<table>
<thead>
<tr>
<th>Title</th>
<th>Spectral Area Estimates For Norms Of Commutators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Cho, Muneo; Nakazi, Takahiko</td>
</tr>
<tr>
<td>Citation</td>
<td>Hokkaido University Preprint Series in Mathematics, 771, 1-10</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2006</td>
</tr>
<tr>
<td>DOI</td>
<td>10.14943/83921</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/69579</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>pre771.pdf</td>
</tr>
</tbody>
</table>
Spectral Area Estimates For Norms Of Commutators

By

Muneo Chō * And Takahiko Nakazi **

2000 Mathematics Subject Classification : Primary 47 A 20

Key words and phrases : subnormal, \(p \)-hyponormal, Putnam inequality

* This research is partially supported by Grant-in-Aid Scientific Research No.17540139
** This research is partially supported by Grant-in-Aid Scientific Research No.17540176
Abstract. Let A and B be commuting bounded linear operators on a Hilbert space. In this paper, we study spectral area estimates for norms of $A^*B - BA^*$ when A is subnormal or p-hyponormal.
§1. Introduction

Let \mathcal{H} be a Hilbert space and $\mathcal{B}(\mathcal{H})$ the set of all bounded linear operators on \mathcal{H}. If T is a hyponormal operator in $\mathcal{B}(\mathcal{H})$ then C.R. Putnam [7] proved that $\| T^*T - TT^* \| \leq \text{Area}(\sigma(T))/\pi$ where $\sigma(T)$ is the spectrum of T. The second named author [5] has proved that if T is a hyponormal operator and K is in $\mathcal{B}(\mathcal{H})$ with $KT = TK$ then

$$\| T^*K - KT^* \| \leq 2 \{ \text{Area}(\sigma(T))/\pi \}^{1/2} \| K \|.$$

We don’t know whether the constant 2 in the inequality is best possible for a hyponormal operator. In §2, we show that the constant is not best possible for a subnormal operator.

When T is a p-hyponormal operator in $\mathcal{B}(\mathcal{H})$, A.Uchiyama [10] generalized the Putnam inequality, that is,

$$\| T^*T - TT^* \| \leq \phi \left(\frac{1}{p} \right) \| T \|^{2(1-p)} \{ \text{Area}(\sigma(T))/\pi \}^p.$$

This inequality gives the Putnam inequality when $p = 1$. In §3, we generalize the above inequality for the spectral area estimate of $\| T^*K - KT^* \|$ when $TK = KT$. H.Alexander [1] proved the following inequality for a uniform algebra A. If f is in A then

$$\text{dist}(\tilde{f}, A) \leq \{ \text{Area}(\sigma(f))/\pi \}^{1/2}.$$

The second named author [5] gave an operator version for the Alexander inequality. This was used in order to estimate $\| T^*K - KT^* \|$ when T is a hyponormal operator and $KT = TK$. We also give an Alexander inequality for a p-hyponormal and we use it to estimate $\| T^*K - KT^* \|$.

In §4, we try to estimate $\| T^*K - KT^* \|$ for arbitrary contraction. In §5, we show a few results about area estimates for p-quasihyponormal operators, restricted shifts and analytic Toeplitz operators.

For $0 < p \leq 1$, T is said to be p-hyponormal if $(T^*T)^p - (TT^*)^p \geq 0$. A 1-hyponormal operator is hyponormal. For an algebra \mathcal{A} in $\mathcal{B}(\mathcal{H})$, let $\text{lat} \mathcal{A}$ be the lattice of all \mathcal{A}-invariant projections. For a compact subset X in \mathcal{C}, $\text{rat}(X)$ denotes the set of all rational functions on X.

§2. Subnormal operator

In order to prove Theorem 1, we use the original Alexander inequality.

