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Variational approach for identifying the coeécient of wave
equation

Cheok ChoiÉ Gen Nakamura y Kenji Shirotaz

Abstract

An inverse boundary value problem for identifying the coeécient of some second order hyperbolic
equation by one boundary measurement is considered. The problem is transformed to a minimization
problem of a functional. By computing the Gateaux derivative of the functional, an algorithm for
identifying the coeécient is given based on the projected gradient method. A numerical result is
given testing the algorithm.

1 Introduction

Let äö Rn (n = 2 or 3) be a bounded domain with smooth boundary @ä. Let K(x) 2 L1(ä) satisfy8<: 0 < C1 îK(x) î C2 in ñä
K(x) is C1 in ä n F
jrK(x)j î C3 in ä n F;

(1)

where C1; C2; C3 are åxed positive constants and F ö ä is a compact set with @ä\ F = ;. For a given
ñu 2 C6([0; T ];H( 52 )(@ä)) with @itñu(x; 0) = 0 (x 2 ä; 0 î i î 5), we consider an initial boundary value
problem : 8>>><>>>:

@2u

@t2
ÄrÅ(K(x)ru) = 0 in äÇ (0; T )

u(0) = 0;
@u

@t
(0) = 0 in ä

u = ñu on @äÇ (0; T ):
(2)

Here H( 52 )(@ä) is the Sobolev space of order
5

2
deåned over @ä and Cm([0; T ];X) with m 2 Z+ :=

N [ f0g denotes the set of all Cm class functions deåned in [0; T ] taking their values in some Banach
space X .
(2) admits a unique solution u 2 ñH(5)((0; T ); ñH(1)(ä)). We denote this u by u = u[K](x; t) to clarify

the dependency on K.
Here and hereafter, we deåne ñH(s)(ä) for s 2 R by g 2 ñH(s)(ä) if and only if there exists an extension

f 2 H(s)(Rn) of g to the ambient space Rn of ä and the norm jjgjj ñH(s)(ä) is deåned by jjgjj ñH(s)(ä) := inf

fjjf jjH(s)(Rn); f jä = gg. We also deåne _H(s)(ä) := fg 2 ñH(s)(ä); supp g ö ñäg with norm jjgjj _H(s)(ä)
:=

jjgjj ñH(s)(ä)
. These kind of Sobolev spaces are discussed systematically in [3].

Now, suppose we do not know K(x), but we are given ñq := K(x)
@u

@n
on @äÇ (0; T ) beside ñu for T

large enough. Then, we are interested in the following inverse problem (IP):
Inverse problem (IP): Reconstruct K(x) from fñu; ñqg.

Let K be the set of all K(x) 2 L1(ä) satisfying (1). For any L 2 K, we deåne J(L) by

J(L) =

Z T

0

Z
@ä

jL(x)@u[L]
@n

Ä ñqj2 dõdt;
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where u[L] is the solution of (2) for K = L.
Since the absolute minimum of J(L) is attained when L(x) = K(x), we can expect to recover K(x)

by minimizing J(L).
One of our coauthor Shirota started the numerical study of the inverse problem (IP) in his paper

[9]. He used the projected gradient method to minimize the functional J(L). There are many methods
for minimizing J(L). The projected gradient method is one of them. It needs to compute the Gateaux
derivative J 0(L) of J(L). Shirota computed J 0(L) approximately by a formal argument. Some of the
numerical results in [9] were quite good.
The aim of this paper is to justify his formal argument, give the complete form of J 0(L) and provide

some numerical results using J 0(L).
The complete form of J 0(L) is given by

Theorem 1.1 8>><>>:
J(L+ "M)Ä J(L) = "J 0(L)M + o(")

J 0(L)M =

Z T

0

Z
ä
Mru[L]Årvdxdt+

Z
ä

@U

@t
(T )wdx;

where w 2 ñH(1)(ä) is the weak solution of the elliptic equation8<: rÅ(Lrw) = 0 in ä

w = 2

í
L
@u

@n
(T )Ä ñq(T )

ì
on @ä

(3)

and v 2 L2((0; T ); ñH(1)(ä)) is the weak solution of the equation8>>>>><>>>>>:
@2

@t2
v ÄrÅ(Lrv) = 0 in äÇ (0; T )

v(T ) = 0;
@v

@t
(T ) = 0 in ä

v = 2

í
L
@u

@n
Ä ñq

ì
on @äÇ (0; T )

(4)

and U 2 ñH(5)((0; T );L
2(ä)) is the weak solution of the equation8>>><>>>:
@2

@t2
U ÄrÅ(LrU) = rÅ(Mru[L]) in äÇ (0; T )

U(0) = 0;
@U

@t
(0) = 0 in ä

U = 0 on @äÇ (0; T ):
(5)

Remark 1.2 In the proof of Theorem 1.1 given later, we showed that the mapping à : L1(ä) 3M 7!Z
ä

@U

@t
(T )w dx 2 R is bounded linear. Hence, by Example 5 in page 118 of [12], there exists a unique

h 2 L1(ä) such that Z
ä

@U

@t
(T )w dx =

Z
ä

Mhdx: (6)

