

HOKKAIDO UNIVERSITY

Title	Invariant Subspaces In The Bidisc And Wandering Subspaces
Author(s)	Nakazi, Takahiko
Citation	Hokkaido University Preprint Series in Mathematics, 848, 1-10
Issue Date	2007
DOI	10.14943/83998
Doc URL	http://hdl.handle.net/2115/69657
Туре	bulletin (article)
File Information	pre848.pdf

Invariant Subspaces In The Bidisc And Wandering Subspaces

By

Takahiko Nakazi*

* This research was partially supported by Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science

2000 Mathematics Subject Classification : Primary 47 A 15, 46 J 15 ; Secondary 47 A 20

Abstract. Let M be a forward shift invariant subspace and N a backward shift invariant subspace in the Hardy space H^2 on the bidisc. We assume that $H^2 = N \oplus M$. Using the wandering subspace of M and N, we study the relations between M and N. Moreover we study M and N using several natural operators which are defined by shift operators on H^2 .

§1. Introduction

Let T^2 be the torus that is the Cartesian product of two unit circles T in \mathcal{L} . Let p = 2 or $p = \infty$. The usual Lebesgue spaces, with respect to the Haar measure m on T^2 , are denoted by $L^p = L^p(T^2)$, and $H^p = H^p(T^2)$ is the space of all f in L^p whose Fourier coefficients

$$\hat{f}(j,\ell) = \int_{T^2} f(z,w) \bar{z}^j \bar{w}^\ell dm(z,w)$$

are 0 as soon as at least one component of (j, ℓ) is negative. Then H^p is called the Hardy space. As $T^2 = (z,T) \times (w,T), H^p(z,T)$ and $H^p(w,T)$ denote the one variable Hardy spaces.

Let P_{H^2} be the orthogonal projection from L^2 onto H^2 . For ϕ in L^{∞} , the Toeplitz operator T_{ϕ} is defined by

$$T_{\phi}f = P_{H^2}(\phi f) \quad (f \in H^2).$$

A closed subspace M of H^2 is said to be forward shift invariant if $T_z M \subset M$ and $T_w M \subset M$, and a closed subspace N of H^2 is said to be backward shift invariant if $T_z^* N \subset N$ and $T_w^* N \subset N$. Let P_M and P_N be the orthogonal projections from H^2 onto M and N, respectively. In this paper, we assume that $M \oplus N = H^2$, that is, $P_M + P_N = I$ where I is the identity operator on H^2 . Let

$$A = P_M T_z P_N$$
 and $B = P_N T_w^* P_M$.

For ϕ in H^{∞}

$$V_{\phi}f = P_M(\phi f) \quad (f \in M)$$

and

$$S_{\phi}f = P_N(\phi f) \quad (f \in N).$$

Suppose that

$$\mathcal{V} = V_z V_w^* - V_w^* V_z \text{ and } \mathcal{S} = S_z S_w^* - S_w^* S_z.$$

It is known [4] that $AB \mid M = \mathcal{V}$ and $BA \mid N = \mathcal{S}$. K.Guo and R.Yang [3] showed that AB is Hilbert-Schmidt under some mild condition. In this paper, we study M or Nwhen A, B, AB or BA is of finite rank. K.Izuchi and T.Nakazi [4] described an invariant subspace M or N with A = 0 or B = 0. V.Mandrekar [6], P.Ghatage and V.Mandrekar [2], and T.Nakazi ([7], [8]) described an invariant subspace M with AB = 0. K.Izuchi and T.Nakazi [4] and K.Izuchi, T.Nakazi and M.Seto [5] described an invariant subspace N with BA = 0.

For a forward shift invariant subspace M, put

$$M_1 = \ker V_z^*, M_2 = \ker V_w^* \text{ and } M_0 = M_1 \cap M_2.$$

then these are called wandering subspaces for M. For a backward shift invariant subspace N, with $M = H^2 \ominus N$, put

$$N_1 = [T_z^* M_1]_2, N_2 = [T_w^* M_2]_2$$
 and $N_0 = N_1 \cap N_2$,

then these should be called wandering subspaces for N.

