<table>
<thead>
<tr>
<th>Title</th>
<th>A singular perturbation problem with integral curvature bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nagase, Yuko; Tonegawa, Yoshihiro</td>
</tr>
<tr>
<td>Citation</td>
<td>Hokkaido University Preprint Series in Mathematics, 803, 1-36</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2006</td>
</tr>
<tr>
<td>DOI</td>
<td>10.14943/83953</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/69611</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>pre803.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
A singular perturbation problem with integral curvature bound

Yuko Nagase Yoshihiro Tonegawa

Abstract

We consider a singular perturbation problem of Modica-Mortola functional as the thickness of diffused interface approaches to zero. We assume that sequence of functions have uniform energy and square-integral curvature bounds in two dimension. We show that the limit measure concentrate on one rectifiable set and has square integrable curvature.

2000 Mathematics Subject Classification. Primary 35J60; Secondary 35B25, 35J20, 80A22.

Key words and phrases. diffused interface, curvature, phase field model.

1 Introduction

The Modica-Mortola functional [12] has been used widely as an approximation of hypersurface area of diffused interface, both in static and time-dependent models and the functional often being coupled with other interacting fields. After a suitable normalization it is defined for scalar-valued function $u : U \subset \mathbb{R}^n \to \mathbb{R}$ by

$$E_\varepsilon(u) = \int_U \frac{\varepsilon|\nabla u|^2}{2} + \frac{W(u)}{\varepsilon} \, dx,$$

where $W : \mathbb{R} \to [0, \infty)$ is a double-well potential with two equal minima at ± 1 and $\varepsilon > 0$ is a small parameter. In mathematical literature some of the first rigorous results are given by Modica [11], Sternberg [18] and others who proved that E_ε Γ-converges to the area functional as $\varepsilon \to 0$. Namely,

*Partly supported by Grant-in-Aid for Scientific Research (B) No. 17340041
consider a sequence of minimizers \(\{ u_\v \} \) of \(E_\v(\cdot) \), \(\v \to 0 \), among functions with \(\int_U u \, dx = m \) fixed. Here \(-|U| < m < |U|\) and \(|U|\) is the \(n\)-dimensional volume of \(U\). One expects that \(u_\v \) is close to \(\pm 1 \) for the most part of \(U \) and that it is advantageous to have as little transition region as possible. It is also straightforward to see that the transition region should have the thickness of order \(\v \) for \(E_\v \) to be of constant order with respect to \(\v \). The aforementioned works show that there exist a converging subsequence and the limit \(u_0 \) such that \(u_0 = \pm 1 \) a.e. on \(U \) and \(u_0 \) minimizes the hypersurface area of \(U \cap \partial \{ u_0 = 1 \} \) among such functions with equal integral value \(m \). Such area-minimizing hypersurfaces are known to be smooth constant mean curvature hypersurfaces (CMC) if the dimension \(n \) of domain \(U \) is less than \(8 \) and CMC with possible small singularities for \(n \geq 8 \) \([7, 17]\). The functional \(E_\v \) approximates the hypersurface area in the sense that

\[
\lim_{\v \to 0} E_\v(u_\v) = 2\sigma \mathcal{H}^{n-1}(U \cap \partial \{ u_0 = 1 \}),
\]

where

\[
\sigma = \int_{-1}^{1} \sqrt{W(s)}/2 \, ds
\]

and \(\mathcal{H}^{n-1} \) is the \((n-1)\)-dimensional Hausdorff measure. It is also proved \([10]\) that the limit of Lagrange multipliers

\[
\lambda_\v = -\v \Delta u_\v + \frac{W'(u_\v)}{\v}
\]

has the geometric meaning in that

\[
\sigma H = \lambda_0,
\]

where \(\lambda_0 = \lim_{\v \to 0} \lambda_\v \) and \(H \) is the constant mean curvature of \(U \cap \partial \{ u_0 = 1 \} \). It is of interest to study the limiting behavior of \(E_\v \) without the energy-minimizing properties in view of applications to various dynamical problems. In \([8, 19, 20]\) motivated by the Cahn-Hilliard equation \([4]\) they gave a geometric characterization of limit interfaces without minimizing property but with \(W^{1,p} \) Sobolev norm control of

\[
f_\v = -\v \Delta u_\v + \frac{W'(u_\v)}{\v}, \quad (1.2)
\]

where \(p > \frac{n}{2} \), which corresponds to the chemical potential field in the framework of van der Waals-Cahn-Hilliard theory of phase transitions. The control of such quantity may be seen as an analogue of control of mean curvature
field in view of above result by Luckhaus and Modica [10] and also Schätzle [16].

Recently there have been much interest in studying limit interface when we have a control of
\[\frac{1}{\varepsilon} \int_U |f_\varepsilon|^2 \, dx, \tag{1.3} \]
in dimensions \(n \leq 3 \) as \(\varepsilon \to 0 \) [3, 9, 14, 5]. If one makes the ansatz that the internal layer profile is the usual hyperbolic tangent shape, it is reasonable to relate this quantity to the \(L^2 \) norm of the mean curvature of interface. In general one expects as \(\varepsilon \to 0 \) that the limit interface should have \(L^2 \) mean curvature and that appropriately defined limit of \(f_\varepsilon \) should correspond to the mean curvature. For this problem Moser [14] showed for dimension \(n \leq 3 \) with some technical monotonicity assumption that the limit interface is a rectifiable varifold [1] with \(L^2 \) mean curvature. Bellettini and Mugnai [3] considered the problem with radial symmetry assumption and showed that the quantity (1.3) converges to the \(L^2 \) norm of mean curvature for the limit interface as \(\varepsilon \to 0 \).

In this paper we extend the results of [3, 14] in that we make no assumptions on the sequence of functions \(\{u_\varepsilon\} \) except for the uniform bounds on the energy (1.1) and \(L^2 \) norm of the chemical potential in the form (1.3), and conclude essentially the same results as in [3, 14] for the limit interface. Unfortunately we can prove the result only for \(n = 2 \). Here we state our main theorem. A few minor assumptions are made on the function \(W \) (see Sect. 2.1).

Theorem 1.1. Suppose \(U \subset \mathbb{R}^2 \) is a bounded domain. Suppose a sequence of functions \(\{u_\varepsilon\}_{i=1}^\infty \subset W^{2,2}(U) \) satisfies for \(\{\varepsilon_i\}_{i=1}^\infty \) with \(\lim_{i \to \infty} \varepsilon_i = 0 \)
\[
\liminf_{i \to \infty} E_{\varepsilon_i}(u_\varepsilon) < \infty, \quad \liminf_{i \to \infty} \frac{1}{\varepsilon_i} \int_U |f_\varepsilon|^2 \, dx < \infty. \tag{1.4}
\]
Define a sequence of Radon measures on \(U \) by
\[
\mu_{\varepsilon_i}(\phi) = \int_U \phi \left(\frac{\varepsilon_i |\nabla u_{\varepsilon_i}|^2}{2} + \frac{W(u_{\varepsilon_i})}{\varepsilon_i} \right) \, dx
\]
for \(\phi \in C^\infty_c(U) \). By the weak star compactness of bounded measures there exists a subsequence (denoted by the same indices) \(\{\mu_{\varepsilon_i}\}_{i=1}^\infty \) and the limit Radon measure \(\mu \) on \(U \). Then,

(i) \(u_{\varepsilon_i} \to \pm 1 \) locally uniformly on \(U \setminus \text{supp} \mu \).
(ii) There exist a closed countably 1-rectifiable set \(\Sigma \) and \(\mathcal{H}^1 \)-measurable function \(\theta \) defined on \(\Sigma \) such that \(\mu = \theta \mathcal{H}^1|_{\Sigma} \).

(iii) \(\theta/(2\sigma) \) is \(\mathcal{H}^1 \) a.e. integer-valued on \(\Sigma \).

(iv) The generalized curvature \(f \) of \(\mu \) satisfies

\[
\int_{U} |f|^2 \, d\mu \leq \liminf_{i \to \infty} \frac{1}{\varepsilon_i} \int_{U} |f_{\varepsilon_i}|^2 \, dx.
\]

For the definition of rectifiable set and generalized (mean) curvature see [1, 17]. The function \(f \) can be obtained as follows. Define any vector-valued limit measure of \(\{ f_{\varepsilon_i} \nabla u_{\varepsilon_i} \, dx \}_{i=1}^{\infty} \) as \(\eta \). Note that the \(L^1 \) norms are uniformly bounded by

\[
\int_{U} |f_{\varepsilon_i} \nabla u_{\varepsilon_i}| \, dx \leq \left(\frac{1}{\varepsilon_i} \int_{U} |f_{\varepsilon_i}|^2 \, dx \right)^{1/2} \left(\varepsilon_i \int_{U} |\nabla u_{\varepsilon_i}|^2 \, dx \right)^{1/2}
\]

and (1.4). Since \(\eta \) is absolutely continuous with respect to \(\mu \) we define \(f \) as the Radon-Nikodym derivative \(\frac{d\eta}{d\mu} \). We show \(f \) is indeed the generalized curvature of \(\mu \) with property (iv).

Though it appears to us that it is not stated explicitly in the literature, any 1-dimensional integral varifold [1] with \(L^p \) \((p > 1)\) generalized curvature should have support consisting of finite number of \(C^{1,1-\frac{1}{p}} \) curves possibly meeting at isolated junction points. The proof should follow more or less from stationary case studied by Allard and Almgren [2], where they proved that stationary integral varifold has support which are finite number of lines with possible junction points.

The main point of the paper is to establish a properly scaled monotonicity formula for the energy density, which was also essential in [8, 19, 20]. There we assumed the Sobolev \(W^{1,p} \) norm for some \(p > \frac{n}{2} \) is bounded:

\[
\liminf_{i \to \infty} ||f_{\varepsilon_i}||_{W^{1,p}(U)} < \infty.
\]

Though we do not have any control of derivatives of \(f_{\varepsilon_i} \) in this paper, we find that we may still use many of the estimates in [8, 19, 20] if we regularize \(u_\varepsilon \) appropriately. More specifically, we consider the convolution of \(u_\varepsilon \), \(u_\varepsilon \ast \psi_{\varepsilon_{1+\beta}} \), where \(\psi_{\varepsilon_{1+\beta}} \) is the usual mollifier scaled by \(\varepsilon^{1+\beta} \), for a carefully chosen \(\beta > 0 \). The function still satisfies a similar equation while nonlinear term produces error terms. The regularization gives some control of derivatives of \(f_{\varepsilon} \ast \psi_{\varepsilon_{1+\beta}} \), to which we apply estimates for the so-called discrepancy measure

\[
\xi_\varepsilon(u_\varepsilon) = \frac{\varepsilon |\nabla u_\varepsilon|^2}{2} - \frac{W(u_\varepsilon)}{\varepsilon} \quad \tag{1.5}
\]
obtained in [19].

After the main part of the paper is completed we were informed that
Röger and Schätzle [15] obtained the similar results for \(n \leq 3 \) using different
estimates for the discrepancy measure. Since our method is different from
theirs we believe that it should have an independent interest.

2 Assumptions and preliminaries

In the following we set up the assumptions, recall various definitions and
the rectifiability theorem due to Moser [13] which we use later in Section 4.

2.1 Assumptions

We assume that the double-well potential \(W : \mathbb{R} \rightarrow [0, \infty) \) is a \(C^3 \) function
satisfying the following assumptions;

(i) \(W(1) = W(-1) = 0, \)

(ii) there exists \(\gamma \in (-1, 1) \) such that \(W' < 0 \) on \((\gamma, 1) \) and \(W' > 0 \) on
 \((-1, \gamma), \)

(iii) there exist \(\alpha \in (0, 1) \) and \(\kappa > 0 \) such that \(W''(s) \geq \kappa \) for all \(|s| \geq \alpha. \)

Under the assumption (1.4) we may assume that there exist constants \(E_0 \)
and \(a_1 \) such that

(A.1) \(E_{\varepsilon_i}(u_{\varepsilon_i}) \leq E_0, \)

(A.2) \(\frac{1}{\varepsilon_i} \int_U |f_{\varepsilon_i}|^2 \, dx \leq a_1 \)

for all \(i = 1, 2, \ldots. \)

By defining \(\tilde{u}_{\varepsilon_i}(x) = u_{\varepsilon_i}(\varepsilon_i x) \) and \(\tilde{f}_{\varepsilon_i}(x) = f_{\varepsilon_i}(\varepsilon_i x), \) (1.2), (A.1) and (A.2) are equivalent to

\[\varepsilon_i \tilde{f}_{\varepsilon_i} = -\Delta \tilde{u}_{\varepsilon_i} + W'(\tilde{u}_{\varepsilon_i}) \quad (2.1) \]

and

(\(A.1 \)) \(\int_{U/\varepsilon_i} \left| \nabla \tilde{u}_{\varepsilon_i} \right|^2 \, dx + W(\tilde{u}_{\varepsilon_i}) \, dx \leq \varepsilon_i^{-1} E_0, \)

(\(A.2 \)) \(\int_{U/\varepsilon_i} |\tilde{f}_{\varepsilon_i}|^2 \, dx \leq \varepsilon_i^{-1} a_1. \)

Throughout this paper, different positive constants will be denoted by the
same letter \(c. \) We write \(c(s) \) when it is helpful to write out the dependence
of \(c \) on \(s. \)
2.2 The generalized L^2 curvature functional

We find that it is convenient to work in the framework set out by Moser [14]. In the following we only need results for $n = 2$.

Let \mathcal{F} be the set of all symmetric, positive semidefinite real $(n \times n)$-matrices. We write $\mathcal{M}(U)$ for the set of all pairs $M = (\mu, \nu)$ such that

1. μ is Radon measure on U,
2. ν is Radon measure on U with values in \mathcal{F} and
3. there exists a function $\Phi \in L^\infty(\mu, \mathcal{F})$ such that $\nu = \mu \cdot \Phi$.

