Invariant Subspaces Of Toeplitz Operators And Uniform Algebras

By

Takahiko Nakazi

* This research was partially supported by No.17540176

2000 Mathematics Subject Classification : Primary 47 B 35, 47 A 15, Secondary 46 J 15

Key words and phrases : Toeplitz operator, invariant subspace, analytic symbol
Abstract Let T_ϕ be a Toeplitz operator on the one variable Hardy space H^2. We show that if T_ϕ has a nontrivial invariant subspace in the set of invariant subspaces of T_z then ϕ belongs to H^∞. In fact, we also study such a problem for the several variables Hardy space H^2.
§1. Introduction

Let X be a compact Hausdorff space, let $C(X)$ be the algebra of complex-valued continuous functions on X, and let A be a uniform algebra on X. A probability measure m (on X) denotes a representing measure for some nonzero complex homomorphism. The abstract Hardy space $H^p = H^p(m)$, $1 \leq p \leq \infty$, determined by A is defined to be the closure of A in $L^p = L^p(m)$ when p is finite and to be the weak* closure of A in $L^\infty = L^\infty(m)$ when $p = \infty$.

Let P be the orthogonal projection from L^2 onto H^2. For ϕ in L^∞, put

$$T_\phi f = P(\phi f) \quad (f \in H^2)$$

and then T_ϕ is called a Toeplitz operator. In this paper, we are interested in invariant subspaces of Toeplitz operators. Put $A = \{T_\phi \ ; \ \phi \in H^\infty\}$ and $A^* = \{T^*_\phi \ ; \ \phi \in H^\infty\}$. Let T_ϕ denote the set of all invariant subspaces of T_ϕ, Lat $A = \cap \{\text{Lat } T_\phi \ ; \ \phi \in H^\infty\}$, and Lat $A^* = \cap \{\text{Lat } T^*_\phi ; \phi \in H^\infty\}$. We don’t know whether arbitrary T_ϕ has a nontrivial invariant subspace. When ϕ is in H^∞ and H^∞ has a nonconstant unimodular function q, T_ϕ has a nontrivial invariant subspace $M = qH^2$. Hence Lat $T_\phi \neq \{0\}$, H^2.

Let K be the orthogonal complement of H^2 in L^2. Then $L^2 = H^2 \oplus K$. $I(H^\infty)$ denotes the set of all unimodular functions in H^∞. A function in $I(H^\infty)$ is called an inner function. For a subset Y in L^∞, Y^\perp denotes $\{g \in L^1 : \int g f dm = 0 \ (f \in Y)\}$.

In this paper we study the following four natural questions:

Question 1. If Lat $T_\phi \supseteq$ Lat A then does T_ϕ belong to A?

Question 2. Suppose that H^∞ is a weak* closed maximal algebra in L^∞. If Lat $T_\phi \subsetneq$ Lat A then is Lat $T_\phi = \{0\}, H^2$?

Question 3. Is Lat $A^* \cap$ Lat $A = \{0\}, H^2$?

Question 4. Can we describe Lat $T_\phi \cap$ Lat A or equivalently Lat $T_\phi \cap$ Lat A^*?

In this paper, we will answer these four questions positively when A is the disc algebra. In fact, for Question 1 we can do it for more general uniform algebras. However for Question 2 we could not answer even for simple uniform algebras. Question 3 can be answered for almost all uniform algebras.

In this paper $H^p(D^n)$ denotes the Hardy space on the polydisc D^n and $H^p(\Omega)$ denotes the Hardy space on a finitely connected domain Ω. $L^2_a(D)$ denotes the Bergman space on D and put $N^2 = L^2(D) \oplus \{L^2_a(D) \oplus \bar{z}L^2_a(D)\}$. H^p_0 denotes the set of $\{f \in H^p : \int f dm = 0\}$. $H^p(\hat{\Gamma})$ denotes the usual Hardy space on the dual group $\hat{\Gamma}$ where Γ is an ordered subgroup of the reals.
§2. \text{Lat } \mathcal{A} \subseteq \text{Lat } T_\phi

In this section we study Question 1. Theorem 1 shows that Question 1 can be answered positively for very general uniform algebras.