In §2 we decompose and study M and N using wandering subspaces M_1, M_2, N_1 and N_2 . In §3 we study M and N when A or B is of finite rank. For an operator K, r(K) denotes the rank of K. In §4 we show that $r(AB) = \dim N_1 \cap N_2$ in general and $r(BA) = \dim M_1 \cap M_2$ under some mild conditions.

§2. Wandering subspace

Let M be a forward shift invariant subspace and N be a backward shift invariant subspace with $H^2 = M \oplus N$. Put

$$M_{z}^{\infty} = \bigcap_{n=1}^{\infty} \{ f \in M \; ; \; \bar{z}^{n} f \in M \} \text{ and } M_{w}^{\infty} = \bigcap_{n=1}^{\infty} \{ f \in M \; ; \; \bar{w}^{n} f \in M \}$$

, and

$$N_{z}^{\infty} = \bigcap_{n=1}^{\infty} \{ f \in N \; ; \; z^{n} f \in N \} \text{ and } N_{w}^{\infty} = \bigcap_{n=1}^{\infty} \{ f \in N \; ; \; w^{n} f \in N \}.$$

In the case of one variable, $M_z^{\infty} = N_z^{\infty} = \{0\}$. In the case of two variables, M_z^{∞} is also always $\{0\}$ but N_z^{∞} may not be $\{0\}$. In fact, if $N \supset q_1 H^2(z,T)$ then $N_z^{\infty} \supset q_1 H^2(z,T)$ where $q_1 = q_1(z)$ is one variable inner function.

Theorem 1. Let N be a backward shift invariant subspace and $M = H^2 \oplus N$. (1) $M_z^{\infty} = M_w^{\infty} = \{0\}$ and $M = \sum_{n=0}^{\infty} \oplus T_z^n M_1 = \sum_{n=0}^{\infty} \oplus T_w^n M_2$. (2) $N = \left[\bigcup_{n=0}^{\infty} T_z^{*n} N_1\right]_2 \oplus N_z^{\infty} = \left[\bigcup_{n=0}^{\infty} T_w^{*n} N_2\right]_2 \oplus N_w^{\infty}$. Proof. (1) is well known. (2) If $f \in N^{\infty}$ then by definition $z^n f \in N$ for an

Proof. (1) is well known. (2) If $f \in N_z^{\infty}$ then by definition $z^n f \in N$ for any $n \geq 1$ and hence f is orthogonal to $\left[\bigcup_{n=0}^{\infty} T_z^{*n} N_1\right]_2$. Conversely suppose that f is orthogonal to $\bigcup_{n=0}^{\infty} T_z^{*n} N_1$. Since $f \perp N_1$, zf is orthogonal to $M_1 + zM$ because $N_1 = T_z^* M_1$ and $f \in N$. Hence $zf \in N$. Since $f \perp T_z^* N_1$, $z^2 f$ is orthogonal to $M_1 + zM$ because $T_z^* N_1 = T_z^{*2} M_1$ and $zf \in N$. Hence $z^2 f \in N$. By repeating the same argument, we can show that $z^n f$ belongs to N for any $n \geq 1$. This implies (2).

Corollary 1. Let N be a backward shift invariant subspace.

(1) $N = N_z^{\infty}$ if and only if $N = H^2(z,T) \otimes (H^2(w,T) \ominus q_2 H^2(w,T))$ where $q_2 = q_2(w)$ is a one variable inner function.

(2) $N = \left[\bigcup_{n=0}^{\infty} T_z^{*n} N_1\right]_2$ if and only if for each nonzero f in N there exists $n \ge 1$

such that $z^n f \notin N$.