In the following we set $M_{\varepsilon_i} = (\mu_{\varepsilon_i}, \nu_{\varepsilon_i})$ with

$$
\mu_{\varepsilon_i} = \left(\frac{|\nabla u_{\varepsilon_i}|^2}{2} + \frac{W(u_{\varepsilon_i})}{\varepsilon_i} \right) dx,
\nu_{\varepsilon_i}^{\alpha\beta} = \varepsilon_i \left(\frac{\partial u_{\varepsilon_i}}{\partial x^\alpha} \frac{\partial u_{\varepsilon_i}}{\partial x^\beta} \right) dx
$$

(2.2)

and

$$
\Phi_{\varepsilon_i}^{\alpha\beta} = \frac{\varepsilon_i \frac{\partial u_{\varepsilon_i}}{\partial x^\alpha} \frac{\partial u_{\varepsilon_i}}{\partial x^\beta}}{|\nabla u_{\varepsilon_i}|^2} \in L^\infty(\mu_{\varepsilon_i}, \mathcal{F})
$$

(2.3)

so that $\nu_{\varepsilon_i} = \mu_{\varepsilon_i} \cdot \Phi_{\varepsilon_i}$. Continuing with general framework, for $M = (\mu, \nu) \in \mathcal{M}(U)$ define the linear functional

$$
\delta M(\phi) = \int_U (\text{div} \phi \ d\mu - \frac{\partial \phi^\alpha}{\partial x^\beta} \ d\nu^{\alpha\beta})
$$

(2.4)

on $C^1_c(U; \mathbb{R}^n)$. The usual summation convention is assumed. The functional δM is an analogue of the usual first variation [1] and it was introduced by Moser [13]. Using (1.2) and integration by parts, one verifies that

$$
\delta M_{\varepsilon_i}(\phi) = -\int_U \phi^\alpha H_{\varepsilon_i}^\beta \ d\nu_{\varepsilon_i}^{\alpha\beta},
$$

(2.5)

where

$$
H_{\varepsilon_i}^\beta = \frac{f_{\varepsilon_i}}{\varepsilon_i \frac{\partial u_{\varepsilon_i}}{\partial x^\beta}}.
$$

(2.6)

Now define the generalized L^2 curvature functional \mathcal{C} as the functional on $\mathcal{M}(U)$ by

$$
\mathcal{C}(M) = \sup \left\{ (\delta M(\phi))^2 \mid \phi \in C^1_c(U; \mathbb{R}^n), \int_U \phi^\alpha \phi^\beta \ d\nu^{\alpha\beta} \leq 1 \right\}.
$$

(2.7)
$C(M)$ corresponds to the usual L^2 norm square of mean curvature when $M = (\mu, \nu)$ is a pair of smooth objects, namely, μ is an $(n-1)$-Hausdorff measure restricted to a smooth $(n-1)$-dimensional submanifold Σ and $\Phi(x) = p(x) \otimes p(x)$, where $p(x)$ is the unit normal to the tangent space $T_x \Sigma$ at x. By (2.5)

$$(\delta M_{\varepsilon_i}(\phi))^2 \leq \int_U H_{\varepsilon_i}^\alpha H_{\varepsilon_i}^\beta d\nu_{\varepsilon_i}^\alpha d\nu_{\varepsilon_i}^\beta$$

so that (2.6), (2.7) and (A.2) show

$$C(M_{\varepsilon_i}) \leq \int_U H_{\varepsilon_i}^\alpha H_{\varepsilon_i}^\beta d\nu_{\varepsilon_i} = \frac{1}{\varepsilon_i} \int_U |f_{\varepsilon_i}|^2 \, dx \leq a_1.$$ (2.8)

Write

$$\mathcal{C}(U) = \{ M \in \mathcal{M}(U) \mid C(M) < \infty \}.$$ Important subclass of $\mathcal{C}(U)$ we need is

$$\mathcal{C}_1(U) = \{ M \in \mathcal{C}(U) \mid \text{trace } \nu \leq \mu \},$$

which has the following rectifiability property:

Proposition 2.1. ([14, Proposition 2.2]) If $M = (\mu, \nu) \in \mathcal{C}_1(U)$, then the set

$$\Sigma = \{ x \in U : \theta(x) > 0 \}$$

is 1-rectifiable. Moreover,

$$\mu = \theta \mathcal{H}^1|_\Sigma.$$

If Φ is such that $\nu = \mu|_\Phi$, then $\Phi(x) = \text{proj}_{T_x \Sigma}(x)$ for μ-almost every $x \in \Sigma$.

Here $\theta(x)$ is the 1-dimensional density of μ:

$$\theta(x) = \lim_{r \to 0} \frac{\mu(B_r(x))}{2r},$$

where $B_r(x) = \{ y \in \mathbb{R}^2 : |y - x| < r \}$.

The main task in this paper is to show that $\text{trace } \nu \leq \mu$ holds for the limit measure pair (μ, ν) of $\{M_{\varepsilon_i}\}_{i=1}^\infty$ and $\theta(x) \geq c > 0$ uniformly on $\text{supp} \mu$, which follows once we establish the monotonicity formula in Section 3.
3 Monotonicity formula

The main task of this section is to prove Theorem 3.10 which gives the uniform lower bound of the scaled energy. It is the crucial ingredient for the application of the rectifiability theorem, Proposition 2.1. In the following we drop the index i for simplicity.

Lemma 3.1. ([14, Lemma 2.2]) Define μ_ε, ν_ε and $\xi_\varepsilon(u_\varepsilon)$ as in (2.2) and (1.5). For any $\delta > 0$ and for $B_s(x_0) \subset B_r(x_0) \subset U$,

$$(1 + \delta)\frac{1}{r}\mu_\varepsilon(B_r(x_0)) - (1 - \delta)\frac{1}{s}\mu_\varepsilon(B_s(x_0)) \geq -\frac{2}{\delta}(1 + a_1r - \int r \frac{1}{\rho^2} \int B_\rho(x_0) \xi_\varepsilon(u_\varepsilon) \, dx \, d\rho).$$

(3.1)

Proof. We may assume $x_0 = 0$ by a suitable translation. Write $B_r = B_r(0)$. By (2.4) and (2.5), for any $\phi \in C^1(U; \mathbb{R}^2)$,

$$\int \left(\text{div} \phi \, d\mu_\varepsilon - \frac{\partial \phi^\alpha}{\partial x^\beta} \, d\nu_\varepsilon^{\alpha\beta} \right) + \int \phi^\alpha H_\varepsilon^\beta \, d\nu_\varepsilon^{\alpha\beta} = 0.$$

(3.2)

Suppose $h \in C^\infty_0(\mathbb{R})$ satisfies $h(s) = 0$ for $s \in [1, \infty)$. By substituting $\phi(x) = xh(|x|)$ into (3.2), we obtain

$$2\int h \, d\mu_\varepsilon - \int h \, \text{trace} \, d\nu_\varepsilon + \frac{1}{\rho} \int |x|h' \, d\mu_\varepsilon - \int \left(\frac{x^\alpha x^\beta}{\rho|x|} h' - hx^\alpha H_\varepsilon^\beta \right) \, d\nu_\varepsilon^{\alpha\beta} = 0.$$

(3.3)

By the definitions of μ_ε and $\nu_\varepsilon^{\alpha\beta}$ we obtain

$$2\int h \, d\mu_\varepsilon - \int h \, \text{trace} \, d\nu_\varepsilon = \int h \, d\mu_\varepsilon + \int h \left(\frac{\varepsilon|\nabla u_\varepsilon|^2}{2} + \frac{W(u_\varepsilon)}{\varepsilon} \right) \, dx - \int h\varepsilon|\nabla u_\varepsilon|^2 \, dx \quad (3.4)$$

$$= \int h \, d\mu_\varepsilon - \int \xi_\varepsilon(u_\varepsilon)h \, dx.$$

Substituting (3.4) into (3.3) and multiplying both sides by $-\frac{1}{\rho^2}$, we obtain

$$\frac{d}{d\rho} \left(\frac{1}{\rho} \int h \, d\mu_\varepsilon + \frac{1}{\rho} \int hx^\alpha H_\varepsilon^\beta \, d\nu_\varepsilon^{\alpha\beta} \right)$$

$$= -\frac{1}{\rho^2} \int \left(h' \frac{x^\alpha x^\beta}{|x|} + |x|h'x^\alpha H_\varepsilon^\beta \right) \, d\nu_\varepsilon^{\alpha\beta} - \frac{1}{\rho^2} \int h \xi_\varepsilon(u_\varepsilon) \, dx.$$

(3.5)
Integrating over \((s, r)\), we obtain
\[
\frac{1}{r} \int h \, d\mu_\varepsilon + \frac{1}{r} \int \frac{1}{\rho} \frac{d}{d\rho} h \, d\rho + \frac{1}{s} \int h \, d\mu_\varepsilon - \frac{1}{s} \int \frac{1}{\rho} \frac{d}{d\rho} h \, d\mu_\varepsilon
\]
\[
= \int \left(\int_s^r \frac{1}{\rho} \frac{d}{d\rho} h \, d\rho \right) \left(\frac{x^\alpha x^\beta}{|x|^2} + x^\alpha H_\varepsilon^\beta \right) \, d\nu_\varepsilon^{\alpha\beta} - \int_s^r \frac{1}{\rho^2} \int h \xi_\varepsilon(u_\varepsilon) \, dx \, d\rho.
\]
(3.6)

Let \(\{h_k\}_{k=1}^\infty \subset C_\infty^c(\mathbb{R})\) be a sequence of approximate functions for the characteristic function of \((-\infty, 1)\) and use \(h = h_k\) in (3.6). Since \(\int_s^r \frac{1}{\rho} \frac{d}{d\rho} h_k(|x|) \, d\rho\) converges to \(\frac{1}{|x|}\) for \(|x| \in [s, r]\) and otherwise 0, we obtain
\[
\frac{1}{r} \int_{B_r}^{B_s} \left(\frac{x^\alpha x^\beta}{|x|^3} + \frac{x^\alpha H_\varepsilon^\beta}{|x|} \right) \, d\nu_\varepsilon^{\alpha\beta} - \int_s^r \frac{1}{\rho^2} \int_{B_{\rho}} \xi_\varepsilon(u_\varepsilon) \, dx \, d\rho.
\]
(3.7)

By \(\Phi^{\alpha\beta}_\varepsilon \mu_\varepsilon = \nu^{\alpha\beta}_\varepsilon\) and (2.8), we obtain for any \(\delta > 0\)
\[
\left| \frac{1}{\rho} \int_{B_\rho} x^\alpha H_\varepsilon^\beta \, d\nu_\varepsilon^{\alpha\beta} \right| \leq \frac{1}{\rho} \left(\int_{B_\rho} x^\alpha x^\beta \Phi^{\alpha\beta} \, d\mu_\varepsilon \right)^{\frac{1}{2}} \left(\int_{B_\rho} H_\varepsilon^\alpha H_\varepsilon^\beta \, d\nu_\varepsilon^{\alpha\beta} \right)^{\frac{1}{2}}
\]
\[
\leq \frac{1}{\rho} \left(\int_{B_\rho} \varepsilon |x|^2 |\nabla u_\varepsilon|^2 \, dx \right)^{\frac{1}{2}} a_1^{\frac{1}{2}}
\]
\[
\leq \frac{\delta}{\rho} \mu_\varepsilon(B_\rho) + \frac{a_1 \rho}{\delta}
\]
(3.8)

and
\[
\left| \int_{B_r \setminus B_s} x^\alpha H_\varepsilon^\beta \, d\nu_\varepsilon^{\alpha\beta} \right| \leq \int_{B_r \setminus B_s} \frac{x^\alpha x^\beta}{|x|^3} \, d\nu_\varepsilon^{\alpha\beta} + r \int_{B_r \setminus B_s} H_\varepsilon^\alpha H_\varepsilon^\beta \, d\nu_\varepsilon^{\alpha\beta}.
\]
(3.9)

Using (3.8) and (3.9) in (3.7), we proved (3.1).

Later we use the following \(L^\infty\) estimates of \(u_\varepsilon\) away from 1.

Lemma 3.2. For each open set \(V \subset \subset U\), there exist constants \(c_1\) depending only on \(W, \text{dist}(\partial U, V), \kappa, E_0\) and \(a_1\) such that
\[
\sup_V |u_\varepsilon| \leq 1 + c_1 \varepsilon^{\frac{1}{2}}
\]
for \(\varepsilon \leq 1\).

9
Proof. Let \(x \in V \) be arbitrary and set \(r = \frac{1}{2} \text{dist}(\partial U, x) \). Write \(B_r = B_r(x) \).

First we show
\[
\|(u_\varepsilon - 1)_+\|_{L^2(B_r^2)} \leq c\varepsilon^2,
\]
where \((u_\varepsilon - 1)_+ = \max\{(u_\varepsilon - 1), 0\}\). Let \(\phi \in C_c^\infty(B_r) \) be a smooth function with \(\phi = 1 \) on \(B_r^2 \). Multiplying (1.2) by \((u_\varepsilon - 1)_+\phi^2\) and by integration by parts we obtain
\[
\int_{\{u_\varepsilon > 1\}} \varepsilon |\nabla u_\varepsilon|^2 \phi^2 + 2\varepsilon (u_\varepsilon - 1)_+ \phi \nabla u_\varepsilon \cdot \nabla \phi
+ \frac{W'(u_\varepsilon)}{\varepsilon} (u_\varepsilon - 1)_+ \phi^2 \, dx = \int_{\{u_\varepsilon > 1\}} f_\varepsilon (u_\varepsilon - 1)_+ \phi^2 \, dx.
\]
(3.12)

By applying Cauchy’s inequality to (3.12), for any \(\delta > 0 \)
\[
\int_{\{u_\varepsilon > 1\}} \varepsilon |\nabla u_\varepsilon|^2 \phi^2 + \frac{W'(u_\varepsilon)}{\varepsilon} (u_\varepsilon - 1)_+ \phi^2 \, dx
\leq \int_{\{u_\varepsilon > 1\}} \frac{\varepsilon}{2} |\nabla u_\varepsilon|^2 \phi^2 + 2\varepsilon [(u_\varepsilon - 1)_+]^2 |\nabla \phi|^2 + \frac{\varepsilon}{4\delta} f_\varepsilon^2 \phi^2 + \frac{\delta}{\varepsilon} [(u_\varepsilon - 1)_+]^2 \phi^2 \, dx.
\]
(3.13)

By the assumption on \(W \),
\[
W'(u_\varepsilon) \geq \kappa (u_\varepsilon - 1)_+
\]
(3.14)
and
\[
\int_{\{u_\varepsilon > 1\}} 2\varepsilon [(u_\varepsilon - 1)_+]^2 |\nabla \phi|^2 \, dx \leq c(\kappa)(\sup |\nabla \phi|^2)\varepsilon \int_{B_r \cap \{u_\varepsilon > 1\}} W(u_\varepsilon) \, dx
\leq c(\kappa, r)E_0\varepsilon^2.
\]
(3.15)

By (3.13-15) and (A.2),
\[
\frac{\varepsilon}{2} \int_{\{u_\varepsilon > 1\}} \phi^2 |\nabla u_\varepsilon|^2 \, dx + \left(\frac{\kappa}{\varepsilon} - \frac{\delta}{\varepsilon}\right) \int_{\{u_\varepsilon > 1\}} \phi^2 [(u_\varepsilon - 1)_+]^2 \, dx \leq \left\{cE_0 + \frac{a_1}{4\delta}\right\} \varepsilon^2.
\]