\textbf{Lemma 1.} Let \(M \) be a closed subspace of \(H^2 \). \(M \in \text{Lat } T_\phi \) if and only if \(\phi M \subseteq M \oplus \bar{K} \).

\text{Proof.} By definition of a Toeplitz operator, this is clear.

\textbf{Lemma 2.} If \(\phi \) is a function in \(L^\infty \) and \(\mathcal{A} \subseteq \text{Lat } T_\phi \) then \(\phi = \phi_0 + \bar{k}_0 \) where \(\phi_0 \in H^2 \) and \(\bar{k}_0 \in \cap \{\bar{q}K ; q \in I(H^\infty)\} \).

\text{Proof.} Since \(L^2 = H^2 \oplus \bar{K} \), there exist \(h \in H^2 \) and \(k \in \bar{K} \) such that \(\phi = h + \bar{k} \).
If \(q \in I(H^\infty) \) then \(qH^2 \subseteq \text{Lat } \mathcal{A} \) and so by Lemma 1 \(\phi q = qh + qk \in qH^2 + \bar{K} \). Since \(T_\phi q \in qH^2 \) and \(qh \in qH^2 \), \(P(qk) \in qH^2 \). Hence \(qk = q\ell + \ell \) where \(\ell \in H^2 \) and \(\ell \in \bar{K} \). Therefore \(\bar{k} = \ell + \overline{q}\ell \) and \(\ell = k - \overline{q}\ell \in H^2 \cap \bar{K} = \langle 0 \rangle \). Hence \(\ell = 0 \) and \(\bar{k} = \overline{q}\ell \). This implies that \(k \) belongs to \(\bar{K} \) for any \(q \in I(H^\infty) \).

\textbf{Theorem 1.} Suppose that \(\cap \{\bar{q}K ; q \in I(H^\infty)\} = \langle 0 \rangle \). If \(\phi \) is a function in \(L^\infty \) and \(\mathcal{A} \subseteq \text{Lat } T_\phi \) then \(\phi \) belongs to \(H^\infty \).

\text{Proof.} Lemmas 1 and 2 imply the theorem trivially.

\textbf{Corollary 1.} Suppose that \(H^2 = H^2(T^N) \). If \(\phi \) is a function in \(L^\infty \) and \(\mathcal{A} \subseteq \text{Lat } T_\phi \) then \(\phi \) belongs to \(H^\infty \).

\text{Proof.} \(\bar{K} \) is an invariant subspace under multiplications by the coordinates functions \(z_1, \ldots, z_n \). \(\cap \{z_1^{\ell_1} \cdots z_n^{\ell_n} K ; (\ell_1, \ldots, \ell_n) \geq (0, \ldots, 0)\} \) is a reducing subspace and so \(\cap z_1^{\ell_1} \cdots z_n^{\ell_n} K = \chi_E L^2 \) for some characteristic function \(\chi_E \). Since \(\chi_E L^2 \) is orthogonal to \(\bar{H}^2 \), \(\chi_E = 0 \) and so \(\langle 0 \rangle = \cap z_1^{\ell_1} \cdots z_n^{\ell_n} \bar{K} = \cap \{\bar{q}K ; q \in I(H^\infty)\} \).

\textbf{Corollary 2.} Suppose that \(H^2 = H^2(\Omega) \). If \(\phi \) is a function in \(L^\infty \) and \(\mathcal{A} \subseteq \text{Lat } T_\phi \) then \(\phi \) belongs to \(H^\infty \).

\text{Proof.} Let \(Z \) be the Ahlfors function for \(\Omega \) then \(|Z| = 1 \) on \(\partial \Omega = X \) (see [3]).
(\(\infty \)) \(\cap z_1^{\ell_1} \cdots z_n^{\ell_n} K \) is invariant under the multiplications by \(Z \) and \(\bar{H}^\infty \). Since \(H^\infty \) is a weak* maximal subalgebra of \(L^\infty \), \(\cap z_1^{\ell_1} \cdots z_n^{\ell_n} \bar{K} = \chi_E L^2 \). Since \(\chi_E L^2 \) is orthogonal to \(H^2 \), \(\chi_E = 0 \) and so \(\cap \{\bar{q}K ; q \in I(H^\infty)\} = \{0\} \).

