Integral Operators on a Subspace of Holomorphic Functions on the Disc

by

Takahiko Nakazi*

2000 Mathematics Subject Classification : Primary 30 D 45, 30 D 55 ; Secondary 47 B 38

Key words and phrases : Integration operator, Nevanlinna type space, Bloch space, open unit disc

* This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education
Abstract. Let $H(D)$ be an algebra of all holomorphic functions on the open unit disc D and X a subspace of $H(D)$. When g is a function in $H(D)$, put

$$J_g(f)(z) = \int_0^z f(\zeta)g'(\zeta)d\zeta \text{ and } I_g(f)(z) = \int_0^z f'(\zeta)g(\zeta)d\zeta \quad (z \in D)$$

for f in X. In this paper, we study $J[X] = \{g \in H(D) : J_g(f) \in X \text{ for all } f \in X\}$ and $I[X] = \{g \in H(D) : I_g(f) \in X \text{ for all } f \in X\}$. We apply the results to concrete spaces. For example, we study $J[X]$ and $I[X]$ when X is a weighted Bloch space, a Hardy space or a Privalov space.

§1. Introduction

Let D denote the open unit disc in the complex plane \mathbb{C} and $H = H(D)$ the set of all holomorphic functions on D. For a given g in H, define three operators :

$$(M_gf)(z) = g(z)f(z) \quad (f \in H, \; z \in D)$$
$$I_gf(z) = \int_0^z f(\zeta)g'(\zeta)d\zeta \quad (f \in H, \; z \in D)$$

and

$$(I_gf)(z) = \int_0^z f'(\zeta)g(\zeta)d\zeta \quad (f \in H, \; z \in D).$$

Then $(J_gf)(z) + (I_gf)(z) = (M_gf)(z) - g(0)f(0)$. If $g(z) = z$ then J_g is the Voltera integral operator and if $g(z) = \log 1/(1 - z)$ then J_g is the Cesàro operator.

In this paper we assume that X is a subspace of H which contains constants. X_1 denotes the set of all holomorphic functions on X_1 and $I[X_1]$ denotes the set of all bounded linear operators on X. For each subspace X put

$$M[X] = \{g \in H ; \; M_g(X) \subseteq X\},$$
$$J[X] = \{g \in H ; \; J_g(X) \subseteq X\}$$

and

$$I[X] = \{g \in H ; \; I_g(X) \subseteq X\}.$$ We define that $J^{n+1}[X] = J[J^n[X]]$ and $I^{n+1}[X] = I[I^n[X]]$ for $n \geq 1$ where $J^1[X] = J[X]$ and $I^1[X] = I[X]$. For X and Y which are subspaces of H, XY denotes a subspace of H which is generated by a product of a function in X and one in Y. Let Y^n be a subspace of H which is generated by finite n products of functions in a subspace Y of H. For a subspace X of H, $B(X)$ denotes the set of all bounded linear operators on X.

Now we give a lot of examples of X. For $0 < p \leq \infty$, H^p is the usual Hardy space on D. N is the Nevalinna class and N_+ is the Smirnov class on D. These are F-spaces, and N and N_+ are algebras. It is known that $J[H^p] = \text{BMOA}$ (see [2], [1]), $z \notin J[N]$ [5] and $z \notin J[N_+]$ [7]. The Bloch space B is defined to be a Banach space in H with the norm

$$\|f\| = \sup_{z \in D} (1 - |z|^2)|f'(z)| + |f(0)|.$$
Then \mathcal{B} contains H^∞ properly. Recently, R. Yoneda [8] described $J[\mathcal{B}]$ and he [9] also proved that $I[\mathcal{B}] = H^\infty$. It is well known that $M[H^p] = H^\infty$.

In Section 2, we assume only that X is a subspace of H. Theorem 1 implies that $J[X]^n \subset X$ for any $n \geq 1$. In Section 3, we study $J[X]$ and $I[X]$ when X is an invariant subspace of H or a subalgebra of H. Theorem 2 implies that if $H^\infty X \subset X$ and $J[X]$ contains z then $J[X] \supseteq H^\infty$. In Section 4, assuming that X is a F-space we show that $J[X]$ is contained in some weighted Bloch space and $I[X] \subset H^\infty$. In Section 5, we define a weighted Bloch space B_ω and we describe $J[B_\omega]$. In Section 6, we study $J \left[\bigcap_{t<p} H^t \right]$ and $I \left[\bigcap_{t<p} H^t \right]$. In Section 7, we show that $J[N^p]$ is a subalgebra of N^p which contains N^p_1, where N^p is a Privalov space.

