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PARABOLIC GEOMETRIES
ASSOCIATED WITH

DIFFERENTIAL EQUATIONS OF FINITE TYPE

KEIZO YAMAGUCHI AND TOMOAKI YATSUI

Abstract. We present here classes of parabolic geometries arising naturally from Se-
ashi’s principle to form good classes of linear differential equations of finite type, which
generalize the cases of second and third order ODE for scalar function. We will explic-
itly describe the symbols of these differential equations. The model equations of these
classes admit nonlinear contact transformations and their symmetry algebras become
finite dimensional and simple.

1. Introduction

The geometry of ordinary differential equations for scalar function is strongly linked to
the Lie algebra sl (2,R) = sl (V̂ ), where V̂ is a vector space of dimension 2. Associated
to the geometry of k-th order ordinary differential equation;

dky

dxk
= F (x, y,

dy

dx
, . . . ,

dk−1y

dxk−1
),

we have the irreducible representation of l̂ = sl (V̂ ) on S = Sk−1(V̂ ∗), where Sk−1(V̂ ∗)
is the space of homogeneopus polynomials of degree k − 1 in two variables and is the

solution space of the model equation dky
dxk = 0 on the model space P1(R) = P(V̂ ). It is

known that the Lie algebra l = gl (V̂ ) is the infinitesimal group of linear automorphisms of
the model equation (cf. Proposition 4.4.1 [Sea88]). Moreover the Lie algebra gk = gk(1, 1)

of infinitesimal contact transformations of dky
dxk = 0 is given as follows; (1) g2 is isomorphic

to sl (3,R). (2) g3 is isomorphic to sp(2,R). (3) Otherwise, for k = 4, gk = S ⊕ l is a
subalgebra of the affine Lie algebra A(S) = S⊕gl (S)(see §2.1). The Lie algebra gk plays
the fundamental role in the contact geometry of k-th order ordinary differential equations.

Thus, when k = 2 and 3, special phenomena prevail and result in rich automorphism
groups so that these two cases offer examples of parabolic geometries associated with
differential equations. Here the Parabolic Geometry is a geometry modeled after the
homogeneous space G/P , where G is a (semi-)simple Lie group and P is a parabolic
subgroup of G (cf. [Bai93]). Precisely, in this paper, we mean, by a parabolic geometry,
the geometry associated with the simple graded Lie algebra in the sense of N.Tanaka
([Tan79]). The main purpose of this paper is to seek to find other such special phenomena
and to present other classes of parabolic geometries associated with differential equations
of finite type, which naturally arise from Se-ashi’s principle and generalize the above cases
of g2 and g3.

For the geometry of differential equations of finite type, our study is based on the
geometry of differential systems in the following way (cf. [YY02]): We regard a k-th order
differential equation as a submanifold R of the k-jet space Jk(n,m) for n independent

and m dependent variables. Defined on R, we have the differential system D̂ obtained
by restricting to R the canonical system Ck on Jk(n,m) (see §2.1). Especially, when
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R is a k-th order involutive differential equation of finite type, p = πk
k−1 |R: R → Jk−1

is an immersion so that we have a pseudo-product structure D = E ⊕ F on R, where
D is the pullback (p∗)−1(Ck−1) of Ck−1 through p, E is the restriction of Ck to R and
F = Ker(πk

k−2 |R)∗ is the fibre direction of πk
k−2 |R.

Now, let us recall Se-ashi’s procedure to form good classes of linear differential equations
of finite type, following [Sea88] and [YY02]. Se-ashi’s procedure starts from a reductive
graded Lie algebra (GLA) l = l−1⊕ l0⊕ l1 and a faithful irreducible l-module S. Then we
form the pseudo-product GLA g =

⊕
p∈Z gp of type (l, S) as follows: Let l = l−1 ⊕ l0 ⊕ l1

be a finite dimensional reductive GLA of the first kind such that

(1) The ideal l̂ = l−1 ⊕ [l−1, l1]⊕ l1 of l is a simple Lie algebra.
(2) The center z(l) of l is contained in l0.

Let S be a finite dimensional faithful irreducible l-module. We put

S−1 = {s ∈ S | l1 · s = 0 }
and

Sp = ad(l−1)
−p−1S−1 for p < 0

We form the semi-direct product g of l by S, and put

g = S ⊕ l, [S, S] = 0

gk = lk (k = 0), g−1 = l−1 ⊕ S−1,

gp = Sp (p < −1).

Then g =
⊕

p∈Z gp enjoys the following properties (Lemma 2.1);

(1) S =
⊕−µ

p=−1 Sp, where S−µ = {s ∈ S | [l−1, s] = 0 }.
(2) m =

⊕
p<0 gp is generated by g−1.

(3) Sp is naturally embedded as a subspace of W ⊗ Sµ+p(l−1
∗)

through the bracket operation in m, where W = S−µ.

Thus S = S−µ⊕S−µ+1⊕· · ·⊕S−1 ⊂ W⊕W⊗V ∗⊕· · ·⊕W⊗Sµ−1(V ∗) defines a symbol
of µ-th order differential equations of finite type by putting S0 = {0} ⊂ W ⊗Sµ(V ∗). We
can construct the model linear equation Ro of finite type, whose symbol at each point
is isomorphic to S (see §4 [Sea88]). Ro is a µ-th order involutive differential equation of
finite type. Then, we see that the symbol algebra of (Ro, Do) is isomorphic to m, where
Do is the pullback of the canonical system Cµ−1 on the (µ− 1)-jet space Jµ−1. m has the
splitting g−1 = l−1 ⊕ S−1, corresponding to the pseudo-product structure on Ro, where
V = l−1 and W = S−µ. In this way, m is a symbol algebra of µ-th order differential
equation of finite type, which is called the typical symbol of type (l, S).

This class of higher order (linear) differential equations of finite type were first ap-
peared in the work of Y.Se-ashi [Sea88], who discussed the linear equivalence of this class
of equations and gave the complete system of differential invariants of these equations,
generalizing the classical theory of Laguerre-Forsyth for linear ordinary differential equa-
tions.

We ask the following question for the pseudo-product GLA g =
⊕

p∈Z gp of type (l, S):

When is g the prolongation of m or (m, g0) ?

Namely we ask whether g exhausts all the infinitesimal automorphisms of the differential
system (Ro, Do) or its psedo-product structure.

The answer to this question is given in Theorem 5.2 of [YY02] (Theorem 2.1 below),
where we can find the classes of parabolic geometries, which generalize the cases of second
and third order ordinary differential equations. More precisely, this Theorem states : For a
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pseudo-product GLA g =
⊕1

p=−µ gp of type (l, S) satisfying the condition H1(m, g)0,0 = 0,

g is the prolongation of m =
⊕

p<0 gp except for three cases. Let b̌ =
⊕

p∈Z b̌p be the
prolongation of g = b−1 ⊕ b0, where b−1 = S and b0 = l. Then the three exceptional
cases correspond to cases : (a) dim b̌ < ∞ and b̌1 6= 0, (b) dim b̌ = ∞, (c) g is a
pseudo-projective GLA (for the detail, see §2). In case (a), b̌ = b−1 ⊕ b0 ⊕ b̌1 becomes
a simple graded Lie algebra containing g = b−1 ⊕ b0 as a parabolic subalgebra. Thus,
basically, the case (a) corresponds to parabolic geometries, we are seeking. In fact, in the
case of k-th order ordinary differential equations for scalar function, g2 and g3 belong to
case (a) and gk belongs to case (c) for k = 4.

In §2, we will recall the above results from [YY02]. The symbol algebras of these
parabolic geometries will be given in Theorem 2.1 in terms of root space decompositions
of the corresponding simple Lie algebras. We will describe these symbol algebras and
the model differential equations of finite type explicitly by utilizing the explicit matrices
description of the simple graded Lie algebra b̌ for the classical cases in §3 and by describing
the structure of m explicitly by use of the Chevalley basis of the exceptional simple Lie
algebras in §4. Finally, in §5, we will discuss about the equivalence of each parabolic
geometry associated with the differential equations of finite type explicitly described in
previous sections.

2. Pseudo-product GLA g =
⊕

p∈Z gp of type (l, S)

In this section, we will summarize the results in [YY02] and explain the prolongation
theorem (Theorem 2.1). We will first discuss the prolongation of symbol algebras of the
pseudo-product structures associated with higher order differential equations of finite type.
Moreover we will generalize this algebra to the notion of the pseudo-product GLA (graded
Lie algebras) of irreducible type and introduce the pseudo-product GLA g =

⊕
p∈Z gp of

type (l, S) and ask when g is the prolongation of m or (m, g0) , where m =
⊕

p<0 gp. In
the answer to this question, we will find the classes of finite type differential equations
mentioned in the introduction.

2.1. Pseudo-projective GLA of order k of bidegree (n,m). We first consider a
system of higher order differential equations of finite type of the following form :

∂kyα

∂xi1 · · · ∂xik

= Fα
i1···ik(x1, . . . , xn, y

1, · · · , ym, . . . , pβ
i , . . . , pβ

j1···jk−1
)

(1 5 α 5 m, 1 5 i1 5 · · · 5 ik 5 n),

where pβ
i1···i` = ∂`yβ

∂xi1
···∂xi`

. These equations define a submanifold R in k-jets space Jk

such that the restriction p to R of the bundle projection πk
k−1 : Jk → Jk−1 gives a

diffeomorphism ;

(2.1) p : R → Jk−1; diffeomorphism

On Jk, we have the Contact (differential) system Ck defined by

Ck = {$α = $α
i = · · · = $α

i1···ik−1
= 0},
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where

(2.2)





$α = d yα −∑n
i=1 pα

i d xi, (1 5 α 5 m)

$α
i = d pα

i −
∑n

j=1 pα
ijd xj, (1 5 α 5 m, 1 5 i 5 n)

· · · · · · · · · · · · ,

$α
i1···ik−1

= d pα
i1···ik−1

−
n∑

j=1

pα
i1···ik−1jd xj

(1 5 α 5 m, 1 5 i1 5 · · · 5 ik−1 5 n).

Then Ck gives a foliation on R when R is integrable. Namely the restriction E of Ck to
R is completely integrable.

Thus, through the diffeomorphism (2.1), R defines a completely integrable differential
system E ′ = p∗(E) on Jk−1 such that

Ck−1 = E ′ ⊕ F ′, F ′ = Ker(πk−1
k−2)∗

where πk−1
k−2 : Jk−1 → Jk−2 is the bundle projection. The triplet (Jk−1; E ′, F ′) is called the

pseudo-product structure associated with R.
Corresponding to the splitting D = E ⊕ F = (p−1)∗(Ck−1), we have the splitting

in the symbol algebra of the regular differential system (R,D) ∼= (Jk−1, Ck−1) of type
Ck−1(n,m);

C−1 = e⊕ f,

where e = V, f = W ⊗ Sk−1(V ∗). At each point x ∈ R, e corresponds to E(x) (the point
in R(1) over x) and f corresponds to Ker(πk−1

k−2)∗(p(x)). Here we recall (see §1.3[YY02] for

detail) that the fundamental graded Lie algebra (FGLA) Ck−1(n,m) is defined by

Ck−1(n,m) = C−k ⊕ · · · ⊕ C−2 ⊕ C−1,

where C−k = W, Cp = W ⊗ Sk+p(V ∗), C−1 = V ⊕ W ⊗ Sk−1(V ∗). Here V and W are
vector spaces of dimension n and m respectively and the bracket product of Ck−1(n,m) =
Ck−1(V, W ) is defined accordingly through the pairing between V and V ∗ such that V
and W ⊗ Sk−1(V ∗) are both abelian subspaces of C−1. Here Sr(V ∗) denotes the r-th
symmetric product of V ∗.

Now we put

ǧ0 = {X ∈ g0(C
k−1(n,m)) | [X, e] ⊂ e, [X, f] ⊂ f }

and consider the (algebraic) prolongation gk(n,m) of (Ck−1(n,m), ǧ0), which is called the
pseudo-projective GLA of order k of bidegree (n,m) ([Tan89]). Here g0(C

k−1(n,m))
denotes the Lie algebra of gradation preserving derivations of Ck−1(n,m).

Let Ǧ0 ⊂ GL(Ck−1(n,m)) be the (gradation preserving) automorphism group of Ck−1(n,m)
which also preserve the splitting C−1 = e⊕f. Then Ǧ0 is the Lie subgroup of GL(Ck−1(n,m))
with Lie algebra ǧ0. The pseudo-product structure on a k-th order differential equation
R of finite type given above, which is called the pseudo-projective system of order
k of bidegree (n,m) in [Tan89], can be formulated as the Ǧ]

0-structure over a regular
differential system of type Ck−1(n,m) ([Tan70], [Tan89],[DKM99]). Thus the prolongation
gk(n,m) of (Ck−1(n,m), ǧ0) represents the Lie algebra of infinitesimal automorphisms of
the (local) model k-th order differential equation Ro of finite type, where

Ro =

{
∂kyα

∂xi1 · · · ∂xik

= 0 (1 5 α 5 m, 1 5 i1 5 · · · 5 ik 5 n)

}
.
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The isomorphism φ of the pseudo-product structure on R preserves the differential system
D = E ⊕ F , which is equivalent to the canonical system Ck−1 on Jk−1. Hence, by
Bäcklund’s Theorem (cf. [Yam83]), φ is the lift of a point transformation on J0 when
m = 2 and k = 2 and is the lift of a contact transformation on J1 when m = 1 and k = 3.
When (m, k) = (1, 2), φ is the lift of the point transformation on J0, since φ preserves both
D and F = Ker(π1

0)∗. Thus the equivalence of the pseudo-product structure on R is the
equivalence of the k-th order equation under point or contact transformations. To settle
the equivalence problem for the pseudo-projective systems of order k of bidegree (n,m),
N.Tanaka constructed the normal Cartan connections of type gk(n,m) ([Tan79],
[Tan82], [Tan89]).

It is well known that gk(n,m) (k = 2) has the following structure ([Tan89],[Yam93],
[DKM99], [YY02]);

(1) k = 2 g2(n,m) is isomorphic to sl (m+n+1,R) and has the following gradation:

sl (m + n + 1,R) = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2,

where the gradation is given by subdividing matrices as follows;

g−2 =








0 0 0
0 0 0
ξ 0 0




∣∣∣∣∣∣
ξ ∈ W ∼= Rm



 ,

g−1 =








0 0 0
x 0 0
0 A 0




∣∣∣∣∣∣
x ∈ V ∼= Rn, A ∈ M(m,n) = W ⊗ V ∗



 ,

g0 =








a 0 0
0 B 0
0 0 C




∣∣∣∣∣∣
a ∈ R, B ∈ gl (V ), C ∈ gl (W ),

a + trB + trC = 0



 ,

g1 = { tX | X ∈ g−1 }, g2 = { tX | X ∈ g−2 },

where V = M(n, 1), W = M(m, 1) and M(a, b) denotes the set of a× b matrices.

(2) k = 3 and m = 1 g3(n, 1) is isomorphic to sp(n + 1,R) and has the following
gradation:

sp(n + 1,R) = g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3.

First we describe

sp(n + 1,R) = {X ∈ gl (2n + 2,R) | tXJ + JX = 0 },

where

J =




0 0 0 1
0 0 In 0
0 −In 0 0
−1 0 0 0


 ∈ gl (2n + 2,R), In = (δij) ∈ gl (n,R).
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Here In ∈ gl (n,R) is the unit matrix and the gradation is given again by subdividing
matrices as follows;

g−3 =








0 0 0 0
0 0 0 0
0 0 0 0
2a 0 0 0




∣∣∣∣∣∣∣∣
a ∈ R





,

g−2 =








0 0 0 0
0 0 0 0
ξ 0 0 0
0 tξ 0 0




∣∣∣∣∣∣∣∣
ξ ∈ Rn ∼= V ∗





,

g−1 =








0 0 0 0
x 0 0 0
0 A 0 0
0 0 −tx 0




∣∣∣∣∣∣∣∣
x ∈ Rn = V, A ∈ Sym(n) ∼= S2(V ∗)





,

g0 =








b 0 0 0
0 B 0 0
0 0 −tB 0
0 0 0 −b




∣∣∣∣∣∣∣∣
b ∈ R, B ∈ gl (V ),





gk = { tX | X ∈ g−k }, (k = 1, 2, 3),

where Sym(n) = {A ∈ gl (n,R) | tA = A } is the space of symmetric matrices.

(3) otherwise For vector spaces V and W of dimension n and m respectively,
gk(n,m) =

⊕
p∈Z gp has the following description:

gk = {0} (k = 2), g1 = V ∗, g0 = gl (V )⊕ gl (W ),

g−1 = V ⊕W ⊗ Sk−1(V ∗), gp = W ⊗ Sk+p(V ∗) (p < −1).

Here the bracket product in gk(n,m) is given through the natural tensor operations.

For the structure of gk(n,m) in case (3), we observe the following points. We put

(2.3)

l = V ⊕ g0 ⊕ g1 = (V ⊕ gl (V )⊕ V ∗)⊕ gl (W )

∼= sl (V̂ )⊕ gl (W ),

S = W ⊗ Sk−1(V̂ ∗), V̂ = R⊕ V.

where the gradation of the first kind; sl (V̂ ) = V ⊕ gl (V ) ⊕ V ∗ is given by subdividing

matrices corresponding to the decomposition V̂ = R⊕ V .
Then

Sk−1(V̂ ∗) ∼=
k−1⊕

`=0

S`(V ∗),

and S is a faithful irreducible l-module such that l = l−1⊕ l0⊕ l1 is a reductive graded Lie
algebras, where l−1 = V, l0 = g0, l1 = g1. Moreover gk(n,m) ∼= S ⊕ l is the semi-direct
product of l by S.

In the following sections, we will seek to find other parabolic geometries associated with
differential equations of finite type, which are the generalizations of the above cases (1)
and (2).
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2.2. Pseudo-product GLA of type (l, S). We will now give the notion of the pseudo-
product GLA of type (l, S), generalizing the pseudo-projective GLA of order k of bidegree
(n,m).