The proof of this theorem is given in section 5, the existence of u; v and w are given in Appendix and
that of U given in section 3.
To the best of our knowledge, there is not any paper other than [9] which tried projected gradient

method to obtain some good numerical results for the inverse problem (IP). The inverse problem (IP) is
only a prototype. The same method can be applied to similar inverse problem with diãerent equation.
When we consider an elastic equation, the problem becomes more practical because it really models the
nondestructive testing of a material using ultrasound.
The rest of our paper is organized as follows. In section 2, we will show preliminary computation of

the variation of J(L) with respect to L as an intermediate step to get the complete form of the Gateaux
derivative J 0(L) of J(L). In section 3, we will present some theorems, which play a major role to prove
Theorem 1.1. In sections 4 and 5, using the theorems given in section 3, we will prove Theorem 1.1.
Finally in the last section, we show a numerical algorithm based on the complete form of J 0(L) and its
example.
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2 Preliminary computation for J 0(L)

In this section, we prove

Lemma 2.1 8>>>>>><>>>>>>:
J(L+ "M)Ä J(L)

= "

Z T

0

Z
ä

Mru[L]Årvdxdt+
Z
ä

@éu

@t
(T )wdx

+

Z T

0

Z
ä
"MréuÅrvdxdt+

Z T

0

Z
@ä
jéqj2dõdt;

(7)

where éu = u[L+ "M ]Ä u[L], éq = (L+ "M)@u[L+ "M ]
@n

Ä L@u[L]
@n

,

w 2 ñH(1)(ä) is the weak solution of the elliptic equation8<: rÅ(Lrw) = 0 in ä

w = 2

í
L
@u

@n
(T )Ä ñq(T )

ì
on @ä;

(8)

and v 2 L2((0; T ); ñH(1)(ä)) is the weak solution of the equation8>>>>><>>>>>:
@2

@t2
v ÄrÅ(Lrv) = 0 in äÇ (0; T )

v(T ) = 0;
@v

@t
(T ) = 0 in ä

v = 2

í
L
@u

@n
Ä ñq

ì
on @äÇ (0; T ):

(9)

Proof Let q[L] := L
@u[L]

@n

åååå
@äÇ(0;T )

. For L;M 2 K,8>>>>>>>><>>>>>>>>:

J(L+ "M)Ä J(L)
=

Z T

0

Z
@ä
[(q[L+ "M ]Ä ñq)2 Ä (q[L]Ä ñq)2]dõdt

=

Z T

0

Z
@ä

(q[L+ "M ] + q[L]Ä 2ñq)éqdõdt

=

Z T

0

Z
@ä

2(q[L]Ä ñq)éqdõ+
Z T

0

Z
@ä

jéqj2dõdt:

Integrating by parts and reminding
@u[L]

@t
(0) = 0 and v(T ) = w,8>>><>>>:

Z T

0

Z
ä

@u[L]

@t

@v

@t
dxdt =

Z
ä

† î
@u[L]

@t
v

ïT
0

Ä
Z T

0

@2u[L]

@t2
vdt

!
dx

=

Z
ä

@u[L]

@t
(T )wdxÄ

Z T

0

Z
ä

@2u[L]

@t2
vdxdt:

By another integration by parts,8>><>>:
Z T

0

Z
ä
Lru[L]Årvdxdt

=

Z T

0

í Z
@ä
vq[L]dõÄ

Z
ä
rÅ(Lru[L])vdx

ì
dt:

Hence, 8>><>>:
Z T

0

Z
ä

í
@u[L]

@t

@v

@t
Ä LruÅrv

ì
dxdt

=

Z
ä

@u[L]

@t
(T )wdxÄ

Z T

0

Z
@ä

vq[L]dõdt:

(10)
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By the similar way, we have8>><>>:
Z T

0

Z
ä

í
@u[L+ "M ]

@t

@v

@t
Ä (L+ "M)ru[L+ "M ]Årv

ì
dxdt

=

Z
ä

@u[L+ "M ]

@t
(T )wdxÄ

Z T

0

Z
@ä

vq[L+ "M ]dõdt:

(11)

Using (10) and (11), we get8>><>>:
Z T

0

Z
ä

î
@éu

@t

@v

@t
Ä ((L+ "M)ru[L+ "M ]Ä Lru[L]Årv)

ï
dxdt

=

Z
ä

@éu

@t
(T )wdxÄ

Z T

0

Z
@ä
véqdõdt:

(12)

Moreover, applying the integration by parts, we have8>>><>>>:
Z T

0

Z
ä

@éu

@t

@v

@t
dxdt =

Z
ä

† î
éu
@v

@t

ïT
0

Ä
Z T

0

éu
@2v

@t2
dt

!
dx

= Ä
Z T

0

Z
ä

éu
@2v

@t2
dxdt;8>>>>>><>>>>>>:

Z T

0

Z
ä

LréuÅrvdxdt

=

Z T

0

îZ
@ä

éu

í
L
@v

@n

ì
dõÄ

Z
ä

éurÅ(Lrv)dx
ï
dt

= Ä
Z T

0

Z
ä

éurÅ(Lrv)dxdt:

(13)