§2. Subspace

In this section, we study $M[X]$, $J[X]$ and $I[X]$ assuming only that X is a subspace of H.

Lemma 1. Let X be a subspace of H and f, g in H.

1. $I_g I_f I_g f = I_f I_g$ on X
2. $I_g J_f = J_f M_g$ on X

Proof. (1) For $k \in X$,

$$((I_g I_f)k)(z) = \int_0^z (I_f k)'(\zeta)g(\zeta)d\zeta = \int_0^z k'(\zeta)f(\zeta)g(\zeta) d\zeta = (I_f g k)(z)$$

(2) For $k \in X$,

$$((I_g J_f)k)(z) = \int_0^z (J_f k)'(\zeta)g(\zeta)d\zeta = \int_0^z k(\zeta)f'(\zeta)g(\zeta) d\zeta = (J_f M_g k)(z).$$

Theorem 1. Let X be a subspace of H with constants. Then $J[X]$ is a subspace of X with constants and $J[X]^n \subset X$.

Proof. If $g \in J[X]$ then $J_g(1) = g - g(0) \in X$ and so $g \in X$ because $1 \in X$. Hence $J[X]$ is a subspace of X with constants.

Assuming $J[X]^n \subset X$, we will show that $J[X]^{n+1} \subset X$. Suppose that $g \in J[X]$ and $\{g_j\}_{j=1}^n \subset J[X]$. In order to prove that $g \prod_{j=1}^n g_j$ belongs to X, we will use the following
equalities.

\[
\int_{0}^{z} g(\zeta) \left(\prod_{j=1}^{n} g_{j} \right) (\zeta) d\zeta
= g(z) \left(\prod_{j=1}^{n} g_{j} \right) (z) - g(0) \left(\prod_{j=1}^{n} g_{j} \right) (0) - \int_{0}^{z} g'(\zeta) \left(\prod_{j=1}^{n} g_{j} \right) (\zeta) d\zeta
\]

and

\[
\int_{0}^{z} g(\zeta) \left(\prod_{j=1}^{n} g_{j} \right) ' (\zeta) d\zeta = \sum_{\ell=1}^{n} \int_{0}^{z} (g(\zeta) \prod_{j=1}^{n} g_{j}(\zeta)) g_{\ell}(\zeta) d\zeta.
\]

By hypothesis on induction, \(\prod_{j=1}^{n} g_{j} \in X \) and so \(\int_{0}^{z} g'(\zeta) \left(\prod_{j=1}^{n} g_{j} \right) (\zeta) d\zeta \in X \) because \(g \in J[X] \). By hypothesis on induction, for \(\ell = 1, \ldots, n \) \(\prod_{j\neq\ell} g_{j} \in X \) and so \(\int_{0}^{z} (g(\zeta) \prod_{j=1}^{n} g_{j}(\zeta)) g_{\ell}(\zeta) d\zeta \in X \) because \(g_{\ell} \in J[X] \). By the above two equalities, \(\prod_{j=1}^{n} g_{j} \) belongs to \(X \). This implies that \(J[X]^{n+1} \subset X \).

Proposition 1. Let \(X \) be a subspace of \(H \) with constants. Then \(I[X] \) is a subalgebra of \(H \).

Proof. If \(k \in I[X] \) and \(g \in I[X] \) then it is easy to see that \(I_{k}I_{g} = I_{kg} \) (see Proposition 3). Hence \(I_{k}I_{g}(X) = I_{k}(I_{g}(X)) \subset I_{k}(X) \subset X \) and so \(kg \) belongs to \(I[X] \). It is clear that \(I[X] \) is a subspace of \(H \).

Proposition 2. Suppose \(X \) is a subspace of \(H \) with constants.

1. \(M[X] \) is an algebra in \(X \).
2. \(J[X] \cap M[X] = I[X] \cap M[X] \).
3. \(J[X] \cap I[X] \subset M[X] \).
4. \(J[X] \subset M[X] \) if and only if \(J[X] \subset I[X] \). Similarly \(I[X] \subset M[X] \) if and only if \(I[X] \subset J[X] \).