Let g =
⊕

p∈Z gp be a (transitive) graded Lie algebra (GLA) over the field K such that

the negative part m =
⊕

p<0 gp is a FGLA, i.e., [gp, g−1] = gp−1 for p < 0, where K is the
field R of real numbers or the field C of complex numbers. Let e and f be subspaces of
g−1. Then the system G = (g, (gp)p∈Z, e, f) is called a pseudo-product GLA (PPGLA) of
irreducible type if the following conditions hold:

(1) g is transitive, i.e., for each k = 0, if X ∈ gk and [X, g−1] = 0, then X = 0.
(2) g−1 = e⊕ f, [e, e] = [f, f] = 0.
(3) [g0, e] ⊂ e and [g0, f] ⊂ f.
(4) g−2 6= 0 and the g0-modules e and f are irreducible.

It is known that g becomes finite dimensional under these conditions (see [Tan85], [Yat88]).

As a typical example, starting from a reductive GLA l = l−1 ⊕ l0 ⊕ l1 and a faithful
irreducible l-module S, we define the pseudo-product GLA g =

⊕
p∈Z gp of type (l, S) as

follows: Let l = l−1 ⊕ l0 ⊕ l1 be a finite dimensional reductive GLA of the first kind
such that

(1) The ideal l̂ = l−1 ⊕ [l−1, l1]⊕ l1 of l is a simple Lie algebra.
(2) The center z(l) of l is contained in l0.

Let S be a finite dimensional faithful irreducible l-module. We put

S−1 = {s ∈ S | l1 · s = 0 }
and

Sp = ad(l−1)
−p−1S−1 for p < 0

We form the semi-direct product g of l by S, and put

g = S ⊕ l, [S, S] = 0

gk = lk (k = 0), g−1 = l−1 ⊕ S−1,

gp = Sp (p < −1).

Namely g is a subalgebra of the Lie algebra A(S) = S ⊕ gl (S) of infinitesimal affine
transformations of S.

Then we have (Lemma 2.1 [YY02])

Lemma 2.1. Notations being as above,

(1) S =
⊕−µ

p=−1 Sp, where S−µ = {s ∈ S | [l−1, s] = 0 }.
(2) m =

⊕
p<0 gp is generated by g−1.

(3) [Sp, l1] = Sp+1 for p < −1.
(4) Sp is naturally embedded as a subspace of W ⊗ Sµ+p(l−1

∗)
through the bracket operation in m, where W = S−µ.

(5) S−1, S−µ are irreducible l0 -modules.

Thus m is a graded subalgebra of Cµ−1(V, W ), which has the splitting g−1 = l−1⊕ S−1,
where V = l−1 and W = S−µ. Hence m is a symbol algebra of µ-th order differential
equations of finite type, which is called the typical symbol of type (l, S). Moreover the
system G = (g, (gp)p∈Z, l−1, S−1) becomes a PPGLA of irreducible type, which is called
the pseudo-product GLA of type (l, S).

This class of higher order (linear) differential equations of finite type were first appeared
in the work of Y.Se-ashi [Sea88].
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2.3. Prolongation Theorem. Let G = (g, (gp)p∈Z, l−1, S−1) be a pseudo-product GLA

of type (l, S), i.e., g = S⊕ l is endowed with the gradation (gp)p∈Z, g =
⊕1

p=−µ gp given in

§2.2. g has also another gradation (bp)p∈Z, g =
⊕0

p=−1 bp, given by b−1 = S and b0 = l.

Thus g has a bigradation (gp,q)p,q∈Z, where gp,q = gp ∩ bq. We have the cohomology group
H∗(G) = H∗(m, g) associated with the adjoint representation of m = g− on g, that is,
the cohomology space of the cochain complex C∗(G) =

⊕
Cp(G) with the coboundary

operator ∂ : Cp(G) −→ Cp+1(G), where Cp(G) = Hom(
∧p

g−, g). We put

Cp(G)r,s = {ω ∈ Cp(G) |
ω(gi1,j1 ∧ · · · ∧ gip,jp) ⊂ gi1+···+ip+r,j1+···+jp+s

for all i1, . . . , ip, j1, . . . , jp }.
As is easily seen, C∗(G)r,s =

⊕
p Cp(G)r,s is a subcomplex of C∗(G). Denoting its coho-

mology space by H (G)r,s =
⊕

Hp(G)r,s, we obtain the direct sum decomposition

H∗(G) =
⊕
p,r,s

Hp(G)r,s.

The cohomology space, endowed with this tri-gradation, is called the generalized Spencer
cohomology space of the PPGLA G of type (l, S). Note that H1(G)0,0 = 0 if and only
if g0 coincides with the Lie algebra of derivations of m such that D(gp) ⊂ gp (p < 0),
D(l−1) ⊂ l−1 and D(S−1) ⊂ S−1.

From now on, we assume that the ground field is the field C of complex numbers
for the sake of simplicity. For the discussion over R, the corresponding results will be
obtained easily through the argument of complexification as in §3.2 in [Yam93]. We set

l̂ = l−1⊕ [l−1, l1]⊕ l1 and u = D(zl(̂l)); then l = l̂⊕u⊕z(l), D(l) = l̂⊕u and l̂ = l−1⊕ l̂0⊕ l1,

where l̂0 = [l−1, l1], is a simple GLA. Let us take a Cartan subalgebra h of l such that

h ⊂ l0. Then h∩ l̂ (resp. h∩u) is a Cartan subalgebra of l̂ (resp. u). Let ∆ = {α1, . . . , α`}
(resp. ∆′ = {β1, . . . , βm}) be a simple root system of (̂l, h ∩ l̂) (resp. (u, h ∩ u)) such that
α(Z) = 0 for all α ∈ ∆, where Z is the characteristic element of the GLA l = l−1⊕ l0⊕ l1.

We assume that l̂ is a simple Lie algebra of type X`. We set ∆1 = {α ∈ ∆ | α(Z) = 1 }.
It is well known that the pair (X`, ∆1) is one of the following type (up to a diagram
automorphism) (cf. §3 in [Yam93]):

(A`, {αi}) (1 5 i 5 [(` + 1)/2]), (B`, {α1}) (` = 3), (C`, {α`}) (` = 2),

(D`, {α1}) (` = 4), (D`, {α`−1}) (` = 5), (E6, {α1}), (E7, {α7}).
We denote by {$1, . . . , $`} (resp. {π1, . . . , πn}) the set of fundamental weights relative

to ∆ (resp. ∆′). Since S is a faithful l-module, we have dim z(l) 5 1. Assume that
z(l) 6= {0}. Let σ be the element of z(l)∗ such that σ(J) = 1, where J is the characteristic
element of the GLA g = b−1 ⊕ b0. Namely J = −idS ∈ z(l) ⊂ b0 = l as the element of

gl (S). There is an irreducible l̂ -module T (resp. zl(̂l ) -module U) with highest weight
χ (resp. η − σ) such that S = b−1 is isomorphic to U ⊗ T as an l-module, where η is a
weight of u. Then we have (Lemma 4.5 [YY02])

Lemma 2.2. H1(G)0,0 = 0 if and only if zl(̂l ) is isomorphic to gl (U) and η = π1.

Especially, when D(l) = l̂, H1(G)0,0 = 0 if and only if l = l̂⊕ z(l), where z(l) = 〈J〉.
Thus, when H1(G)0,0 = 0, the semisimple GLA D(l) is of type (X`×An, {αi}) and S is

an irreducible D(l)-module with highest weight Ξ = χ + π1 when dim U > 1 and D(l) is
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of type (X`, {αi}) and S is an irreducible l̂-module with highest weight χ, when D(l) = l̂
(i.e., when dim U = 1).

The following theorem was obtained in Theorem 5.4 [YY02] as the answer to the fol-
lowing question:

When is g the prolongation of m or (m, g0) ?

In the following theorem (a), the simple graded Lie algebra b = ǧ =
⊕

p∈Z ǧp is described

by (Y`+n+1, Σ1) such that g =
⊕1

p=−µ gp is a graded subalgebra of ǧ =
⊕µ

p=−µ ǧp satisfying

gp = ǧp for p 5 0.

Theorem 2.1. Let G be a pseudo-product GLA of type (l, S) satisfying the condition
H1(G)0,0 = 0. Let b =

⊕
p∈Z bp be the prolongation of g = b−1 ⊕ b0, where b−1 = S and

b0 = l. Then g =
⊕

p∈Z gp is the prolongation of m = ⊕p<0gp except for the following
three cases.

(a) dim b < ∞ and b1 6= 0 (b = b−1 ⊕ b0 ⊕ b1: simple)

D(l) = [l, l] ∆1 b−1 = S ǧ = Y`+n+1 Σ1

A` × An {αi} $` + π1 A`+n+1 {γi, γ`+1}
A` {αi} 2$l C`+1 {γi, γ`+1}

A` (` = 3) {αi} $`−1 D`+1 {γi, γ`+1}
B` (` = 2) {α1} $1 B`+1 {γ1, γ2}
D` (` = 4) {α1} $1 D`+1 {γ1, γ2}
D` (` = 4) {α`} $1 D`+1 {γ1, γ`+1}

D5 {α1} $5 E6 {γ1, γ6}
D5 {α5} $5 E6 {γ1, γ3}
D5 {α4} $5 E6 {γ1, γ2}
E6 {α6} $6 E7 {γ6, γ7}
E6 {α1} $6 E7 {γ1, γ7}

In this case (Y`+n+1, Σ1) is the prolongation of m except for (A`+n+1, {γ1, γ`+1})
and (C`+1, {γ1, γ`+1}). Moreover the latter two are the prolongations of (m, g0).

(b) dim b = ∞
D(l) ∆1 b−1 g(m, g0)

A` {αi} $` (A`+1, {γi, γ`+1})
C` {α`} $1 g

In (C`, {α`})-case, µ = 2

S−2 = V ∗, S−1 = V, l−1 = S2(V ∗),

l0 = V ⊗ V ∗ ⊕ C, l1 = S2(V )
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(c) g is a pseudo-projective GLA, i.e., D(l) = (A` × An, {α1}), Ξ = k$` + π1, (k =
2, n = 1), or D(l) = (A`, {α1}), χ = k$`, (k = 3, n = 0)

S−µ = W, Sp = W ⊗ Sµ+p(V ∗) (−µ < p < 0),

l−1 = V, l0 = gl (V )⊕ gl (W ), l1 = V ∗,

where µ = k + 1, dim V = ` and dim W = n + 1.

In this case g is the prolongation of (m, g0).

By Proposition 4.4.1 in [Sea88], the Lie algebra of infinitesimal linear automorphisms
of the model equation of type (l, S) coincides with l. Hence the cases (a) and (b) of
the above theorem exhaust classes of the equations of type (l, S), for which the model
equations admit non trivial nonlinear automorphisms. These cases correspond to the
parabolic geometries associated with differential equations of finite type, which generalize
the case of second and third order ODEs, mentioned in the introduction. More precisely,
in the cases of (A`+1, {γ1, γi}) and (C`+1, {γ1, γ`+1}), m coincides with the symbol algebra
of the canonical system of the first or second order jet spaces (cf. §4.5 [Yam93]) and
g0 determines the splitting of g−1 , hence the parabolic geometries associated with these
graded Lie algebras are geometries of the pseudo-product structures on the first or second
order jet spaces. In fact the parabolic geometry associated with (Am+n, {γ1, γn+1}) is
the geometry of the pseudo-projective system of order 2 of bidegree (n,m) and the para-
bolic geometry associated with (Cn+1, {γ1, γn+1}) is the geometry of the pseudo-projective
system of order 3 of bidegree (n, 1) (see the following section).

In the other cases of the above theorem (a), (Y`+n+1, Σ1) is the prolongation of m. This
fact implies that the parabolic geometries associated with these graded Lie algebras are ge-
ometries of regular differential system of type m, which have the (almost) pseudo-product
structure corresponding to g−1 = S−1⊕ l−1. Moreover every isomorphism of these regular
differential system preserves this pseudo-product structure. Thus the parabolic geome-
tries associated with (Y`+n+1, Σ1) have the canonical (almost) pseudo-product structures
in the regular differential system of type m corresponding to the splitting g−1 = S−1⊕ l−1

.

In the following sections, we will calculate the explicit forms of the typical symbols of
type (l, S) of the above cases and describe the above (almost) pseudo-product structures
as differential equations of finite type.

3. Symbol of the classical cases

In this section we will describe the symbol algebra m =
⊕

p<0 gp explicitly as the sub-

algebra of Cµ−1(V, W ), where V = l−1 and W = S−µ, by utilizing the explicit matrices
description of the graded Lie algebra ǧ =

⊕
p∈Z ǧp of type (YL, Σ1). For an explicit matri-

ces description of the graded Lie algebra (YL, Σ1), we refer the reader to §4.4 in [Yam93].
By this calculation, we can explicitly write down the class of differential equations of finite
type corresponding to the pseudo-product structure associated with the simple graded Lie
algebra (YL, Σ1). In this section, we shall discuss in the complex analytic or the real C∞

category depending on whether K = C or R.

Case (1) [(A` × An, {αi}), $` + π1, (A`+n+1, {γi, γ`+1})] (1 < i 5 `, n = 0, ` = 2).
This includes the first case of (b) in the above theorem as the case n = 0.
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b = b−1 ⊕ b0 ⊕ b1 is described by (A`+n+1, {γ`+1}) and ǧ =
⊕µ

p=−µ ǧp is described by

(A`+n+1, {γi, γ`+1}). Hence µ = 2 and we obtain the following matrix representation of
ǧ = b = sl (` + n + 2,K):

sl (` + n + 2,K) = g−2 ⊕ g−1 ⊕ g0 ⊕ ǧ1 ⊕ ǧ2 = S ⊕ l⊕ S∗,

where the gradation is given by subdividing matrices as follows;

g−2 = S−2 =








0 0 0
0 0 0
A 0 0




∣∣∣∣∣∣
A ∈ M(n + 1, i) ∼= U ⊗ T ∗

0



 ,

g−1 = S−1 ⊕ l−1,

S−1 = U ⊗ T ∗
−1 =








0 0 0
0 0 0
0 B 0




∣∣∣∣∣∣
B ∈ M(n + 1, j)



 ,

l−1 = T−1 ⊗ T ∗
0 =








0 0 0
C 0 0
0 0 0




∣∣∣∣∣∣
C ∈ M(j, i)



 ,

g0 = ľ0 ⊕ u =








F 0 0
0 G 0
0 0 H




∣∣∣∣∣∣
F ∈ gl (T0), G ∈ gl (T−1), H ∈ gl (U),

trF + trG + trH = 0



 ,

ǧ1 = { tX | X ∈ g−1 }, ǧ2 = { tX | X ∈ g−2 },
where i + j = ` + 1, U = Kn+1, T = T0 ⊕ T−1 = K`+1, T0 = Ki, T−1 = Kj and M(a, b)

denotes the set of a× b matrices. Thus we have

S = U ⊗ T ∗, l = sl (T )⊕ gl (U), and ǧ = sl (T ⊕ U).

We will divide the argument into the following two cases. We first consider the typical
case:

(i) i = ` = 2, n = 0.

We have j = 1 and n = 0 in the above matrix description. Hence dim l−1 = dim S−2 = `
and dim S−1 = 1. We put l−1 = S−2 = V . Then

m = S−2 ⊕ (S−1 ⊕ l−1) =








0 0 0
x 0 0
y a 0


 = y̌ + â + x̂

∣∣∣∣∣∣
x, y ∈ V = M(1, `), a ∈ K



 .

By a direct calculation, we have [â, x̂] = ˇ(ax) ∈ S−2 = V , i.e., y = ax. Thus S−1 is
embedded as the 1-dimensional subspace of scalar multiplications of V ⊗V ∗ = S−2⊗(l−1)

∗

through the bracket operation in m. This implies that the model equation of our typical
symbol m = g−2 ⊕ g−1 ⊂ C1(V, V ) is given by

(3.1)
∂yp

∂xq

= δpq
∂y1

∂x1

for 1 5 p, q 5 `.

where y1, . . . , y` are dependent variables and x1, . . . , x` are independent variables. By a
direct calculation, we see that the prolongation of the first order system (3.1) is given by

(3.2)
∂2yp

∂xq∂xr

= 0 for 1 5 p, q, r 5 `.
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(ii) otherwise.

We have S−2 = U ⊗ T ∗
0
∼= M(n + 1, i), S−1 = U ⊗ T ∗

−1
∼= M(n + 1, j) and l−1 =

T−1 ⊗ T ∗
0
∼= M(j, i). Then

m = S−2 ⊕ (S−1 ⊕ l−1)

=








0 0 0
X 0 0
Y A 0


 = Y̌ + Â + X̂

∣∣∣∣∣∣
Y ∈ M(n + 1, i), A ∈ M(n + 1, j), X ∈ M(j, i)



 .

By a direct calculation, we have [Â, X̂] = (AX)ˇ ∈ S−2, i.e., yα =
∑j

τ=1 aα
τ xτ , where yα

is the α-th row of Y , xτ is the τ -th row of X and A = (aα
τ ). From (i), we see that the

model equation of our typical symbol m = g−2 ⊕ g−1 ⊂ C1(l−1, S−2) is given by

(3.3)
∂yα

p

∂xτ
q

= δpq
∂yα

1

∂xτ
1

for α = 1, . . . , n + 1, τ = 1, . . . , j, 1 5 p, q 5 i,

where y1
1, . . . , y

1
i , . . . , y

n+1
1 , . . . , yn+1

i are dependent variables and x1
1, . . . , x

1
i , . . . , x

j
1, . . . , x

j
i

are independent variables. By a direct calculation, we see that the prolongation of the
first order system (3.3) is given by

(3.4)
∂2yα

p

∂xτ
q∂xυ

r

= 0 for α = 1, . . . , n + 1, 1 5 τ, υ 5 j, 1 5 p, q, r 5 i.

Case (2) [(A` × An, {α1}), $` + π1, (A`+n+1, {γ1, γ`+1})] (n = 0, ` = 1).

b = b−1 ⊕ b0 ⊕ b1 is described by (A`+n+1, {γ`+1}) and ǧ =
⊕µ

p=−µ ǧp is described

by (A`+n+1, {γ1, γ`+1}). Hence µ = 2 and we obtain ǧ = g2(`, n + 1). The matrix
representation is given as (1) in §2.1.

We have S−2 = W ∼= M(n+1, 1), l−1 = V ∼= M(`, 1), S−1 = W ⊗V ∗ ∼= M(n+1, `) and
g0 determines the splitting of g−1 = S−1 ⊕ l−1. Thus the model equation of our typical
symbol m = C1(V, W ) is given by

(3.5)
∂2yα

∂xp∂xq

= o for α = 1, . . . , n + 1, 1 5 p, q 5 `,

where y1, . . . , yn+1 are dependent variables and x1, . . . , x` are independent variables.