Since \(\delta \) is arbitrary, we choose \(\delta = \frac{\varepsilon}{2} \). Thus we have
\[
\int_{B_r^2} [(u_\varepsilon - 1)_+]^2 \, dx \leq c(a_1, \kappa, E_0, r)\varepsilon^3.
\]
(3.16)
With a suitable choice of constant, (3.16) shows (3.11). Next we consider \(\tilde{u}(x) = u(\varepsilon x) \) and \(\tilde{f}(x) = f(\varepsilon x) \) which satisfy (2.1). Set \(h(s) = s_+ \) and let \(\{h_k\}_{k=1}^{\infty} \subset C^3(\mathbb{R}) \) be a sequence of approximate functions for \(h \) with \(h_k(s) = 0 \) for \(s \in (-\infty, 0] \) and \(h'_k \geq 0 \), \(h''_k \geq 0 \). Consider the functions \(h_k \circ (\tilde{u}_e(x) - 1) \). Using (2.1),

\[
\Delta h_k \circ (\tilde{u}_e - 1) = h''_k \circ (\tilde{u}_e - 1)|\nabla \tilde{u}_e|^2 + h'_k \circ (\tilde{u}_e - 1)\Delta \tilde{u}_e \geq h'_k \circ (\tilde{u}_e - 1)\Delta \tilde{u}_e \\
\geq h'_k \circ (\tilde{u}_e - 1)(W''(\tilde{u}_e) - \varepsilon \tilde{f}_e) \geq -h'_k \circ (\tilde{u}_e - 1)\varepsilon \tilde{f}_e.
\]

(3.17)

By the standard elliptic estimate (cf.[6, Theorem 8.17.]) applied to (3.17), we obtain for any \(B_1 \subset U/\varepsilon \)

\[
\sup_{B_{1/2}} h_k \circ (\tilde{u}_e - 1) \leq c(h) \|h_k \circ (\tilde{u}_e - 1)\|_{L^2(B_1)} + \|h'_k \circ (\tilde{u}_e - 1)\varepsilon \tilde{f}_e\|_{L^2(B_1)}.
\]

By taking the limit \(k \to \infty \) we obtain

\[
\sup_{B_{1/2}} (\tilde{u}_e - 1)_+ \leq c((\tilde{u}_e - 1)_+ \|L^2(B_1)) + \|\varepsilon \tilde{f}_e\|_{L^2(B_1)}).
\]

We have \(\|(\tilde{u}_e - 1)_+\|_{L^2(B_1)} \leq c \varepsilon^{\frac{1}{2}} \) from (3.11) and \(\|\varepsilon \tilde{f}_e\|_{L^2(B_1)} \leq a_1^2 \varepsilon^{\frac{1}{2}} \) by (A.2). Thus

\[
\sup_{B_{1/2}} (\tilde{u}_e - 1)_+ \leq c \varepsilon^{\frac{1}{2}}.
\]

With a suitable choice of \(c_1 \) we have

\[
\sup_{B_{1/2}} (u_e - 1)_+ \leq c_1 \varepsilon^{\frac{1}{2}}.
\]

Repeating the same argument, we obtain \(\sup_{B_{1/2}} |(u + 1)_-| \leq c_1 \varepsilon^{\frac{1}{2}} \), which proves (3.10).

\(\square \)

Remark 3.3. In the following we often use the fact that the scaled function \(\tilde{u}_e \) has uniform \(C^{0,\gamma} \) estimate for any \(0 < \gamma < 1 \). This follows from (2.1) and the standard \(W^{2,2} \) estimate

\[
\|\tilde{u}_e\|_{W^{2,2}(B_1)} \leq c(\|\tilde{u}_e\|_{L^2(B_1)} + \|W''(\tilde{u}_e)\|_{L^2(B_1)} + \|\varepsilon \tilde{f}_e\|_{L^2(B_1)})
\]

as well as the Sobolev inequality (recalling \(n = 2 \))

\[
\|\tilde{u}_e\|_{C^{0,\gamma}(B_1)} \leq c(\|\tilde{u}_e\|_{W^{2,2}(B_1)}).
\]
Remark 3.4. In the remaining part of the paper we fix constants as follows. First fix
\[0 < \beta_2 < \frac{1}{2}, \quad 0 < \gamma < 1. \]
Choose \(\beta_1 > 0 \) to be small so that
\[0 < \frac{1}{2} - \beta_2 - \beta_1, \quad 0 < \gamma \beta_2 - 2 \beta_1 \]
hold. Fix \(\beta_0 \) so that
\[0 < \beta_0 \leq \beta_1 \]
and define
\[\iota = \max \left\{ \beta_1 + \beta_2 + \frac{1}{2}, 1 - \gamma \beta_2 + 2 \beta_1, 1 - \beta_0 \right\}. \]
We note that \(0 < \iota < 1 \) by above choice. Finally fix \(\beta_3 \) so that
\[\iota < \beta_3 < 1. \]

We next quote the following from [19], which holds for \(W \) with the properties stated in Sec. 2.1.

Lemma 3.5. ([19, Lemma 3.5]) There exist constants \(\varepsilon_1 > 0 \) and \(c_2 > 0 \) depending only on \(\beta_0, \beta_1, c_3 \) and \(W \) with the following properties. Suppose
(A) \(\tilde{v}_\varepsilon \in C^3(B_{\varepsilon^{-\beta_1}}), \ g \in C^1(B_{\varepsilon^{-\beta_1}}) \) and \(\varepsilon \leq \varepsilon_1 \) satisfy
\[-\Delta \tilde{v}_\varepsilon + W'(\tilde{v}_\varepsilon) = \varepsilon g \]
on \(B_{\varepsilon^{-\beta_1}} \) and
(B) \(\sup_{B_{\varepsilon^{-\beta_1}}} |\tilde{v}_\varepsilon| \leq 1 + \varepsilon^{\beta_0}, \ \sup_{B_{\varepsilon^{-\beta_1}}} \left(\frac{\|\nabla \tilde{v}_\varepsilon\|^2}{2} - W(\tilde{v}_\varepsilon) \right) \leq c_3. \)
Then
\[\sup_{B_{\frac{1}{2}\varepsilon^{-\beta_1}}} \left(\frac{\|\nabla \tilde{v}_\varepsilon\|^2}{2} - W(\tilde{v}_\varepsilon) \right) \leq c_2 (\varepsilon^{1-\beta_1} \|g\|_{W^{1,2}(B_{\varepsilon^{-\beta_1}})} + \varepsilon^{\beta_0}). \]

The above estimate is derived via the Alekseandroff-Bakelman-Pucci estimate and it is essential that \(W \) is a double well potential.

Let us consider the estimate of the discrepancy measure \(\xi_\varepsilon(u_\varepsilon) = (\varepsilon \frac{\|\nabla u_\varepsilon\|^2}{2} - \frac{W(\varepsilon u_\varepsilon)}{\varepsilon}) \). Since we have no control of the derivative of \(f_\varepsilon \), we cannot apply Lemma 3.5 to \(u_\varepsilon \) directly. Thus we consider the regularization of \(u_\varepsilon \). Let \(\psi \in C_0^\infty(\mathbb{R}^2) \) be a positive radial symmetric function with \(\text{supp} \psi \subset B_1(0) \) and \(\int_{\mathbb{R}^2} \psi(x) dx = 1 \). For \(\varepsilon > 0 \), set \(\psi_{2\varepsilon^{1+\beta_2}}(x) = \frac{1}{2\varepsilon^{1+2\beta_2}} \psi\left(\frac{x}{\varepsilon^{1+2\beta_2}} \right) \) where \(\beta_2 \) is chosen in Remark 3.4. Next proposition follows from applying Lemma 3.5 to \(u_\varepsilon * \psi_{2\varepsilon^{1+\beta_2}} \).
Proposition 3.6. Define
\[v_\varepsilon = u_\varepsilon * \psi_{1+\beta_2}. \] (3.18)

For \(V \subset \subset U \) there exist a constant \(0 < \varepsilon_2 < \varepsilon_1 \) and \(c_4 \) depending only on \(W, \text{dist}(V, \partial U), E_0 \) and \(a_1 \) satisfying that
\[\sup_V \xi_\varepsilon(v_\varepsilon) \leq c_4 \varepsilon^{-\tau} \] (3.19)

if \(\varepsilon < \varepsilon_2 \). Here \(\xi_\varepsilon(v_\varepsilon) = \left(\varepsilon \frac{\|\nabla v_\varepsilon\|^2}{2} - \frac{W(v_\varepsilon)}{\varepsilon} \right) \).

Proof. By scaling \(\tilde{v}_\varepsilon(x) = v_\varepsilon(\varepsilon x) \) and \(\tilde{u}_\varepsilon(x) = u_\varepsilon(\varepsilon x), \) (3.18) is
\[\tilde{v}_\varepsilon = \tilde{u}_\varepsilon * \psi_{\beta_2}. \]

Since \(\tilde{u}_\varepsilon \) satisfies (2.1), \(\tilde{v}_\varepsilon \) satisfies
\[-\Delta \tilde{v}_\varepsilon + W'(\tilde{v}_\varepsilon) = \varepsilon g \] (3.20)

with
\[g = \tilde{f}_\varepsilon * \psi_{\beta_2} + \frac{W'(...)}{\varepsilon} - \frac{W'(\tilde{u}_\varepsilon)}{\varepsilon} \psi_{\beta_2}. \]

In the following we apply Lemma 3.5 thus we need to estimate \(W^{1,2} \)-norm of \(g \) on \(B_{\varepsilon-\beta_1} \subset \subset \frac{V}{\varepsilon} \). First we consider the estimate of \(\|g\|_{L^2(B_{\varepsilon-\beta_1})} \). By inserting the term \(\frac{W'(\tilde{u}_\varepsilon)}{\varepsilon} \psi_{\beta_2} \) we obtain
\[\|g\|_{L^2(B_{\varepsilon-\beta_1})} \leq \left\| \tilde{f}_\varepsilon * \psi_{\beta_2} \right\|_{L^2(B_{\varepsilon-\beta_1})} + \left\| \frac{W'(\tilde{v}_\varepsilon)}{\varepsilon} - \frac{W'(\tilde{u}_\varepsilon)}{\varepsilon} \psi_{\beta_2} \right\|_{L^2(B_{\varepsilon-\beta_1})} \]
\[+ \| \frac{W'(\tilde{u}_\varepsilon)}{\varepsilon} - \frac{W'(\tilde{u}_\varepsilon)}{\varepsilon} \psi_{\beta_2} \|_{L^2(B_{\varepsilon-\beta_1})} := (I_1) + (II_1) + (III_1). \] (3.21)

By (A.2),
\[(I_1) \leq \| \tilde{f}_\varepsilon \|_{L^2(B_{2\varepsilon-\beta_1})} \| \psi_{\beta_2} \|_{L^1(B_{\varepsilon-\beta_2})} \leq a_1 \varepsilon^{-\frac{1}{2}}. \] (3.22)

By \(C^{0,\gamma} \) estimate for \(\tilde{u}_\varepsilon \) we have
\[\sup_{B_{\varepsilon-\beta_1}} |\tilde{v}_\varepsilon - \tilde{u}_\varepsilon| \leq c \varepsilon^{\gamma \beta_2}. \]

Thus with this sup bound
\[(II_1) \leq \frac{1}{\varepsilon} \left\{ \int_{B_{\varepsilon-\beta_1}} (\sup |W''|)^2 |\tilde{v}_\varepsilon - \tilde{u}_\varepsilon|^2 dx \right\}^{\frac{1}{2}} \leq c \varepsilon^{\gamma \beta_2 - \beta_1 - 1}. \] (3.23)
Similarly with
\[|W'(\tilde{u}_\epsilon) - W'(\tilde{u}_\epsilon) \ast \psi_{\epsilon, \beta_2}| \leq c\varepsilon^{\gamma\beta_2}, \]

\[(III_1) \leq \frac{1}{\varepsilon} \left\{ \int_{B_{\varepsilon^{-\beta_1}}} |W'(\tilde{u}_\epsilon) - W'(\tilde{u}_\epsilon) \ast \psi_{\epsilon, \beta_2}|^2 \, dx \right\}^{\frac{1}{2}} \leq c\varepsilon^{\gamma\beta_2 - \beta_1 - 1}. \tag{3.24} \]

Next, we estimate \(\|\nabla g\|_{L^2(B_{\varepsilon^{-\beta_1}})} \). By inserting the terms \(\pm \nabla W_0(\varepsilon u) \),

\[\|\nabla\|_{L^2(B_{\varepsilon^{-\beta_1}})} \leq \|\nabla (\tilde{f}_\epsilon \ast \psi_{\epsilon, \beta_2})\|_{L^2(B_{\varepsilon^{-\beta_1}})} + \|\nabla (\frac{W'(\tilde{u}_\epsilon)}{\varepsilon} - \frac{W'(\tilde{u}_\epsilon)}{\varepsilon} \ast \psi_{\epsilon, \beta_2})\|_{L^2(B_{\varepsilon^{-\beta_1}})} := (I_2) + (II_2) + (III_2). \tag{3.25} \]

By (A.2),

\[(I_2) \leq c\varepsilon^{-\beta_2 - \frac{1}{2}}. \tag{3.26} \]

For (II_2) we have

\[|\nabla (W'(\tilde{u}_\epsilon) - W'(\tilde{u}_\epsilon))| \leq \sup |W''| |\nabla \tilde{\nu}_\epsilon - \nabla \tilde{u}_\epsilon| + c(\sup |W''|)\varepsilon^{\gamma\beta_2} |\nabla \tilde{u}_\epsilon|. \tag{3.27} \]

Since

\[|\nabla \tilde{u}_\epsilon(x - y) - \nabla \tilde{u}_\epsilon(x)| \leq \int_0^1 |\nabla^2 \tilde{\nu}_\epsilon(x - ty)||y| \, dt, \]

we estimate the \(L^2 \)-norm of the first term of (3.27) as

\[\int_{B_{\varepsilon^{-\beta_1}}} |\nabla \tilde{\nu}_\epsilon - \nabla \tilde{u}_\epsilon|^2 \, dx \leq \int_{B_{\varepsilon^{-\beta_1}}} \int_{B_{\varepsilon^{-\beta_2}}} |\nabla \tilde{\nu}_\epsilon(x - y) - \nabla \tilde{u}_\epsilon(x)|^2 \psi_{\epsilon, \beta_2}(y) \, dxdy \]

\[\leq \int_{B_{\varepsilon^{-\beta_1}}} \int_{B_{\varepsilon^{-\beta_2}}} \psi_{\epsilon, \beta_2}(y) |y|^2 \int_0^1 |\nabla^2 \tilde{\nu}_\epsilon(x - ty)|^2 \, dtdy \]

\[\leq \varepsilon^{2\beta_2} \int_{B_{2\varepsilon^{-\beta_1}}} |\nabla^2 \tilde{u}_\epsilon|^2 \, dx. \tag{3.28} \]

