Folding maps on spacelike and timelike surfaces and duality

S. Izumiya, M. Takahashi and F. Tari

May 15, 2007

Abstract

We study the reflectional symmetry of a generically embedded 2-dimensional surface M in the hyperbolic or de Sitter 3-dimensional spaces. This symmetry is picked up by the singularities of folding maps that are defined and studied here. We also define the evolute and symmetry set of M and prove duality results that relate them to the bifurcation sets of the family of folding maps.

1 Introduction

The investigation in this paper is the analogue of that in [5, 28] for surfaces in the Euclidean space \mathbb{R}^3. In [5] is studied the reflectional symmetry of a smooth surface $M \subset \mathbb{R}^3$ in planes in \mathbb{R}^3. A surface M is reflectionally more symmetric across the planes with normals a principal direction at $p \in M$ than any other plane through p. This reflectional symmetry is studied via the family of folding maps, which is a 3-parameter family of mappings obtained by conjugating the fold map $(x, y, z) \rightarrow (x, y^2, z)$ by Euclidean motions ([2, 5]). The following result, with important geometric consequences, is shown in [5]: the bifurcation set of the family of folding maps is dual to the union of the focal and symmetry sets of M. The focal set and the symmetry set also arise as the bifurcation sets of the family of distance squared functions restricted...
to M. Recall that the distance squared function measures the contact of the surface with spheres, so the focal set is the centre of osculating spheres and the symmetry set is the centre of bi-tangent spheres to the surface. The duality result in [5] provides a powerful tool for studying the affine geometry of the focal set of M and in turn obtain geometric information about the surface M itself; see for example [3, 4, 5, 24, 25, 28] and [7, 8] for the plane curves case.

Here we consider a smooth surface M in the hyperbolic space $H^3_+(−1)$ or in the de Sitter space S^3_{1}. The hyperbolic and the de Sitter spaces sit in the Minkowski space \mathbb{R}^{4}_{1} endowed with the Laurentz pseudo scalar product $\langle x, y \rangle = −x_0 y_0 + x_1 y_1 + x_2 y_2 + x_3 y_3$, where $x = (x_0, x_1, x_2, x_3)$ and $y = (y_0, y_1, y_2, y_3)$. In section 3 we deal with surfaces in $H^3_+(−1)$. For such surfaces we define the family of folding maps, which is a 3-parameter family of mappings from $H^3_+(−1)$ to $H^3_+(−1)$ obtained by conjugating the fold map $(\sqrt{x_0^2 + x_1^2 + x_2^2 + 1}, x_1, x_2, x_3) \mapsto (\sqrt{x_0^2 + x_1^2 + x_2^2 + 1}, x_1, x_2, x_3)$ by hyperbolic motions (see Section 3 for details). The first analogous result to the Euclidean case is that the surface M is reflectionally more symmetric across the hyperplanes with normals a principal direction at $p \in M$ than any other hyperplane through p.

For the analogous duality result we require some ingredients for dealing with the extrinsic geometry of submanifolds in \mathbb{R}^{n+1}_{1}. The first is the duality concepts introduced by the first author in [9, 10], and the second is the concepts of evolute and symmetry set of surfaces in $H^3(−1)$. The concept of evolute is introduced in [17, 20] and the symmetry set is defined in this paper. With these ingredients at hand, we show that the bifurcation set of the family of folding maps is dual to the union of the evolute and symmetry set (Theorem 3.8). The evolute and symmetry set are the local and multi-local strata of the bifurcation set of the family of timelike and spacelike height functions. We draw geometric consequences about the geometry of M from the duality result.

We also deal in this paper with families of folding maps on spacelike and timelike surfaces in S^3_{1} and prove similar results to those for surfaces in the hyperbolic space (Sections 4 and 5). We need to define for these cases the notion of evolute and symmetry set. We do this following the same approach in [17, 20] using the timelike and spacelike height functions. We observe that timelike surfaces present distinct geometric properties to those of spacelike surfaces (see Section 5). This is due to the presence of two lightlike directions on each tangent space of the surface.

2 Preliminaries

The Minkowski $(n + 1)$-space $(\mathbb{R}^{n+1}_{1}, \langle , \rangle)$ is the $(n + 1)$-dimensional vector space \mathbb{R}^{n+1} endowed with the pseudo scalar product

$$\langle x, y \rangle = −x_0 y_0 + \sum_{i=1}^{n} x_i y_i,$$
for \(\mathbf{x} = (x_0, \ldots, x_n) \) and \(\mathbf{y} = (y_0, \ldots, y_n) \) in \(\mathbb{R}^{n+1}_1 \). We say that a vector \(\mathbf{x} \) in \(\mathbb{R}^{n+1}_1 \setminus \{0\} \) is

- **spacelike** if \(\langle \mathbf{x}, \mathbf{x} \rangle > 0 \),
- **lightlike** if \(\langle \mathbf{x}, \mathbf{x} \rangle = 0 \),
- **timelike** if \(\langle \mathbf{x}, \mathbf{x} \rangle < 0 \).

The norm of a vector \(\mathbf{x} \in \mathbb{R}^{n+1}_1 \) is defined by \(\|\mathbf{x}\| = \sqrt{|\langle \mathbf{x}, \mathbf{x} \rangle|} \). Given a vector \(\mathbf{v} \in \mathbb{R}^{n+1}_1 \) and a real number \(c \), the hyperplane with pseudo normal \(\mathbf{v} \) is defined by

\[
HP(\mathbf{v}, c) = \{ \mathbf{x} \in \mathbb{R}^{n+1}_1 \mid \langle \mathbf{x}, \mathbf{v} \rangle = c \}.
\]

We say that \(HP(\mathbf{v}, c) \) is a **spacelike**, **timelike** or **lightlike hyperplane** if \(\mathbf{v} \) is timelike, spacelike or lightlike respectively. We have the following three types of pseudo-spheres in \(\mathbb{R}^{n+1}_1 \):

- **Hyperbolic n-space**: \(\mathbb{H}^n_1 = \{ \mathbf{x} \in \mathbb{R}^{n+1}_1 \mid \langle \mathbf{x}, \mathbf{x} \rangle = -1 \} \),
- **de Sitter n-space**: \(S^n_1 = \{ \mathbf{x} \in \mathbb{R}^{n+1}_1 \mid \langle \mathbf{x}, \mathbf{x} \rangle = 1 \} \),
- **(open) lightcone**: \(\text{LC}^* = \{ \mathbf{x} \in \mathbb{R}^{n+1}_1 \setminus \{0\} \mid \langle \mathbf{x}, \mathbf{x} \rangle = 0 \} \).

