<table>
<thead>
<tr>
<th>Title</th>
<th>Integral Operators on a Subspace of Holomorphic Functions on the Disc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nakazi, Takahiko</td>
</tr>
<tr>
<td>Citation</td>
<td>Hokkaido University Preprint Series in Mathematics, 789, 1-12</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2006</td>
</tr>
<tr>
<td>DOI</td>
<td>10.14943/83939</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/69597</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>pre789.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
Integral Operators on a Subspace of Holomorphic Functions on the Disc

by

Takahiko Nakazi*

2000 Mathematics Subject Classification : Primary 30 D 45, 30 D 55 ; Secondary 47 B 38

Key words and phrases : Integration operator, Nevanlinna type space, Bloch space, open unit disc

* This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education
Abstract. Let $H(D)$ be an algebra of all holomorphic functions on the open unit disc D and X a subspace of $H(D)$. When g is a function in $H(D)$, put

$$J_g(f)(z) = \int_0^z f(\zeta)g'(\zeta)d\zeta$$

and

$$I_g(f)(z) = \int_0^z f'(\zeta)g(\zeta)d\zeta \quad (z \in D)$$

for f in X. In this paper, we study $J[X] = \{g \in H(D) : J_g(f) \in X \text{ for all } f \in X\}$ and $I[X] = \{g \in H(D) : I_g(f) \in X \text{ for all } f \in X\}$. We apply the results to concrete spaces. For example, we study $J[X]$ and $I[X]$ when X is a weighted Bloch space, a Hardy space or a Privalov space.

§1. Introduction

Let D denote the open unit disc in the complex plane \mathbb{C} and $H = H(D)$ the set of all holomorphic functions on D. For a given g in H, define three operators :

$$(M_g f)(z) = g(z)f(z) \quad (f \in H, \ z \in D)$$

$$(J_g f)(z) = \int_0^z f(\zeta)g'(\zeta)d\zeta \quad (f \in H, \ z \in D)$$

and

$$(I_g f)(z) = \int_0^z f'(\zeta)g(\zeta)d\zeta \quad (f \in H, \ z \in D).$$

Then $(J_g f)(z) + (I_g f)(z) = (M_g f)(z) - g(0)f(0)$. If $g(z) = z$ then J_g is the Voltera integral operator and if $g(z) = \log 1/(1-z)$ then J_g is the Cesàro operator.

In this paper we assume that X is a subspace of H which contains constants. X_1 denotes the set $\{f \in H ; f' \in X\}$. For each subspace X put

$$M[X] = \{g \in H ; M_g(X) \subseteq X\},$$

$$J[X] = \{g \in H ; J_g(X) \subseteq X\}$$

and

$$I[X] = \{g \in H ; I_g(X) \subseteq X\}.$$

We define that $J^{n+1}[X] = J[J^n[X]]$ and $I^{n+1}[X] = I[I^n[X]]$ for $n \geq 1$ where $J^1[X] = J[X]$ and $I^1[X] = I[X]$. For X and Y which are subspaces of H, XY denotes a subspace of H which is generated by a product of a function in X and one in Y. Let Y^n be a subspace of H which is generated by finite n products of functions in a subspace Y of H. For a subspace X of H, $B(X)$ denotes the set of all bounded linear operators on X.

Now we give a lot of examples of X. For $0 < p \leq \infty$, H^p is the usual Hardy space on D, N is the Nevalinna class and N_+ is the Smirnov class on D. These are \mathcal{F}-spaces, and N and N_+ are algebras. It is known that $J[H^p] = \text{BMOA}$ (see [2], [1]), $z \notin J[N]$ [5] and $z \notin J[N_+]$ [7]. The Bloch space \mathcal{B} is defined to be a Banach space in H with the norm

$$\|f\| = \sup_{z \in D}(1-|z|^2)|f'(z)| + |f(0)|.$$

In Section 2, we assume only that X is a subspace of H. Theorem 1 implies that $J[X]^n \subset X$ for any $n \geq 1$. In Section 3, we study $J[X]$ and $I[X]$ when X is an invariant subspace of H or a subalgebra of H. Theorem 2 implies that if $H^\infty X \subset X$ and $J[X]$ contains z then $J[X] \supset H^\infty_1$. In Section 4, assuming that X is a F-space we show that $J[X]$ is contained in some weighted Bloch space and $I[X] \subset H^\infty$. In Section 5, we define a weighted Bloch space B_ω and we describe $J[B_\omega]$.

