<table>
<thead>
<tr>
<th>Title</th>
<th>Invariant dynamical systems embedded in the N-vortex problem on a sphere with pole vortices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>SAKAJO, Takashi</td>
</tr>
<tr>
<td>Citation</td>
<td>Hokkaido University Preprint Series in Mathematics, 758, 1-20</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2005-11-04</td>
</tr>
<tr>
<td>DOI</td>
<td>10.14943/83908</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/69566</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>pre758.pdf</td>
</tr>
</tbody>
</table>

HOKKAIDO UNIVERSITY
Invariant dynamical systems embedded in the N-vortex problem on a sphere with pole vortices

Takashi SAKAJO
Department of Mathematics, Hokkaido University,
Kita 10 Nishi 8 Kita-ku, Sapporo Hokkaido 060-8610, JAPAN.
Tel: +81-11-706-4660, Fax: +81-11-727-3705,
E-mail: sakajo@math.sci.hokudai.ac.jp.

November 4, 2005

Abstract
We are concerned with the system of the N vortex points on a sphere with two fixed vortex points at the both poles. This article gives a reduction method of the system to invariant dynamical systems. It is accomplished by using the invariance of the system with respect to the shift and the pole reversal transformations, for which the polygonal ring configuration of the N vortex points at the line of latitude, called “N-ring”, remains unchanged. We prove that there exists the 2^p-dimensional invariant dynamical system reduced by the p-shift transformation for arbitrary factor p of N, and the p-shift invariant system is equivalent to the p-vortex points system generated by the averaged Hamiltonian on the sphere with the modified pole vortices. It is also shown that the system can be reduced by the pole reversal transformation when the pole vortices are identical. Since the reduced dynamical systems are defined by the linear combination of the eigenvectors obtained in the linear stability analysis for the N-ring[17], we obtain the inclusion structure among the invariant reduced dynamical systems, which allows us to decompose the system of the large vortex points into a collection of small reduced systems.

PACS: 47.32.Ct 47.20.Ky,05.45.-a
Keywords: Vortex points; Flow on a sphere; Reduction method; Invariant dynamical systems

1 Introduction
We consider the motion of the inviscid and incompressible flow on a sphere. Specifically, we focus on the motion of the vortex points, in which the vorticity
concentrates discretely. Since the strength of the vortex point, which is the circulation around the point, is conserved according to Kelvin’s theorem, the vortex point behaves like a material point, and it is advected by the velocity field that the other vortex points induce. The motion of the vortex points is used as one of the mathematical approximation models for the atmospheric phenomena on Earth, since its mathematical analysis is sometimes easy owing to its simplicity.

Now, let \((\Theta_m, \Psi_m)\) denote the position of the \(m\)th vortex point in the spherical coordinates. The equations of the \(N\)-vortex points with the identical strength \(\Gamma^{(N)} = 2\pi/N\) on the sphere are given by

\[
\begin{align*}
\dot{\Theta}_m &= -\frac{\Gamma^{(N)}}{4\pi} \sum_{j \neq m}^{N} \frac{\sin \Theta_j \sin(\Psi_m - \Psi_j)}{1 - \cos \gamma_{mj}} \equiv F_m, \\
\dot{\Psi}_m &= -\frac{\Gamma^{(N)}}{4\pi} \sum_{j \neq m}^{N} \frac{\cos \Theta_m \sin \Theta_j \cos(\Psi_m - \Psi_j) - \sin \Theta_m \cos \Theta_j}{1 - \cos \gamma_{mj}} \\
&\quad + \frac{\Gamma_1}{4\pi} \frac{1}{1 - \cos \Theta_m} - \frac{\Gamma_2}{4\pi} \frac{1}{1 + \cos \Theta_m} \equiv G_m, \quad m = 1, 2, \ldots, N,
\end{align*}
\]

in which \(\gamma_{mj}\) represents the central angle between the \(m\)th and the \(j\)th vortex points, and

\[
\cos \gamma_{mj} = \cos \Theta_m \cos \Theta_j + \sin \Theta_m \sin \Theta_j \cos(\Psi_m - \Psi_j).
\]

The last two forcing terms in the equation (2) represent the flow fields induced by the vortex points fixed at the both poles of the sphere. They are formally introduced in order to incorporate an effect of the rotation of the sphere locally. The strengths of the north and the south pole vortices are denoted by \(\Gamma_1\) and \(\Gamma_2\) respectively.

The equations (1) and (2) define the dynamical system in the \(2N\)-dimensional phase space \(\mathbb{P}_N \equiv [0, \pi]^N \times (\mathbb{R}/2\pi\mathbb{Z})^N\), which we rewrite in the following vector form:

\[
\frac{d\vec{x}}{dt} = \mathbf{F}(\vec{x}),
\]

where the map \(\mathbf{F} : \mathbb{P}_N \to \mathbb{R}^{2N}\) gives the vector field for the position \(\vec{x} \in \mathbb{P}_N\),

\[
\mathbf{F} : (\Theta_1, \ldots, \Theta_N, \Psi_1, \ldots, \Psi_N) \mapsto (F_1, \ldots, F_N, G_1, \ldots, G_N).
\]

We call the dynamical system the “\(N\)-vortex system” or the “\(N\)-vortex problem” with the identical strength. This is the Hamiltonian dynamical system\([7, 12]\), whose Hamiltonian is represented by

\[
H = -\frac{(\Gamma^{(N)})^2}{8\pi} \sum_{m=1}^{N} \sum_{j \neq m}^{N} \log(1 - \cos \gamma_{mj}) \\
- \frac{\Gamma_1 \Gamma^{(N)}}{4\pi} \sum_{m=1}^{N} \log(1 - \cos \Theta_m) - \frac{\Gamma_2 \Gamma^{(N)}}{4\pi} \sum_{m=1}^{N} \log(1 + \cos \Theta_m). \quad (3)
\]
Note that the system has the invariant quantity $\sum_{m=1}^{N} \cos \Theta_m$ due to the invariance of the Hamiltonian with respect to the rotation around the pole.

The N-vortex system attracts many researchers as a nonlinear Hamiltonian dynamical system[12]. For instance, the system of the three vortex points is integrable in the absence of the pole vortices and its motion was studied well[5, 6, 15]. Many relative fixed configurations of the N vortex points were systematically found[10, 11, 13]. Relative periodic orbits were also determined by the invariance of the Hamiltonian under the action of groups[9, 19]. In the meantime, when the N vortex points are spaced equally along the line of latitude, the polygonal ring configuration is called “N-ring”. The motion of the N-ring has been investigated in particular, since the ring configuration of the vortex structure is often observed in the numerical research of the atmospheric phenomena[4, 14, 16]; The linear and nonlinear stability analysis of the N-ring with and without the pole vortices were given[1, 2, 3, 8, 17]. The unstable motion of the perturbed N-ring was investigated[17, 18].

