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PARABOLIC GEOMETRIES
ASSOCIATED WITH
DIFFERENTIAL EQUATIONS OF FINITE TYPE

KEIZO YAMAGUCHI AND TOMOAKI YATSUI

ABSTRACT. We present here classes of parabolic geometries arising naturally from Se-
ashi’s principle to form good classes of linear differential equations of finite type, which
generalize the cases of second and third order ODE for scalar function. We will explic-
itly describe the symbols of these differential equations. The model equations of these
classes admit nonlinear contact transformations and their symmetry algebras become
finite dimensional and simple.

1. INTRODUCTION

The geometry of ordinary differential equations for scalar function is strongly linked to
the Lie algebra sl (2,R) = sl ('), where V is a vector space of dimension 2. Associated
to the geometry of k-th order ordinary differential equation;

d* d dh1
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we have the irreducible representation of [ = sl (V) on S = S¥(V*), where S¥1(V*)
is the space of homogeneopus polynomials of degree £k — 1 in two variables and is the
solution space of the model equation g—% = 0 on the model space P'(R) = P(V). It is
known that the Lie algebra [ = gl (V) is the infinitesimal group of linear automorphisms of
the model equation (cf. Proposition 4.4.1 [Sea88]). Moreover the Lie algebra g~ = g*(1, 1)
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of infinitesimal contact transformations of % = 0 is given as follows; (1) g? is isomorphic
to sl (3,R). (2) g* is isomorphic to sp(2,R). (3) Otherwise, for k = 4, g* = S@® [ is a
subalgebra of the affine Lie algebra 21(S) = S @ gl (S)(see §2.1). The Lie algebra g plays
the fundamental role in the contact geometry of k-th order ordinary differential equations.

Thus, when & = 2 and 3, special phenomena prevail and result in rich automorphism
groups so that these two cases offer examples of parabolic geometries associated with
differential equations. Here the Parabolic Geometry is a geometry modeled after the
homogeneous space G/P, where G is a (semi-)simple Lie group and P is a parabolic
subgroup of G (cf. [Bai93]). Precisely, in this paper, we mean, by a parabolic geometry,
the geometry associated with the simple graded Lie algebra in the sense of N.Tanaka
([Tan79]). The main purpose of this paper is to seek to find other such special phenomena
and to present other classes of parabolic geometries associated with differential equations
of finite type, which naturally arise from Se-ashi’s principle and generalize the above cases
of g? and g

For the geometry of differential equations of finite type, our study is based on the
geometry of differential systems in the following way (cf. [YY02]): We regard a k-th order
differential equation as a submanifold R of the k-jet space J*(n,m) for n independent
and m dependent variables. Defined on R, we have the differential system D obtained
by restricting to R the canonical system C* on J*(n,m) (see §2.1). Especially, when



R is a k-th order involutive differential equation of finite type, p = nf_, |g: R — J*!
is an immersion so that we have a pseudo-product structure D = E' @ F on R, where
D is the pullback (p,)~1(C*~1) of C*~! through p, E is the restriction of C* to R and
F = Ker(nf_, |r)« is the fibre direction of 7f_, |z.

Now, let us recall Se-ashi’s procedure to form good classes of linear differential equations
of finite type, following [Sea88] and [YY02]. Se-ashi’s procedure starts from a reductive
graded Lie algebra (GLA) [ =[_; & [y @ [; and a faithful irreducible [-module S. Then we
form the pseudo-product GLA g = ®p€Z g, of type ([, 5) as follows: Let [=1_1 @B
be a finite dimensional reductive GLA of the first kind such that

(1) Theideal [=1_, & [l_1,4] @ of [ is a simple Lie algebra.
(2) The center 3(I) of [ is contained in [o.
Let S be a finite dimensional faithful irreducible [-module. We put

S1={seS|lL-s=0}
and
S, =ad(l_1)" 'S, forp<0
We form the semi-direct product g of [ by S, and put
g=5Sa&l, [S,S5]=0
o= (k20), g1=0186S5,

g =5y (p<-1).
Then g = P, 8, enjoys the following properties (Lemma 2.1);
(1) S=B,L | Sy, where S_, ={s € S|[l.1,s] =0}
(2) m=¢D,_ 9, is generated by g_;.
(3) S, is naturally embedded as a subspace of W @ SFP([_1")
through the bracket operation in m, where W = S_,,.

Thus S =S_, &S, 1D &S 1 CWeWRV*D-- - WS H(V*) defines a symbol
of u-th order differential equations of finite type by putting Sy = {0} C W @ S¥(V*). We
can construct the model linear equation R, of finite type, whose symbol at each point
is isomorphic to S (see §4 [Sea88]). R, is a u-th order involutive differential equation of
finite type. Then, we see that the symbol algebra of (R,, D,) is isomorphic to m, where
D, is the pullback of the canonical system C*~1 on the (u — 1)-jet space J*~'. m has the
splitting g_1 = [_1 @ S_1, corresponding to the pseudo-product structure on R,, where
V =1I[,and W = S_,. In this way, m is a symbol algebra of u-th order differential
equation of finite type, which is called the typical symbol of type (I, 5).

This class of higher order (linear) differential equations of finite type were first ap-
peared in the work of Y.Se-ashi [Sea88], who discussed the linear equivalence of this class
of equations and gave the complete system of differential invariants of these equations,
generalizing the classical theory of Laguerre-Forsyth for linear ordinary differential equa-
tions.

We ask the following question for the pseudo-product GLA g = ®p€Z g, of type (1,.5):
When is g the prolongation of m or (m,gg) ?

Namely we ask whether g exhausts all the infinitesimal automorphisms of the differential
system (R,, D,) or its psedo-product structure.

The answer to this question is given in Theorem 5.2 of [YY02] (Theorem 2.1 below),
where we can find the classes of parabolic geometries, which generalize the cases of second
and third order ordinary differential equations. More precisely, this Theorem states : For a
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pseudo-product GLA g = @zloz—u g, of type (1,.S8) satisfying the condition H'(m, g)oo = 0,
g is the prolongation of m = @p<0 g, except for three cases. Let b = Gapez Bp be the
prolongation of g = b_; & by, where b_; = S and by = [. Then the three exceptional
cases correspond to cases : (a) dimb < oo and by # 0, (b)) dimb = oo, (¢) gis a
pseudo-projective GLA (for the detail, see §2). In case (a), b = b_; @ by @ b; becomes
a simple graded Lie algebra containing g = b_; & by as a parabolic subalgebra. Thus,
basically, the case (a) corresponds to parabolic geometries, we are seeking. In fact, in the
case of k-th order ordinary differential equations for scalar function, g? and g* belong to
case (a) and g* belongs to case (c) for k = 4.

In §2, we will recall the above results from [YY02]. The symbol algebras of these
parabolic geometries will be given in Theorem 2.1 in terms of root space decompositions
of the corresponding simple Lie algebras. We will describe these symbol algebras and
the model differential equations of finite type explicitly by utilizing the explicit matrices
description of the simple graded Lie algebra b for the classical cases in §3 and by describing
the structure of m explicitly by use of the Chevalley basis of the exceptional simple Lie
algebras in §4. Finally, in §5, we will discuss about the equivalence of each parabolic
geometry associated with the differential equations of finite type explicitly described in
previous sections.

2. Pseupo-PRODUCT GLA g =P, ., 8, OF TYPE ([,5)

In this section, we will summarize the results in [YY02] and explain the prolongation
theorem (Theorem 2.1). We will first discuss the prolongation of symbol algebras of the
pseudo-product structures associated with higher order differential equations of finite type.
Moreover we will generalize this algebra to the notion of the pseudo-product GLA (graded
Lie algebras) of irreducible type and introduce the pseudo-product GLA g = €P,; 9, of
type (I, S) and ask when g is the prolongation of m or (m,go) , where m = P,_;g,- In
the answer to this question, we will find the classes of finite type differential equations
mentioned in the introduction.

2.1. Pseudo-projective GLA of order k of bidegree (n,m). We first consider a
system of higher order differential equations of finite type of the following form :

akya 1 8 8
_ (e} m
Oxy, -+ Oy, N Fil"'ik(xlv'”’x"’y Y "”7pi""’pjl”'jk—l)
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57 5.~ These equations define a submanifold R in k-jets space J*
1 K

where pfl iy =

such that the restriction p to R of the bundle projection 7F | : JF — J*! gives a
diffeomorphism ;

(2.1) p: R — J" ! diffeomorphism
On J*, we have the Contact (differential) system C* defined by

oL {wa _ wia R wgmik_l = 0},



where

wy = dp} — Z?:l piajdxj? (1=

(2.2)

(1agml<in< - <ipq<n).

\

Then C* gives a foliation on R when R is integrable. Namely the restriction £ of C* to
R is completely integrable.

Thus, through the diffeomorphism (2.1), R defines a completely integrable differential
system B’ = p,(F) on J*! such that

Cr1'=FaoF, F =Ker ().

where mf—3 : J¥~1 — J*=2 is the bundle projection. The triplet (J*~1; E', F') is called the
pseudo-product structure associated with R.

Corresponding to the splitting D = E® F = (p~1),(C*1), we have the splitting
in the symbol algebra of the regular differential system (R, D) = (J*~!,C*1) of type
¢t (n, m);

C1=¢eDf,
where e = V,§ = W ® S¥~1(V*). At each point x € R, e corresponds to E(z) (the point
in R over x) and f corresponds to Ker(my—2).(p(x)). Here we recall (see §1.3[YY02] for
detail) that the fundamental graded Lie algebra (FGLA) €%~1(n,m) is defined by

Fmm)=€¢ 0 0C ,dC

where €_;, = W,€, = W@ SH?(V*), €., = Ve W o S (V*). Here V and W are
vector spaces of dimension n and m respectively and the bracket product of €*~1(n, m) =
¢ 1(V, W) is defined accordingly through the pairing between V and V* such that V
and W ® S*1(V*) are both abelian subspaces of €_;. Here S"(V*) denotes the 7-th
symmetric product of V*.

Now we put
o ={X € go(C"(n,m)) | [X,¢e] Ce,[X,f]CT}
and consider the (algebraic) prolongation g*(n,m) of (€*~1(n,m), §o), which is called the
pseudo-projective GLA of order k of bidegree (n, m) ([Tan89]). Here go(€*~!(n,m))
denotes the Lie algebra of gradation preserving derivations of €*~*(n,m).

Let Gy € GL(€*1(n,m)) be the (gradation preserving) automorphism group of €¥~(n, m)
which also preserve the splitting €_; = e®f. Then G| is the Lie subgroup of GL(€*~'(n,m))
with Lie algebra gy. The pseudo-product structure on a k-th order differential equation
R of finite type given above, which is called the pseudo-projective system of order
k of bidegree (n,m) in [Tan89], can be formulated as the G-structure over a regular
differential system of type €*~1(n, m) ([Tan70], [Tan89],[DKM99]). Thus the prolongation
g*(n,m) of (€¥~1(n,m), dy) represents the Lie algebra of infinitesimal automorphisms of
the (local) model k-th order differential equation R, of finite type, where

[ (AT 1<a<m1<i<---<ip<n)b.
Oy, - - O, =a=mi=h=rr=i=



The isomorphism ¢ of the pseudo-product structure on R preserves the differential system
D = E @ F, which is equivalent to the canonical system C*~! on J*~!. Hence, by
Bécklund’s Theorem (cf. [Yam83]), ¢ is the lift of a point transformation on J° when
m > 2 and k = 2 and is the lift of a contact transformation on J' when m = 1 and k > 3.
When (m, k) = (1,2), ¢ is the lift of the point transformation on J, since ¢ preserves both
D and F = Ker(n}).. Thus the equivalence of the pseudo-product structure on R is the
equivalence of the k-th order equation under point or contact transformations. To settle
the equivalence problem for the pseudo-projective systems of order k of bidegree (n, m),

N.Tanaka constructed the normal Cartan connections of type g*(n,m) ([TanT79),
[Tan82], [Tan89]).

It is well known that g¥(n,m) (k = 2) has the following structure ([Tan89],[Yam93],
[DKM99], [YYO02]);

(1) k=2 g%(n, m) is isomorphic to sl (m+n+1,R) and has the following gradation:
sl(m+n+1R)=g 291D g Do D oo,

where the gradation is given by subdividing matrices as follows;

0 00

g.=4 (000 EecW=R" Y.
£ 0 0
0 0 0

g_1 = r 0 0] |zeVER" Ac M(m,n)=WaV* 3,
0 AO
a 0 0N 4eR Begl(V),Cegl (W),

do = 0 B 0 5
00 C a+trB+trC =0

glz{tX|X€9—1}, 92={tX|X€9—2}7

where V' = M(n, 1), W = M(m,1) and M(a,b) denotes the set of a x b matrices.

(2) k=3 and m =1 g®(n, 1) is isomorphic to sp(n + 1,R) and has the following
gradation:

spn+1L,R) =g 3@ g 2D g1 Dgo D g1 D g2 D gs.

First we describe
sp(n+ 1,R) ={X € gl (2n+2,R) | XJ+JX = 0},

where

o O O



Here I, € gl (n,R) is the unit matrix and the gradation is given again by subdividing
matrices as follows;

(

0 000
0 000
8-3 = 0 00 0 a€R .
[ \2¢ 0 0 0
(/0 0 0 0
00 00 n o T
972_ 50 00 £€R _V 9
0 € 00
(/0 0 0 0
r 0 0 0 " -~ .
g1 = 04 0 0 re€R"=V, Ac Sym(n) = S*(V*) 3,
0 0 —tz 0
\
(/b O 0 0
0B 0 0
go = 0 0 —'B 0 beR, Begl(V),
00 0 =b

\
gr={'X|Xeg}, (k=1,273),

where Sym(n) = { A € gl (n,R) | YA = A} is the space of symmetric matrices.
(3) otherwise For vector spaces V and W of dimension n and m respectively,
g*(n,m) = @, gp has the following description:

g = {0} (k=2), o=V go =gl (V)@ gl (W),
ga=VewesS (VY g =WaS*V* (p<-1).
Here the bracket product in g*(n,m) is given through the natural tensor operations.
For the structure of g*(n,m) in case (3), we observe the following points. We put
(=V@g®g = (V@g( (V)e V) el (W)
(2.3) > sl (V)@ gl (W),
S=WeSYV*), V=RaeV

where the gradation of the first kind; sl (V) = V @ gl (V) @ V* is given by subdividing
matrices corresponding to the decomposition V=R & V.
Then

Sk lv* @Sé V*

and S is a faithful irreducible [-module such that [=11DlD is a reductive graded Lie
algebras, where [_; = V, [y = go, [} = g1. Moreover g*(n,m) = S @ [ is the semi-direct
product of [ by S.