\textbf{Corollary 3.} Let \(A \) be a Dirichlet algebra (see [4]). If \(\phi \) is a function in \(L^\infty \) and \(\mathcal{A} \subseteq \text{Lat } T_\phi \) then \(\phi \) belongs to \(H^\infty \).
Proof. Since H^∞ is a uniform algebra which has the annulus property ([2],[6]) on a totally disconnected space, by [2, Theorem 1] the set of quotients of inner functions is norm dense in the set of unimodular functions in L^∞. In this situation, $\tilde{K} = \tilde{H}^2$ and $Y = \cap \{ \bar{q} K; \ q \in I(H^\infty) \} \subset \tilde{H}^2$. $\bar{q} Y = Y$ for any q in $I(H^\infty)$ and so $\bar{q}_1 q_2 Y \subset Y$ for any q_1, q_2 in $I(H^\infty)$. Hence $\phi Y \subset Y$ for any unimodular function ϕ in L^∞. Hence $Y = \chi_E L^2$ for the characteristic function χ_E for some set E. Since $Y \subset \tilde{H}^2$, Y must be $\{0\}$.

Proposition 1. Suppose that $H^2 = L^2_a(D)$, ϕ is a function in L^∞ and $\text{Lat } A \subseteq \text{Lat } T_\phi$. Then the following are valid.

1. ϕ belongs to $L^2_a(D) + N^2$.
2. If $\phi = f + \ell$ where $f \in H^\infty$ and $\ell \in N^2$ then $\text{Lat } T_\ell \supseteq \text{Lat } A$.

Proof. (1) Since $z L^2_a \in \text{Lat } T_\phi$ by hypothesis, $\mathcal{C} \in \text{Lat } T_\phi^* = \text{Lat } T_\tilde{\phi}$ and so $\tilde{\phi} = \tilde{c} + \tilde{k}$ where $c \in \mathcal{C}$ and $k \in z L^2_a(D) + N^2$. Hence $\phi \in L^2_a(D) + N^2$. (2) If $\phi = f + \ell$ and $M \in \text{Lat } A$ then $\phi M \subset M + \tilde{K}$. Hence $(f + \ell) g = f g + \ell g \in M + \tilde{K}$ for any $g \in M$. Since $f g \in M$, $\ell g \in M + \tilde{K}$ for any $g \in M$ and so $\ell M \subset M + \tilde{K}$. Thus $M \in \text{Lat } T_\ell$.

A bounded operator B is called reflexive if whenever C is a bounded operator and $\text{Lat } B \subseteq \text{Lat } C$ then C belongs to the closed algebra (in weak operator topology) generated by B. When B is subnormal, it is known that B is reflexive [7]. Hence if f is a nonzero function in H^∞ and $\text{Lat } T_\phi \supseteq \text{Lat } T_f$ then T_ϕ belongs to the closed algebra generated by T_f. Hence T_ϕ belongs to A. Usually $\mathcal{A} \not\subseteq \text{Lat } T_f$ and so this does not answer Question 1. However if there exists a function f in H^∞ such that $\text{Lat } T_f = \text{Lat } A$ then the above result about subnormal operators answers Question 1. Hence when $H^2 = H^2(T_f)$, if $\text{Lat } T_\phi \supseteq \text{Lat } A$ then T_ϕ belongs to A because $\text{Lat } T_\phi = \text{Lat } \mathcal{A}$. Therefore Corollary 1 is not new for $N = 1$. Similarly Question 1 can be answered for $H^2 = L^2_a(D)$. Hence Proposition 1 is a very weak result.

§3. $\text{Lat } T_\phi \not\subseteq \text{Lat } A$

In this section we study Question 2. Theorem 2 shows that Question 2 can be answered positively for the disc algebra. In fact, it gives a few results for more general uniform algebras about Question 2.