The hyperbolic space has two connected components, \(\mathbb{H}^n_1 = \{ \mathbf{x} \in \mathbb{H}^n_1 \mid x_0 \geq 1 \} \) and \(\mathbb{H}^n_1 = \{ \mathbf{x} \in \mathbb{H}^n_1 \mid x_0 \leq -1 \} \). We only consider embedded surfaces in \(\mathbb{H}^n_1 \) as the study is similar for those embedded in \(S^n_1 \).

Given \(n \) vectors \(\mathbf{a}_1, \ldots, \mathbf{a}_n \in \mathbb{R}^{n+1}_1 \), we consider the wedge product \(\mathbf{a}_1 \wedge \cdots \wedge \mathbf{a}_n \) given by

\[
\mathbf{a}_1 \wedge \cdots \wedge \mathbf{a}_n = \begin{vmatrix}
-e_0 & e_1 & \cdots & e_n \\
-a_0^1 & a_1^1 & \cdots & a_n^1 \\
a_0^2 & a_1^2 & \cdots & a_n^2 \\
\vdots & \vdots & \ddots & \vdots \\
a_0^n & a_1^n & \cdots & a_n^n
\end{vmatrix},
\]

where \(\{e_0, e_1, \ldots, e_n\} \) is the canonical basis of \(\mathbb{R}^{n+1}_1 \) and \(\mathbf{a}_i = (a_0^i, a_1^i, \ldots, a_n^i) \), \(i = 1, \ldots, n \). One can check that

\[
\langle \mathbf{a}, \mathbf{a}_1 \wedge \cdots \wedge \mathbf{a}_n \rangle = \det(\mathbf{a}, \mathbf{a}_1, \ldots, \mathbf{a}_n),
\]

so the vector \(\mathbf{a}_1 \wedge \cdots \wedge \mathbf{a}_n \) is pseudo orthogonal to \(\mathbf{a}_i \), for all \(i = 1, \ldots, n \).

We require some properties of contact manifolds and Legendrian submanifolds for the duality results in this paper (for more details see for example [1]). Let \(N \) be a \((2n+1)\)-dimensional smooth manifold and \(K \) be a field of tangent hyperplanes on \(N \). Such a field is locally defined by a \(1 \)-form \(\alpha \). The tangent hyperplane field \(K \) is said to be **non-degenerate** if \(\alpha \wedge (d\alpha)^n \neq 0 \) at any point on \(N \). The pair \((N,K)\) is a **contact manifold** if \(K \) is a non-degenerate hyperplane field. In this case \(K \) is called a **contact structure** and \(\alpha \) a **contact form**.
A submanifold $i : L \subset N$ of a contact manifold (N, K) is said to be Legendrian if \(\dim L = n \) and \(d\pi_x(T_xL) \subset K_i(x) \) at any \(x \in L \). A smooth fibre bundle \(\pi : E \to M \) is called a Legendrian fibration if its total space \(E \) is furnished with a contact structure and the fibres of \(\pi \) are Legendrian submanifolds. Let \(\pi : E \to M \) be a Legendrian fibration. For a Legendrian submanifold \(i : L \subset E, \pi \circ i : L \to M \) is called a Legendrian map. The image of the Legendrian map \(\pi \circ i \) is called a wavefront set of \(i \) and is denoted by \(W(i) \).

In [9, 10, 20] are considered five double fibrations. We recall here only those that are needed in this paper (and keep the notation of [9, 10, 20]).

(1) \(H^n(-1) \times S^n_1 \supset \Delta_1 = \{(v, w) | \langle v, w \rangle = 0\}, \)
(2) \(\pi_{11} : \Delta_1 \to H^n(-1), \pi_{12} : \Delta_1 \to S^n_1, \)
(3) \(\theta_{11} = \langle dv, w \rangle|_{\Delta_1}, \theta_{12} = \langle v, dw \rangle|_{\Delta_1}. \)

(5) \(S^n_1 \times S^n_1 \supset \Delta_5 = \{(v, w) | \langle v, w \rangle = 0\}, \)
(6) \(\pi_{51} : \Delta_5 \to S^n_1, \pi_{52} : \Delta_5 \to S^n_1, \)
(7) \(\theta_{51} = \langle dv, w \rangle|_{\Delta_5}, \theta_{52} = \langle v, dw \rangle|_{\Delta_5}. \)

Here, \(\pi_{i1}(v, w) = v \) and \(\pi_{i2}(v, w) = w \) for \(i = 1, 5, \langle dv, w \rangle = -w_0dv_0 + \sum_{i=1}^{n} w_idv_i \) and \(\langle v, dw \rangle = -v_0dw_0 + \sum_{i=1}^{n} v_idw_i \). The 1-forms \(\theta^{-1}_{i1}(0) \) and \(\theta^{-1}_{i2}(0) \), \(i = 1, 5 \), define the same tangent hyperplane field over \(\Delta_i \) which is denoted by \(K_i \).

Theorem 2.1 ([9, 10, 20]) The pairs \((\Delta_i, K_i), i = 1, 5\), are contact manifolds and \(\pi_{i1} \) and \(\pi_{i2} \) are Legendrian fibrations.

Remark 2.2 (1) Given a Legendrian submanifold \(i : L \to \Delta_i, i = 1, 5 \), Theorem 2.1 states that \(\pi_{i1}(i(L)) \) is dual to \(\pi_{i2}(i(L)) \) and vice-versa. We shall call this duality \(\Delta_i \)-duality.

(2) If \(\pi_{i1}(i(L)) \) is smooth at a point \(\pi_{i1}(i(u)) \), then \(\pi_{i2}(i(u)) \) is the normal vector to the hypersurface \(\pi_{i1}(i(L)) \subset H^3_+(-1) \) at \(\pi_{i1}(i(u)) \). Conversely, if \(\pi_{i2}(i(L)) \) is smooth at a point \(\pi_{i2}(i(u)) \), then \(\pi_{i1}(i(u)) \) is the normal vector to the hypersurface \(\pi_{i2}(i(L)) \subset S^n_1 \). The same properties hold for the \(\Delta_5 \)-duality.

3 Surfaces in \(H^3_+(-1) \)

Spacelike surfaces are those with tangent space at any point containing only spacelike vectors. So any surface in the hyperbolic space \(H^3_+(-1) \) is a spacelike surface, but this is not the case for surfaces in \(S^3_1 \). An important observation for spacelike surfaces \(M \) in \(H^3_+(-1) \) and \(S^3_1 \) is that the restriction of the pseudo-scalar product in \(\mathbb{R}^4_1 \) to \(M \) is a scalar product, so the differential of the Gauss map can be represented by a symmetric matrix (more details below). We shall deal in details with surfaces in \(H^3_+(-1) \) and make some observations about spacelike surfaces in \(S^3_1 \) in §4 as their study is similar.
The extrinsic geometry of hypersurfaces in the hyperbolic space is studied in [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21]. Let M be an 2-dimensional manifold embedded in $H^3_+(−1)$. Given a local chart $i : U \to M$, where U is an open subset of \mathbb{R}^2, we denote by $x : U \to H^3_+(−1)$ such embedding and identify $x(U)$ with U through the embedding x and write $M = x(U)$.