By the \(W^{2,2} \) estimate of \(\tilde{u}_\epsilon \) in Remark 3.3 we have

\[\int_{B_{2\varepsilon^{-\beta_1}}} |\nabla \tilde{\nu}_\epsilon|^2 + |\nabla^2 \tilde{u}_\epsilon|^2 \, dx \leq c\varepsilon^{-2\beta_1}. \tag{3.29} \]

Substituting (3.29) into (3.28), we obtain

\[\int_{B_{\varepsilon^{-\beta_1}}} |\nabla \tilde{\nu}_\epsilon - \nabla \tilde{u}_\epsilon|^2 \, dx \leq c\varepsilon^{2\beta_2 - 2\beta_1}. \tag{3.30} \]
As the L^2-norm of the second term of (3.27) can be estimated by (3.29), we obtain

$$\|II_2\| \leq c(\varepsilon^{\beta_2-\beta_1-1} + \varepsilon^{\gamma\beta_2-\beta_1-1}) \leq c\varepsilon^{\gamma\beta_2-\beta_1-1}. \quad (3.31)$$

For (III_2),

$$|\nabla (W' (\tilde{u}_\varepsilon (x))) - \nabla (W' (\tilde{u}_\varepsilon (x)) \ast \psi_{\varepsilon, \beta_2})|^2$$

$$\leq \int_{B_{\varepsilon, \beta_2}} |\nabla (W' (\tilde{u}_\varepsilon (x))) - \nabla (W' (\tilde{u}_\varepsilon (x-y)))|^2 \psi_{\varepsilon, \beta_2} (y) dy$$

$$\leq 2 \int_{B_{\varepsilon, \beta_2}} (\sup |W''|) |\nabla \tilde{u}_\varepsilon (x) - \nabla \tilde{u}_\varepsilon (x-y)|^2 \psi_{\varepsilon, \beta_2} (y) dy$$

$$+ 2 \int_{B_{\varepsilon, \beta_2}} (c \sup |W''|) \varepsilon^{2\beta_2} |\nabla \tilde{u}_\varepsilon (x)|^2 \psi_{\varepsilon, \beta_2} (y) dy. \quad (3.32)$$

In the same way as we obtained (3.31) we have from (3.32)

$$(III_2) \leq c\varepsilon^{-1} \left\{ \int_{B_{\varepsilon^{-1}, \beta_1}} \int_{B_{\varepsilon^{-1}, \beta_2}} |\nabla \tilde{u}_\varepsilon (x) - \nabla \tilde{u}_\varepsilon (x-y)|^2 \psi_{\varepsilon, \beta_2} (y) dy dx \right. \right.$$

$$\left. + \int_{\varepsilon^{-1}, \beta_1} \varepsilon^{2\beta_2} \gamma |\nabla \tilde{u}_\varepsilon (x)|^2 dx \right\}^{\frac{1}{2}}$$

$$\leq c(\varepsilon^{\beta_2-\beta_1-1} + \varepsilon^{\gamma\beta_2-\beta_1-1}) \leq c\varepsilon^{\gamma\beta_2-\beta_1-1}. \quad (3.33)$$

Estimates (3.21), (3.22), (3.23), (3.24), (3.25), (3.26), (3.31), (3.33) show

$$\|g\|_{W^{1,2}(B_{\varepsilon^{-1}, \beta_1})} \leq c(\varepsilon^{-\frac{\beta_2}{2}} + \varepsilon^{\gamma\beta_2-\beta_1-1}). \quad (3.34)$$

Before we apply Lemma 3.5 we need to have a uniform estimate for $\|\tilde{v}_\varepsilon\|_{C^1}$. By the choice of β_1, β_2 and γ we have

$$-\beta_2 + \frac{1}{2} > 0 \text{ and } \gamma\beta_2 - \beta_1 > 0.$$

so in particular we have $\|\varepsilon g\|_{W^{1,2}(B_{\varepsilon^{-1}, \beta_1})} \leq c$. Since \tilde{v}_ε satisfies (3.20), by $W^{3,2}$-estimate of the elliptic PDE and Sobolev’s inequality, we obtain a uniform C^1 estimate for \tilde{v}_ε and thus we have ε-independent c_3 such that

$$\sup_{B_{\varepsilon^{-1}, \beta_1}} \left(\frac{|\nabla \tilde{v}_\varepsilon|^2}{2} - W(\tilde{v}_\varepsilon) \right) \leq c_3.$$

Now we are ready to use Lemma 3.5 to conclude with (3.34) that

$$\sup_{B_{\varepsilon^{-1}, \beta_1}} \left(\frac{|\nabla \tilde{v}_\varepsilon|^2}{2} - W(\tilde{v}_\varepsilon) \right) \leq c(\varepsilon^{-\frac{1}{2}} - \beta_2 + \varepsilon^{\gamma\beta_2-2\beta_1} + \varepsilon^{\beta_0}).$$
By scaling,
\[\sup_{V'} \left(\frac{\varepsilon |\nabla v_\varepsilon|^2}{2} - \frac{W(v_\varepsilon)}{\varepsilon} \right) \leq c(\varepsilon^{-\frac{1}{2}}\beta_1 - \beta_2 + \varepsilon^{\gamma}\beta_2 - 2\beta_1 - 1 + \varepsilon^{\beta_1 - 1}). \]

We defined \(\iota \) so that the right-hand side is bounded by \(c\varepsilon^{-\iota} \) thus we proved (3.19) with an appropriate choice of constant \(c_4 \).

Proposition 3.7. There exist constants \(c_5 > 0 \) and \(\varepsilon_2 > 0 \) depending only on \(W, \text{dist}(V, \partial U), E_0 \) and \(\alpha_1 \) such that for \(\varepsilon \leq \varepsilon_2 \) and \(B_r \subset V \)
\[\int_{B_r} \{ \xi_\varepsilon(u_\varepsilon) \} + dx \leq \int_{B_r} \{ \xi_\varepsilon(v_\varepsilon) \} + dx + c_5 \varepsilon^{\frac{\beta_2}{2}} \{ r + \mu_\varepsilon(B_r) \}. \]

Proof. Since \(|\nabla u_\varepsilon| \leq |\nabla u_\varepsilon - \nabla v_\varepsilon| + |\nabla v_\varepsilon| \), by considering the square of both sides and Cauchy’s inequality,
\[|\nabla u_\varepsilon|^2 \leq |\nabla v_\varepsilon|^2 + |\nabla u_\varepsilon - \nabla v_\varepsilon|^2 + 2|\nabla u_\varepsilon - \nabla v_\varepsilon||\nabla v_\varepsilon| \]
\[\leq |\nabla v_\varepsilon|^2 + (1 + \varepsilon^{-\beta_2})|\nabla u_\varepsilon - \nabla v_\varepsilon|^2 + \varepsilon^{\beta_2}|\nabla v_\varepsilon|^2. \] (3.35)

Similarly
\[|\nabla v_\varepsilon|^2 \leq |\nabla u_\varepsilon|^2 + (1 + \varepsilon^{-\beta_2})|\nabla u_\varepsilon - \nabla v_\varepsilon|^2 + \varepsilon^{\beta_2}|\nabla u_\varepsilon|^2. \] (3.36)

By substituting (3.36) to (3.35) we obtain
\[|\nabla u_\varepsilon|^2 \leq |\nabla v_\varepsilon|^2 + c\varepsilon^{-\beta_2}|\nabla u_\varepsilon - \nabla v_\varepsilon|^2 + c\varepsilon^{\beta_2}|\nabla u_\varepsilon|^2. \] (3.37)

Using (3.37) we obtain
\[\{ \xi_\varepsilon(u_\varepsilon) \}_{+} \leq \{ \xi_\varepsilon(v_\varepsilon) \}_{+} + \frac{c}{2} \varepsilon^{1 - \beta_2}|\nabla u_\varepsilon - \nabla v_\varepsilon|^2 \]
\[+ \left(\frac{W(v_\varepsilon) - W(u_\varepsilon)}{\varepsilon} + c\varepsilon^{\beta_2} \left(\frac{\varepsilon |\nabla u_\varepsilon|^2}{2} + \frac{W(u_\varepsilon)}{\varepsilon} \right) \right). \] (3.38)

Integrating (3.38) on \(B_r \) for \(\varepsilon \leq r \),
\[\int_{B_r} \{ \xi_\varepsilon(u_\varepsilon) \}_{+} + dx \leq \int_{B_r} \{ \xi_\varepsilon(v_\varepsilon) \}_{+} + dx + c\varepsilon^{-\beta_2} \int_{B_r} \varepsilon |\nabla u_\varepsilon - \nabla v_\varepsilon|^2 dx \]
\[+ \int_{B_r} \left(\frac{W(v_\varepsilon) - W(u_\varepsilon)}{\varepsilon} \right) dx + c\varepsilon^{\beta_2} \int_{B_r} \left(\frac{\varepsilon |\nabla u_\varepsilon|^2}{2} + \frac{W(u_\varepsilon)}{\varepsilon} \right) dx. \] (3.39)

We estimate each term of (3.39). As we proved in (3.28),
\[c\varepsilon^{-\beta_2} \int_{B_r} \varepsilon |\nabla u_\varepsilon - \nabla v_\varepsilon|^2 dx \leq c\varepsilon^{3 + \beta_2} \int_{B_{r+1 + \beta_2}} |\nabla^2 u_\varepsilon|^2 dx. \] (4.40)
We estimate L^2-norm of $\nabla^2 u_\varepsilon$ in $B_{r_1 + \varepsilon^{1+\beta_2}}$. Write $\tilde{r} = r + \varepsilon^{1+\beta_2}$. By scaling B_r to B_1 by $\tilde{x} = x/\tilde{r}$ and applying $W^{2,2}$ estimate to $\Delta u_\varepsilon = \frac{\varepsilon^2 W'(u_\varepsilon)}{\varepsilon^2} - \frac{\varepsilon^2 f_\varepsilon}{\varepsilon^2}$, we obtain after scaling back

$$\int_{B_{\tilde{r}}} |\nabla^2 u_\varepsilon|^2 \, dx \leq \frac{1}{\tilde{r}^4} \int_{B_{\tilde{r}}} |u_\varepsilon|^2 \, dx + \frac{1}{\varepsilon^4} \int_{B_{\varepsilon}} (W'(u_\varepsilon))^2 \, dx + \frac{1}{\varepsilon^2} \int_{B_{\varepsilon}} f_\varepsilon^2 \, dx. \tag{3.41}$$

For the second term of (3.41), we split the integral to B_r and $B_{\tilde{r}} \setminus B_r$. Since $|W'(u_\varepsilon)|^2 \leq c W(u_\varepsilon)$ and $|B_{\tilde{r}} \setminus B_r| \leq c \varepsilon^{1+\beta_2} r$, we obtain

$$\int_{B_{\tilde{r}}} |W'(u_\varepsilon)|^2 \, dx \leq \varepsilon \int_{B_r} \frac{W(u_\varepsilon)}{\varepsilon} \, dx + c \int_{B_{\tilde{r}} \setminus B_r} \, dx \leq \varepsilon (\mu_\varepsilon(B_r) + r \varepsilon^{\beta_2}). \tag{3.42}$$

By Lemma 3.2 for the first term and by (3.42) and (A.2), (3.41) is estimated as

$$\int_{B_{\tilde{r}}} |\nabla^2 u_\varepsilon|^2 \, dx \leq \frac{c}{r^2} + \frac{c}{\varepsilon^4} (\mu_\varepsilon(B_r) + r \varepsilon^{\beta_2}) + \frac{a_1}{\varepsilon}. \tag{3.43}$$

By (3.40) and (3.43),

$$c \varepsilon^{-\beta_2} \int_{B_r} \varepsilon |\nabla u_\varepsilon - \nabla v_\varepsilon|^2 \, dx \leq c \left\{ \frac{\varepsilon^{\beta_2+3}}{r^2} + r \varepsilon^{2\beta_2} + \varepsilon^{\beta_2+2} + \varepsilon^{\beta_2} \mu_\varepsilon(B_r) \right\} \leq c \left\{ r \varepsilon^{\beta_2} + \varepsilon^{\beta_2} \mu_\varepsilon(B_r) \right\}. \tag{3.44}$$

since $r \geq \varepsilon$. For the estimate of the third term of (3.39),

$$|W(v_\varepsilon) - W(u_\varepsilon)| \leq |v_\varepsilon - u_\varepsilon| |W'(u_\varepsilon)| + \frac{\sup |W''|}{2} |v_\varepsilon - u_\varepsilon|^2 \leq c \varepsilon^{-\beta_2} |v_\varepsilon - u_\varepsilon|^2 + c \varepsilon^{\beta_2} |W'(u_\varepsilon)|^2. \tag{3.45}$$

Since $|W'(u_\varepsilon)|^2 \leq c W(u_\varepsilon)$,

$$\int_{B_r} \frac{|W(v_\varepsilon) - W(u_\varepsilon)|}{\varepsilon} \, dx \leq c \varepsilon^{-\beta_2} \int_{B_r} |v_\varepsilon - u_\varepsilon|^2 \, dx + c \varepsilon^{\beta_2} \int_{B_r} \frac{W(u_\varepsilon)}{\varepsilon} \, dx \leq c \varepsilon^{-\beta_2} \int_{B_r} |v_\varepsilon - u_\varepsilon|^2 \, dx + c \varepsilon^{\beta_2} \mu_\varepsilon(B_r). \tag{3.46}$$
For the right-hand side of (3.46)
\[
\int_{B_r} |u_\varepsilon - v_\varepsilon|^2 \, dx \leq \int_{B_r \setminus B_{r-\varepsilon^{1+\beta}}} |u_\varepsilon - v_\varepsilon|^2 \, dx + \int_{B_{r-\varepsilon^{1+\beta}}} |u_\varepsilon - v_\varepsilon|^2 \, dx
\]
\[
\leq c \left(r\varepsilon^{1+\beta} + \varepsilon^{2+2\beta} \int_{B_r} |\nabla u_\varepsilon|^2 \, dx \right) \leq c \left(r\varepsilon^{1+\beta} + \varepsilon^{1+2\beta} \mu_\varepsilon(B_r) \right).
\]
(3.47)

By substituting (3.47) to (3.46) we obtain
\[
\int_{B_r} \frac{|W(u_\varepsilon) - W(u_\varepsilon)|}{\varepsilon} \, dx \leq r\varepsilon^{\frac{\beta_2}{2}} + c\varepsilon^{\frac{3\beta_2}{2}} \mu_\varepsilon(B_r) + c\varepsilon^{\frac{\beta_2}{2}} \mu_\varepsilon(B_r)
\]
\[
\leq r\varepsilon^{\frac{\beta_2}{2}} + c\varepsilon^{\frac{\beta_2}{2}} \mu_\varepsilon(B_r).
\]
(3.48)

The claim of the proposition follows from (3.39), (3.44), (3.48). □

Next we estimate the lower bound of the energy density ratio for ‘small’ scale, namely, for \(\varepsilon \leq r \leq t_1 \varepsilon^t \) with small \(t_1 \) independent of \(\varepsilon \).