On the other hand, the N-vortex problem appears when the Euler equations are solved by the vortex method; Discretizing the vorticity region at the initial time with the collection of the vortex points, we investigate the evolution of the vortex points as an approximated solution of the Euler equation. In order to attain the accurate approximation, the number of the discretizing vortex points must be very large, but mathematical analysis of the many vortex-point system is difficult in general. Thus we sometimes reduce the N-vortex system to low-dimensional systems by assuming a certain symmetry, and then study them as embedded subsystems. For instance, in the papers [17] and [18], the N-vortex system was successfully reduced to the integrable two-dimensional systems, with which the existence of the periodic, the heteroclinic and the homoclinic orbits and their stability were investigated. Thus the reduced systems help us understand the dynamics of the large number of the N-vortex points.

In the article, we give a reduction method of the N-vortex system to an invariant dynamical system. Since the reduced system is characterized based on the linear stability analysis for the N-ring[17, 18], their results are reviewed in §2. In §3, we show that it is possible to reduced the system by considering the invariant property for a shift transformation. The reduced dynamical system exists for every factor p of N, and it is equivalent to the p-vortex system generated by the averaged Hamiltonian on the sphere with the modified pole vortices. In §4, we show that we reduce the N-vortex system by the invariance with respect to a pole reversal transformation when the strength of the north pole vortex is equivalent to that of the south pole vortex. We conclude and discuss the results in the last section.
2 Preliminary results

We give a brief summary of the linear stability analysis for the N-ring [17, 18], which is expressed by

$$\Theta_m = \theta_0, \quad \Psi_m = \frac{2\pi m}{N}, \quad m = 1, 2, \cdots, N.$$ \hspace{1cm} (4)

The N-ring is a relative equilibrium for the equations (1) and (2) rotating with the constant velocity $V_0(N)$ in the longitudinal direction,

$$V_0(N) = \frac{\Gamma_1 - \Gamma_2}{4\pi \sin^2 \theta_0} + \frac{(\Gamma_1 + \Gamma_2 + 2\pi) \cos \theta_0}{4\pi \sin^2 \theta_0} - \frac{1}{2N \sin^2 \theta_0} \cos \theta_0.$$ \hspace{1cm} (5)

When we add the small perturbations to the equilibrium,

$$\Theta_m(t) = \theta_0 + \epsilon \theta_m(t), \quad \Psi_m(t) = \frac{2\pi m}{N} + V_0(N)t + \epsilon \varphi_m(t), \quad \epsilon \ll 1,$$ \hspace{1cm} (6)

we obtain the linearized equations of $O(\epsilon)$ for the perturbations:

$$\dot{\theta}_m = \frac{1}{2N \sin \theta_0} \sum_{j \neq m}^{N} \frac{\varphi_m - \varphi_j}{1 - \cos \frac{2\pi}{N}(m - j)},$$ \hspace{1cm} (7)

$$\dot{\varphi}_m = \frac{1}{2N \sin^3 \theta_0} \sum_{j \neq m}^{N} \frac{\theta_m - \theta_j}{1 - \cos \frac{2\pi}{N}(m - j)} + B_N \theta_m.$$ \hspace{1cm} (8)

The parameter B_N is denoted by

$$B_N = \frac{1 + \cos^2 \theta_0}{2N \sin^3 \theta_0} - \frac{\kappa_1(1 + \cos^2 \theta_0)}{2 \sin^3 \theta_0} - \frac{\kappa_2 \cos \theta_0}{2 \sin^3 \theta_0},$$ \hspace{1cm} (9)

in which κ_1 and κ_2 are defined by

$$\kappa_1 = \frac{\Gamma_1 + \Gamma_2 + 2\pi}{2\pi}, \quad \kappa_2 = \frac{\Gamma_1 - \Gamma_2}{\pi}.$$ \hspace{1cm} (10)

Then, we have obtained the eigenvalues and their corresponding eigenvectors for the linearized equations (6) and (7).

Theorem 1. For $m = 0, 1, \cdots, N - 1$, the eigenvalues λ_m^\pm are represented by

$$\lambda_m^\pm = \pm \sqrt{\xi_m \eta_m},$$ \hspace{1cm} (11)

in which

$$\xi_m = \frac{m(N - m)}{2N \sin \theta_0}, \quad \eta_m = \frac{m(N - m)}{2N \sin^3 \theta_0} + B_N.$$ \hspace{1cm} (12)
Since \(\lambda_m^\pm = \lambda_{N-m}^\pm \) holds due to (9) and (10), we have \(\lambda_0^\pm = 0 \), the double eigenvalues \(\lambda_m^\pm \) for \(m = 1, \ldots, M - 1 \), and the simple eigenvalues \(\lambda_M^\pm \) for \(N = 2M \). On the other hand, when the number of the vortex points is odd, i.e. \(N = 2M + 1 \), we have the zero eigenvalues \(\lambda_0^\pm = 0 \) and the double eigenvalues \(\lambda_m^\pm \) for \(m = 1, \ldots, M \).

The following theorem provides us the explicit representation of the eigenvectors corresponding to the eigenvalues.

Theorem 2. The eigenvectors \(\vec{\phi}_m^\pm \) and \(\vec{\psi}_m^\pm \) corresponding to the eigenvalues \(\lambda_m^\pm \) for \(m = 0, \ldots, M \) are given by

\[
\vec{\psi}_m^\pm = \begin{bmatrix} \sqrt{\xi_m} \pm \sqrt{\eta_m} \cos \frac{2\pi}{N} m, \ldots, \sqrt{\xi_m} \pm \sqrt{\eta_m} \cos \frac{2\pi}{N} (N-1)m, \\
\pm \sqrt{\eta_m}, \pm \sqrt{\eta_m} \cos \frac{2\pi}{N} m, \ldots, \pm \sqrt{\eta_m} \cos \frac{2\pi}{N} (N-1)m \end{bmatrix}, \quad (11)
\]

\[
\vec{\phi}_m^\pm = \begin{bmatrix} 0, \sqrt{\xi_m} \sin \frac{2\pi}{N} m, \ldots, \sqrt{\xi_m} \sin \frac{2\pi}{N} (N-1)m, \\
0, \pm \sqrt{\eta_m} \sin \frac{2\pi}{N} m, \ldots, \pm \sqrt{\eta_m} \sin \frac{2\pi}{N} (N-1)m \end{bmatrix}. \quad (12)
\]

Furthermore, they are linearly independent.

Since the multiplicity of the eigenvalues \(\lambda_M^\pm \) for the even case is different from that for the odd case, we must note that the eigenvectors corresponding to \(\lambda_M^\pm \) are only \(\vec{\psi}_M^\pm \) for the even case, while they are \(\vec{\psi}_M^\pm \) and \(\vec{\phi}_M^\pm \) for the odd case. Now, we use these eigenvectors to characterize an invariant dynamical system embedded in the real phase space \(\mathbb{P}_N \). However, the eigenvectors (11) and (12) have the pure imaginary component \(\sqrt{\eta_m} \) when \(\eta_m < 0 \), while they are real vectors for \(\eta_m > 0 \). Thus noting that \(\vec{\phi}_m^- \) is the complex conjugate of \(\vec{\phi}_m^+ \) for the negative case, we newly define the real eigenvectors by \((\vec{\phi}_m^+ + \vec{\phi}_m^-)/2 \) and \((\vec{\phi}_m^+ - \vec{\phi}_m^-)/2i \). In the same way, we redefine the real eigenvectors with respect to \(\vec{\psi}_m^\pm \). Hence, regardless of the sign of \(\eta_m \), we can construct the linearly independent real eigenvectors. In what follows, for the sake of convenience, the redefined real eigenvectors are denoted by \(\vec{\phi}_m^\pm \) and \(\vec{\psi}_m^\pm \) for \(\eta_m < 0 \). On the other hand, since total number of the non-zero eigenvectors given in Theorem 2 is \(2N - 2 \), we need two more linearly independent vectors, which are given as follows [18].