Proof. (1) is clear. (2) and (3) follow from the equality: \(J_{g}f + I_{g}f = M_{g}f - g(0)f(0) \). (4) If \(J[X] \subset M[X] \) then by (2) \(J[X] \subset I[X] \). Conversely if \(J[X] \subset I[X] \) then by (3) \(J[X] \subset M[X] \).

§3. Invariant subspace and subalgebra

In this section, we study \(J[X] \) and \(I[X] \) when \(X \) is an invariant subspace or a subalgebra of \(H \).
Theorem 2. Suppose that X is a subspace of H with constants and $kX \subset X$ for any k in H^∞.

(1) If g_0 is an arbitrary function in $J[X]$, then $J[X]$ contains $\{g \in H : |g'(z)| \leq |g'_0(z)|(z \in D)\}$.

(2) If $J[X]$ contains z then it contains H^∞.

(3) Suppose $J[X]$ contains z. If $\{g_n\}$ is in $J[X]$ and $g_n' \to g'$ uniformly on D then g belongs to $J[X]$.

(4) $zJ[X] \subset J[X]$ if and only if $J_z(J[X]X) \subset X$.

(5) $J[X] \cap H^\infty \subset I[X]$ and hence $I[X]$ contains H^∞ if $z \in J[X]$.

Proof. (1) If $g \in H$ and $|g'(\zeta)| \leq |g'_0(\zeta)|(\zeta \in D)$, then $g'(g'_0)^{-1} \in H^\infty$ and so $fg'(g'_0)^{-1} \in X$ for any $f \in X$. Hence for any $f \in X$

$$\int_0^z f(\zeta)g'(\zeta)d\zeta = \int_0^z f(\zeta)g'(\zeta)g'_0(\zeta)^{-1}g'_0(\zeta)d\zeta$$

belongs to X because $fg'(g'_0)^{-1} \in X$ and $g_0 \in J[X]$. This implies that g belongs to $J[X]$. (2) Since $z \in J[X]$, by (1) and the definition of H^∞, H^∞ is contained in $J[X]$.

(3) If $g_n' \to g'$ uniformly on D, then $(g - g_n)' \in H^\infty$. Hence $f(g - g_n)' \in X$ for any $f \in X$. Therefore g belongs to $J[X]$ because $z \in J[X]$ and

$$\int_0^z f(\zeta)g'(\zeta)d\zeta = \int_0^z f(\zeta)(g(\zeta) - g_n(\zeta))'d\zeta + \int_0^z f(\zeta)g'_n(\zeta)d\zeta.$$

(4) follows trivially from the following equality:

$$\int_0^z f(\zeta)(g(\zeta))'d\zeta = \int_0^z f(\zeta)g(\zeta)d\zeta + \int_0^z f(\zeta)g'_n(\zeta)d\zeta$$

for $f \in X$ and $g \in J[X]$.

(5) By the equality : $I_g(f) = fg - (fg)(0) - J_g(f)$, if $g \in J[X] \cap H^\infty$ and $f \in X$ then $I_g(f)$ belongs to X because $gX \subset X$.

Proposition 3. If X is a subalgebra of H which contains constants then $M[X] = X$, $J[X]$ is also a subalgebra of X and $J[X] = I[X] \cap X$.

Proof. $M[X] = X$ is clear. If both g and h are in $J[X]$, then by Theorem 1 both fh and fg belongs to X for any $f \in X$ because X is an algebra. Hence gh belongs to $J[X]$ by the following equality : $J_{gh}(f) = J_g(fh) + J_h(fg)$ for any $f \in X$. This implies that $J[X]$ is a subalgebra of X by Theorem 1. From (2) of Proposition 2 $J[X] = I[X] \cap X$ follows.

\[4.] F-space

Let X be an F-space in H with an invariant metric d. For each a in D, put for f in X

$$\mathcal{E}_af = f(a) \quad \text{and} \quad \mathcal{D}_af = f'(a).$$
In this section we assume that both \(\mathcal{E}_a \) and \(\mathcal{D}_a \) are bounded on \(X \). Put
\[
S(a) = \sup\{|\mathcal{E}_a(f)| ; f \in X, \ d(f,0) \leq 1\}
\]
and
\[
s(a) = \sup\{|\mathcal{D}_a(f)| ; f \in X, \ d(f,0) \leq 1\},
\]
then \(S(a) < \infty \) and \(s(a) < \infty \) if \(a \in D \). Suppose \(\nu \) is a nonnegative function on \(D \). For a function \(f \) in \(H \) put
\[
\|f\|_{\nu} = \sup_{z \in D} \nu(z)|f'(z)| + |f(0)|
\]
and
\[
\mathcal{B}_\nu = \{f \in H ; \|f\|_{\nu} < \infty\}.
\]
If \(\nu \) is bounded, \(\mathcal{B}_\nu \) contains all holomorphic functions on the closed unit disc \(\bar{D} \).