Hence, Z T

0

Z
ä

í
@éu

@t

@v

@t
Ä LréuÅrv

ì
dxdt = 0: (14)

Therefore, from (12) and (14),8>><>>: Ä
Z T

0

Z
ä

"Mru[L+ "M ]Årvdxdt

=

Z
ä

@éu

@t
(T )wdxÄ

Z T

0

Z
@ä

véqdõdt:

Reminding vj@äÇ(0;T ) = 2(q[L]Ä ñq),8>><>>:
Z T

0

Z
@ä

2(q[L]Ä ñq)éqdõdt =
Z T

0

Z
ä

"MruÅrvdxdt

+

Z T

0

Z
ä

"MréuÅrvdxdt+
Z
ä

@éu

@t
(T )wdx:

(15)

Then, substituting (15) into (13), we get (7). É

3 Continuous dependence of the solution on the coeécient

Fix M 2 K and take a small " > 0. We write L"(x) := L(x) + "M(x),

AL := @2

@t2
ÄAL,

AL" :=
@2

@t2
ÄAL" ,
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where the notation AL, AL" are deåned as in (37) of Appendix.
Let v 2 ñH(5)((0; T ); _H(1)(ñä)) and v" 2 ñH(5)((0; T ); _H(1)(ñä)) be the solutions to8><>: ALv = f(L) 2 C4([0; T ]; ñH(1)(ä)) in äÇ (0; T )

v = 0 on @äÇ (0; T )
v(0) = fu0; @

@t
v(0) = fu1 (16)

and 8><>: AL"v" = f(L") 2 C4([0; T ]; ñH(1)(ä)) in äÇ (0; T )
v" = 0 on @äÇ (0; T )
vè(0) = fu0; @

@t
v"(0) = fu1; (17)

respectively. Here, f(L), f(L"), fu0 and fu1 are deåned by the formula given in (40) of Appendix.
Then, we the following continuous dependency of the solution on the coeécient in a Gelfand triple

(V;H; V 0), which is deåned as in (40) of Appendix.

Theorem 3.1

v" ! v (" ! 0) in C([0; T ];V ) \ C1([0; T ];H)

Proof If the inhomogeneous terms of the equations (16) and (17) are same, the continuous dependency
of the solution on the coeécient is given as Theorem 2.8.1 and Theorem 2.8.2 in [10]. The proof for them
can be also applied to the present situation without any essential change. So we omit giving further
details of the proof. É
Now, for given u0 2 H , u1 2 V 0 and f 2 L2((0; T );V 0), we consider the Cauchy problem :( AKu = f in äÇ (0; T )

u(0) = u0;
@

@t
u(0) = u1 in ä:

(18)

In order to deåne a weak solution u to (18), we årst deåne the test function space X.

Deånition 3.2 (test function space) The test function space X is the set of all ' 2 L2((0; T );V ) satis-
fying ( AK' 2 L2((0; T );H)

'(T ) =
@'

@t
(T ) = 0:

The deånition of the weak solution is as follows.

Deånition 3.3 u 2 L2((0; T );H) with u0 2 L2((0; T );V 0) is called a weak solution of (18) if it satisåes8>><>>:
Z T

0

Z
ä
uAK'dxdt

=

Z T

0

Z
ä

f' dxdt+

Z
ä

í
u1'(0)Ä u0 @'

@t
(0)

ì
dx for 8' 2 X:

Then, we have the following existence and uniqueness result from [4].

Theorem 3.4 Given (f; u0; u1) 2 L2((0; T );V 0)ÇH Ç V 0. Then there is a unique weak solution u withí
u;
@u

@t

ì
2 C([0; T ];H)ÇC([0; T ];V 0).

For the continuous dependence of the solution to (18) on the coeécient, we have

Theorem 3.5 Let v" and v be the weak solution of (18) with K = L + "M and K = L, respectively.
Then, v" ! v ("! 0) in L2((0; T );H) and v0" ! v0 ("! 0) in L2((0; T );V 0).
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Proof Let

E(t) :=
1

2
(hv; viH + hAÄ1L v0; v0iH)

and

E"(t) :=
1

2
(hv"; v"iH + hAÄ1L v0"; v0"iH) :

Then, from the proof of Theorem 9.3 of chapter 3 in [4] and the same argument with Lemma 2.4.1 in
[10], we have

E(t); E"(t) î C
†
jju0jj2H + jju1jj2V 0 +

Z T

0

jjf jj2V 0
!

(19)

and 8>><>>: E(t)ÄE(0) =
Z t

0
hAÄ1L f; v0iH

E"(t)ÄE"(0) =
Z t

0

hAÄ1L" f; v0"iH ;
(20)

respectively.
(1) Weak convergence of v" to v.
From the coercivity in (36), we have

E"(t) ï C(jjv"jj2H + jjv0"jj2V 0)

So, by (19), v" and v0" is uniformly bounded independent of " in L
2((0; T );H), L2((0; T );V 0), respectively.

