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Abstract. Let M be a forward shift invariant subspace and N a backward shift
invariant subspace in the Hardy space H2 on the bidisc. We assume that H2 = N ⊕M .
Using the wandering subspace of M and N , we study the relations between M and N .
Moreover we study M and N using several natural operators which are defined by shift
operators on H2.
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§1. Introduction

Let T 2 be the torus that is the Cartesian product of two unit circles T in 6C. Let
p = 2 or p = ∞. The usual Lebesgue spaces, with respect to the Haar measure m on T 2,
are denoted by Lp = Lp(T 2), and Hp = Hp(T 2) is the space of all f in Lp whose Fourier
coefficients

f̂(j, `) =
∫

T 2
f(z, w)z̄jw̄`dm(z, w)

are 0 as soon as at least one component of (j, `) is negative. Then Hp is called the Hardy
space. As T 2 = (z, T ) × (w, T ), Hp(z, T ) and Hp(w, T ) denote the one variable Hardy
spaces.

Let PH2 be the orthogonal projection from L2 onto H2. For φ in L∞, the Toeplitz
operator Tφ is defined by

Tφf = PH2(φf) (f ∈ H2).

A closed subspace M of H2 is said to be forward shift invariant if TzM ⊂ M and TwM ⊂
M , and a closed subspace N of H2 is said to be backward shift invariant if T ∗z N ⊂ N
and T ∗wN ⊂ N . Let PM and PN be the orthogonal projections from H2 onto M and N ,
respectively. In this paper, we assume that M ⊕N = H2, that is, PM + PN = I where I
is the identity operator on H2. Let

A = PMTzPN and B = PNT ∗wPM .

For φ in H∞

Vφf = PM(φf) (f ∈ M)

and
Sφf = PN(φf) (f ∈ N).

Suppose that
V = VzV

∗
w − V ∗

wVz and S = SzS
∗
w − S∗wSz.

It is known [4] that AB | M = V and BA | N = S. K.Guo and R.Yang [3] showed
that AB is Hilbert-Schmidt under some mild condition. In this paper, we study M or N
when A, B, AB or BA is of finite rank. K.Izuchi and T.Nakazi [4] described an invariant
subspace M or N with A = 0 or B = 0. V.Mandrekar [6], P.Ghatage and V.Mandrekar
[2], and T.Nakazi ([7], [8]) described an invariant subspace M with AB = 0. K.Izuchi
and T.Nakazi [4] and K.Izuchi, T.Nakazi and M.Seto [5] described an invariant subspace
N with BA = 0.

For a forward shift invariant subspace M , put

M1 = ker V ∗
z , M2 = ker V ∗

w and M0 = M1 ∩M2.

then these are called wandering subspaces for M . For a backward shift invariant subspace
N , with M = H2 	N , put

N1 = [T ∗z M1]2, N2 = [T ∗wM2]2 and N0 = N1 ∩N2,
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then these should be called wandering subspaces for N .
In §2 we decompose and study M and N using wandering subspaces M1, M2, N1

and N2. In §3 we study M and N when A or B is of finite rank. For an operator
K, r(K) denotes the rank of K. In §4 we show that r(AB) = dim N1∩N2 in general and
r(BA) = dim M1 ∩M2 under some mild conditions.

§2. Wandering subspace

Let M be a forward shift invariant subspace and N be a backward shift invariant
subspace with H2 = M ⊕N . Put

M∞
z =

∞⋂
n=1

{f ∈ M ; z̄nf ∈ M} and M∞
w =

∞⋂
n=1

{f ∈ M ; w̄nf ∈ M}

, and

N∞
z =

∞⋂
n=1

{f ∈ N ; znf ∈ N} and N∞
w =

∞⋂
n=1

{f ∈ N ; wnf ∈ N}.

In the case of one variable, M∞
z = N∞

z = {0}. In the case of two variables, M∞
z is also

always {0} but N∞
z may not be {0}. In fact, if N ⊃ q1H

2(z, T ) then N∞
z ⊃ q1H

2(z, T )
where q1 = q1(z) is one variable inner function.