Theorem 1. Let T be a subnormal operator in $\mathcal{B}(\mathcal{H})$ and f a rational function on $\sigma(T)$ whose poles are not on it. Then

$$\| T^*f(T) - f(T)T^* \| \leq \{ \text{Area}(\sigma(T))/\pi \}^{1/2} \{ \text{Area}(\sigma(f(T)))/\pi \}^{1/2}.$$

Proof. Suppose that $N \in B(K)$ is a normal extension of $T \in B(H)$ and P is an orthogonal projection from K to H. Then $T = PN | H$ and so

$$T^*f(T) - f(T)T^* = PN^*f(N)P - P f(N)PN^*P = PN^*f(N)P - P f(N)PN^*P = P f(N)N^*P - P f(N)PN^*P = P f(N)(1 - P)N^*P = P f(N)(1 - P) \cdot (1 - P)N^*P$$

because $f(N)P = P f(N)P$ and $f(N)N^* = N^*f(N)$.

Let F be a rational function in $rat(\sigma(T))$. Put $B_F = \text{the norm closure of} \{g(F(N)) ; g \in rat(\sigma(F(N)))\}$ then P belongs to $\text{lat}B_F$. Hence

$$\| (1 - P)F(N)^*P \| \leq \text{dist}(F(N)^*, B_F) \leq \text{dist}(z, \text{rat}(\sigma(F(N)))) \leq \{\text{Area}(\sigma(F(N)))/\pi\}^{1/2}$$

by the Alexander’s theorem [1]. Hence, applying F to $F = z$ or $F = f$

$$\| T^*f(T) - f(T)T^* \| \leq \| (1 - P)f(N)^*P \| \cdot \| (1 - P)N^*P \| \leq \{\text{Area}(\sigma(f(N)))/\pi\}^{1/2}\{\text{Area}(\sigma(N))/\pi\}^{1/2} \leq \{\text{Area}(\sigma(f(T)))/\pi\}^{1/2}\{\text{Area}(\sigma(T))/\pi\}^{1/2}.$$

If T is a cyclic subnormal operator and $KT = TK$ then using a theorem of T.Yoshino [12] we can prove that

$$\|T^*K - KT^*\| \leq \{\text{Area}(\sigma(T))/\pi\}^{1/2}\{\text{Area}(\sigma(K))/\pi\}^{1/2}.$$

The proof is almost same to one of Theorem 1.

§3. p-hyponormal

In order to prove Theorem 2, we use an operator version of the Alexander inequality for a p-hyponormal operator. Unfortunately Lemma 3 is not best possible for $p = 1$ (see [5]). Lemma 1 is due to W.Arveson [2, Lemma 2] and Lemma 2 is due to A.Uchiyama [11, Theorem 3].
We need the following notation to give Theorem 2 and Proposition 1. Let \(\phi \) be a positive function on \((0, \infty)\) such that
\[
\phi(t) = \begin{cases}
 t & \text{if } t \text{ is an integer} \\
 t + 2 & \text{if } t \text{ is not an integer}.
\end{cases}
\]

We write \(\ell^2 \otimes \mathcal{H} \) for the Hilbert space direct sum \(\mathcal{H} \oplus \mathcal{H} \oplus \cdots \), and \(1 \otimes T \) denotes the operator \(T \oplus T \oplus \cdots \in \mathcal{B}(\ell^2 \otimes \mathcal{H}) \) for each operator \(T \in \mathcal{B}(\mathcal{H}) \).

Lemma 1. Let \(\mathcal{A} \) be an arbitrary ultra-weakly closed subalgebra of \(\mathcal{B}(\mathcal{H}) \) containing 1, and let \(T \in \mathcal{B}(\mathcal{H}) \). Then
\[
\text{dist}(T, \mathcal{A}) = \sup\{ \| (1 - P)(1 \otimes T)P \| ; P \in \text{lat}(1 \otimes \mathcal{A}) \}.
\]

Lemma 2. If \(T \) is a \(p \)-hyponormal operator, then
\[
\| T^*T - TT^* \| \leq \phi \left(\frac{1}{p} \right) \| T \|^{2(1-p)} \left\{ \text{Area}(\sigma(T))/\pi \right\}^p.
\]

Lemma 3. If \(T \) is a \(p \)-hyponormal operator then
\[
\text{dist}(T^*, \mathcal{A}) \leq \sqrt{2} \phi \left(\frac{1}{p} \right) \| T \|^{1-p} \left\{ \text{Area}(\sigma(T))/\pi \right\}^{p/2}
\]
where \(\mathcal{A} \) is the strong closure of \(\{ f(T) \; ; \; f \in \text{rat}(\sigma(T)) \} \).