Theorem 3.8. There exist constants \(c_6 > 0, t_1 > 0 \) and \(\varepsilon_3 > 0 \) such that if \(\varepsilon \leq r \leq t_1 \varepsilon^t, B_r(x_0) \subset V, |u_\varepsilon(x_0)| < \alpha \) and \(0 < \varepsilon \leq \varepsilon_3, \) then
\[
c_6 \leq \frac{1}{r} \mu_\varepsilon(B_r(x_0)).
\]

Proof. We may assume \(x_0 = 0 \). For \(\tilde{u}_\varepsilon(x) = u_\varepsilon(\varepsilon x) \),
\[
\frac{1}{\varepsilon} \mu_\varepsilon(B_\varepsilon) = \frac{1}{\varepsilon} \int_{B_\varepsilon} \frac{\varepsilon|\nabla u_\varepsilon|^2}{2} + \frac{W(u_\varepsilon)}{\varepsilon} \, dx = \int_{B_1} \frac{|\nabla \tilde{u}_\varepsilon|^2}{2} + W(\tilde{u}_\varepsilon) \, dx.
\]
Since \(|	ilde{u}_\varepsilon(0)| < \alpha \) and \(\tilde{u}_\varepsilon \in C^{0,\gamma} \) there exists a constant \(c_7 > 0 \) satisfying \(W(\tilde{u}_\varepsilon) > c_7 \) on \(B_{c_7} \) and thus
\[
\frac{1}{\varepsilon} \mu_\varepsilon(B_\varepsilon) \geq \int_{B_{c_7}} W(\tilde{u}_\varepsilon) \, dx \geq c_7 \mathcal{L}^2(B_{c_7}) = c_8.
\]
(3.49)

Let \(t_1 > 0 \) be a constant to be determined shortly. We claim that \(\mu_\varepsilon(B_r) / r \geq c_8 / 2 \) for \(\varepsilon \leq r \leq t_1 \varepsilon^t \). To derive a contradiction assume that there exists a constant \(r_1 \) with \(\varepsilon \leq r_1 \leq t_1 \varepsilon^t \) satisfying
\[
\frac{1}{r_1} \mu_\varepsilon(B_{r_1}) = \frac{c_8}{2}.
\]
By continuity of $\frac{1}{r} \mu_\varepsilon(B_r)$ with respect to r, there exists r_0 with $\varepsilon \leq r_0 < r_1$ satisfying $\frac{1}{r_0} \mu_\varepsilon(B_{r_0}) = c_8$ and $\frac{2\varepsilon}{r_0} \leq \frac{1}{r} \mu_\varepsilon(B_r) \leq c_8$ for $r_0 \leq r \leq r_1$. By Lemma 3.1, Proposition 3.6 and 3.7, for $\varepsilon \leq s \leq r \leq t_1 \varepsilon'$,

$$
(1 + \delta) \frac{1}{r} \mu_\varepsilon(B_r) - (1 - \delta) \frac{1}{s} \mu_\varepsilon(B_s)
\geq -(\frac{2}{\delta} + 1)a_1 r - \int_s^r c_4 \varepsilon \xi \, dr - \int_s^r \frac{c_5 \varepsilon \xi}{r} \{1 + \frac{1}{r} \mu_\varepsilon(B_r)\} \, dr.
$$

(3.50)

Using (3.50) with $s = r_0$ and $r = r_1$ as well as $r_1 \leq t_1 \varepsilon'$ we obtain

$$
\frac{c_8}{2} (3\delta - 1) \geq -\frac{2}{\delta} + 1)a_1 t_1 \varepsilon' - c_4 t_1 - c_5 \varepsilon \xi (1 + c_8) \log(\frac{t_1 \varepsilon'}{\varepsilon}).
$$

(3.51)

Set $\delta = \frac{1}{6}$ so the left-hand side of (3.51) is equal to $-\frac{c_8}{4}$. Choose t_1 small so the right-hand side of (3.51) is greater than $-\frac{c_8}{4}$ for sufficiently small ε. This leads to a contradiction. We set $c_6 = c_8/2$. \[\square\]

Next we estimate the discrepancy $\xi_\varepsilon(v_\varepsilon)$ for 'large' r, namely, for $t_1 \varepsilon' \leq r$. The proof is a suitable modification of [19, Prop.3.5].

Proposition 3.9. Set $\beta_1 = \min\{2 - 2\beta_2, 2\beta_2, \beta_3 - \i, \beta_4\} > 0$. There exist constants $c_9 > 0$ and $\varepsilon_4 > 0$ such that, if $B_r \subset V$, $t_1 \varepsilon' \leq r \leq 1$ and $0 < \varepsilon \leq \varepsilon_4$,

$$
\int_{B_r} \{\xi_\varepsilon(v_\varepsilon)\}^+ \, dx \leq c_9 \left(r \varepsilon^{\beta_3 - \i} + \varepsilon^{2 - 2\beta_2} + \varepsilon^{\beta_3} \mu_\varepsilon(B_r) \right).
$$

(3.52)

Proof. We estimate the integral on three domains,

$$
A = \{x \in B_r \setminus B_{r - \varepsilon^{\beta_3}}\}, \quad B = \{x \in B_{r - \varepsilon^{\beta_3}} \mid \text{dist}(|u_\varepsilon | \leq \alpha, x) < \varepsilon^{\beta_3}\},
\quad C = \{x \in B_{r - \varepsilon^{\beta_3}} \mid \text{dist}(|u_\varepsilon | \leq \alpha, x) \geq \varepsilon^{\beta_3}\}.
$$

Case 1. (estimate on A)

By Proposition 3.6 and $L^2(A) \leq c r \varepsilon^{\beta_3}$,

$$
\int_A \{\xi_\varepsilon(v_\varepsilon)\}^+ \, dx \leq c_5 \varepsilon^{-\i} L^2(A) \leq c r \varepsilon^{\beta_3 - \i}.
$$

(3.53)

Case 2. (estimate on B)

We first estimate $L^2(B)$. We apply Vitali’s covering lemma to the family of balls $\{B_{r^{\beta_3}(x)}\}_{x \in \{\varepsilon \leq \alpha\} \cap B}$ (which covers B), so that $\{B_{r^{\beta_3}(x)}\}_{i=1}^N$ is a
pairwise disjoint subset of the family and so that $B \subset \bigcup_{i=1}^{N} B_{\varepsilon^{\beta_{3}))(x_{i})}$. Then we have
\[\mathcal{L}^{2}(B) \leq c(5\varepsilon^{\beta_{3}))(2N = cN\varepsilon^{2\beta_{3}}. \] (3.54)
Since $\iota < \beta_{3}$ (Remark 3.4), $\varepsilon^{\beta_{3}} < t_{1}\varepsilon^{\iota}$ for all sufficiently small ε. Thus by Theorem 3.8
\[c_{6}\varepsilon^{\beta_{3}} \leq \mu_{\varepsilon}(B_{\varepsilon^{\beta_{3}))(x_{i}))} \]
holds for each $i = 1, \ldots, N$. Since they are pairwise disjoint, summing over i we have
\[Nc_{6}\varepsilon^{\beta_{3}} \leq \mu_{\varepsilon}(B_{r}) \] (3.55)
and (3.54) and (3.55) show that
\[\mathcal{L}^{2}(B) \leq c\varepsilon^{\beta_{3}}\mu_{\varepsilon}(B_{r}). \] (3.56)
Finally, with Proposition 3.6 and (3.56)
\[\int_{B}(\xi_{\varepsilon}(v_{\varepsilon})) + d \leq c_{4}\varepsilon^{-4}\mathcal{L}^{2}(B) \leq c\varepsilon^{\beta_{3} - \iota}\mu_{\varepsilon}(B_{r}). \] (3.57)
Case 3. (estimate on C)
We define a Lipschitz function ρ as follows;
\[\rho(x) = \min\{1, 2\varepsilon^{-\beta_{3}}\text{dist}(\{|x| \geq r - \varepsilon^{\beta_{3}}/2\} \cup \{|u_{\varepsilon}| \leq \alpha\}, x)\}. \]
ρ is 0 on the set $\{|x| \geq r - \varepsilon^{\beta_{3}}/2\} \cup \{|u_{\varepsilon}| \leq \alpha\}$, 1 on C and $|\nabla\rho| \leq 2\varepsilon^{-\beta_{3}}$. Using this ρ, we estimate $\frac{1}{2}\varepsilon|\nabla v_{\varepsilon}|^{2}$. By (3.18) and (3.20), v_{ε} (without scaling) satisfies $-\varepsilon\Delta v_{\varepsilon} + \frac{W'(v_{\varepsilon})}{\varepsilon} = g$ where $g = f_{\varepsilon} + \psi_{\varepsilon}^{1+\beta_{2}} + \frac{W'(u_{\varepsilon})}{\varepsilon} - \frac{W'(u_{\varepsilon})}{\varepsilon} * \psi_{\varepsilon}^{1+\beta_{2}}$. Differentiating this equation with respect to the k-th variable, multiplying it by $D_{k}v_{\varepsilon}\rho^{2}$ and integrating on B_{r}, we have
\[\int_{B}(\varepsilon\Delta D_{k}v_{\varepsilon})D_{k}v_{\varepsilon}\rho^{2} \, dx = \int \left(\frac{W''(v_{\varepsilon})}{\varepsilon} D_{k}v_{\varepsilon} - D_{k}g\right)D_{k}v_{\varepsilon}\rho^{2} \, dx. \] (3.58)
By integrating by parts, the left-hand side of (3.58) is
\[\int(\varepsilon\Delta D_{k}v_{\varepsilon})D_{k}v_{\varepsilon}\rho^{2} \, dx = -\varepsilon \int |\nabla^{2}v_{\varepsilon}|^{2}\rho^{2} \, dx - 2\varepsilon \int D_{ik}v_{\varepsilon}D_{k}v_{\varepsilon}\rho D_{i}\rho \, dx. \] (3.59)
Since $W'' \geq \kappa$ on $\{|u_\varepsilon| \geq \alpha\}$ and $\frac{\varepsilon}{2} \geq \sup |W'''(\varepsilon)^{\gamma_2}|$ for sufficiently small ε, by Cauchy’s inequality, the right-hand side of (3.58) is

$$\int \left(\frac{W''(v_\varepsilon)}{\varepsilon} D_k v_\varepsilon - D_k g D_k v_\varepsilon \rho^2 \right) dx$$

$$\geq \int \frac{W''(v_\varepsilon)}{\varepsilon} \nabla v_\varepsilon^2 \rho^2 - \left| \frac{W''(v_\varepsilon) - W''(u_\varepsilon)}{\varepsilon} \right| \nabla v_\varepsilon^2 \rho^2 - |\nabla g| |\nabla v_\varepsilon| \rho^2 dx$$

$$\geq \int \frac{\kappa |\nabla v_\varepsilon|^2}{\varepsilon} \rho^2 - \sup |W'''(\varepsilon)^{\gamma_2}| |\nabla v_\varepsilon|^2 \rho^2 dx - \int |\nabla g| |\nabla v_\varepsilon| \rho^2 dx$$

$$\geq \int \frac{\kappa |\nabla v_\varepsilon|^2}{2\varepsilon} \rho^2 dx - \int \left(\frac{\varepsilon}{\kappa} |\nabla g|^2 \rho^2 + \frac{\kappa}{4\varepsilon} |\nabla v_\varepsilon|^2 \rho^2 \right) dx.$$ \quad (3.60)

By (3.58), (3.59) and (3.60), we obtain

$$\int \frac{\kappa |\nabla v_\varepsilon|^2}{4\varepsilon} \rho^2 dx + \frac{\varepsilon}{2} \int |\nabla v_\varepsilon|^2 \rho^2 dx$$

$$\leq 2\varepsilon \int |\nabla v_\varepsilon|^2 |\nabla \rho|^2 dx + \frac{\varepsilon}{\kappa} \int |\nabla g|^2 \rho^2 dx.$$ \quad (3.61)

We estimate the L^2-norm of ∇g in a similar manner as in the proof of Proposition 3.6 and 3.7. Now the scale is different from Proposition 3.6 and 3.7. By inserting the term $\pm \nabla W_0(u_\varepsilon)$ like (3.25),

$$\int_{B_{r^{-\beta_3}}} |\nabla g|^2 dx \leq \int_{B_{r^{-\beta_3}}} |\nabla (f_\varepsilon * \psi_{1+\varepsilon^{\beta_3}})|^2 dx$$

$$\quad \quad \quad \quad + \int_{B_{r^{-\beta_3}}} |\nabla (W'(v_\varepsilon) - W'(u_\varepsilon))|^2 dx$$

$$\quad \quad \quad \quad + \int_{B_{r^{-\beta_3}}} |\nabla (W'(u_\varepsilon) - W'(u_\varepsilon) * \psi_{1+\varepsilon^{\beta_3}})|^2 dx$$

$$:= (I_3) + (II_3) + (III_3).$$ \quad (3.62)

By (A.2) like (3.26),

$$(I_3) \leq c\varepsilon^{-2\beta_2 - 1}.$$ \quad (3.63)

For (II_3) we have

$$|\nabla (W'(v_\varepsilon) - W'(u_\varepsilon))| \leq \sup |W'''| |\nabla v_\varepsilon - \nabla u_\varepsilon| + c(\sup |W'''| \varepsilon^{\gamma_2} |\nabla u_\varepsilon|.$$ \quad (3.64)

21
By the similar calculation to (3.28),
\[
\int_B \frac{1}{r - \frac{\rho_3}{2}} |\nabla v_\varepsilon - \nabla u_\varepsilon|^2 \, dx \leq \varepsilon^{2\beta_2 + 2} \int_B \frac{1}{r - \frac{\rho_3}{2} + \frac{\beta_2}{2}} |\nabla^2 u_\varepsilon|^2 \, dx. \tag{3.65}
\]