Proof (1) If $N = N_z^{\infty}$ then $N_1 = 0$ and so $T_z^* M_1 = 0$. Hence $M_1 \subset H^2(w, T)$ and so $M_1 = q_2 H^2(w,T)$ by a well known theorem of A.Beurling [1]. Therefore $M = q_2 H^2$ and so $N = H^2(z,T) \otimes (H^2(w,T) \ominus q_2 H^2(w,T))$. Conversely if $M = q_2 H^2$ then $M_1 =$ $q_2H^2(w,T)$ and so $N_1 = T_z^*M_1 = 0$. (2) is clear by (2) of Theorem 1.

By (1) of Theorem 1, both M_1 and M_2 are cyclic subspaces for T_z and T_w , that is,

$$\left[\bigcup_{(n,m)\geq(0,0)}T_z^nT_w^mM_j\right]_2 = M \text{ for } j=1,2.$$

It may happen that $\left[\bigcup_{(n,m)\geq (0,0)} T_z^n T_w^m M_0\right]_2 = M$ where $M_0 = M_1 \cap M_2$. By (2) of Theorem 1, if $N_z^{\infty} = \{0\}$ or $N_w^{\infty} = \{0\}$ then N_1 or N_2 is a cyclic subspace for T_z^* and T_w^* , that is,

$$\left[\bigcup_{(n,m)\ge(0,0)} T_z^{*n} T_w^{*m} N_j\right]_2 = N \text{ for } j = 1, 2.$$

In general, N_0 may not be a cyclic subspace because $N_0 = \langle 0 \rangle$ may happen. We can ask whether $T_z^*M_0$ or $T_w^*M_0$ is a cyclic subspace for T_z^* and T_w^* because $N_1 \supset T_z^*M_0$ and $N_2 \supset T_w^*M_0$. However this is not true. If $M = zH^2$ then $N = H^2(w,T)$ and $M_0 = \langle z \rangle$. Then $T_w^* M_0 = \langle 0 \rangle$ and $T_z^* M_0 = \langle 1 \rangle$.

Example 1. Let $N = H^2(z,T) + H^2(w,T)$. Then the following (1) ~ (3) are valid.

$$(1) \ N_{1} = wH^{2}(w,T), \ N_{2} = zH^{2}(z,T) \ and \ N_{0} = \langle 0 \rangle.$$

$$(2) \left[\bigcup_{n \ge 0} T_{z}^{*n} N_{1} \right]_{2} = wH^{2}(w,T), \left[\bigcup_{n \ge 0} T_{w}^{*n} N_{2} \right]_{2} = zH^{2}(z,T) \ and$$

$$\bigcup_{(n,m)\ge 0} T_{z}^{*n} T_{w}^{*m} N_{0} \right]_{2} = \langle 0 \rangle.$$

$$(3) \ N_{z}^{\infty} = H^{2}(z,T) \ and \ N_{w}^{\infty} = H^{2}(w,T)$$

Example 2. Let $N = \mathcal{L}$ and $M = zH^2 + wH^2$. Then the following (1) ~ (3) are valid.

(1)
$$N_1 = N_2 = N_0 = \mathcal{C}.$$

(2) $\left[\bigcup_{n \ge 0} T_z^{*n} N_1\right]_2 = \left[\bigcup_{n \ge 0} T_w^{*n} N_2\right]_2 = \left[\bigcup_{(n,m) \ge (0,0)} T_z^{*n} T_w^{*m} N_0\right]_2 = N.$

(3)
$$N_z^{\infty} = N_w^{\infty} = \langle 0 \rangle.$$

Example 3. Let $N = (H^2(z,T) \ominus q_1 H^2(z,T)) \otimes (H^2(w,T) \ominus q_2 H^2(w,T))$ and $M = q_1 H^2 + q_2 H^2$ where $q_1 = q_1(z)$ and $q_2 = q_2(w)$ are one variable inner functions.