In Section 6, we study $J[\bigcap_{t<p} H^t]$ and $I[\bigcap_{t<p} H^t]$. In Section 7, we show that $J[N^p]$ is a subalgebra of N^p which contains N^p_1, where N^p_1 is a Privalov space.

§2. Subspace

In this section, we study $M[X]$, $J[X]$ and $I[X]$ assuming only that X is a subspace of H.

Lemma 1. Let X be a subspace of H and f, g in H.

1. $I_g I_f = I_{gf} = I_f I_g$ on X
2. $I_g J_f = J_f M_g$ on X

Proof. (1) For $k \in X$,

$$((I_g I_f)k)(z) = \int_0^z (I_f k)'(\zeta)g(\zeta)d\zeta = \int_0^z k'(\zeta)f(\zeta)g(\zeta)d\zeta = (I_{gf}k)(z)$$

(2) For $k \in X$,

$$((I_g J_f)k)(z) = \int_0^z (J_f k)'(\zeta)g(\zeta)d\zeta = \int_0^z k(\zeta)f'(\zeta)g(\zeta)d\zeta = (J_f M_g)k)(z) = (J_{fg}k)(z).$$

Theorem 1. Let X be a subspace of H with constants. Then $J[X]$ is a subspace of X with constants and $J[X]^n \subset X$.

Proof. If $g \in J[X]$ then $J_g(1) = g - g(0) \in X$ and so $g \in X$ because $1 \in X$. Hence $J[X]$ is a subspace of X with constants.

Assuming $J[X]^n \subset X$, we will show that $J[X]^{n+1} \subset X$. Suppose that $g \in J[X]$ and $\{g_j\}_{j=1}^n \subset J[X]$. In order to prove that $g \prod_{j=1}^n g_j$ belongs to X, we will use the following
equalities.

\[
\int_0^z g(\zeta) \left(\prod_{j=1}^n g_j \right) (\zeta)d\zeta = g(z) \left(\prod_{j=1}^n g_j \right) (z) - g(0) \left(\prod_{j=1}^n g_j \right) (0) - \int_0^z g'(\zeta) \left(\prod_{j=1}^n g_j \right) (\zeta)d\zeta
\]

and

\[
\int_0^z g(\zeta) \left(\prod_{j=1}^n g_j \right) (\zeta)d\zeta = \sum_{\ell=1}^n \int_0^z (g(\zeta) \prod_{j \neq \ell} g_j(\zeta)) g'_\ell(\zeta)d\zeta.
\]

By hypothesis on induction, \(\prod_{j=1}^n g_j \in X \) and so \(\int_0^z g'(\zeta) \left(\prod_{j=1}^n g_j \right) (\zeta)d\zeta \in X \) because \(g \in J[X] \). By hypothesis on induction, for \(\ell = 1, \ldots, n \) \(g\prod_{j \neq \ell} g_j \in X \) and so \(\int_0^z (g(\zeta) \prod_{j \neq \ell} g_j(\zeta)) g'_\ell(\zeta)d\zeta \in X \) because \(g_\ell \in J[X] \). By the above two equalities, \(g\prod_{j=1}^n g_j \) belongs to \(X \). This implies that \(J[X]^{n+1} \subseteq X \).

Proposition 1. Let \(X \) be a subspace of \(H \) with constants. Then \(I[X] \) is a subalgebra of \(H \).

Proof. If \(k \in I[X] \) and \(g \in I[X] \) then it is easy to see that \(I_k I_g = I_{kg} \) (see Proposition 3). Hence \(I_k I_g(X) = I_k(I_g(X)) \subseteq I_k(X) \subseteq X \) and so \(kg \) belongs to \(I[X] \). It is clear that \(I[X] \) is a subspace of \(H \).

Proposition 2. Suppose \(X \) is a subspace of \(H \) with constants.

(1) \(M[X] \) is an algebra in \(X \).

(2) \(J[X] \cap M[X] = I[X] \cap M[X] \).

(3) \(J[X] \cap I[X] \subseteq M[X] \).