In the following sections, we will seek to find other parabolic geometries associated with
differential equations of finite type, which are the generalizations of the above cases (1)

and (2).



2.2. Pseudo-product GLA of type ([,S). We will now give the notion of the pseudo-
product GLA of type (I, 5), generalizing the pseudo-projective GLA of order k of bidegree
(n,m).

Let g = €P,; 9y be a (transitive) graded Lie algebra (GLA) over the field K such that
the negative part m = @p<0 g, is a FGLA, i.e., [g,,9-1] = gp—1 for p < 0, where K is the
field R of real numbers or the field C of complex numbers. Let ¢ and f be subspaces of
g_1. Then the system & = (g, (g,)pcz, ¢, ) is called a pseudo-product GLA (PPGLA) of
irreducible type if the following conditions hold:

(1) g is transitive, i.e., for each k 2 0, if X € g, and [X,g_1] =0, then X = 0.
<2> g1=¢D fa [2, e] = [f? ﬂ =0.
(3) [g0,¢| C e and [go,f] C f.
(4) g_2 # 0 and the go-modules ¢ and f are irreducible.
It is known that g becomes finite dimensional under these conditions (see [Tan85], [Yat88]).

As a typical example, starting from a reductive GLA [ = [_; & [y @ [; and a faithful

irreducible l-module S, we define the pseudo-product GLA g = €D ; g, of type (I,5) as

follows: Let [ = [_; & [y ® [; be a finite dimensional reductive GLA of the first kind
such that

(1) Theideal [=1[_, &[(_1,4] @ of [ is a simple Lie algebra.
(2) The center 3(I) of [ is contained in [o.

Let S be a finite dimensional faithful irreducible [-module. We put

S1={seS|lL-s=0}
and

S, =ad(l_1)" 'S, forp<0

We form the semi-direct product g of [ by S, and put

g=95&1I, [S,S5] =0

o= (k20), g1=11D95,
g =5, (p<—1).
Namely g is a subalgebra of the Lie algebra 2(S) = S @ gl (S) of infinitesimal affine

transformations of S.
Then we have (Lemma 2.1 [YY02])

Lemma 2.1. Notations being as above,
(1) S=,L | Sy, where S_,, ={s€ S |[l.1,s] =0}.
(2) m=6D,_ 9y is generated by g_;.
(3) [Sp, ] = Sp1 forp < —1.
(4) S, is naturally embedded as a subspace of W @ SFP(1_1")
through the bracket operation in m, where W = S_,,.
(5) S_1, S_, are irreducible Iy -modules.

3
4

Thus m is a graded subalgebra of €*~1(V, W), which has the splitting g_; = [_; & S_,
where V' = [y and W = S_,. Hence m is a symbol algebra of p-th order differential
equations of finite type, which is called the typical symbol of type ([, S). Moreover the
system & = (g, (gp)pez, (1, 5-1) becomes a PPGLA of irreducible type, which is called
the pseudo-product GLA of type ([, 5).

This class of higher order (linear) differential equations of finite type were first appeared
in the work of Y.Se-ashi [Sea88].



2.3. Prolongation Theorem. Let & = (g, (g,)pez, [-1,5-1) be a pseudo-product GLA
of type (1,5), i.e., g = S@[is endowed with the gradation (g,)pez, § = @;Z_u g, given in
§2.2. g has also another gradation (b,),ez, g = @2:71 b,, given by b_; = S and by = [.
Thus g has a bigradation (g, ,)pqez, Where g, , = g, N b,. We have the cohomology group
H*(&) = H*(m,g) associated with the adjoint representation of m = g_ on g, that is,
the cohomology space of the cochain complex C*(®) = @ CP(®) with the coboundary

operator 0 : C?(&) — CPT(®), where C?(&) = Hom(A” g_, g). We put
CP(B),s ={weC?(®) |

W(Gz‘m‘l ARRRNAN Elz‘p,jp) C Girttiptri+-+ip+s
for all dy,.... 00,71, Jp }-

As is easily seen, C*(®), ,

=D, C?(8),s is a subcomplex of C*(&). Denoting its coho-
mology space by H (&), = P Hp(

)r.s, We obtain the direct sum decomposition

=P H"(®)

p7r7s

The cohomology space, endowed with this tri-gradation, is called the generalized Spencer
cohomology space of the PPGLA & of type (I,.5). Note that H'(&)yo = 0 if and only
if go coincides with the Lie algebra of derivations of m such that D(g,) C g, (p < 0),
D([_1> C [_; and D(S_l) C S_q.

From now on, we assume that the ground field is the field C of complex numbers
for the sake of simplicity. For the discussion over R, the corresponding results will be
obtained easily through the argument of complexification as in §3.2 in [Yam93]. We set
=181, L]®L and u = D(3,(1)); then [ = [Gud3(1), D(I) = [Guand [ = 1B,
where [, = [y, [1] is a simple GLA. Let us take a Cartan subalgebra b of [ such that
h C . Then HN1 (resp. hNu) is a Cartan subalgebra of [ (vesp. u). Let A ={o,... ar}
(resp. A = {81, ..., Bm}) be a simple root system of (I,h N 1) (resp. (u, hNu)) such that
a(Z) 2 0 for all @ € A, where Z is the characteristic element of the GLA [=1[_1® D [;.
We assume that [ is a simple Lie algebra of type X,. We set A; = {a € A| a(Z) =1},
It is well known that the pair (X,, A;) is one of the following type (up to a diagram
automorphism) (cf. §3 in [Yam93]):

(Ap{ai}) Q=i = [(0+1)/2]), (Be{ar}) (€2 3), (Cr{ar}) (€ 2 2),
(D, {en}) (€2 4), (Do, {aen}) (£25), (Be,{an}), (E7,{ar}).

We denote by {wy,...,we} (resp. {m,...,m,}) the set of fundamental weights relative
to A (resp. A’). Since S is a faithful l-module, we have dim3(l) < 1. Assume that
3(1) # {0}. Let o be the element of 3(I)* such that o(J) = 1, where J is the characteristic
element of the GLA g = b_; @ bg. Namely J = —idg € 3(I) C by = [ as the element of
gl (S). There is an irreducible [ -module T' (resp. 3(1) -module U) with highest weight
X (resp. n — o) such that S = b_; is isomorphic to U ® T" as an [-module, where 7 is a
weight of u. Then we have (Lemma 4.5 [YY02])

Lemma 2.2. H(& )0 = 0 if and only if 3 (1) is isomorphic to gl (U) and n =
Especially, when D(I) = [, HY(&)oo = 0 if and only if | = [ 3(1), where 3(1) = (J).

Thus, when H'(& )00 = 0, the semisimple GLA D(I) is of type (X, x A,,{a;}) and S is
an irreducible D(l)-module with highest weight = = x + m when dim U > 1 and D(I) is

8



of type (Xy, {a;}) and S is an irreducible -module with highest weight y, when D(I) = [
(i.e., when dim U = 1).

The following theorem was obtained in Theorem 5.4 [YY02] as the answer to the fol-
lowing question:

When is g the prolongation of m or (m,gg) ?
In the following theorem (a), the simple graded Lie algebra b = g = @pez g, is described

by (Yiini1,%1) such that g = @;:—u gp 1s a graded subalgebra of g =
g, =g, for p < 0.

-, 8p satisfying

Theorem 2.1. Let & be a pseudo-product GLA of type (I,.S) satisfying the condition
HY (&) =0. Let b = @pez b, be the prolongation of g = b_y @ by, where b_; =S and
bo =1[. Then g = @pez gp 1S the prolongation of m = @p<09, except for the following
three cases.

(a) dimb < oo and by #0 (b=0b_1 & by ® by: simple)

D) =[L1| Ay |by=S|8=Yrnn ¥
Agx Ay [ {ait | wet+m | Arnpnr | {7V Y0}
Ay {ai} | 2w Cev1 {visvera }
A (023) [ {ai} | @ Dyyq {vis vesr}
By (€ 22) | {ou} | = B {n.72}
Dy (tz4) {au}| @™ Deya {7172}
Dy (624) | {a} | @ Deyr o | {71 e}
Dy {on} | s Eg {717}
Dy {as} | w5 Eg {71,738}
Ds {as} | s Eg {772}
Eg {as} | e E7 {76,717}
Eg {aa} | w6 E7 {7,797}

In this case (Yyyini1, 1) is the prolongation of m except for (Apins1, {71, Yes1})
and (Coy1, {71, 7e+1}). Moreover the latter two are the prolongations of (m, go).

(b) dimb = o0

D) | A, | b, g(m, go)
Ap | {ai} | we | (A, {7 Yer })
Cy {OCE} w1 g

In (Cy, {ac})-case, p =2
Sa=V* S.=V, =8V,

h=VeV*aC, [ = S*(V)



(c) g is a pseudo-projective GLA, i.e., D(I) = (A x Ap,{a1}), E = kwy + 71, (k2
2,n21), or D(I) = (Ap, {a1}), x = kwy, (k=2 3,n=0)

Su=W, S,=Wo8"PV") (~p<p<0),

L=V, Lh=gt(V)®gl (W), L=V
where p =k +1, dimV = /¢ and dim W =n + 1.
In this case g is the prolongation of (m,gq).

By Proposition 4.4.1 in [Sea88]|, the Lie algebra of infinitesimal linear automorphisms
of the model equation of type ([,S) coincides with [. Hence the cases (a) and (b) of
the above theorem exhaust classes of the equations of type (I,S), for which the model
equations admit non trivial nonlinear automorphisms. These cases correspond to the
parabolic geometries associated with differential equations of finite type, which generalize
the case of second and third order ODEs, mentioned in the introduction. More precisely,
in the cases of (Apy1, {71,7}) and (Cry1, {71, 7e+1}), m coincides with the symbol algebra
of the canonical system of the first or second order jet spaces (cf. §4.5 [Yam93]) and
go determines the splitting of g_; , hence the parabolic geometries associated with these
graded Lie algebras are geometries of the pseudo-product structures on the first or second
order jet spaces. In fact the parabolic geometry associated with (A, in, {71, Yni1}) is
the geometry of the pseudo-projective system of order 2 of bidegree (n, m) and the para-
bolic geometry associated with (Cy41, {71, Yns1}) is the geometry of the pseudo-projective
system of order 3 of bidegree (n,1) (see the following section).

In the other cases of the above theorem (a), (Ypini1,21) is the prolongation of m. This
fact implies that the parabolic geometries associated with these graded Lie algebras are ge-
ometries of regular differential system of type m, which have the (almost) pseudo-product
structure corresponding to g_; = S_1 @ [_;. Moreover every isomorphism of these regular
differential system preserves this pseudo-product structure. Thus the parabolic geome-
tries associated with (Yy4,41,%1) have the canonical (almost) pseudo-product structures
in the regular differential system of type m corresponding to the splitting g_1 = S_1 &[4

In the following sections, we will calculate the explicit forms of the typical symbols of
type (I,.5) of the above cases and describe the above (almost) pseudo-product structures
as differential equations of finite type.

3. SYMBOL OF THE CLASSICAL CASES

In this section we will describe the symbol algebra m = @p <o 8p explicitly as the sub-
algebra of €* 1V, W), where V = [_; and W = S_,,, by utilizing the explicit matrices
description of the graded Lie algebra g = @pEZ g, of type (Y, %4). For an explicit matri-
ces description of the graded Lie algebra (Y7, ¥;), we refer the reader to §4.4 in [Yam93].
By this calculation, we can explicitly write down the class of differential equations of finite
type corresponding to the pseudo-product structure associated with the simple graded Lie
algebra (Y7, %1). In this section, we shall discuss in the complex analytic or the real C'*
category depending on whether K = C or R.

Case (1) [(Ar x Ap, {ai}), e+ 71, (Aegngrs {770 })] 1 <iZ6n 20,02 2).
This includes the first case of (b) in the above theorem as the case n = 0.
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b =1b_,® by ® by is described by (Aeyni1, {7e41}) and § = P,__, §, is described by
(Apsni1s {Visve+1}). Hence = 2 and we obtain the following matrix representation of
g=b=sl({+n+2K):

st(l4+n+2,K)=9g 209 100 CH P =55010S5,

where the gradation is given by subdividing matrices as follows;

000
go=29_,= 0 0 0 AeMmn+1,)2UQT} »,
A0 0
971:5’71@[717
0 0 0
S, =U®T* = 00 0|]|BeMmn+1,j) p,
0 B 0
000
[_1—T_1®Tg— C 00 CGM(],Z) ,
000
. F0 0N | Fegl(Ty),Gegl(Ty), He gl (U),
go=IlOu= 0 G 0 ;
0 0 H trF +trG +trH =0

g ={'X|Xeg.}, G={'X|Xecg,},
where i +j =0+ 1, U=K"\, T =Ty T, = K" Ty =K, T_, = K/ and M(a,b)
denotes the set of a x b matrices. Thus we have
S=UT*, Il=sl(T)®gl(U), and g=sl(TaU).

We will divide the argument into the following two cases. We first consider the typical
case:

(1)i=0=22n=0.