Lemma 3. Let Q be a function in $I(H^\infty)$. Then $\tilde{K} = \sum_{n=0}^{\infty} (\tilde{K} \ominus \bar{Q} \tilde{K}) \bar{Q}^n \ominus \bigcap_{n=0}^{\infty} \bar{Q}^n \tilde{K}$.

Proof. Since $|Q| = 1$ a.e. and $\bar{Q} \tilde{K} \subset \tilde{K}$, \bar{Q} is an isometry on \tilde{K}. Hence this is well known and called a Wold decomposition.
Theorem 2. Suppose that \(\text{Lat } T_\phi \subseteq \text{Lat } \mathcal{A} \). If \(M \in \text{Lat } T_\phi \) and \(\cap \{ \overline{Q^n K} ; Q \in \mathcal{I} \} = \{ 0 \} \) for some subset \(\mathcal{I} \) in \(I(\mathcal{H}^\infty) \) then there exists a nonconstant \(Q \) in \(\mathcal{I} \) such that \(M \cap (H^2 \ominus QH^2) \neq \{ 0 \} \) or \(\phi M \subseteq M \).

Proof. If \(M \in \text{Lat } T_\phi \) then by Lemma 1 there exist \(f \in M, \, g \in M \) and \(k \in K \) such that \(\phi f = g + \bar{k} \). If \(\phi M \not\subseteq M \) then we may assume that \(k \neq 0 \). For any fixed \(Q \in \mathcal{I} \), by Lemma 3 \(\bar{K} = \left\{ \sum_{n=0}^{\infty} (\bar{\bar{K}} \ominus \bar{Q\bar{K}}) \bar{Q}^n \right\} \oplus \bigcap_{n=0}^{\infty} \bar{Q}^n \bar{K} \) and so

\[
\bar{k} = \sum_{n=0}^{\infty} k_n \bar{Q}^n + k_{\infty}
\]

where \(k_n \in \bar{\bar{K}} \ominus Q\bar{K} \) \((n = 0, 1, 2, \cdots)\) and \(k_{\infty} \in \bigcap_{n=0}^{\infty} \bar{Q}^n \bar{K} \). Then \(Q\bar{k} = Qk_0 + \sum_{n=1}^{\infty} k_n \bar{Q}^{n-1} + Qk_{\infty} \) and by Lemma 1 \(Q\bar{k} \) belongs to \(M + \bar{K} \) because \(\phi f = g + \bar{k} \) and \(QM \subseteq M \).

Suppose that there does not exist a nonconstant function \(Q \) in \(\mathcal{I} \) such that \(M \cap (H^2 \ominus QH^2) \neq \{ 0 \} \). Then we will get a contradiction. By what was proved above, \(Qk_0 \) belongs to \(M \cap (H^2 \ominus QH^2) = \{ 0 \} \). Hence \(k_0 \equiv 0 \). Next we consider \(Q^2 \bar{k} \) and then \(k_1 \equiv 0 \) follows. Proceeding similarly we can show that \(\bar{k} = k_{\infty} \). By hypothesis, this implies that \(k \equiv 0 \) because \(Q \) is arbitrary in \(\mathcal{I} \). This contradiction implies that there exists \(Q \in \mathcal{I} \) such that \(M \cap (H^2 \ominus QH^2) \neq \{ 0 \} \).

Corollary 4. Suppose that \(H^2 = H^2(T^N) \), \(\phi \) is a function in \(L^\infty \) and \(\text{Lat } T_\phi \subseteq \text{Lat } \mathcal{A} \). If \(M \in \text{Lat } T_\phi \) and \(M \not\subseteq \{ 0 \} \) then \(M \) contains a nonzero function which is \((N-1)\)-variable. Hence if \(N = 1 \) then \(M = H^2 \).