(4) \(J[X] \subseteq M[X] \) if and only if \(J[X] \subseteq I[X] \). Similarly \(I[X] \subseteq M[X] \) if and only if \(I[X] \subseteq J[X] \).

Proof. (1) is clear. (2) and (3) follow from the equality : \(J_g f + I_g f = M_g f - g(0) f(0) \). (4) If \(J[X] \subseteq M[X] \) then by (2) \(J[X] \subseteq I[X] \). Conversely if \(J[X] \subseteq I[X] \) then by (3) \(J[X] \subseteq M[X] \).

§3. Invariant subspace and subalgebra

In this section, we study \(J[X] \) and \(I[X] \) when \(X \) is an invariant subspace or a subalgebra of \(H \).
Theorem 2. Suppose that X is a subspace of H with constants and $kX \subset X$ for any k in H^∞.

(1) If g_0 is an arbitrary function in $J[X]$, then $J[X]$ contains $\{g \in H ; |g'(z)| \leq |g_0'(z)| (z \in D)\}$.

(2) If $J[X]$ contains z then it contains H^∞_1.

(3) Suppose $J[X]$ contains z. If $\{g_n\}$ is in $J[X]$ and $g'_n \to g'$ uniformly on D then g belongs to $J[X]$.

(4) $zJ[X] \subset J[X]$ if and only if $J_z(J[X]X) \subset X$.

(5) $J[X] \cap H^\infty \subset I[X]$ and hence $I[X]$ contains H^∞_1 if $z \in J[X]$.

Proof. (1) If $g \in H$ and $|g'(\zeta)| \leq |g_0'(\zeta)| (\zeta \in D)$, then $g'(g_0^{-1}) \in H^\infty$ and so $fg'(g_0^{-1}) \in X$ for any $f \in X$. Hence for any $f \in X$

$$\int_0^z f(\zeta)g'(\zeta)d\zeta = \int_0^z f(\zeta)g'(\zeta)g_0'(\zeta)^{-1}g_0'(\zeta)d\zeta$$

belongs to X because $f(g'(g_0^{-1}) \in X$ and $g_0 \in J[X]$. This implies that g belongs to $J[X]$.

(2) Since $z \in J[X]$, by (1) and the definition of H^∞_1, H^∞_1 is contained in $J[X]$.

(3) If $g'_n \to g'$ uniformly on D, then $(g - g_n)' \in H^\infty$. Hence $f(g - g_n)' \in X$ for any $f \in X$. Therefore g belongs to $J[X]$ because $z \in J[X]$ and

$$\int_0^z f(\zeta)g'(\zeta)d\zeta = \int_0^z f(\zeta)(g(\zeta) - g_n(\zeta))d\zeta + \int_0^z f(\zeta)g_n(\zeta)d\zeta.$$

(4) follows trivially from the following equality:

$$\int_0^z f(\zeta)(\zeta g(\zeta))'d\zeta = \int_0^z f(\zeta)g(\zeta)d\zeta + \int_0^z f(\zeta)\zeta g'(\zeta)d\zeta$$

for $f \in X$ and $g \in J[X]$.

(5) By the equality : $I_g(f) = fg - (fg)(0) - J_g(f)$, if $g \in J[X] \cap H^\infty$ and $f \in X$ then $I_g(f)$ belongs to X because $gX \subset X$.

Proposition 3. If X is a subalgebra of H which contains constants then $M[X] = X$, $J[X]$ is also a subalgebra of X and $J[X] = I[X] \cap X$.

Proof. $M[X] = X$ is clear. If both g and h are in $J[X]$, then by Theorem 1 both fh and fg belongs to X for any $f \in X$ because X is an algebra. Hence gh belongs to $J[X]$ by the following equality : $J_{gh}(f) = J_g(fh) + J_h(fg)$ for any $f \in X$. This implies that $J[X]$ is a subalgebra of X by Theorem 1. From (2) of Proposition 2 $J[X] = I[X] \cap X$ follows.

