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Abstract. Let A and B be commuting bounded linear operators on a Hilbert
space. In this paper, we study spectral area estimates for norms of A∗B − BA∗ when A
is subnormal or p-hyponormal.
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§1. Introduction

Let H be a Hilbert space and B(H) the set of all bounded linear operators on H.
If T is a hyponormal operator in B(H) then C.R.Putnam [7] proved that ‖ T ∗T −TT ∗ ‖≤
Area(σ(T ))/π where σ(T ) is the spectrum of T . The second named author [5] has proved
that if T is a hyponormal operator and K is in B(H) with KT = TK then

‖T ∗K −KT ∗‖ ≤ 2{Area(σ(T ))/π}1/2‖K‖.

We don’t know whether the constant 2 in the inequality is best possible for a hyponormal
operator. In §2, we show that the constant is not best possible for a subnormal operator.

When T is a p-hyponormal operator in B(H), A.Uchiyama [10] generalized the
Putnam inequality, that is,

‖T ∗T − TT ∗‖ ≤ φ

(
1

p

)
‖T‖2(1−p){Area(σ(T ))/π}p.

This inequality gives the Putnam inequality when p = 1. In §3, we generalize the above
inquality for the spectral area estimate of ‖T ∗K −KT ∗‖ when TK = KT . H.Alexander
[1] proved the following inequality for a uniform algebra A. If f is in A then

dist(f̄ , A) ≤ {Area(σ(f))/π}1/2.

The second named author [5] gave an operator version for the Alexander inequality. This
was used in order to estimate ‖T ∗K − KT ∗‖ when T is a hyponormal operator and
KT = TK. We also give an Alexander inequality for a p-hyponormal and we use it to
estimate ‖T ∗K −KT ∗‖.

In §4, we try to estimate ‖T ∗K−KT ∗‖ for arbitrary contraction. In §5, we show
a few results about area estimates for p-quasihyponormal operators, restricted shifts and
analytic Toeplitz operators.

For 0 < p ≤ 1, T is said to be p-hyponormal if (T ∗T )p − (TT ∗)p ≥ 0. A 1-
hyponormal operator is hyponormal. For an algebra A in B(H), let latA be the lattice of
all A-invariant projections. For a compact subset X in 6C, rat(X) denotes the set of all
rational functions on X.

§2. Subnormal operator

In order to prove Theorem 1, we use the original Alexander inequality.

Theorem 1. Let T be a subnormal operator in B(H) and f a rational function
on σ(T ) whose poles are not on it. Then

‖ T ∗f(T )− f(T )T ∗ ‖≤ {Area(σ(T ))/π}1/2{Area(σ(f(T )))/π}1/2.
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Proof. Suppose that N ∈ B(K) is a normal extension of T ∈ B(H) and P is an
orthogonal projection from K to H. Then T = PN | H and so

T ∗f(T )− f(T )T ∗

= PN∗Pf(N)P − Pf(N)PN∗P

= PN∗f(N)P − Pf(N)PN∗P

= Pf(N)N∗P − Pf(N)PN∗P

= Pf(N)(1− P )N∗P

= Pf(N)(1− P ) · (1− P )N∗P

because f(N)P = Pf(N)P and f(N)N∗ = N∗f(N).
Let F be a rational function in rat(σ(T )). Put BF = the norm closure of

{g(F (N)) ; g ∈ rat(σ(F (N))} then P belongs to latBF . Hence

‖ (1− P )F (N)∗P ‖
≤ dist(F (N)∗,BF ) ≤ dist(z̄, rat(σ(F (N))))

≤ {Area(σ(F (N)))/π}1/2

by the Alexander’s theorem [1]. Hence, applying F to F = z or F = f

‖ T ∗f(T )− f(T )T ∗ ‖
≤ ‖ (1− P )f(N)∗P ‖ · ‖ (1− P )N∗P ‖
≤ {Area(σ(f(N)))/π}1/2{Area(σ(N))/π}1/2

≤ {Area(σ(f(T )))/π}1/2{Area(σ(T ))/π}1/2.

If T is a cyclic subnormal operator and KT = TK then using a theorem of
T.Yoshino [12] we can prove that

‖T ∗K −KT ∗‖ ≤ {Area(σ(T ))/π}1/2{Area(σ(K))/π}1/2.

The proof is almost same to one of Theorem 1.

§3. p-hyponormal

In order to prove Theorem 2, we use an operator version of the Alexander in-
equality for a p-hyponormal operator. Unfortunately Lemma 3 is not best possible for
p = 1 (see [5]). Lemma 1 is due to W.Arveson [2, Lemma 2] and Lemma 2 is due to
A.Uchiyama [11, Theorem 3].
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We need the following notation to give Theorem 2 and Proposition 1. Let φ be a
positive function on (0,∞) such that

φ(t) =

{
t if t is an integer

t + 2 if t is not an integer.

We write `2 ⊗ H for the Hilbert space direct sum H ⊕ H ⊕ · · · , and 1 ⊗ T denotes the
operator T ⊕ T ⊕ · · · ∈ B(`2 ⊗H) for each operator T ∈ B(H).