Lemma 3. Let \(\zeta^\pm \) be defined by

\[
\zeta^\pm = \frac{1}{\sqrt{2N}} \begin{bmatrix} 1, 1, \ldots, 1, \pm 1, \pm 1, \ldots, \pm 1 \end{bmatrix}. \quad (13)
\]

Then, they satisfy \((\vec{\psi}_m^\pm, \zeta^\pm) = 0, (\vec{\phi}_m^\pm, \zeta^\pm) = 0 \) for all \(m \).
3 Reduction by the shift invariance

First of all, we define the p-shift transformation for the vortex points. For a given point $(\Theta_1, \cdots, \Theta_N, \Psi_1, \cdots, \Psi_N) \in \mathbb{P}_N$, the angular rotation by the degree $\frac{2\pi}{N}p$, $r_p : \mathbb{P}_N \to \mathbb{P}_N$, and the circular p-shift of variables $s_p : \mathbb{P}_N \to \mathbb{P}_N$ are given by

$$r_p, s_p : (\Theta_1, \cdots, \Theta_N, \Psi_1, \cdots, \Psi_N) \to (\Theta'_1, \cdots, \Theta'_N, \Psi'_1, \cdots, \Psi'_N),$$

in which

$$r_p : \Theta'_m = \Theta_m, \quad \Psi'_m = \Psi_m + \frac{2\pi}{N} p \mod 2\pi, \quad \text{for } m = 1, \ldots, N,$$

and

$$s_p : \begin{align*}
\Theta'_m &= \Theta_{N-p+m}, \\
\Psi'_m &= \Psi_{N-p+m}, \quad \text{for } m = 1, \ldots, p, \\
\Theta'_m &= \Theta_{m-p}, \\
\Psi'_m &= \Psi_{m-p}, \quad \text{for } m = p+1, \ldots, N.
\end{align*}$$

The p-shift transformation σ_p is defined by $\sigma_p = r_p \circ s_p$, which is specified by

$$\sigma_p : \begin{align*}
\Theta'_m &= \Theta_{N-p+m}, \\
\Psi'_m &= \Psi_{N-p+m} + \frac{2\pi}{N} p, \quad \text{for } m = 1, \ldots, p, \\
\Theta'_m &= \Theta_{m-p}, \\
\Psi'_m &= \Psi_{m-p} + \frac{2\pi}{N} p, \quad \text{for } m = p+1, \ldots, N.
\end{align*} \quad (14)$$

On the other hand, we also introduce the circular p-shift map for the vector field,

$$\Sigma_p : (F_1, \cdots, F_N, G_1, \cdots, G_N) \mapsto (F'_1, \cdots, F'_N, G'_1, \cdots, G'_N),$$

in which

$$\Sigma_p : \begin{align*}
F'_m &= F_{N-p+m}, \\
G'_m &= G_{N-p+m}, \quad \text{for } m = 1, \ldots, p, \\
F'_m &= F_{m-p}, \\
G'_m &= G_{m-p}, \quad \text{for } m = p+1, \ldots, N.
\end{align*} \quad (15)$$

Then we have the following lemma.

Lemma 4. For $\bar{x} \in \mathbb{P}_N$, $\Sigma_p \mathbb{F}(\bar{x}) = \mathbb{F}(\sigma_p \bar{x})$.

Proof: For the sake of convenience, we use the following notations.

$$f(\Theta_m, \Theta_j, \Psi_m - \Psi_j) = \frac{\sin \Theta_j \sin(\Psi_m - \Psi_j)}{1 - \cos \gamma_{mj}},$$

$$g(\Theta_m, \Theta_j, \Psi_m - \Psi_j) = \frac{\cos \Theta_m \sin \Theta_j \cos(\Psi_m - \Psi_j) - \sin \Theta_m \cos \Theta_j}{1 - \cos \gamma_{mj}}.$$
For \(m = 1, \ldots, p \), it follows from (14) that

\[
\sum_{j \neq m}^{N} f(\Theta_{m}', \Theta_{j}', \Psi_{m}' - \Psi_{j}') = \sum_{j \neq m}^{p} f(\Theta_{m}', \Theta_{j}', \Psi_{m}' - \Psi_{j}') + \sum_{j=p+1}^{N} f(\Theta_{m}', \Theta_{j}', \Psi_{m}' - \Psi_{j}')
\]

\[
= \sum_{j \neq m}^{p} f(\Theta_{N-p+m}', \Theta_{N-p+j}', \Psi_{N-p+m}' - \Psi_{N-p+j}') + \sum_{j=p+1}^{N} f(\Theta_{N-p+m}', \Theta_{j-p}', \Psi_{N-p+m}' - \Psi_{j-p}')
\]

\[
= \sum_{j' \neq N-p+m}^{N} f(\Theta_{N-p+m}', \Theta_{j}', \Psi_{N-p+m}' - \Psi_{j'}) + \sum_{j'=1}^{N-p} f(\Theta_{N-p+m}', \Theta_{j}', \Psi_{N-p+m}' - \Psi_{j'})
\]

\[
= \sum_{j' \neq N-p+m}^{N} f(\Theta_{N-p+m}', \Theta_{j}', \Psi_{N-p+m}' - \Psi_{j'}).
\]

In the third equality, we change the summation variable \(j' = N - p + j \) in the first summation, and \(j' = j - p \) in the second summation. Hence, we have

\[
F_{m}(\sigma_{p}\bar{x}) = -\frac{\Gamma(N)}{4\pi} \sum_{j \neq m}^{N} f(\Theta_{m}', \Theta_{j}', \Psi_{m}' - \Psi_{j}')
\]

\[
= -\frac{\Gamma(N)}{4\pi} \sum_{j \neq N-p+m}^{N} f(\Theta_{N-p+m}', \Theta_{j}, \Psi_{N-p+m}' - \Psi_{j}) = F_{N-p+m}(\bar{x}).
\]