Proof. Let \(S = 1 \otimes T \). Then \(S \) is \(p \)-hyponormal. In order to prove the lemma, by Lemma 1 it is enough to estimate \(\sup\{ \| (1 - P)SP \| ; P \in \text{lat}(1 \otimes \mathcal{A}) \} \). If \(P \in \text{lat}(1 \otimes \mathcal{A}) \) then \(SP = PSP \) and so
\[
\| (1 - P)SP \|^2
= \| PSS^*P - PSPS^*P \|
= \| PSS^*P - PS^*SP + PS^*SP - PSPS^*P \|
\leq \| P(S^*S - SS^*)P \| + \| (PSP)^*(PSP) - (PSP)(PSP)^* \|
\leq \| S^*S - SS^* \| + \| (PSP)^*(PSP) - (PSP)(PSP)^* \|.
\]
By [11, Lemma 4], \(PSP \) is \(p \)-hyponormal and so by Lemma 2 we have
\[
\| PSS^*P - PSPS^*P \|^2
\leq \phi \left(\frac{1}{p} \right) \| T \|^{2(1-p)} \left\{ \text{Area}(\sigma(T))/\pi \right\}^p
+ \phi \left(\frac{1}{p} \right) \| PSP \|^{2(1-p)} \left\{ \text{Area}(\sigma(PSP))/\pi \right\}^p
\leq 2\phi \left(\frac{1}{p} \right) \| T \|^{2(1-p)} \left\{ \text{Area}(\sigma(T))/\pi \right\}^p
\]
because \(\|PSP\| \leq \|S\| = \|T\| \) and \(\sigma(PSP) \subset \sigma(S) = \sigma(T) \). By Lemma 1,
\[
\text{dist}(T^*, \mathcal{A}) \leq \sqrt{2\phi\left(\frac{1}{p}\right)}\|T\|^{1-p}\{\text{Area}(\sigma(T))/\pi\}^{p/2}.
\]

Theorem 2. If \(T \) is a \(p \)-hyponormal operator in \(\mathcal{B}(\mathcal{H}) \) and if \(K \) is in \(\mathcal{B}(\mathcal{H}) \) with \(KT = TK \), then
\[
\|T^*K - KT^*\| \leq 2\sqrt{2\phi\left(\frac{1}{p}\right)}\|T\|^{1-p}\{\text{Area}(\sigma(T))/\pi\}^{p/2}\|K\|.
\]

Proof. When \(\mathcal{A} \) is the strong closure of \(\{f(T) ; f \in \text{rat}(\sigma(T))\} \), for any \(A \in \mathcal{A} \)
\[
\|T^*K - KT^*\| = \|(T^* - A)K + AK - KT^*\| \leq 2\|T^* - A\|\|K\|.
\]
Now Lemma 3 implies the theorem.

In Theorem 2, if \(p = 1 \), that is, \(T \) is hyponormal then \(\|T^*K - KT^*\| \leq 2\sqrt{2\{\text{Area}(\sigma(T))/2\}^{1/2}\|K\|} \). The constant \(2\sqrt{2} \) is not best because the second author [5] proved that \(\|T^*K - KT^*\| \leq 2\{\text{Area}(\sigma(T))/2\}^{1/2}\|K\| \). If \(p = \frac{1}{2} \), that is, \(T \) is semi-hyponormal then \(\|T^*K - KT^*\| \leq 4\|T\|^{1/2}\{\text{Area}(\sigma(T))/\pi\}^{1/4}\|K\| \).