Theorem 1. Let N be a backward shift invariant subspace and M = H2 	N .

(1) M∞
z = M∞

w = {0} and M =
∞∑

n=0

⊕ T n
z M1 =

∞∑
n=0

⊕ T n
wM2.

(2) N =

[ ∞⋃
n=0

T ∗nz N1

]
2

⊕N∞
z =

[ ∞⋃
n=0

T ∗nw N2

]
2

⊕N∞
w .

Proof. (1) is well known. (2) If f ∈ N∞
z then by deffinition znf ∈ N for any

n ≥ 1 and hence f is orthogonal to

[ ∞⋃
n=0

T ∗nz N1

]
2

. Conversely suppose that f is orthogonal

to
∞⋃

n=0

T ∗nz N1. Since f⊥N1, zf is orthogonal to M1 + zM because N1 = T ∗z M1 and f ∈ N .

Hence zf ∈ N . Since f⊥T ∗z N1, z2f is orthogonal to M1 + zM because T ∗z N1 = T ∗2z M1

and zf ∈ N . Hence z2f ∈ N . By repeating the same argument, we can show that znf
belongs to N for any n ≥ 1. This implies (2).

Corollary 1. Let N be a backward shift invariant subspace.
(1) N = N∞

z if and only if N = H2(z, T ) ⊗ (H2(w, T ) 	 q2H
2(w, T )) where

q2 = q2(w) is a one variable inner function.
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(2) N =

[ ∞⋃
n=0

T ∗nz N1

]
2

if and only if for each nonzero f in N there exists n ≥ 1

such that znf /∈ N .
Proof (1) If N = N∞

z then N1 = 0 and so T ∗z M1 = 0. Hence M1 ⊂ H2(w, T ) and
so M1 = q2H

2(w, T ) by a well known theorem of A.Beurling [1]. Therefore M = q2H
2

and so N = H2(z, T ) ⊗ (H2(w, T ) 	 q2H
2(w, T )). Conversely if M = q2H

2 then M1 =
q2H

2(w, T ) and so N1 = T ∗z M1 = 0. (2) is clear by (2) of Theorem 1.

By (1) of Theorem 1, both M1 and M2 are cyclic subspaces for Tz and Tw, that
is,  ⋃

(n,m)≥(0,0)

T n
z Tm

w Mj


2

= M for j = 1, 2.

It may happen that

 ⋃
(n,m)≥(0,0)

T n
z Tm

w M0


2

= M where M0 = M1∩M2. By (2) of Theorem

1,if N∞
z = {0} or N∞

w = {0} then N1 or N2 is a cyclic subspace for T ∗z and T ∗w, that is, ⋃
(n,m)≥(0,0)

T ∗nz T ∗mw Nj


2

= N for j = 1, 2.

In general, N0 may not be a cyclic subspace because N0 = 〈0〉 may happen. We can
ask whether T ∗z M0 or T ∗wM0 is a cyclic subspace for T ∗z and T ∗w because N1 ⊃ T ∗z M0 and
N2 ⊃ T ∗wM0. However this is not true. If M = zH2 then N = H2(w, T ) and M0 = 〈z〉.
Then T ∗wM0 = 〈0〉 and T ∗z M0 = 〈1〉.

Example 1. Let N = H2(z, T ) + H2(w, T ). Then the following (1) ∼ (3) are
valid.

(1) N1 = wH2(w, T ), N2 = zH2(z, T ) and N0 = 〈0〉.

(2)

 ⋃
n≥0

T ∗nz N1


2

= wH2(w, T ),

 ⋃
n≥0

T ∗nw N2


2

= zH2(z, T ) and ⋃
(n,m)≥0

T ∗nz T ∗mw N0


2

= 〈0〉.

(3) N∞
z = H2(z, T ) and N∞

w = H2(w, T )

Example 2. Let N = 6C and M = zH2 + wH2. Then the following (1) ∼ (3)
are valid.

(1) N1 = N2 = N0 = 6C.