(1) $M_1 = q_1(H^2(w,T) \ominus q_2H^2(w,T)) \oplus q_2H^2(w,T)$ and $M_2 = q_2(H^2(z,T) \ominus q_1H^2(z,T)) \oplus q_1H^2(z,T)$.

 $\begin{array}{l} (2) \ N_1 = (T_z^* q_1) (H^2(w, T) \ominus q_2 H^2(w, T)), \ N_2 = (T_w^* q_2) (H^2(z, T) \ominus q_1 H^2(z, T)) \\ and \ N_0 = \langle (T_z^* q_1) (T_w^* q_2) \rangle. \\ (3) \left[\bigcup_{n \ge 0} T_z^{*n} N_1 \right]_2 = \left[\bigcup_{n \ge 0} T_w^{*n} N_2 \right]_2 = \left[\bigcup_{(n,m) \ge (0,0)} T_z^{*n} T_w^{*m} N_0 \right]_2 = N. \end{array}$

Proof. (2) and (3) follow from (1). It is known [4] that $M = q_2 H^2 \oplus q_1(H^2 \oplus q_2 H^2) = (H^2(z,T) \otimes q_2 H^2(w,T)) \oplus \{q_1 H^2(z,T) \otimes (H^2(w,T) \oplus q_2 H^2(w,T))\}$. Hence (1) follows.

§3. $r(A) < \infty$ or $r(B) < \infty$

Recall that $A = P_M T_z P_N$ and $B = P_N T_w^* P_M$ (see Introduction). In this section, we are interested in when A or B is of finite rank. We know a characterization of A = 0or B = 0 (see [3]). In fact A = 0 if and only if $N = H^2$ or $N = H^2 \ominus qH^2$ where q = q(w)is a one variable inner function, and B = 0 if and only if $M = \{0\}$ or $M = qH^2$ where q = q(z) is a one variable functon. In one variable Hardy space, A is of rank one for any N or B is of rank one for any M.

Lemma 1. Let M be a forward shift invariant subspace of H^2 and $N = H^2 \ominus M$. (1) $[\operatorname{ran} A]_2 \subseteq M_1$ and $\ker A = \{f \in N ; T_z f \in N\} \oplus M$. (2) $[\operatorname{ran} A^*]_2 = N_1$ and $\ker A^* = \{f \in M ; T_z^* f \in M\} \oplus N$. (3) $M_1 = [\operatorname{ran} A]_2 \oplus \{\ker A^* \ominus (T_z M \oplus N)\}$. (4) $M = [\operatorname{ran} A]_2 \oplus (\ker A^* \ominus N)$ and $N = [\operatorname{ran} A^*]_2 \oplus (\ker A \ominus M)$.

Proof. (1) By definitions, $[\operatorname{ran} A]_2 = [PT_zN]_2 \subseteq M_1$ because T_zN is orthogonal to T_zM and ker $A = \{f \in N ; T_zf \in N\} \oplus M$. (2) Since $T_z^*M = T_z^*M_1 \oplus M$, $[\operatorname{ran} A^*]_2 = [T_z^*M_1]_2 = N_1$. By definition, ker $A^* = \{f \in M ; T_z^*f \in M\} \oplus N$. (3) is clear by (1) and that $H^2 = [\operatorname{ran} A]_2 \oplus \ker A^*$. (4) is clear by (1),(2) and that $H^2 = [\operatorname{ran} A^*]_2 \oplus \ker A$.

Lemma 2. Let M be a forward shift invariant subspace of H^2 and $N = H^2 \ominus M$. (1) $[\operatorname{ran} A]_2 = M_1 \ominus (M_1 \cap \ker T_z^*)$.