Regarding \(G_{m} \) for \(m = 1, \ldots, p \), since

\[
\sum_{j \neq m}^{N} g(\Theta_{m}', \Theta_{j}', \Psi_{m}' - \Psi_{j}') = \sum_{j \neq m}^{p} g(\Theta_{m}', \Theta_{j}', \Psi_{m}' - \Psi_{j}') + \sum_{j=p+1}^{N} g(\Theta_{m}', \Theta_{j}', \Psi_{m}' - \Psi_{j}')
\]

\[
= \sum_{j \neq m}^{p} g(\Theta_{N-p+m}', \Theta_{N-p+j}', \Psi_{N-p+m}' - \Psi_{N-p+j}') + \sum_{j=p+1}^{N} g(\Theta_{N-p+m}', \Theta_{j-p}', \Psi_{N-p+m}' - \Psi_{j-p}')
\]

\[
= \sum_{j' \neq N-p+m}^{N} g(\Theta_{N-p+m}', \Theta_{j}', \Psi_{N-p+m}' - \Psi_{j'}) + \sum_{j'=1}^{N-p} g(\Theta_{N-p+m}', \Theta_{j}', \Psi_{N-p+m}' - \Psi_{j'})
\]

\[
= \sum_{j' \neq N-p+m}^{N} g(\Theta_{N-p+m}', \Theta_{j}', \Psi_{N-p+m}' - \Psi_{j'}),
\]
we obtain

\[G_m(\sigma_p \vec{x}) = -\frac{\Gamma(N)}{4\pi \sin \Theta_m} \sum_{j \neq m}^N g(\Theta'_m, \Theta'_j, \Psi'_m - \Psi'_j) \]

\[+ \frac{\Gamma_1}{4\pi} \frac{1}{1 - \cos \Theta'_m} - \frac{\Gamma_2}{4\pi} \frac{1}{1 + \cos \Theta'_m} \]

\[= -\frac{\Gamma(N)}{4\pi \sin \Theta_{N-p+m}} \sum_{j \neq N-p+m} g(\Theta_{N-p+m}, \Theta, \Psi_{N-p+m} - \Psi) \]

\[- \frac{\Gamma_1}{4\pi} \frac{1}{1 - \cos \Theta_{N-p+m}} - \frac{\Gamma_2}{4\pi} \frac{1}{1 + \cos \Theta_{N-p+m}} = G_{N-p+m}(\vec{x}). \]

In the similar manner, we show the relations \(F_m(\sigma_p \vec{x}) = F_{m-p}(\vec{x}) \) and \(G_m(\sigma_p \vec{x}) = G_{m-p}(\vec{x}) \) for \(m = p + 1, \ldots, N \). \[\square \]

The next proposition claims that the \(\sigma_p \) invariance persists for all the time when it holds at the initial moment.

Proposition 5. Let \(N = pq \), \((p, q \in \mathbb{N})\). If \(\vec{x} \in \mathbb{P}_N \) is \(\sigma_p \) invariant at the initial time, i.e. \(\sigma_p \vec{x}(0) = \vec{x}(0) \), then \(\sigma_p \vec{x}(t) = \vec{x}(t) \) for \(t \geq 0 \).

Proof. Since \(N = pq \) and \(\sigma_p \vec{x}(0) = \vec{x}(0) \), we have \(\sigma_p^k \vec{x}(0) = \vec{x}(0) \) for \(k = 0, \ldots, q - 1 \), which is equivalently expressed by

\[\Theta_{kp+m}(0) = \Theta_m(0), \quad \Psi_{kp+m}(0) = \Psi_m(0) + \frac{2\pi}{N} kp = \Psi_m(0) + \frac{2\pi}{q} k, \quad (16) \]

for \(k = 0, \ldots, q - 1 \) and \(p = 1, \ldots, m \).

On the other hand, when \(\vec{x} \) is \(\sigma_p \) invariant, it follows from Lemma 4 that \(\Sigma_p \mathbb{F}(\vec{x}) = \mathbb{F}(\sigma_p \vec{x}) = \mathbb{F}(\vec{x}) \). In other words, \(F_{N-p+m} = F_m, \quad G_{N-p+m} = G_m \) for \(m = 1, \ldots, p \) and \(F_{m-p} = F_m, \quad G_{m-p} = G_m \) for \(m = p + 1, \ldots, N \). Hence, due to \(N = pq \), we have

\[\dot{\Theta}_{kp+m} - \dot{\Theta}_m = F_{kp+m} - F_m = 0, \quad \dot{\Psi}_{kp+m} - \dot{\Psi}_m = G_{kp+m} - G_m = 0, \]

for \(k = 0, \ldots, q - 1 \) and \(m = 1, \ldots, p \). Hence, if \(\vec{x} \) satisfies the initial condition (16), then we obtain

\[\Theta_{kp+m}(t) = \Theta_m(t), \quad \Psi_{kp+m}(t) = \Psi_m(t) + \frac{2\pi}{q} k, \quad (17) \]

for \(k = 0, \ldots, q - 1 \) and \(m = 1, \ldots, p \), which indicates that the \(\vec{x}(t) \) is invariant with respect to \(\sigma_p \) for all the time. \[\square \]

The relation (17) indicates that the motion of the vortex points \((\Theta_{kp+m}, \Psi_{kp+m})\) for \(k = 1, \ldots, q - 1 \) are automatically determined by that of the vortex point
In other words, the N vortex points are divided into the q clusters of the p vortex points. Therefore, we expect that the σ_p invariant N-vortex system defines the $2p$-dimensional dynamical system embedded in \mathbb{P}_N. However, Proposition 5 just claims that if there exists a σ_p invariant point, then the evolution starting from the point remains σ_p invariant. Thus, we need to show that there really exists the $2p$-dimensional σ_p invariant subspace of \mathbb{P}_N, in which the reduced system is defined. Here, we use the linearly independent real eigenvectors $\vec{\psi}_{m\pm}^+, \vec{\phi}_{m\pm}^+$ and $\vec{\zeta}^\pm$ in order to characterize the σ_p invariant subspace. We need the following lemma for the purpose.

Lemma 6. Let $N = pq$, $(p, q \in \mathbb{N})$. The eigenvectors $\vec{\psi}_{kq}^\pm$ and $\vec{\phi}_{kq}^\pm$ for $p \leq kq \leq M$, and $\vec{\zeta}^\pm$ are invariant with respect to s_p. Moreover, the number of the s_p invariant eigenvectors is $2p$.

Proof. First we prove the s_p invariance of the eigenvectors. It is obvious that the vectors $\vec{\zeta}^\pm$ is s_p invariant. The eigenvectors $\vec{\psi}_{kq}^\pm$ and $\vec{\phi}_{kq}^\pm$ are also s_p invariant, since the eigenvectors are expressed by (11) and (12), and

$$
\begin{align*}
\cos \frac{2\pi}{N}(k+j)mq &= \cos \frac{2\pi}{N}jmq, \\
\sin \frac{2\pi}{N}(kp+j)m &= \sin \frac{2\pi}{N}jmq,
\end{align*}
$$

hold for m, k and $j \in \mathbb{Z}$ due to $N = pq$.