Therefore, by the weak compactness of these spaces, there are f"(l)g, which is the subsequence of f"g,
ã2 L2((0; T );H) and å2 L2((0; T );V 0) satisfyingö

v"(l) * ã in L2((0; T );H)
v0"(l) * å in L2((0; T );V 0): (21)

Furthermore, å = ã0, where 0 means the derivative in distribution sense.
Now, we will prove this ã is same with v by showing8>><>>:

Z T

0

Z
ä

ãAL' dxdt

=

Z T

0

Z
ä
f' dxdt+

Z
ä

í
u1'(0)Ä u0 @'

@t
(0)

ì
dx for 8' 2 X:

(22)

Let g := AL' 2 L2((0; T );H) and extend g to the whole time interval by putting g ë 0 in (Ä1; 0][[T;1).
Also, let gl := ü[0;TÄ 1

l ]
g 2 L2((0; T );H), with the characteristic function ü[0;TÄ 1

l ]
of [0; T Ä 1

l ] and

gl;m := ömÉgl 2 C1([0; T ]; H), where öm is a molliåer öm(t) := mÄ1ö(mÄ1t) with ö2 C10 (R) satisfying
0 î öî 1;

Z
R
ö(t) dt = 1. Then, gl;m is çat at T and we have8<: gl;m ! gl (m! 0) in L2((0; T );H)

gl ! g (l ! 0) in L2((0; T );H):
(23)

Taking t = T as an initial surface and gl;m is çat at t = T into account, we have from Theorem A.1 that
there exist a unique 'l;m 2 L2((0; T );V ) with enough time regularity to8<: AL'l;m = gl;m

'l;m(T ) = ('l;m)0(T ) = 0:

By deåning 'l;m" := AÄ1L"AL'
l;m, it has enough time regularity and satisåes8<: AL"'l;m" = AÄ1L"AL('

l;m)00 +AL'l;m 2 L2((0; T );H)

'l;m" (T ) = ('l;m" )0(T ) = 0;
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Hence, 'l;m" is a test function. By (17) and taking u = v" in (3.3),8>><>>:
Z T

0

Z
ä

v"(('
l;m
" )00 +AL"'

l;m
" ) dxdt

=

Z T

0

Z
ä

f'l;m" dxdt+

Z
ä

Ä
u1'

l;m
" (0)Ä u0('l;m" )0(0)

Å
dx:

From AL ÄAL" = AL"(AÄ1L" ÄAÄ1L )AL, we have8>>>>>>>><>>>>>>>>:

jj'l;m" Ä 'l;mjjV

= jjAÄ1L"AL'l;m Ä 'l;mjjV = jj(AÄ1L" ÄAÄ1L )AL'l;mjjV

= jjAÄ1L" (AL ÄAL")'l;mjjV î Cjj(AL ÄAL")'l;mjjV 0

! 0 ("! 0) uniformly with respect to t 2 [0; T ]:

(24)

Similarly, we can show
jj('l;m" )0 Ä ('l;m)0jjV ; jj('l;m" )00 Ä ('l;m)00jjV ! 0: (25)

Using (21), (24), (25) and uniform boundedness of fv"g, we reach8>><>>:
Z T

0

Z
ä
ã(('l;m)00 +AL"'

l;m) dxdt

=

Z T

0

Z
ä

f'l;m dxdt+

Z
ä

Ä
u1'

l;m(0)Ä u0('l;m)0(0)
Å
dx:

Furthermore, by (23) and the continuous dependency on the source term in Theorem A.1, we get (22).
Also, we can show v" itself converges to v weakly. In fact, if not, then, we can ånd " > 0, one

subsequence fv"(m)g and ' 2 X satisfying Z T

0
hv Ä v"(m); 'iH > è: (26)

However, fv"(m)g is also uniformly bounded in L2((0; T );H). As a result, it has convergent subsequence
to v, which is contradiction to (26).

(2) Strong convergence of v" to v.
Reminding hAÄ1L" f; v0"iHÄhAÄ1L f; v0iH = hAÄ1L" f; v0"Äv0iH+h(AÄ1L"ÄAÄ1L )f; v0"iH and AÄ1L" (ALÄAL")AÄ1L =

(AÄ1L" ÄAÄ1L ), we can show in (20)

E"(0)! E(0);

Z t

0
hAÄ1L" f; v0"iH dt!

Z t

0
hAÄ1L f; v0iH dt ("! 0):

As a result, E"(t)! E(t) ("! 0).
Now, let ò(t) = hv" Ä v; v" Ä viH + hAÄ1L (v0" Ä v0); v0" Ä v0iH . Then, by expanding the right side of

ò(t), we have

ò(t) = 2E(t) + 2E"(t)Ä h(AÄ1L" ÄAÄ1L )v0"; v0"iH Ä 2(hv; v"iH + hAÄ1L v0; v0"iH): (27)

On the other hand, by coercivity (36),

ò(t) ï C(jjv" Ä vjj2H + jjv0" Ä v0jj2V 0): (28)

Therefore, using uniform boundedness of fv"g and fvg, (21), (27) and (28), we get the strong convergence
of v" and v0" to v and v

0 in L2((0; T );H), L2((0; T );V 0), respectively. É
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4 Asymptotic of "Ä1
@éu

@t
(T ) ("! 0)

This section is devoted to the following theorem which gives a representation formula of the second term
on the right side in (7).