Lemma 1. Let A be an arbitrary ultra-weakly closed subalgebra of B(H) con-
taining 1, and let T ∈ B(H). Then

dist(T,A) = sup{‖(1− P )(1⊗ T )P‖ ; P ∈ lat(1⊗A)}.

Lemma 2. If T is a p-hyponormal operator, then

‖T ∗T − TT ∗‖ ≤ φ

(
1

p

)
‖T‖2(1−p){Area(σ(T ))/π}p.

Lemma 3. If T is a p-hyponormal operator then

dist(T ∗,A) ≤
√√√√2φ

(
1

p

)
‖T‖1−p{Area(σ(T ))/π}p/2

where A is the strong closure of {f(T ) ; f ∈ rat(σ(T ))}.
Proof. Let S = 1⊗T . Then S is p-hyponormal. In order to prove the lemma, by

Lemma 1 it is enough to estimate sup{‖(1−P )SP‖ ; P ∈ lat(1⊗A)}. If P ∈ lat(1⊗A)
then SP = PSP and so

‖(1− P )SP‖2

= ‖PSS∗P − PSPS∗P‖
= ‖PSS∗P − PS∗SP + PS∗SP − PSPS∗P‖
≤ ‖P (S∗S − SS∗)P‖+ ‖(PSP )∗(PSP )− (PSP )(PSP )∗‖
≤ ‖S∗S − SS∗‖+ ‖(PSP )∗(PSP )− (PSP )(PSP )∗‖.

By [11, Lemma 4], PSP is p-hyponormal and so by Lemma 2 we have

‖PSS∗P − PSPS∗P‖2

≤ φ

(
1

p

)
‖T‖2(1−p){Area(σ(T ))/π}p + φ

(
1

p

)
‖PSP‖2(1−p){Area(σ(PSP ))/π}p

≤ 2φ

(
1

p

)
‖T‖2(1−p){Area(σ(T ))/π}p
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because ‖PSP‖ ≤ ‖S‖ = ‖T‖ and σ(PSP ) ⊂ σ(S) = σ(T ). By Lemma 1,

dist(T ∗,A) ≤
√√√√2φ

(
1

p

)
‖T‖1−p{Area(σ(T ))/π}p/2.

Theorem 2. If T is a p-hyponormal operator in B(H) and if K is in B(H) with
KT = TK, then

‖T ∗K −KT ∗‖ ≤ 2

√√√√2φ

(
1

p

)
‖T‖1−p{Area(σ(T ))/π}p/2‖K‖.

Proof. When A is the strong closure of {f(T ) ; f ∈ rat(σ(T ))}, for any A ∈ A
‖T ∗K −KT ∗‖ = ‖(T ∗ − A)K + AK −KT ∗‖ ≤ 2‖T ∗ − A‖‖K‖.

Now Lemma 3 implies the theorem.

In Theorem 2, if p = 1, that is, T is hyponormal then ‖ T ∗K − KT ∗‖ ≤
2
√

2{Area(σ(T ))/2}1/2‖K‖. The constant 2
√

2 is not best because the second author

[5] proved that ‖T ∗K − KT ∗‖ ≤ 2{Area(σ(T ))/2}1/2‖K‖. If p =
1

2
, that is, T is semi-

hyponormal then ‖T ∗K −KT ∗‖ ≤ 4‖T‖1/2{Area(σ(T ))/π}1/4‖K‖.

§4. Norm estimates

In general, it is easy to see that ‖T ∗T − TT ∗‖ ≤ ‖T‖2. By Theorem 1, if T is
subnormal and f is an analytic polynomial then

‖T ∗f(T )− f(T )T ∗‖ ≤ ‖T‖‖f(T )‖.
In this section, we will prove that ‖T ∗T n − T nT ∗‖ ≤ ‖T‖n+1 for arbitrary T in B(H).

Theorem 3. If T is a contraction on H and f is an analytic function on the
closed unit disc D̄ then ‖ T ∗f(T )− f(T )T ∗ ‖≤ sup

z∈D
| f(z) |.

Proof. By a theorem of Sz.-Nagy [6], there exists a unitary operator U on K
such that K is a Hilbert space with K ⊇ H and T n = PUn | K for n ≥ 0 where P
is an orthogonal projection from K to H. Then it is known that U∗P = PU∗P and
f(T ) = Pf(U) | H. Hence

T ∗f(T )− f(T )T ∗

= PU∗Pf(U)P − Pf(U)PU∗P

= PU∗Pf(U)P − Pf(U)U∗P

= PU∗(I − P )f(U)P
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because U∗P = PU∗P and f(U)U∗ = U∗f(U). Therefore

‖ T ∗f(T )− f(T )T ∗ ‖
= ‖ PU∗(I − P )f(U)P ‖≤ sup

z∈D
| f(z) | .