(2)

 ⋃
n≥0

T ∗nz N1


2

=

 ⋃
n≥0

T ∗nw N2


2

=

 ⋃
(n,m)≥(0,0)

T ∗nz T ∗mw N0


2

= N .
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(3) N∞
z = N∞

w = 〈0〉.

Example 3. Let N = (H2(z, T ) 	 q1H
2(z, T )) ⊗ (H2(w, T ) 	 q2H

2(w, T )) and
M = q1H

2 + q2H
2 where q1 = q1(z) and q2 = q2(w) are one variable inner functions.

(1) M1 = q1(H
2(w, T ) 	 q2H

2(w, T )) ⊕ q2H
2(w, T ) and M2 = q2(H

2(z, T ) 	
q1H

2(z, T ))⊕ q1H
2(z, T ).

(2) N1 = (T ∗z q1)(H
2(w, T ) 	 q2H

2(w, T )), N2 = (T ∗wq2)(H
2(z, T ) 	 q1H

2(z, T ))
and N0 = 〈(T ∗z q1)(T

∗
wq2)〉.

(3)

 ⋃
n≥0

T ∗nz N1


2

=

 ⋃
n≥0

T ∗nw N2


2

=

 ⋃
(n,m)≥(0,0)

T ∗nz T ∗mw N0


2

= N .

Proof. (2) and (3) follow from (1). It is known [4] that M = q2H
2 ⊕ q1(H

2 	
q2H

2) = (H2(z, T )⊗ q2H
2(w, T ))⊕ {q1H

2(z, T )⊗ (H2(w, T )	 q2H
2(w, T ))}. Hence (1)

follows.

§3. r(A) < ∞ or r(B) < ∞

Recall that A = PMTzPN and B = PNT ∗wPM (see Introduction). In this section,
we are interested in when A or B is of finite rank. We know a characterization of A = 0
or B = 0 (see [3]). In fact A = 0 if and only if N = H2 or N = H2	 qH2 where q = q(w)
is a one variable inner function, and B = 0 if and only if M = {0} or M = qH2 where
q = q(z) is a one variable functon. In one variable Hardy space, A is of rank one for any
N or B is of rank one for any M .

Lemma 1. Let M be a forward shift invariant subspace of H2 and N = H2	M .
(1) [ranA]2 ⊆ M1 and ker A = {f ∈ N ; Tzf ∈ N} ⊕M .
(2) [ranA∗]2 = N1 and ker A∗ = {f ∈ M ; T ∗z f ∈ M} ⊕N .
(3) M1 = [ranA]2 ⊕ {ker A∗ 	 (TzM ⊕N)}.
(4) M = [ranA]2 ⊕ (ker A∗ 	N) and N = [ranA∗]2 ⊕ (ker A	M).

Proof. (1) By definitions, [ranA]2 = [PTzN ]2 ⊆ M1 because TzN is orthogonal
to TzM and ker A = {f ∈ N ; Tzf ∈ N} ⊕M . (2) Since T ∗z M = T ∗z M1 ⊕M, [ranA∗]2 =
[T ∗z M1]2 = N1. By definition, ker A∗ = {f ∈ M ; T ∗z f ∈ M} ⊕N . (3) is clear by (1) and
that H2 = [ranA]2 ⊕ ker A∗. (4) is clear by (1),(2) and that H2 = [ranA∗]2 ⊕ ker A.

Lemma 2. Let M be a forward shift invariant subspace of H2 and N = H2	M .
(1) [ranA]2 = M1 	 (M1 ∩ ker T ∗z ).
(2) ker A∗ = (M1 ∩ ker T ∗z )⊕ TzM ⊕N .
Proof.(1) Since TzN⊥ ker T ∗z , TzN⊥M1 ∩ ker T ∗z and so PMTzN⊥M1 ∩ ker T ∗z .

Hence by (1) of Lemma 1 [ranA]2 ⊆ M1 	 (M1 ∩ ker T ∗z ). If f ∈ M1 and f⊥ranA, then
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f⊥TzN and so T ∗z f⊥N . Hence T ∗z f ∈ N ∩M because T ∗z M1⊥M . Hence T ∗z f = 0. (2) is
a result of (1) by (2) of Lemma 1.