Proof. It is known that if \(\phi M \subseteq M \) then \(\phi \in H^\infty \). Hence we may assume that \(\phi M \not\subseteq M \). Put \(\mathcal{I} = \{ z_1, \cdots, z_N \} \) then \(\mathcal{I} \) satisfies the condition of Theorem 2. By Theorem 2, there exists \(z_j \) such that \(1 \leq j \leq N \) and \((H^2 \ominus z_j H^2) \cap M \neq \{ 0 \} \). Since \(H^2 \ominus z_j H^2 = H^2(z_j', T^{N-1}) \) where \(z = (z_j, z_j') \), \(M \) contains a nonzero \((N-1)\)-variable function.

Corollary 5. Suppose that \(H^2 = H^2(\Omega) \), \(\text{Lat } T_\phi \subseteq \text{Lat } \mathcal{A} \) and \(Z \) is the Alfors function for \(\Omega \) (see [3]). If \(M \in \text{Lat } T_\phi \) and \(M \not\subseteq \{ 0 \} \) then \(M \cap (H^2 \ominus ZH^2) \neq \{ 0 \} \).

Proof. Put \(\mathcal{I} = \{ Z \} \) then \(\mathcal{I} \) satisfies the condition of Theorem 2. It is known that if \(\phi M \subseteq M \) then \(\phi \in H^\infty \). Hence we may assume that \(\phi M \not\subseteq M \).

Proposition 2. If \(T_\phi \) is subnormal and \(\text{Lat } T_\phi \subseteq \text{Lat } \mathcal{A} \) then \(T_\phi \) commutes with \(\mathcal{A} \) and so \(T_\phi f = P(\phi_0 f) \) \((f \in H^\infty)\) for some \(\phi_0 \in H^2 \). If \(\mathcal{A} \) is a uniform algebra which approximates in modulus on \(X \) then \(\phi \) belongs to \(H^2 \cap L^\infty \).

Proof. If \(T_\phi \) is subnormal and \(\text{Lat } T_\phi \subseteq \text{Lat } \mathcal{A} \) then it is known [7] that \(\mathcal{A} \) is contained in the closed algebra generated by \(T_\phi \). Hence \(T_\phi \) commutes with \(\mathcal{A} \). Let \(\phi_0 = \)
$T_o 1$ then $T_o f = T_o T_f 1 = T_f T_o 1 = P(\phi_0 f)$ for $f \in H^\infty$. Since $\|\phi_0 f\|_2 \leq \|T_o\|_2 \|f\|_2$ ($f \in H^\infty$),

$$\left| \int_X \phi_0 f g \, dm \right| \leq \|\phi\|_\infty \|f\|_2 \|g\|_2 \quad (f, g \in H^\infty).$$

Hence

$$\left| \int_X \phi_0 | f |^2 \, dm \right| \leq \|\phi\|_\infty \|f^2\|_1.$$

Since A approximates in modulus on X, ϕ_0 belongs to $H^2 \cap L^\infty$. It is easy to see that $\phi = \phi_0$.

Corollary 6. Suppose that $H^2 = H^2(T^N)$ or $H^2 = H^2(\Omega)$. If T_o is subnormal then $\text{Lat } T_o \subseteq \text{Lat } A$ or ϕ belongs to H^∞.

Proof. A uniform algebra A approximates in modulus on X, that is, for every positive continuous function g on X and $\varepsilon > 0$, there is an f in A with $|g - |f|| < \varepsilon$ if the set of unimodular elements of A separates points of X (see [6, Lemma 4.12]). Since the coordinate functions z_1, \cdots, z_n separate T^N, the polydisc algebra approximates in modulus on T^N. If T_o is subnormal on $H^2(T^N)$ and $\text{Lat } T_o \subseteq \text{Lat } A$ then by Proposition 2 ϕ belongs to $H^2(T^N) \cap L^\infty = H^\infty(T^N)$. If $A = H^\infty(\Omega)$ then by [3, Lemma 4.8] $I(H^\infty(\Omega))$ separates $X = \text{the maximal ideal space of } L^\infty(\partial D)$. Hence Corollary 6 for $H^2 = H^2(\Omega)$ follows from Proposition 2.