Corollary 1. If T is in B(H) then for any n ≥ 1 ‖ T ∗T n − T nT ∗ ‖≤‖ T ‖n+1.
Proof. Put A = T/‖T‖ then A is a contraction and so by Theorem 2

‖A∗An − AnA∗‖ ≤ 1 and so ‖T ∗T n − T nT ∗‖ ≤ ‖T‖n+1.

§5. Remarks

In this section, we give spectral area estimates for p-quasihyponomal operators,
restricted shifts and analytic Toeplitz operators.

For 0 < p ≤ 1, T is said to be p-quasihyponormal if T ∗{(T ∗T )p − (TT ∗)p}T ≥ 0.
A 1-quasihyponormal operator is called quasihyponormal.

Lemma 4. Let T be p-quasihyponormal and P be a projection such that TP =
PTP . Then PTP is also p-quasihyponormal.

Proof. Since T is p-quaihyponormal, T ∗(T ∗T )pT ≥ T ∗(TT ∗)pT . Hence, we have

PT ∗(T ∗T )pTP ≥ PT ∗(TT ∗)pTP.

Since by the Hansen’s inequality [4]

PT ∗(T ∗T )pTP = (PTP )∗P (T ∗T )pP (PTP )

　 ≤ (PTP )∗(PT ∗TP )p(PTP )

　 = (PTP )∗{(PTP )∗(PTP )}p(PTP )

and by 0 < p < 1

PT ∗(TT ∗)pTP ≥ (PT ∗P )(TPT ∗)p(PTP )

　 = (PTP )∗{(PTP )(PTP )∗}p(PTP ),

we have
(PTP )∗{(PTP )∗(PTP )}p ≥ (PTP )∗{(PTP )(PTP )∗}p(PTP ).

Hence, PTP is p-quasihyponormal.

Proposition 1. If T is a p-quasihyponormal operator in B(H) and if K is in
B(H) with KT = TK, then

‖T ∗K −KT ∗‖ ≤ 4

[
φ

(
1

p

)]1/4

‖T‖1−p/2{Area(σ(T ))/π}p/4‖K‖.
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In particular, if T is quasihyponormal then

‖T ∗K −KT ∗‖ ≤ 4‖T‖1/2{Area(σ(T ))/π}1/4‖K‖.

Proof. We can prove it as in the proof of Theorem 2. By [11, Theorem 6],

‖T ∗T − TT ∗‖ ≤ 2‖T‖2−p
√

φ(1
p
){Area(σ(T ))/π}p/2. Hence by Lemma 4

dist(T ∗,A) ≤ 2‖T‖1− p
2 φ

(
1

p

) 1
4

{Area(σ(T ))/π}p/4.

This implies the proposition.

Let H2 and H∞ be the usual Hardy spaces on the unit circle and z the coordinate
function. M denotes an invariant subspace of H2 under the multiplication by z. By the
well known Beurling theorem, M = qH2 for some inner function. Suppose N is the
orthogonal complement of M in H2. For a function φ in H∞, Sφ is an operator on N
such that Sφf = P (φf) (f ∈ N) where P is the orthogonal projection from H2 to N .
For a symbol φ in L∞, Tφ denotes the usual Toeplitz operator on H2.

Proposition 2. Suppose Φ = qφ̄ belongs to H∞. Then
(1) ‖ S∗φSφ − SφS

∗
φ ‖≤ Area(Φ(D))/π ;

(2) ‖ S∗φS
n
φ − Sn

φS∗φ ‖≤ {Area(Φ(D))/π}n+1 for n ≥ 0.

Proof. By a well known theorem of Sarason [8],

‖ Sφ ‖=‖ φ + qH∞ ‖=‖ q̄φ + H∞ ‖=‖ Φ̄ + H∞ ‖ .

By Nehari’s theorem [6], ‖ Φ̄ + H∞ ‖=‖ HΦ̄ ‖ where HΦ̄ denotes a Hankel operator from
H2 to z̄H̄2. Since ‖ HΦ̄ ‖2=‖ T ∗

ΦTΦ − TΦT ∗
Φ ‖ where TΦ denotes a Toeplitz operator on

H2, by the Putnam inequality

‖ T ∗
ΦTΦ − TΦT ∗

Φ ‖≤ Area(σ(TΦ))/π = Area(Φ(D))/π.

Now since ‖ S∗φSφ − SφS
∗
φ ‖≤‖ Sφ ‖2, (1) follows. (2) is also clear by the proof above and

Corollary 1.

Proposition 3. Suppose f and g are in H∞. Then

‖T ∗
f Tg − TgT

∗
f ‖ ≤ {Area(f(D))/π}1/2{Area(g(D))/π}1/2

Proof. It is easy to see that T ∗
f Tg − TgT

∗
f = H∗

ḡHf̄ . Hence

‖T ∗
f Tg − TgT

∗
f ‖ ≤ ‖Hḡ‖ · ‖Hf̄‖.
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Since H ∗̄
fHf̄ = T ∗

f Tf − TfT
∗
f , by the Putnam inequalty

‖T ∗
f Tg − TgT

∗
f ‖ ≤ {Area(f(D))/π}1/2{Area(g(D))/π}1/2.
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