Proposition 4. If \(X \) is an \(F \)-space such that \(S(a) < \infty \) and \(s(a) < \infty \) for each \(a \in D \), then \(M[X], J[X] \) and \(I[X] \) belongs to \(B[X] \).

Proof. We will prove only that \(J[X] \subset B[X] \) because the other statements are similar. By the closed graph theorem, it is enough to prove that for \(\phi \in \mathcal{E}_X \) if \(f_n \to f \) in \(X \) and \(J_\phi(f_n) \to F \) then \(J_\phi(f) = F \). Since \(S(a) < \infty \), \(f_n(a) \to f(a) \) \((a \in D) \). Since \(s(a) < \infty \), \(f_n(a)\phi'(a) \to F'(a) \) \((a \in D) \). Thus \(f(a)\phi'(a) = F'(a) \) and so \(J_\phi(f) = F \) because \(F(0) = 0 \).

Theorem 3. Let \(X \) be an \(F \)-space in \(H \) with an invariant metric \(d \). Suppose that \(\sup |s(a)| \leq 1/\epsilon \) for any \(\epsilon > 0 \). Then \(J[X] \subset \mathcal{B}_{\omega_0} \cap X \) and \(I[X] \subset H^\infty \), where \(\omega_0 = 1/sS \).

Proof. If \(g \in J[X] \) then by Proposition 4, for any \(f \in X \)
\[
d(J_g f,0) \leq \|J_g\|d(f,0).
\]
Since \(J_g f \in X \), by definition of \(\mathcal{D}_z \) \(|\mathcal{D}_z(J_g f)| \leq s(z)d(J_g f,0)(z \in D) \). Hence
\[
s(z)^{-1} |f(z)| |g'(z)| \leq \|J_g\|d(f,0) \quad (z \in D)
\]
and so
\[
s^{-1}(z)S^{-1}(z)|g'(z)| \leq \|J_g\| \quad (z \in D).
\]
By Theorem 1 \(g \) belongs to \(\mathcal{B}_{\omega_0} \cap X \) where \(\omega_0 = 1/sS \). If \(g \in I[X] \) then by Proposition 4, for any \(f \in X \)
\[
d(I_g f,0) \leq \|I_g\|d(f,0).
\]
Since \(I_g f \in X \), by definition of \(\mathcal{D}_z \) \(|\mathcal{D}_z(I_g f)| \leq s(z)d(I_g f,0) \) \((z \in D) \). Hence
\[
s(z)^{-1} |f'(z)||g(z)| \leq \|I_g\|d(f,0) \quad (z \in D)
\]
and so
\[
|g(z)| \leq \|I_g\| \quad (z \in D).
\]

Proposition 5. Let \(X \) be a subspace of \(H \) with constants which is of finite dimension. Then \(J[X] = I[X] = M[X] = \emptyset \).
Proof. Suppose \(\{f_j\}_{j=1}^n \) is a basis in \(X \) with \(f_1 \equiv 1 \). We will show that \(J[X] = \mathcal{C} \).

If \(g \in J[X] \) then by Theorem 1 \(g^\ell \in X \) for any \(\ell \geq 0 \) and so there exist \(\{\alpha_j^\ell\}_{j=1}^n \subset \mathcal{C} \) such that \(g^\ell = \sum_{j=1}^n \alpha_j^\ell f_j \). Hence there exist \(\{b_j\}_{\ell=0}^n \subset \mathcal{C} \) such that \(\sum_{\ell=0}^n b_\ell g^\ell = 0 \). This implies that \(g \) is just constant because \(g \) is analytic. Therefore \(J[X] = \mathcal{C} \). We will show that \(I[X] = \mathcal{C} \). Put \(X_1 = \{f' \; ; \; f \in X\} \). If \(g \in I[X] \) then by Proposition 1 \(g^\ell X_1 \subset X_1 \) for any \(\ell \geq 1 \) and so there exist \(\{\alpha_j^\ell\}_{j=1}^n \subset \mathcal{C} \) such that \(g^\ell f'_j = \sum_{j=2}^n \alpha_j^\ell f'_j \). By the same argument above \(g f'_j \) is constant. Similarly it follows that \(\{g f'_j\}_{j=2}^n \) are constants and so \(g \) is constant because \(\{f'_j\}_{j=2}^n \) is a basis in \(X_1 \). Therefore \(I[X] = \mathcal{C} \).