Since $\langle x, x \rangle \equiv −1$, we have $\langle x_{u_i}, x \rangle \equiv 0$, for $i = 1, 2$, where $u = (u_1, u_2) \in U$ and $x_{u_i} = \partial x / \partial u_i$. We define the spacelike unit normal vector $e(u)$ to the surface at $x(u)$ by

$$e(u) = \frac{x(u) \wedge x_{u_1}(u) \wedge x_{u_2}(u)}{\|x(u) \wedge x_{u_1}(u) \wedge x_{u_2}(u)\|}.$$

It follows that the vectors $x \pm e$ are lightlike. Let

$$E : U \to S^3_1 \text{ and } L^\pm : U \to LC^*$$

be the maps defined by $E(u) = e(u)$ and $L^\pm(u) = x(u) \pm e(u)$. These are called, respectively, the de Sitter Gauss indicatrix and the lightcone Gauss indicatrix of M ([15]).

For any $p = x(u_0) \in M$ and $v \in T_pM$, one can show that $D_pE \in T_pM$, where D_p denotes the covariant derivative with respect to the tangent vector v. Since the derivative $dx(u_0)$ can be identified with the identity mapping 1_{T_pM} on the tangent space T_pM, we have $dL^\pm(u_0) = 1_{T_pM} \pm dE(u_0)$, under the identification of U and M via the embedding x.

The linear transformation $A_p = −dE(u_0)$, called the de Sitter shape operator, is a self-adjoint operator. Because the restriction of the pseudo-scalar product in \mathbb{R}^4_1 to M is a scalar product, A_p has an orthogonal basis formed by its eigenvectors (when its eigenvalues are distinct). Its eigenvalues κ_i, $i = 1, 2$, are called the (de Sitter) principal curvature and the corresponding eigenvectors p_i, $i = 1, 2$, are called the (de Sitter) principal directions. The linear transformation $S_p^\pm = −dL^\pm(u_0)$, labelled the lightcone shape operator of M at p, is also a self-adjoint operator. It has the same eigenvectors as A_p but its eigenvalues are distinct from those of A_p. In fact the eigenvalues $\bar{\kappa}_i^\pm$ of S_p^\pm satisfy $\bar{\kappa}_i^\pm = −1 \pm \kappa_i$, $i = 1, 2$. We say that a point $p = x(u_0) \in M$ is an umbilic point if $A_p = k(p)1_{T_pM}$. We also say that M is totally umbilic if all points of M are umbilic.

Definition 3.1 A surface given by the intersection of $H^3_+(−1)$ with a spacelike, timelike or lightlike hyperplane is called respectively sphere, equidistant surface or horosphere. The intersection of the surface with timelike hyperplane through the origin is called a plane.

Proposition 3.2 [6, 15, 17] Suppose that $M = x(U)$ is totally umbilic. Then $\kappa(p)$ is a constant κ for all $p \in M$. Under this condition, we have the following classification.

1. If $\kappa^2 > 1$, then M is a part of a sphere.
(2) If $\kappa^2 = 1$, then M is a part of a horosphere.
(3) If $\kappa^2 < 1$, then M is a part of an equidistant surface. In particular, if $\kappa = 0$, then M is a part of a plane.

3.1 Evolute and symmetry set

In [17] (see also [16] for the curves case) is introduced the notion of evolute (or focal surface) of a hypersurface in hyperbolic space. For a surface $x : U \to H^3_+(-1)$, the total evolute (evolute for short) of $x(U) = M$ is defined by

$$\text{TE}^\pm = \bigcup_{i=1}^{2} \left\{ \pm \frac{\kappa_i(u)}{\sqrt{|\kappa^2_i(u) - 1|}} \left(x(u) + \frac{1}{\kappa_i(u)} e(u) \right), \ u \in U \right\},$$

where κ_i, $i = 1, 2$, are the de Sitter principal curvature at $x(u)$. Observe that TE^- is the reflection of TE^+ with respect to the origin (so we have two copies of the total evolute). We assume here that $p = x(u)$ is not a horoparabolic point, that is, $\kappa^2_i(u) \neq 1$ for $i = 1, 2$ (this is equivalent to the lightcone principal curvature not vanishing at u).

The evolute has the following decomposition

$$\text{TE}^\pm = \text{HE}^\pm \cup \text{SE}^\pm,$$

where HE^\pm is the hyperbolic space component of the evolute and corresponds to points u where $\kappa^2_i(u) > 1$ and SE^\pm is the de Sitter component of the evolute and corresponds to points u where $\kappa^2_i(u) < 1$.

The evolute has some interesting geometric properties. Let

$$H^T : U \times H^3(-1) \to \mathbb{R}$$

denote the hyperbolic timelike height function given by $H^T(u, v) = \langle x(u), v \rangle$, and

$$H^S : U \times S^3_1 \to \mathbb{R}$$

denote the hyperbolic spacelike height function given by $H^S(u, v) = \langle x(u), v \rangle$. The function H^T measures the contact of the surface with spheres and H^S measures its contact with equidistant surfaces (see Definition 3.1). One can show that the evolute is the union of the local strata of the bifurcation sets $\text{LBif}(H^T)$ and $\text{LBif}(H^S)$ of the families H^T and H^S respectively ([17]). More precisely,

$$\text{LBif}(H^T) = \text{HE}^+ \cup \text{HE}^-,$$
$$\text{LBif}(H^S) = \text{SE}^+ \cup \text{SE}^-.$$

So the evolute parametrises the spheres or equidistant surfaces that have degenerate contact with M (i.e., parametrises the set of v for which $H^T_{\bar{v}} = H^T(\cdot, v)$ or $H^S_{\bar{v}} = H^S(\cdot, v)$).
$H^S(\cdot, v)$ has a singularity of type A_2 or worse). Observe that if u is a degenerate singularity of H^S_{p} (resp. H^S_{v}) then it is also a degenerate singularity of $H^T_{p,v}$ (resp. H^S_{v}). This is why we have two copies TE^+ and TE^- of the evolute. The evolute can also be characterised as a caustic, and therefore has generic Lagrangian singularities [17, 20].

We have the following observation needed for the duality result in this paper.