Case (3) [(A`, {αi}), 2$l, (C`+1, {γi, γ`+1})] (1 < i 5 `, ` = 2).

b = b−1 ⊕ b0 ⊕ b1 is described by (C`+1, {γ`+1}) and ǧ =
⊕µ

p=−µ ǧp is described by

(C`+1, {γi, γ`+1}). Hence µ = 3 and ǧ = b is isomorphic to sp(` + 1,K). First we describe

sp(` + 1,K) = {X ∈ gl (2` + 2,K) | tXJ + JX = 0 },
where

J =




0 0 0 Ii

0 0 Ij 0
0 −Ij 0 0
−Ii 0 0 0


 ∈ gl (2` + 2,K), Ik = (δpq) ∈ gl (k,K).

12



Here Ik ∈ gl (k,K) is the unit matrix and the gradation is given again by subdividing
matrices as follows;

g−3 = S−3 = S2(T ∗
0 ) =








0 0 0 0
0 0 0 0
0 0 0 0
A 0 0 0




∣∣∣∣∣∣∣∣
A ∈ Sym(i)





,

g−2 = S−2 = T−1 ⊗ T ∗
0 =








0 0 0 0
0 0 0 0
B 0 0 0
0 tB 0 0




∣∣∣∣∣∣∣∣
B ∈ M(j, i)





,

g−1 = S−1 ⊕ l−1,

S−1 = S2(T ∗
−1) =








0 0 0 0
0 0 0 0
0 D 0 0
0 0 0 0




∣∣∣∣∣∣∣∣
D ∈ Sym(j)





,

l−1 = T−1 ⊗ T ∗
0 =








0 0 0 0
C 0 0 0
0 0 0 0
0 0 −tC 0




∣∣∣∣∣∣∣∣
C ∈ M(j, i)





,

g0 = ľ0 =








F 0 0 0
0 G 0 0
0 0 −tG 0
0 0 0 −tF




∣∣∣∣∣∣∣∣
F ∈ gl (i,K), G ∈ gl (j,K),





ǧk = { tX | X ∈ g−k }, (k = 1, 2, 3),

where i + j = ` + 1, T = T0 ⊕ T−1 = K`+1, T0 = Ki, T−1 = Kj and Sym(k) = {A ∈
gl (k,K) | tA = A } is the space of symmetric matrices. Thus we have

S = S2(T ∗), l = sl (T ), and ǧ = sp(T ⊕ T ).

We will divide the argument into the following two cases. We first consider the typical
case:

(i) i = ` = 2.

We have j = 1 in the above matrix description. Hence dim l−1 = S−2 = `, dim S−1 = 1
and dim S−3 = 1

2
`(` + 1). Then

m = S−3 ⊕ S−2 ⊕ (S−1 ⊕ l−1)

=








0 0 0 0
x 0 0 0
ξ a 0 0
Y tξ −tx 0


 = Ŷ + ξ̌ + â + x̂

∣∣∣∣∣∣∣∣
a ∈ K, x, ξ ∈ K` = M(1, `), Y ∈ Sym(`)





,

By calculating [ξ̂, x̂] and [[â, x̂], x̂], we have

ypq(= yqp) = ξpxq + ξqxp = 2axpxq,
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where Y = (ypq), ξ = (ξ1, . . . , ξ`) and x = (x1, . . . , x`). From the first equality, we can
embed S−2 as a subspace of S−3 ⊗ (l−1)

∗ and obtain the following first order system as
the model equation whose symbol coincides with this subspace:

(3.6)
∂ypq

∂xr

= 0 for r 6= p, q,
∂ypq

∂xq

=
1

2

∂ypp

∂xp

for p 6= q,

where ypq = yqp (1 5 p 5 q 5 `) are dependent variables and x1, . . . , x` are independent
variables. Moreover, by a direct calculation, we see that the prolongation of the first order
system (3.6) is given by

(3.7)
∂2ypq

∂xr∂xs

= 0 for {r, s} 6= {p, q}, ∂2ypq

∂xp∂xq

=
1

2

∂2ypp

∂2xp

=
1

2

∂2yqq

∂2xq

for p 6= q.

From the second equality, we observe that the above second order system is the model
equation of the 1-dimensional embedded subspace S−1 in S−3 ⊗ S2((l−1)

∗). Furthermore,
by a direct calculation, we see that the prolongation of this second order system (3.7) is
given by

(3.8)
∂3ypq

∂xr∂xs∂xt

= 0 for 1 5 p, q, r, s, t 5 `.

(ii) 1 < i < `.

We have S−3 = S2(T ∗
0 ) ∼= Sym(i), S−2 = T−1⊗T ∗

0
∼= M(j, i), S−1 = S2(T ∗

−1)
∼= Sym(j)

and l−1 = T−1 ⊗ T ∗
0
∼= M(j, i). Then

m = S−3 ⊕ S−2 ⊕ (S−1 ⊕ l−1)

=








0 0 0 0
X 0 0 0
Ξ A 0 0
Y tΞ −tX 0


 = Ŷ + Ξ̌ + Â + X̂

∣∣∣∣∣∣∣∣
A ∈ Sym(j), X, Ξ ∈ M(j, i), Y ∈ Sym(i)





,

By calculating [Ξ̂, X̂] and [[Â, X̂], X̂], we have

ypq(= yqp) =

j∑
α=1

(ξα
p xα

q + ξα
q xα

p ) = 2

j∑

α,β=1

aαβxα
p xβ

q ,

where Y = (ypq), Ξ = (ξα
p ) A = (aαβ) and X = (xα

p ). From the first equality, we can
embed S−2 as a subspace of S−3 ⊗ (l−1)

∗ and obtain the following first order system as
the model equation whose symbol coincides with this subspace:

(3.9)
∂ypq

∂xα
r

= 0 for r 6= p, q,
∂ypq

∂xα
q

=
1

2

∂ypp

∂xα
p

for p 6= q.

where ypq = yqp (1 5 p 5 q 5 i) are dependent variables and xα
p (1 5 p 5 i, 1 5 α 5 j)

are independent variables. Moreover, by a direct calculation, we see that the prolongation
of the first order system (3.9) is given by

(3.10)
∂2ypq

∂xα
r ∂xβ

s

= 0 for {r, s} 6= {p, q}, ∂2ypq

∂xα
p ∂xβ

q

=
1

2

∂2ypp

∂xα
p ∂xβ

p

=
1

2

∂2yqq

∂xα
q ∂xβ

q

for p 6= q.

From the second equality, we observe that the above second order system is the model
equation of the embedded subspace S−1 in S−3 ⊗ S2((l−1)

∗). Furthermore, by a direct
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calculation, we see that the prolongation of this second order system (3.10) is given by

(3.11)
∂3ypq

∂xα
r ∂xβ

s ∂xγ
t

= 0 for 1 5 p, q, r, s, t 5 i, 1 5 α, β, γ 5 j

Case (4) [(A`, {α1}), 2$l, (C`+1, {γ1, γ`+1})] (` = 1).

b = b−1 ⊕ b0 ⊕ b1 is described by (C`+1, {γ`+1}) and ǧ =
⊕µ

p=−µ ǧp is described by

(C`+1, {γ1, γ`+1}). Hence µ = 3 and we obtain ǧ = g3(`, 1). The matrix representation is
given as (2) in §2.1.

We have S−3 = K, S−2 = V ∗, l−1 = V , S−1 = S2(V ∗) and g0 determines the splitting
of g−1 = S−1⊕ l−1. Thus the model equation of our typical symbol m = C2(V,K) is given
by

(3.12)
∂3y

∂xp∂xq∂xr

= 0 for 1 5 p, q, r 5 `,

where y is dependent variable and x1, . . . , x` are independent variables.

Case (5)[(B`, {α1}), $1, (B`+1, {γ1, γ2})](` = 2)[(D`, {α1}), $1, (D`+1, {γ1, γ2})](` = 4).

b = b−1 ⊕ b0 ⊕ b1 is described by (BD`+1, {γ1}) and ǧ =
⊕µ

p=−µ ǧp is described by

(BD`+1, {γ1, γ2}). Hence µ = 3 and ǧ = b is isomorphic to o(n + 4). First we describe

o(n + 4) = {X ∈ gl (n + 4,K) | tXJ + JX = 0 },

where

J =




0 0 0 0 1
0 0 0 1 0
0 0 In 0 0
0 1 0 0 0
1 0 0 0 0



∈ gl (n + 4,K), In = (δij) ∈ gl (n,K).
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Here In ∈ gl (n,K) is the unit matrix and the gradation is given again by subdividing
matrices as follows;

g−3 = S−3 =








0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
y 0 0 0 0
0 −y 0 0 0




∣∣∣∣∣∣∣∣∣∣

y ∈ K





,

g−2 = S−2 =








0 0 0 0 0
0 0 0 0 0
ξ 0 0 0 0
0 0 0 0 0
0 0 −tξ 0 0




∣∣∣∣∣∣∣∣∣∣

ξ ∈ Kn = M(n, 1)





,

g−1 = S−1 ⊕ l−1,

S−1 =








0 0 0 0 0
b 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −b 0




∣∣∣∣∣∣∣∣∣∣

b ∈ K





,

l−1 =








0 0 0 0 0
0 0 0 0 0
0 x 0 0 0
0 0 −tx 0 0
0 0 0 0 0




∣∣∣∣∣∣∣∣∣∣

x ∈ Kn = M(n, 1)





,

g0 = ľ0 =








a1 0 0 0 0
0 a2 0 0 0
0 0 A 0 0
0 0 0 −a2 0
0 0 0 0 −a1




∣∣∣∣∣∣∣∣∣∣

a1, a2 ∈ K, A ∈ o(n)





ǧk = { tX | X ∈ g−k }, (k = 1, 2, 3).

We have dim S−3 = dim S−1 = 1 and dim S−2 = dim l−1 = n. Then

m = S−3 ⊕ S−2 ⊕ (S−1 ⊕ l−1)

=








0 0 0 0 0
a 0 0 0 0
ξ x 0 0 0
y 0 −tx 0 0
0 −y −tξ −a 0




= ŷ + ξ̌ + â + x̂

∣∣∣∣∣∣∣∣∣∣

y, a ∈ K, x, ξ ∈ Kn = M(n, 1)





.

From [ξ̌, x̂] = (
∑n

i=1 ξixi)
ˆ and [[â, x̂], x̂] = (−a

∑n
i=1 x2

i )
ˆ, we have S−2 = V ∗, putting

S−3 = K and l−1 = V . Moreover S−1 is embedded as the 1-dimensional subspace spanned
by the unit matrix in Sym(n) ∼= S2(V ∗) through the bracket operation in m. This implies
that the model equation of our typical symbol m = g−3 ⊕ g−2 ⊕ g−1 ⊂ C2(V,K) is given
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by

(3.13)
∂2y

∂xp∂xq

= δpq
∂2y

∂2x1

for 1 5 p, q 5 n,

where y is dependent variable and x1, . . . , xn are independent variables. By a direct
calculation, we see that the prolongation of the second order system (3.13) is given by

(3.14)
∂3y

∂xp∂xq∂xr

= 0 for 1 5 p, q, r 5 n.

Case (6) [(D`, {α`}), $1, (D`+1, {γ1, γ`+1})] (` = 4).

b = b−1 ⊕ b0 ⊕ b1 is described by (D`+1, {γ1}) and ǧ =
⊕µ

p=−µ ǧp is described by

(D`+1, {γ1, γ`+1}). Hence µ = 2 and ǧ = b is isomorphic to o(2` + 2). First we describe

o(2` + 2) = {X ∈ gl (2` + 2,K) | tXJ + JX = 0 },
where

J =




0 0 0 1
0 0 I` 0
0 I` 0 0
1 0 0 0


 ∈ gl (2` + 2,K), I` = (δij) ∈ gl (`,K).

Here the gradation is given again by subdividing matrices as follows;

g−2 = S−2 =








0 0 0 0
0 0 0 0
y 0 0 0
0 −ty 0 0




∣∣∣∣∣∣∣∣
y ∈ K` = M(`, 1)





,

g−1 = S−1 ⊕ l−1,

S−1 =








0 0 0 0
ξ 0 0 0
0 0 0 0
0 0 −tξ 0




∣∣∣∣∣∣∣∣
ξ ∈ K` = M(`, 1)





,

l−1 =








0 0 0 0
0 0 0 0
0 X 0 0
0 0 0 0




∣∣∣∣∣∣∣∣
X ∈ o(`)





,

g0 = ľ0 =








a 0 0 0
0 A 0 0
0 0 −tA 0
0 0 0 −a




∣∣∣∣∣∣∣∣
a ∈ K, A ∈ gl (`,K),





ǧk = { tX | X ∈ g−k }, (k = 1, 2, 3),

We have dim S−2 = dim S−1 = `, dim l−1 = 1
2
`(`− 1), l = o(2`) and S = K2`,. Then

m = S−2 ⊕ (S−1 ⊕ l−1)

=








0 0 0 0
ξ 0 0 0
y X 0 0
0 −ty −tξ 0


 = ŷ + ξ̌ + X̂

∣∣∣∣∣∣∣∣
y, ξ ∈ K` = M(`, 1), X ∈ o(`)





.
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By calculating [ξ̌, X̂], we have

yp =
∑̀
q=1

xpqξq, (xpq + xqp = 0),

where y = t(y1, . . . , y`) , ξ = t(ξ1, . . . , ξ`) and X = (xpq). Then the model equation of our
typical symbol m = g−2 ⊕ g−1 ⊂ C1(l−1, S−2) is given by

(3.15)
∂yp

∂xqr

= 0 for distinct p, q, r
∂yp

∂xpq

=
∂yr

∂xrq

for p, r 6= q,

where y1, . . . , y` are dependent variables and xpq (1 5 p < q 5 `) are independent vari-
ables. By a direct calculation, we see that the prolongation of the first order system (3.15)
is given by

(3.16)
∂2yp

∂xq1r1∂xq2r2

= 0 for 1 5 p, q1, r1, q2, r2 5 `.

Case (7) [(A`, {α1}, $`−1, (D`+1, {γ1, γ`+1})] (` = 3).

b = b−1 ⊕ b0 ⊕ b1 is described by (D`+1, {γ`+1}) and ǧ =
⊕µ

p=−µ ǧp is described by

(D`+1, {γ1, γ`+1}). Hence µ = 2 and ǧ = b is isomorphic to o(2` + 2). First we describe

o(2` + 2) = {X ∈ gl (2` + 2,K) | tXJ + JX = 0 },

as in Case (6) and the gradation is given again by subdividing matrices as follows;

g−2 = S−2 =








0 0 0 0
0 0 0 0
y 0 0 0
0 −ty 0 0




∣∣∣∣∣∣∣∣
y ∈ K` = M(`, 1)





,

g−1 = S−1 ⊕ l−1,

S−1 =








0 0 0 0
0 0 0 0
0 Ξ 0 0
0 0 0 0




∣∣∣∣∣∣∣∣
Ξ ∈ o(`)





,

l−1 =








0 0 0 0
x 0 0 0
0 0 0 0
0 0 −tx 0




∣∣∣∣∣∣∣∣
x ∈ K` = M(`, 1)





,

g0 = ľ0 =








a 0 0 0
0 A 0 0
0 0 −tA 0
0 0 0 −a




∣∣∣∣∣∣∣∣
a ∈ K, A ∈ gl (`,K),





ǧk = { tX | X ∈ g−k }, (k = 1, 2, 3),
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We have dim S−2 = dim l−1 = `, dim S−1 = 1
2
`(`− 1), l = sl (T ) and S =

∧2 T ∗,. Then

m = S−2 ⊕ (S−1 ⊕ l−1)

=








0 0 0 0
x 0 0 0
y Ξ 0 0
0 −ty −tx 0


 = y̌ + Ξ̂ + x̂

∣∣∣∣∣∣∣∣
x, y ∈ K` = M(`, 1), Ξ ∈ o(`)





.

By calculating [Ξ̂, x̂], we have

yp =
∑̀
q=1

ξpqxq, (ξpq + ξqp = 0),

where y = t(y1, . . . , y`) , x = t(x1, . . . , x`) and Ξ = (ξpq). Then the model equation of our
typical symbol m = g−2 ⊕ g−1 ⊂ C1(l−1, S−2) is given by

(3.17)
∂yp

∂xq

+
∂yq

∂xp

= 0 for 1 5 p < q 5 `,

where y1, . . . , y` are dependent variables and x1, . . . , x` are independent variables. By a
direct calculation, we see that the prolongation of the first order system (3.17) is given by

(3.18)
∂2yp

∂xq∂xr

= 0 for 1 5 p, q, r 5 `.

Case (8) [(A`, {α`}), $`−1, (D`+1, {γ`, γ`+1})](` = 3).

b = b−1 ⊕ b0 ⊕ b1 is described by (D`+1, {γ`+1}) and ǧ =
⊕µ

p=−µ ǧp is described by

(D`+1, {γ`, γ`+1}). Hence µ = 2 and ǧ = b is isomorphic to o(2` + 2). First we describe

o(2` + 2) = {X ∈ gl (2` + 2,K) | tXJ + JX = 0 },

where

J =




0 0 0 I`

0 0 1 0
0 1 0 0
I` 0 0 0


 ∈ gl (2` + 2,K), I` = (δij) ∈ gl (`,K).
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Here the gradation is given again by subdividing matrices as follows;

g−2 = S−2 =








0 0 0 0
0 0 0 0
0 0 0 0
Y 0 0 0




∣∣∣∣∣∣∣∣
Y ∈ o(`)





,

g−1 = S−1 ⊕ l−1,

S−1 =








0 0 0 0
0 0 0 0
ξ 0 0 0
0 −tξ 0 0




∣∣∣∣∣∣∣∣
ξ ∈ M(1, `)





,

l−1 =








0 0 0 0
x 0 0 0
0 0 0 0
0 0 −tx 0




∣∣∣∣∣∣∣∣
x ∈ K` = M(1, `)





,

g0 = ľ0 =








A 0 0 0
0 a 0 0
0 0 −a 0
0 0 0 −tA




∣∣∣∣∣∣∣∣
a ∈ K, A ∈ gl (`,K),





ǧk = { tX | X ∈ g−k }, (k = 1, 2, 3),

We have dim S−2 = 1
2
`(`− 1), dim S−1 = dim l−1 = `, l = sl (T ) and S =

∧2 T ∗. Then

m = S−2 ⊕ (S−1 ⊕ l−1)

=








0 0 0 0
x 0 0 0
ξ 0 0 0
Y −tξ −tx 0


 = Ŷ + ξ̌ + x̂

∣∣∣∣∣∣∣∣
x, ξ ∈ K` = M(1, `), Y ∈ o(`)





.