§5. Weighted Bloch space

Let \(\omega \) be a positive bounded function on \(D \). For a function \(f \) in \(H \) put

\[
\|f\|_\omega = \sup_{z \in D} \omega(z)|f'(z)| + |f(0)|
\]

and

\[
\mathcal{B}_\omega = \{f \in H \; ; \; \|f\|_\omega < \infty\}.
\]

Since \(\omega \) is bounded, \(\mathcal{B}_\omega \) contains all holomorphic functions on the closed unit disc \(\bar{D} \). \(\mathcal{B}_\omega \) is called a weighted Bloch space. A weight \(\omega \) is called measurable when \(\omega(at) \) is measurable on \([0,1]\) for each \(a \) in \(D \). Put \(\varepsilon(r) = \inf \{\omega(z) \; ; \; |z| \leq r\} \) and \(r < 1 \).

Lemma 2. If \(\varepsilon(r) > 0 \) for \(0 \leq r < 1 \) then \(\mathcal{B}_\omega \) is a Banach space with norm \(\|\cdot\|_\omega \).

Proof. Suppose that \(\{f_n\} \) is a Cauchy sequence in \(\mathcal{B}_\omega \). For any \(\varepsilon > 0 \), there exist a positive integer \(n_0 \) such that \(\|f_n - f_m\|_\omega < \varepsilon \) if \(n, m \geq n_0 \). Hence if \(r < 1 \) and \(z \in D_r = \{z \; ; \; |z| < r\} \) then

\[
|f'_n(z) - f'_m(z)| \leq \frac{\varepsilon}{\omega(z)} \leq \frac{\varepsilon}{\varepsilon(r)}.
\]

By the normal family argument, there exists a function \(f' \in H(D_r) \) such that \(f'_n \to f' \) uniformly on \(D_r \). Hence as \(n \to \infty \),

\[
|f'(z) - f'_m(z)| \leq \frac{\varepsilon}{\omega(z)} \leq \frac{\varepsilon}{\varepsilon(r)} \quad (z \in D_r).
\]

Since \(r \) is arbitrary, \(f \) belongs to \(H(D) \) and

\[
\omega(z)|f'(z) - f'_m(z)| \leq \varepsilon \quad (z \in D)
\]

if \(m \geq n_0 \). Since \(f_m(0) \to f(0) \), \(\|f - f_m\|_\omega \to 0 \).
Theorem 4. Let ω be a measurable, $\varepsilon(r) > 0$ for $0 \leq r < 1$ and $X = \mathcal{B}_\omega$. Then

$$\mathcal{B}_{\omega S} = J[\mathcal{B}_\omega] \quad \text{and} \quad I[\mathcal{B}_\omega] \subset H^\infty$$

where $S(z) = \sup\{|f(z)| \mid f \in \mathcal{B}_\omega, \|f\|_{\omega} \leq 1\}$. Moreover $\|J_g\| = \|g\|_{\omega S}$ for each g in $J[\mathcal{B}_\omega]$ with $g(0) = 0$.

Proof. By Theorem 1, $J[\mathcal{B}_\omega] \subset \mathcal{B}_\omega$. If $g \in J[\mathcal{B}_\omega]$ then $\|J_g f\|_{\omega} \leq \|J_g\| \|f\|_{\omega}$ ($f \in \mathcal{B}_\omega$) and so $\omega(z) |f(z)| \cdot |g'(z)| \leq \|J_g\| \|f\|_{\omega}$. Hence

$$\omega(z) S(z) \cdot |g'(z)| \frac{|f(z)|}{S(z)} \leq \|J_g\| \|f\|_{\omega}$$

and so

$$\omega(z) S(z) \cdot |g'(z)| \leq \|J_g\| \cdot |f\|_{\omega}$$

Therefore g belongs to $\mathcal{B}_{\omega S}$ and $\|g\|_{\omega S} \leq \|J_g\| + |g(0)|$. Thus $J[\mathcal{B}_\omega] \subset \mathcal{B}_{\omega S}$. Note that $\mathcal{B}_{\omega S} \subset \mathcal{B}_\omega$ because $S(z) \geq 1$ ($z \in D$). Conversely if $g \in \mathcal{B}_{\omega S}$ then