§4. Norm estimates

In general, it is easy to see that \(\|T^*T - TT^*\| \leq \|T\|^2 \). By Theorem 1, if \(T \) is subnormal and \(f \) is an analytic polynomial then
\[
\|T^*f(T) - f(T)T^*\| \leq \|T\|\|f(T)\|.
\]
In this section, we will prove that \(\|T^*T^n - T^nT^*\| \leq \|T\|^{n+1} \) for arbitrary \(T \) in \(\mathcal{B}(\mathcal{H}) \).

Theorem 3. If \(T \) is a contraction on \(\mathcal{H} \) and \(f \) is an analytic function on the closed unit disc \(\bar{D} \) then \(\|T^*f(T) - f(T)T^*\| \leq \sup_{z \in \bar{D}} |f(z)| \).

Proof. By a theorem of Sz.-Nagy [6], there exists a unitary operator \(U \) on \(\mathcal{K} \) such that \(\mathcal{K} \) is a Hilbert space with \(\mathcal{K} \supseteq \mathcal{H} \) and \(T^n = PU^n \mid \mathcal{K} \) for \(n \geq 0 \) where \(P \) is an orthogonal projection from \(\mathcal{K} \) to \(\mathcal{H} \). Then it is known that \(U^*P = PU^*P \) and \(f(T) = Pf(U) \mid \mathcal{H} \). Hence
\[
T^*f(T) - f(T)T^* = PU^*Pf(U)P - Pf(U)PU^*P = PU^*Pf(U)P - Pf(U)U^*P = PU^*(I - P)f(U)P
\]
because $U^*P = PU^*P$ and $f(U)U^* = U^*f(U)$. Therefore
\[
\| T^* f(T) - f(T)T^* \| = \| PU^* (I - P)f(U)P \| \leq \sup_{z \in D} | f(z) | .
\]

Corollary 1. If T is in $\mathcal{B}(\mathcal{H})$ then for any $n \geq 1$ \(\| T^* T^n - T^n T^* \| \leq \| T \|^{n+1} \).

Proof. Put $A = T/\|T\|$ then A is a contraction and so by Theorem 2 \(\| A^* A^n - A^n A^* \| \leq 1 \) and so \(\| T^* T^n - T^n T^* \| \leq \| T \|^{n+1} \).

§5. Remarks

In this section, we give spectral area estimates for p-quasihyponormal operators, restricted shifts and analytic Toeplitz operators.

For $0 < p \leq 1$, T is said to be p-quasihyponormal if $T^*((T^*T)^p - (TT^*)^p)T \geq 0$.

A 1-quasihyponormal operator is called quasihyponormal.

Lemma 4. Let T be p-quasihyponormal and P be a projection such that $TP = PTP$. Then PTP is also p-quasihyponormal.

Proof. Since T is p-quasihyponormal, $T^*((T^*T)^p)T \geq T^*((TT^*)^p)T$. Hence, we have
\[
PT^*(T^*T)^pTP \geq PT^*(TT^*)^pTP.
\]

Since by the Hansen’s inequality [4]
\[
PT^*(T^*T)^pTP = (PTP)^*P(T^*T)^pP(PTP) \\
\leq (PTP)^*(PT^*TP)^p(PTP) \\
= (PTP)^*\{(PTP)^*(PTP)^p\}(PTP)
\]
and by $0 < p < 1$
\[
PT^*(TT^*)^pTP \geq (PT^*P)(TP^*TP)^p(PTP) \\
= (PTP)^*\{(PTP)(PTP)^*\}^p(PTP),
\]
we have
\[
(PTP)^*\{(PTP)^*(PTP)^p\} \geq (PTP)^*\{(PTP)(PTP)^*\}^p(PTP).
\]
Hence, PTP is p-quasihyponormal.