By calculating [ξ̌, x̂], we have

ypq = ξqxp − ξpxq, (ypq + yqp = 0),

where x = (x1, . . . , x`) , ξ = (ξ1, . . . , ξ`) and Y = (ypq). Then the model equation of our
typical symbol m = g−2 ⊕ g−1 ⊂ C1(l−1, S−2) is given by

(3.19)
∂ypq

∂xr

= 0 for distinct p, q, r
∂ypq

∂xp

+
∂yqr

∂xr

= 0 for q 6= p, r,

where ypq (1 5 p < q 5 `) are dependent variables and x1, . . . , x` are independent
variables. By a direct calculation, we see that the prolongation of the first order system
(3.19) is given by

(3.20)
∂2ypq

∂xr∂xs

= 0 for 1 5 p, q, r, s 5 `.

Case (9) [(A`, {αi}), $`−1, (D`+1, {γi, γ`+1})] (2 < i < `, ` = 4).

b = b−1 ⊕ b0 ⊕ b1 is described by (D`+1, {γ`+1}) and ǧ =
⊕µ

p=−µ ǧp is described by

(D`+1, {γi, γ`+1}). Hence µ = 3 and ǧ = b is isomorphic to o(2` + 2). First we describe

o(2` + 2) = {X ∈ gl (2` + 2,K) | tXJ + JX = 0 },
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where

J =




0 0 0 Ii

0 0 Ij 0
0 Ij 0 0
Ii 0 0 0


 ∈ gl (2` + 2,K), Ik = (δpq) ∈ gl (k,K).

Here the gradation is given again by subdividing matrices as follows;

g−3 = S−3 =








0 0 0 0
0 0 0 0
0 0 0 0
Y 0 0 0




∣∣∣∣∣∣∣∣
Y ∈ o(i)





,

g−2 = S−2 =








0 0 0 0
0 0 0 0
Ξ 0 0 0
0 −tΞ 0 0




∣∣∣∣∣∣∣∣
Ξ ∈ M(j, i)





,

g−1 = S−1 ⊕ l−1,

S−1 =








0 0 0 0
0 0 0 0
0 A 0 0
0 0 0 0




∣∣∣∣∣∣∣∣
A ∈ o(j)





,

l−1 =








0 0 0 0
X 0 0 0
0 0 0 0
0 0 −tX 0




∣∣∣∣∣∣∣∣
X ∈ M(j, i)





,

g0 = ľ0 =








F 0 0 0
0 G 0 0
0 0 −tG 0
0 0 0 −tF




∣∣∣∣∣∣∣∣
F ∈ gl (i,K), G ∈ gl (j,K),





ǧk = { tX | X ∈ g−k }, (k = 1, 2, 3),

We have i + j = ` + 1, dim S−3 = 1
2
i(i− 1), dim S−2 = dim l−1 = ij, dim S−1 = 1

2
j(j− 1),

l = sl (T ) and S =
∧2 T ∗. Then

m = S−3 ⊕ S−2 ⊕ (S−1 ⊕ l−1)

=








0 0 0 0
X 0 0 0
Ξ A 0 0
Y −tΞ −tX 0


 = Ŷ + Ξ̌ + Â + X̂

∣∣∣∣∣∣∣∣
X, Ξ ∈ M(j, i), Y ∈ o(i), A ∈ o(j)





.

By calculating [Ξ̌, X̂] and [[Â, X̂], X̂], we have

ypq(= −yqp) =

j∑
α=1

(ξα
q xα

p − ξα
p xα

q ) = 2

j∑

α,β=1

aαβxα
p xβ

q ,

where Y = (ypq), Ξ = (ξα
p ) and X = (xα

p ). From the first equality, we can embed S−2 as a
subspace of S−3⊗ (l−1)

∗ and obtain the following first order system as the model equation
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whose symbol coincides with this subspace:

(3.21)
∂ypq

∂xα
r

= 0 for distinct p, q, r,
∂ypq

∂xα
p

+
∂yqr

∂xα
r

= 0 for q 6= p, r,

where ypq (1 5 p < q 5 i) are dependent variables and xα
p 1 5 p 5 i, 1 5 α 5 j) are

independent variables. Moreover, by a direct calculation, we see that the prolongation of
the first order system (3.21) is given by

(3.22)
∂2ypq

∂xα
r ∂xβ

s

=
∂2ypq

∂xα
p ∂xβ

p

= 0 for {r, s} 6= {p, q}, ∂2ypq

∂xα
p ∂xβ

q

=
∂2yrs

∂xα
r ∂xβ

s

for (p, q) 6= (r, s).

From the second equality, we observe that the above second order system is the model
equation of the embedded subspace S−1 in S−3 ⊗ S2((l−1)

∗). Furthermore, by a direct
calculation, we see that the prolongation of this second order system (3.22) is given by

(3.23)
∂3ypq

∂xα
r ∂xβ

s ∂xγ
t

= 0 for 1 5 p, q, r, s, t 5 i, 1 5 α, β, γ 5 j.

Case (10) [(A`, {α2}), $`−1, (D`+1, {γ2, γ`+1})] (` = 3).

b = b−1 ⊕ b0 ⊕ b1 is described by (D`+1, {γ`+1}) and ǧ =
⊕µ

p=−µ ǧp is described by

(D`+1, {γ2, γ`+1}). Hence µ = 3 and ǧ = b is isomorphic to o(2` + 2). First we describe

o(2` + 2) = {X ∈ gl (2` + 2,K) | tXJ + JX = 0 },
where

J =




0 0 0 I2

0 0 I`−1 0
0 I`−1 0 0
I2 0 0 0


 ∈ gl (2` + 2,K), I`−1 = (δij) ∈ gl (`− 1,K).

Hence the gradation is given as in the case (9) with i = 2 and j = ` − 1. We have
dim S−3 = 1, dim S−2 = dim l−1 = 2(` − 1), dim S−1 = 1

2
(` − 1)(` − 2), l = sl (T ) and

S =
∧2 T ∗. Then

m = S−3 ⊕ S−2 ⊕ (S−1 ⊕ l−1)

=








0 0 0 0
X 0 0 0
Ξ A 0 0
Y −tΞ −tX 0


 = Ŷ + Ξ̌ + Â + X̂

∣∣∣∣∣∣∣∣
X, Ξ ∈ M(`− 1, 2), Y ∈ o(2), A ∈ o(`− 1)





.

By calculating [Ξ̌, X̂] and [[Â, X̂], X̂], we have

y =
`−1∑
α=1

(ξα
1 xα

2 + ξα
2 xα

1 ) = 2
`−1∑

α,β=1

aαβxα
1 xβ

2 ,

where Y =

(
y 0
0 −y

)
, A = (aαβ) (aαβ + aβα = 0), Ξ = (ξα

p ) and X = (xα
p ). From the

first equality, we have S−2 = V ∗, putting S−3 = K and l−1 = V . Moreover, from the
second equality and aαβ + aβα = 0, we see that the model equation of our typical symbol
m = g−3 ⊕ g−2 ⊕ g−1 ⊂ C2(V,K) is given by

(3.24)
∂2y

∂xα
i ∂xβ

j

+
∂2y

∂xβ
i ∂xα

j

= 0 for 1 5 i, j 5 2, 1 5 α < β 5 `− 1,

22



where y are dependent variable and x1
1, . . . , x

`−1
1 , x1

2, . . . , x
`−1
2 are independent variables.

By a direct calculation, we see that the prolongation of the second order system (3.24) is
given by

(3.25)
∂3y

∂xα
i ∂xβ

j ∂xγ
k

= 0 for 1 ≤ i, j, k 5 2 1 5 α, β, γ 5 `− 1.

4. Symbol of the exceptional cases

In this section we will describe the symbol algebra m =
⊕

p<0 gp explicitly as the

subalgebra of Cµ−1(V, W ), where V = l−1 and W = S−µ, by first describing the structure
of m =

⊕
p<0 gp explicitly by use of the Chevalley basis of YL.

We first recall that the graded Lie algebra ǧ =
⊕

p∈Z ǧp of type (YL, Σ1) is described in

terms of the root space decomposition as follows (cf. §3 in [Yam93]): Let us fix a Cartan
subalgebra h of ǧ and choose a simple root system Σ = {γ1, . . . , γL} of the root system Φ
of ǧ relative to h. For the subset Σ1 of Σ, we put

Φ+
k = {α =

L∑
i=1

ni(α)γi ∈ Φ+ |
∑

γi∈Σ1

ni(α) = k } for k = 0,

where Φ+ denotes the set of positive roots. Then the gradation ǧ =
⊕

p∈Z ǧp is given by

ǧ−k =
⊕

α∈Φ+
k

g−α, ǧ0 = h⊕
⊕

α∈Φ+
0

(gα ⊕ g−α), ǧk =
⊕

α∈Φ+
k

gα (k > 0),

where gα is the root space for α ∈ Φ.
In the following, let us take a Chevalley basis {xα(α ∈ Φ); hi(1 5 i 5 L)} of ǧ and

put yβ = x−β for β ∈ Φ+ (cf.Chapter VII [Hum72]). We will describe the structure of
the negative part m =

∑
p<0 ǧp of (YL, Σ1) in terms of {yβ}β∈Φ+ . For the property of

the Chevalley basis, we recall that, for α, β ∈ Φ+, if α + β ∈ Φ and α − β /∈ Φ, then
[yα, yβ] = ±yα+β (see §25.2 in [Hum72]).

In this section, we shall treat both complex simple graded Lie algebras (YL, Σ1) and
their normal real forms at the same time and we shall discuss in the complex analytic or
the real C∞ category depending on whether we treat complex simple graded Lie algebras
(YL, Σ1) or their normal real forms.

Case (1) [(D5, {α1}, $5, (E6, {γ1, γ6})].
For the gradation of type (E6, {γ1, γ6}), we have

Φ+
2 = { α−7 = 1 1 1 1 1

0 , α−5 = 1 1 1 1 1
1 , α−3 = 1 1 2 1 1

1 , α−1 = 1 1 2 2 1
1 ,

α1 = 1 2 2 1 1
1 , α3 = 1 2 2 2 1

1 , α5 = 1 2 3 2 1
1 , α7 = 1 2 3 2 1

2 },
Φ+

1 = Ψ1 ∪Ψ6

Ψ1 = { ξ−7 = 1 0 0 0 0
0 , ξ−5 = 1 1 0 0 0

0 , ξ−3 = 1 1 1 0 0
0 , ξ−1 = 1 1 1 1 0

0 ,

ξ1 = 1 1 1 0 0
1 , ξ3 = 1 1 1 1 0

1 , ξ5 = 1 1 2 1 0
1 , ξ7 = 1 2 2 1 0

1 },

Ψ6 = { η−7 = 0 0 0 0 1
0 , η−5 = 0 0 0 1 1

0 , η−3 = 0 0 1 1 1
0 , η−1 = 0 1 1 1 1

0 ,

η1 = 0 0 1 1 1
1 , η3 = 0 1 1 1 1

1 , η5 = 0 1 2 1 1
1 , η7 = 0 1 2 2 1

1 },
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where a1 a3 a4 a5 a6
a2 stands for the root α =

∑6
i=1 aiγi ∈ Φ+ (see Planche V in [Bou68]).

Thus we have µ = 2,

m = ǧ−2 ⊕ ǧ−1 and ǧ−1 = S−1 ⊕ l−1,

where ǧ−2 = S−2, S−1 and l−1 are spanned by the root spaces g−β for β ∈ Φ+
2 , Ψ6 and Ψ1

respectively. Hence dim S−2 = dim S−1 = dim l−1 = 8.
For Φ+

2 , Ψ1 and Ψ6, we observe that α+β /∈ Φ for α, β ∈ Φ+
2 ∪Ψ1 or for α, β ∈ Φ+

2 ∪Ψ6

and that η − ξ /∈ Φ for η ∈ Ψ6, ξ ∈ Ψ1. This implies that [yα, yβ] = 0 for α, β ∈ Φ+
2 ∪ Ψ1

or for α, β ∈ Φ+
2 ∪ Ψ6 and that [yη, yξ] = ±yη+ξ for η ∈ Ψ6, ξ ∈ Ψ1, if η + ξ ∈ Φ, by the

above mentioned property of the Chevalley basis. Hence, from Planche V in [Bou68], we
readily obtain the non-trivial bracket relation among ǧ−1 as in (4.1) below up to signs.

We solve the problem of signs as follows. First we choose the orientation of yβ for
β ∈ Ψ1, Ψ6 and Φ+

2 as in the following: We choose the orientation of yγi
for simple roots

by fixing the root vectors yi = yγi
∈ g−γi

. For ξ ∈ Ψ1, we fix the orientation by the
following order;

yξ−7 = y1, yξ−5 = [y3, yξ−7 ], yξ−3 = [y4, yξ−5 ], yξ−1 = [y5, yξ−3 ],

yξ1 = [y2, yξ−3 ], yξ3 = [y5, yξ1 ], yξ5 = [y4, yξ3 ], yξ7 = [y3, yξ5 ],

For η ∈ Ψ6, we fix the orientation by the following order;

yη−7 = y6, yη−5 = [y5, yη−7 ], yη−3 = [y4, yη−5 ], yη−1 = [y3, yη−3 ],

yη1 = [y2, yη−3 ], yη3 = [y3, yη1 ], yη5 = [y4, yη3 ], yη7 = [y5, yη5 ],

Finally, for α ∈ Φ+
2 , we fix the orientation by the following;

yα−7 = [yη−1 , yξ−7 ], yα−5 = [yη3 , yξ−7 ], yα−3 = [yη5 , yξ−7 ], yα−1 = [yη7 , yξ−7 ],

yα1 = [yη5 , yξ−5 ], yα3 = [yη7 , yξ−5 ], yα5 = [yη7 , yξ−3 ], yα7 = [yη7 , yξ1 ].

Then, for example, we calculate

[yη−1 , yξ−7 ] = [[y3, yη−3 ], yξ−7 ] = [[y3, yξ−7 ], yη−3 ] + [y3, [yη−3 , yξ−7 ]] = [yξ−5 , yη−3 ].

In the same way, by the repeated application of Jacobi identities, we obtain

yα−7 = [yη−1 , yξ−7 ]= −[yη−3 , yξ−5 ] = [yη−5 , yξ−3 ]= −[yη−7 , yξ−1 ],

yα−5 = [yη3 , yξ−7 ] = −[yη1 , yξ−5 ] = [yη−5 , yξ1 ] = −[yη−7 , yξ3 ],

yα−3 = [yη5 , yξ−7 ] = −[yη1 , yξ−3 ] = [yη−3 , yξ1 ] = −[yη−7 , yξ5 ],

yα−1 = [yη7 , yξ−7 ] = −[yη1 , yξ−1 ] = [yη−3 , yξ3 ] = −[yη−5 , yξ5 ],(4.1)

yα1 = [yη5 , yξ−5 ] = −[yη3 , yξ−3 ] = [yη−1 , yξ1 ] = −[yη−7 , yξ7 ],

yα3 = [yη7 , yξ−5 ] = −[yη3 , yξ−1 ] = [yη−1 , yξ3 ] = −[yη−5 , yξ7 ],

yα5 = [yη7 , yξ−3 ] = −[yη5 , yξ−1 ] = [yη−1 , yξ5 ] = −[yη−3 , yξ7 ],

yα7 = [yη7 , yξ1 ] = −[yη5 , yξ3 ] = [yη3 , yξ5 ] = −[yη1 , yξ7 ].

Thus, by fixing the basis {yαi
} of S−2 and {yξj

} of l−1, an element A = a1 ad(yη−7) +
a2 ad(yη−5) + a3 ad(yη−3) + a4 ad(yη−1) + a5 ad(yη1) + a6 ad(yη3) + a7 ad(yη5) + a8 ad(yη7)
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∈ S−1 ⊂ S−2 ⊗ (l−1)
∗ ∼= M(8, 8) is represented as the matrix of the following form;



a4 −a3 a2 −a1 0 0 0 0
a6 −a5 0 0 a2 −a1 0 0
a7 0 −a5 0 a3 0 −a1 0
a8 0 0 −a5 0 a3 −a2 0
0 a7 −a6 0 a4 0 0 −a1

0 a8 0 −a6 0 a4 0 −a2

0 0 a8 −a7 0 0 a4 −a3

0 0 0 0 a8 −a7 a6 −a5




Hence the standard differential system (M(m), Dm) of type m in this case is given by

Dm = {$1 = $2 = · · · = $8 = 0 },
where

$1 = dy1 + p4dx1 − p3dx2 + p2dx3 − p1dx4, $2 = dy2 + p6dx1 − p5dx2 + p2dx5 − p1dx6,

$3 = dy3 + p7dx1 − p5dx3 + p3dx5 − p1dx7, $4 = dy4 + p8dx1 − p5dx4 + p3dx6 − p2dx7,

$5 = dy5 + p7dx2 − p6dx3 + p4dx5 − p1dx8, $6 = dy6 + p8dx2 − p6dx4 + p4dx6 − p2dx8,

$7 = dy7 + p8dx3 − p7dx4 + p4dx7 − p3dx8, $8 = dy8 + p8dx5 − p7dx6 + p6dx7 − p5dx8.