Theorem 4.1Z
ä

@éu

@t
(T )w dx = "

Z
ä

@U

@t
(T )w dx+ o("),

where U is the weak solution of( ALU = rÅ(Mr)u[L] in äÇ (0; T )
U(0) =

@U

@t
(0) = 0 in ä:

Proof Let u" := u[L + "M ], u := u[L]. Then, likewise (39) and (40) in Appendix, we transform
from u, u" into ~u, fu" through û := Éñu with the inverse trace operator É given by (38), respectively, i.e.fu" = u" Äû and ~u = u Äû. Then we have r Å(Mr)u = rÅ(Mr)~u +rÅ(Mr)û 2 ñH(5)((0; T );V 0),
and u" Ä u =fu" Ä ~u.
By deåning U" :=

fu" Ä ~u
"

, we have8>>>>>>>>>><>>>>>>>>>>:

AL"U" =
1

"
(AL"fu" ÄAL" ~u)

=
1

"
(AL~u+ f(L")Ä f(L)ÄAL" ~u)

= rÅ(Mr~u) +rÅ(Mrû)

U"(0) = U 0"(0) = 0:

Moreover, we have 8>>>>>>>>><>>>>>>>>>:

AL"
@i

@ti
U"

=
@i

@ti
(rÅ(Mr~u) +rÅ(Mrû))

@i

@ti
U"(0) =

@i+1

@ti+1
U"(0) = 0 (0 î i î 5):

Therefore, by Theorem 3.5, we have

U" ! U ("! 0) in ñH(5)((0; T );H).

As a result, we have

@éu

@t
(T ) =

@fu"
@t
(T )Ä @~u

@t
(T ) = "

@U

@t
(T ) + o(") in H ,

which completes the proof. É

5 Completion of the proof of Theorem 1.1

First, we show that the third and fourth terms on right side in (7) are o("). That is

Theorem 5.1Z T

0

Z
ä

èMréuÅrvdxdt+
Z T

0

Z
@ä

jéqj2dõdt = o(") ("! 0).
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Proof Let u, u", ~u and fu" be those given in the proof of Theorem 4.1. Using Theorem 3.1, we can
show easily the årst term is o(").
Let z" := u" Ä u =fu" Ä ~u 2 ñH(5)((0; T ); _H(1)(ñä)). If we prove

jjz"jjL2((0;T ); ñH(2)(änF )) = O(") ("! 0), then the proof is done. To begin proving this, we årst observe8>>>>>>>>>>>><>>>>>>>>>>>>:

ALz" = ALfu" ÄAL~u
= AL"fu" + (AL ÄAL")fu" ÄAL~u
= (f(L")Ä f(L)) + (AL ÄAL")fu"
= "(rÅ(Mrû) +rÅ(Mrfu"))
= "h 2 ñH(5)((0; T );V

0) \ ñH(5)((0; T ); ñH(1)(än F ));

(29)

where h := rÅ(Mru"). From (29), we have, for 0 î i î 5,8>>><>>>:
AL @

i

@ti
z" = "

@i

@ti
h in äÇ (0; T )

@i

@ti
z"(0) =

@i+1

@ti+1
z"(0) = 0 in ä:

By (19) together with (36) given in Appendix and the uniform boundedness of ffu"g, we can showåååååååå@i@ti z"ååååååååL2((0;T );H) î "C

åååååååå@i@ti hååååååååL2((0;T );V 0)
î "C (0 î i î 5): (30)

Now, let Z" := ãz" where ã 2 C10 (Rn) satisfying supp ã ö Rn nF and ã ë 1 near x0 2 @ä. Then,
we have 8<: ALZ" = Z 00" +ALZ"

= "ãhÄ z"rLÅrãÄ 2LrãÅrz" Ä Lz"4ã:
By deåning g := "ãhÄ z"rLÅrãÄ 2LrãÅrz" Ä Lz"4ã,

ALZ" = ãz00" + g 2 L2((0; T );H): (31)

Moreover, reminding jjz"jjL2((0;T );V ) î Cjjz00" Ä "hjjL2((0;T );V 0) from ALz" = z
00
" Ä "h, by (30) we can show

jjãz00" + gjjL2((0;T );H) î "C: (32)

To get exact inequality of Z" in L2((0; T ); ñH(2)(ä)), we change the coordinate into a boundary normal
coordinate near x0. For example, in the case of dimension 3, by a transform F : ä! Rn with F (x) :=
y(x) = (y1(x); y2(x); y3(x)), we have near x08<: ry Å(~LryZ") = ãz00" + g

fy1 > 0g = F (ä); fy1 = 0g = F (@ä);
(33)

where ~L = (gLrs) = (Lg)(FÄ1(y)), g = (grs) = 3X
j=1

@yr
@xj

@ys
@xj

and we used the same notation Z"; z"; g to

denote their pull back FÄ1. Then, the principal part of ry Å(~LryZ") is L(@2y1 +
3X

i;j=2

gij@yi@yj ) due to

g11 = 1; g1s = 0 (s 6= 1) where we used the same notation L to denote its pull back by FÄ1. By deåning
[Z"]k :=