§4. F-space

Let X be an F-space in H with an invariant metric d. For each a in D, put for f in X

$$E_a f = f(a) \text{ and } D_a f = f'(a).$$
In this section we assume that both \mathcal{E}_a and \mathcal{D}_a are bounded on X. Put

$$S(a) = \sup\{|\mathcal{E}_a(f)| ; \ f \in X, \ d(f,0) \leq 1\}$$

and

$$s(a) = \sup\{|\mathcal{D}_a(f)| ; \ f \in X, \ d(f,0) \leq 1\},$$

then $S(a) < \infty$ and $s(a) < \infty$ if $a \in D$. Suppose v is a nonnegative function on D. For a function f in H put

$$\|f\|_\omega = \sup_{z \in D} \omega(z)|f'(z)| + |f(0)|$$

and

$$\mathcal{B}_\omega = \{f \in H ; \ \|f\|_\omega < \infty\}.$$

If ω is bounded, \mathcal{B}_ω contains all holomorphic functions on the closed unit disc \bar{D}.

Proposition 4. If X is an F-space such that $S(a) < \infty$ and $s(a) < \infty$ for each $a \in D$, then $M[X], J[X]$ and $I[X]$ belongs to $B[X]$.

Proof. We will prove only that $J[X] \subset B[X]$ because the other statements are similar. By the closed graph theorem, it is enough to prove that for $a \in \mathcal{B}_\omega \cap X$ and $I[f_n] \to f$ in X and $J[a] \to F$. Since $S(a) < \infty$, $f_n(a) \to f(a)$ ($a \in D$). Since $s(a) < \infty$, $f_n(a) \to F'(a)$ ($a \in D$). Thus $f(a) \to F'(a)$ and so $J[a] = F$ because $F(0) = 0$.

Theorem 3. Let X be an F-space in H with an invariant metric d. Suppose that

$$\sup_{|a| \leq 1-\epsilon} S(a) < \infty$$

for any $\epsilon > 0$. Then $J[X] \subset \mathcal{B}_\omega \cap X$ and $I[X] \subset H^\omega$, where $\omega_0 = 1/sS$.

Proof. If $g \in J[X]$ then by Proposition 4, for any $f \in X$ $d(J_g f,0) \leq \|J_g\|d(f,0)$. Since $J_g f \in X$, by definition of \mathcal{D}_z $|D_z(J_g f)| \leq s(z)d(J_g f,0)$ ($z \in D$). Hence

$$s(z)^{-1}|f(z)||g'(z)| \leq \|J_g\|d(f,0) \quad (z \in D)$$

and so

$$s^{-1}(z)S^{-1}(z)|g'(z)| \leq \|J_g\| \quad (z \in D).$$

By Theorem 1 g belongs to $\mathcal{B}_\omega \cap X$ where $\omega_0 = 1/sS$. If $g \in I[X]$ then by Proposition 4, for any $f \in X$ $d(I_g f,0) \leq \|I_g\|d(f,0)$. Since $I_g f \in X$, by definition of \mathcal{D}_z $|D_z(I_g f)| \leq s(z)d(I_g f,0)$ ($z \in D$). Hence

$$s(z)^{-1}|f'(z)||g(z)| \leq \|I_g\|d(f,0) \quad (z \in D)$$

and so

$$|g(z)| \leq \|I_g\| \quad (z \in D).$$

Proposition 5. Let X be a subspace of H with constants which is of finite dimension. Then $J[X] = I[X] = M[X] = \emptyset$.

6
Proof. Suppose \(\{f_j\}_{j=1}^n \) is a basis in \(X \) with \(f_1 \equiv 1 \). We will show that \(J[X] = \mathcal{C} \).

If \(g \in J[X] \) then by Theorem 1 \(g^\ell \in X \) for any \(\ell \geq 0 \) and so there exist \(\{\alpha^\ell_j\}^n_{j=1} \subset \mathcal{C} \) such that \(g^\ell = \sum_{j=1}^n \alpha^\ell_j f_j \). Hence there exist \(\{b_j\}^n_{j=0} \subset \mathcal{C} \) such that \(\sum_{\ell=0}^n b_\ell g^\ell = 0 \). This implies that \(g \) is just constant because \(g \) is analytic. Therefore \(J[X] = \mathcal{C} \). We will show that \(I[X] = \mathcal{C} \). Put \(X_1 = \{f' : f \in X\} \). If \(g \in I[X] \) then by Proposition 1 \(g^\ell X_1 \subset X_1 \) for any \(\ell \geq 1 \) and so there exist \(\{\alpha^\ell_j\}^n_{j=1} \subset \mathcal{C} \) such that \(g^\ell f_2 = \sum_{j=2}^n \alpha^\ell_j f_j \).