Next we show the number of the s_p invariant eigenvectors is $2p$ by considering the following three cases separately; First, when $N = 2M$ and $p = 2p'$, then q is a factor of M, i.e. $p'q = M$. Hence, the eigenvectors $\vec{\psi}_{M}^\pm$ are s_p invariant. Thus, the $2p$ eigenvectors $\vec{\psi}_{kq}^\pm$ for $k = 1, \ldots, p'$, $\vec{\phi}_{kq}^\pm$ for $k = 1, \ldots, p' - 1$ and $\vec{\zeta}^\pm$ are s_p invariant. Second, when $N = 2M$ and $p = 2p' + 1$, since $\vec{\psi}_{M}^\pm$ are no longer s_p invariant, the number of the s_p invariant eigenvectors is

$$
4 \left[\frac{M}{q} \right] + 2 = 4 \left[p' + \frac{1}{2} \right] + 2 = 4p' + 2 = 2p,
$$

where the symbol $\left[x \right]$ denotes the maximum integer less than or equals x. Finally, when $N = 2M + 1$, since p must be odd, namely $p = 2p' + 1$. So the number of the s_p invariant eigenvectors is

$$
4 \left[\frac{M}{q} \right] + 2 = 4 \left[p' + \frac{1}{2} - \frac{1}{2q} \right] + 2 = 4p' + 2 = 2p. \quad \Box
$$

It follows from Lemma 6 that the σ_p invariant subspace of \mathbb{P}_N is represented by the linear combination of the s_p invariant eigenvectors.

Proposition 7. Let $N = pq$, $(p, q \in \mathbb{N})$. Then, the σ_p invariant subspace of \mathbb{P}_N, say $\mathbb{P}_N^{(p)}$, is given by

$$
\bar{x} = \bar{x}_0 + \sum_k \left(a_k^+ \vec{\psi}_{kq}^+ + a_k^- \vec{\psi}_{kq}^- + b_k^+ \vec{\phi}_{kq}^+ + b_k^- \vec{\phi}_{kq}^- \right) + c^+ \vec{\zeta}^+ + c^- \vec{\zeta}^-,
$$
in which \(\vec{x}_0 = (\theta_0, \theta_0, \cdots, \theta_0, 0, \frac{2\pi}{N}, \cdots, \frac{2\pi}{N}(N-1)) \) and \(a_k^+, b_k^+, c^\pm \) are real coefficients.

Proof. We note that the transformation \(\sigma_p \) is expressed by the following form,

\[
\sigma_p \vec{x} = \left(0, \cdots, 0, \frac{2\pi}{N}p, \cdots, \frac{2\pi}{N}p\right) + s_p \vec{x}.
\]

Since \(\sigma_p \vec{x}_0 = \vec{x}_0 \) and Lemma 6, we have

\[
\sigma_p \vec{x} = \left(0, \cdots, 0, \frac{2\pi}{N}p, \cdots, \frac{2\pi}{N}p\right) + s_p \vec{x}_0
\]

\[
+ s_p \left(\sum_k \left(a_k^+ \bar{\psi}_{kq} + a_k^- \bar{\phi}_{kq} + b_k^+ \bar{\phi}_{kq} + b_k^- \bar{\phi}_{kq} + c^+ \bar{\zeta} + c^- \bar{\zeta}\right) \right)
\]

\[
= \vec{x}_0 + \sum_k \left(a_k^+ \bar{\psi}_{kq} + a_k^- \bar{\phi}_{kq} + b_k^+ \bar{\phi}_{kq} + b_k^- \bar{\phi}_{kq} + c^+ \bar{\zeta} + c^- \bar{\zeta}\right) = \vec{x}.
\]

The subspace is defined for the \(N \)-ring at arbitrary latitude \(\theta_0 \). This is why the reduced system is available to describe the unstable motion of the perturbed \(N \)-ring successfully [17]. Proposition 7 also yields the inclusion relation between the two invariant subspace \(\mathbb{P}_N^{(p)} \) and \(\mathbb{P}_N^{(q)} \).

Corollary 8. Suppose that integers \(p \) and \(q \) are the factors of \(N \), and \(p \) also divides \(q \). Then, the \(\sigma_p \) invariant subspace is included by the \(\sigma_q \) invariant subspace, namely \(\mathbb{P}_N^{(p)} \subset \mathbb{P}_N^{(q)} \).

Proof. From the assumptions, there exist integers \(m, p' \) and \(q' \) such that \(q = mp \) and \(N = pp' = qq' \). For the arbitrary \(s_p \) invariant \(\psi_{kp}' \) and \(\phi_{kp}' \), they are also \(s_q \) invariant eigenvectors, since \(kp' = k\frac{N}{p} = k\frac{qq'}{p} = kmq' \). Consequently, we have \(\mathbb{P}_N^{(q)} \subset \mathbb{P}_N^{(p)} \).

In the following theorem, we characterize the \(\sigma_p \) invariant dynamical system.

Theorem 9. Let \(N = pq \), \((p, q \in \mathbb{N}) \). The \(\sigma_p \) invariant dynamical system is equivalent to the system of the \(p \)-vortex points generated by the averaged Hamiltonian (19) on the sphere with the pole vortices of the following modified strengths.

\[
\Gamma'_1 = \Gamma_1 + \frac{1}{2} \Gamma^{(p)} \left(1 - \frac{1}{q}\right), \quad \Gamma'_2 = \Gamma_2 + \frac{1}{2} \Gamma^{(p)} \left(1 - \frac{1}{q}\right),
\]

in which \(\Gamma^{(p)} = \frac{2\pi}{p} \).

Proof. Let \(h \) be defined by \(h(\Theta, \Theta', \Psi) = \log(1 - \cos \Theta \cos \Theta' - \sin \Theta \sin \Theta' \cos \Psi) \) for the convenience. Since the dynamical system is invariant with respect to
By using $h(\Theta_m, \Theta_m, 2\pi(k - l)/q) = \log(1 - \cos^2 \Theta_m) + \log(1 - \cos(2\pi(k - l)/q)$ in the first term and summing up with respect to k, we have

$$H = -\frac{(\Gamma^{(p)})^2}{4\pi}(1 - 1/q) \sum_{m=1}^{p} \log(1 - \cos^2 \Theta_m) - \frac{(\Gamma^{(N)})^2}{8\pi} \sum_{k=0}^{q-1} \sum_{m=1}^{p} \log(1 - \cos(2\pi(k - l)/q))$$

$$- \frac{(\Gamma^{(p)})^2}{8\pi} \sum_{m=1}^{p} \sum_{j \neq m}^{p} \frac{1}{q} \sum_{l=0}^{q-1} h(\Theta_m, \Theta_j, \Psi_m - \Psi_j - 2\pi l/q)$$

$$- \frac{\Gamma_1 p}{4\pi} \sum_{m=1}^{p} \log(1 - \cos \Theta_m) - \frac{\Gamma_2 p}{4\pi} \sum_{m=1}^{p} \log(1 + \cos \Theta_m).$$

Since the second term is constant, we can eliminate it from the Hamiltonian. Thus we have

$$H = -\frac{(\Gamma^{(p)})^2}{8\pi} \sum_{m=1}^{p} \sum_{j \neq m}^{p} \frac{1}{q} \sum_{l=0}^{q-1} h(\Theta_m, \Theta_j, \Psi_m - \Psi_j - 2\pi l/q)$$

$$- \frac{\Gamma_1 p}{4\pi} \sum_{m=1}^{p} \log(1 - \cos \Theta_m) - \frac{\Gamma_2 p}{4\pi} \sum_{m=1}^{p} \log(1 + \cos \Theta_m), \quad (19)$$

in which $\Gamma^{(p)} = q\Gamma^{(N)}$ and Γ_1 and Γ_2 are defined by (18). The Hamiltonian (19) is $2\pi/q$ periodic in the Ψ direction. In the first term of the Hamiltonian, the
function h is averaged over the q period, so we call it the averaged Hamiltonian of period q. Thus the σ_p invariant dynamical system is equivalent to the p-vortex system generated by the averaged Hamiltonian with the modified pole vortices.