Z"(y + kej)Ä Z"(y)
k

and letting ~H := L2(Rn+), ~V := _H(1)(Rn+) (( ~V ; ~H;fV 0) becomes Gelfand
9



triple.), we have 8>>>><>>>>:
ry Å~Lry[Z"]k

= [ãz00" + g]k Äry Å[~L]kryZ"(y + kej)

= [ãz00" ]k + [g]k Äry Å[~L]kryZ"(y + kej) 2 L2((0; T );fV 0):
Then, from (32),

jj[ãz00" ]k + [g]k Äry Å[ ~L]kryZ"(y + kej)jjL2((0;T );fV 0) î "C

Hence, jj[Z"]kjjL2((0;T ); ~V ) î "C. By uniform boundedness of f[Z"]kg, it has a subset which converges to
a function W 2 L2((0; T ); ~V ) weakly. Moreover, W = @yjZ" (2 î j î 3) and jjW jjL2((0;T ); ~V ) î "C. So
@åyjZ" 2 L2((0; T ); ~H) for jåj î 2 and 2 î j î 3. Also, we can show @2y1Z" 2 L2((0; T ); H) from (31) and
observing the principal part of ry Å(~LryZ"). Then, using the interpolation theorem of Proposition 3.8
in [5] we have

jjZ"(y)jjL2((0;T ); ñH(2)(Rn+)) î "C: (34)

Since we can easily show jjãz"jjL2((0;T ); ñH(2)(ä)) î CjjZ"(y)jjL2((0;T ); ñH(2)(Rn+)) with some constant C > 0

independent of ", jjãz"jjL2((0;T ); ñH(2)(ä)) î "C with another constant C > 0. Reminding éq = L"
@u[L"]

@n
Ä

L
@u[L]

@n
= L

í
@u[L"]

@n
Ä @u[L]

@n

ì
+ "M

@u[L"]

@n
and (34), we can prove the second term is o("). É

Next we ånish the proof of Theorem 1.1. From Lemma 2.1, Theorem 4.1 and Theorem 5.1, we can
have a representation in Theorem 1.1. We clearly have the linearity of the mapping : L1(ä) 3 M 7!
J 0(L)M 2 R. By using (19), we easily have the boundedness of this mapping. Furthermore, J 0(L) gives
the Gateaux derivative of J(L) at L. É

6 Numerical algorithm and example

To ånd the minimum of the functional J , we make use of the projected gradient method[6]:

Lk+1 = PC (Lk ÄãkrJ(Lk)) (k = 0; 1; 2; : : : : : :) ; (35)

where ãk (0 < ãk î 1) is a suitable step size and rJ(L) is a search direction deåned by

hrJ(L); Mi = J 0(L)M for 8M 2 L1(ä) :

Here the map PC is a clip-oãoperator such that

PCL(x) =

8><>:C1 (L(x) < C1)

L(x) (C1 î L(x) î C2)
C2 (L(x) > C2)

:

From Theorem 1.1 and Remark 1.2, we notice that

rJ(L) =
Z T

0
ru[L]Årv dx+ h :

We have to discuss about obtaining numerically the function h in order to use (35).
Let fBigNi=1 be a division of the domain ä such that

ä=
N[
i=1

Bi; Bi \Bj = ; (i 6= j) :

10



We denote by üi a characteristic function, namely,

üi(x) :=

(
1 (x 2 Bi)
0 (x =2 Bi)

:

Then, we consider to ånd the approximation of the density function h in XB = span fü1; ü2; ÅÅÅ; üNg.
By using the relation (6) and the Galerkin method, we can getZ

ä

hB üi dx =

Z
ä

@U

@t
[üi](T )w dx

for i = 1; 2; : : : ; N . Here hB 2 XB is the approximation of the density function and the function U [üi]
is the solution to (5) with the source term rÅ(üiru[L]). We represent hB by the linear combination of
üi, namely, hB =

PN
j=1 hjüj . Then, the linear system can be obtained as follows:

NX
j=1

hj

Z
ä
üiüj dx =

Z
ä

@U

@t
[üi](T )w dx

for i = 1; 2; : : : ; N . Since üi has the orthogonal relation with respect to L2 inner product, we have

hi =
1

jBij
Z
ä

@U

@t
[üi](T )w dx (i = 1; 2; : : : ; N) ;

where jBij means the area of Bi. Therefore we can get the approximation hB by solving N initial-
boundary value problem (5). By using this approximation, we deåne the approximated search direction
as follows: erJ(L) := Z

ä

ru[L]Årv dx+ hB :

Here we notice that our method with erJ(L) is not the projected gradient method exactly but its calcu-
lation is very easy.
Hence we summurize an algorithm for our inverse problem as follows:

Algorithm for coeécient identiåcation

Given the division fBig.
1. Pick an initial coeécient function L0 which belongs to the admissible set K.
2. For k = 0; 1; 2; : : :; do

(a) Solve (1) to ånd ru[Lk] and Lk @u
@n

åååå
@äÇ(0;T )

.

(b) Solve the boundary value problem (3) to ånd w.

