1) € L2((0,T); H) x V x H.
Moreover, y has the reqularity :
y € W3(0,7); V), y*¥) € L?((0,7); H), y**V € L7((0,7); V'),

_ 4y
=

For 6 > 0 small enough let Bs := {x € R"; dist (z,90Q) < 6}.
Let (V;,®;) (1 < j < J) be patches of manifold Bs where collection is an atlas of Bs. We can assume
that V; N0Q # 0, ®;(V; N9Q) C R} = R ! and ®,;(V; N Q) C R7E for each j (1 < j < J).
Let {&;}1<j<r, {njti<i<s € C5°(R™) be partition of unities subordinated to {V;}1<j<s. Now, we can
construct an inverse trace operator A : CG([O,T];H(%)({?Q)) — C%([0,T]; Hiz)()) ie. (Al)|aaxior =
¢ e C%([0,T7; H(5y(09)) in the following way.

For ¢ € CG([O,T];H(%)((?Q)), let ¢; = &l € CG([O,T];H(%)((?Q)), m; = £ o (I x (®j]on)7"t) €
C’G([O,T];H(%)(Rn_l)), where I : [0,7] — [0,7] is the identity operator. We define an inverse trace
operator Ag : C°([0,TT; Hizy(R*™1)) — C°([0,T]; H(s)(R)) by

where y(k) :

5
2

— 1 iz (1 + |£/|2)% ~ /
(Aom)(t,x) = @ Td /Rn e 5Wm(t,§ )d§

(m € CO([0, T]; Hyg) (R™1)),

(14+72)73dr and m(t, &) :== / e m(t, 2" )da!.
Rn—1

where &' = (&1, ,&€p_1) for & = (&1, , &), d ::/

Then, A can be given by -
J

AL:= Y (n;((Agmy) o (I x B;))) (38)
J=1 Ox[0,T]
for any ¢ € C%([0, T]; H5(09)). (See [8] for the details.)
We first prove the existence of the solution u € Hs)((0,T); H1)(Q)) to (2) with u(®) € L2((0,7); L*(2)),
uM € L2((0,7); (H(l)(Q))'). Let @ := u — ¢ with ¢ := Au. Then, @ has to satisfy
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with

2
f = F(K) = V- (KV6) 26 € CH([0,T]; Hip (@) o
ug = —@l¢=0, Uy :=— % eV = H(l)(Q).

t=0

Now (V,H := L%*(Q),V’) is clearly a Gelfand triple and a(¢,w) = / KV -Vwdr (Y,w € V) is a

continuous sesquiliear form satisfying the coercivity condition with kg Si 0. Moreover, it is easy to see
that f, ug, uy satisfy the compatibility condition of degree 5. Then, the existence of u to (2) with the
desired properties immediately follows by applying Theorem A.1 to (39).

By observing that @ € Hs)((0,7); H(l)(Q)) satisfies

ot?

we have @ € C?([0,T]; H(3 (2 \ F)) and hence u € C?([0,T]; H(3(Q2\ F)) by the regularity theorem near
the boundary of solutions to the Dirichlet boundary value problem for strongly elliptic equations (See

V- (KVa) = — f € Hg)((0,T); H1y(Q)) € C*((0,T); Hyy (),

[5], Chapter 3, Proposition 3.7). This implies that 2(L%(T) —q(T)) € H3)(09) and
ou  _ 9 )
2Ly —q) € CN([0,T]; Hg)(09))- (41)

By the well-posedness of (8), we immediately have w € H()(2).

For the existence of v € L?((0,T); H1)(2)), we argue likewise we did for the solution u to (2)
using the inverse trace operator transforming (9) to an initial boundary value problem with Dirichlet
boundary condition. Then, by (41), the second term of equation of this initial boundary value problem
belongs to L2((0,T); H) with H = L?(2). Therefore, by Theorem A.1, we have the existence of v €
L2((0,T); Hir) ().
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