By the same argument above \(g f_2 \) is constant. Similary it follows that \(\{g f_2\}^2_1 \) are constants and so \(g \) is constant because \(\{f_2\}^n_1 \) is a basis in \(X_1 \). Therefore \(I[X] = \mathcal{C} \).

§5. Weighted Bloch space

Let \(\omega \) be a positive bounded function on \(D \). For a function \(f \) in \(H \) put

\[
\|f\|_\omega = \sup_{z \in D} \omega(z)|f'(z)| + |f(0)|
\]

and

\[
\mathcal{B}_\omega = \{ f \in H : \|f\|_\omega < \infty \}.
\]

Since \(\omega \) is bounded, \(\mathcal{B}_\omega \) contains all holomorphic functions on the closed unit disc \(\overline{D} \). \(\mathcal{B}_\omega \) is called a weighted Bloch space. A weight \(\omega \) is called measurable when \(\omega(at) \) is measurable on \([0,1] \) for each \(a \) in \(D \). Put \(\varepsilon(r) = \inf\{\omega(z) : |z| \leq r\} \) and \(r < 1 \).

Lemma 2. If \(\varepsilon(r) > 0 \) for \(0 \leq r < 1 \) then \(\mathcal{B}_\omega \) is a Banach space with norm \(\| \cdot \|_\omega \).

Proof. Suppose that \(\{f_n\} \) is a Cauchy sequence in \(\mathcal{B}_\omega \). For any \(\varepsilon > 0 \), there exist a positive integer \(n_0 \) such that \(\|f_n - f_m\|_\omega < \varepsilon \) if \(n, m \geq n_0 \). Hence if \(r < 1 \) and \(z \in D_r = \{z : |z| < r\} \) then

\[
|f_n'(z) - f_m'(z)| \leq \frac{\varepsilon}{\omega(z)} \leq \frac{\varepsilon}{\varepsilon(r)}.
\]

By the normal family argument, there exists a function \(f' \in H(D_r) \) such that \(f_n' \to f' \) uniformly on \(D_r \). Hence as \(n \to \infty \),

\[
|f'(z) - f_m'(z)| \leq \frac{\varepsilon}{\omega(z)} \leq \frac{\varepsilon}{\varepsilon(r)} \quad (z \in D_r).
\]

Since \(r \) is arbitrary, \(f \) belongs to \(H(D) \) and

\[
\omega(z)|f'(z) - f_m'(z)| \leq \varepsilon \quad (z \in D)
\]

if \(m \geq n_0 \). Since \(f_m(0) \to f(0), \|f - f_m\|_\omega \to 0 \).
Theorem 4. Let ω be a measurable, $\varepsilon(r) > 0$ for $0 \leq r < 1$ and $X = B_\omega$. Then

$$B_{\omega S} = J[\mathcal{B}_\omega] \text{ and } I[\mathcal{B}_\omega] \subset H^\infty$$

where $S(z) = \sup \{|f(z)| \mid f \in B_\omega, \|f\|_\omega \leq 1\}$. Moreover $\|J_g\| = \|g\|_\omega S$ for each g in $J[\mathcal{B}_\omega]$ with $g(0) = 0$.

Proof. By Theorem 1, $J[\mathcal{B}_\omega] \subset B_\omega$. If $g \in J[\mathcal{B}_\omega]$ then $\|J_g f\|_\omega \leq \|J_g\| \|f\|_\omega$ ($f \in B_\omega$) and so $\omega(z) |f(z)| \cdot |g'(z)| \leq \|J_g\| \cdot \|f\|_\omega$. Hence

$$\omega(z)S(z) |g'(z)| \cdot \frac{|f(z)|}{S(z)} \leq \|J_g\| \cdot \|f\|_\omega$$

and so

$$\omega(z)S(z) |g'(z)| \leq \|J_g\|.$$

Therefore g belongs to $B_{\omega S}$ and $\|g\|_{\omega S} \leq \|J_g\| + |g(0)|$. Thus $J[\mathcal{B}_\omega] \subset B_{\omega S}$. Note that $B_{\omega S} \subset B_\omega$ because $S(z) \geq 1$ ($z \in D$). Conversely if $g \in B_{\omega S}$ then