(2) ker $A^* = (M_1 \cap \ker T_z^*) \oplus T_z M \oplus N.$

Proof.(1) Since $T_z N \perp \ker T_z^*$, $T_z N \perp M_1 \cap \ker T_z^*$ and so $P_M T_z N \perp M_1 \cap \ker T_z^*$. Hence by (1) of Lemma 1 $[\operatorname{ran} A]_2 \subseteq M_1 \ominus (M_1 \cap \ker T_z^*)$. If $f \in M_1$ and $f \perp \operatorname{ran} A$, then

 $f \perp T_z N$ and so $T_z^* f \perp N$. Hence $T_z^* f \in N \cap M$ because $T_z^* M_1 \perp M$. Hence $T_z^* f = 0$. (2) is a result of (1) by (2) of Lemma 1.

Lemma 3. Let M be a forward shift invariant subspace of H^2 . Then if $[ran A]_2 \neq I$ M_1 then $M_1 = [ran A]_2 \oplus q_2 H^2(w, T)$.

Proof. By Lemma 2, $M_1 \ominus [\operatorname{ran} A]_2 = M_1 \cap \ker T_z^*$ and $M_1 \cap \ker T_z^* \subset H^2(w,T)$ because ker $T_z^* = H^2(w,T)$. Hence $w(M_1 \cap \ker T_z^*) \perp zM$ and so $w(M_1 \cap \ker T_z^*) \subseteq M_1 \cap$ ker T_z^* . By a theorem of Beurling [1] $M_1 \ominus [\operatorname{ran} A]_2 = q_2 H^2(w,T)$ for some one variable inner function $q_2 = q_2(w)$.

Theorem 2. Let M be a nonzero forward shift invariant subspace.

(1) If $r(A) < \infty$ then $M_1 = \operatorname{ran} A \oplus q_2 H^2(w, T)$ and $M = q_2 H^2 \oplus \left\{ \sum_{j=0}^{\infty} \oplus (\operatorname{ran} A) z^j \right\}$

where $q_2 = q_2(w)$ is a one variable inner function.

(2) If
$$r(B) < \infty$$
 then $M_2 = \operatorname{ran} B^* \oplus q_1 H^2(z, T)$ and $M = q_1 H^2 \oplus \left\{ \sum_{j=0}^{\infty} \oplus (\operatorname{ran} B^*) w^j \right\}$

where $q_1 = q_1(z)$ is a one variable inner function.

(3) If $r(A) < \infty$ and $r(B) < \infty$ then there exist two inner functions $q_1 = q_1(z)$ and $q_2 = q_2(w)$ such that $q_1H^2 + q_2H^2$ is a closed forward shift invariant subspace, $M \supseteq$ $q_1H^2 + q_2H^2$ and $\dim\{M_1 + M_2\}/\{q_1H^2(z,T) + q_2H^2(w,T)\} \le r(A) + r(B).$

Proof. Since dim $M_1 = \infty$ by [7, Theorem 3], if $r(A) < \infty$ then $[\operatorname{ran} A]_2 \neq M_1$ and so by Lemm 3 $M_1 = [\operatorname{ran} A]_2 \oplus q_2 H^2(w, T)$ for some one variable inner function $q_2 = q_2(w)$. This implies (1). If $r(B) < \infty$ then $r(B^*) < \infty$. Since $B^* = P_M T_w P_N$, (1) implies (2). If $r(A) < \infty$ and $r(B) < \infty$, (1) and (2) imply (3) because it is known [4] that $q_1 H^2 + q_2 H^2$ is closed.

Corollary 2. (1) If A = 0 then $M = \{0\}$ or $M = q_2 H^2$ for some one variable inner function $q_2 = q_2(w)$.

(2) If B = 0 then $M = \{0\}$ or $M = q_1 H^2$ for some one variable inner function $q_1 = q_1(z).$

Corollary 3. (1) If $0 \le n \le \infty$ and $0 \le m \le \infty$, then there exist invariant subspaces M and N such that r(A) = n and r(B) = m.