Because of the $2\pi/q$-periodicity of the averaged Hamiltonian, the p-vortex system is defined in the restricted region $[0, \pi]^p \times [0, 2\pi/q]^p$ and extended in the whole space \mathbb{P}_N by shifting the restricted space q times in the Ψ direction. For example, when N is even, the 2-vortex system with the averaged Hamiltonian is embedded in the N-vortex system. Since the 2-vortex system is integrable due to the invariant quantity $\cos \Theta_1 + \cos \Theta_2 = \text{Const.}$, it is sufficient to observe the contour plot of the averaged Hamiltonian. Figure 1 shows the contour plots of the averaged Hamiltonian reduced by the σ_2 invariance for $N = 6$ and $N = 10$ with various strengths of the pole vortices plotted in $(\Phi = \Psi_1 - \Psi_2, \Theta_1)$. The invariant quantity is given by $\cos \Theta_1 + \cos \Theta_2 = 2 \cos \theta_0$ for $\theta_0 = \frac{\pi}{3}$. According to Proposition 7, the subspaces $\mathbb{P}_6^{(2)}$ and $\mathbb{P}_{10}^{(2)}$ contain the 6-ring and the 10-ring at the latitude $\theta_0 = \frac{\pi}{3}$. The structure of the contour plots are $2\pi/3$-periodic for $N = 6$ and $2\pi/5$-periodic for $N = 10$ in the Φ direction. The reduced dynamics has already been investigated to describe the unstable motion of the even vortex points system by numerical means[17]. Finally, we remark that the σ_2 invariant dynamical system is in fact the same as the one reduced by the invariance of the Hamiltonian under the action of the dihedral group, which was used to find the relative periodic orbits[19].

4 Reduction by the pole reversal invariance

In this subsection, we reduce the N-vortex system with the invariant property in terms of the pole reversal transformation, which is defined differently for the odd vortex points and the even vortex points.

When the number of the vortex points is odd, $N = 2M + 1$, we define the pole reversal transformation around the point vortex (Θ_1, Ψ_1), say $\pi_o : \mathbb{P}_N \to \mathbb{P}_N$, by the following three steps.

(1) We rotate the system in the longitudinal direction by the degree $-\Psi_1$ so that the vortex point (Θ_1, Ψ_1) is located in the xz-plane:

$$(\Theta_1, \cdots, \Theta_N, \Psi_1, \cdots, \Psi_N) \mapsto (\Theta_1, \Theta_2, \cdots, \Theta_N, 0, \cdots, \Psi_N - \Psi_1).$$

(2) Then we rotate the system around the x-axis by the degree π. The operation interchanges the north pole and the south pole:

$$(\Theta_1, \Theta_2, \cdots, \Theta_N, 0, \Psi_2 - \Psi_1, \cdots, \Psi_N - \Psi_1)$$

$$\mapsto (\pi - \Theta_1, \pi - \Theta_N, \cdots, \pi - \Theta_2, 0, \Psi_1 - \Psi_N, \cdots, \Psi_1 - \Psi_2).$$
Figure 1: Contour plots of the averaged Hamiltonian (19) reduced by the σ_2 shift invariance for $N = 6$ (a-d) and $N = 10$ (e-h). The pole vortices are identical, i.e. $\Gamma_1 = \Gamma_2$, in each figure. The strength of the north pole vortex is (a) 0.6π, (b) 0.2π, (c) −0.2π, (d) −0.6π, (e) 1.5π, (f) 0.6π, (g) 0.0, and (h) −0.6π. They are plotted in the region $(\Phi = \Psi_1 - \Psi_2, \Theta_1) \in [0, 2\pi] \times [0, \pi]$. The invariant quantity is given by $\cos \Theta_1 + \cos \Theta_2 = 2 \cos \theta_0$ for $\theta_0 = \pi/3$. The global structure of the contour plot repeats the same structure three times for $N = 6 = 2 \times 3$ and five times for $N = 10 = 2 \times 5$ in the Φ direction.
(3) Finally we rotate back the system in the angular direction by the degree Ψ_{1}:

$$\pi - \Theta_{1}, \pi - \Theta_{N}, \ldots, \pi - \Theta_{2}, 0, \Psi_{1} - \Psi_{N}, \ldots, \Psi_{1} - \Psi_{2}$$

$$\mapsto (\pi - \Theta_{1}, \pi - \Theta_{N}, \ldots, \pi - \Theta_{2}, 2\Psi_{1} - \Psi_{N}, \ldots, 2\Psi_{1} - \Psi_{2}).$$

Consequently, the transformation π_o is specified by

$$\pi_o : (\Theta_{1}, \ldots, \Theta_{N}, \Psi_{1}, \ldots, \Psi_{N}) \to (\Theta_{1}', \ldots, \Theta_{N}', \Psi_{1}', \ldots, \Psi_{N}'),$$

in which

$$\Theta_{1}' = \pi - \Theta_{1}, \quad \Psi_{1}' = \Psi_{1},$$

$$\Theta_{m}' = \pi - \Theta_{N-m+2}, \quad \Psi_{m}' = 2\Psi_{1} - \Psi_{N-m+2}, \quad \text{for } m \neq 1. \tag{20}$$

The transformation for the vector field by the pole reversal is given by

$$\Pi_o : (F_{1}, \ldots, F_{N}, G_{1}, \ldots, G_{N}) \to (F_{1}', \ldots, F_{N}', G_{1}', \ldots, G_{N}'),$$

where

$$F_{1}' = -F_{1}, \quad G_{1}' = -G_{1},$$

$$F_{m}' = -F_{N-m+2}, \quad G_{m}' = -G_{N-m+2}, \quad \text{for } m \neq 1.$$

When the strengths of the pole vortices are the same, we have the following lemma.

Lemma 10. Let $N = 2M + 1$. If $\Gamma_{1} = \Gamma_{2}$, then $\Pi_o \mathbb{F}(\vec{x}) = \mathbb{F}(\pi_o \vec{x})$ for $\vec{x} \in \mathbb{P}_{N}$.