We have j = 1 and n = 0 in the above matrix description. Hence dim[_; = dim .S o = /¢
and dimS_; =1. Weput [L; =5_5=V. Then

0 00
m:S_g@(S_l@[_l): X O 0 :g+d+§7 x,yGV:M(l,é),aeK
y a 0
By a direct calculation, we have [4,#] = (azx) € S_y = V, ie., y = az. Thus S_; is

embedded as the 1-dimensional subspace of scalar multiplications of V@V* = S_o®(1_1)*
through the bracket operation in m. This implies that the model equation of our typical
symbolm=g ,®g_; C €(V,V) is given by

dy oy
3.1 L= for 1= < /.
(3.1) s~ Mo, r 1=pg=
where 1, ...,y, are dependent variables and xy,...,x, are independent variables. By a
direct calculation, we see that the prolongation of the first order system (3.1) is given by
92
(3.2) o0 for 1 <p,qr L.

Oz 0z, n

11



(1) otherwise.

We have S o = U® T = M(n+1,i), S.y =UT*, = M(n+1,j) and [_; =
Ty @1y = M(j,i). Then

m = 5_2 S (5_1 S [_1)

0 0 0
= [X 0 0| =Y+A+X|YeMn+1,i), AcMn+1,j), X € M(j,i)
Y A0
By a direct calculation, we have [fl,fq = (AX) € Sy, ie., y* = 1:1 a®x”™, where y*

is the a-th row of Y, 27 is the 7-th row of X and A = (a¢). From (i), we see that the
model equation of our typical symbol m =g o ®g_; C €}(I_1, S ) is given by

oy oys
3.3 L —§5,=—~ for a=1,....n+1, 7=1,...,5, 1=<pq<i,
where v}, ...y}, ..., ytth ..yt are dependent variables and $%,...,x11,...,a:{, e ,a:g

are independent variables. By a direct calculation, we see that the prolongation of the
first order system (3.3) is given by

for a=1,...,n+1, 17,045 1Z<p,qr i

Case (2) [(A¢ x An {ar}), @0+ 11, (Armsr, e} (02 0,02 1),
b =b_y @ by ® by is described by (Apini1, {ye+1}) and § = @__ §, is described

p=—n9
by (Agini1, {71,7e41}). Hence p = 2 and we obtain § = g?(/,n + 1). The matrix
representation is given as (1) in §2.1.

We have S_o =W = M(n+1,1), [, =V =M{1),S1 =WeV*= Mn+1,{) and
go determines the splitting of gy = S_; @ [_;. Thus the model equation of our typical
symbol m = €}(V, ) is given by

(3.5) Py =0 for a=1 n+1, 1Zpqgst
° axpaxq VAR Y = Y = )
where 3!, ..., y""! are dependent variables and z1, ..., z, are independent variables.

Case (3) [(Afv {ai}>72wl7 <C€+17 {7i77£+1})] (1 <1 g 194 Z 2)'

b=1>b_1 @by @ by is described by (Cpi1,{Ve+1}) and g = Z=—u g, is described by
(Coi1, {i,ves1}). Hence p =3 and § = b is isomorphic to sp(¢ 4+ 1,K). First we describe

sp(l+1,K)={X egl (20 +2,K)|'XJ+JX =0},

where
0 0 0 I
0 0O I, O
J = 0 —I d 0 € gl (20+2,K), I = (6p) € gl (k,K).
- 0 0 0

12



Here I}, € gl (k,K) is the unit matrix and the gradation is given again by subdividing
matrices as follows;

0 0 0O
« 0 0 0O .
g3=53= 52(T0) = 000 0 A€ Sym(z) )
A0 0O
0O 0 00

¥ 0 0 0O ..

g_2:S_2:T_1®TO - B 0 00 BEM(]?” )
0 'B 00

g1 =51®y,

0 0 00

" 0 0 00 .

S, =8%T*) = 0D 00 D e Sym(j) ¢,

0 0 0O

00 0 O
« C 0 0 0 o
=TT = 00 0 O CeM(i) g,
00 —-'C 0
F 0 0 0
" 0 G 0 0 . .
90:[0: 0 0 —t@ 0 Feg[ (ZvK)a Geg[ (]>K)a
0 0 0 —tF

gk:{tX|XEg—k}7(k:]-7273)v

where i +j =0+ 1, T=Tyd T, =K Ty =K, T, = K/ and Sym(k) = { A €
gl (k,K)|*A = A} is the space of symmetric matrices. Thus we have

S = S%(T™), [=sl(T),and g=sp(T®T).

We will divide the argument into the following two cases. We first consider the typical
case:

(i)i=1022.
We have j = 1 in the above matrix description. Hence dim[ ;=5 o =/¢,dim$S_; =1
and dim S_3 = /(¢ + 1). Then

)
m:S_gEBS_z@(S_l@[_l)
0 0
2 8 V4+é4+a+i| aeK z,6eK=M®1,0),Y € Sym(l) y,

¢

cooo
I

0
x
§
Yy ‘& x
By calculating [¢, #] and [[a, #], 2], we have
Ypg(= Yap) = EpTq + ETp = 2074,
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where Y = (Ypy), € = (&1,...,&) and © = (xy,...,2¢). From the first equality, we can
embed S_5 as a subspace of S_3 ® ([_1)* and obtain the following first order system as
the model equation whose symbol coincides with this subspace:

DJpq OYpg _ 1 0ypp
. = = f =77
(3.6) or, — 0 for r#pg oz, ~ 3 0m,

for p#q,

where yp, = ygp (1 < p < ¢ < ¢) are dependent variables and zy, ..., x, are independent
variables. Moreover, by a direct calculation, we see that the prolongation of the first order
system (3.6) is given by
0%y 0%y 1 0% 1 0%y
37) —2 =0 for {rs .4}, o= P = =
(3.7) 0x,0x, {rs} # {p.a} 0r,0x, 2 0%, 20%,
From the second equality, we observe that the above second order system is the model
equation of the 1-dimensional embedded subspace S_; in S_3 ® S?((I_1)*). Furthermore,
by a direct calculation, we see that the prolongation of this second order system (3.7) is
given by

for p+#q.

Ypg < <
(38) mzo for 1:p,q,7',8,t:€.
r s t

(i1) 1 <1< L.

We have S_3 = S?(Ty) & Sym(i), S_o =T 1 T = M(j,4), S_1 = S*(T*,) = Sym(j)
and [, =T, ® T = M(j,i). Then

m = ng ©® 572 @D (S,1 D [,1)

0
0
0

~ ] < o

~+

np = o o
OO OO

_tyx

By calculating [2, X] and [[4, X], X], we have
J J
Ypa(= Yap) = Z( S‘iﬂﬁf + 35627) =2 Z aaﬁxgxg’
a=1 a,f=1

where Y = (y,4), £ = (§) A = (aap) and X = (z7). From the first equality, we can
embed S_5 as a subspace of S_3 ® ([_1)* and obtain the following first order system as
the model equation whose symbol coincides with this subspace:

0 0 10
(3.9) s _ g for r#p,q, Ypa _ ~ %o gy p#q.

Oz dxg 2 0xg
where g = ygp (1 = p = ¢ = i) are dependent variables and 5 (1= p = i,1 = a = j)
are independent variables. Moreover, by a direct calculation, we see that the prolongation
of the first order system (3.9) is given by

Py 0%y 1 0% 1 9%
3.10) —2_ =0 for{r,s qt, Pa__ o _ aq
(3.10) D0zl rins} 7 ipay 0xg8x5 2 8xg8x5 2 8x3‘8xqﬁ

forp # q.

From the second equality, we observe that the above second order system is the model
equation of the embedded subspace S_; in S_3 ® S?(([_1)*). Furthermore, by a direct
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calculation, we see that the prolongation of this second order system (3.10) is given by

o Ypq

w20zl 0x] for 1spgrstsi, 1safvs]

(3.11)

Case (4) [(As, {a1}), 221, (Coprs {71,700 P)] (€2 1).

b =b_1®by® by is described by (Cri1, {ve41}) and § = P),__, §, is described by
(Coa1,{71,7e+1}). Hence p = 3 and we obtain g = g*(¢,1). The matrix representation is
given as (2) in §2.1.

We have S_3 =K, S o =V* [, =V, S| = S?(Vx) and gy determines the splitting
of g 1 =S 1 ®I_;. Thus the model equation of our typical symbol m = €*(V,K) is given
by

(3.12) L:O for 1< p,qr=¢
' 02,02,0x, - =
where y is dependent variable and x4, ..., z, are independent variables.

Case (5)[(Br, {an}), @1, (Beyr, {71,720 2 2)[(De, {en}), @1, (Dega, {1, 12D 2 4).

b=0b_1®by® by is described by (BDyy1,{m}) and g = @~__ §, is described by

p=—H

(BDyy1,{7,72}). Hence =3 and § = b is isomorphic to o(n + 4). First we describe

on+4)={Xegl(n+4,K)|'XJ+JX =0},

where

00 0 01
000 10

J=100 1, 0 0| egl(n+4,K), I,=(5;) gl (nK).
01 000
100 00
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Here I,, € gl (n,K) is the unit matrix and the gradation is given again by subdividing
matrices as follows;

(/0 0 0 0 0
00 000
g_3:S_3: 0 0 0 0 O ye Ky,
y 0 000
L \0 =y 000
(/00 0 00
00 0 00
g o=S5_,= €0 0 00 EeK'=M(n,1) p,
00 0 00
L \0 0 —%¢ 0 0
g1 =51®,
(/000 0 O
b 00 0 0
S,=X 1000 0 0 beK %,
000 0 O
L \0 00 —b 0
00 0 00
00 0 00
[, = 0Oz 0 00 rekKr=Mn,1) p,
00 -tz 00
L \00 0 00
ai 00 0 0
0 aa 0 0 0
go = lp = 00 A 0 0 ay,ay €K, A€ o(n)
0 0 0 —as O
0 0 0 0 -a

gr={'X|Xeg}(k=1,23).
We have dim S_3 =dim S_; =1 and dim S_y = dim[_; = n. Then

m=53®5,®(S_1®I[,)

00 0 0 0
a 0 0 0 0

= & x 0 0 O|l=g+é+a+2| yacK z,6cK=Mn,1)
y 0 =tz 0 0
0 —y =% —a 0

From [£,7] = (300, &) and [[a,4], %] = (—aY_r, 2?), we have S o = V*, putting
S 3=Kand[_; =V . Moreover S_; is embedded as the 1-dimensional subspace spanned
by the unit matrix in Sym(n) = S?(V*) through the bracket operation in m. This implies
that the model equation of our typical symbolm =g 3® g o ® g1 C €*(V,K) is given
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by

02y 02y
3.13 —— =0y fi 1= <
(3:13) Ox,0r, 021 oF t=ha=n
where y is dependent variable and xy,...,x, are independent variables. By a direct
calculation, we see that the prolongation of the second order system (3.13) is given by
Py

3.14 — =0 f 1= < n.
(3.14) 02,02,0, o t=har=n

Case (6) [(De, {ac}), @1, (Desr, {71,742 })] (£ 2 4).

b =1b_1® by @ by is described by (Dyi1,{71}) and g = Z:W g, is described by

(Dos1, {71,7e41}). Hence u =2 and g = b is isomorphic to 0(2¢ + 2). First we describe
0(20+2)={Xegl (20+2,K)|'XJ+JX =0},

where
00 0 1
o 0o 1, 0 -
T=10 1, 0 of €HCR+2K), Lr=(d) €l ((,K).
10 0 0
Here the gradation is given again by subdividing matrices as follows;
0 0 00
g _)]o 0o 00 .
82 =5 = y 0 00 yeK =M((1) 5,
0 - 0 0
g1=51®,
(/00 0 0
E0 0 0 .
S = 00 0 0 §eK =M((1) p,
\ 0 0 _tf 0
(/0 0 0 0
00 00
[_1: 0 X 0 0 XEO(E) ,
00 00
\
a 0 0 0
. 0A 0 0
8 == 00 —tA 0 a €K, Aegl((K),
00 0 —a

g={'X|Xeg,},(k=123),
We have dim S_ = dim S_; = ¢, dim[_; = 3¢({ — 1), [ = 0(2() and S = K*,. Then
m = 572 @& (571 ©® [,1)

0 0 0 0
315 % o o|FirE X peer =M, X o
0 —ty —tg 0
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By calculating [€, X], we have

l
Yp = Z Tpela (Tpg + gp = 0),
q=1

where y = "(y1,...,y0) , £ = (&1, ..., &) and X = (2,4). Then the model equation of our
typical symbol m =g o, ® g C €'(I_;,S ) is given by

dy Oy, _ Oy
3.15 —22 — (0 for distinct P — T
where yi, ..., y, are dependent variables and z,, (1 < p < ¢ < /) are independent vari-

ables. By a direct calculation, we see that the prolongation of the first order system (3.15)
is given by

%y,
aqu T1 a1'1127"2

(3'16) =0 for 1= D,q1,71,q2, 72 S/

Case (7) [(As, {a1}, @1, (Degrs {1, ve41})] (£ 2 3).

b="0b_1®by® by is described by (Dey1,{7e+1}) and § = ,__,, §, is described by
(Dgs1,{71,7e+1}). Hence p =2 and g = b is isomorphic to 0(2¢ 4 2). First we describe

0(20+2)={X€egl (20+2,K)|['XJ+JX =0},

as in Case (6) and the gradation is given again by subdividing matrices as follows;

0 0 00
0 0 00
9—225—2: y O 0 O yEKZ:M(€71> )
0 =y 0 0
g—lzs—l®[—17
(/0 0 00
00 00 _
571: 0= 0 0 :EO(@) s
L \0 0 00
(/00 0 0
[ = 9038 8 8 zeK = M(@1) },
L \0 0 —'z 0
a 0 0 0
. 0A 0 0
go =l = 0 0 —tA 0 acK, Aegl((K),
00 0 —a