(2) If r(B) = 0 then r(A) = 0 or $r(A) = \infty$. If r(A) = 0 then r(B) = 0 or $r(B) = \infty.$

Proof. (1) Let $1 \le n < \infty$ and $1 \le m < \infty$. Suppose that $M = z^m H^2 + w^n H^2$, then $M_1 = w^n H^2(w, T) + \langle 1, w, \dots, w^n \rangle z^m$ and $M_2 = z^m H^2(z, T) + \langle 1, z, \dots, z^m \rangle w^n$. By (1) and (2) of Theorem 2, r(A) = n and r(B) = m.

(2) If r(B) = 0, then by (2) of Corollary 2 $M = \{0\}$ or $M = q_1 H^2$ where $q_1 = q_1(z)$ is a one variable inner function. If $M = \{0\}$ then r(A) = 0 by definition. If $M = q_1 H^2$ then $M_1 = q_1 H^2(w, T)$ and so if $r(A) < \infty$ then by (1) of Theorem 2 $M_1 \supset q_2 H^2(w, T)$ for some one variable inner function $q_2 = q_2(w)$. This implies that q_1 is constant. Hence $M = H^2$ and so A = 0.

Corollary 4. If $M = q_1H^2 + q_2H^2$ where $q_1 = q_1(z)$ and $q_2 = q_2(w)$ are one variable inner functions, then $[\operatorname{ran} A]_2 = q_1(H^2(w,T) \ominus q_2H^2(w,T))$ and $[\operatorname{ran} B^*]_2 = q_2(H^2(z,T) \ominus q_1H^2(z,T))$. If $r(A) < \infty$ and $r(B) < \infty$ then $r(A) = \deg q_2$ and $r(B) = \deg q_1$.

Corollary 5. Let M be a forward shift invariant subspace. If M is of finite co-dimension n then $r(A) \leq n$, $r(B) \leq n$ and $M \supseteq q_1H^2 + q_2H^2$ where $q_1 = q_1(z)$ and $q_2 = q_2(w)$ are one variable finite Blaschke products.

Proof. By the definitions of A and B, it is clear that $r(A) \leq n$ and $r(B) \leq n$. The second statement follows from (3) of Theorem 2.

Proposition 1. Let M be a forward shift invariant subspace. Then $M \supseteq q_1 H^2 + q_2 H^2$ for some one variable inner functions $q_1 = q_1(z)$ and $q_2 = q_2(w)$ if and only if $[\operatorname{ran} A]_2 \neq M_1$ and $[\operatorname{ran} B^*]_2 \neq M_2$.

Proof. The 'if' part is clear by Lemma 3. If $M \supseteq q_1 H^2$ then $q_1 H^2(z,T)$ is orthognal to wM and so $q_1 H^2(z,T) \subseteq M_2$. Hence Lemma 2 implies that $[\operatorname{ran} B^*]_2 \neq M_2$. Similarly we can prove that if $M \supseteq q_2 H^2$ then $[\operatorname{ran} A]_2 \neq M_1$.

Proposition 2. $N_1 = [\operatorname{ran} A^*]_2$ and $N_2 = [\operatorname{ran} B]_2$. Hence dim $N_1 = r(A)$ and dim $N_2 = r(B)$.

Proof. It is a result of (2) of Lemma 1.

§4. $r(AB) < \infty$ or $r(BA) < \infty$

Let M be a forward shift invariant subspace and $N = H^2 \ominus M$. Recall the definitions of \mathcal{V} and \mathcal{S} in Introduction. It is known [4] that $AB \mid M = \mathcal{V}$ and $BA \mid$ $N = \mathcal{S}$. Then AB = 0 if and only if $\mathcal{V} = 0$, and BA = 0 if and only if $\mathcal{S} = 0$. We know the characterization of an invariant subspace such that AB = 0 or BA = 0. In fact, it is known (cf. [6],[7],[8]) that AB = 0 if and only if $M = qH^2$ for some inner function q. Recently it was proved (cf. [4],[5]) that BA = 0 if and only if N = $(H^2(z,T)\ominus q_1H^2(z,T))\otimes (H^2(w,T)\ominus q_2H^2(w,T)), N = (H^2(z,T)\ominus q_1H^2(z,T))\otimes H^2(w,T)$ or $N = H^2(z,T) \otimes (H^2(w,T)\ominus q_2H^2(w,T))$, where $q_1 = q_1(z)$ and $q_2 = q_2(w)$ are one variable inner functions. In this section, we study invariant subspaces such that $r(AB) < \infty$ or $r(BA) < \infty$. **Lemma 4.** Let M be a forward shift invariant subspace and $N = H^2 \ominus M$. (1) $r(BA) = \dim([P_M T_z N]_2 \cap [P_M T_w N]_2)$. (2) $r(AB) = \dim([P_N T_z^* M]_2 \cap [P_N T_w^* M]_2)$.