Proof. It follows from (20) that we obtain

$$F_{1}(\pi_o \vec{x}) = -\frac{\Gamma(N)}{4\pi} \sum_{j=2}^{N} f(\pi - \Theta_{1}, \pi - \Theta_{N-j+2}, \Psi_{N-j+2} - \Psi_{1})$$

$$= \frac{\Gamma(N)}{4\pi} \sum_{j=2}^{N} f(\Theta_{1}, \Theta_{N-j+2}, \Psi_{1} - \Psi_{N-j+2}) = -F_{1}(\vec{x}),$$

$$G_{1}(\pi_o \vec{x}) = -\frac{\Gamma(N)}{4\pi} \sum_{j=2}^{N} g(\pi - \Theta_{1}, \pi - \Theta_{N-j+2}, \Psi_{N-j+2} - \Psi_{1}) + \frac{\Gamma_{1} \cos(\pi - \Theta_{1})}{2\pi \sin(\pi - \Theta_{1})}$$

$$= \frac{\Gamma(N)}{4\pi} \sum_{j=2}^{N} g(\Theta_{1}, \Theta_{N-j+2}, \Psi_{1} - \Psi_{N-j+2}) - \frac{\Gamma_{1} \cos \Theta_{1}}{2\pi \sin \Theta_{1}} = -G_{1}(\vec{x}).$$

14
Similarly, for \(m \neq 1 \), we have

\[
F_m(\pi_o \vec{x}) = -\frac{\Gamma(N)}{4\pi} \sum_{j \neq m}^N f(\pi - \Theta_{N-m+2}, \pi - \Theta_{N-j+2}, \Psi_{N-j+2} - \Psi_{N-m+2})
\]

\[
= \frac{\Gamma(N)}{4\pi} \sum_{j \neq m}^N f(\Theta_{N-m+2}, \Theta_{N-j+2}, \Psi_{N-m+2} - \Psi_{N-j+2})
\]

\[
= \frac{\Gamma(N)}{4\pi} \sum_{j \neq N-m+2}^N f(\Theta_{N-m+2}, \Theta_j, \Psi_{N-m+2} - \Psi_j) = -F_{N-m+2}(\vec{x}),
\]

\[
G_m(\pi_o \vec{x}) = -\frac{\Gamma(N)}{4\pi} \sum_{j \neq m}^N g(\pi - \Theta_{N-m+2}, \pi - \Theta_{N-j+2}, \Psi_{N-j+2} - \Psi_{N-m+2})
\]

\[
+ \frac{\Gamma_1 \cos(\pi - \Theta_{N-m+2})}{2\pi \sin(\pi - \Theta_{N-m+2})}
\]

\[
= \frac{\Gamma(N)}{4\pi} \sum_{j \neq m}^N g(\Theta_{N-m+2}, \Theta_{N-j+2}, \Psi_{N-m+2} - \Psi_{N-j+2}) - \frac{\Gamma_1 \cos \Theta_{N-m+2}}{2\pi \sin \Theta_{N-m+2}}
\]

\[
= -G_{N-m+2}(\vec{x}). \quad \square
\]

It is easy to show that if the initial data \(\vec{x}(0) \) is invariant with respect to \(\pi_o \), then the invariant property holds for all the time.

Lemma 11. Let \(N = 2M + 1 \) and \(\Gamma_1 = \Gamma_2 \). Assuming that the initial condition satisfies \(\pi_o \vec{x}(0) = \vec{x}(0) \), then \(\pi_o \vec{x}(t) = \vec{x}(t) \) for \(t \geq 0 \).

Proof. The \(\pi_o \)-invariance of the system yields

\[
\Theta_1 = \frac{\pi}{2}, \quad \Psi_1 = 0, \quad \Theta_m + \Theta_{N-m+2} = \pi, \quad \Psi_m + \Psi_{N-m+2} = 0, \quad \text{for } m \neq 1. \quad (21)
\]

On the other hand, it follows from Lemma 10 that \(\Pi_o \vec{x}(\vec{x}) = \vec{x}(\pi_o \vec{x}) = \vec{x}(\vec{x}) \), that is to say, \(\dot{\Theta}_1 = F_1 = 0, \dot{\Psi}_1 = G_1 = 0 \), and

\[
\dot{\Theta}_m + \dot{\Theta}_{N-m+2} = F_m + F_{N-m+2} = 0, \quad \dot{\Psi}_m + \dot{\Psi}_{N-m+2} = G_m + G_{N-m+2} = 0, \quad (22)
\]

for \(m \neq 1 \). Hence, the \(\pi_o \)-invariant relation (21) holds for all the time if it is satisfied at the initial time. \(\square \)

Lemma 11 indicates that the \(N \)-vortex system can be reduced to the \(2M \)-dimensional invariant dynamical system as long as the \(\pi_o \)-invariant point exists initially. The following lemma characterizes the \(2M \)-dimensional \(\pi_o \) invariant subspace of \(\Pi_N \).

Lemma 12. Let \(N = 2M + 1 \), \(\Gamma_1 = \Gamma_2 \) and \(\vec{x}_0 \) is represented by

\[
\vec{x}_0 = \left(\frac{\pi}{2}, \ldots, \frac{\pi}{2}, 0, \frac{2\pi}{N}, \ldots, \frac{2\pi}{N} M, -\frac{2\pi}{N} M, \ldots, -\frac{2\pi}{N} \right).
\]
Then, the $2M$-dimensional subspace

$$
\vec{x} = \vec{x}_0 + \sum_{k=1}^{M} b_k^+ \vec{\phi}_k^+ + b_k^- \vec{\phi}_k^-, \quad b_k^+ \in \mathbb{R},
$$

(23)
is invariant with respect to the transformation π_o.

Proof. First it is easy to see the eigenvectors $\vec{\phi}_k^\pm$ are invariant with respect to the following transformation,

$$
\pi_o' : (\Theta_1, \Theta_2, \cdots, \Theta_N, \Psi_1, \Psi_2, \cdots, \Psi_N) \rightarrow - (\Theta_1, \Theta_N, \cdots, \Theta_2, \Psi_1, \Psi_N, \cdots, \Psi_2).
$$

Since $\Psi_1 = 0$ in (23), we can rewrite π_o by $\pi_o \vec{x} = (\pi, \cdots, \pi, 0, \cdots, 0) + \pi_o' \vec{x}$. Hence, since $\pi_o \vec{x}_0 = \vec{x}_0$, we have

$$
\begin{align*}
\pi_o \vec{x} &= (\pi, \cdots, \pi, 0, \cdots, 0) + \pi_o' \vec{x}_0 + \pi_o' \sum_{k=1}^{M} b_k^+ \vec{\phi}_k^+ + b_k^- \vec{\phi}_k^- \\
&= (\pi, \cdots, \pi, 0, \cdots, 0) + \pi_o' \vec{x}_0 + \sum_{k=1}^{M} b_k^+ \vec{\phi}_k^+ + b_k^- \vec{\phi}_k^- \\
&= \vec{x}_0 + \sum_{k=1}^{M} b_k^+ \vec{\phi}_k^+ + b_k^- \vec{\phi}_k^- = \vec{x}. \quad \Box
\end{align*}
$$

We implement the similar reduction for the even vortex points, $N = 2M$. The pole reversal transformation $\pi_e : \mathbb{P}_N \rightarrow \mathbb{P}_N$ and the accompanied transformation for the vector field $\Pi_e : \mathbb{R}^{2N} \rightarrow \mathbb{R}^{2N}$ are defined by

$$
\pi_e : (\Theta_1, \cdots, \Theta_N, \Psi_1, \cdots, \Psi_N) \rightarrow (\pi - \Theta'_N, \cdots, \pi - \Theta'_1, -\Psi'_N, \cdots, -\Psi'_1),
$$

(24)

and

$$
\Pi_e : (F_1, \cdots, F_N, G_1, \cdots, G_N) \rightarrow (-F'_N, \cdots, -F'_1, -G'_N, \cdots, -G'_1).
$$

Then, we have the similar lemma for the even case.