We have dim S_p = dim [_; = £, dim S_; = L/(¢ — 1), [=s[ (T) and S = A*T*,. Then

m=S,@0(S1®I,)

|H~ [I] o O

0
0
0
ot

ow 8
o O O O
I
<
+
[1]>
+
)

8
<@

m
=
I
=
=
[1]

m
o
=

xz

By calculating [2, 2], we have

l
Yp = Z EpaTyq; (épq + &op = 0)7
g=1

where y = "(y1,...,y0) , . ="(z1,...,2¢) and E = (§,,). Then the model equation of our
typical symbol m =g o ® g C €([_1, S ) is given by

yp , Oy
3.17 L4+ =L =0 for 1<p<q =¢,
(3.17) or,  on, Sp<gq =
where 1, ...,y, are dependent variables and zy,...,x, are independent variables. By a

direct calculation, we see that the prolongation of the first order system (3.17) is given by

62
I _ for 1< p,q,r <4,

(3.18) Ty

Case (8) [(A¢, {ae}), we—1, (Degr, {ve; e )] (L 2 3).

b =b_, @by ® by is described by (Dey1,{ve1}) and § = P)__, §, is described by
(Des1,{7esves1}). Hence =2 and g = b is isomorphic to 0(2¢ + 2). First we describe

0(20+2)={X€egl (20+2,K)|'XT+JX =0},

where

000 I
0010

J=10 10 o €9@+2K), L=(0) gl ({K).
I, 0 0 O
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Here the gradation is given again by subdividing matrices as follows;

0 000
0 000
go = S_o = 000 0 Y € 0(6) ,
Y 0 0 O
g1 = S—l S¥) [—17
(/0 0 00
0O 0 00
S—l - 5 0 0 0 g < M(lag) )
0 -t 0 0

[
|

(/000 0 0
[, = 58 8 8) zeK = M(1,0) },
L \0 0 2 0
A0 0 0
goio{(g o0 a €K, Aegl (LK),
00 0 —tA

Ge={'X|Xecg},(k=1,23),
We have dim S_p = 24(¢ — 1), diimS_; = dim[_; = ¢, [= s (T) and S = A*T*. Then
m=S,0(S1®Il,)

0 0 0 O

e 0 0 o] o .. .

- e 0 0 0 =Y +Eé4+2| 2, e K =M(1,0),Y €o(()
Y —t¢ —tp 0

By calculating [€, 7], we have

Ypg = EqTp — §py, (Ypq + Ygp = 0),

where z = (21,...,2¢) , £ = (&,...,&) and Y = (y,,). Then the model equation of our
typical symbol m =g »® g C €'(I_;,S ) is given by

0 0 OYqgr
(3.19) Y4 _ () for distinct P, q,T Ypa | Dar _ () for q#p,r,
oz, Oz, ox,
where y,, (1 < p < ¢ £ () are dependent variables and xy,...,z, are independent

variables. By a direct calculation, we see that the prolongation of the first order system
(3.19) is given by

0*Ypq
(3.20) b 0 for 1< p,qr,s< V.

Case (9) [(Ae, {i}), @e1, (Desr, {vive1})] 2 <i < 6,02 4).
b=b_1 @by ® by is described by (Dey1,{7e1}) and § = D}__, §, is described by
(Des1, {7, ves1}). Hence p =3 and g = b is isomorphic to 0(2¢ + 2). First we describe

0(20+2)={X€egl (20+2,K)|'XJ+JX =0},
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where

0 0 0 I
10 0 I; O -
J = 0L 0 0 € gl (204 2,K), Iy = () € gl (k,K).
i 0 0 O
Here the gradation is given again by subdividing matrices as follows;
(/0 0 0 0
0 00O .
g3=53= 000 0 Y € O(Z) ,
L \Y 000
(/0 0 00
0O 0 00 — .
972_572_< = 0 00 _'GM(.]’Z) )
0 =2 0 0
\
g1 =51®,
(/0 0 0 0
0 0 0O .
S_l - < 0 A 0 0 A € 0(]) 3
0 0 0O
\
(/0 0 0 0
X 0 0 0 .
1= 0 0 0 0 X e M(], Z) )
( \0 0 X 0
F 0 0 0
. 0 G 0 0 4 .
902[0: 0 0 —t@ 0 Feg[ (ZvK)a Geg[ (]7K)a

0 0 0
g ={'X|X€gu},(k=123),
We have i +j = (+1,dim S_3 = 2i(i — 1), dim S_p = dim [_; = ij, dim S_; = 1j(j — 1),
[=sl(T) and S = A*T*. Then
m=S30S5 ,® (S 1)

0 0 0 0
=L N | eveErAr XX =eM(i) Y col) Aol
Yy -2 —-'X 0
By calculating [2, X] and [[4, X], X], we have

J
Upa(= —Ugp) = D _(E025 —&£a2) =2 > anprlal,

a,f=1

Mb.

o
Il

—_

where Y = (y,¢), Z = (§) and X = (z5). From the first equality, we can embed S_5 as a
subspace of S_3® (I_1)* and obtain the following first order system as the model equation
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whose symbol coincides with this subspace:

) 0 Ygr
(3.21) a0 for distinct D, q,T, Yra + Yar _ ) for q#p,r,

Oz Oxgy — Jxp
where y,, (1 = p < g = i) are dependent variables and x5 1 = p = 4,1 = a = j) are
independent variables. Moreover, by a direct calculation, we see that the prolongation of
the first order system (3.21) is given by

0? 0? 0? 01,
= 0 for{r,s} £ {p ), Sl =
Ox20rs  Jxg0zy Oxgdry  Oxpdxs
From the second equality, we observe that the above second order system is the model

equation of the embedded subspace S_; in S_3 ® S*(([_1)*). Furthermore, by a direct
calculation, we see that the prolongation of this second order system (3.22) is given by

(3.22)

for (p, q) # (r,s).

D3y
3.23 —— I — for 1<p,q,r,s,t<i, 1Za,68,7v 7.
(3.23) D022 35] S p.q S So,fvs]
Case (10) [(As, {a2}), o1, (Do, {72,701 })] (€ 2 3).
= b1 @ by @ by is described by (Dgy1,{7e1}) and § = @)__, §, is described by
(Dgs1, {72, 7e+1}). Hence u =3 and g = b is isomorphic to 0(2¢ 4 2). First we describe
0(20+2)={Xegl (20+2,K)|'XJ+JX =0},

where

0 0 0 I
0O 0 Iy, O
0 Irvy 0 O
L, 0 0 0

J = cgl (2£+ 2,K), I = (5”) € gl (£ — 1,K)

Hence the gradation is given as in the case (9) with i = 2 and j = ¢ — 1. We have
dimS_3 =1, dimS_5 = dim(; = 2(¢ — 1), dimS_; = 3({ — 1)(¢ — 2), [ = s[ (T) and
S = A>T*. Then

m=S3®05,® (S_l D [_1)

0 0 0 0
=2 % ) | eveErArX|xEeMr-12), Y 0@, Aco(t-1)
Yy —I= —1X 0

By calculating [2, X] and [[4, X], X], we have

-1 -1

y= (&5 +&528) =2 ) asprias,
a=1 a,f=1
O ) (6 «
where Y = (g —y)’ A = (aap) (aap + apa = 0), = = (&) and X = (z5). From the
first equality, we have S 5 = V* putting S_3 = K and [ = V. Moreover, from the
second equality and a3 + ag, = 0, we see that the model equation of our typical symbol
m=g 3Pg2Dg_1C Qﬁz(V, K) is given by
0%y 0%y
Bt o B

Oxdz;  Ox; 0x§

(3.24) for 1<i,7<2, 1<a<pB=<(-1,
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where y are dependent variable and z1,..., {7z}, ... 257! are independent variables.

By a direct calculation, we see that the prolongation of the second order system (3.24) is
given by
Oy

3.25 —_—
(3.25) ox? 890? ox)

=0 for 1<i, k<2 1Za,8,v<0—1.

4. SYMBOL OF THE EXCEPTIONAL CASES

In this section we will describe the symbol algebra m = @p <0 8p explicitly as the
subalgebra of €*~1(V, W), where V =[_; and W = S_,,, by first describing the structure
of m= @p <o 9p explicitly by use of the Chevalley basis of Y7.

We first recall that the graded Lie algebra § = €D,; 8, of type (Y7, %) is described in
terms of the root space decomposition as follows (cf. §3 in [Yam93]): Let us fix a Cartan
subalgebra b of § and choose a simple root system ¥ = {v1,...,7.} of the root system @
of g relative to h. For the subset ¥; of X, we put

@;—{Q—Zm a)y; € CI>+|Znz = for k=0,

Vi€

where & denotes the set of positive roots. Then the gradation § = ez Op 18 given by

@ka@gfa, éozbea@(gaGBg,a), @ga (k> 0),

acdy acdd acd)
where g, is the root space for a € .

In the following, let us take a Chevalley basis {z,(a € ®);h;(1 £ i < L)} of g and
put ys = x_g for § € &t (cf.Chapter VII [Hum72]). We will describe the structure of
the negative part m = > @, of (Y7,%1) in terms of {ys}sea+. For the property of
the Chevalley basis, we recall that, for o, € &+ if a4+ 3 € ® and o — 5 ¢ D, then
[Yos Ys] = £Yatp (see §25.2 in [HumT72]).

In this section, we shall treat both complex simple graded Lie algebras (Y7, %) and
their normal real forms at the same time and we shall discuss in the complex analytic or
the real C'*° category depending on whether we treat complex simple graded Lie algebras
(Y, %) or their normal real forms.

Case (1) [(D57 {al}’ W5, (E67 {’717 ’76})]
For the gradation of type (Fs, {71,76}), we have

(I);-:{ 04_7:11(1)11, O{_5:11%117 04_3:11%11, 04_1:11%21,
a1:12%11, a3:12%21, a5:12:1‘21, 047:12%21 }7

o = vy s

\111:{ 5—7:10800’ 5—5:118007 5_3:11(1)00’ 5_1:11(1]107
51:11%00’ 53:11%10’ 55:11%10, 57:12%10 },

\116:{ 77—7:00801> n_5:00811’ 77_3:00(1)117 77_1:01(1)117
771:00%11’ 773:01%117 775:01%117 777:01%21 }’
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where % 2495 % gtands for the root o = 3.0, a;y; € ®F (see Planche V in [Bou68g)).
Thus we have p = 2,

m=g,®g; and g ;=51®y,

where § o = S_5, S_; and [_; are spanned by the root spaces g_s for 5 € &3, ¥® and ¥!
respectively. Hence dim S_s = dimS_; =dim[_; = 8.

For ®F , U! and W%, we observe that a+ 3 ¢ ® for o, 8 € &5 UP! or for o, 3 € &5 UWC
and that n — & ¢ ® for n € W8 ¢ € W', This implies that [y,,ys] = 0 for o, 8 € &5 U ¥!
or for a, 3 € ®5 U U6 and that [y,, ye] = £y, for n € V6 & € Ul if n+ & € @, by the
above mentioned property of the Chevalley basis. Hence, from Planche V in [Bou68|, we
readily obtain the non-trivial bracket relation among g_; as in (4.1) below up to signs.

We solve the problem of signs as follows. First we choose the orientation of yz for
B e U U8 and @3 as in the following: We choose the orientation of y.,, for simple roots
by fixing the root vectors y; = y,, € g—,,. For & € W', we fix the orientation by the
following order;

Ye_» = W, Ye_5 = [y37y£77]7 Ye 3 = [y4>3/£75]> Ye 1 = [3/5;y§73]7
Y& = [92’y§—3]7 Yes = [y5’y€1]7 Yes = [y4vy§3]v Yer = [y3,y§5]7

For n € ¥, we fix the orientation by the following order;
U]

Yn_» = Ye, Yn_s = [ySa y7777]7 Yn_53 = [y47y7775]7 Yn_1 = [y37y77—3]7
Ym = [y2> yﬁ—s]ﬂ Yns = [y37 ym]? Yns = [y47y773]7 Yn: = [y57y715]7

Finally, for a € @5, we fix the orientation by the following;

Ya_7 = [y"lfl’y§77]’ Ya_s = [yﬂ:ﬂ y§77]7 Ya_3 = [y'fh')’ y£77]7 Ya_i — [yﬂ77y§77]7
Yor = [Yns» Ye_s), Yos = W Ye_sl, Yoz = Wnr Ves)s  Yar = Y Yeu |-

Then, for example, we calculate

W1 Ye_7) = [[Y3, Yn_s], Ye -] = [[Y3, Ye_- s Yn_s] + U35 [Un_ss Ve o]l = [Ye_5, Y]

In the same way, by the repeated application of Jacobi identities, we obtain

Yoz = [Yn-1: Ve )= —[Yn s Ve s] = [Un_s: Ve s]= —[Yn_7 Ve ],
Yos = [Yns: Ve o] = = Ye s = [Un s Vel = —[Yn 2 Yes),
Yoo = Wns: Yer] = —[Unis Yeo] = Wnor¥e] = —[¥n_r, Yes],
(4.1) Yoo = W Ye ) = —Un Ve sl = [Un s Vel = —[Yn s Y],
Yar = [ynmyéfs] = _[ynsay&s] = [yn—ﬂy&] = _[yn—77y57]7
Yas = [Unrr Yeos] = —[Yngs Ve u] = U1, Y] = —[Yns: ver,
Yas = [Unrs Yes] = —[Ynss Ve o] = [Un 1o Y] = —[Yn_s0 ver),
Yor = [Ynr¥e] = —[Uns: Yes] = [Uns» s [Ynn s Yer-

Thus, by fixing the basis {y,,} of S_o and {ye,} of [L1, an element A = a;ad(y,_,) +
azad(yy_;) + azad(y,_,) + asad(yy_,) + as ad(yy,) + agad(yy,) + a7z ad(yy,) + as ad(yy,)
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€51 CSo®(I1)" = M(8,8) is represented as the matrix of the following form;

ay, —as a9 —a 0 0 0 0
g —0as 0 0 Ao —aq 0 0
az 0 —as 0 a3 O —a; O
as 0 0 —das 0 as —as 0
0O a —ag 0 a4 O 0 —-u
0 as 0 —dg 0 ay 0 —as
0 0 as —ary 0 0 Qg —as
0 0 0 0 ag —arg ag —das

Hence the standard differential system (M (m), D,,) of type m in this case is given by
Dm:{w1:w2:"':w8:o}7
where

@i = dyy + padry — p3drs + podrs — prday, @z = dys + pedry — psdxs + padrs — prdg,
w3 = dyz + prdry — psdrs + psdrs — prdrr, w4 = dys + psdzy — psdzy + psdre — paday,
w5 = dys + prdry — pedrs + padrs — prdzs, we = dys + psdre — pedzy + psdre — padrs,
w7 = dy; + psdrz — prdry + psdrr — psdas, ws = dys + psdxs — prdxe + pedarr — psds.