$$\omega(z)|J_g f'(z)| = \omega(z)S(z) |g'(z)| \cdot \frac{|f(z)|}{S(z)} \leq \|g\|_{\omega S} \|f\|_\omega$$

and so g belongs to $J[\mathcal{B}_\omega]$. Thus

$$\|g\|_{\omega S} \leq \|J_g\| + |g(0)| \leq \|g\|_{\omega S} + |g(0)|.$$

In Theorem 4, if ω is an absolute value of some analytic function and a radial function, R.Yoneda ([8],[9]) showed those under some special technical conditions on ω.

§6. Hardy space

For $0 < p \leq \infty$, H^p denotes $\bigcap_{1 < p} H^1$ and H^{∞} is written as H^ω. For $0 < p < \infty$, when $W = |h|^p$ for an outer function h in H^p, $H^p(W)$ denotes a weighted Hardy space that is, the closure of H^ω in $L^p(Wd\theta/2\pi)$.

Lemma 3 is well known (cf. [3, Theorem 5.12]). In Proposition 6 it is known ([1],[2]) that $J[H^p] = \text{BMOA}$. Hence our result is weaker than that. However if $J[H^p] = \text{BMOA}$ then our result shows that $I[H^p] = H^\infty$.

Lemma 3. (1) For $0 < p < 1$, if f is a function in H^p then $\int_0^z f(\zeta)d\zeta$ belongs to H^{1-p}. (2) If f is a function in H^1 then $\int_0^z f(\zeta)d\zeta$ belongs to H^{∞}.

Proposition 6. For $0 < p < \infty$, $H_1^{\infty} \subset J[H^p] \subset H^\omega$ and $zJ[H^p] \subset J[H^p]$. Moreover $M[H^p] = H^\omega$ and $I[H^p] = J[H^p] \cap H^\omega$.

8
Proof. By Lemma 3, $z \in J[H^p]$ and so by (2) of Theorem 2 $H_1^\infty \subset J[H^p]$. Theorem 1 implies that $J[H^p] \subset H^\omega$. By (5) of Theorem 2, $J[H^p] \cap H^\infty \subset I[H^p]$. Theorem 3 implies that $I[H^p] \subset H^\infty$. Hence $I[H^p] \subset H^\infty$ and so (4) of Proposition 2 $I[H^p] \subset J[H^p]$. It is well known that $M[H^p] = H^\omega$. By (2) of Proposition 2 $I[H^p] = J[H^p] \cap H^\infty$. By (4) of Theorem 2, to prove that $zJ[H^p] \subset J[H^p]$ it is sufficient to show that $J_z(J[H^p]H^p) \subset H^p$. Since $J[H^p]H^p \subset H^p^-$, by Lemma 2, $J_z(J[H^p]H^p) \subset H^p$.

Theorem 5. For $0 < p < \infty$, $\bigcap_{t<1} H^t \subset J[H^p^-] \subset H^\omega$ and so log$(1-z)^{-1}$ belongs to $J[H^p^-]$. Moreover $zJ[H^p^-] \subset J[H^p^-]$, $M[H^p^-] = H^\omega$ and so $J[H^p^-] \cap H^\infty = I[H^p^-] \cap H^\infty$. When $p = \infty$, $J[H^\omega] = J[H^\omega] \cap H^\omega$ and $J[H^\omega]$ is a subalgebra of H^ω which contains H_1^∞.