Lemma 13. Let $N = 2M$. If $\Gamma_1 = \Gamma_2$, then $\Pi_e \mathbb{F}(\vec{x}) = \mathbb{F}(\pi_e \vec{x})$ for $\vec{x} \in \mathbb{P}_N$.

16
Proof.

\[
F_m(\pi_e \vec{x}) = -\frac{\Gamma(N)}{4\pi} \sum_{j \neq m}^N f(\pi - \Theta_{N-m+1}, \pi - \Theta_{N-j+1}, \Psi_{N-j+1} - \Psi_{N-m+1})
\]

\[
= -\frac{\Gamma(N)}{4\pi} \sum_{j \neq m}^N f(\Theta_{N-m+1}, \Theta_{N-j+1}, \Psi_{N-m+1} - \Psi_{N-j+1})
\]

\[
= -F_{N-m+1}(\vec{x}),
\]

\[
G_m(\pi_e \vec{x}) = -\frac{\Gamma(N)}{4\pi} \sum_{j \neq m}^N g(\pi - \Theta_{N-m+1}, \pi - \Theta_{N-j+1}, \Psi_{N-j+1} - \Psi_{N-m+1})
\]

\[
+ \frac{\Gamma_1 \cos(\pi - \Theta_{N-m+1})}{2\pi} \frac{\sin(\pi - \Theta_{N-m+1})}{\sin(\Theta_{N-m+1})}
\]

\[
= -\frac{\Gamma(N)}{4\pi} \sum_{j \neq m}^N g(\Theta_{N-m+1}, \Theta_{N-j+1}, \Psi_{N-m+1} - \Psi_{N-j+1}) - \frac{\Gamma_1 \cos \Theta_{N-m+1}}{2\pi} \frac{\sin \Theta_{N-m+1}}{\sin \Theta_{N-m+1}}
\]

\[
= -G_{N-m+1}(\vec{x}).
\]

Lemma 14. Let \(N = 2M \) and \(\Gamma_1 = \Gamma_2 \). If \(\pi_e \vec{x}(0) = \vec{x}(0) \), then \(\pi_e \vec{x}(t) = \vec{x}(t) \) for \(t \geq 0 \).

Proof. First, the initial condition \(\pi_e \vec{x}(0) = \vec{x}(0) \) yields \(\Theta_m(0) + \Theta_{N-m+1}(0) = \pi \) and \(\Psi_m(0) + \Psi_{N-m+1}(0) = 0 \). Second, if \(\pi_e \vec{x} = \vec{x} \) hold, then \(\Pi_e \mathcal{F}(\vec{x}) = \mathcal{F}(\pi_e \vec{x}) = \mathcal{F}(\vec{x}) \), i.e.

\[
\dot{\Theta}_m + \dot{\Theta}_{N-m+1} = F_m + F_{N-m+1} = 0, \quad \dot{\Psi}_m + \dot{\Psi}_{N-m+1} = G_m + G_{N-m+1} = 0.
\]

Hence, we finally have

\[
\Theta_m + \Theta_{N-m+1} = \pi, \quad \Psi_m + \Psi_{N-m+1} = 0,
\]

for \(t \geq 0 \). \(\square \)

We give the existence of the \(2M \)-dimensional \(\pi_e \)-invariant subspace. The proof is now easy.

Lemma 15. Let \(N = 2M \) and \(\vec{x}_0 \) is denoted by

\[
\vec{x}_0 = \left(\frac{\pi}{2}, \ldots, \frac{\pi}{2}, 0, \ldots, \frac{2\pi}{N}(N-1) \right).
\]

Then, the \(2M \)-dimensional subspace of \(\mathbb{P}_N \)

\[
\vec{x} = \vec{x}_0 + \sum_{k=1}^M a_k^+ \vec{\psi}_k^+ + a_k^- \vec{\psi}_k^- , \quad a_k^\pm \in \mathbb{R}, \quad (26)
\]

is invariant with respect to the transformation \(\pi_e \).
Lemma 12 and Lemma 15 indicate that the N-vortex system can be reduced to the $2M$-dimensional invariant dynamical system defined in the subspace of \mathbb{P}_N containing the N-ring at the equator. Apart from the σ_p invariant case in §3, the reduced system due to the pole reversal invariance exists only when the north and the south pole vortices are identical. Thus we conclude the above results as follows.

Theorem 16. Suppose that the strengths of the pole vortices are equivalent. Then, there exists the $2M$-dimensional invariant dynamical system in the subspace of \mathbb{P}_N that contains the N-ring at the equator.

Lemma 12 shows that when $N = 3$, the π_o invariant space contains the 3-ring at the equator and is spanned by the eigenvectors $\vec{\phi}_1^\pm$, which is the two-dimensional integrable dynamical system. The invariant system has already been reported to describe the complex recurrent motion of the unstable perturbed 3-ring at the equator[18]. Finally, we note that the invariant quantity $\sum_{m=1}^N \cos \Theta_m = 0$ is automatically satisfied for the reduced system because of (22) and (25).

5 Conclusion and discussion

We have obtained the reduced invariant dynamical systems embedded in the identical N-vortex points system on the sphere with the pole vortices by using the p-shift transformation and the pole reversal transformation. We have shown that for any factor p of N, there exists the $2p$-dimensional invariant dynamical system reduced by the p-shift invariance, and it is equivalent to the p-vortex points system on the sphere with the modified pole vortices, which is generated by the averaged Hamiltonian (19). We also give the existence of the dynamical system reduced by the pole reversal transformation when both of the pole vortices are identical. The reduced dynamical systems play an important role to understand the dynamics of many N vortex points as embedded elements in the dynamical system.

The reduction of the dynamical system due to the group invariance of the Hamiltonian has been proposed in order to determine the relative periodic orbits for the vortex-point system [9, 19]. The present reduction method is based on the similar idea of theirs in the sense that we focus on the invariant property of the relative fixed configuration under the shift and the pole reversal transformations. However, while the purpose of their method is to reduce the N vortex system to the two-dimensional dynamical system, the present method gives us the collection of the invariant dynamical systems embedded in the N-vortex system and their inclusion structure, which allows us to decompose the N-vortex system into the systems of small vortex points. Furthermore, since the invariant subspace is
spanned by the eigenvectors obtained in the linear stability analysis of the \(N \)-ring, it is possible to combine the stability of the eigenvalues corresponding to the eigenvectors with that of the invariant systems as we have done partially in the paper[17].

The \(p \)-shift and the pole reversal transformations used in \(\S 3 \) and \(\S 4 \) are introduced so that the \(N \)-ring becomes a fixed point for them. It suggests that it is possible to obtain different invariant dynamical systems embedded in the \(N \)-vortex system when we apply the similar reduction by introducing the transformations that make the other relative equilibria of the \(N \)-vortex points unchanged.

References