Write \(\tilde{r} = r - \frac{\rho_3}{2} + \varepsilon^{1 + \beta_2} \). We estimate \(\int_{\tilde{B}_\varepsilon} |\nabla^2 u_\varepsilon|^2 \, dx \) by the same way as the proof of Proposition 3.7. By scaling \(B_{\tilde{r}} \) to \(B_1 \) by \(\tilde{x} = \frac{x}{\tilde{r}} \) and apply the \(W^{2,2} \) estimate to \(\Delta u_\varepsilon = \frac{\varepsilon^2 W'(u_\varepsilon)}{\varepsilon^2} - \frac{\varepsilon^2 f_\varepsilon}{\varepsilon^2} \), we obtain after scaling back,
\[
\int_{B_r} |\nabla^2 u_\varepsilon|^2 \, dx \leq \frac{1}{\varepsilon^4} \int_{B_{\tilde{r}}} |u_\varepsilon|^2 \, dx + \frac{1}{\varepsilon^2} \int_{B_{\tilde{r}}} (W'(u_\varepsilon))^2 \, dx + \frac{1}{\varepsilon^2} \int_{B_{\tilde{r}}} f_\varepsilon^2 \, dx. \tag{3.66}
\]

Since \(|W'(u_\varepsilon)|^2 \leq cW(u_\varepsilon) \) and \(B_{\tilde{r}} \subset B_r \),
\[
\frac{1}{\varepsilon^4} \int_{B_{\tilde{r}}} |W'(u_\varepsilon)|^2 \, dx \leq \frac{1}{\varepsilon^3} \int_{B_{\tilde{r}}} \frac{cW(u_\varepsilon)}{\varepsilon} \, dx \leq \frac{c}{\varepsilon^3} \mu_\varepsilon(B_{\tilde{r}}) \tag{3.67}
\]

Thus by (3.66), (3.67) and (A.2), we obtain
\[
\int_{B_r} |\nabla^2 u_\varepsilon|^2 \, dx \leq c(a_1)(\varepsilon^{-1} + \varepsilon^{-3} \mu_\varepsilon(B_r)). \tag{3.68}
\]

By (3.65) and (3.68),
\[
\int_B \frac{1}{r - \frac{\beta_3}{2}} |\nabla u_\varepsilon - \nabla v_\varepsilon|^2 \, dx \leq c(\varepsilon^{2\beta_2 + 1} + \varepsilon^{2\beta_2 - 1} \mu_\varepsilon(B_r)). \tag{3.69}
\]

As the \(L^2 \) norm of the second term of (3.64) can be estimated by \(\mu_\varepsilon(B_r) \), we obtain
\[
(II_3) = \int_{B_{\tilde{r}} \in \frac{\beta_3}{2}} |\nabla \frac{(W'(u_\varepsilon) - W'(v_\varepsilon))}{\varepsilon}|^2 \, dx \leq c(\varepsilon^{2\beta_2 - 1} + \varepsilon^{2\beta_2 - 3} \mu_\varepsilon(B_r)). \tag{3.70}
\]

For \((III_3)\),
\[
|\nabla (W'(u_\varepsilon(x))) - \nabla (W'(u_\varepsilon(x)) \ast \psi_{\varepsilon^{1 + \beta_2}})|^2 \\
\leq \int_{B_{\varepsilon^{1 + \beta_2}}} |\nabla (W'(u_\varepsilon(x)) - \nabla (W'(u_\varepsilon(x - y))))|^2 \psi_{\varepsilon^{1 + \beta_2}}(y) \, dy \\
\leq 2 \int_{B_{\varepsilon^{1 + \beta_2}}} (\sup |W''|)^2 |\nabla u_\varepsilon(x) - \nabla u_\varepsilon(x - y)|^2 \psi_{\varepsilon^{1 + \beta_2}}(y) \, dy \\
+ 2 \int_{B_{\varepsilon^{1 + \beta_2}}} (c\sup |W'''|)^2 \varepsilon^{2\beta_2 - 2} |\nabla u_\varepsilon(x)|^2 \psi_{\varepsilon^{1 + \beta_2}}(y) \, dy. \tag{3.71}
\]
In the same way as we obtained (3.69) we have

$$
(III_3) \leq c(\varepsilon^{2\beta_2-1} + \varepsilon^{2\beta_2-3} \mu_\varepsilon(B_r) + \varepsilon^{2\beta_2\gamma-3} \mu_\varepsilon(B_r)) \\
\leq c(\varepsilon^{2\beta_2-1} + \varepsilon^{2\beta_2-3} \mu_\varepsilon(B_r)).
$$

Estimates (3.62), (3.63), (3.70) and (3.72) show

$$
\int_{B_{r-\varepsilon^{\beta_3}/2}} |\nabla g|^2 \, dx \leq c(\varepsilon^{-2\beta_2-1} + \varepsilon^{2\beta_2-3} \mu_\varepsilon(B_r)).
$$

(3.73)

With $|\nabla \rho| \leq 2 \varepsilon^{-\beta_3}$, (3.61) and (3.73), we obtain

$$
\int_{C} \frac{\varepsilon |\nabla v_\varepsilon|^2}{2} \, dx \leq \int_{B_r} \frac{\varepsilon |\nabla u_\varepsilon|^2}{2} \, dx \leq \mu_\varepsilon(B_r),
$$

Since $\int_{B_{r-\varepsilon^{\beta_3}/2}} \varepsilon |\nabla v_\varepsilon|^2 \, dx \leq \int_{B_r} \varepsilon |\nabla u_\varepsilon|^2 \, dx \leq \mu_\varepsilon(B_r)$, multiplying above by $2\varepsilon^2 \kappa^{-1}$, we have

$$
\int_{C} \left\{ \xi_{\varepsilon}(v_\varepsilon) \right\} \, dx \leq \int_{C} \frac{\varepsilon |\nabla v_\varepsilon|^2}{2} \, dx \leq c(\varepsilon^{2-2\beta_3} \mu_\varepsilon(B_r) + \varepsilon^{2\beta_2} \mu_\varepsilon(B_r) + \varepsilon^{2-2\beta_2}).
$$

(3.74)

Combining (3.53), (3.57) and (3.74), and recalling the definition of β_4, we obtain the desired estimate.

Next, we obtain the lower bound of the energy density ratio for $t_1 \varepsilon^t \leq r \leq t_2$.

Theorem 3.10. There exist constants $c_{10} > 0$, $t_2 > 0$ and $\varepsilon_5 > 0$ such that if $B_r(x_0) \subset V$, $|w_\varepsilon(x_0)| < \alpha$ and $\varepsilon \leq \varepsilon_5$, then for $t_1 \varepsilon^t \leq r \leq t_2$,

$$
c_{10} \leq \frac{1}{r \mu_\varepsilon(B_r(x_0))}.
$$

Proof. By Theorem 3.8, $c_6 \leq \frac{1}{r \mu_\varepsilon(B_r)}$ with $r = t_1 \varepsilon^t$. The proof of the claim is similar to that of Theorem 3.8. Let $t_2 > 0$ be a constant to be determined shortly. We claim that $\mu_\varepsilon(B_r) \geq c_6/2$ for $t_1 \varepsilon^t \leq r \leq t_2$. To derive a contradiction assume that there exists a constant r_3 with $t_1 \varepsilon^t \leq r_3 \leq t_2$ satisfying

$$
\frac{1}{r_3} \mu_\varepsilon(B_{r_3}) = \frac{c_6}{2}.
$$

23
By continuity of $\frac{1}{r} \mu_\varepsilon(B_r)$ with respect to r, there exists r_2 with $t_1 \varepsilon^t \leq r_2 < r_3$ satisfying $\frac{1}{r_2} \mu_\varepsilon(B_{r_2}) = c_6$ and $\frac{c_6}{2} \leq \frac{1}{r} \mu_\varepsilon(B_r) \leq c_6$ for $r_2 \leq r \leq r_3$. By Lemma 3.1, Proposition 3.7 and 3.9, for $t_1 \varepsilon^t \leq s \leq r \leq t_2$,

$$
(1 + \delta) \frac{1}{r} \mu_\varepsilon(B_r) - (1 - \delta) \frac{1}{s} \mu_\varepsilon(B_s)
\geq -(\frac{2}{\delta} + 1)a_1 r - \int_s^r \rho^{-2} \{c_9(\rho \varepsilon^{\beta_3 - 1} + \varepsilon^{2 - 2\beta_2} + \varepsilon^{\beta_4} \mu_\varepsilon(B_\rho))
+ c_5 \varepsilon^{\beta_2} (\rho + \mu_\varepsilon(B_\rho))\} \, d\rho.
$$

(3.75)

Using (3.75) with $s = r_2$ and $r = r_3$ as well as $r_3 \leq t_2$ we obtain

$$
\frac{c_6}{2}(3\delta - 1) \geq -(\frac{2}{\delta} + 1)a_1 t_2 - c_9 \{\varepsilon^{\beta_3 - 1} \log(\frac{r_3}{r_2}) + \varepsilon^{2 - 2\beta_2} - 2 t_2^2
+ c_5 \varepsilon^{\beta_4} \log(\frac{r_3}{r_2})(1 + c_6)\}.
$$

(3.76)

Set $\delta = \frac{1}{6}$ so the left-hand side of (3.76) is equal to $-\frac{c_6}{4}$. Choose t_2 small so the right-hand side of (3.76) is greater than $-\frac{c_6}{4}$ for sufficiently small ε. This leads to a contradiction. We set $c_{10} = c_6/2$.

Similarly, we can also show the upper bound of the energy density ratio.

Proposition 3.11. There exist constants $c_{11} > 0$ and $\varepsilon_0 > 0$ such that if $B_r(x_0) \subset V$, $|u_\varepsilon(x_0)| < \alpha$ and $\varepsilon \leq \varepsilon_0$, then for $\varepsilon \leq r \leq t_2$,

$$
\frac{1}{r} \mu_\varepsilon(B_r(x_0)) \leq c_{11}.
$$

Proof. By (A.1), we obtain $\frac{1}{r} \mu_\varepsilon(B_{t_2}) \leq \frac{E_0}{t_2}$ where t_2 is the same constant as Theorem 3.10. By using Proposition 3.7 and 3.9 for discrepancy term in (3.1), and by the similar proof to Theorem 3.8 and 3.10, we obtain the upper bound.

Similarly, as the consequence of Proposition 3.7 and 3.9, by Proposition 3.11, we can establish the following monotonicity estimates.

Theorem 3.12. For $B_s(x_0) \subset B_r(x_0) \subset V$, $\varepsilon < s < r < t_2$,

$$
(1 + \delta) \frac{1}{r} \mu_\varepsilon(B_r(x_0)) - (1 - \delta) \frac{1}{s} \mu_\varepsilon(B_s(x_0))
\geq -(\frac{2}{\delta} + 1)a_1 r + \int_s^r \frac{1}{\rho^2} \int_{B_\rho(x_0)} \left(\frac{W(u_\varepsilon)}{\varepsilon} - \frac{\varepsilon |\nabla u_\varepsilon|^2}{2}\right) + \varepsilon dx d\rho - K(\varepsilon).
$$

(3.77)

Here, $K(\varepsilon)$ satisfies $\lim_{\varepsilon \to 0} K(\varepsilon) = 0$.

24
4 Rectifiability of limit interface

In this section we show that the support of the limit measure μ is a 1-
rectifiable set and that it has generalized L^2 curvature expressed as the
Radon-Nikodym derivative as we described after Theorem 1.1. Define the
(signed) vector-valued measure $\nu^{\alpha\beta}$ on U

$$\nu^{\alpha\beta}(\phi) = \lim_{i \to \infty} \int (\varepsilon_i \frac{\partial u_{\varepsilon_i}}{\partial x^\alpha} \frac{\partial u_{\varepsilon_i}}{\partial x^\beta}) \phi \, dx$$

for $\phi \in C_c(U)$.

Theorem 4.1. There exist constants $0 < D_1 \leq D_2 < \infty$ and $t_2 > 0$ which
depend only on E_0, a_1, $\text{dist}(V, \partial U)$ and W such that

$$D_1 r \leq \mu(B_r(x)) \leq D_2 r$$

for all $0 < r < t_2$ and $x \in \text{supp} \mu$ with $B_r(x) \subset V$.

Proof. The existence of D_2 follows immediately from Proposition 3.11. We
show the existence of D_1. Let $x_0 \in \text{supp} \mu$. We claim that on passing
to a subsequence, there exist

$$\{x_i\}_{i=1}^{\infty} \subset V$$

such that $u_{\varepsilon_i}(x_i) \in [-\alpha, \alpha]$ and $x_i \to x_0$ as $i \to \infty$. We show the claim by contradiction. Suppose there exists

$s > 0$ satisfying $B_s(x_0) \subset V$ and $B_s(x_0) \cap \{|u_{\varepsilon_i}| \leq \alpha\} = \emptyset$ for all sufficiently
large i. Suppose $u_{\varepsilon_i} > \alpha$ without loss of generality. Let $\phi \in C^1_c(B_s(x_0))$ be

a function satisfying $\phi = 1$ on $B_s^2(x_0)$. Multiplying $\phi^2(u_{\varepsilon_i} - 1)$ to (1.2) and
using Cauchy’s inequality and (A.2), we obtain

$$\int_{B_s^2(x_0)} W'(u_{\varepsilon_i}) (u_{\varepsilon_i} - 1) + c|\nabla u_{\varepsilon_i}|^2 \, dx$$

$$\leq a_1^{1/2} \left(\int \varepsilon_i \phi^2(u_{\varepsilon_i} - 1)^2 \, dx \right)^{1/2} + c \varepsilon_i \sup |\nabla \phi|^2 \int_{B_s^2(x_0)} (u_{\varepsilon_i} - 1)^2 \, dx.$$

(4.1)

Since $(u - 1)W'(u) \geq cW(u)$ for $2 > u > \alpha$ for some $c > 0$, (4.1) shows

$$\lim_{i \to \infty} \mu_{\varepsilon_i}(B_s^2(x_0)) = 0,$$

which is a contradiction to $x_0 \in \text{supp} \mu$. Thus for

$r \leq t_2$ Theorem 3.10 shows

$$\frac{1}{r} \mu(B_r(x)) \geq \lim_{i \to \infty} \frac{1}{r} \mu_{\varepsilon_i}(B_r(x)) \geq \lim_{i \to \infty} \frac{1}{r} \mu_{\varepsilon_i}(B_r^2(x_i)) \geq c_{10}/2.$$

We set $D_2 = c_{10}/2$. \qed
From the proof of Theorem 4.1, next proposition follows.

Proposition 4.2. $u_{\epsilon_i} \to +1$ or $u_{\epsilon_i} \to -1$ uniformly on each compact subset of $U\setminus \text{supp} \mu$ and $\text{supp} \|\partial\{u_0 = 1\}\| \subset \text{supp} \mu$, where $u_0 = \lim_{i \to \infty} u_{\epsilon_i}$ and $\|\partial\{u_0 = 1\}\|$ is a measure on U defined by $\|\partial\{u_0 = 1\}\|(U) = \int_U |Du_0|$. (For the details of the measure $\int_U |Du_0|$, see [7].)

The proof of next proposition is similar to [19, Proposition 4.3] but we include it for the convenience of the reader.