$$\omega(z)|J_g (f)'(z)| = \omega(z) S(z) \cdot |g'(z)| \frac{|f(z)|}{S(z)} \leq \|g\|_{\omega S} \|f\|_{\omega}$$

and so g belongs to $J[\mathcal{B}_\omega]$. Thus

$$\|g\|_{\omega S} \leq \|J_g\| + |g(0)| \leq \|g\|_{\omega S} + |g(0)|.$$

In Theorem 4, if ω is an absolute value of some analytic function and a radial function, R.Yoneda ([8],[9]) showed those under some special technical conditions on ω.

§6. Hardy space

For $0 < p \leq \infty$, H^p denotes $\bigcap_{t<p} H^t$ and H^∞ is written as H^ω. For $0 < p < \infty$, when $W = h^p$ for an outer function h in H^p, $H^p(W)$ denotes a weighted Hardy space that is, the closure of H^ω in $L^p(Wd\theta/2\pi)$.

Lemma 3 is well known (cf. [3, Theorem 5.12]). In Proposition 6 it is known ([1],[2]) that $J[H^p] = \text{BMOA}$. Hence our result is weaker than that. However if $J[H^p] = \text{BMOA}$ then our result shows that $I[H^p] = H^\infty$.

Lemma 3. (1) For $0 < p < 1$, if f is a function in H^p then $\int \frac{f(\zeta)d\zeta}{\zeta}$ belongs to $H^{p/(1-p)}$. (2) If f is a function in H^1 then $\int \frac{f(\zeta)d\zeta}{\zeta}$ belongs to H^∞.

Proposition 6. For $0 < p < \infty$, $H_1^\infty \subset J[H^p] \subset H^\omega$ and $J[H^p] \subset J[H^p]$. Moreover $M[H^p] = H^\infty$ and $I[H^p] = J[H^p] \cap H^\infty$.

8
Proof. By Lemma 3, \(z \in J[H^p] \) and so by (2) of Theorem 2 \(H_1^\infty \subset J[H^p] \).

Theorem 1 implies that \(J[H^p] \subset H^\omega \). By (5) of Theorem 2, \(J[H^p] \cap H^\infty \subset I[H^p] \). Theorem 3 implies that \(I[H^p] \subset H^\infty \). Hence \(I[H^p] \cap H^\infty \subset H^\infty \) and so (4) of Proposition 2 \(I[H^p] \subset J[H^p] \). It is well known that \(M[H^p] = H^\infty \). By (2) of Proposition 2 \(I[H^p] = J[H^p] \cap H^\infty \). By (4) of Theorem 2, to prove that \(zJ[H^p] \subset J[H^p] \) it is sufficient to show that \(J_z(J[H^p]H^p) \subset H^p \). Since \(J[H^p]H^p \subset H^p \), by Lemma 2, \(J_z(J[H^p]H^p) \subset H^p \).

Theorem 5. For \(0 < p < \infty \), \(\bigcap_{t<1} H^t \subset J[H^p] \subset H^\omega \) and so \(\log(1-z)^{-1} \) belongs to \(J[H^p] \). Moreover \(zJ[H^p] \subset J[H^p] \), \(M[H^p] = H^\infty \) and so \(J[H^p] \cap H^\infty = I[H^p] \cap H^\infty \).

When \(p = \infty \), \(J[H^\omega] = I[H^\omega] \cap H^\omega \) and \(J[H^\omega] \) is a subalgebra of \(H^\omega \) which contains \(H_1^\infty \).

Proof. By Theorem 1, \(J[H^p] \subset H^\omega \). We will show that \(\bigcap_{t<1} H^t \subset J[H^p] \). If \(g \in \bigcap_{t<1} H^t \) then \(g' \) belongs to \(H^{1-} \). If \(f \in H^{1-} \) then \(f \) belongs to \(H^t \) for any \(0 < t < p \). If \(0 < s < t/(t+1) \) then \(t/s > 1 \) and \(1/(t+s) + 1/(t/t - s) = 1 \). By the Hölder inequality,

\[
\int_0^{2\pi} |f(e^{i\theta})g'(e^{i\theta})|^s \, d\theta / 2\pi \leq \left(\int_0^{2\pi} |f(e^{i\theta})|^t \, d\theta / 2\pi \right)^{\frac{s}{t}} \left(\int_0^{2\pi} |g'(e^{i\theta})|^{t/s} \, d\theta / 2\pi \right)^{\frac{s}{t}}
\]