Here (y1,...,Ys,Z1,...,%8,P1,---,Pg) is a coordinate system of M(m) = K?*. Thus the
model equation of our typical symbol m =g o® g ; C €'(I_1,S ) is given by

O _ Oya _ Jys _ Oys Oy Oya _ Oya _ Oys
8x4 8276 a.l‘? 8x8 ’ 8303 81’5 81’7 8]38 ’
Oy Oys _ Oya _ Oy O _ Oys _ Oys _ Oyr
0xy Oxs Oxg  Oxg’ Oxry Oxs Oxg Oxr
(4.2) 8922893:894:(398 %:_%:_%:%
) 8ZE2 61’3 8ZE4 al’g ’ 8[E1 61'3 8134 8x7 ’
Oys _dys _ _Oyr _ Oys Oys _ dys _ Oyr _ Oys
8371 8%2 8564 aﬂi(g ’ (99(;1 8x2 8.133 8x5 ’
O
i _ 0 otherwise,
81']'
where y, ..., ys are dependent variables and 1, ..., s are independent variables. By a
direct calculation, we see that the prolongation of the first order system (4.2) is given by
0?y;
(4.3) i for 1<4,j,k<8.

Ox;j0xy, -

Case (2) [(Ds, {as}), @s, (E6, {711,73})]-
For the gradation of type (Fs, {71,73}), we have

+ _ 12210 _ 12211 _ 12221 _ 12321 _ 12321
(1)3—{ a1 = 1 , Qo = , g = Qg = , Q5 = 2 }

+ 11000 11100 11100 11110 11110
by ={ m="115°" m= N3 = Ny = ns=""1

11111 _ _ _
e = 0 , M= 1 y TNs = 1 , Mo = 1 , Tho =
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oF =ty ys
3
PP ={ &=01000 £ =01100 ¢ _01100 ¢ 01110 ¢ _ 01110

Eo=01411 Lo =01211

)

L G=01111 g 01210 L Gp=012211Y,

Pl = {y, = 10000}

where @ % 295 % stands for the root o = 3.0 a;y; € ®F (see Planche V in [Bou68)).
Thus we have p = 3,

m=g 359 2D and g1=51®0y,

where g_3 = S_3, §_2 = S_3, S_; and [_; are spanned by the root spaces g_g for 3 €
dF ®F, Ul and U3 respectively. Hence dimS_3 = 5, dimS 5 = diml_; = 10 and
dim S*l =1.

For @7, @5, U! and U3, we observe that a + 3 ¢ @ for o, € & UD; UT! £ —~ ¢
for ¢ € U3, v € U! and that, if n+ & € ®F for n € &, & € U3, then n — ¢ ¢ ®. This
implies that [y, ys] = 0 for a, 3 € &3 U D3 UV, [y, ye] = £y p¢ for £ € U3 v € UL
if v+ &€ P and [y, ye] = Lypie for n € &F, & € U3 if n+ & € O, by the property of
the Chevalley basis. Hence, from Planche V in [Bou68|, we readily obtain the non-trivial
bracket relation among §_; and [§_», ;] as in (4.4) and (4.5) below up to signs.

We fix the signs of ys for 3 € &5, ®F,¥3 and ¥! as follows: First we choose the
orientation of y,, for simple roots by fixing the root vectors y; =y, € g_,. For £ € U3,
we fix the orientation by the following order;

Y¢y = Y3, Ygy = [y47y§1]a Yez = [927?!52]7 Yey = [ySayEQ]v Yes = [y57y§3]7
Yeo = [y67y€4]7 Yer = [y27 y&a]? Yes = [y47y§5]’ Yeo = [y67 yfs]? Yero = [y57 yfg]'

For n € @3, we fix the orientation by the following ;
(4.4) Yn; = U1, Ve, for 1=1,2,...,10.
Finally, for a € @5, we fix the orientation by the following;

Yo = [ynsvy&]’ Yap = [yWQ’y§1]7 Yoz = [ymoayfl]v Yoy, = [ymo’y&]’ Yas = [yﬂ107y§3]'

Then, for example, we calculate

Yo Veo = (W1, Ye,)s ve,) = [y, ve |, ve, ) = yng ve,]  for 1= p,q =10,

and

[Yns s Yea) = [Yns s [Yas Ve ]l = [[Yns> vals ver ] = w1, ves ], val, v,
= [[3/17 [y§57y4“7y51] = _[[y17y§8]7y§1] = _[?/77873/51]'

In the same way, by the repeated application of Jacobi identities, we obtain

Yar = [Uns: Yer] = —[Yns» Vea] = [ Yes|= [Yner el = — o Y] = Y v,
Yas = [Unos Yer| = —[Ynrs Ves] = e Y| = [Ynss Ve] = — U Y] = Y Yo,
(4.5) Yoz = Yo Yeu|= —[Ynr> Yeu] = Wne» Yes]= [Wns» Yeo] = — Y Ver = Wi Yewo)s
You = [Yno» Ye2)= —[Ynos Veu] = [Unss Yeo) = [Ynss Yes] = — s Yeo| = (Yo Yero s
Yas = Yo Yes|= —[Yno» Yes] = Wns» Yer|= W Yes] = — s Veo]= [Wns» Yero)-
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Then, by fixing the basis {ya, }7_; of S_s and {y¢, };2, of [_1, an element A = Z;il aj ad(yy,)
€5 9 C S 3®(I_1)" = M(5,10) is represented as the matrix of the following form;

ag —as Qg as —a9 0 0 ay 0 0
g —a7 Qg 0 0 as —as 0 ay 0
a0 0 0 —an Qg as —Aay 0 0 aq
0 a9 O —ag 0 ag 0 ag —as asy
0 0 a0 0 —AQg 0 as ay; —az as

Moreover, for y; € S_1, we have

Yo = (W1, Y1), Ves] = —[[v1-9e)s ves] = [[Y1, ves), Yeal
Yaz = Hylay&]vy&a] = _Hylayéz]>y£7] = Hylay&:s]’y&s]v
Yos = Y1, Ye |, Yero)= =1, veu], Yer | = (W1, Ves), eo ),
You = (Y1, Ye], Yero)= — W1, Yeu], Yeo| = (W1, Ves)» Yes
Yos = Y1, Yes |, Yero)= —[[W1, Yes ], Yeo| = W1, Ver), Yes |-

Thus S_; is embedded as the 1-dimensional subspace of S_3 ® S%((I_;)*) spanned by the
following quadratic form f

f(X, X) = (2128 — 2205 + 2374) Yo, + (0109 — D227 + T3%6) Yoy + (1710 — T4T7 + T5T6) Yas
+ (22210 — T4T9 + T678)Ya, + (T3T10 — T5To + T708)Yas-
for X = Z;il Tiye; € 1.
By the above matrix representation, we can embed S_5 as a subspace of S_3® ([_1)* =

M (5,10) and obtain the following first order system as the model equation whose symbol
coincides with this subspace:

Iy _ ya _ Jdys _891 _ _3y2 _ Y4 oy _ Oya _ dys
al’g 81‘9 3x10 ’ 8x5 81’7 81‘10 ’ 8x4 81’6 8x10 ’

(4.6) Oy Oys Oy Oy Oys _ 9ys Jya _ Oys _ Oy

' Oxs Ox~ Oxy’ Oxry  Oxg Oxy’ Oxrs Oxrs Oxs
Oy Oys _ Oy Iy Oya _ ys dya _ Oys _ ys

61’2 8I4 8ZE8 ’ 81'1 81'6 8[E7 ’ 81’1 6.134 815 ’
Y3 Y4 Jdys y; .
Or,  Oxy  Oxsz’ Oz ORHCTWISE,

where y1, ..., y5 are dependent variables and z1, ..., x19 are independent variables. More-

over, by a direct calculation, we see that the prolongation of the first order system (4.6)
is given by

Py . 9y o d*ys - Dy o d*ys
Or10xs  Or10r9 Ox10T19 OT100T9  OT1007T3
(4.7) _ Py Py Pys Py Oy
) 81‘381‘6 827381’4 83748277 0x48x9 61'901‘5
P3Py Py DPys P
T 150z 05019  Ox9017  Oxp0rs 078016
Py =0 otherwise.
O0x,0z,
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From the above expression of f, we observe that the above second order system is the
model equation of the 1-dimensional embedded subspace S_; in S_3®5%((I_;)*).Furthermore,
by a direct calculation, we see that the prolongation of this second order system (4.7) is
given by

Py

Ox,0x,0T,

Case (3) [(Ds, {ou}), @s, (Es, {71,72})].
For the gradation of type (Fs, {71,72}), we have

o ={0=12971},

(4.8) 0 for 1<i<5 1Zpq,r<10.

Of ={ p=12321 py=12221 p 11221 p 12211 o 11211
) ) ) ) b

_ 12210 _ 11210 _ 11111 __ 11110 __ 11100
Tle = 1 y N = 1 y g = 1 y T = 1 y Mo = 1 }7

o = w2y !
2
] :{ 51:00(1)007 52200%007 53:01%007 54:00%107 55:()1%107

Ce=00111 € — 01111 ¢ 01210 ¢ 01211 ¢ 01221}

1
\112{51:108007 €‘2:118007 ngllé()()7 C4:11(1)10’ 65:11(1)11}.

where % 195 9 gtands for the root a = Z?:1 a;y; € T (see Planche V in [Bou68)).
Thus we have p = 3,

m=g3bg 2091 and g1 =51®I,,
where g_3 = S_3, g2 = S_o, S_1 and [_; are spanned by the root spaces g_g for
B € ®F &F ¥l and V? respectively. Hence dimS_3 = 1, dimS_ 5 = dim[_; = 10 and
dim S_l = 5.

For @3, &7, ¥! and U2, we observe that ®3 = {#}, where 6 is the highest root, a+3 ¢ ®
for a, 3 € ®FTUSF UV (—¢¢ Dfor E € U2 (e Ul and that g+ & =0,m — & ¢ @,
G+E& gPandn +& ¢ Pifi # jforny € ®F and &, & € V2 (i,5 = 1,...,10). This
implies that [ya,ys] = 0 for a, 3 € &3 U DS U WL, [ye, ye] = £ycqe for € € U2 ¢ € UL, if
(+& € @ and that [ye,, ye,] = 0, [y, Ye,] = £0ijy0 forn; € 3, &,& € V2 (i,5 =1,...,10),
by the property of the Chevalley basis. Hence, from Planche V in [Bou68], we readily
obtain the non-trivial bracket relation among g_; and [§_o,(_1] as in (4.9) and (4.10)

below up to signs.
We fix the signs of ys for 3 € &5, ®F,¥? and ¥! as follows: First we choose the

orientation of y,, for simple roots by fixing the root vectors y; = y., € g_,,. For ( € Ul
we fix the orientation by the following order;

Yoo = Y1, Yo = [19379(1}7 Yz = [y47yC2]7 Yoo = [ySayC3]a Yes = [967944]'
For £ € U2, we fix the orientation by the following order;
Ye¢y = Y2, Yey = [y-ﬁu y4]7 Yez = [y&: ?J3]7 Yey = [yﬁz)y5]7 Yes = [y&,u y5]
Yes = [y§4>y6]7 Yer = [yfsv y6]? Yeg = [y§57y4]7 Yeo = [y§87y6]7 Yero = [y&)a yS]'
For n € @, we fix the orientation by the following order;
Ym = [3/(37?/510}7 Yno = [ng, y&lo]v Yns = [yC17y£10]7 Yna = _[y@?y&a]?
Yns = _[yCu y&s]» Yne = [wa y&s]’ Ynr = [yCN yfs]v Yns = [ndyE?]?
Yno = _[yClﬂy&;]? Yno = [y<17y£3]'
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Finally, for § € ®3, we fix the orientation by the following;
Yo = [ymou yflo]'

Then, for example, we calculate

[?/nw» yEm] = [ymo’ [yﬁga y5“ = [yéw [ymo’ y5]] = [?/,59, HyCU yf:s]v y5]]
= [y&a? [yCN [yisa ySH] = [yEm [y417y€5H = [y€97 _yng] = [%97 y&)]a
and obtain
(4.9) Wi Ye,) = 0iy0, [Uni-Um)) = [yes, e, =0 for 14,5 <10

Moreover we calculate as in

Wess Yer] = (s, Yeo)s Ve = [[Yar Yer ], ve) = [y [Wes v, v,
= [[[9473/55]73/6]?3/{2] = H_yfs7y6]7y§2] = _[yfgay@] = —Yny,

and obtain
= [[Yer» Yes)s Vero|= —Vers Yes)s veo) = [[Vers Yer)s el
:[[?/Cwyﬁz]?y{w]: —[Yeor veu], Yeo| = (Yo v, Yes
(4.10) = [[Yes» Yeu)s Vero|= —lWess Yeuls ver ) = [vess ves)s Vel
= [[Yes> Yer ), Yool = — Y, Veol, Yer ] = [[Yeu, Vs, Yo,
= [[Yes: Ver|s Yes) = —Veos Veo) Yes ) = Vs Ve, Yeal -