Proposition 4.3.

$$\lim_{i \to \infty} \int_V |\xi_{\epsilon_i}(u_{\epsilon_i})| \, dx = 0. \quad (4.2)$$

Proof. Let $|\xi|$ be a Radon measure defined as the limit of $|\xi_{\epsilon_i}(u_{\epsilon_i})|$. We need to prove that $|\xi| = 0$. First we show

$$\liminf_{r \to 0} \frac{1}{r} |\xi|(B_r(x)) = 0 \quad (4.3)$$

for all $x \in \text{supp} |\xi|$ by contradiction. Thus we assume that there exist $x_0 \in \text{supp} |\xi|, R > 0$ and $b > 0$ with $|\xi|(B_r(x_0)) \geq br$ for $0 < r < R$. Fix δ (e.g. $\delta = 1/2$) and fix $r_1 = \min\{R, t_2\}$ and

$$r_2 = r_1 \exp[-\frac{4}{b}\{(\frac{2}{\delta} + 1)a_1 r_1 + 4D_2\}]. \quad (4.4)$$

By Theorem 4.1 and the definition of $|\xi|$, we may choose large enough i such that $t_1 \epsilon_i^t \leq r_2$ and

$$\frac{1}{\tau} \int_{B_{r_1}(x_0)} |\nabla u_{\epsilon_i}|^2 \, dx + \frac{W(u_{\epsilon_i})}{\epsilon_i} \leq 2D_2, \quad \frac{1}{\tau} \int_{B_{r_1}(x_0)} |\xi_{\epsilon_i}(u_{\epsilon_i})| \, dx \geq \frac{b}{2} \quad (4.5)$$

for all $r_2 \leq \tau \leq r_1$. By Proposition 3.7 and 3.9 we have for $r_2 \leq \tau \leq r_1$

$$\frac{1}{\tau} \int_{B_{r_1}(x_0)} \{\xi_{\epsilon_i}(u_{\epsilon_i})\}_+ \, dx \leq o(1)$$

as $i \to \infty$. Thus for all large i and $r_2 \leq \tau \leq r_1$ we have

$$\frac{1}{\tau} \int_{B_{r_1}(x_0)} \left(\frac{W(u_{\epsilon_i})}{\epsilon_i} - \frac{\epsilon_i |\nabla u_{\epsilon_i}|^2}{2} \right)_+ \, dx \geq \frac{1}{\tau} \int_{B_{r_1}(x_0)} |\xi_{\epsilon_i}(u_{\epsilon_i})| \, dx - \frac{1}{\tau} \int_{B_{r_1}(x_0)} \{\xi_{\epsilon_i}(u_{\epsilon_i})\}_+ \, dx \geq \frac{b}{4}$$

(4.5)
By Theorem 3.11 with \(s = r_2 \) and \(r = r_1 \) and using (4.5) we obtain
\[
(1 + \delta)2D_2 \geq \frac{2}{\delta} + 1 \frac{a_1 r_1}{r_2} + \frac{b}{4} \log \frac{r_1}{r_2}.
\]
(4.6)

By (4.4), the right-hand side of (4.6) is estimated from below by \(4D_2 \). This is a contradiction. The claim with Theorem 4.1 shows
\[
\lim_{r \to 0} |\xi|(B_r(x)) \leq \lim_{r \to 0} |\xi|(B_r(x)) D_1 r = 0
\]
for all \(x \in \text{supp}|\xi| \). A standard result in measure theory then shows that \(|\xi| = 0 \).

Next we show that the limit measure \(\mu \) has a well-defined curvature.

Theorem 4.4. The support of \(\mu \) is a 1-rectifiable set. Moreover, \(\eta \) defined as the vector-valued limit measure of \(\{f_{\varepsilon_i} \nabla u_{\varepsilon_i}\}_{i}^{\infty} \) in Sect.1 is absolutely continuous with respect to \(\mu \). \(f = \frac{d\eta}{d\mu} \in L^2(\mu) \) is the generalized curvature of \(\mu \) and satisfies
\[
\int |f|^2 \, d\mu \leq \liminf_{i \to \infty} \frac{1}{\varepsilon_i} \int |f_{\varepsilon_i}|^2 \, dx.
\]
(4.7)

Proof. We consider the rectifiability of \(\text{supp} \mu \) first. By Proposition 4.3 and by recalling the definitions (2.2), we have \(|\mu_{\varepsilon} - \text{trace} \nu_{\varepsilon}^\alpha| = |\xi_{\varepsilon}(u_{\varepsilon})| \to 0 \) in \(L^1_{loc}(U) \). This shows
\[
\text{trace} \nu = \mu
\]
in the limit. The lower density bound (Theorem 4.1), (4.8) and the rectifiability theorem (Propostion 2.1) show that \(\text{supp} \mu \) is a 1-rectifiable set and
\[
\Phi(x) = \text{proj}_{T_x(\text{supp} \mu)}(x),
\]
(4.9)
where \(\Phi = \frac{d\eta}{d\mu} \in L^\infty(\mu, F) \). The fact that \(\eta \) is absolutely continuous with respect to \(\mu \) follows from
\[
\left(\int \phi \, d|\eta| \right)^2 \leq \liminf_{i \to \infty} \frac{1}{\varepsilon_i} \int |f_{\varepsilon_i}|^2 \, dx \lim_{i \to \infty} \int \phi^2 \varepsilon_i |\nabla u_{\varepsilon_i}|^2 \, dx \leq a_1 \int \phi^2 \, d\mu
\]
(4.10)
for \(\phi \in C_c(U) \), where we used (A.2) and (4.2). Moreover, by taking supremum of the left-hand side over \(\phi \) with \(\int \phi^2 \, d\mu \leq 1 \), (4.10) shows (4.7). To show that \(f \) is the curvature of \(\mu \), (2.4-5) gives
\[
\int \text{div}\phi \, d\mu_{\varepsilon_i} - \int \frac{\partial \phi^\alpha}{\partial x^\alpha} \nu_{\varepsilon_i}^{\alpha\beta} \, dx = - \int \phi \cdot \nabla u_{\varepsilon_i} f_{\varepsilon_i} \, dx
\]
(4.11)
for $\phi \in C_c^1(U, \mathbb{R}^2)$. The limit of (4.11) gives

$$
\int \text{div} \phi \, d\mu - \int \frac{\partial \phi^\alpha}{\partial x^\beta} \, d\nu_{\alpha\beta} = -\int \phi \cdot f \, d\mu. \tag{4.12}
$$

By (4.9), the left-hand side is $\int \text{div}_{T_x(\text{supp} \mu)} \phi \, d\mu$, where the integrand is the divergence restricted to the tangent line which exists a.e. on $\text{supp} \mu$. The relation (4.12) shows that f is the generalized (mean) curvature in the sense of varifold [1].

5 Integrality of the limit interface

The remaining part of the paper concerns (iii) of Theorem 1.1, namely, we need to prove that the densities of the measure μ are integer multiple of 2σ for a.e. on $\text{supp} \mu$. The proof is very similar to [8, Section 5] though one needs to modify the argument as in [15, Section 5]. Thus we write the outline and often omit the details.

Lemma 5.1. Suppose $B_2 \subset V$. Given $s > 0$ there exist constants $b > 0$ and $\varepsilon_9 > 0$ depending only on a_1, E_0, W and s such that

$$
\int_{B_1 \cap \{|u_\varepsilon| \geq 1-b\}} \left(\varepsilon|\nabla u_\varepsilon|^2 + \frac{W(u_\varepsilon)}{\varepsilon} \right) \, dx \leq s \tag{5.1}
$$

if $\varepsilon \leq \varepsilon_9$.

Proof. The estimate for $\int_{B_1 \cap \{|u_\varepsilon| \geq 1-b\}} \frac{W(u_\varepsilon)}{\varepsilon} \, dx$ can be obtained by the same argument as in [20, Prop. 4.5]. To estimate the gradient term, one shows that replacing u_ε by v_ε causes a small error, which can be estimated as in Section 3. One then uses (3.19) to show that the gradient term is also small. □

We define $T : \mathbb{R}^2 \to \mathbb{R}$ by $T(x_1, x_2) = x_1$ and $T^\perp : \mathbb{R}^2 \to \mathbb{R}$ by $T^\perp(x) = x_2$. Also we define $n = (n_1, n_2) = \frac{\nabla u}{|\nabla u|}$ where $|\nabla u| \neq 0$ and $n = (0,0)$ where $|\nabla u| = 0$.

Lemma 5.2. Suppose

1. $N \geq 1$ is an integer, Y is a subset of \mathbb{R}^2, $0 < R < \infty$, $1 < M < \infty$, $0 < a < \infty$, $0 < \varepsilon < 1$, $0 < \eta < 1$, $0 < E_0 < \infty$ and $-\infty \leq t_1 < t_2 \leq \infty$. 28
(2) Y has no more than $N + 1$ elements, $T(x) = 0$ and $t_1 + a < T^+(x) < t_2 + a$ for all $x \in Y$ and $|x - \bar{x}| > 3a$ for any distinct $x, \bar{x} \in Y$.

(3) $(M + 1) \text{diam} Y < R$, and denote $\tilde{R} = M \text{diam} Y$.

(4) On $\{y \in \mathbf{R}^2 \mid \text{dist}(y, Y) < R\}$, u_ε and f_ε satisfy (1.2), $\int_{B_R(x)} |f_\varepsilon|^2 \, dx \leq \eta \varepsilon$ and $\int_a^R \frac{1}{\tau^2} \int_{B_{\varepsilon}(x)} \{\xi_\varepsilon(u_\varepsilon)\}^+ \, dxdr \leq \eta$ for each $x \in Y$.

(5) For each $x \in Y$,
$$
\int_0^R \frac{d\tau}{\tau^2} \int_{B_{\varepsilon}(x) \cap \{y_2 = t_3\}} |e_\varepsilon(u_\varepsilon)(y_2 - x_2) - \varepsilon(y - x) \cdot \nabla u_\varepsilon D_2 u_\varepsilon| \, \mathcal{H}^1(y) \leq \eta
$$
for $j = 1, 2$. Here $e_\varepsilon(u_\varepsilon) = \frac{\varepsilon}{2} |\nabla u_\varepsilon|^2 + \frac{W(u_\varepsilon)}{\varepsilon}$.

(6) For each $x \in Y$ and $a \leq r \leq R$,
$$
\int_{B_{\varepsilon}(x)} |\xi_\varepsilon(u_\varepsilon)| + (1 - (n_2)^2) \varepsilon |\nabla u_\varepsilon|^2 \, dy \leq \eta r
$$
and
$$
\int_{B_{\varepsilon}(x)} \varepsilon |\nabla u_\varepsilon|^2 \, dy \leq E_0 r.
$$

Then the following hold:

(A) There exists $t_3 \in (t_1, t_2)$ such that $|T^+(x) - t_3| \geq a$ and
$$
\int_0^R \frac{d\tau}{\tau^2} \int_{B_{\varepsilon}(x) \cap \{y_2 = t_3\}} |e_\varepsilon(u_\varepsilon)(y_2 - x_2) - \varepsilon(y - x) \cdot \nabla u_\varepsilon D_2 u_\varepsilon| \, \mathcal{H}^1(y)
\leq 3(N + 1)NM (\eta + E_0^\frac{1}{2} \eta^\frac{1}{2})
$$
(5.5)
holds for each $x \in Y$.

(B) Define $Y_1 = Y \cap \{x \mid t_1 < T^+(x) < t_3\}$, $Y_2 = Y \cap \{x \mid t_3 < T^+(x) < t_2\}$,
$S_0 = \{x \mid t_1 < T^+(x) < t_2 \text{ and } \text{dist}(Y, x) < R\}$,
$S_1 = \{x \mid t_1 < T^+(x) < t_3 \text{ and } \text{dist}(Y_1, x) < R\}$,
$S_2 = \{x \mid t_3 < T^+(x) < t_2 \text{ and } \text{dist}(Y_2, x) < R\}$.
Then Y_1 and Y_2 are non-empty and for all $0 < \delta < 1$
$$
\frac{1}{R} \left\{ \mu_\varepsilon(S_1) + \mu_\varepsilon(S_2) \right\}
\leq (1 + \frac{1}{M})(1 + \delta) \frac{1}{R} \mu_\varepsilon(S_0) + (\frac{2}{\delta} + 1) \eta R + 3\eta.
$$
(5.6)
Proof. Set $S = \{ t_1 < T^+(x) < t_2 \}$. We establish the monotonicity formula restricted on S. Let $\rho(y) : \mathbb{R}^2 \to \mathbb{R}$ be a smooth approximation to the characteristic function of S. For $x \in Y$ we may assume $x = 0$ by a suitable translation. Let ζ be a smooth approximation to the characteristic function of $(-\infty, 1)$. We substitute $\phi = y \zeta(\frac{|y|}{r}) \rho(y)$ into (3.2) and multiply the result by $-\frac{1}{r^2}$. After letting $\zeta \to \chi(-\infty, 1)$ and $\rho \to \chi_S$ and by similarly proceeding as in Lemma 3.1, we obtain for $0 < \delta < 1$

$$(1 - \delta) \frac{1}{s}\mu_\varepsilon(B_s \cap S) \leq (1 + \delta) \frac{1}{R}\mu_\varepsilon(B_R \cap S) + (\frac{2}{\delta} + 1)\eta R + (2\delta + 1)\eta R + 3\eta. \quad (5.7)$$

By (4) and (5) applied to (5.7) we obtain

$$(1 - \delta) \frac{1}{s}\mu_\varepsilon(B_s \cap S) \leq (1 + \delta) \frac{1}{R}\mu_\varepsilon(B_R \cap S) + (\frac{2}{\delta} + 1)\eta R + 3\eta. \quad (5.8)$$

By the definition of \tilde{R}, $S_1 \cup S_2 \subset B_{(\tilde{R} + \text{diam}Y)} \cap S \subset S_0$. Thus by (5.8) we obtain

$$\frac{1}{R}\{\mu_\varepsilon(S_1) + \mu_\varepsilon(S_2)\} \leq \frac{1}{R}\mu_\varepsilon(B_{(\tilde{R} + \text{diam}Y)} \cap S)$$

$$\leq \frac{1}{R}\left(\frac{\tilde{R} + \text{diam}Y}{1 - \delta}\right)\{((1 + \delta) \frac{1}{R}\mu_\varepsilon(S_0) + (\frac{2}{\delta} + 1)\eta R + 3\eta). \quad (5.9)$$

Since $\tilde{R} = M\text{diam}Y$ we obtain (B). The proof of (A) is similar to [8, Lemma 5.4]. \qed

Next lemma can be proved by using Lemma 5.2 inductively.

Lemma 5.3. Corresponding to each R, E_0, s and N such that $0 < R < \infty$, $0 < E < \infty$, $0 < s < 1$ and N is a positive integer, there exists $\eta > 0$ with the following property.