Proposition 1. If T is a p-quasihyponormal operator in $\mathcal{B}(\mathcal{H})$ and if K is in $\mathcal{B}(\mathcal{H})$ with $KT = TK$, then
\[
\| T^* K - K T^* \| \leq 4 \left[\frac{1}{p} \phi \left(\frac{1}{p} \right) \right]^{1/4} \| T \|^{1-p/2} \left\{ \text{Area}(\sigma(T))/\pi \right\}^{p/4} \| K \|.
\]
In particular, if T is quasihyponormal then

$$\|T^*K - KT^*\| \leq 4\|T\|^{1/2}\{\text{Area}(\sigma(T))/\pi\}^{1/4}\|K\|.$$

Proof. We can prove it as in the proof of Theorem 2. By [11, Theorem 6],

$$\|T^*T - TT^*\| \leq 2\|T\|^{2-p}\sqrt{\frac{1}{p}}\{\text{Area}(\sigma(T))/\pi\}^{p/2}.$$

Hence by Lemma 4

$$\text{dist}(T^*, A) \leq 2\|T\|^{1-p/4}\{\text{Area}(\sigma(T))/\pi\}^{p/2}.$$

This implies the proposition.

Let H^2 and H^∞ be the usual Hardy spaces on the unit circle and z the coordinate function. M denotes an invariant subspace of H^2 under the multiplication by z. By the well known Beurling theorem, $M = qH^2$ for some inner function. Suppose N is the orthogonal complement of M in H^2. For a function ϕ in H^∞, $S\phi$ is an operator on N such that $S\phi f = P(\phi f)$ ($f \in N$) where P is the orthogonal projection from H^2 to N. For a symbol ϕ in L^∞, $T\phi$ denotes the usual Toeplitz operator on H^2.

Proposition 2. Suppose $\Phi = q\bar{\phi}$ belongs to H^∞. Then

1. $\|S\phi S\phi^* - S\phi^* S\phi\| \leq \text{Area}(\Phi(D))/\pi$;
2. $\|S\phi^* S\phi - S\phi^* S\phi\| \leq \{\text{Area}(\Phi(D))/\pi\}^{n+1}$ for $n \geq 0$.

Proof. By a well known theorem of Sarason [8],

$$\|S\phi\| = \|\phi + qH^\infty\| = \|\bar{\phi} + H^\infty\| = \|\Phi + H^\infty\|.$$

By Nehari’s theorem [6], $\|\Phi + H^\infty\| = \|H_\Phi\|$, where H_Φ denotes a Hankel operator from H^2 to $\bar{z}H^2$. Since $\|H_\Phi\|^2 = \|T^\Phi T_\Phi - T_\Phi T^\Phi\|$ where T_Φ denotes a Toeplitz operator on H^2, by the Putnam inequality

$$\|T^\Phi T_\Phi - T_\Phi T^\Phi\| \leq \text{Area}(\sigma(T_\Phi))/\pi = \text{Area}(\Phi(D))/\pi.$$

Now since $\|S^\phi S\phi - S\phi^* S\phi^*\| \leq \|S\phi\|^2$, (1) follows. (2) is also clear by the proof above and Corollary 1.

Proposition 3. Suppose f and g are in H^∞. Then

$$\|T^*_f T_g - T_g T^*_f\| \leq \{\text{Area}(f(D))/\pi\}^{1/2}\{\text{Area}(g(D))/\pi\}^{1/2}.$$

Proof. It is easy to see that $T^*_f T_g - T_g T^*_f = H^*_g H_f$. Hence

$$\|T^*_f T_g - T_g T^*_f\| \leq \|H_g\| \cdot \|H_f\|.$$

8
Since \(H_j^*H_j = T_j^*T_j - T_jT_j^* \), by the Putnam inequality

\[
\|T_j^*T_g - T_gT_j^*\| \leq \left\{ \frac{\text{Area}(f(D))/\pi}{\pi} \right\}^{1/2} \left\{ \frac{\text{Area}(g(D))/\pi}{\pi} \right\}^{1/2}.
\]

References

M. Chō
Department of Mathematics
Kanagawa University
Japan
chiyom01@kanagawa-u.ac.jp

T. Nakazi
Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060-0810, Japan
nakazi@math.sci.hokudai.ac.jp