From (4.9), we have S_5 = V*, by fixing the base of S_3 = K and putting [_; = V.
Moreover, from (4.10), S_; is embedded as the 5-dimensional subspace of S%(V*) spanned
by the following quadratic forms fi, ..., fs;

[i(X, X) = 23210 — 2529 + 2778, fo( X, X) = 29210 — 2479 + 2678,
f3(X, X) = 21210 — 2477 + 576, fa(X, X) = m129 — 2277 + 376,
f5(X, X) = 2128 — 2075 + 374,
for X = S21° aye, € ;. Thus, by fixing the basis {ys} of S_3 and {ye,,...,¥e,} Of

(L1, an element A = > a;ad(y;,) € S_1 C S*(V*) = Sym(10) is represented as the
symmetric matix of the following form;

0 0 0 0 0 0 0 as ay as

0 0 0 0 —das 0 —Aay 0 0 a9
0 0 0 oas 0 a O 0 0 a
0 0 as 0 0 0 —das 0 —a9 0
0 —as 0 0 0 as 0 0 —a 0
0 0 Qy 0 as 0 0 (05} 0 0
0 —Qy 0 —das 0 0 0 ay 0 0
as 0 0 0 0 a9 aq 0 0 0
aa 0 0 —-ag —a; 0 0 0 0 O
as a9 aq 0 0 0 0 0 0 0

Hence the standard differential system (M (m), D) of type m in this case is given by

Dm:{w:w1:w2:"':w10:0}a
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where
w =dy — prdry — -+ — p1odTio,
w1 = dp1 + qsdxg + qadzg + g3drig,
w3 = dp3 + qsdxy + qudxe + qrdr0,
w5 = dps — qsdxe + gzdre — q1dxy,
wr = dpr — qadxs — qzdry + qrdus,

@y = dpa — gsdxrs — qudr7 + g2dT10,
@y = dpy + gsdrs — qzdry — qady,
we = dpe + qadxz + gzdrs + qodrs,
ws = dps + qsdx1 + qadre + qrdiy,

wy = dpg + qudx; — godrs — q1dx5 wip = dpio + gzdzy + qadxy + qrdxs.

Here (z1,...,%10,Y,P1;--->P10,q1, - - -, q5) is a coordinate system of M(m) = K2, Thus
the model equation of our typical symbol m =g 3®§ o ® g1 C €2([_1,K) is given by
>’y oy Dy ’y Py %y
8$381’10 N _69058909 N 8$78$87 81‘281’10 N _81'461'9 N alL'Gal‘g7
(4.11) 0%y _ 0%y _ 0%y 0%y _ 0%y _ 0%y
(99(:18&:10 a$48$€7 89[:5(93(;6’ 83718379 8x20x7 a$38$€67
Py = — Py = Oy Py =0 otherwise
81‘181’8 69528905 8$38$47 ém&vj ’

where y is dependent variable and xzy,..., 219 are independent variables. By a direct
calculation, we see that the prolongation of the second order system (4.11) is given by

Py
— =0 f
0x;0x;0x, o

Case (4) [(Es, {ae6}), @5, (E7, {76, 77})]-
For the gradation of type (E7, {76,77}), we have

(4.12) 1<4,4,k < 10.

OF ={ @ =012221 4, 112221, _ 122221
ap= 123221 4, = 123321 123221 4 — 123321
ag= 124321 g=134321 234321
®F ={ g =000011 5 000111, 001111, _ 001111
py= 0Ll 1Ll e 0Ll1L1 111111 111111
Moo= 012111 o= 112111 5 = 012211 4 — 122111
my= 112211 g = 122211 5 123211 0 123211 )
oF = wou w7
Po — g = 000010 g 000110 g _ 001110 ¢ _ 001110
Eg=011110 g 011110 g _ 111110 ¢ 111110

5_012110 éﬁ 112110
9 — 1 ) 10 — 1 )

— 122210
614_ 1

g 012210 5 __ 122110
11 — 1 ; 12 — 1 )

Gg= 112210 fi5= 123210 g — 123210 1
U7 = {y; = 000001}

where ™ @ 84 % 9% 97 gtands for the root a = Y., a;y; € ®F (see Planche VI in [Bou68]).
Thus we have p = 3,

) Y

m=g 3Dg2Dg and g1 =51dy,
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where g_3 = S_3, §_o = S_2, S_; and [_; are spanned by the root spaces g_g for § €
oL, dF, U™ and VO respectively. Hence dimS_3 = 10, dimS_, = diml_; = 16 and
dim S_l =1.

For 3, &3, U and ¥° we observe that « + 3 ¢ ® for o, 3 € &F UPF UV £ —v ¢
for £ € W8 v € U7 and that, if n + & € ®F for n € ®F, & € U5 then n — £ ¢ ®. This
implies that [y,,ys] = 0 for a, 3 € &3 U5 U7, [y, ye] = Fy,4¢ for £ € U6 4y € U7,
if v+ &€ ® and [y, ye] = Lypie for n € F,€ € VO if n+ & € ®, by the property of
the Chevalley basis. Hence, from Planche VI in [Bou68], we readily obtain the non-trivial
bracket relation among §_; and [§_o,[_;] as in (4.13) and (4.14) below up to signs.

We fix the signs of yz for 3 € ®F,®F, U7 and WS as follows: First we choose the
orientation of y,, for simple roots by fixing the root vectors y; = y,, € g_-,. For £ € ¥,
we fix the orientation by the following order;

Ye¢y = Ys, [yfl ) y5] Yez = [y&? y4] [y§3a y2]a
[y§37 y3]7 [y§5> ]? Yer = [y§57 ]7 [y§77 y2]7
[y§6>y4]> Yero = [yém ]7 Yeun = [9697 ]a Yero = [y6107y3]7
Ye13 — [y§117 yl]a Yera — [y£137 y3]7 Yers — [y£147 y4]7 Yero — [y§15’ yQ]'
For n € @3, we fix the orientation by the following ;
(4.13) Yny = (Y72 Ye, | for p=1,2,...,16.
Finally, for a € ®;, we fix the orientation by the following;
Yo = [yn11>y§1]7 Yoy = [yn137y§1]7 Yasz = [ymu y&l]’ Yoy = [y77157y§1}7
Yas = [yﬁl57y€2]7 Yag = [ynls?y£1]7 Yoy = [yﬁmv y£2]7 Yag = [yme’yﬁs}’

Yag = [ynw’yfs]a Yaro = [yn167y§7]7

Then, for example, we calculate

Yo Ve, = (W7, Ve, ), ve,) = [y, ve, |, ve,) = [yn, ve,]  for 1= p,q <16,

and

[yml?y&] = Hy7> yﬁll]? yfl] = Hy77 {yﬁgvyn’)]]v yEl] = H[y77 y€9]7 y5}7y€1]
= HyngvyS]vy&] = [yngv [957?/51“ = _[yng’yﬁz]'

In the same way, by the repeated application of Jacobi identities, we obtain

Yor = [Ymis Y&l = —[Uno» Yeu| = [Yne» e, —[Yns» e,
Yas = [Yms» Ye|= —[Ynmo» Yes| = [Ynes Ves] = —[Une Ye),
Yas = [Ynas Ye]= —[Ynmas Yeo| = [Yne: Ves] = — [ Ye):
Yau = [?/nlaay&]: [ymza 963] [ymoa y&s] [ynga?/&]v
(4.14) Yos = [Yms: Yes]= —[Ynias Yes) = [Yns» Yes) [ynmys7],
Yoo = [Yme» Ye]= —[Ynos Yeu] = Yo Yes] = —[Umo» Ye],
Yar = [Ynme: Yol = —[Ynias Yeu] = [Uns Yes] = [ymu Yes)
Yas = [Yme» Yes]= —[Yms: Yeu] = [Ymss Yeo| = =Y Yero):
Yao = [Ymes Yes)= —[Yms: Yes| = [Ynmas Yeo| = —[Ynias Yeu |,
Yaro = [Yme» Yer]= —[Unis» Ves] = [Ymas Yero]= — Yo Yero]-
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Then, by fixing the basis {ya, };2; of S_s and {y¢, };%, of [_1, an element A = Z p ajad(yy,)
€5 9 C S 3®(I1)* = M(10,16) is represented as the matrix of the followmg form;

a ag* Qg a5* CL4* as 0 0 CLQ* 0 aq 0 0 0 0 0
a3 (110* as a7* 0 0 a4* as 0 GQ* 0 0 aq 0 0 0
14 alg* 0 0 as CL?* aﬁ* as 0 0 0 G/Q* 0 aq 0 0
ais 0 ap* 0 ag O ag* 0 a7 a5 0 as* 0 0 a O
0 Q15 Cl14* 0 a13 0 an* 0 0 0 a7* 0 as ag* (05} 0
a1 0 0 &12* 0 aio 0 Gg* ag* ag 0 CL4* 0 0 0 aq
0 a1 0 CL14* 0 a3 0 CL11* 0 0 CLg* 0 ag a4* 0 (05}
0 0 16 CL15* 0 0 0 0 a13 (111* CL10* 0 (075} 0 CL4* as
0 0 0 0 16 (115* 0 0 14 0 CL12* an* 0 Qg CLG* as
0 0 0 0 0 0 16 CL15>|< 0 a14 0 alg* alg* a0 CLg* ay
where a;* = —a;. Moreover, for y; € S_1, we have

Yor = [[yr: v ], Yeu] = —llvrve.], vel = [y vesl, vl = —llyr-yeds ves ),

Yas = [[ZU?, y&l]’ y&s] Hy77 y€2]7 yﬁlo] [[ZU?; y§3]’ y&s] - _[[y7’ y54] 7]7

Yas = [[y7? y&l]? y£14] Hy77 y§2]> yfu] [[y77 y&;]? yfs] = _Hy77 yfa] 7]7

Yas = [[y7, y&]’ y&s] [[y7> yf:’,]? yfm] = [[y7’ yﬁs]’ y&o] [[y7’ y&?] 9]7

Yas = Hy7uy§2]7y€15] Hy77y£3]7y§14] = Hy77y§5]7y§13] [[y77y57]7y511]7

Yag = [[y% y&l]’ y&e] Hy7-y€4]7 yfm] = [[?J?, y&s]’ y&m] Hy7 y&s] 9]7

Yar = [[y77 y&]? y§16] Hy77 y&;]’ y§14] = [[y77 yﬁﬁ]? y§13] [[Z/?, yﬁs] y£11]7

Yag = [[y7’ y&s]’ y&m] Hy7> y€4]> y615] [[y7’ y&a]’ y&s] Hy% yfw] y§11]7

Yag = [[y77 yEs] y{w] [[y'?v y§6]7 y§15] - [[y77 yEQ]? y§14] [[y77 yﬁll] yElQ]?

Yoro = [[Y7: Yeo s Vers)= —[y7, Y| Yers) = (U7, Yero)s vera]= — Y7, Yero)s vers -

Thus S_; is embedded as the 1-dimensional subspace of S_3 ® S?((I_;)*) spanned by the
following quadratic form f

J(X, X) = (21211 — T2T9 + T3T6 — T475)Ya, + (L1713 — TaT10 + T3T8 — T477)Yay
+ (21214 — TaT12 + T5T8 — T6X7)Yay + (L1215 — T3T12 + T5T10 — T7T9)Ya,
+ (2215 — X3%14 + X513 — T7211)Yas T+ (L1016 — TaT12 + T6L10 — T8L9)Yag
+ (5E2$16 — T4T14 + TeX13 — $8$11)ya7 + ($39C16 — X415 + T9T13 — wloxll)yag
+ (25716 — T6T15 + ToT14 — T11812)Yay + (T7216 — TsT15 + T10T14 — T12713) Yoo
for X = ZJ LTy, € 1y,
By the above matrix representation, we can embed S_5 as a subspace of S_3® ([_;)* =

M (10, 16) and obtain the following first order system as the model equation whose symbol
coincides with this subspace:

(4.15)
Oyp Oyp dys Oys  Oye Oy Oy Oys _ Oys _ Oyr
8ZE11 B 8[E13 N 61'14 N 6.1715 N 61’167 al’g B 8$10 N 8x12 N 8115 N 81‘16’
Oy Oy Oya _ Oys _ Oys Oyr  Oya  Oys  Oyr  Oyg
8:66 N 8278 N _81‘12 N 8I14 N 8.1’167 8x5 N 8137 N 8%12 N 8x14 N 83515,
Oy Oys  Oys  Oys Oy Oy Oys  Oys  Oyr  Oyg
_81E4 B 8$8 N 81‘10 N 811313 N 09316’ 8_1'3 N 8ZE7 N 8$10 N 0:1713 N 017157
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Oy Jy3 dys  Oys _ Oyio dya Oy s dyr Oy

@(L‘4 aZL‘G 8[)39 N _(91711 N 87167 85(73 8x5 N 8[)39 _31711 N _8x15’
Oy Oys  Oys _ Oys Oy Oy Oys _ Oys _ Oys _ Oy
6:1;2 (9%7 8338 856'13 aSL’14 ’ 81’2 (9.%5 81’6 8:611 81'14 ’
Oy Oys _ Oyr _ Oys _ Oyo Oys _ Oys _ Oys _ Oyo _ Oyo
81‘1 8x7 8278 61’10 83712 ’ 81‘2 81’3 81‘4 81’11 8%13 ’
Oy Oys _ Oyr _ Oys Oy Oys _ Oys _ Oyr _ Oy _ Iy
81’1 8x5 8x6 al‘g 8x12 ’ 8x1 81’3 81‘4 8x9 81’10 ’
Oys _Oys _ Oys _ Oyo _ Oyo Oys _ Oyr _ Jys _ Oys _ Oyno
oxy  Oxy 0z, Oxe Oxg’ Oxry Oxy Oxs Ors Oxg’
Oy =0 otherwise,
Oz,
where y1, . . ., y10 are dependent variables and x4, . . ., z16 are independent variables. More-

over, by a direct calculation, we see that the prolongation of the first order system (4.15)
is given by

Py Py Pys Py Pys  Dyr
8I18$11 N 8I18$13 - 8I18$14 - 81183715 - 81183716 - 81168ZE2
Py Py Py Pys . Py PPy
8x168x3 8x168x5 81‘168357 81'7(9.1'11 83378.%9 81'78336
Py Py Pyr Pys Py Dy
_6$78[E4 N _61’461’12 N _8ZE48{L‘14 N _8x48m15 N _8x46m5 B 8x58x8
(116) — Pys _ Pys Py Pys Py Oy
81'581'10 81'581'13 8x138x6 8x138x9 81'13(93712 81'128.1'11
Py Py Pys Py Py Dy
B _6$128[E3 N _61’1281‘2 N 6.17261'15 N _8ZE285L‘10 N _89028909 n _8x98x8’
Py Oy Py Oz OPys Oy
N 81'98:(;14 N _81'14(9373 N 81'14(93710 N _81'108.1'11 N 61'108376 N _8$685C15
_ Py - ys _ yr _ Y10
N 8x68x3 N 6$38$8 B _890863711 N _613861’157
0y .
=0 otherwise.
O0x,0x,

From the above expression of f, we observe that the above second order system is the
model equation of the 1-dimensional embedded subspace S_; in S_3®52((I_;)*).Furthermore,
by a direct calculation, we see that the prolongation of this second order system (4.16) is
given by

O3y,
=0 for 1<i<10, 1< p,qr=<16.