Assume the following.

1. $Y \subset \mathbb{R}^2$ has no more than $N + 1$ elements, $T(y) = 0$ for all $y \in Y$, $a > 0$, $|y - z| > 3a$ for all y, $z \in Y$ and $\text{diam}Y \leq \eta R$.

2. On $\{ x \in \mathbb{R}^2 | \text{dist}(x, Y) < R \}$, u_ε and f_ε satisfies (1.2), $\int |f_\varepsilon|^2 \, dx \leq \eta \varepsilon$ and

$$\int_a^R \frac{dr}{r^2} \int_{B_r(x)} \{\xi_\varepsilon(u_\varepsilon)\}_+ \, dy \leq \eta R \quad \text{for each } x \in Y.
For each \(y \in Y \) and \(a \leq r \leq R \),
\[
\int_{B_r(y)} |\xi_r(u_\varepsilon)| + (1 - (n_2)^2)\varepsilon |\nabla u_\varepsilon|^2 \, dy \leq \eta r,
\]
\[
\int_{B_r(x)} \varepsilon |\nabla u_\varepsilon|^2 \, dy \leq E_0 r.
\]

Then we have
\[
\sum_{y \in Y} \frac{1}{\alpha} \mu_\varepsilon(B_a(y)) \leq s + \frac{1 + s}{R} \mu_\varepsilon(\{ x \mid \text{dist}(Y,x) < R \}). \quad (5.10)
\]

The next Lemma 5.4 is identical to [15, Lemma 5.5].

Lemma 5.4. Given \(0 < s < 1 \) and \(0 < b < 1 \), there exist \(0 < \eta < 1 \) and \(1 < L < \infty \), depending on \(W \), with the following property. Let \(0 < \varepsilon < 1 \).

Suppose \(u_\varepsilon \) and \(f_\varepsilon \) satisfies (1.2) on \(B_{4\varepsilon L}(0) \), with \(\int |f|^2 \, dx \leq \varepsilon \eta \), \(|u(0)| \leq 1 - b \) and
\[
\int_{B_{4\varepsilon L}(0)} (|\xi_r(u_\varepsilon)| + (1 - (n_2)^2)\varepsilon |\nabla u_\varepsilon|^2) \, dy \leq \eta(4\varepsilon L).
\]

Then we have
\[
|u_\varepsilon(0,x_2)| \geq 1 - \frac{b}{2} \quad \text{for } L\varepsilon \leq |x_2| \leq 3L\varepsilon, \quad (5.11)
\]
\[
\left| \frac{1}{2L\varepsilon} \mu_\varepsilon(B_{L\varepsilon}(0)) - 2\sigma \right| \leq s \quad (5.12)
\]
and
\[
\left| \int_{-L\varepsilon}^{L\varepsilon} \frac{W(u(0,x_2))}{\varepsilon} \, dx_2 - \sigma \right| \leq s. \quad (5.13)
\]

Proof. We rescale the domain by \(\varepsilon \) for convenience. Let \(q : \mathbb{R}^2 \to (-1,1) \) be the unique solution of the ODE
\[
q'(t) = \{2W(q(t))\}^{\frac{1}{2}} \quad \text{for } t \in \mathbb{R}
\]
\[
q(0) = u(0). \quad (5.14)
\]

We note that
\[
\int_{-\infty}^{\infty} \frac{\left|q'(t)\right|^2}{2} \, dt = \int_{-\infty}^{\infty} \left\{ \frac{W(q(t))}{2} \right\}^{\frac{1}{2}} \, dt = \int_{-1}^{1} \left\{ \frac{W(s)}{2} \right\}^{\frac{1}{2}} \, ds = \sigma. \quad (5.15)
\]
We also identify q on \mathbb{R}^2 by $q(x_1, x_2) = q(x_2)$. Let b and s be given. For large L, we have

$$\left| \frac{1}{2L} \int_{B_L} |\nabla q|^2 \right| + W(q) \, dx - 2\sigma \leq \frac{s}{8}, \quad \left| \int_{-L}^{L} W(q(t)) \, dt - \sigma \right| \leq \frac{s}{8},$$ \hspace{1cm} (5.16)

and

$$|q(t)| \geq 1 - \frac{b}{4} \text{ for } L \leq t \leq 3L. \hspace{1cm} (5.17)$$

We show the claim of the theorem by contradiction. Assume that there exists a sequence $\{\eta_i\}_{i=1}^{\infty} \subset \mathbb{R}$ and $\{\tilde{u}_i\}$ with $\eta_i \to 0$ as $i \to \infty$ satisfying for $0 < L < \infty$,

$$|\tilde{u}_i(0)| \leq 1 - b, \quad \int_{B_L} |\tilde{e}_i f_i|^2 \, dx \leq \eta_i \varepsilon_i, \hspace{1cm} (5.18)$$

$$\int_{B_L} |\xi(\tilde{u}_i)| + (1 - (n_2)^2)|\nabla\tilde{u}_i|^2 \, dx \leq 4\eta_i L \hspace{1cm} (5.19)$$

but one of the following fails,

$$\left| \frac{1}{2L} \int_{B_L} |\nabla\tilde{u}_i|^2 \right| + W(\tilde{u}_i) \, dx - 2\sigma \geq s, \quad \left| \int_{-L}^{L} W(\tilde{u}_i(0, x^2)) \, dx^2 - \sigma \right| \geq s \hspace{1cm} (5.20)$$

or there exist x_2 with $L \leq |x_2| \leq 3L$ satisfying

$$|\tilde{u}_i(0, x_2)| \leq 1 - \frac{b}{2}. \hspace{1cm} (5.21)$$

By $W^{2,2}$ bound there exists a subsequence of $\{\tilde{u}_i\}$ (denoted by the same notation) converging weakly to $\tilde{u}_\infty \in W^{2,2}$. By (5.18) \tilde{u}_∞ satisfies

$$-\Delta \tilde{u}_\infty + W'(\tilde{u}_\infty) = 0. \hspace{1cm} (5.22)$$

By (5.19) we also have $\int_{B_L} |D_1\tilde{u}_\infty|^2 \, dx = 0$ and $|D_2\tilde{u}_\infty|^2 = 2W(\tilde{u}_\infty)$. As we may assume $D_2\tilde{u}_\infty > 0$, we obtain $D_2\tilde{u}_\infty = \{2W(\tilde{u}_\infty)\}^{\frac{1}{2}}$. Thus, $\tilde{u}_\infty = q$. Since \tilde{u}_∞ satisfies (5.15-17), and the convergence is strong in $W^{1,p}$ for any $1 \leq p < \infty$, we obtain a contradiction to (5.20-21).

The proof of Theorem 5.5 proceeds just like [15, Prop. 5.2].

Theorem 5.5. The density of the limit measure μ is an integer multiple of σ for \mathcal{H}^1 a.e. on $\text{supp} \mu$.

32
Proof. By the rectifiability of supp μ and the lower density bound μ has an approximate tangent line for \mathcal{H}^1 a.e. on supp μ. Fix such a point and choose coordinates so that the point is the origin and the approximate tangent line is $P = \{x = (x_1, x_2) \mid x_2 = 0\}$. We consider the scaling $\tilde{u}_\varepsilon(x) = u_\varepsilon(r_i x)$ and $\tilde{f}_\varepsilon(x) = f_\varepsilon(r_i x)$ with $r_i \to 0$. Let $\tilde{z}_i = \frac{z_i}{r_i}$. \tilde{u}_ε satisfies

$$-\tilde{z}_i \Delta \tilde{u}_\varepsilon + \frac{W'(\tilde{u}_\varepsilon)}{\tilde{z}_i} = r_i \tilde{f}_i.$$

Define a sequence of measures $\mu_{\varepsilon_i}^{r_i}$ by $\varepsilon_i \|\nabla u_\varepsilon\|^2 + W(u_\varepsilon) \varepsilon_i dx$. By the rectifiability of supp μ we may choose a suitable subsequence (by choosing smaller ε_i if necessary)

$$\lim_{i \to \infty} \mu_{\varepsilon_i}^{r_i}(B_1(0)) = \theta \int_{P \cap B_1} d\mathcal{H}^1 = 2\theta. \quad (5.23)$$

Here, θ is density of μ, that is,

$$\theta = \lim_{r \to 0} \frac{1}{2r} \mu(B_r(0)). \quad (5.24)$$

Write $\tilde{u}_\varepsilon = u_\varepsilon$ and $\mu_{\varepsilon_i}^{r_i} = \mu_{\varepsilon_i}$. Since $\nu^{11} = 0$, we obtain

$$\lim_{i \to \infty} \int_{B_3(0)} (1-n_2^2) \frac{\varepsilon_i \|\nabla u_\varepsilon\|^2}{2} dx = \lim_{i \to \infty} \int_{B_3(0)} \frac{\varepsilon_i (D_1 u_\varepsilon)^2}{2} dx = \int_{B_3(0)} \nu^{11} = 0. \quad (5.25)$$

Suppose N is the smallest positive integer greater than $\frac{\theta}{2\varepsilon}$, Fix an arbitrary small $s > 0$. By Lemma 5.1 we may choose $b > 0$ so that

$$\int_{B_3(0) \cap \{|u_\varepsilon| \geq 1-b\}} \left(\frac{\varepsilon_i \|\nabla u_\varepsilon\|^2}{2} + \frac{W(u_\varepsilon)}{\varepsilon_i} \right) dx \leq s \quad (5.26)$$

for sufficiently large i. With those s, b and $R = 1$, we choose η and L via Lemma 5.3 and 5.4. For large i we define $G_i = B_2(0) \cap \{|u_\varepsilon| \leq 1-b\} \cap \left\{ x \mid \int_{B_r(x)} |\xi x(u_\varepsilon)| + (1-(n_2)^2)\varepsilon_i \|\nabla u_\varepsilon\|^2 dx \leq \eta r \text{ for all } 4\varepsilon_i L \leq r \leq 1 \right\}.$

$$\left\{ x \right\} \left(5.27 \right)$$

By Besicovich's covering theorem and monotonicity formula,

$$\mu_{\varepsilon_i}(B_2(0) \cap \{|u_\varepsilon| \leq 1-b\} \setminus G_i) + L^1(T(B_2(0) \cap \{|u_\varepsilon| \leq 1-b\} \setminus G_i)) \leq \frac{c}{\eta} \int_{B_3(0)} |\xi x(u_\varepsilon)| + (1-n_2^2) \varepsilon_i \|\nabla u_\varepsilon\|^2 \quad (5.28)$$
which goes to 0 as \(i \to \infty \) by (4.2) and (5.25). For any \(x = (x_1, 0) \in B_1(0) \cap P \) define \(Y = \{ x_1 \} \times \bigcup_{k=1}^{m} \{ s_k \} \subset T^{-1}(x) \cap G_i \) with \(s_1 < s_2 < \cdots < s_m \) where \(m \) is the largest integer so the each element of \(Y \) is separated by at least \(3L\varepsilon_i \). We prove that \(Y \) does not contain more than \(N - 1 \) elements. First note that all the assumptions for applying Lemma 5.3 and 5.4 are satisfied.

Since \(\sigma \) is the largest integer so the each element of \(Y \) is separated by at least \(3L\varepsilon_i \), we obtain

\[
2\sigma N \leq s(N + 1) + (1 + s)(\theta + s)
\]

for large \(i \), \(Y \) having more than \(N - 1 \) elements would imply that

\[
2\sigma N \leq s(N + 1) + (1 + s)(\theta + s)
\]

by Lemma 5.4. This would be a contradiction to \(\frac{\theta}{2\sigma} < N \) for sufficiently small \(s \) depending only on \(N \). Finally

\[
2\theta = \lim_{i \to \infty} \mu_{\varepsilon_i}(B_i(0)) = \lim_{i \to \infty} \mu_{\varepsilon_i}(B_i(0) \cap \{|u_{\varepsilon_i}| \leq 1 - b\} \cap G_i)
\]

\[
+ \lim_{i \to \infty} \mu_{\varepsilon_i}(B_i(0) \cap \{|u_{\varepsilon_i}| \leq 1 - b\} \setminus G_i) + \lim_{i \to \infty} \mu_{\varepsilon_i}(B_i(0) \cap \{|u_{\varepsilon_i}| \geq 1 - b\}).
\]

Note that \(m \leq N - 1 \). As \(T^{-1}(x) \cap G_i \subset \{ x_1 \} \times \bigcup_{k=1}^{m} (s_k - L\varepsilon_i, s_k + L\varepsilon_i) \), by Lemma 5.4, we obtain

\[
\lim_{i \to \infty} \mu_{\varepsilon_i}(B_i(0) \cap \{|u_{\varepsilon_i}| \leq 1 - b\} \cap G_i)
\]

\[
\leq \lim_{i \to \infty} \left\{ \int_{B_i(0) \cap G_i} |\xi_{\varepsilon_i}(u_{\varepsilon_i})| \, dy + 2 \int_{B_i(0) \cap P} \int_{T^{-1}(x) \cap G_i} \frac{W(u_{\varepsilon_i})}{\varepsilon_i} \, d\mathcal{H}^1 \, dy \right\}
\]

\[
\leq \lim_{i \to \infty} \left\{ \int_{B_i(0) \cap G_i} |\xi_{\varepsilon_i}(u_{\varepsilon_i})| \, dy + 2 \sum_{k=1}^{N-1} \int_{B_i(0) \cap T(G_i) \cap P} \int_{s_k - L\varepsilon_i}^{s_k + L\varepsilon_i} \frac{W(u_{\varepsilon_i})}{\varepsilon_i} \, dx_2 \, dx_1 \right\}
\]

\[
\leq s + 4(\sigma + s)(N - 1),
\]

where we note that \(\mathcal{H}^1(B_i) = 2 \). By (5.26) and (5.28), we obtain

\[
\lim_{i \to \infty} \mu_{\varepsilon_i}(B_i(0) \cap \{|u_{\varepsilon_i}| \leq 1 - b\} \cap G_i) + \lim_{i \to \infty} \mu_{\varepsilon_i}(B_i(0) \cap \{|u_{\varepsilon_i}| \geq 1 - b\}) \leq s.
\]

Since \(s > 0 \) is arbitrary, \(2\theta \leq 4\sigma(N - 1) \). By the assumption of \(N \) we obtain \(\theta = 2\sigma(N - 1) \). This shows that the density at this point is integer multiple of \(2\sigma \). \(\square \)
References

Yuko Nagase
Department of Mathematics
Hakkaido University
Sapporo 060-0810
Japan
E-mail: nagase@math.sci.hokudai.ac.jp

Yoshihiro Tonegawa
Department of Mathematics
Hakkaido University
Sapporo 060-0810
Japan
E-mail: tonegawa@math.sci.hokudai.ac.jp