(c) Solve the initial-boundary value problem (4) to ånd rv.
(d) For i = 1; 2; : : : ; N ; do

i. Solve the initial-boundary value problem (5) with the source term r Å(üiru[Lk]) to ånd
@U

@t
[üi](T ).

ii. Calculate hi by

hi =
1

jBij
Z
ä

@U

@t
[üi](T )w dx :

(e) Calculate the approximated search direction erJ(Lk) by
erJ(Lk) = Z T

0

ru[Lk]Årv dt+
NX
i=1

hiüi :

11



(f) Choose the step size ãk by using some method.

(g) Update the coeécient function: Lk+1 = PC
ê
Lk Äãl erJ(Lk)ë .

We show a numerical example for our algorithm. Let ä be a unit disk. The coeécient K is given by

K(x) =

ö
1:25 (jxj < 0:15)
1:0 (jxj > 0:15)

as shown in Fig.1. Here j Åj means the Euclidean norm on R2.

Figure 1: Exact coeécient

The constants in the constrained condition are given by C1 = 0:90 and C2 = 1:35. The Neumann
boundary value for this example are supposed to be given by

q(t) =

ö Äp(t) on @äm Ç (0; T ]
0:0 on (@än @äm)Ç (0; T ] ;

where

p(t) =

(
0:25 sin (12:5ôt) (0 î t î 0:16)
0:0 (t > 0:16)

:

Here @äm (m = 1; 2; : : : ; 5) are set as

@äm =
n
(cosí; siní)

ååÄ ô

50
< íÄ (mÄ 1)ô

4
<
ô

50

o
:

The Dirichlet boundary value u is generated by solving numerically the wave equation with the exact
coeécientK and the Neumann boundary value q. In order to solve this problem numerically, we make use
of the Newmark method[2] for time integration with linear triangular ånite elements in space. To avoid
the inverse inclusion, the measured value u is given by u(x; t) = ucal(x; t)+é(x; t), where ucal means the
calculated value on the circle and é(x; t) is a random small valued function satisåed jé(x; t)j < 10Ä10jucalj
on the boundary @ä for any t > 0. The length of time is set as T = 4:0. The division fBig is supposed
to be given by

Bi = fx 2 ä j 0:1(iÄ 1) î jxj < 0:1ig
for 1 î i î 10. We employ the Armijo criterion[1] in order to ånd the step size ãk in our algorithm.
We assume that L0(x) = Kj@ä = 1:0 in the whole domain. After 100 times of iterations, we have

the calculated coeécient as shown in Figure 2. Figure 3 shows the distribution of the relative error for
calculated coeécient. The maximum value of the relative error is about 8:94%. These ågures show that
calculated coeécient is in good agreement with the exact one.

12



Figure 2: Calculated coeécient

Figure 3: Relative error

A Proof for existence of the solutions to (2), (4) and (3)

In this Appendix, we show the existence of solutions u 2 ñH(5)((0; T ); ñH(1)(ä)), v 2 L2((0; T ); ñH(1)(ä))
and w 2 ñH(1)(ä) to (2), (4) and (3), respectively.
To begin with we cite from [11] the existence and regularity theorem for the abstract hyperbolic

evolution equation of second order in the time variable.
Let V;H be real Hilbert spaces and V be separable. Suppose the embedding i : V ,! H is continuous,

injective and its image is dense in H. Then, the dual i0 : H ,! V 0 of i is continuous, injective and
has a dense range. Such a triple (V;H; V 0) is called a Gelfand triple. For T > 0, k 2 Z+ and X = H
or V , the Sobolev space W k

2 ((0; T );X) is the collection of measurable functions ' : (0; T ) ! X with
dl'

dtl
2 L2((0; T );X) (0 î l î k), where the diãerentiation is in the distributional sense. The norm of

' 2W k
2 ((0; T );X) is given by jj'jj2k =

kX
l=0

Z T

0

åååååååådl'dtl (t)åååååååå2X dt.
Let a(';†) ((';†) 2 V ) be a continuous, symmetric sesquilinear form satisfying the coercivity :

there exist k0; ã> 0 with a(';') + k0jj'jj2H ï ãjj'jj2V (' 2 V ) (36)

Then, it is well known that there exists a unique AK 2 L(V; V 0) (i.e. the set of all bounded linear
operators from V to V 0) such that

aK(';†) = (AK';†)H : (37)

For the Cauchy problem for the abstract hyperbolic equation
d2y

dt2
+AKy = f , we have

Theorem A.1 Let y0, y1 2 V and f 2 W kÄ1
2 ((0; T );H) with k 2 N satisfy the compatibility condition

of degree k Ä 1. That is

13



yl 2 V (0 î l î k Ä 1), yk 2 H,
where ö

y2lÄ1 = f (2lÄ3)(0)ÄAKf (2lÄ5)(0) +ÅÅÅ+ (Ä1)lÄ2AlÄ2K f 0(0) + (Ä1)lÄ1AlÄ1K y1
y2l = f (2lÄ2)(0)ÄAKf (2lÄ4)(0) +ÅÅÅ+ (Ä1)lÄ1AlÄ1K f(0) + (Ä1)lAlKy0:

Then, the Cauchy problem : 8<: d2y

dt2
(t) +AKy(t) = f(t) in (0; T )

y(0) = y0; y0(0) = y1

admits a unique solution y(t) such that

y 2 L2((0; T );V ), dy
dt
2 L2((0; T );H)

and they depend linearly and continuously on

(f; y0; y1) 2 L2((0; T );H)Ç V ÇH.
Moreover, y has the regularity :

y 2W kÄ1
2 ((0; T );V ), y(k) 2 L2((0; T );H), y(k+1) 2 L2((0; T );V 0),

where y(k) :=
dky

dtk
.