4.1 S L —
(4.17) 0x,0x,0x,

Case (5) [(Es, {a1}), s, (E7,{71,77})].
For the gradation of type (E7, {71,77}), we have
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of = {0=234 321 ),

+ __ 134321 124321 123321 123321
@2_{ m = 2 ) e = 2 ) n3 = 2 ) Ny = 1 )
__ 123221 __ 123221 __ 123211 __ 123211
5 = 2 o Tle = 1 y = 2 T8 = 1 )
122221 122211 112221 112211
Ny = 1 T 1 Tt = 1 y T = 1 )
__ 122111 __ 112111 __ 111111 __ 111111
s = il y  Tha = 1 y Ts = 1 y e = 0 }a
o = YLy
1 _ _ 100000 _ 110000 _ 111000 __ 111000
\IJ_{ fl_ 0 ) 52_ 0 ) 53_ 0 ) 54_ 1 )
5_111100 5_111100 5_111110 5_111110
5 — 0 ) 6 — 1 ) 7T — 0 ) 8 — 1 ;
5_112100 é‘ __ 112110 6 __122100 5 __ 122110
9 — 1 ) 10 — 1 ) 11 — 1 9 12 — 1 3
112210 122210 123210 123210
513_ 1 ) §14_ 1 ) 515_ 1 9 516_ 2 }7
T _ 000001 _ 000011 _ 000111
\Ij_{ Cl_ 0 ) CQ_ 0 ) §3_ 0 ;
_ 001111 _ 011111 _ 001111 _ 011111
C4_ 0 ) CS_ 0 ; Cﬁ_ 1 ) C7_ 1 )
012111 012211 012221
CS_ 1 ) §9_ 1 ) CIO_ 1 }7

where @19 24959 97 stands for the root a = 3.1_, a;7; € ®F (see Planche VI in [Bou68s]).
Thus we have p = 3,

m=g 3092 g g1 =S @I,

where g5 = S_3, g2 = S_2, S_1 and [_; are spanned by the root spaces g_g for
B € ®F ®F U7 and U! respectively. Hence dimS_3 = 1, dimS_» = dim[_; = 16 and
dim S_; = 10.

For @, &5, U7 and W', we observe that ®3 = {6}, where @ is the highest root, a+3 ¢ ®
for o, € T UP; UV (¢ D for E € U (€ U7 and that n; +& =0, m, — & ¢ @,
G+E& g Pandn +& ¢ Pifi #jforny € D) and &, & € U2 (i,5 = 1,...,16). This
implies that [ya,ys] = 0 for a, 3 € &3 U DS UV, [y¢, ye] = £ycqe for € € U2 ¢ € U7, if
(+& € ® and that [ye,, ye,] = 0, [y, Ye,] = £0ijy0 forn; € 3, &,& € V2 (i,5 =1,...,16),
by the property of the Chevalley basis. Hence, from Planche VI in [Bou68], we readily
obtain the non-trivial bracket relation among g_; and [g_s, (1] as in (4.18) and (4.19)
below up to signs.

We fix the signs of ys for 3 € &5, ®F, 07 and ¥! as follows: First we choose the
orientation of y,, for simple roots by fixing the root vectors y; = y,, € g_,. For ¢ € ¥,
we fix the orientation by the following order;

and

Yo, = Y, Y¢o = [3/673/@]7 Yz = [y57yC2]7 Y¢ey = [y4uyC3]7 Y¢s = [y373/44]7
Y = [y27yC4]a Y&z = [yQ’ st]’ Yz = [y47yC7]7 Yoo = [y5’ st]7 Y¢io = [yﬁ’ ng]-
For £ € !, we fix the orientation by the following order;
Ye, = Y1, Ye, = [Yer» v3l, Yes = [Yerr Yal, = [Yes» Yol
Yes = [y§3> y5]> [9557 y2]7 [9657 y6] [yrfm y2]7
Yeg = [y£67 y4]7 Yero — [yfga yﬁ]’ Yeu — [yﬁg’ ]7 Y&, = [yﬁn’yG]?
Yer13 = [y&ov y5]7 Yera = [y&s ) y3]> Yer5 = [y§14> y4]> Yero = [y&s? y2]'
For n € @5, we fix the orientation by the following order;
Ym = _[stvyEw]’ Yna _[yC4v yflb‘]’ Yns = _[yC3v y&w]’ Yns = [yC37y§15]>
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Yns = _[yC27 y&e]v Yne = [yCQ’ y£15]7 Ynr = _[yCU yfla]a Yns = [y417y§15]7
Yno = _[yC27y§14]7 Ynio = _[y§17y£14]7 Y = [yCza y&g]a Ynia = [yC17y§13]7
Yms = [yCU y&m]» Yma = _[yCU yfm]’ Yms = [yCu y§8]7 Yme = _[yCU y§7]'

Finally, for § € ®3, we fix the orientation by the following;

Yo = [ymm yfm]'

Then, for example, we calculate

[yTIlG’ y£16] = [_[yC17y£7]7 y€16] - [_[yCU y&m]’ y§7] - [ym? yﬁ?]'

and obtain

(4.18) (Yo s Ye) = Opqlo, Yy Ung) = We, Ye,) =0 for 1 =p,q=16.

Moreover we calculate as in

[yC37y£12] = Hyf)?y@]?y&z] = Hy5>y£12]ay@] = [y(fza [y§127y5]] = [y427y§14] = —YUng>

and obtain
[y, vee ], Yero) = [Wers veul, Yers] = —ller Yewos ver]= (e, Ve, Yl
Yo = — Yo Yes)s Vers) = [[Yeos Ves)s Yers] = — Ve Yool Yera) = [[Veos Yern ] vers ]
Yo = —[[Ycos Yes| vers] = (e Yeul vers) = —[[Vess veo], Y] = [[Wess Verols ven ),
Yo = —[Yeus Yeuls Vers) = [[Yeus veuls Vel = —Wen Yeo)s Yers) = [Weas Yesls vers ]
(419)  yo = —[Yes Ye | vers) = [[Wes Yeuls vers] = — Vs ves), Yero] = [Yes vesl, v,
Yo = —[[Ycs, Ye | Veus| = [[Weor Yeals vera] = —[Yco» Yes | vera] = [[veos ver] ven |,
Yo = —[[Yers veu | vers] = [[Yers Yes | vers] = —[ver ves)s Yewo) = [ver s ver], v,
Yo = — Ve, Ye | Veru] = v Yeuls vers] = — Yo Yes | ves] = [[Wess veo, Yer
Yo = —[[Yeo, Ye | Vero| = (Vo Yeuls vero) = — Yo Yeo| vee] = [[weo: veu ]
Yo = —[[Yeror Yer]s Yeu 1= [Weros Veals Yool = —[[Ycio» Yeu | ves] = [Weros veus ves)-

From (4.18), we have S_5 = V*, by fixing the base of S_3 = K and putting [_; = V.
Moreover, from (4.19), S_; is embedded as the 10-dimensional subspace of S?(V*) spanned
by the following quadratic forms fi,..., fio;

[i(X) = —a7216 + 23215 — T10%1a + T12%13,  fo(X) = —25216 + TeX15 — ToT1a + T11213,
[3(X) = —w3216 + 04215 — ToT12 + T10711,  fa(X) = —TaT16 + TaT14 — TeT12 + TsT11,
[5(X) = —x1716 + 24713 — TeT10 + Ty, f6(X) = —29215 + 23714 — 25212 + 27211,
[7(X) = —@1215 + 23213 — T5T10 + X729, fs(X) = —z1214 + 2213 — X528 + X627,
Jo(X) = —x1715 + 22719 — T3T8 + T4T7, J10(X) = —21211 + 1279 — X376 + T4T5.

for X = 321° aye, € [y, Thus, by fixing the basis {yg} of S_5 and {ye,,...,¥%e,} of
[y, an element A = 3.0 a;ad(y;,) € S_1 C S*(V*) = Sym(16) is represented as the
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symmetric matix of the following form:;

0 0 0 0 0 0 0 0 0 0 aip Qg 0 as ay as
0 0 0 0 0 0 0 0 ap" a* 0 0 ag" 0 ag a4
0 0 0 0 0 ap 0 a O 0 0 0 a7 a* 0 a3
0 0 0 0 Cllo* 0 ag* 0 0 0 0 0 (I5* 0,4* ag* 0
0 0 0 a0 0 0 0 as 0 ay 0 Qg 0 0 0 (05}
0 0 ayp O 0 0 ag™ O 0 a 0 a 0 0 a™ O
0 0 0 a* 0 ag* 0 0O a* 0 a 0 O 0 0 a
0 0 a O as 0 0 0 a* 0 a* O 0O 0 a1 O
0 (110* 0 0 0 0 CL7* CL5>‘< 0 0 0 as 0 a9 0 0
0 ag* 0 0 ay as 0 0 0 0 CL3* 0 0 aq 0 0
Q10 0 0 0 0 0 ag* CL4* 0 ag* 0 0 CLQ* 0 0 0
ag 0 0 0 a a 0O O a 0 O O a* 0 0 O
0 ag™ a7 a5 O 0O 0 0 0 0 a* u* 0 0 0 O
ag 0 ag* a4 O o 0 0 a a O O O O 0 O
a; ag 0 a3® 0 a2 0 a 0 o o0 o0 0 0 0 O
as Qy as 0 (05} 0 aq 0 0 0 0 0 0 0 0 0
where a;* = —a;. Hence the standard differential system (M (m), Dy,) of type m in this

case is given by

where

Here (z1, ..

@ =dy — prdry — - — p1edTis,

w1 = dp1 + qrodr1y + qodr12 + gedr1s + qrdrys + gsdxss,
@y = dpz — qrodxg — qodx10 — q8dr13 + gedr15 + qadx 16,
w3 = dpz + quodzs + qodrs — grdr13 — gedr14 + g3dri6,
@y = dps — qrodrs — qodx7 — qsdr13 — qudr14 — g3dzys,
w5 = dps — qrodrs + qsdxs + q7dx10 + gedx12 + G2d1,
we = dpe + qrodrs — gsdx7 + gsdx10 + qadx12 — q2d15,
w7 = dp7 — qodzry — qsdre — Grdr9 — qsdr11 + q1dT16,
wg = dps + qodrs + gsdrs — qsdrg — qadz11 — q1dT15,
@y = dpg — qrodra — qrdx7 — qsdrs + q3dr12 + God14,
@10 = dp1o — qodx2 + qrdrs + qsdre — g3dz11 + q1dx14,
@11 = dpu1 + qrodry — gedrr — qudrs — q3drig — qady3,
w12 = dpia + qodx1 + gedrs + qudzs + gsdre — q1dr13,
w13 = dp13 — @sdry — qrdxs — gsdry — Gadr1y — 112,
@14 = dp14 + qsdr1 — gedr3z — qadxy + G2dx9 + q1dT10,
w15 = dp1s + qrdx1 + gedre — qzdry — Gadxe — qrdus,
wie = dpis + gsdx1 + qudxy + q3drs + godxs + qidxy.

TG, Yy Ply - -5 P16, Q15 - - - Q10) 18 @ coordinate system of M (m) = K*3. Thus

the model equation of our typical symbol m =g 3@ § o ® g_; C €*([_1,K) is given by

0%y 0%y 0%y 0%y

0x78$16 N _827882315 N 8271081‘14 N _81'1283313’
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0%y 0%y 0%y 0%y

8x58x16 n _81‘681‘15 n 8.1‘98.%‘14 n _8x118x13’
0%y _ 0%y _ 0%y _ 0%y
01’363316 833482315 833982312 6x108x11 ’
0%y _ 0%y _ 0%y _ 0%y
8x28x16 8.1‘48.%'14 8.1‘68.%‘12 8x88x11 ’
0%y _ 0%y _ 0%y _ 0%y
01’163316 833482313 833682310 893883:9’
2 2 2 2
(4.20) ov _ 9 _ Oy _ Oy
8x28x15 8.1‘38.%'14 8.1‘58.%‘12 81’781’11
0%y _ 0%y _ 0%y _ 0%y
0110715 0x30113  Ors50710 0x701q’
0%y _ 0%y _ 0%y _ 0%y
8x18xl4 8.1‘281'13 8.1‘58.%‘8 3x68x7’
0%y _ 0%y _ 0%y _ 0%y
0;1:163512 833283310 83338338 6$48$7 ’
0%y _ 0%y _ %y _ 0%y
8x18x11 8.1‘281'9 ax38x6 8x4ax5’
Py =0 otherwise
8$ial’j N .
where y is dependent variable and zq,...,x16 are independent variables. By a direct
calculation, we see that the prolongation of the second order system (4.20) is given by
3
(4.21) oy 0 for 1<4,j,k<16.