Here (y1, . . . , y8, x1, . . . , x8, p1, . . . , p8) is a coordinate system of M(m) ∼= K24. Thus the
model equation of our typical symbol m = ǧ−2 ⊕ ǧ−1 ⊂ C1(l−1, S−2) is given by

∂y1

∂x4

=
∂y2

∂x6

=
∂y3

∂x7

=
∂y5

∂x8

,
∂y1

∂x3

=
∂y2

∂x5

= −∂y4

∂x7

= −∂y6

∂x8

,

∂y1

∂x2

= −∂y3

∂x5

= −∂y4

∂x6

=
∂y7

∂x8

,
∂y1

∂x1

=
∂y5

∂x5

=
∂y6

∂x6

=
∂y7

∂x7

,

∂y2

∂x2

=
∂y3

∂x3

=
∂y4

∂x4

=
∂y8

∂x8

,
∂y2

∂x1

= −∂y5

∂x3

= −∂y6

∂x4

=
∂y8

∂x7

,(4.2)

∂y3

∂x1

=
∂y5

∂x2

= −∂y7

∂x4

= −∂y8

∂x6

,
∂y4

∂x1

=
∂y6

∂x2

=
∂y7

∂x3

=
∂y8

∂x5

,

∂yi

∂xj

= 0 otherwise,

where y1, . . . , y8 are dependent variables and x1, . . . , x8 are independent variables. By a
direct calculation, we see that the prolongation of the first order system (4.2) is given by

(4.3)
∂2yi

∂xj∂xk

= 0 for 1 5 i, j, k 5 8.

Case (2) [(D5, {α5}), $5, (E6, {γ1, γ3})].
For the gradation of type (E6, {γ1, γ3}), we have

Φ+
3 = { α1 = 1 2 2 1 0

1 , α2 = 1 2 2 1 1
1 , α3 = 1 2 2 2 1

1 , α4 = 1 2 3 2 1
1 , α5 = 1 2 3 2 1

2 }

Φ+
2 = { η1 = 1 1 0 0 0

0 , η2 = 1 1 1 0 0
0 , η3 = 1 1 1 0 0

1 , η4 = 1 1 1 1 0
0 , η5 = 1 1 1 1 0

1 ,

η6 = 1 1 1 1 1
0 , η7 = 1 1 1 1 1

1 , η8 = 1 1 2 1 0
1 , η9 = 1 1 2 1 1

1 , η10 = 1 1 2 2 1
1 },
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Φ+
1 = Ψ1 ∪Ψ3

Ψ3 = { ξ1 = 0 1 0 0 0
0 , ξ2 = 0 1 1 0 0

0 , ξ3 = 0 1 1 0 0
1 , ξ4 = 0 1 1 1 0

0 , ξ5 = 0 1 1 1 0
1 ,

ξ6 = 0 1 1 1 1
0 , ξ7 = 0 1 1 1 1

1 , ξ8 = 0 1 2 1 0
1 , ξ9 = 0 1 2 1 1

1 , ξ10 = 0 1 2 2 1
1 },

Ψ1 = {γ1 = 1 0 0 0 0
0 }

where a1 a3 a4 a5 a6
a2 stands for the root α =

∑6
i=1 aiγi ∈ Φ+ (see Planche V in [Bou68]).

Thus we have µ = 3,

m = ǧ−3 ⊕ ǧ−2 ⊕ ǧ−1 and ǧ−1 = S−1 ⊕ l−1,

where ǧ−3 = S−3, ǧ−2 = S−2, S−1 and l−1 are spanned by the root spaces g−β for β ∈
Φ+

3 , Φ+
2 , Ψ1 and Ψ3 respectively. Hence dim S−3 = 5, dim S−2 = dim l−1 = 10 and

dim S−1 = 1.
For Φ+

3 , Φ+
2 , Ψ1 and Ψ3, we observe that α + β /∈ Φ for α, β ∈ Φ+

3 ∪Φ+
2 ∪Ψ1, ξ − γ /∈ Φ

for ξ ∈ Ψ3, γ ∈ Ψ1 and that, if η + ξ ∈ Φ+
3 for η ∈ Φ+

2 , ξ ∈ Ψ3, then η − ξ /∈ Φ. This
implies that [yα, yβ] = 0 for α, β ∈ Φ+

3 ∪ Φ+
2 ∪ Ψ1, [yγ, yξ] = ±yγ+ξ for ξ ∈ Ψ3, γ ∈ Ψ1,

if γ + ξ ∈ Φ and [yη, yξ] = ±yη+ξ for η ∈ Φ+
2 , ξ ∈ Ψ3, if η + ξ ∈ Φ, by the property of

the Chevalley basis. Hence, from Planche V in [Bou68], we readily obtain the non-trivial
bracket relation among ǧ−1 and [ǧ−2, l−1] as in (4.4) and (4.5) below up to signs.

We fix the signs of yβ for β ∈ Φ+
3 , Φ+

2 , Ψ3 and Ψ1 as follows: First we choose the
orientation of yγi

for simple roots by fixing the root vectors yi = yγi
∈ g−γi

. For ξ ∈ Ψ3,
we fix the orientation by the following order;

yξ1 = y3, yξ2 = [y4, yξ1 ], yξ3 = [y2, yξ2 ], yξ4 = [y5, yξ2 ], yξ5 = [y5, yξ3 ],

yξ6 = [y6, yξ4 ], yξ7 = [y2, yξ6 ], yξ8 = [y4, yξ5 ], yξ9 = [y6, yξ8 ], yξ10 = [y5, yξ9 ].

For η ∈ Φ+
2 , we fix the orientation by the following ;

(4.4) yηi
= [y1, yξi

] for i = 1, 2, . . . , 10.

Finally, for α ∈ Φ+
3 , we fix the orientation by the following;

yα1 = [yη8 , yξ1 ], yα2 = [yη9 , yξ1 ], yα3 = [yη10 , yξ1 ], yα4 = [yη10 , yξ2 ], yα5 = [yη10 , yξ3 ].

Then, for example, we calculate

[yηp , yξq ] = [[y1, yξp ], yξq ] = [[y1, yξq ], yξp ] = [yηq , yξp ] for 1 5 p, q 5 10,

and

[yη5 , yξ2 ] = [yη5 , [y4, yξ1 ]] = [[yη5 , y4], yξ1 ] = [[[y1, yξ5 ], y4], yξ1 ]

= [[y1, [yξ5 , y4]], yξ1 ] = −[[y1, yξ8 ], yξ1 ] = −[yη8 , yξ1 ].

In the same way, by the repeated application of Jacobi identities, we obtain

yα1 = [yη8 , yξ1 ] = −[yη5 , yξ2 ] = [yη4 , yξ3 ]= [yη3 , yξ4 ] = −[yη2 , yξ5 ] = [yη1 , yξ8 ],

yα2 = [yη9 , yξ1 ] = −[yη7 , yξ2 ] = [yη6 , yξ3 ]= [yη3 , yξ6 ] = −[yη2 , yξ7 ] = [yη1 , yξ9 ],

yα3 = [yη10 , yξ1 ]= −[yη7 , yξ4 ] = [yη6 , yξ5 ]= [yη5 , yξ6 ] = −[yη4 , yξ7 ]= [yη1 , yξ10 ],(4.5)

yα4 = [yη10 , yξ2 ]= −[yη9 , yξ4 ] = [yη8 , yξ6 ]= [yη6 , yξ8 ] = −[yη4 , yξ9 ]= [yη2 , yξ10 ],

yα5 = [yη10 , yξ3 ]= −[yη9 , yξ5 ] = [yη8 , yξ7 ]= [yη7 , yξ8 ] = −[yη5 , yξ9 ]= [yη3 , yξ10 ].
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Then, by fixing the basis {yαi
}5

i=1 of S−3 and {yξj
}10

j=1 of l−1, an element A =
∑10

j=1 aj ad(yηj
)

∈ S−2 ⊂ S−3 ⊗ (l−1)
∗ ∼= M(5, 10) is represented as the matrix of the following form;




a8 −a5 a4 a3 −a2 0 0 a1 0 0
a9 −a7 a6 0 0 a3 −a2 0 a1 0
a10 0 0 −a7 a6 a5 −a4 0 0 a1

0 a10 0 −a9 0 a8 0 a6 −a4 a2

0 0 a10 0 −a9 0 a8 a7 −a5 a3




Moreover, for y1 ∈ S−1, we have

yα1 = [[y1, yξ1 ], yξ8 ] = −[[y1.yξ2 ], yξ5 ] = [[y1, yξ3 ], yξ4 ],

yα2 = [[y1, yξ1 ], yξ9 ] = −[[y1, yξ2 ], yξ7 ] = [[y1, yξ3 ], yξ6 ],

yα3 = [[y1, yξ1 ], yξ10 ]= −[[y1, yξ4 ], yξ7 ] = [[y1, yξ5 ], yξ6 ],

yα4 = [[y1, yξ2 ], yξ10 ]= −[[y1, yξ4 ], yξ9 ] = [[y1, yξ6 ], yξ8 ],

yα5 = [[y1, yξ3 ], yξ10 ]= −[[y1, yξ5 ], yξ9 ] = [[y1, yξ7 ], yξ8 ].

Thus S−1 is embedded as the 1-dimensional subspace of S−3⊗S2((l−1)
∗) spanned by the

following quadratic form f

f(X,X) = (x1x8−x2x5 +x3x4)yα1 +(x1x9−x2x7 +x3x6)yα2 +(x1x10−x4x7 +x5x6)yα3

+ (x2x10 − x4x9 + x6x8)yα4 + (x3x10 − x5x9 + x7x8)yα5 .

for X =
∑10

j=1 xjyξj
∈ l−1.

By the above matrix representation, we can embed S−2 as a subspace of S−3⊗ (l−1)
∗ ∼=

M(5, 10) and obtain the following first order system as the model equation whose symbol
coincides with this subspace:

∂y1

∂x8

=
∂y2

∂x9

=
∂y3

∂x10

, −∂y1

∂x5

= −∂y2

∂x7

=
∂y4

∂x10

,
∂y1

∂x4

=
∂y2

∂x6

=
∂y5

∂x10

,

∂y1

∂x3

= −∂y3

∂x7

= −∂y4

∂x9

, −∂y1

∂x2

=
∂y3

∂x6

= −∂y5

∂x9

,
∂y2

∂x3

=
∂y3

∂x5

=
∂y4

∂x8

,(4.6)

−∂y2

∂x2

= −∂y3

∂x4

=
∂y5

∂x8

,
∂y1

∂x1

=
∂y4

∂x6

=
∂y5

∂x7

,
∂y2

∂x1

= −∂y4

∂x4

= −∂y5

∂x5

,

∂y3

∂x1

=
∂y4

∂x2

=
∂y5

∂x3

,
∂yi

∂xj

= 0 otherwise,

where y1, . . . , y5 are dependent variables and x1, . . . , x10 are independent variables. More-
over, by a direct calculation, we see that the prolongation of the first order system (4.6)
is given by

∂2y1

∂x1∂x8

=
∂2y2

∂x1∂x9

=
∂2y3

∂x1∂x10

=
∂2y4

∂x10∂x2

=
∂2y5

∂x10∂x3

=
∂2y2

∂x3∂x6

=
∂2y1

∂x3∂x4

= − ∂2y3

∂x4∂x7

= − ∂2y4

∂x4∂x9

= − ∂2y5

∂x9∂x5

(4.7)

=
∂2y3

∂x5∂x6

= − ∂2y1

∂x5∂x2

= − ∂2y2

∂x2∂x7

=
∂2y5

∂x7∂x8

=
∂2y4

∂x8∂x6

,

∂2yi

∂xp∂xq

= 0 otherwise.
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From the above expression of f , we observe that the above second order system is the
model equation of the 1-dimensional embedded subspace S−1 in S−3⊗S2((l−1)

∗).Furthermore,
by a direct calculation, we see that the prolongation of this second order system (4.7) is
given by

(4.8)
∂3yi

∂xp∂xq∂xr

= 0 for 1 5 i 5 5, 1 5 p, q, r 5 10.

Case (3) [(D5, {α4}), $5, (E6, {γ1, γ2})].
For the gradation of type (E6, {γ1, γ2}), we have

Φ+
3 = {θ = 1 2 3 2 1

2 },
Φ+

2 = { η1 = 1 2 3 2 1
1 , η2 = 1 2 2 2 1

1 , η3 = 1 1 2 2 1
1 , η4 = 1 2 2 1 1

1 , η5 = 1 1 2 1 1
1 ,

η6 = 1 2 2 1 0
1 , η7 = 1 1 2 1 0

1 , η8 = 1 1 1 1 1
1 , η9 = 1 1 1 1 0

1 , η10 = 1 1 1 0 0
1 },

Φ+
1 = Ψ2 ∪Ψ1

Ψ2 = { ξ1 = 0 0 0 0 0
1 , ξ2 = 0 0 1 0 0

1 , ξ3 = 0 1 1 0 0
1 , ξ4 = 0 0 1 1 0

1 , ξ5 = 0 1 1 1 0
1 ,

ξ6 = 0 0 1 1 1
1 , ξ7 = 0 1 1 1 1

1 , ξ8 = 0 1 2 1 0
1 , ξ9 = 0 1 2 1 1

1 , ξ10 = 0 1 2 2 1
1 },

Ψ1 = {ζ1 = 1 0 0 0 0
0 , ζ2 = 1 1 0 0 0

0 , ζ3 = 1 1 1 0 0
0 , ζ4 = 1 1 1 1 0

0 , ζ5 = 1 1 1 1 1
0 }.

where a1 a3 a4 a5 a6
a2 stands for the root α =

∑6
i=1 aiγi ∈ Φ+ (see Planche V in [Bou68]).

Thus we have µ = 3,

m = ǧ−3 ⊕ ǧ−2 ⊕ ǧ−1 and ǧ−1 = S−1 ⊕ l−1,

where ǧ−3 = S−3, ǧ−2 = S−2, S−1 and l−1 are spanned by the root spaces g−β for
β ∈ Φ+

3 , Φ+
2 , Ψ1 and Ψ2 respectively. Hence dim S−3 = 1, dim S−2 = dim l−1 = 10 and

dim S−1 = 5.
For Φ+

3 , Φ+
2 , Ψ1 and Ψ2, we observe that Φ+

3 = {θ}, where θ is the highest root, α+β /∈ Φ
for α, β ∈ Φ+

3 ∪ Φ+
2 ∪ Ψ1, ζ − ξ /∈ Φ for ξ ∈ Ψ2, ζ ∈ Ψ1 and that ηi + ξi = θ, ηi − ξi /∈ Φ,

ξi + ξj /∈ Φ and ηi + ξj /∈ Φ if i 6= j for ηi ∈ Φ+
2 and ξi, ξj ∈ Ψ2 (i, j = 1, . . . , 10). This

implies that [yα, yβ] = 0 for α, β ∈ Φ+
3 ∪ Φ+

2 ∪ Ψ1, [yζ , yξ] = ±yζ+ξ for ξ ∈ Ψ2, ζ ∈ Ψ1, if
ζ+ξ ∈ Φ and that [yξi

, yξj
] = 0, [yηi

, yξj
] = ±δijyθ for ηi ∈ Φ+

2 , ξi, ξj ∈ Ψ2 (i, j = 1, . . . , 10),
by the property of the Chevalley basis. Hence, from Planche V in [Bou68], we readily
obtain the non-trivial bracket relation among ǧ−1 and [ǧ−2, l−1] as in (4.9) and (4.10)
below up to signs.

We fix the signs of yβ for β ∈ Φ+
3 , Φ+

2 , Ψ2 and Ψ1 as follows: First we choose the
orientation of yγi

for simple roots by fixing the root vectors yi = yγi
∈ g−γi

. For ζ ∈ Ψ1,
we fix the orientation by the following order;

yζ1 = y1, yζ2 = [y3, yζ1 ], yζ3 = [y4, yζ2 ], yζ4 = [y5, yζ3 ], yζ5 = [y6, yζ4 ].

For ξ ∈ Ψ2, we fix the orientation by the following order;

yξ1 = y2, yξ2 = [yξ1 , y4], yξ3 = [yξ2 , y3], yξ4 = [yξ2 , y5], yξ5 = [yξ3 , y5]

yξ6 = [yξ4 , y6], yξ7 = [yξ5 , y6], yξ8 = [yξ5 , y4], yξ9 = [yξ8 , y6], yξ10 = [yξ9 , y5].

For η ∈ Φ+
2 , we fix the orientation by the following order;

yη1 = [yζ3 , yξ10 ], yη2 = [yζ2 , yξ10 ], yη3 = [yζ1 , yξ10 ], yη4 = −[yζ2 , yξ9 ],

yη5 = −[yζ1 , yξ9 ], yη6 = [yζ2 , yξ8 ], yη7 = [yζ1 , yξ8 ], yη8 = [yζ1 , yξ7 ],

yη9 = −[yζ1 , yξ5 ], yη10 = [yζ1 , yξ3 ].
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Finally, for θ ∈ Φ+
3 , we fix the orientation by the following;

yθ = [yη10 , yξ10 ].

Then, for example, we calculate

[yη10 , yξ10 ] = [yη10 , [yξ9 , y5]] = [yξ9 , [yη10 , y5]] = [yξ9 , [[yζ1 , yξ3 ], y5]]

= [yξ9 , [yζ1 , [yξ3 , y5]]] = [yξ9 , [yζ1 , yξ5 ]] = [yξ9 ,−yη9 ] = [yη9 , yξ9 ],

and obtain

(4.9) [yηi
, yξj

] = δijyθ, [yηi
.yηj

] = [yξi
, yξj

] = 0 for 1 5 i, j 5 10.

Moreover we calculate as in

[yζ3 , yξ7 ] = [[y4, yζ2 ], yξ7 ] = [[y4, yξ7 ], yζ2 ] = [[y4, [yξ5 , y6]], yζ2 ]

= [[[y4, yξ5 ], y6], yζ2 ] = [[−yξ8 , y6], yζ2 ] = −[yξ9 , yζ2 ] = −yη4 ,

and obtain

yθ = [[yζ1 , yξ3 ], yξ10 ]= −[[yζ1 , yξ5 ], yξ9 ] = [[yζ1 , yξ7 ], yξ8 ],

yθ = [[yζ2 , yξ2 ], yξ10 ]= −[[yζ2 , yξ4 ], yξ9 ] = [[yζ2 , yξ6 ], yξ8 ],

yθ = [[yζ3 , yξ1 ], yξ10 ]= −[[yζ3 , yξ4 ], yξ7 ] = [[yζ3 , yξ5 ], yξ6 ],(4.10)

yθ = [[yζ4 , yξ1 ], yξ9 ] = −[[yζ4 , yξ2 ], yξ7 ] = [[yζ4 , yξ3 ], yξ6 ],

yθ = [[yζ5 , yξ1 ], yξ8 ] = −[[yζ2 , yξ2 ], yξ5 ] = [[yζ5 , yξ3 ], yξ4 ].