Proposition 3.3 Let q be a smooth point on the evolute associated to the principal curvature κ_i, $i = 1$ or 2. Then the normal to the evolute at q is along the principal direction p_i associated to κ_i.

Proof. Let $c^\pm_i : U \rightarrow H^3(-1) \cup S^3_1$, $i = 1, 2$, given by

$$c^\pm_i(u) = \pm \frac{\kappa_i(u)}{\sqrt{|\kappa_i^2(u)| - 1}} \left(x(u) + \frac{1}{\kappa_i(u)} e(u) \right),$$

be a local parametrisation of the evolute. Let p be the point on the surface corresponding to the point q on the evolute. As q is a smooth point on the evolute, the principal curvatures are distinct at p. We can then choose a local parametrisation $x : U \rightarrow H^3(-1)$ of the surface at p so that $u_i =$constant, $i = 1, 2$, represent the lines of curvatures. The part of the evolute that is associated to a given principal curvature κ_i is parametrised by $c^\pm_i(u) = \lambda(u)(x(u)+1/\kappa_i(u)e(u))$ where $\lambda(u) = \pm \kappa_i(u)/\sqrt{|\kappa_i^2(u)| - 1}$. We have $\langle c^\pm_i, p_i \rangle = 0$ as p_i is tangent to M. Because of the chosen parametrisation, we have $\langle x_{ui}, p_i \rangle = 0$ for $j \neq i$. Also $\langle e_{ui}, p_i \rangle = \langle de, x_{ui}, p_i \rangle = \langle -\kappa_i x_{ui}, p_i \rangle$ and $\langle e_{uj}, p_i \rangle = -\kappa_j \langle x_{uj}, p_i \rangle = 0$ for $j \neq i$. Therefore,

$$\left\langle \frac{\partial c^\pm_i}{\partial u_i}, p_i \right\rangle = \left\langle \lambda_{ui} \left(x + \frac{1}{\kappa_i} e \right) + \lambda \left(x_{ui} + \frac{1}{\kappa_i} e_{ui} + \left(\frac{\partial}{\partial u_i} \frac{1}{\kappa_i} \right) e \right), p_i \right\rangle = 0$$

and for $j \neq i$,

$$\left\langle \frac{\partial c^\pm_i}{\partial u_j}, p_i \right\rangle = \left\langle \lambda_{uj} \left(x + \frac{1}{\kappa_i} e \right) + \lambda \left(x_{uj} + \frac{1}{\kappa_i} e_{uj} + \left(\frac{\partial}{\partial u_j} \frac{1}{\kappa_i} \right) e \right), p_i \right\rangle = 0,$$

which proves the assertion. \[\Box \]

We consider now the multi-local strata of the bifurcation sets of the spacelike and timelike height functions. (This is analogous to the study of the multi-local stratum of the distance squared function on surfaces in the Euclidean space \mathbb{R}^3.)

Definition 3.4 The symmetry set of M, denoted by SS, is the closure of the set spheres in $H^3(-1)$ or equidistant surfaces in S^3_1 that are tangent to M in at least two distinct points. It is the union of the closure of the multi-local strata of the bifurcation sets of the spacelike and timelike family of height functions H^S and H^T.

7
We denote by \(SS^T\) (resp. \(SS^S\)) the component of the symmetry set related to the timelike (resp. spacelike) family of height function.

Proposition 3.5 (1) A point \(q \in H^3(-1) \cup S^3_1\) is on the SS of a surface \(M \subset H^3_+(-1)\) if and only if there exists two distinct points \(p_1\) and \(p_2\) on \(M\) such that the tangent planes \(T_{p_1}M\) and \(T_{p_2}M\) are symmetric with respect to the equidistant surface orthogonal to the geodesic joining \(p_1\) and \(p_2\) and passing through the midpoint of the segment \(p_1p_2\).

(2) Let \(q\) be a smooth point on the SS corresponding to the bi-tangency of a sphere (resp. equidistant surface) to the surface \(M\) at two points \(p_1\) and \(p_2\). Then the normal to the SS at \(q\) is the normal to the equidistant surface in (1).

Proof. (1) Let \(x_1 : U_1 \to M\) and \(x_2 : U_2 \to M\) be local coordinates on \(M\) around \(x_1(0,0) = p_1\) and \(x_2(0,0) = p_2\). By a hyperbolic motion, we can suppose that the equidistant surface orthogonal to the geodesic joining \(p_1\) and \(p_2\) and passing through the midpoint of the segment \(p_1p_2\) is given by \(x_2 = 0\). If \(v_0 = (0, 0, 1, 0)\), then \(p_2 = p_1 - 2 \langle p_1, v_0 \rangle v_0\).

The height function \(H^T_q\) (resp. \(H^S_q\)) has two singularities at \(p_1\) and \(p_2\) at the same level if and only if \(v = \lambda p_1 + \mu e_1 = \alpha p_2 + \beta e_2\) with \(-\lambda^2 + \mu^2 = -1\) and \(-\alpha^2 + \beta^2 = -1\) (resp. \(-\lambda^2 + \mu^2 = 1\) and \(-\alpha^2 + \beta^2 = 1\)) and \(\langle p_1, v \rangle = \langle p_2, v \rangle\). Here \(e_1\) and \(e_2\) are the normal vectors to the surface at \(p_1\) and \(p_2\) respectively. Since \(\langle p_i, p_i \rangle = -1\) and \(\langle p_i, e_i \rangle = 0\) for \(i = 1, 2\), it follows that

\[\langle p_1, v \rangle = -\lambda = \alpha \langle p_1, p_2 \rangle + \beta \langle p_1, e_2 \rangle.\] (1)

We have \(\langle p_1 - p_2, v \rangle = 0\). Therefore \(\alpha + \alpha \langle p_1, p_2 \rangle + \beta \langle p_1, e_2 \rangle = 0\), equivalently,

\[\alpha + \alpha \langle p_1, p_2 \rangle + \beta \langle p_1, e_2 \rangle = 0\] (2)

It follows from equations (1) and (2) that \(\lambda = \alpha\) and hence \(\mu = \pm \beta\). We can assume that \(\mu = \beta\) by changing the orientation of the surface at \(p_2\) if necessary (by taking \(-e_2\) as the normal vector at \(p_2\)). Now \(\lambda p_1 + \mu e_1 = \alpha p_2 + \beta e_2\), so \(e_1 - e_2\) is parallel to \(p_1 - p_2\), and hence is parallel to \(v_0\). This implies that \(e_2\) is symmetric to \(e_1\) with respect to the plane \(x_2 = 0\) and hence the normal plane \(N_{p_2}M\) (generated by \(p_2\) and \(e_2\)) is symmetric to the normal plane \(N_{p_1}M\) (generated by \(p_1\) and \(e_1\)) with respect to \(x_2 = 0\). Consequently, \(T_{p_2}M\) is symmetric to \(T_{p_1}M\) with respect to \(x_2 = 0\).