Proof. (1) Since $[BAH^2]_2 = [B[\operatorname{ran} A]_2]_2$, $r(BA) = \dim((\ker B)^{\perp} \cap [\operatorname{ran} A]_2)$. This implies (1) because $(\ker B)^{\perp} = [\operatorname{ran} B^*]_2 = [P_M T_w N]_2$ and $[\operatorname{ran} A]_2 = [P_M T_z N]_2$. Similarly, (2) can be proved.

Theorem 3. Let M be a forward shift invariant subspace of H^2 and $N = H^2 \ominus M$. (1) If $M_1 \cap \ker T_z^* = \{0\}$ and $M_2 \cap \ker T_w^* = \{0\}$ then $r(BA) = \dim M_1 \cap M_2$. (2) $r(AB) = \dim N_1 \cap N_2$.

Proof. (1) By (1) and (2) of Lemma 1, $[ranA]_2 = [P_M T_z N]_2 \subseteq M_1$ and $[ranB^*]_2 = [P_M T_w N]_2 \subseteq M_2$. By Lemma 2, if $M_1 \cap \ker T_z^* = \{0\}$ then $[P_M T_z N]_2 = M_1$ and if $M_2 \cap \ker T_w^* = \{0\}$ then $[P_M T_w N]_2 = M_2$. Hence $r(BA) = \dim M_1 \cap M_2$ by Lemma 4.

(2) Since $[P_N T_z^* M]_2 = [P_N T_z^* M_1]_2 = N_1$ and $[P_N T_w^* M]_2 = [P_N T_w^* M_2] = N_2$, by Lemma 4 $r(AB) = \dim N_1 \cap N_2$.

In (1) of Theorem 3, we need the condition : $M_1 \cap \ker T_z^* = M_2 \cap \ker T_w^* = \{0\}$. In fact, $M_1 \cap M_2$ is always not trivial but BA may be zero.

References

- 1. A.Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math. 81(1949), 239-255.
- 2. P.Ghatage and V.Mandrekar, On Beurling type invariant subspaces of $L^2(\mathbf{T}^2)$ and their equivalence, J.Operator Theory, 20(1988), 31-38.
- 3. K.Guo and R.Yang, The core function of submodules over the bidisk, in preprint.
- 4. K.Izuchi and T.Nakazi, Backward shift invariant subspaces in the bidisc, Hokkaido Math.J.XXXV@(2004), 247-254.
- 5. K.Izuchi, T.Nakazi and M.Seto, Backward shift invariant subspaces in the bidisc U. J.Operator Th. 51(2004), 361-376.
- V.Mandrekar, The validity of Beurling theorems in polydiscs, Proc. Amer. Math.Soc. 103(1988), 145-148.
- 7. T.Nakazi, Certain invariant subspaces of H^2 and L^2 on a bidisc, Canad. J. Math. XL(1988), 1272-1280.
- 8. T.Nakazi, Invariant Subspaces in the bidisc and commutators, J. Austral. Math. Soc. 56(1994), 232-242.
- T.Nakazi, Homogeneous polynomials and invariant subspaces in the polydiscs, Arch. Math. 58(1992), 56-63.

Department of Mathematics Faculty of Science Hokkaido University Sapporo 060-0810, Japan