From (4.9), we have S−2 = V ∗, by fixing the base of S−3
∼= K and putting l−1 = V .

Moreover, from (4.10), S−1 is embedded as the 5-dimensional subspace of S2(V ∗) spanned
by the following quadratic forms f1, . . . , f5;

f1(X,X) = x3x10 − x5x9 + x7x8, f2(X,X) = x2x10 − x4x9 + x6x8,

f3(X,X) = x1x10 − x4x7 + x5x6, f4(X,X) = x1x9 − x2x7 + x3x6,

f5(X,X) = x1x8 − x2x5 + x3x4,

for X =
∑10

i=1 xiyξi
∈ l−1. Thus, by fixing the basis {yθ} of S−3 and {yξ1 , . . . , yξ10} of

l−1, an element A =
∑5

i=1 ai ad(yζi
) ∈ S−1 ⊂ S2(V ∗) ∼= Sym(10) is represented as the

symmetric matix of the following form;



0 0 0 0 0 0 0 a5 a4 a3

0 0 0 0 −a5 0 −a4 0 0 a2

0 0 0 a5 0 a4 0 0 0 a1

0 0 a5 0 0 0 −a3 0 −a2 0
0 −a5 0 0 0 a3 0 0 −a1 0
0 0 a4 0 a3 0 0 a2 0 0
0 −a4 0 −a3 0 0 0 a1 0 0
a5 0 0 0 0 a2 a1 0 0 0
a4 0 0 −a2 −a1 0 0 0 0 0
a3 a2 a1 0 0 0 0 0 0 0




Hence the standard differential system (M(m), Dm) of type m in this case is given by

Dm = {$ = $1 = $2 = · · · = $10 = 0 },
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where

$ = dy − p1dx1 − · · · − p10dx10,

$1 = dp1 + q5dx8 + q4dx9 + q3dx10, $2 = dp2 − q5dx5 − q4dx7 + q2dx10,

$3 = dp3 + q5dx4 + q4dx6 + q1dx10, $4 = dp4 + q5dx3 − q3dx7 − q2dx9,

$5 = dp5 − q5dx2 + q3dx6 − q1dx9, $6 = dp6 + q4dx3 + q3dx5 + q2dx8,

$7 = dp7 − q4dx2 − q3dx4 + q1dx8, $8 = dp8 + q5dx1 + q2dx6 + q1dx7,

$9 = dp9 + q4dx1 − q2dx4 − q1dx5 $10 = dp10 + q3dx1 + q2dx2 + q1dx3.

Here (x1, . . . , x10, y, p1, . . . , p10, q1, . . . , q5) is a coordinate system of M(m) ∼= K26. Thus
the model equation of our typical symbol m = ǧ−3 ⊕ ǧ−2 ⊕ ǧ−1 ⊂ C2(l−1,K) is given by

∂2y

∂x3∂x10

= − ∂2y

∂x5∂x9

=
∂2y

∂x7∂x8

,
∂2y

∂x2∂x10

= − ∂2y

∂x4∂x9

=
∂2y

∂x6∂x8

,

∂2y

∂x1∂x10

= − ∂2y

∂x4∂x7

=
∂2y

∂x5∂x6

,
∂2y

∂x1∂x9

= − ∂2y

∂x2∂x7

=
∂2y

∂x3∂x6

,(4.11)

∂2y

∂x1∂x8

= − ∂2y

∂x2∂x5

=
∂2y

∂x3∂x4

,
∂2y

∂xi∂xj

= 0 otherwise,

where y is dependent variable and x1, . . . , x10 are independent variables. By a direct
calculation, we see that the prolongation of the second order system (4.11) is given by

(4.12)
∂3y

∂xi∂xj∂xk

= 0 for 1 5 i, j, k 5 10.

Case (4) [(E6, {α6}), $6, (E7, {γ6, γ7})].
For the gradation of type (E7, {γ6, γ7}), we have

Φ+
3 = { α1 = 0 1 2 2 2 1

1 , α2 = 1 1 2 2 2 1
1 , α3 = 1 2 2 2 2 1

1 ,

α4 = 1 2 3 2 2 1
1 , α5 = 1 2 3 3 2 1

1 , α6 = 1 2 3 2 2 1
2 , α7 = 1 2 3 3 2 1

2 ,

α8 = 1 2 4 3 2 1
2 , α9 = 1 3 4 3 2 1

2 , α10 = 2 3 4 3 2 1
2 },

Φ+
2 = { η1 = 0 0 0 0 1 1

0 , η2 = 0 0 0 1 1 1
0 , η3 = 0 0 1 1 1 1

0 , η4 = 0 0 1 1 1 1
1 ,

η5 = 0 1 1 1 1 1
0 , η6 = 0 1 1 1 1 1

1 , η7 = 1 1 1 1 1 1
0 , η8 = 1 1 1 1 1 1

1 ,

η9 = 0 1 2 1 1 1
1 , η10 = 1 1 2 1 1 1

1 , η11 = 0 1 2 2 1 1
1 , η12 = 1 2 2 1 1 1

1 ,

η13 = 1 1 2 2 1 1
1 , η14 = 1 2 2 2 1 1

1 , η15 = 1 2 3 2 1 1
1 , η16 = 1 2 3 2 1 1

2 },
Φ+

1 = Ψ6 ∪Ψ7

Ψ6 = { ξ1 = 0 0 0 0 1 0
0 , ξ2 = 0 0 0 1 1 0

0 , ξ3 = 0 0 1 1 1 0
0 , ξ4 = 0 0 1 1 1 0

1 ,

ξ5 = 0 1 1 1 1 0
0 , ξ6 = 0 1 1 1 1 0

1 , ξ7 = 1 1 1 1 1 0
0 , ξ8 = 1 1 1 1 1 0

1 ,

ξ9 = 0 1 2 1 1 0
1 , ξ10 = 1 1 2 1 1 0

1 , ξ11 = 0 1 2 2 1 0
1 , ξ12 = 1 2 2 1 1 0

1 ,

ξ13 = 1 1 2 2 1 0
1 , ξ14 = 1 2 2 2 1 0

1 , ξ15 = 1 2 3 2 1 0
1 , ξ16 = 1 2 3 2 1 0

2 },
Ψ7 = {γ7 = 0 0 0 0 0 1

0 }
where a1 a3 a4 a5 a6 a7

a2 stands for the root α =
∑7

i=1 aiγi ∈ Φ+ (see Planche VI in [Bou68]).
Thus we have µ = 3,

m = ǧ−3 ⊕ ǧ−2 ⊕ ǧ−1 and ǧ−1 = S−1 ⊕ l−1,
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where ǧ−3 = S−3, ǧ−2 = S−2, S−1 and l−1 are spanned by the root spaces g−β for β ∈
Φ+

3 , Φ+
2 , Ψ7 and Ψ6 respectively. Hence dim S−3 = 10, dim S−2 = dim l−1 = 16 and

dim S−1 = 1.
For Φ+

3 , Φ+
2 , Ψ7 and Ψ6, we observe that α + β /∈ Φ for α, β ∈ Φ+

3 ∪Φ+
2 ∪Ψ7, ξ − γ /∈ Φ

for ξ ∈ Ψ6, γ ∈ Ψ7 and that, if η + ξ ∈ Φ+
3 for η ∈ Φ+

2 , ξ ∈ Ψ6, then η − ξ /∈ Φ. This
implies that [yα, yβ] = 0 for α, β ∈ Φ+

3 ∪ Φ+
2 ∪ Ψ7, [yγ, yξ] = ±yγ+ξ for ξ ∈ Ψ6, γ ∈ Ψ7,

if γ + ξ ∈ Φ and [yη, yξ] = ±yη+ξ for η ∈ Φ+
2 , ξ ∈ Ψ6, if η + ξ ∈ Φ, by the property of

the Chevalley basis. Hence, from Planche VI in [Bou68], we readily obtain the non-trivial
bracket relation among ǧ−1 and [ǧ−2, l−1] as in (4.13) and (4.14) below up to signs.

We fix the signs of yβ for β ∈ Φ+
3 , Φ+

2 , Ψ7 and Ψ6 as follows: First we choose the
orientation of yγi

for simple roots by fixing the root vectors yi = yγi
∈ g−γi

. For ξ ∈ Ψ6,
we fix the orientation by the following order;

yξ1 = y6, yξ2 = [yξ1 , y5], yξ3 = [yξ2 , y4], yξ4 = [yξ3 , y2],

yξ5 = [yξ3 , y3], yξ6 = [yξ5 , y2], yξ7 = [yξ5 , y1], yξ8 = [yξ7 , y2],

yξ9 = [yξ6 , y4], yξ10 = [yξ9 , y1], yξ11 = [yξ9 , y5], yξ12 = [yξ10 , y3],

yξ13 = [yξ11 , y1], yξ14 = [yξ13 , y3], yξ15 = [yξ14 , y4], yξ16 = [yξ15 , y2].

For η ∈ Φ+
2 , we fix the orientation by the following ;

(4.13) yηp = [y7, yξp ] for p = 1, 2, . . . , 16.

Finally, for α ∈ Φ+
3 , we fix the orientation by the following;

yα1 = [yη11 , yξ1 ], yα2 = [yη13 , yξ1 ], yα3 = [yη14 , yξ1 ], yα4 = [yη15 , yξ1 ],

yα5 = [yη15 , yξ2 ], yα6 = [yη16 , yξ1 ], yα7 = [yη16 , yξ2 ], yα8 = [yη16 , yξ3 ],

yα9 = [yη16 , yξ5 ], yα10 = [yη16 , yξ7 ],

Then, for example, we calculate

[yηp , yξq ] = [[y7, yξp ], yξq ] = [[y7, yξq ], yξp ] = [yηq , yξp ] for 1 5 p, q 5 16,

and

[yη11 , yξ1 ] = [[y7, yξ11 ], yξ1 ] = [[y7, [yξ9 , y5]], yξ1 ] = [[[y7, yξ9 ], y5], yξ1 ]

= [[yη9 , y5], yξ1 ] = [yη9 , [y5, yξ1 ]] = −[yη9 , yξ2 ].

In the same way, by the repeated application of Jacobi identities, we obtain

yα1 = [yη11 , yξ1 ] = −[yη9 , yξ2 ] = [yη6 , yξ3 ] = −[yη5 , yξ4 ],

yα2 = [yη13 , yξ1 ]= −[yη10 , yξ2 ] = [yη8 , yξ3 ] = −[yη7 , yξ4 ],

yα3 = [yη14 , yξ1 ]= −[yη12 , yξ2 ] = [yη8 , yξ5 ] = −[yη7 , yξ6 ],

yα4 = [yη15 , yξ1 ]= −[yη12 , yξ3 ] = [yη10 , yξ5 ] = −[yη9 , yξ7 ],

yα5 = [yη15 , yξ2 ]= −[yη14 , yξ3 ] = [yη13 , yξ5 ] = −[yη11 , yξ7 ],(4.14)

yα6 = [yη16 , yξ1 ]= −[yη12 , yξ4 ] = [yη10 , yξ6 ] = −[yη9 , yξ8 ],

yα7 = [yη16 , yξ2 ]= −[yη14 , yξ4 ] = [yη13 , yξ6 ] = −[yη11 , yξ8 ],

yα8 = [yη16 , yξ3 ]= −[yη15 , yξ4 ] = [yη13 , yξ9 ] = −[yη11 , yξ10 ],

yα9 = [yη16 , yξ5 ]= −[yη15 , yξ6 ] = [yη14 , yξ9 ] = −[yη12 , yξ11 ],

yα10 = [yη16 , yξ7 ]= −[yη15 , yξ8 ] = [yη14 , yξ10 ]= −[yη13 , yξ12 ].

31



Then, by fixing the basis {yαi
}10

i=1 of S−3 and {yξj
}16

j=1 of l−1, an element A =
∑16

j=1 aj ad(yηj
)

∈ S−2 ⊂ S−3 ⊗ (l−1)
∗ ∼= M(10, 16) is represented as the matrix of the following form;




a11 a9
∗ a6 a5

∗ a4
∗ a3 0 0 a2

∗ 0 a1 0 0 0 0 0
a13 a10

∗ a8 a7
∗ 0 0 a4

∗ a3 0 a2
∗ 0 0 a1 0 0 0

a14 a12
∗ 0 0 a8 a7

∗ a6
∗ a5 0 0 0 a2

∗ 0 a1 0 0
a15 0 a12

∗ 0 a10 0 a9
∗ 0 a7

∗ a5 0 a3
∗ 0 0 a1 0

0 a15 a14
∗ 0 a13 0 a11

∗ 0 0 0 a7
∗ 0 a5 a3

∗ a2 0
a16 0 0 a12

∗ 0 a10 0 a9
∗ a8

∗ a6 0 a4
∗ 0 0 0 a1

0 a16 0 a14
∗ 0 a13 0 a11

∗ 0 0 a8
∗ 0 a6 a4

∗ 0 a2

0 0 a16 a15
∗ 0 0 0 0 a13 a11

∗ a10
∗ 0 a9 0 a4

∗ a3

0 0 0 0 a16 a15
∗ 0 0 a14 0 a12

∗ a11
∗ 0 a9 a6

∗ a5

0 0 0 0 0 0 a16 a15
∗ 0 a14 0 a13

∗ a12
∗ a10 a8

∗ a7




where ai
∗ = −ai. Moreover, for y7 ∈ S−1, we have

yα1 = [[y7, yξ1 ], yξ11 ] = −[[y7.yξ2 ], yξ9 ] = [[y7, yξ3 ], yξ6 ] = −[[y7.yξ4 ], yξ5 ],

yα2 = [[y7, yξ1 ], yξ13 ]= −[[y7, yξ2 ], yξ10 ] = [[y7, yξ3 ], yξ8 ] = −[[y7, yξ4 ], yξ7 ],

yα3 = [[y7, yξ1 ], yξ14 ]= −[[y7, yξ2 ], yξ12 ] = [[y7, yξ5 ], yξ8 ] = −[[y7, yξ6 ], yξ7 ],

yα4 = [[y7, yξ1 ], yξ15 ]= −[[y7, yξ3 ], yξ12 ] = [[y7, yξ5 ], yξ10 ] = −[[y7, yξ7 ], yξ9 ],

yα5 = [[y7, yξ2 ], yξ15 ]= −[[y7, yξ3 ], yξ14 ] = [[y7, yξ5 ], yξ13 ] = −[[y7, yξ7 ], yξ11 ],

yα6 = [[y7, yξ1 ], yξ16 ] = −[[y7.yξ4 ], yξ12 ] = [[y7, yξ6 ], yξ10 ] = −[[y7.yξ8 ], yξ9 ],

yα7 = [[y7, yξ2 ], yξ16 ]= −[[y7, yξ4 ], yξ14 ] = [[y7, yξ6 ], yξ13 ] = −[[y7, yξ8 ], yξ11 ],

yα8 = [[y7, yξ3 ], yξ16 ]= −[[y7, yξ4 ], yξ15 ] = [[y7, yξ9 ], yξ13 ] = −[[y7, yξ10 ], yξ11 ],

yα9 = [[y7, yξ5 ], yξ16 ]= −[[y7, yξ6 ], yξ15 ] = [[y7, yξ9 ], yξ14 ] = −[[y7, yξ11 ], yξ12 ],

yα10 = [[y7, yξ7 ], yξ16 ]= −[[y7, yξ8 ], yξ15 ] = [[y7, yξ10 ], yξ14 ]= −[[y7, yξ12 ], yξ13 ].

Thus S−1 is embedded as the 1-dimensional subspace of S−3⊗S2((l−1)
∗) spanned by the

following quadratic form f

f(X,X) = (x1x11 − x2x9 + x3x6 − x4x5)yα1 + (x1x13 − x2x10 + x3x8 − x4x7)yα2

+ (x1x14 − x2x12 + x5x8 − x6x7)yα3 + (x1x15 − x3x12 + x5x10 − x7x9)yα4

+ (x2x15 − x3x14 + x5x13 − x7x11)yα5 + (x1x16 − x4x12 + x6x10 − x8x9)yα6

+ (x2x16 − x4x14 + x6x13 − x8x11)yα7 + (x3x16 − x4x15 + x9x13 − x10x11)yα8

+ (x5x16 − x6x15 + x9x14 − x11x12)yα9 + (x7x16 − x8x15 + x10x14 − x12x13)yα10

for X =
∑16

j=1 xjyξj
∈ l−1.