(2) We consider the setting in (1) and deal with the multi-local singularities of the timelike height function. The case of the spacelike height function follows in the same way. Consider the map \(\Phi^T : U_1 \times U_2 \times H^3_+(-1) \to \mathbb{R}^5\) given by

\[(u, v, w) \mapsto ((x_1(u), v) - (x_2(v), w), (x_{1u_1}(u), v), (x_{1u_2}(u), v), (x_2(v_1), v), (x_2(v_2), v))\]

with \(u = (u_1, u_2)\) and \(v = (v_1, v_2)\). Then \(SS^T = \pi_3((\Phi^T)^{-1}(0))\), where \(\pi_3\) is the canonical projection to the third component. To prove the statement it is enough to
show that $\langle v_0, d\nu \rangle = 0$ at q, where $v \in SS^T$. Since $(u, v, v) \in (\Phi^T)^{-1}(0)$, we have $\langle x_1(u) - x_2(v), v \rangle = 0$. By differentiating, we have $\langle x_1(u) - x_2(v), d\nu \rangle = 0$, and the assertion follows from the fact that $p_1 - p_2$ is parallel to v_0.

3.2 The folding family

We shall restrict our study to 2-dimensional surfaces in $H^3_+(-1)$. However, the construction of the family of folding maps we give here is valid in $H^3_+(-1), n \geq 3$, and for any embedded submanifold in $H^3_+(-1)$. For the surface case in $H^3_+(-1)$, the folding maps can be represented locally by a map-germ $(\mathbb{R}^2, 0) \to (\mathbb{R}^3, 0)$. The singularities of such mappings are well known (see for example [22]) and one can deduce interesting geometrical properties of the surface from the singularities of the folding maps.

In the Euclidean case, given a plane $P \subset \mathbb{R}^3$, the folding map in \mathbb{R}^3 with respect to P identifies points with the same distance to P. If we want to follow this construction for surfaces embedded in the hyperbolic space $H^3_+(-1)$, we need to identify points with the same distance to some “flat” object. Planes are surfaces with de Sitter principal curvatures vanishing at all points ([6, 17]) and horospheres are surfaces with lightcone principal curvatures vanishing at all points ([15]). As we are aiming to pick up the principal directions of the surface M and the fact that these are the same for the de Sitter and lightcone shape operators, it is enough to consider folding with respect to planes. We observe that a folding with respect to an equidistant surface can be brought, by a hyperbolic motion, to a folding with respect to a plane.

Following the construction in the Euclidean case, folding with respect to a plane in $H^3_+(-1)$ means taking two distinct points on the same geodesic that are at the same distance d from the plane and mapping them to the point on this geodesic that is at a distant d^2 to the plane. This maps is slightly messy to work with, and as we are only interested in its \mathcal{A}-singularities, where \mathcal{A} denotes the Mather left-right group, we shall construct an \mathcal{A}-equivalent map as follows. (This new map still sends symmetric points with respect to a fixed plane to the same image.)

The planes of interest above are timelike as they are normal to a geodesic which has a spacelike tangent vector. Consider folding with respect to the timelike hyperplane $x_2 = 0$. So we seek a fold map that identifies any two points (x_0, x_1, x_2, x_3) and $(x_0, x_1, -x_2, x_3)$ in $H^3_+(-1)$. As

$$H^3_+(-1) = \{(\sqrt{x_1^2 + x_2^2 + x_3^2 + 1}, x_1, x_2, x_3) \mid (x_1, x_2, x_3) \in \mathbb{R}^3\},$$

we define the folding map with respect to the timelike hyperplane $x_2 = 0$ as the map $f_1 : H^3_+(-1) \to H^3_+(-1)$

given by

$$f_1(\sqrt{x_1^2 + x_2^2 + x_3^2 + 1}, x_1, x_2, x_3) = (\sqrt{x_1^2 + x_2^4 + x_3^2 + 1}, x_1, x_2^2, x_3).$$
We now proceed as in [2, 5]. The timelike hyperplane $x_2 = 0$ is of course arbitrary. If we are interested in studying the reflectional symmetry of the surface M with respect to all timelike hyperplanes, we need to consider the family of folding maps parametrised by these hyperplanes. Let $SO_0(1, 3)$ denotes the positive Lorentz group. We define

\[\bar{F}: H^3_+(-1) \times SO_0(1, 3) \to H^3_+(-1) \]

by $\bar{F}(p, A) = (A^{-1} \circ f_1 \circ A)(p)$. This is a 6-parameter family of folding maps. However, there are some redundant parameters that can be eliminated by consider the quotient of $SO_0(1, 3)$ by the subgroup of H_2 preserving $x_2 = 0$ (i.e., $HP(e_2, 0)$). We then obtain a family

\[F: H^3_+(-1) \times SO_0(1, 3)/H_2 \to H^3_+(-1). \]

We shall now show that $SO_0(1, 3)/H_2 \simeq S^3_1$. We consider the action of $SO_0(1, 3)$ on S^3_1 defined by vA for any $(A, v) \in SO_0(1, 3) \times S^3_1$. It is well known that this action is transitive. Consider the two isotropic subgroups of $SO_0(1, 3)$ defined by

\[H_i = \{ A \in SO_0(1, 3) \mid e_i A = e_i \}, \quad i = 2, 3. \]

Let

\[P_{(3,4)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \in SO_0(1, 3) \]

so that $e_2 P_{(3,4)} = e_3$. One can show that if $A \in H_3$ then $P_{(3,4)} A P_{(3,4)}^{-1} \in H_2$, so that we have a diffeomorphism

\[\Psi: SO_0(1, 3)/H_3 \to SO_0(1, 3)/H_2 \]

between homogeneous spaces defined by $\Psi([A]) = \left[P_{(3,4)} A P_{(3,4)}^{-1}\right]$. Since

\[H_3 = \left\{ \begin{pmatrix} B & 0 \\ 0 & 1 \end{pmatrix} \mid B \in SO_0(1, 2) \right\}, \]

we have the canonical diffeomorphisms

\[SO_0(1, 3)/H_2 \simeq SO_0(1, 3)/SO_0(1, 2) \simeq S^3_1. \]

Therefore the family of folding maps F can be considered as a family

\[F: H^3_+(-1) \times S^3_1 \to H^3_+(-1). \]

Given an embedding $\varphi: M \to H^3_+(-1)$, we obtain a family

\[F\varphi: M \times S^3_1 \to H^3_+(-1) \]

by restriction. We have the following result.
Theorem 3.6 For a residual set of embeddings $\mathbf{x} : M \rightarrow H_3^3(-1)$, the family $F_{\mathbf{x}}$ is a generic family of mappings.