Proof. By Theorem 1, $J[H^p^-] \subset H^\omega$. We will show that $\bigcap_{t<1} H^t \subset J[H^p^-]$. If $g \in \bigcap_{t<1} \bigcap_{s<t/(t+1)} H^s$. By Lemma 3, $\int_0^{2\pi} f(e^{it}g)g'(e^{it}) \, d\theta/2\pi$ and so $f'g'$ belongs to $\bigcap_{s<t/(t+1)} H^s$. By Lemma 3, $\int_0^{2\pi} f(z)g'(z) \, d\zeta$ belongs to H^∞. As $s \to t/(t+1)$, $s/(1-s) \to t$ and so $\int_0^{2\pi} f(z)g'(z) \, d\zeta$ belongs to H^1. As $s \to p$, $\int_0^{2\pi} f(z)g'(z) \, d\zeta$ belongs to H^p^-. Thus $J_z[H^p^-] \subset H^p^-$ and so $\bigcap_{t<1} H^t \subset J[H^p^-]$. By (4) of Theorem 2, if we show that $J_z(J[H^p^-]H^p^-) \subset H^p^-$ then it follows that $zJ[H^p^-] \subset J[H^p^-]$. Since $J[H^p^-]H^p^- \subset H^p^-$, by Lemma 4 $J_z(J[H^p^-]H^p^-) \subset H^p^-$. It is known that $M[H^p^-] = H^\omega$. The last statement is a result of (2) of Proposition 2.

When $p = \infty$, by Proposition 3 $J[H^\omega] = H^\omega \cap H^\omega$ and $J[H^\omega]$ is a subalgebra of H^ω. Theorem 2 implies $J[H^\omega] \subset H_1^\infty$.

Theorem 6. Let $1 \leq p < \infty$ and $W = \{ h \mid h \, |^p \, \text{for some outer function } h \in H^p \}$. Then $\{ g \in H; g(z) = \int_0^{2\pi} h(z)k(z) \, d\zeta \}$ and $k \in H^\infty \subset J[H^p(W)] \subset H^\omega(W)$. $M[H^p(W)] = H^\omega$ and $J[H^p(W)] \cap H^\infty = I[H^p(W)]$. There exists a weight W such that z does not belong to $J[H^p(W)]$.

Proof. If $g(z) = \int_0^{2\pi} h(z)k(z) \, d\zeta$ and $k \in H^\infty$, then

$h(z) \{ J_z(h^{-1}f) \}(z) = h(z) \int_0^{2\pi} f(z)k(z) \, d\zeta$

and so $hJ_zh^{-1}f$ belongs to H^p for all $f \in H^p$ by Lemma 3 because $fk \in H^1$. Therefore $\{ g \in H; g(z) = \int_0^{2\pi} h(z)k(z) \, d\zeta \}$ and $k \in H^\infty \subset J[H^p(W)]$. By Theorem 1, $J[H^p(W)] \subset H^\infty$. Therefore $\{ g \in H; g(z) = \int_0^{2\pi} h(z)k(z) \, d\zeta \} \subset J[H^p(W)]$.
∪ \mathcal{H}^p(W)$. In fact, since $g^n h \in \mathcal{H}^p$ for any $n \geq 1$, $gh^{1/n} \in \mathcal{H}^{np}$ and so g belongs to $\mathcal{H}^{np}(W)$. If $\phi \in M(\mathcal{H}^p(W))$ then $\phi(h^{-1}H^p) \subset h^{-1}H^p$ and so $\phi H^p \subset H^p$. Hence $\phi \in M(\mathcal{H}^p) = \mathcal{H}^\infty$. Therefore $M(\mathcal{H}^p(W)) = \mathcal{H}^\infty$ and so by (2) of Proposition 2 $\mathcal{J}[\mathcal{H}^p(W)] \cap H^\infty = \mathcal{I}[\mathcal{H}^p(W)] \cap H^\infty$. For $a \in D$ it is easy to see that

$$\sup\{|f(a)| : f \in \mathcal{H}^p(W) \text{ and } ||f||_{W,p} \leq 1\} = (1 - |a|^2)^{-1/p} |h(a)|^{-p} < \infty$$

and so by Theorem 3 $I[\mathcal{H}^p(W)] \subset H^\infty$. Thus $J[\mathcal{H}^p(W)] \cap H^\infty = I[\mathcal{H}^p(W)]$. If $J_+(\mathcal{H}^p(W)) \subset \mathcal{H}^p(W)$ for any W with $\log W \in L^1(d\theta/2\pi)$ then $J_+ (N_+) \subseteq N_+$. For by a theorem of H. Helson [6] N_+ is the union of all $\mathcal{H}^p(W)$ as W ranges over the set of weights with sumable log W. Hence there exists a weight W such that $z \notin J[\mathcal{H}^p(W)]$. Because it is known that $J_+(N_+) \not\subset N_+$ [7].