By the above matrix representation, we can embed S−2 as a subspace of S−3⊗ (l−1)
∗ ∼=

M(10, 16) and obtain the following first order system as the model equation whose symbol
coincides with this subspace:

∂y1

∂x11

=
∂y2

∂x13

=
∂y3

∂x14

=
∂y4

∂x15

=
∂y6

∂x16

, −∂y1

∂x9

= − ∂y2

∂x10

= − ∂y3

∂x12

=
∂y5

∂x15

=
∂y7

∂x16

,

(4.15)

∂y1

∂x6

=
∂y2

∂x8

= − ∂y4

∂x12

= − ∂y5

∂x14

=
∂y8

∂x16

,
∂y1

∂x5

=
∂y2

∂x7

=
∂y6

∂x12

=
∂y7

∂x14

=
∂y8

∂x15

,

−∂y1

∂x4

=
∂y3

∂x8

=
∂y4

∂x10

=
∂y5

∂x13

=
∂y9

∂x16

,
∂y1

∂x3

= −∂y3

∂x7

=
∂y6

∂x10

=
∂y7

∂x13

= − ∂y9

∂x15

,
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−∂y2

∂x4

= −∂y3

∂x6

= −∂y4

∂x9

= − ∂y5

∂x11

=
∂y10

∂x16

,
∂y2

∂x3

=
∂y3

∂x5

= −∂y6

∂x9

= − ∂y7

∂x11

= −∂y10

∂x15

,

−∂y1

∂x2

= −∂y4

∂x7

= −∂y6

∂x8

=
∂y8

∂x13

=
∂y9

∂x14

, −∂y2

∂x2

=
∂y4

∂x5

=
∂y6

∂x6

= − ∂y8

∂x11

=
∂y10

∂x14

,

∂y1

∂x1

= −∂y5

∂x7

= −∂y7

∂x8

= − ∂y8

∂x10

= − ∂y9

∂x12

,
∂y3

∂x2

=
∂y4

∂x3

=
∂y6

∂x4

=
∂y9

∂x11

=
∂y10

∂x13

,

∂y2

∂x1

=
∂y5

∂x5

=
∂y7

∂x6

=
∂y8

∂x9

= −∂y10

∂x12

,
∂y3

∂x1

= −∂y5

∂x3

= −∂y7

∂x4

=
∂y9

∂x9

=
∂y10

∂x10

,

∂y4

∂x1

=
∂y5

∂x2

= −∂y8

∂x4

= −∂y9

∂x6

= −∂y10

∂x8

,
∂y6

∂x1

=
∂y7

∂x2

=
∂y8

∂x3

=
∂y9

∂x5

=
∂y10

∂x7

,

∂yi

∂xj

= 0 otherwise,

where y1, . . . , y10 are dependent variables and x1, . . . , x16 are independent variables. More-
over, by a direct calculation, we see that the prolongation of the first order system (4.15)
is given by

∂2y1

∂x1∂x11

=
∂2y2

∂x1∂x13

=
∂2y3

∂x1∂x14

=
∂2y4

∂x1∂x15

=
∂2y6

∂x1∂x16

=
∂2y7

∂x16∂x2

=
∂2y8

∂x16∂x3

=
∂2y9

∂x16∂x5

=
∂2y10

∂x16∂x7

= − ∂2y5

∂x7∂x11

= − ∂2y4

∂x7∂x9

= − ∂2y3

∂x7∂x6

= − ∂2y2

∂x7∂x4

= − ∂2y6

∂x4∂x12

= − ∂2y7

∂x4∂x14

= − ∂2y8

∂x4∂x15

= − ∂2y1

∂x4∂x5

=
∂2y3

∂x5∂x8

=
∂2y4

∂x5∂x10

=
∂2y5

∂x5∂x13

=
∂2y7

∂x13∂x6

=
∂2y8

∂x13∂x9

= − ∂2y10

∂x13∂x12

= − ∂2y9

∂x12∂x11

(4.16)

= − ∂2y4

∂x12∂x3

= − ∂2y3

∂x12∂x2

=
∂2y5

∂x2∂x15

= − ∂2y2

∂x2∂x10

= − ∂2y1

∂x2∂x9

= − ∂2y6

∂x9∂x8

,

=
∂2y9

∂x9∂x14

= − ∂2y5

∂x14∂x3

=
∂2y10

∂x14∂x10

= − ∂2y8

∂x10∂x11

=
∂2y6

∂x10∂x6

= − ∂2y9

∂x6∂x15

=
∂2y1

∂x6∂x3

=
∂2y2

∂x3∂x8

= − ∂2y7

∂x8∂x11

= − ∂2y10

∂x8∂x15

,

∂2yi

∂xp∂xq

= 0 otherwise.

From the above expression of f , we observe that the above second order system is the
model equation of the 1-dimensional embedded subspace S−1 in S−3⊗S2((l−1)

∗).Furthermore,
by a direct calculation, we see that the prolongation of this second order system (4.16) is
given by

(4.17)
∂3yi

∂xp∂xq∂xr

= 0 for 1 5 i 5 10, 1 5 p, q, r 5 16.

Case (5) [(E6, {α1}), $6, (E7, {γ1, γ7})].
For the gradation of type (E7, {γ1, γ7}), we have

33



Φ+
3 = {θ = 2 3 4 3 2 1

2 },
Φ+

2 = { η1 = 1 3 4 3 2 1
2 , η2 = 1 2 4 3 2 1

2 , η3 = 1 2 3 3 2 1
2 , η4 = 1 2 3 3 2 1

1 ,

η5 = 1 2 3 2 2 1
2 , η6 = 1 2 3 2 2 1

1 , η7 = 1 2 3 2 1 1
2 , η8 = 1 2 3 2 1 1

1 ,

η9 = 1 2 2 2 2 1
1 , η10 = 1 2 2 2 1 1

1 , η11 = 1 1 2 2 2 1
1 , η12 = 1 1 2 2 1 1

1 ,

η13 = 1 2 2 1 1 1
1 , η14 = 1 1 2 1 1 1

1 , η15 = 1 1 1 1 1 1
1 , η16 = 1 1 1 1 1 1

0 },
Φ+

1 = Ψ1 ∪Ψ7

Ψ1 = { ξ1 = 1 0 0 0 0 0
0 , ξ2 = 1 1 0 0 0 0

0 , ξ3 = 1 1 1 0 0 0
0 , ξ4 = 1 1 1 0 0 0

1 ,

ξ5 = 1 1 1 1 0 0
0 , ξ6 = 1 1 1 1 0 0

1 , ξ7 = 1 1 1 1 1 0
0 , ξ8 = 1 1 1 1 1 0

1 ,

ξ9 = 1 1 2 1 0 0
1 , ξ10 = 1 1 2 1 1 0

1 , ξ11 = 1 2 2 1 0 0
1 , ξ12 = 1 2 2 1 1 0

1 ,

ξ13 = 1 1 2 2 1 0
1 , ξ14 = 1 2 2 2 1 0

1 , ξ15 = 1 2 3 2 1 0
1 , ξ16 = 1 2 3 2 1 0

2 },

Ψ7 = { ζ1 = 0 0 0 0 0 1
0 , ζ2 = 0 0 0 0 1 1

0 , ζ3 = 0 0 0 1 1 1
0 ,

ζ4 = 0 0 1 1 1 1
0 , ζ5 = 0 1 1 1 1 1

0 , ζ6 = 0 0 1 1 1 1
1 , ζ7 = 0 1 1 1 1 1

1 ,

ζ8 = 0 1 2 1 1 1
1 , ζ9 = 0 1 2 2 1 1

1 , ζ10 = 0 1 2 2 2 1
1 },

where a1 a3 a4 a5 a6 a7
a2 stands for the root α =

∑7
i=1 aiγi ∈ Φ+ (see Planche VI in [Bou68]).

Thus we have µ = 3,

m = ǧ−3 ⊕ ǧ−2 ⊕ ǧ−1 and ǧ−1 = S−1 ⊕ l−1,

where ǧ−3 = S−3, ǧ−2 = S−2, S−1 and l−1 are spanned by the root spaces g−β for
β ∈ Φ+

3 , Φ+
2 , Ψ7 and Ψ1 respectively. Hence dim S−3 = 1, dim S−2 = dim l−1 = 16 and

dim S−1 = 10.
For Φ+

3 , Φ+
2 , Ψ7 and Ψ1, we observe that Φ+

3 = {θ}, where θ is the highest root, α+β /∈ Φ
for α, β ∈ Φ+

3 ∪ Φ+
2 ∪ Ψ7, ζ − ξ /∈ Φ for ξ ∈ Ψ1, ζ ∈ Ψ7 and that ηi + ξi = θ, ηi − ξi /∈ Φ,

ξi + ξj /∈ Φ and ηi + ξj /∈ Φ if i 6= j for ηi ∈ Φ+
2 and ξi, ξj ∈ Ψ2 (i, j = 1, . . . , 16). This

implies that [yα, yβ] = 0 for α, β ∈ Φ+
3 ∪ Φ+

2 ∪ Ψ7, [yζ , yξ] = ±yζ+ξ for ξ ∈ Ψ2, ζ ∈ Ψ7, if
ζ+ξ ∈ Φ and that [yξi

, yξj
] = 0, [yηi

, yξj
] = ±δijyθ for ηi ∈ Φ+

2 , ξi, ξj ∈ Ψ2 (i, j = 1, . . . , 16),
by the property of the Chevalley basis. Hence, from Planche VI in [Bou68], we readily
obtain the non-trivial bracket relation among ǧ−1 and [ǧ−2, l−1] as in (4.18) and (4.19)
below up to signs.

We fix the signs of yβ for β ∈ Φ+
3 , Φ+

2 , Ψ7 and Ψ1 as follows: First we choose the
orientation of yγi

for simple roots by fixing the root vectors yi = yγi
∈ g−γi

. For ζ ∈ Ψ7,
we fix the orientation by the following order;

yζ1 = y7, yζ2 = [y6, yζ1 ], yζ3 = [y5, yζ2 ], yζ4 = [y4, yζ3 ], yζ5 = [y3, yζ4 ],

yζ6 = [y2, yζ4 ], yζ7 = [y2, yζ5 ], yζ8 = [y4, yζ7 ], yζ9 = [y5, yζ8 ], yζ10 = [y6, yζ9 ].

For ξ ∈ Ψ1, we fix the orientation by the following order;

yξ1 = y1, yξ2 = [yξ1 , y3], yξ3 = [yξ2 , y4], yξ4 = [yξ3 , y2],

yξ5 = [yξ3 , y5], yξ6 = [yξ5 , y2], yξ7 = [yξ5 , y6], yξ8 = [yξ7 , y2],

yξ9 = [yξ6 , y4], yξ10 = [yξ9 , y6], yξ11 = [yξ9 , y3], yξ12 = [yξ11 , y6],

yξ13 = [yξ10 , y5], yξ14 = [yξ13 , y3], yξ15 = [yξ14 , y4], yξ16 = [yξ15 , y2].

For η ∈ Φ+
2 , we fix the orientation by the following order;

yη1 = −[yζ5 , yξ16 ], yη2 = −[yζ4 , yξ16 ], yη3 = −[yζ3 , yξ16 ], yη4 = [yζ3 , yξ15 ],
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yη5 = −[yζ2 , yξ16 ], yη6 = [yζ2 , yξ15 ], yη7 = −[yζ1 , yξ16 ], yη8 = [yζ1 , yξ15 ],

yη9 = −[yζ2 , yξ14 ], yη10 = −[yζ1 , yξ14 ], yη11 = [yζ2 , yξ13 ], yη12 = [yζ1 , yξ13 ],

yη13 = [yζ1 , yξ12 ], yη14 = −[yζ1 , yξ10 ], yη15 = [yζ1 , yξ8 ], yη16 = −[yζ1 , yξ7 ].

Finally, for θ ∈ Φ+
3 , we fix the orientation by the following;

yθ = [yη16 , yξ16 ].

Then, for example, we calculate

[yη16 , yξ16 ] = [−[yζ1 , yξ7 ], yξ16 ] = [−[yζ1 , yξ16 ], yξ7 ] = [yη7 , yξ7 ].

and obtain

(4.18) [yηp , yξq ] = δpqyθ, [yηp .yηq ] = [yξp , yξq ] = 0 for 1 5 p, q 5 16.

Moreover we calculate as in

[yζ3 , yξ12 ] = [[y5, yζ2 ], yξ12 ] = [[y5, yξ12 ], yζ2 ] = [yζ2 , [yξ12 , y5]] = [yζ2 , yξ14 ] = −yη9 ,

and obtain

yθ = −[[yζ1 , yξ7 ], yξ16 ] = [[yζ1 , yξ8 ], yξ15 ] = −[[yζ1 , yξ10 ], yξ14 ]= [[yζ1 , yξ12 ], yξ13 ],

yθ = −[[yζ2 , yξ5 ], yξ16 ] = [[yζ2 , yξ6 ], yξ15 ] = −[[yζ2 , yξ9 ], yξ14 ] = [[yζ2 , yξ11 ], yξ13 ],

yθ = −[[yζ3 , yξ3 ], yξ16 ] = [[yζ3 , yξ4 ], yξ15 ] = −[[yζ3 , yξ9 ], yξ12 ] = [[yζ3 , yξ10 ], yξ11 ],

yθ = −[[yζ4 , yξ2 ], yξ16 ] = [[yζ4 , yξ4 ], yξ14 ] = −[[yζ4 , yξ6 ], yξ12 ] = [[yζ4 , yξ8 ], yξ11 ]

yθ = −[[yζ5 , yξ1 ], yξ16 ] = [[yζ5 , yξ4 ], yξ13 ] = −[[yζ5 , yξ6 ], yξ10 ] = [[yζ5 , yξ8 ], yξ9 ],(4.19)

yθ = −[[yζ6 , yξ2 ], yξ15 ] = [[yζ6 , yξ3 ], yξ14 ] = −[[yζ6 , yξ5 ], yξ12 ] = [[yζ6 , yξ7 ], yξ11 ],

yθ = −[[yζ7 , yξ1 ], yξ15 ] = [[yζ7 , yξ3 ], yξ13 ] = −[[yζ7 , yξ5 ], yξ10 ] = [[yζ7 , yξ7 ], yξ9 ],

yθ = −[[yζ8 , yξ1 ], yξ14 ] = [[yζ8 , yξ2 ], yξ13 ] = −[[yζ8 , yξ5 ], yξ8 ] = [[yζ8 , yξ6 ], yξ7 ],

yθ = −[[yζ9 , yξ1 ], yξ12 ] = [[yζ9 , yξ2 ], yξ10 ] = −[[yζ9 , yξ3 ], yξ8 ] = [[yζ9 , yξ4 ], yξ7 ]

yθ = −[[yζ10 , yξ1 ], yξ11 ]= [[yζ10 , yξ2 ], yξ9 ] = −[[yζ10 , yξ3 ], yξ6 ] = [[yζ10 , yξ4 ], yξ5 ].

From (4.18), we have S−2 = V ∗, by fixing the base of S−3
∼= K and putting l−1 = V .

Moreover, from (4.19), S−1 is embedded as the 10-dimensional subspace of S2(V ∗) spanned
by the following quadratic forms f1, . . . , f10;

f1(X) = −x7x16 + x8x15 − x10x14 + x12x13, f2(X) = −x5x16 + x6x15 − x9x14 + x11x13,

f3(X) = −x3x16 + x4x15 − x9x12 + x10x11, f4(X) = −x2x16 + x4x14 − x6x12 + x8x11,

f5(X) = −x1x16 + x4x13 − x6x10 + x8x9, f6(X) = −x2x15 + x3x14 − x5x12 + x7x11,

f7(X) = −x1x15 + x3x13 − x5x10 + x7x9, f8(X) = −x1x14 + x2x13 − x5x8 + x6x7,

f9(X) = −x1x12 + x2x10 − x3x8 + x4x7, f10(X) = −x1x11 + x2x9 − x3x6 + x4x5.

for X =
∑16

i=1 xiyξi
∈ l−1. Thus, by fixing the basis {yθ} of S−3 and {yξ1 , . . . , yξ16} of

l−1, an element A =
∑10

i=1 ai ad(yζi
) ∈ S−1 ⊂ S2(V ∗) ∼= Sym(16) is represented as the
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symmetric matix of the following form;



0 0 0 0 0 0 0 0 0 0 a10 a9 0 a8 a7 a5

0 0 0 0 0 0 0 0 a10
∗ a9

∗ 0 0 a8
∗ 0 a6 a4

0 0 0 0 0 a10 0 a9 0 0 0 0 a7
∗ a6

∗ 0 a3

0 0 0 0 a10
∗ 0 a9

∗ 0 0 0 0 0 a5
∗ a4

∗ a3
∗ 0

0 0 0 a10
∗ 0 0 0 a8 0 a7 0 a6 0 0 0 a2

0 0 a10 0 0 0 a8
∗ 0 0 a5 0 a4 0 0 a2

∗ 0
0 0 0 a9

∗ 0 a8
∗ 0 0 a7

∗ 0 a6
∗ 0 0 0 0 a1

0 0 a9 0 a8 0 0 0 a5
∗ 0 a4

∗ 0 0 0 a1
∗ 0

0 a10
∗ 0 0 0 0 a7

∗ a5
∗ 0 0 0 a3 0 a2 0 0

0 a9
∗ 0 0 a7 a5 0 0 0 0 a3

∗ 0 0 a1 0 0
a10 0 0 0 0 0 a6

∗ a4
∗ 0 a3

∗ 0 0 a2
∗ 0 0 0

a9 0 0 0 a6 a4 0 0 a3 0 0 0 a1
∗ 0 0 0

0 a8
∗ a7

∗ a5
∗ 0 0 0 0 0 0 a2

∗ a1
∗ 0 0 0 0

a8 0 a6
∗ a4

∗ 0 0 0 0 a2 a1 0 0 0 0 0 0
a7 a6 0 a3

∗ 0 a2
∗ 0 a1

∗ 0 0 0 0 0 0 0 0
a5 a4 a3 0 a2 0 a1 0 0 0 0 0 0 0 0 0




where ai
∗ = −ai. Hence the standard differential system (M(m), Dm) of type m in this

case is given by

Dm = {$ = $1 = $2 = · · · = $16 = 0 },
where

$ = dy − p1dx1 − · · · − p16dx16,

$1 = dp1 + q10dx11 + q9dx12 + q8dx14 + q7dx15 + q5dx16,

$2 = dp2 − q10dx9 − q9dx10 − q8dx13 + q6dx15 + q4dx16,

$3 = dp3 + q10dx6 + q9dx8 − q7dx13 − q6dx14 + q3dx16,

$4 = dp4 − q10dx5 − q9dx7 − q5dx13 − q4dx14 − q3dx15,

$5 = dp5 − q10dx4 + q8dx8 + q7dx10 + q6dx12 + q2dx16,

$6 = dp6 + q10dx3 − q8dx7 + q5dx10 + q4dx12 − q2dx15,

$7 = dp7 − q9dx4 − q8dx6 − q7dx9 − q6dx11 + q1dx16,

$8 = dp8 + q9dx3 + q8dx5 − q5dx9 − q4dx11 − q1dx15,

$9 = dp9 − q10dx2 − q7dx7 − q5dx8 + q3dx12 + q2dx14,

$10 = dp10 − q9dx2 + q7dx5 + q5dx6 − q3dx11 + q1dx14,

$11 = dp11 + q10dx1 − q6dx7 − q4dx8 − q3dx10 − q2dx13,

$12 = dp12 + q9dx1 + q6dx5 + q4dx6 + q3dx9 − q1dx13,

$13 = dp13 − q8dx2 − q7dx3 − q5dx4 − q2dx11 − q1dx12,

$14 = dp14 + q8dx1 − q6dx3 − q4dx4 + q2dx9 + q1dx10,

$15 = dp15 + q7dx1 + q6dx2 − q3dx4 − q2dx6 − q1dx8,

$16 = dp16 + q5dx1 + q4dx2 + q3dx3 + q2dx5 + q1dx7.