89518%8% B

5. EQUIVALENCE OF PARABOLIC GEOMETRIES

In this section, we will discuss about the equivalence of each parabolic geometry asso-
ciated with the differential equations of finite type explicitly described in §3 and §4.

In the following, we will first show a common property of the typical symbol m of type
(1,S). Here m = @, " | g, is a graded subalgebra of € ~'(V, W), which has the splitting
g1 =101®5, where V =1_; and W = S_,. In particular S, C W @ S**?(V*). Thus
we have the notion of the algebraic prolongation p(S,) of S,, which is defined by

p(Sy) =S, @V NW ® SHPH(V) for —p+1<p< L

We will show the following Proposition 5.1 concerning the property of the prolongations
of S, for the typical symbol m of type ([, 5).
Let g = EB;:_M g, be a pseudo-product GLA of type ([, 5).

Lemma 5.1. Let p be an integer with —pn+1<p < —1. If H'(m,g),41.-1 = 0, then the
algebraic prolongation p(S,) of S, is equal to Sp+1, where we put Sy = 0.

Proof. Since the fact S,+1 C p(S,) is clear, it is sufficient to prove that p(S,) C Sp4+1. Let ¢
be an element of p(S,). The space p(S,) can be considered as a subspace of Hom(I_;, S)).
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We define an element ¢ of C*(m, g),.1.—1 as follows:
PX) =p(X) (X ely), &(5)=0.
Then we have
9p(X1, Xp) = [X1, 0(Xs)] — [Xo, 0(Xy)] for Xy, Xy € 1.

Since ¢ € p(S,), we get dp = 0. Also since H'(m, g),.1,-1 = 0, there exits an element
s € Sp41 such that s = @. Hence p(S,) C Spi1. O

For a pseudo-product GLA g of type ([, S), we furthermore assume that the prolongation
g =P g, of (m, go) is a simple graded Lie algebra (SGLA) , where m = g_.

pEZ
Now we investigate the space H'(m,g), ;. Note that, from §, = g, for p < 0,
H'(m,g), 1 = H'(m,g), 1 for r < 1. Also we know that H'(m,g),  is isomorphic
to H'(I_1,9), as a go-module(see §5 in [YY02]). Let ¥ = {71,...,72} be a simple root
system of g and let # be the highest root of §. Assume that
(i) The SGLA g is of type (Yz, {74, });
(i) [y is a go-module with highest weight —~,;
(iii) S_; is a go-module with highest weight —~,.
By Kostant’s theorem, H'(m, g),._1 is an irreducible go-module with lowest weight o, (—0—
d) + 0, where we use the notations in [Yam93|. Let E be the characteristic element of the
GLA g; then
(0a(—=0 —6) +0)(E) = —p+ (0,7a) + 1.

Hence H'(m, g), 1 # 0 if and only if r = —p + (0,7v,) + 1. From the table in Theorem
2.1 (a) and [Bou68], we obtain the following lemma.

Lemma 5.2. Under the above assumptions, we have

(1) Assume that (YL, {Va,}) s one of the following types: (Apyni1, {71, Yer1}) (n 2
0,0 21), (Cop1,{71,7e41}) (€ 2 1). Then H*(m,g),_1 # 0 if and only if r = 0.

(2) Assume that (Yr,{va,V}) is one of the following types: (Aoyni1, {7, Yes1}) (1 <
i = 0,022,n20), (Bey1,{r72.m}) (£ 2 2), (Degr, {v2,m}) U2 4), (Dot {ve1.71})
(¢ 2 4), (Desr, A vera}) (62 3), (Do, {ve:vea}) (€2 3), (Do, {02, ve1})
(£23), (Es, {m,%}), (Be, {12:n}), (Er,{71.77}). Then H'(m,g),—1 # 0 if and
only if r = —1.

(3) Assume that (Yo, {va,}) is one of the following types: (Coi1, {Vi,Ve+1}) (1 <

[ g E,E z 2)7 (Df+1a{’7i)7€+1}) (2 <1< éag z 4)7 (E67{73771})7 (E77{767fy7}>-
Then H'(m,g), 1 # 0 if and only if r = —2.

By Lemmas 5.1 and 5.2, we get the following proposition.

Proposition 5.1. Under the above assumptions, we have
(1) Unless (Y, {Va,W}) 15 (Aetnsr, {11 7er1}) (n 2 0,6 2 1) or (Copr, {11, 7e41})
(¢ 2 1), the algebraic prolongation p(S_1) of S_1 is {0}.
(2) Assume that (Yo, {va,}) is one of the following types: (Coy1, {Vi,Ve+1}) (1 <

i £ 4,02 2), (D, {yinyen}) 2 <i < 6,02 4), (B, {13,m1}), (Er,{76,77}).
Then p(S—_2) = S—1 and p(S-1) = 0.

Actually we can check these properties by direct calculations in each cases in the pre-
vious sections. By these properties of the typical symbols, we can classify our parabolic
geometries into the following four groups.
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(A) The parabolic geometry associated with (Agini1, {71, Ve+1}) (n 2 0,¢ =2 1) is the
geometry of the pseudo-pojective systems of second order of bidegree (¢,n + 1), i.e. the
geometry of the second order equations of £ independent and n+ 1 dependent variables by
point transformations. The parabolic geometry associated with (Cpy1, {71, 7e41}) (€ 2 1)
is the geometry of the pseudo-projective systems of third order of bidegree (¢, 1), i.e. the
geometry of the third order equations of ¢ independent and 1 dependent variables by
contact transformations.

(B) The parabolic geometries associated with (Agipni1, {7i,ve11}) (2 = 4 lin 2
0), (Dot e t) (€2 4), (Deors {1,7601}) (€ 2 3), (Deos, {92 7em}) (€ = 3) and
(Es, {71,76}) are the contact geometries of finite type equations of the first order in the
following sense.

In this case © = 2 and the typical symbol m has the following description: m =
go®dg.y C EYV,W), where W = S 5 and V = [_;. Moreover g_; = V & S_; and
S 1 C W®V*. Let J¥(n,m) be the space of k-jets of n independent and m dependent
variables, where n = dim V' and m = dim W. We consider a submanifold R of J*(n,m)
such that 7} |zr: R — J°(n,m) is a submersion. Let D be the restriction to R of the
canonical systetem C! on J'(n,m) and RY C J2(n,m) be the first prolongation of
R (cf. §4.2 [Yam82]). We assume that p® : R — R is onto. This assumption is
equivalent to say that (R, D) has an (n-dimensional) integral element (transversal to the
fibre Ker(r} |r)«) at each point of R. Under this integrability condition, (R, D) is a
regular differential system of type m if and only if the symbols of this equation R are
isomorphic to S_; C W ® V* at each point of R (see §2.1 in [SYY97] for the precise
meaning of the isomorphism of the symbol). In this case, by (1) of Proposition 5.1,
integral elements of (R, D) are unique at each point of R so that pM RO - Risa
diffeomorphism. Thus (R, D) has the (almost) pseudo-product structure corresponding to
the splitting g1 = Ve&.S_;. In fact S_; corresponds to the fibre direction Ker(r} |g). and
V corresponds to the restriction to R(Y) of the canonical system C? on J%(n,m). Since § is
the prolongation of m, an isomorphism of (R, D) preserves the pseudo-product structure.
In particular an isomorphism of (R, D) preserves the projection n} |g: B — J%(n,m).
Hence a local isomorphism of (R, D) is the lift of a local point transformation of J°(n,m).

By Theorem 2.7 and 2.9 [Tan79] and Proposition 5.5 [Yam93], we observe that parabolic
geometries associated with (Apini1, {7i, Yer1}) B =i S0 —1,n 2 2),(Des1, {Ve, Yes1})
(¢ = 3) and (Fg, {71,76}) have no local invariants. Hence in these cases, (R, D), satisfying
the integrability condition, is always locally isomorphic to the model equation given in
Case (1), (8) of §3 or Case (1) of §4 respectively.

(C) The parabolic geometries associated with (Bei1, {72, 71}) (¢ 2 2), (Des1, {72, 71})
(¢ 2 4), (Der, {12, ve1}) (£ 2 3), (E6, {72, m}) and (E7, {71, 77}) are the contact geome-
tries of finite type equations of the second order in the following sense.

In this case p = 3 and the typical symbol m has the following description: m =
g 3Dg o®g_1 CC(V,W), where W =K, V =1[_; and dimV = n. Moreover we have
g2=V"g1=V®&S  and S; C S*(V*). In this case, we note that the standard
differential system (Mg, Dg) of type (Y, {7.}) is the standard contact manifold of type
Y7 (see §4 in [Yam93]).

We consider a submanifold R of J%(n, 1) such that 77 |g: R — J'(n, 1) is a submersion.
Let D be the restriction to R of the canonical systetem C? on J?(n,1) and RV c J3(n, 1)
be the first prolongation of R. We assume that p() : R — R is onto. Under this
integrability condition, (R, D) is a regular differential system of type m if and only if the
symbols of this equation R are isomorphic to S_; C S?*(V*) at each point of R. In this

<
>
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case, by (1) of Proposition 5.1, integral elements of (R, D) are unique at each point of R
so that pt) : RM — R is a diffeomorphism. Thus (R, D) has the (almost) pseudo-product
structure corresponding to the splitting gy = V & S_;. In fact S_; corresponds to the
fibre direction Ker(7? |z). and V corresponds to the restriction to R(Y) of the canonical
system C® on J?(n,1). Since § is the prolongation of m, an isomorphism of (R, D)
preserves the pseudo-product structure. In particular an isomorphism of (R, D) preserves
the projection 7% |g: R — J'(n,1) and 9D = (7%);'(C"). Hence a local isomorphism of
(R, D) is the lift of a local contact transformation of J'(n,1).

By Theorem 2.7 and 2.9 [Tan79] and Proposition 5.5 [Yam93], we observe that parabolic
geometries associated with (Dgy1, {72, 7e11}) (€ 2 3), (Fe, {72,71}) and (E7, {71, }) have
no local invariants. Hence in these cases, (R, D), satisfying the integrability condition, is
always locally isomorphic to the model equation given in Case (10) of §3 or Case (3), (5) of
§4 respectively. The rigidity of the parabolic geometry associated with (Dyi1, {V2, Yes1})
(¢ = 3) is already discussed in [YY02] in connection with the Pliicker embedding equations.

(D) The parabolic geometries associated with (Coy1, {7V, ve+1}) (1 < @ S 6,0 2 2),
(Deons (e }) (2 <1 < 6,62 4), (Ey, {13,71)) and (Br, {76, 77}) are the geometries of
finite type equations of the first order in the following sense.

In this case u = 3 and the typical symbol m has the following description: m = g_3 ®
g 2®g 1 C XV, W), where W =S5 gand V =[_;. Moreover g_o =S 5,9 1 =V®S_4,
S, CWeV* S, CW®S*V*) and dimS_» = dim V. In this case we first consider
a submanifold R of J'(n,m) such that 7} |r: R — J%n,m) is a submersion, where
n=dimV and m = dim W. Let D be the restriction to R of the canonical systetem C! on
J'(n,m) and R C J%(n,m) be the first prolongation of R. We assume that the symbols
of this equation R are isomorphic to S_o C W V™ at each point of R and also assume that
pM : RY — Risonto. Then (R, D) is a regular differential system of type h = g_o®g_1,
where g o = W and g 1 =V & S_5. Here the symbol algebra m is the negative part of
the simple graded Lie algebra of type (Yr,{7.}), i.e., of type (Cor1,{v:}) (2 =1 £ ),
(Des1,{vi}) (2 < i < 0), (Fs,{73}) and (FE7,{7}) respectively. Furthermore, by (2)
of Proposition 5.1, the symbols of this equation R are isomorphic to p(S_3) = S_; C
W®S2(V*). Let DU be the restriction to R of the canonical system C? on J?(n, m) and
R® c J3(n,m) be the prolongation of R"). We further assume that p® : R? — RM
is onto. Under these integrability conditions, (R, D)) becomes a regular differential
system of type m. Actually the set of n-dimensional integral elements of (R, D) forms a
bundle over R, which contains R(M) as an open dense subset such that D) coincides with
the canonical system induced by this Grassmanian construction (cf. §2 in [Yam82], §1 in
[Yam99]). Moreover, by (1) of Proposition 5.1, integral elements of (R, DM) are unique
at each point of RV so that p® : R® — R(W is a diffeomorphism. Thus (RM, DW)
has the (almost) pseudo-product structure corresponding to the splitting g1 = V @
S_1. In fact S_; corresponds to the fibre direction Ker(p(")), and V corresponds to the
restriction to R of the canonical system C* on J3(n, m). Since § is the prolongation of
m, an isomorphism of (R, DM) preserves the pseudo-product structure. In particular
an isomorphism of (RM, DM) preserves the projection p® : RM — R and 9D =
(p")71(D). Thus a local isomorphism of (R, D)) induces that of (R, D) and coincides
with the local lift of this isomorphism of (R, D). Hence the local equivalence of (R(Y), D)
is reducible to that of (R, D).

By Theorem 2.7 and 2.9 [Tan79] and Proposition 5.5 [Yam93], we observe that parabolic
geometries associated with (Cpi1, {Vi,7er1}) (2 <@ <€), (Dosr, {7, ver1}) (2 < i < £),
(Eg, {v3,7m}) and (E7, {76, v7}) have no local invariants. Hence in these cases, (R, D),
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satisfying the integrability conditions, is always locally isomorphic to the model equation
given in Case (3), (9) of §3 or Case (2), (4) of §4 respectively.
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