Proposition 3. If $\text{Lat } T_o \subseteq \text{Lat } A$, then $\text{Lat } T_o^* \cap \text{Lat } T_o \subseteq \text{Lat } A^* \cap \text{Lat } A$.

Proof. If $M \in \text{Lat } T_o^*$ then $M^\perp \in \text{Lat } T_o$ and so $M^\perp \in \text{Lat } A$ because $\text{Lat } T_o \subseteq \text{Lat } A$. Hence $M \in \text{Lat } A^*$ and so $\text{Lat } T_o^* \subseteq \text{Lat } A^*$.

By Proposition 3, when $\text{Lat } A^* \cap \text{Lat } A = \{0\}, H^2$, if $\text{Lat } T_o \subseteq \text{Lat } A$ then T_o does not have a nontrivial reducing subspace. Hence if T_o is normal then $\text{Lat } T_o \not\subseteq \text{Lat } A$. Therefore it is important to know that $\text{Lat } A^* \cap \text{Lat } A = \{0\}, H^2$, that is, A is irreducible.

§4. Lat $A^* \cap$ Lat A

In this section we study Question 3. Theorem 3 shows that Question 3 can be answered positively for usual uniform algebras. Recall $A^* = \{T_o^* : \phi \in H^\infty\}$.

Theorem 3. If $M \in \text{Lat } A^* \cap \text{Lat } A$ then $M \subset \chi_E L^2 \subset M + \bar{K}$ where $E = \cup\{\text{supp } f : f \in M\}$. Hence if $E = X$ then $M = H^2$.

Proof. If $\phi \in L^\infty$ then by the Stone-Weierstrass theorem for any $\varepsilon > 0$ there exist f_1, \cdots, f_n and g_1, \cdots, g_n in H^∞ such that $\| \phi - \sum_{j=1}^n f_j \bar{g}_j \|_\infty < \varepsilon$. Since $T_{f_j \bar{g}_j} M \subset M$ for
$j = 1, \ldots, n$, $T_{\phi} M \subseteq M$. By Lemma 1 $\phi M \subseteq M \oplus K$. Thus $\chi_F L^2 \subseteq M \oplus K$. If $E = X$ then $L^2 = M \oplus K$ and so $M = H^2$.

Corollary 7. Suppose that there does not exist a nonzero function in H^2 such that $m(\{x \in X \mid f(x) = 0\}) \neq 0$. If $M \in \text{Lat} \mathcal{A}^* \cap \text{Lat} \mathcal{A}$ then $M = \langle 0 \rangle$ or H^2.

§5. Lat $T_\phi \cap \text{Lat} \mathcal{A}$

In this section we study Question 4. We don’t know whether $\text{Lat} T_\phi \neq \langle 0 \rangle, H^2 \rangle$. However we show that $\text{Lat} T_\phi \cap \text{Lat} \mathcal{A} = \langle 0 \rangle, H^2 \rangle$ if $\phi \notin H^\infty$ and $H^2 = H^2(T)$. For any $M \in \text{Lat} T_\phi$, put

$$K_M = \{k \in K \mid \tilde{k} = \phi f - g \text{ for some } f \text{ and } g \in M\}$$

then $K_M \subseteq K$ and $\phi M \subseteq M + \bar{K}_M$ (see Lemma 1).

Theorem 4. If $M \in \text{Lat} T_\phi \cap \text{Lat} \mathcal{A}$ then $K_M \times (H^2 \ominus M) \subseteq (H^\infty)^\perp$ and $T_k^* (H^\infty) \subseteq M$ for any k in K_M.

Proof. By the remark above, if $M \in \text{Lat} T_\phi \cap \text{Lat} \mathcal{A}$ then $\phi M \subseteq M + \bar{K}_M$. If $k \in K_M$ then by its definition there exist f and g such that $\phi f = g + \tilde{k}$. For any $\ell \in H^\infty$, $\phi f \ell = g \ell + \tilde{k} \ell \in M + \bar{K}_M$ and so $P(\tilde{k} \ell) \in M$. Since

$$\tilde{k} \ell = P(\tilde{k} \ell) + (I - P)(\tilde{k} \ell) \in M + \bar{K}_M,$$

if $s \in H^2 \ominus M$ then $\langle \tilde{k} \ell, s \rangle = \langle P(\tilde{k} \ell), s \rangle = 0$. Hence ks belongs to $(H^\infty)^\perp$ and so $K_M \times (H^2 \ominus M) \subseteq (H^\infty)^\perp$. The above proof implies that $T_k^* (H^\infty) \subseteq M$.