Lemma 3. Let M be a forward shift invariant subspace of H2. Then if [ranA]2 6=
M1 then M1 = [ranA]2 ⊕ q2H

2(w, T ).
Proof. By Lemma 2, M1 	 [ranA]2 = M1 ∩ ker T ∗z and M1 ∩ ker T ∗z ⊂ H2(w, T )

because ker T ∗z = H2(w, T ). Hence w(M1 ∩ ker T ∗z )⊥zM and so w(M1 ∩ ker T ∗z ) ⊆ M1 ∩
ker T ∗z . By a theorem of Beurling [1] M1 	 [ranA]2 = q2H

2(w, T ) for some one variable
inner function q2 = q2(w).

Theorem 2. Let M be a nonzero forward shift invariant subspace.

(1) If r(A) < ∞ then M1 = ranA⊕q2H
2(w, T ) and M = q2H

2⊕


∞∑

j=0

⊕ (ranA)zj


where q2 = q2(w) is a one variable inner function.

(2) If r(B) < ∞ then M2 = ranB∗⊕q1H
2(z, T ) and M = q1H

2⊕


∞∑

j=0

⊕ (ranB∗)wj


where q1 = q1(z) is a one variable inner function.

(3) If r(A) < ∞ and r(B) < ∞ then there exist two inner functions q1 = q1(z)
and q2 = q2(w) such that q1H

2 + q2H
2 is a closed forward shift invariant subspace, M ⊇

q1H
2 + q2H

2 and dim{M1 + M2}/{q1H
2(z, T ) + q2H

2(w, T )} ≤ r(A) + r(B).
Proof. Since dim M1 = ∞ by [7, Theorem 3], if r(A) < ∞ then [ranA]2 6= M1 and

so by Lemm 3 M1 = [ranA]2⊕q2H
2(w, T ) for some one variable inner function q2 = q2(w).

This implies (1). If r(B) < ∞ then r(B∗) < ∞. Since B∗ = PMTwPN , (1) implies (2). If
r(A) < ∞ and r(B) < ∞, (1) and (2) imply (3)because it is known [4] that q1H

2 + q2H
2

is closed.

Corollary 2. (1) If A = 0 then M = {0} or M = q2H
2 for some one variable

inner function q2 = q2(w).
(2) If B = 0 then M = {0} or M = q1H

2 for some one variable inner function
q1 = q1(z).

Corollary 3. (1) If 0 ≤ n ≤ ∞ and 0 ≤ m ≤ ∞, then there exist invariant
subspaces M and N such that r(A) = n and r(B) = m.

(2) If r(B) = 0 then r(A) = 0 or r(A) = ∞. If r(A) = 0 then r(B) = 0 or
r(B) = ∞.

Proof. (1) Let 1 ≤ n < ∞ and 1 ≤ m < ∞. Suppose that M = zmH2 + wnH2,
then M1 = wnH2(w, T ) + 〈1, w, · · · , wn〉zm and M2 = zmH2(z, T ) + 〈1, z, · · · , zm〉wn. By
(1) and (2) of Theorem 2, r(A) = n and r(B) = m.

(2) If r(B) = 0, then by (2) of Corollary 2 M = {0} or M = q1H
2 where q1 = q1(z)

is a one variable inner function. If M = {0} then r(A) = 0 by definition. If M = q1H
2
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then M1 = q1H
2(w, T ) and so if r(A) < ∞ then by (1) of Theorem 2 M1 ⊃ q2H

2(w, T )
for some one variable inner function q2 = q2(w). This implies that q1 is constant. Hence
M = H2 and so A = 0.

Corollary 4. If M = q1H
2 + q2H

2 where q1 = q1(z) and q2 = q2(w) are one
variable inner functions, then [ranA]2 = q1(H

2(w, T ) 	 q2H
2(w, T )) and [ranB∗]2 =

q2(H
2(z, T ) 	 q1H

2(z, T )). If r(A) < ∞ and r(B) < ∞ then r(A) = deg q2 and
r(B) = deg q1.