Proof. The map f_1 defined above is a fold map, so it is an A-stable map. Therefore, the corresponding 3-dimensional family F is an A-versal family of mappings in the sense of Montaldi [23]. The assertion follows now from Montaldi’s theorem in [23]. □

For a given $v \in S_3^1$ and a point $p_0 \in M$, one can choose local coordinates so that $F_{\mathbf{x}'}(p) = F_{\mathbf{x}}(p, v)$ can be considered locally as a map-germ $(\mathbb{R}^2, 0) \rightarrow (\mathbb{R}^3, 0)$. It follows from Theorem 3.6 that for generic embeddings of the surface, only singularities of A_e-codimension ≤ 3 can occur in the members of the family of folding maps (3 being the dimension of the parameters space S_3^1). So we have the following result.

Proposition 3.7 For a residual set of embeddings $\mathbf{x} : M \rightarrow H_3^3(-1)$, the folding maps $F_{\mathbf{x}'} : M \rightarrow H_3^3(-1)$ in the family $F_{\mathbf{x}}$ have local singularities A-equivalent to one in Table 1. Moreover, these singularities are versally unfolded by the family $F_{\mathbf{x}}$.

Table 1: A_e-codimension ≤ 3 singularities of map-germs $(\mathbb{R}^2, 0) \rightarrow (\mathbb{R}^3, 0)$ ([22]).

<table>
<thead>
<tr>
<th>Normal form</th>
<th>Name</th>
<th>A_e-codimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(x, y, 0)$</td>
<td>Immersion</td>
<td>0</td>
</tr>
<tr>
<td>(x, y^2, xy)</td>
<td>Cross-cap</td>
<td>0</td>
</tr>
<tr>
<td>$(x, y^2, x^2y \pm y^{2k+1}), k = 1, 2, 3$</td>
<td>B_k</td>
<td>k</td>
</tr>
<tr>
<td>$(x, y^2, y^3 \pm x^{k+1}y), k = 2, 3$</td>
<td>S_k</td>
<td>k</td>
</tr>
<tr>
<td>$(x, y^2, xy^3 \pm x^ky), k = 3$</td>
<td>C_k</td>
<td>k</td>
</tr>
</tbody>
</table>

It also follows from Theorem 3.6 that for a generic embedding $\mathbf{x} : M \rightarrow H_3^3(-1)$ and for v in an open and dense subset of S_3^1, the map $F_{\mathbf{x}'} : M \rightarrow H_3^3(-1)$ is stable, i.e., is locally an immersion, a cross-cap or a pair of transverse planes. The set of vectors $v \in S_3^1$ for which $F_{\mathbf{x}'}$ is not A-stable is the bifurcation set, $\text{Bif}(F_{\mathbf{x}})$, of $F_{\mathbf{x}}$. This set consists of vectors v for which $F_{\mathbf{x}'}$ has a singularity more degenerate than a cross-cap (generically one of the B_k, S_k, C_k in Proposition 3.7) or the image has a multi-local singularity of type self tangency or worse. We have the following duality result, analogous to the one in [5] for the Euclidean case, where duality here refers to Δ_1-duality when the evolute/symmetry set lies in the hyperbolic space and Δ_5-duality when it is in the de Sitter space (see Theorem 2.1 and Remark 2.2).

Theorem 3.8 The bifurcation set $\text{Bif}(F_{\mathbf{x}})$ of the family of folding maps on a surface $M \subset H_3^3(-1)$ is the dual of the evolute and the symmetry set of M. More precisely, the local stratum of the bifurcation set is the dual of the evolute and the multi-local stratum is the dual of the symmetry set.
Proof. We take the surface M, without loss of generality, in the hyperbolic Monge form (see [15])

$$x(u_1, u_2) = (\sqrt{g^2(u_1, u_2) + u_2^2 + u_2^2 + 1}, g(u_1, u_2), u_1, u_2)$$

at the origin, where g and its first derivatives vanishing at the origin. We write $j^2g(u_1, u_2) = a_{20}u_1^2 + a_{21}u_1u_2 + a_{22}u_2^2$. The restriction of the folding map f to M is given by

$$f_1(u_1, u_2) = (\sqrt{g^2(u_1, u_2) + u_1^4 + u_2^2 + 1}, g(u_1, u_2), u_1^2, u_2).$$

If we project to the tangent space of $H^3_+(-1)$ at $x(0, 0)$ (i.e., to the space $x_0 = 0$) we obtain a map-germ $(\mathbb{R}^2, 0) \rightarrow (\mathbb{R}^3, 0)$ which is \mathcal{A}-equivalent to f_1 and is given by

$$\tilde{f}_1(u_1, u_2) = (g(u_1, u_2), u_1^2, u_2).$$

This map-germ has a singularity of type cross-cap at the origin if and only if $a_{21} \neq 0$, if and only if the normal to the hyperplane $x_2 = 0$ is not along a principal direction. It follows then that the local component of the bifurcation set of F_x is the surface in S^3 traced by the (unit) principal directions of M. However, by Proposition 3.3, a principal direction is the normal to the evolute and by Theorem 2.1 (see also Remark 2.2), these normals trace the dual of the evolute. Here, duality refers to Δ_1-duality when the evolute lies in the hyperbolic space and Δ_5-duality when it is in the de Sitter space.

The duality for the multi-local stratum of the bifurcation set of the folding map follows from Proposition 3.5, Theorem 2.1 and Remark 2.2.

Since the family F_x is an \mathcal{A}-versal unfolding of each of its singularities, we can deduce the model (up-to diffeomorphism) of its bifurcation set $\text{Bif}(F_x)$, and hence of the dual of the evolute and symmetry set. The models for the local singularities are given in Figure 1.

We can deduce from Theorem 3.8 and from the results in [17] the following geometric characterisations of the singularities of the folding maps:

- B_1: general smooth point of evolute.
- S_2: de Sitter parabolic smooth point of the evolute.
- S_3: cusp of Gauss at smooth point of the evolute.
- B_2: general cusp point of the evolute.
- B_3: cusp point of the evolute in closure of de Sitter parabolic curve on SS.
- C_3: intersection point of cuspidal-edge and parabolic curve on the evolute.