and so \(f g' \) belongs to \(\bigcap_{s<t/(t+1)} H^s \). By Lemma 3, \(\int_0^{2\pi} f(\zeta)g'(\zeta) d\zeta \) belongs to \(H^{1-} \). As \(s \to t/(t+1) \), \(s/(1-s) \to t \) and so \(\int_0^{2\pi} f(\zeta)g'(\zeta) d\zeta \) belongs to \(H^{1-} \). As \(t \to p \), \(\int_0^{2\pi} f(\zeta)g'(\zeta) d\zeta \) belongs to \(H^p \). Thus \(J_z[H^p] \subset H^p \) and so \(\bigcap_{t<1} H^t \subset J[H^p] \). By (4) of Theorem 2, if we show that \(J_z(J[H^p]H^p) \subset H^p \) then it follows that \(zJ[H^p] \subset J[H^p] \). Since \(J[H^p] \cap H^p \subset H^p \), by Lemma 4 \(J_z(J[H^p]H^p) \subset H^p \). It is known that \(M[H^p] = H^\infty \). The last statement is a result of (2) of Proposition 2.

When \(p = \infty \), by Proposition 3 \(J[H^\omega] = I[H^\omega] \cap H^\omega \) and \(J[H^\omega] \) is a subalgebra of \(H^\omega \). Theorem 2 implies \(J[H^\omega] \supset H_1^\infty \).

Theorem 6. Let \(1 \leq p < \infty \) and \(W = |h|^p \) for some outer function \(h \in H^p \).

Then \(\{g \in H; g(z) = \int_0^z h(\zeta)k(\zeta) d\zeta \text{ and } k \in H^{p-1} \} \subset J[H^p(W)] \subset H^w(W) \). \(M[H^p(W)] = H^\infty \) and \(J[H^p(W)] \cap H^\infty = I[H^p(W)] \). There exists a weight \(W \) such that \(z \) does not belong to \(J[H^p(W)] \).

Proof. If \(g(z) = \int_0^z h(\zeta)k(\zeta) d\zeta \) and \(k \in H^{p-1} \), then

\[
h(z)\{J_g(h^{-1}f)\}(z) = h(z)\int_0^z f(\zeta)k(\zeta) d\zeta
\]

and so \(h J_z h^{-1} f \) belongs to \(H^p \) for all \(f \in H^p \) by Lemma 3 because \(f k \in H^1 \). Therefore \(\{g \in H; g(z) = \int_0^z h(\zeta)k(\zeta) d\zeta \text{ and } k \in H^{p-1} \} \subset J[H^p(W)] \). By Theorem 1, \(J[H^p(W)] \subset 9 \)
\[\bigcap_{p<\infty} H^p(W). \] In fact, since \(g^n h \in H^p \) for any \(n \geq 1 \), \(gh^{1/n} \in H^{np} \) and so \(g \) belongs to \(H^{np}(W) \). If \(\phi \in M(H^p(W)) \) then \(\phi(h^{-1}H^p) \subset h^{-1}H^p \) and so \(\phi H^p \subset H^p \). Hence \(\phi \in M(H^p) = H^\infty \). Therefore \(M(H^p(W)) = H^\infty \) and so by (2) of Proposition 2 \(J[H^p(W)] \cap H^\infty = I[H^p(W)] \cap H^\infty \). For \(a \in D \) it is easy to see that

\[
\sup \{ |f(a)| : f \in H^p(W) \text{ and } \|f\|_{W, p} \leq 1 \} = (1 - |a|^{2-1/p})^{-1} / |h(a)|^{-p} < \infty
\]

and so by Theorem 3 \(I[H^p(W)] \subset H^\infty \). Thus \(J[H^p(W)] \cap H^\infty = I[H^p(W)] \). If \(J_z(H^p(W)) \subset H^p(W) \) for any \(W \) with \(\log W \in L^1(d\theta/2\pi) \) then \(J_z(N_+) \subset N_+ \). For by a theorem of H.Helson [6] \(N_+ \) is the union of all \(H^p(W) \) as \(W \) ranges over the set of weights with summable \(\log W \). Hence there exists a weight \(W \) such that \(z \notin J[H^p(W)] \). Because it is known that \(J_z(N_+) \not\subset N_+ \) [7].