Here (x1, . . . , x16, y, p1, . . . , p16, q1, . . . , q10) is a coordinate system of M(m) ∼= K43. Thus
the model equation of our typical symbol m = ǧ−3 ⊕ ǧ−2 ⊕ ǧ−1 ⊂ C2(l−1,K) is given by

∂2y

∂x7∂x16

= − ∂2y

∂x8∂x15

=
∂2y

∂x10∂x14

= − ∂2y

∂x12∂x13

,
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∂2y

∂x5∂x16

= − ∂2y

∂x6∂x15

=
∂2y

∂x9∂x14

= − ∂2y

∂x11∂x13

,

∂2y

∂x3∂x16

= − ∂2y

∂x4∂x15

=
∂2y

∂x9∂x12

= − ∂2y

∂x10∂x11

,

∂2y

∂x2∂x16

= − ∂2y

∂x4∂x14

=
∂2y

∂x6∂x12

= − ∂2y

∂x8∂x11

,

∂2y

∂x1∂x16

= − ∂2y

∂x4∂x13

=
∂2y

∂x6∂x10

= − ∂2y

∂x8∂x9

,

∂2y

∂x2∂x15

= − ∂2y

∂x3∂x14

=
∂2y

∂x5∂x12

= − ∂2y

∂x7∂x11

,(4.20)

∂2y

∂x1∂x15

= − ∂2y

∂x3∂x13

=
∂2y

∂x5∂x10

= − ∂2y

∂x7∂x9

,

∂2y

∂x1∂x14

= − ∂2y

∂x2∂x13

=
∂2y

∂x5∂x8

= − ∂2y

∂x6∂x7

,

∂2y

∂x1∂x12

= − ∂2y

∂x2∂x10

=
∂2y

∂x3∂x8

= − ∂2y

∂x4∂x7

,

∂2y

∂x1∂x11

= − ∂2y

∂x2∂x9

=
∂2y

∂x3∂x6

= − ∂2y

∂x4∂x5

,

∂2y

∂xi∂xj

= 0 otherwise.

where y is dependent variable and x1, . . . , x16 are independent variables. By a direct
calculation, we see that the prolongation of the second order system (4.20) is given by

(4.21)
∂3y

∂xi∂xj∂xk

= 0 for 1 5 i, j, k 5 16.

5. Equivalence of Parabolic Geometries

In this section, we will discuss about the equivalence of each parabolic geometry asso-
ciated with the differential equations of finite type explicitly described in §3 and §4.

In the following, we will first show a common property of the typical symbol m of type
(l, S). Here m =

⊕−µ
p=−1 gp is a graded subalgebra of Cµ−1(V, W ), which has the splitting

g−1 = l−1 ⊕ S−1, where V = l−1 and W = S−µ. In particular Sp ⊂ W ⊗ Sµ+p(V ∗). Thus
we have the notion of the algebraic prolongation ρ(Sp) of Sp, which is defined by

ρ(Sp) = Sp ⊗ V ∗ ∩W ⊗ Sµ+p+1(V ∗) for − µ + 1 5 p 5 −1.

We will show the following Proposition 5.1 concerning the property of the prolongations
of Sp for the typical symbol m of type (l, S).

Let g =
⊕1

p=−µ gp be a pseudo-product GLA of type (l, S).

Lemma 5.1. Let p be an integer with −µ + 1 5 p 5 −1. If H1(m, g)p+1,−1 = 0, then the
algebraic prolongation ρ(Sp) of Sp is equal to Sp+1, where we put S0 = 0.

Proof. Since the fact Sp+1 ⊂ ρ(Sp) is clear, it is sufficient to prove that ρ(Sp) ⊂ Sp+1. Let ϕ
be an element of ρ(Sp). The space ρ(Sp) can be considered as a subspace of Hom(l−1, Sp).
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We define an element ϕ̃ of C1(m, g)p+1,−1 as follows:

ϕ̃(X) = ϕ(X) (X ∈ l−1), ϕ̃(S) = 0.

Then we have

∂ϕ̃(X1, X2) = [X1, ϕ(X2)]− [X2, ϕ(X1)] for X1, X2 ∈ l−1.

Since ϕ ∈ ρ(Sp), we get ∂ϕ̃ = 0. Also since H1(m, g)p+1,−1 = 0, there exits an element
s ∈ Sp+1 such that ∂s = ϕ̃. Hence ρ(Sp) ⊂ Sp+1. ¤

For a pseudo-product GLA g of type (l, S), we furthermore assume that the prolongation
ǧ =

⊕
p∈Z

ǧp of (m, g0) is a simple graded Lie algebra (SGLA) , where m = g−.

Now we investigate the space H1(m, g)r,−1. Note that, from ǧp = gp for p 5 0,
H1(m, g)r,−1 = H1(m, ǧ)r,−1 for r 5 1. Also we know that H1(m, g)r,−1 is isomorphic
to H1(l−1, S)r as a g0-module(see §5 in [YY02]). Let Σ = { γ1, . . . , γL} be a simple root
system of ǧ and let θ be the highest root of ǧ. Assume that

(i) The SGLA ǧ is of type (YL, {γa, γb});
(ii) l−1 is a g0-module with highest weight −γa;
(iii) S−1 is a g0-module with highest weight −γb.

By Kostant’s theorem, H1(m, g)r,−1 is an irreducible g0-module with lowest weight σa(−θ−
δ) + δ, where we use the notations in [Yam93]. Let E be the characteristic element of the
GLA ǧ; then

(σa(−θ − δ) + δ)(E) = −µ + 〈θ, γa〉+ 1.

Hence H1(m, ǧ)r,−1 6= 0 if and only if r = −µ + 〈θ, γa〉 + 1. From the table in Theorem
2.1 (a) and [Bou68], we obtain the following lemma.

Lemma 5.2. Under the above assumptions, we have

(1) Assume that (YL, {γa, γb}) is one of the following types: (A`+n+1, {γ1, γ`+1}) (n =
0, ` = 1), (C`+1, {γ1, γ`+1}) (` = 1). Then H1(m, g)r,−1 6= 0 if and only if r = 0.

(2) Assume that (YL, {γa, γb}) is one of the following types: (A`+n+1, {γi, γ`+1}) (1 <
i 5 `, ` = 2, n = 0), (B`+1, {γ2, γ1}) (` = 2), (D`+1, {γ2, γ1}) (` = 4), (D`+1, {γ`+1, γ1})
(` = 4), (D`+1, {γ1, γ`+1}) (` = 3), (D`+1, {γ`, γ`+1}) (` = 3), (D`+1, {γ2, γ`+1})
(` = 3), (E6, {γ1, γ6}), (E6, {γ2, γ1}), (E7, {γ1, γ7}). Then H1(m, g)r,−1 6= 0 if and
only if r = −1.

(3) Assume that (YL, {γa, γb}) is one of the following types: (C`+1, {γi, γ`+1}) (1 <
i 5 `, ` = 2), (D`+1, {γi, γ`+1}) (2 < i < `, ` = 4), (E6, {γ3, γ1}), (E7, {γ6, γ7}).
Then H1(m, g)r,−1 6= 0 if and only if r = −2.

By Lemmas 5.1 and 5.2, we get the following proposition.

Proposition 5.1. Under the above assumptions, we have

(1) Unless (YL, {γa, γb}) is (A`+n+1, {γ1, γ`+1}) (n = 0, ` = 1) or (C`+1, {γ1, γ`+1})
(` = 1), the algebraic prolongation ρ(S−1) of S−1 is {0}.

(2) Assume that (YL, {γa, γb}) is one of the following types: (C`+1, {γi, γ`+1}) (1 <
i 5 `, ` = 2), (D`+1, {γi, γ`+1}) (2 < i < `, ` = 4), (E6, {γ3, γ1}), (E7, {γ6, γ7}).
Then ρ(S−2) = S−1 and ρ(S−1) = 0.

Actually we can check these properties by direct calculations in each cases in the pre-
vious sections. By these properties of the typical symbols, we can classify our parabolic
geometries into the following four groups.
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(A) The parabolic geometry associated with (A`+n+1, {γ1, γ`+1}) (n = 0, ` = 1) is the
geometry of the pseudo-pojective systems of second order of bidegree (`, n + 1), i.e. the
geometry of the second order equations of ` independent and n+1 dependent variables by
point transformations. The parabolic geometry associated with (C`+1, {γ1, γ`+1}) (` = 1)
is the geometry of the pseudo-projective systems of third order of bidegree (`, 1), i.e. the
geometry of the third order equations of ` independent and 1 dependent variables by
contact transformations.

(B) The parabolic geometries associated with (A`+n+1, {γi, γ`+1}) (2 5 i 5 `, n =
0), (D`+1, {γ`+1, γ1}) (` = 4), (D`+1, {γ1, γ`+1}) (` = 3), (D`+1, {γ`, γ`+1}) (` = 3) and
(E6, {γ1, γ6}) are the contact geometries of finite type equations of the first order in the
following sense.

In this case µ = 2 and the typical symbol m has the following description: m =
g−2 ⊕ g−1 ⊂ C1(V, W ), where W = S−2 and V = l−1. Moreover g−1 = V ⊕ S−1 and
S−1 ⊂ W ⊗ V ∗. Let Jk(n,m) be the space of k-jets of n independent and m dependent
variables, where n = dim V and m = dim W . We consider a submanifold R of J1(n,m)
such that π1

0 |R: R → J0(n,m) is a submersion. Let D be the restriction to R of the
canonical systetem C1 on J1(n,m) and R(1) ⊂ J2(n,m) be the first prolongation of
R (cf. §4.2 [Yam82]). We assume that p(1) : R(1) → R is onto. This assumption is
equivalent to say that (R,D) has an (n-dimensional) integral element (transversal to the
fibre Ker(π1

0 |R)∗) at each point of R. Under this integrability condition, (R,D) is a
regular differential system of type m if and only if the symbols of this equation R are
isomorphic to S−1 ⊂ W ⊗ V ∗ at each point of R (see §2.1 in [SYY97] for the precise
meaning of the isomorphism of the symbol). In this case, by (1) of Proposition 5.1,
integral elements of (R,D) are unique at each point of R so that p(1) : R(1) → R is a
diffeomorphism. Thus (R,D) has the (almost) pseudo-product structure corresponding to
the splitting g−1 = V ⊕S−1. In fact S−1 corresponds to the fibre direction Ker(π1

0 |R)∗ and
V corresponds to the restriction to R(1) of the canonical system C2 on J2(n,m). Since ǧ is
the prolongation of m, an isomorphism of (R,D) preserves the pseudo-product structure.
In particular an isomorphism of (R,D) preserves the projection π1

0 |R: R → J0(n,m).
Hence a local isomorphism of (R,D) is the lift of a local point transformation of J0(n,m).

By Theorem 2.7 and 2.9 [Tan79] and Proposition 5.5 [Yam93], we observe that parabolic
geometries associated with (A`+n+1, {γi, γ`+1}) (3 5 i 5 ` − 1, n = 2),(D`+1, {γ`, γ`+1})
(` = 3) and (E6, {γ1, γ6}) have no local invariants. Hence in these cases, (R,D), satisfying
the integrability condition, is always locally isomorphic to the model equation given in
Case (1), (8) of §3 or Case (1) of §4 respectively.

(C) The parabolic geometries associated with (B`+1, {γ2, γ1}) (` = 2), (D`+1, {γ2, γ1})
(` = 4), (D`+1, {γ2, γ`+1}) (` = 3), (E6, {γ2, γ1}) and (E7, {γ1, γ7}) are the contact geome-
tries of finite type equations of the second order in the following sense.

In this case µ = 3 and the typical symbol m has the following description: m =
g−3 ⊕ g−2 ⊕ g−1 ⊂ C2(V, W ), where W = K, V = l−1 and dim V = n. Moreover we have
g−2 = V ∗, g−1 = V ⊕ S−1 and S−1 ⊂ S2(V ∗). In this case, we note that the standard
differential system (Mg, Dg) of type (YL, {γa}) is the standard contact manifold of type
YL (see §4 in [Yam93]).

We consider a submanifold R of J2(n, 1) such that π2
1 |R: R → J1(n, 1) is a submersion.

Let D be the restriction to R of the canonical systetem C2 on J2(n, 1) and R(1) ⊂ J3(n, 1)
be the first prolongation of R. We assume that p(1) : R(1) → R is onto. Under this
integrability condition, (R,D) is a regular differential system of type m if and only if the
symbols of this equation R are isomorphic to S−1 ⊂ S2(V ∗) at each point of R. In this
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case, by (1) of Proposition 5.1, integral elements of (R,D) are unique at each point of R
so that p(1) : R(1) → R is a diffeomorphism. Thus (R,D) has the (almost) pseudo-product
structure corresponding to the splitting g−1 = V ⊕ S−1. In fact S−1 corresponds to the
fibre direction Ker(π2

1 |R)∗ and V corresponds to the restriction to R(1) of the canonical
system C3 on J3(n, 1). Since ǧ is the prolongation of m, an isomorphism of (R,D)
preserves the pseudo-product structure. In particular an isomorphism of (R,D) preserves
the projection π2

1 |R: R → J1(n, 1) and ∂D = (π2
1)
−1
∗ (C1). Hence a local isomorphism of

(R,D) is the lift of a local contact transformation of J1(n, 1).
By Theorem 2.7 and 2.9 [Tan79] and Proposition 5.5 [Yam93], we observe that parabolic

geometries associated with (D`+1, {γ2, γ`+1}) (` = 3), (E6, {γ2, γ1}) and (E7, {γ1, γ7}) have
no local invariants. Hence in these cases, (R,D), satisfying the integrability condition, is
always locally isomorphic to the model equation given in Case (10) of §3 or Case (3), (5) of
§4 respectively. The rigidity of the parabolic geometry associated with (D`+1, {γ2, γ`+1})
(` = 3) is already discussed in [YY02] in connection with the Plücker embedding equations.

(D) The parabolic geometries associated with (C`+1, {γi, γ`+1}) (1 < i 5 `, ` = 2),
(D`+1, {γi, γ`+1}) (2 < i < `, ` = 4), (E6, {γ3, γ1}) and (E7, {γ6, γ7}) are the geometries of
finite type equations of the first order in the following sense.

In this case µ = 3 and the typical symbol m has the following description: m = g−3 ⊕
g−2⊕g−1 ⊂ C2(V, W ), where W = S−3 and V = l−1. Moreover g−2 = S−2, g−1 = V ⊕S−1,
S−2 ⊂ W ⊗ V ∗, S−1 ⊂ W ⊗ S2(V ∗) and dim S−2 = dim V . In this case we first consider
a submanifold R of J1(n,m) such that π1

0 |R: R → J0(n,m) is a submersion, where
n = dim V and m = dim W . Let D be the restriction to R of the canonical systetem C1 on
J1(n,m) and R(1) ⊂ J2(n,m) be the first prolongation of R. We assume that the symbols
of this equation R are isomorphic to S−2 ⊂ W⊗V ∗ at each point of R and also assume that
p(1) : R(1) → R is onto. Then (R,D) is a regular differential system of type m̂ = ĝ−2⊕ ĝ−1,
where ĝ−2 = W and ĝ−1 = V ⊕ S−2. Here the symbol algebra m̂ is the negative part of
the simple graded Lie algebra of type (YL, {γa}), i.e., of type (C`+1, {γi}) (2 5 i 5 `),
(D`+1, {γi}) (2 < i < `), (E6, {γ3}) and (E7, {γ6}) respectively. Furthermore, by (2)
of Proposition 5.1, the symbols of this equation R(1) are isomorphic to ρ(S−2) = S−1 ⊂
W⊗S2(V ∗). Let D(1) be the restriction to R(1) of the canonical system C2 on J2(n,m) and
R(2) ⊂ J3(n,m) be the prolongation of R(1). We further assume that p(2) : R(2) → R(1)

is onto. Under these integrability conditions, (R(1), D(1)) becomes a regular differential
system of type m. Actually the set of n-dimensional integral elements of (R,D) forms a
bundle over R, which contains R(1) as an open dense subset such that D(1) coincides with
the canonical system induced by this Grassmanian construction (cf. §2 in [Yam82], §1 in
[Yam99]). Moreover, by (1) of Proposition 5.1, integral elements of (R(1), D(1)) are unique
at each point of R(1) so that p(2) : R(2) → R(1) is a diffeomorphism. Thus (R(1), D(1))
has the (almost) pseudo-product structure corresponding to the splitting g−1 = V ⊕
S−1. In fact S−1 corresponds to the fibre direction Ker(p(1))∗ and V corresponds to the
restriction to R(2) of the canonical system C3 on J3(n,m). Since ǧ is the prolongation of
m, an isomorphism of (R(1), D(1)) preserves the pseudo-product structure. In particular
an isomorphism of (R(1), D(1)) preserves the projection p(1) : R(1) → R and ∂D(1) =
(p(1))−1

∗ (D). Thus a local isomorphism of (R(1), D(1)) induces that of (R,D) and coincides
with the local lift of this isomorphism of (R,D). Hence the local equivalence of (R(1), D(1))
is reducible to that of (R,D).

By Theorem 2.7 and 2.9 [Tan79] and Proposition 5.5 [Yam93], we observe that parabolic
geometries associated with (C`+1, {γi, γ`+1}) (2 < i < `), (D`+1, {γi, γ`+1}) (2 < i < `),
(E6, {γ3, γ1}) and (E7, {γ6, γ7}) have no local invariants. Hence in these cases, (R,D),
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satisfying the integrability conditions, is always locally isomorphic to the model equation
given in Case (3), (9) of §3 or Case (2), (4) of §4 respectively.
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289-314.

[YY02] K. Yamaguchi and T. Yatsui : Geometry of Higher Order Differential Equations of Finite Type
associated with Symmetric Spaces, Advanced Studies in Pure Mathematics 37 (2002), 397-458.

[Yat88] T.Yatsui, On pseudo-product graded Lie algebras, Hokkaido Math. J. 17 (1988), 333–343
[Yat92] T. Yatsui, On completely reducible transitive graded Lie algebras of finite depth, Japan. J. Math.

18 (1992), 291–330.

K.Yamaguchi, Department of Mathematics,, Graduate School of Science,, Hokkaido
University,, Sapporo 060-0810,, Japan, E-mail yamaguch@math.sci.hokudai.ac.jp

T. Yatsui, Department of Mathematics,, Hokkaido University of Education, Asahikawa
Campus,, Asahikawa 070-8261,, Japan, E-mail tomoaki@atson.asa.hokkyodai.ac.jp

41