Corollary 8. Suppose that $H^2 = H^2(\Omega)$, $\mathcal{C} \setminus \Omega$ has n components and $\phi \notin H^\infty$. If $M \in \text{Lat} T_\phi \cap \text{Lat} \mathcal{A}$ then $\dim(H^2 \ominus M) \leq n$.

Proof. By Theorem 4

$$K_M \times (H^2 \ominus M) \subseteq (H^\infty)^\perp \cap (\bar{H}^\infty)^\perp = (H^\infty + \bar{H}^\infty)^\perp \cap L^1$$

and $\dim(H^\infty + \bar{H}^\infty)^\perp \cap L^1 = n$ because $\mathcal{C} \setminus \Omega$ has n components. If $K_M = \langle 0 \rangle$ then $\phi M \subseteq M$. It is known [4] that L^∞ is generated by ϕ and H^∞ in the weak* topology. Hence $M \in \text{Lat} \mathcal{A} \cap \text{Lat} \mathcal{A}^* = \langle 0 \rangle, H^2 \rangle$ by Corollary 7 and so $M = H^2$. It is clear that if $K_M \neq \langle 0 \rangle$ then $\dim(H^2 \ominus M) \leq n$.

Corollary 9. If $H^2 = H^2(T)$ and $\phi \notin H^\infty$ then $\text{Lat} T_\phi \cap \text{Lat} \mathcal{A} = \langle 0 \rangle, H^2 \rangle$.

Proof. When Ω is the open unit disc, $H^2(\Omega) = H^2(T)$ and so by Corollary 8 Lat $T_\phi \cap \text{Lat} \mathcal{A} = \langle 0 \rangle, H^2 \rangle$.
Corollary 10. Let A be a Dirichlet algebra. If $\phi \notin H^{\infty}$ then $\text{Lat} T_{\phi} \cap \text{Lat} A = \{\langle 0 \rangle, H^2 \}$.

Proof. It is known that $(\bar{H}^{\infty})^\perp \cap (H^{\infty})^\perp = \{\langle 0 \rangle\}$. The corollary is a result of Theorem 4.

In general, it seems to be difficult to describe $\text{Lat} T_{\phi} \cap \text{Lat} A$. When $H^2 = H^2(\Omega)$ and $\bar{\phi} \in H^{\infty}$, $\text{Lat} T_{\phi} \cap \text{Lat} A = \{\langle 0 \rangle, H^2 \}$ by Corollary 8. In fact, if $M \in \text{Lat} T_{\phi} \cap \text{Lat} A$ then $\bar{\phi}(H^2 \ominus M) \subseteq H^2 \ominus M$. Since $\dim(H^2 \ominus M) < \infty$ by Corollary 8, M must be equal to H^2. When $H^2 = H^2(T^2)$ and $\phi = \bar{z}$, $\text{Lat} T_{\phi} \cap \text{Lat} A = \{\langle 0 \rangle, qH^2(w, T); q = q(w)\}$ is a one variable inner function where z and w are the independent variables on T^2. In fact, if $M \in \text{Lat} T_{\phi} \cap \text{Lat} A$ then $T^*_z M_1$ is orthogonal to M where $M_1 = M \ominus zM$. Since $T^*_z M_1 \subset M$, $T^*_z M_1 = \langle 0 \rangle$ and so $M_1 \subset H^2(w, T)$. Corollary 10 shows that $\text{Lat} A^* \cap \text{Lat} A = \{\langle 0 \rangle, H^2 \}$ if A is a Dirichlet algebra.

References

Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060-0810, Japan
nakazi@math.sci.hokudai.ac.jp