Following [5, 28], we shall call the pre-image on M of the de Sitter parabolic set of the evolute the sub-parabolic curve of M. In the Euclidean case, the sub-parabolic curve is the locus of points where lines of curvature have geodesic inflections. It is also the locus of points where one principal curvature has an extremal value along lines of
Figure 1: Bifurcation sets (local strata in thin and multi-local strata in thick).

the other principal curvature [24]. We have a similar characterisation for surfaces in the hyperbolic space. Recall that the restriction of the pseudo scalar product to the hyperbolic space is a scalar product, so this space is a Riemannian manifold. For a parametrised surface M we define

$$E = \langle x_{u_1}, x_{u_1} \rangle, \quad F = \langle x_{u_1}, x_{u_2} \rangle, \quad G = \langle x_{u_2}, x_{u_2} \rangle$$

as the coefficients of the (de Sitter) first fundamental form and by

$$l = \langle A_p(x_{u_1}), x_{u_1} \rangle = \langle e, x_{u_1 u_1} \rangle, \quad m = \langle A_p(x_{u_1}), x_{u_2} \rangle = \langle e, x_{u_1 u_2} \rangle, \quad n = \langle A_p(x_{u_2}), x_{u_2} \rangle = \langle e, x_{u_2 u_2} \rangle$$

as the coefficients of the (de Sitter) second fundamental form. Then the lines of curvature (i.e., curves on M whose tangent at each point is a principal direction) are given, in the parameters space, by the usual equation

$$(Gm - Fn)du_2^2 + (Gl - Em)du_2 du_1 + (Fl - Em)du_1^2 = 0$$

(see for example [27]).

Proposition 3.9 The sub-parabolic curve of an embedded surface M in $H_+^3(-1)$ can be characterised as follows.

1. It is the locus of points where one principal curvature has an extremal value along lines of the other principal curvature.
2. It is the locus of points where the other lines of curvature have geodesic inflections.
Proof. (1) We take the surface in hyperbolic Monge form as in the proof of Theorem 3.8 and write \(j^3 g(u_1, u_2) = a_{20} u_1^2 + a_{22} u_2^2 + a_{30} u_1^3 + a_{31} u_1^2 u_2 + a_{32} u_1 u_2^2 + a_{33} u_2^3 \). Then folding along the hyperplane \(x_2 = 0 \) yields a singularity worse than a cross-cap. The folding map \(\tilde{j}_1(u_1, u_2) = (g(u_1, u_2), u_1, u_2) \) has an \(S_2 \)-singularity if and only if \(a_{32} = 0 \) (and \(a_{33} \neq 0 \)). A calculation shows that the 1-jet of the principal curvature associated to the other principal direction \((0, 0, 0, 1)\) at the origin (which is contained in the hyperplane \(x_2 = 0 \)) is given by \(j^3 \kappa_2 = 2a_{22} + 2a_{32} u_1 + 6a_{33} u_2 \). It has an extremal value along the line of principal curvature associated to \((0, 0, 1, 0)\) if and only if \(a_{32} = 0 \), which proves statement (1).

(2) Solving the equation of the lines of curvature with the hyperbolic Monge form setting above, we get the initial term of the line of curvature tangent to \((0, 1)\) in the parameter space. It is given by \((u_1(s), u_2(s)) = ((a_{32}/2(a_{20} - a_{22}))s^2 + \text{h.o.t, } s)\). The principal curve \(\mathbf{x}(u_1(s), u_2(s)) \) has a geodesic inflection at the origin if and only if \(a_{32} = 0 \), if and only if \(\mathbf{x}(0, 0) \) is a sub-parabolic point. \(\square \)

4 Spacelike surfaces in \(S^3_1 \)

The situation here is similar to that of surfaces in \(\mathbb{H}^3_+(-1) \). Let \(\mathbf{x} : U \to S^3_1 \) be a spacelike surface, where \(U \) is an open subset of \(\mathbb{R}^2 \). Then the normal unit vector at \(\mathbf{x}(u) \), given by

\[
\mathbf{e}(u) = \frac{\mathbf{x}(u) \wedge \mathbf{x}_{u_1}(u) \wedge \mathbf{x}_{u_2}(u)}{||\mathbf{x}(u) \wedge \mathbf{x}_{u_1}(u) \wedge \mathbf{x}_{u_2}(u)||},
\]

is timelike. The map

\[
\mathbb{E} : U \to \mathbb{H}^3_+(-1)
\]

defined by \(\mathbb{E}(u) = \mathbf{e}(u) \) is called the hyperbolic Gauss indicatrix of \(\mathbf{x}(U) = M \). One can show that for any \(p = \mathbf{x}(u_0) \in M \) and \(\mathbf{v} \in T_p M \), we have \(D\mathbf{v} \mathbf{e} \in T_p M \). So we have a linear transformation \(A_p = -d\mathbb{E} : T_p M \to T_p M \), called the hyperbolic shape operator of \(M \) at \(p \), which is a self-adjoint operator. Because the restriction of the pseudo-scalar product in \(\mathbb{R}^4_+ \) to \(M \) is a scalar product (\(M \) is spacelike), \(A_p \) has an orthogonal basis formed by its eigenvectors when its eigenvalues are distinct. Its eigenvalues \(\kappa_i, i = 1, 2 \), are called the hyperbolic principal curvature and the corresponding eigenvectors \(p_i, i = 1, 2 \), are called the hyperbolic principal directions. We say that a point \(p = \mathbf{x}(u_0) \in M \) is an umbilic point if \(A_p = k(p) id_{T_p M} \). We also say that \(M \) is totally umbilic if all points of \(M \) are umbilic.

Definition 4.1 A surface given by the intersection of \(S^3_1 \) and a spacelike hyperplane, a timelike hyperplane or a lightlike hyperplane is respectively called a hyperbolic, an elliptic or a parabolic de Sitter quadric. In particular, we call an elliptic (resp. hyperbolic) de Sitter quadric through the origin a flat elliptic (resp. hyperbolic) de Sitter quadric.
The following classification of totally umbilic spacelike surfaces in the de Sitter space follows in exactly the same way as that of surfaces in hyperbolic space.

Proposition 4.2 Suppose that $M = x(U)$ is a totally umbilic spacelike surface in S^3_1. Then $\kappa(p)$ is constant κ. Under this condition, we have the following classification.

1. If $\kappa^2 > 1$, then M is a part of a hyperbolic de Sitter quadric.
2. If $\kappa^2 = 1$, then M is a part of a parabolic de Sitter quadric.
3. If $\kappa^2 < 1$, then M is a part of an elliptic de Sitter quadric. In particular, if $\kappa = 0$, then M is a part of a flat elliptic de Sitter quadric.