For é> 0 small enough let Bé := fx 2 Rn; dist (x; @ä) < ég.
Let (Vj ;àj) (1 î j î J) be patches of manifold Bé where collection is an atlas of Bé. We can assume
that Vj \ @ä 6= ;, àj(Vj \ @ä) ö @Rn+ = RnÄ1 and àj(Vj \ ä) ö Rn+ for each j (1 î j î J).
Let fòjg1îjîJ , fëjg1îjîJ ö C10 (Rn) be partition of unities subordinated to fVjg1îjîJ . Now, we can
construct an inverse trace operator É : C6([0; T ];H( 52 )(@ä)) ! C6([0; T ]; ñH(3)(ä)) i.e. (É`)j@äÇ [0;T ] =
` 2 C6([0; T ];H( 52 )(@ä)) in the following way.
For ` 2 C6([0; T ];H( 52 )(@ä)), let `j := òj` 2 C6([0; T ];H( 52 )(@ä)), mj := `j é(I Ç (àj j@ä)Ä1) 2

C6([0; T ];H( 52 )(R
nÄ1)), where I : [0; T ] ! [0; T ] is the identity operator. We deåne an inverse trace

operator É0 : C6([0; T ];H( 52 )(R
nÄ1)) ! C6([0; T ];H(3)(Rn+)) by8>><>>: (É0m)(t; x) =

1

(2ô)nÄ1d

Z
Rn
eixÅò

(1 + jò0j2) 52
(1 + jòj2)3 m̂(t; ò

0)dò

(m 2 C6([0; T ];H( 52 )(RnÄ1)));

whereò0 = (ò1;ÅÅÅ; ònÄ1) forò= (ò1;ÅÅÅ; òn), d :=
Z 1

Ä1
(1+ú2)Ä3dúand m̂(t; ò0) :=

Z
RnÄ 1

eÄix
0Åò0m(t; x0)dx0.

Then, É can be given by

É` :=
JX
j=1

(ëj((É0mj)é(I Çàj)))
åååååå
ñäÇ [0;T ]

(38)

for any ` 2 C6([0; T ];H( 52 )(@ä)). (See [8] for the details.)
We årst prove the existence of the solution u 2 ñH(5)((0; T ); ñH(1)(ñä)) to (2) with u

(6) 2 L2((0; T );L2(ä)),
u(7) 2 L2((0; T ); ( _H(1)(ñä))0). Let ~u := uÄûwith û:= Éu. Then, ~u has to satisfy8><>:

@2

@t2
~uÄrÅ(Kr~u) = f

~u(0) =fu0; @
@t ~u(0) =fu1 (39)
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with 8><>: f = f(K) := rÅ(Krû)Ä @2

@t2
û2 C4([0; T ]; ñH(1)(ä))fu0 := Äûjt=0; fu1 := Ä @û

@t

åååå
t=0

2 V := _H(1)(ñä):
(40)

Now (V;H := L2(ä); V 0) is clearly a Gelfand triple and a(†;!) :=
Z
ä
Kr†År! dx (†;! 2 V ) is a

continuous sesquiliear form satisfying the coercivity condition with k0 = 0. Moreover, it is easy to see
that f; fu0; fu1 satisfy the compatibility condition of degree 5. Then, the existence of u to (2) with the
desired properties immediately follows by applying Theorem A.1 to (39).
By observing that ~u 2 ñH(5)((0; T ); _H(1)(ñä)) satisåes

rÅ(Kr~u) = @
2~u

@t2
Ä f 2 ñH(3)((0; T ); _H(1)(ñä)) ö C2((0; T ); _H(1)(ñä)),

we have ~u 2 C2([0; T ]; ñH(3)(änF )) and hence u 2 C2([0; T ]; ñH(3)(änF )) by the regularity theorem near
the boundary of solutions to the Dirichlet boundary value problem for strongly elliptic equations (See

[5], Chapter 3, Proposition 3.7). This implies that 2(L
@u

@n
(T )Ä ñq(T )) 2 H( 32 )(@ä) and

2(L
@u

@n
Ä ñq) 2 C2([0; T ];H( 32 )(@ä)): (41)

By the well-posedness of (8), we immediately have w 2 ñH(1)(ä).
For the existence of v 2 L2((0; T ); ñH(1)(ä)), we argue likewise we did for the solution u to (2)

using the inverse trace operator transforming (9) to an initial boundary value problem with Dirichlet
boundary condition. Then, by (41), the second term of equation of this initial boundary value problem
belongs to L2((0; T );H) with H = L2(ä). Therefore, by Theorem A.1, we have the existence of v 2
L2((0; T ); ñH(1)(ä)).
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