\section{§7. Privalov space}

We denote by N^p, for $1 \leq p < \infty$, the set of all functions f in H which satisfy

$$\sup_{0 < r < 1} \int_0^{2\pi} (\log^+ |f(re^{i\theta})|)^p d\theta < \infty.$$

When $p = 1$, N^p is just N. Then

$$\bigcup_{p > 0} \mathcal{H}^p \subset \bigcap_{p > 1} N^p \text{ and } \bigcup_{p > 1} N^p \subset N_+ \subset N_1 = N.$$

\textbf{Proposition 7.} Let $X = N_+$ or N. Then $J[X]$ is a subalgebra of X and $J[X] = I[X] \cap X$. If $(f)^{-1}$ is in H^∞ then f does not belong to $J[X]$.

Proof. It is known that N_+ and N are subalgebras of H. Hence the first part of this proposition is a result of Theorem 1 and Proposition 3. By [5] and [7], $z \notin J[X]$ and so the second part follows from (1) of Theorem 2.

In Proposition 7, it is known ([5],[7]) that $z \notin J[X]$. Hence $I[X] \not= z$. We don’t know whether $J[X] = \mathcal{C}$ and $I[X] = \mathcal{C}$.

\textbf{Theorem 7.} If $1 < p < \infty$ then $J[N^p]$ is a subalgebra of N^p which contains N^p_1, and $J[N^p] = I[N^p] \cap N^p$.

Proof. Suppose $1 < p < \infty$ and $g \in N^p_1$. If $f \in N^p$ then

$$\left\{ \int_0^{2\pi} (\log^+ |(J_g f)(re^{i\theta})|)^p d\theta / 2\pi \right\}^{1/p} = \left\{ \int_0^{2\pi} \left(\log^+ \left| \int_0^t f(te^{i\theta})g'(te^{i\theta}) \, dt \right|^p \right) d\theta / 2\pi \right\}^{1/p}$$
\[
\leq \left\{ \int_0^{2\pi} \left(\log^+ \int_0^1 |f(te^{i\theta})g'(te^{i\theta})|dt \right)^p \, d\theta / 2\pi \right\}^{1/p}
\]

\[
\leq \left\{ \int_0^{2\pi} \left(\log^+ \sup_{0 \leq t < 1} |f(te^{i\theta})| + \log^+ \sup_{0 \leq t < 1} |g'(te^{i\theta})| \right)^p \, d\theta / 2\pi \right\}^{1/p}
\]

\[
\leq \left\{ \int_0^{2\pi} \left(\log^+ \sup_{0 \leq t < 1} |f(te^{i\theta})| \right)^p \, d\theta / 2\pi \right\}^{1/p} + \left\{ \int_0^{2\pi} \left(\log^+ \sup_{0 \leq t < 1} |g'(te^{i\theta})| \right)^p \, d\theta / 2\pi \right\}^{1/p}.
\]

Put \(u(r, \theta) = \frac{1}{2\pi} \int_0^{2\pi} P_r(t-\theta) \log^+ |f(e^{it})|dt \), then \(u(r, \theta) \geq \log^+ |f(re^{i\theta})| \). Since \(\log^+ |f(e^{it})| \in L^p \), by a theorem of Hardy and Littlewood (cf. [3, Proposition 1.8]), \(\sup_{0 \leq r < 1} u(r, \theta) \) belongs to \(L^p \) and so \(\log^+ \sup_{0 \leq r < 1} |f(re^{i\theta})| \) belongs to \(L^p \). Similarly we can prove that \(\log^+ \sup_{0 \leq r < 1} |g'(re^{i\theta})| \) belongs to \(L^p \). Thus \(J_g \) belongs to \(N^p \). Hence \(N_1^p \subset J[N^p] \). It is known that \(N^p \) is a subalgebra of \(H \). Hence, by Proposition 3 \(J[N^p] \) is a subalgebra of \(N^p \) and \(J[N^p] = I[N^p] \cap N^p \).
References

2. A.Aleman and A.G.Siskakis, An integral operator on H^p, Complex Variables Theory Appl. 28(1995), 149-158

Hokkaido University
Department of Mathematics
Sapporo 060-0810, Japan

e-mail : nakazi@math.sci.hokudai.ac.jp