Corollary 5. Let M be a forward shift invariant subspace. If M is of finite
co-dimension n then r(A) ≤ n, r(B) ≤ n and M ⊇ q1H

2 + q2H
2 where q1 = q1(z) and

q2 = q2(w) are one variable finite Blaschke products.
Proof. By the definitions of A and B, it is clear that r(A) ≤ n and r(B) ≤ n.

The second statement follows from (3) of Theorem 2.

Proposition 1. Let M be a forward shift invariant subspace. Then M ⊇ q1H
2 +

q2H
2 for some one variable inner functions q1 = q1(z) and q2 = q2(w) if and only if

[ranA]2 6= M1 and [ranB∗]2 6= M2.
Proof. The ‘if’ part is clear by Lemma 3. If M ⊇ q1H

2 then q1H
2(z, T ) is

orthognal to wM and so q1H
2(z, T ) ⊆ M2. Hence Lemma 2 implies that [ranB∗]2 6= M2.

Similarly we can prove that if M ⊇ q2H
2 then [ranA]2 6= M1.

Proposition 2. N1 = [ranA∗]2 and N2 = [ranB]2. Hence dim N1 = r(A) and
dim N2 = r(B).

Proof. It is a result of (2) of Lemma 1.

§4. r(AB) < ∞ or r(BA) < ∞

Let M be a forward shift invariant subspace and N = H2 	 M . Recall the
definitions of V and S in Introduction. It is known [4] that AB | M = V and BA |
N = S. Then AB = 0 if and only if V = 0, and BA = 0 if and only if S = 0.
We know the characterization of an invariant subspace such that AB = 0 or BA = 0.
In fact, it is known (cf. [6],[7],[8]) that AB = 0 if and only if M = qH2 for some
inner function q. Recently it was proved (cf. [4],[5]) that BA = 0 if and only if N =
(H2(z, T )	q1H

2(z, T ))⊗(H2(w, T )	q2H
2(w, T )), N = (H2(z, T )	q1H

2(z, T ))⊗H2(w, T )
or N = H2(z, T ) ⊗ (H2(w, T ) 	 q2H

2(w, T )), where q1 = q1(z) and q2 = q2(w) are
one variable inner functions. In this section, we study invariant subspaces such that
r(AB) < ∞ or r(BA) < ∞.
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Lemma 4. Let M be a forward shift invariant subspace and N = H2 	M .
(1) r(BA) = dim([PMTzN ]2 ∩ [PMTwN ]2).
(2) r(AB) = dim([PNT ∗z M ]2 ∩ [PNT ∗wM ]2).
Proof. (1) Since [BAH2]2 = [B[ranA]2]2, r(BA) = dim((ker B)⊥∩ [ranA]2). This

implies (1) because (ker B)⊥ = [ranB∗]2 = [PMTwN ]2 and [ranA]2 = [PMTzN ]2. Similarly,
(2) can be proved.

Theorem 3. Let M be a forward shift invariant subspace of H2 and N = H2	M .
(1) If M1 ∩ ker T ∗z = {0} and M2 ∩ ker T ∗w = {0} then r(BA) = dim M1 ∩M2.
(2) r(AB) = dim N1 ∩N2.
Proof. (1) By (1) and (2) of Lemma 1, [ranA]2 = [PMTzN ]2 ⊆ M1 and

[ranB∗]2 = [PMTwN ]2 ⊆ M2. By Lemma 2, if M1 ∩ ker T ∗z = {0} then [PMTzN ]2 = M1

and if M2∩ ker T ∗w = {0} then [PMTwN ]2 = M2. Hence r(BA) = dim M1∩M2 by Lemma
4.

(2) Since [PNT ∗z M ]2 = [PNT ∗z M1]2 = N1 and [PNT ∗wM ]2 = [PNT ∗wM2] = N2, by
Lemma 4 r(AB) = dim N1 ∩N2.

In (1) of Theorem 3, we need the condition : M1 ∩ ker T ∗z = M2 ∩ ker T ∗w = {0}.
In fact, M1 ∩M2 is always not trivial but BA may be zero.
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