§7. Privalov space

We denote by \(N^p \), for \(1 \leq p < \infty \), the set of all functions \(f \) in \(H \) which satisfy

\[
\sup_{0<r<1} \int_0^{2\pi} (\log^+ |f(r\, e^{i\theta})|^p) d\theta < \infty.
\]

When \(p = 1 \), \(N^p \) is just \(N \). Then

\[
\bigcup_{p>0} H^p \subset \bigcap_{p>1} N^p \text{ and } \bigcup_{p>1} N^p \subset N_+ \subset N^1 = N.
\]

Proposition 7. Let \(X = N_+ \) or \(N \). Then \(J[X] \) is a subalgebra of \(X \) and \(J[X] = I[X] \cap X \). If \((f)^{-1} \) is in \(H^\infty \) then \(f \) does not belong to \(J[X] \).

Proof. It is known that \(N_+ \) and \(N \) are subalgebras of \(H \). Hence the first part of this proposition is a result of Theorem 1 and Proposition 3. By [5] and [7], \(z \notin J[X] \) and so the second part follows from (1) of Theorem 2.

In Proposition 7, it is known ([5],[7]) that \(z \notin J[X] \). Hence \(I[X] \not\subset z \). We don’t know whether \(J[X] = \mathcal{C} \) and \(I[X] = \mathcal{C} \).

Theorem 7. If \(1 < p < \infty \) then \(J[N^p] \) is a subalgebra of \(N^p \) which contains \(N_+^p \), and \(J[N^p] = I[N^p] \cap N^p \).

Proof. Suppose \(1 < p < \infty \) and \(g \in N_+^p \). If \(f \in N^p \) then

\[
\left\{ \int_0^{2\pi} (\log^+ |(J_g f)(r\, e^{i\theta})|^p) d\theta / 2\pi \right\}^{1/p} = \left\{ \int_0^{2\pi} \left(\log^+ \left| \int_0^t f(t\, e^{i\theta}) g'(t\, e^{i\theta}) \, dt \right|^p \right) d\theta / 2\pi \right\}^{1/p}
\]

10
\[\leq \left\{ \int_0^{2\pi} \left(\log^+ \int_0^1 |f(te^{i\theta})g'(te^{i\theta})| \, dt \right)^p \, d\theta / 2\pi \right\}^{1/p} \]

\[\leq \left\{ \int_0^{2\pi} \left(\log^+ \sup_{0 \leq t < 1} |f(te^{i\theta})| + \log^+ \sup_{0 \leq t < 1} |g'(te^{i\theta})| \right)^p \, d\theta / 2\pi \right\}^{1/p} \]

\[\leq \left\{ \int_0^{2\pi} \left(\log^+ \sup_{0 \leq t < 1} |f(te^{i\theta})| \right)^p \, d\theta / 2\pi \right\}^{1/p} + \left\{ \int_0^{2\pi} \left(\log^+ \sup_{0 \leq t < 1} |g'(te^{i\theta})| \right)^p \, d\theta / 2\pi \right\}^{1/p} \]

Put \(u(r, \theta) = \frac{1}{2\pi} \int_0^{2\pi} P_r(t-\theta) \log^+ |f(e^{it})| \, dt \), then \(u(r, \theta) \geq \log^+ |f(re^{i\theta})| \). Since \(\log^+ |f(e^{it})| \in L^p \), by a theorem of Hardy and Littlewood (cf. [3, Proposition 1.8]), \(\sup_{0 \leq r < 1} u(r, \theta) \) belongs to \(L^p \) and so \(\log^+ \sup_{0 \leq r < 1} |f(re^{i\theta})| \) belongs to \(L^p \). Similarly we can prove that \(\log^+ \sup_{0 \leq r < 1} |g'(re^{i\theta})| \) belongs to \(L^p \). Thus \(Jg \) belongs to \(N^p \). Hence \(N^p_1 \subset J[N^p] \). It is known that \(N^p \) is a subalgebra of \(H \). Hence, by Proposition 3 \(J[N^p] \) is a subalgebra of \(N^p \) and \(J[N^p] = I[N^p] \cap N^p \).
References

2. A.Aleman and A.G.Siskakis, An integral operator on H^p, Complex Variables Theory Appl. 28(1995), 149-158

Hokkaido University
Department of Mathematics
Sapporo 060-0810, Japan

e-mail : nakazi@math.sci.hokudai.ac.jp