We now introduce the notion of evolute of a spacelike surface in de Sitter space. For a spacelike surface $x : U \to S^3_1$, we define the total evolute of $x(U) = M$ by

$$TE^\pm_M = \bigcup_{i=1}^2 \left\{ \pm \frac{\kappa_i(u)}{\sqrt{|\kappa_i^2(u) - 1|}} \left(x(u) + \frac{1}{\kappa_i(u)} e(u) \right) \mid u \in U \right\},$$

where κ_i, $i = 1, 2$, are the de Sitter principal curvature at $x(u)$. We assume here that $\kappa_i^2(u) \neq 1$ for $i = 1, 2$. The total evolute has the following decomposition

$$TE^\pm = HE^\pm \cup SE^\pm,$$

where HE^\pm denotes the hyperbolic part of the total evolute and corresponds to point u where $\kappa_i^2(u) < 1$ and SE^\pm denotes the de Sitter part of the total evolute and corresponds to point u where $\kappa_i^2(u) > 1$.

The evolute has some interesting geometric properties. Let

$$H^T : U \times H^3(-1) \to \mathbb{R}$$

denote the de Sitter timelike height function given by $H^T(u, v) = \langle x(u), v \rangle$, and

$$H^S : U \times S^3_1 \to \mathbb{R}$$

denote the de Sitter spacelike height function given by $H^S(u, v) = \langle x(u), v \rangle$. The function H^T measures the contact of the surface with hyperbolic de Sitter quadrics and H^S measures its contact with elliptic de Sitter quadrics (see Definition 4.1). One can show that the evolute is the union of the local strata of the bifurcation sets $LBif(H^T)$ and $LBif(H^S)$ of the families H^T and H^S respectively. More precisely,

$$LBif(H^T) = HE^+ \cup HE^-,$$
$$LBif(H^S) = SE^+ \cup SE^-.$$

One can also characterise the hyperbolic and de Sitter evolute of a spacelike surface in the de Sitter space as a caustic in the framework of symplectic geometry and consider the geometric meaning of its singularities.
Proposition 4.3 The de Sitter timelike (resp. spacelike) height function $H^T : U \times H^3_2(1) \to \mathbb{R}$ (resp. $H^S : U \times S^3_1 \to \mathbb{R}$) on x is Morse family of functions.

See the Appendix for the proof and a corollary.

By the method for constructing the Lagrangian immersion germ from Morse family, we can define a Lagrangian immersion germs $L(H^T)$ and $L(H^S)$ whose generating families are the de Sitter timelike and spacelike height functions of $M = x(U)$ respectively. Therefore, we have the Lagrangian immersion $L(H^T)$ (resp. $L(H^S)$) whose caustic is the hyperbolic evolute (resp. de Sitter evolute) of $x(U)$.

We consider now the multi-local singularities of the spacelike and timelike height functions.

Definition 4.4 The symmetry set of M, denoted by SS, is defined to be the closure of the set of elliptic and hyperbolic de Sitter quadrics that are tangent to M in at least two distinct points. It is the union of the closure of the multi-local strata of the bifurcation sets of the spacelike and timelike height functions H^S and H^T respectively.

As the surface is spacelike, we have everywhere defined principal directions (away from umbilic points) and these are spacelike. So we are interested in measuring the reflectional symmetry of the surface with respect to timelike hyperplanes. We proceed as in §3 and start by considering folding with respect to the hyperplane $x_2 = 0$. For the de Sitter space, unlike for the hyperbolic space, one needs several charts to express it as the graph of a function. We start by defining the fold map using a global parametrisation.

Let $g(u, \theta, \phi) = (x_0, x_1, x_2, x_3)(u, \theta, \phi)$ be a parametrisation of the de Sitter space S^3_1 given by

\[
\begin{align*}
 x_0 &= u, \\
 x_1 &= \sqrt{1 + u^2} \cos \theta \sin \phi, \\
 x_2 &= \sqrt{1 + u^2} \cos \phi, \\
 x_3 &= \sqrt{1 + u^2} \sin \theta \sin \phi,
\end{align*}
\]

where $u \in \mathbb{R}$, $0 \leq \theta \leq 2\pi$ and $0 \leq \phi \leq \pi$. We define the folding map with respect to the hyperplane $x_2 = 0$ as the map $f_2 : S^3_1 \to S^3_1$ given

\[
f_2((x_0, x_1, x_2, x_3)(u, \theta, \phi)) = g(u, \theta, t(\phi))
\]

where

\[
t(\phi) = \frac{\pi}{2} - \frac{2}{\pi}(\phi - \frac{\pi}{2})^2.
\]

This is basically a folding map on each level sphere $x_0 =$ constant in S^3_1. We can then follow the same analysis in §3 and deduce the same duality result, where the evolute and symmetry set refer to the sets defined in this section. In practise, as we are
considering local or multi-local properties of the surface, we can choose a different folding map \(f_2 \) defined on a chart where \(S^3_1 \) is given as a graph of a function. For example, we can work with the local chart \(x_0 = \pm \sqrt{-1 + x_1^2 + x_2^2 + x_3^2} \), with \(x_0 \neq 0 \), and define the folding map as

\[
f_2(\pm \sqrt{-1 + x_1^2 + x_2^2 + x_3^2}, x_1, x_2, x_3) = (\pm \sqrt{-1 + x_1^2 + x_2^2 + x_3^2}, x_1, x_2, x_3) .
\]

5 Timelike surfaces in \(S^3_1 \)

Some aspect of the extrinsic differential geometry of timelike hypersurfaces in \(S^3_1 \) from the viewpoint of singularity theory are studied in [9]. The tangent space at each point on a timelike surface in \(S^3_1 \) is timelike, so it contains two lightlike directions. This makes such surfaces behave in a distinct way to the spacelike ones.

Let \(\mathbf{x} : U \rightarrow S^3_1 \) denote an embedding of a timelike surface, where \(U \) is an open subset of \(\mathbb{R}^2 \). For any \(u \in U \), we have \(\langle \mathbf{x}(u), \mathbf{x}(u) \rangle = 1 \), so \(\langle \mathbf{x}_{u_1}(u), \mathbf{x}(u) \rangle = 0 \), \(i = 1, 2 \). We also have a unit normal vector \(\mathbf{e}(u) \) to the surface at \(p = \mathbf{x}(u) \) given by

\[
\mathbf{e}(u) = \frac{\mathbf{x}(u) \wedge \mathbf{x}_{u_1}(u) \wedge \mathbf{x}_{u_2}(u)}{\|\mathbf{x}(u) \wedge \mathbf{x}_{u_1}(u) \wedge \mathbf{x}_{u_2}(u)\|}.
\]

The vector \(\mathbf{e}(u) \) is spacelike. We can define in the de Sitter Gauss map \(\mathbb{E} : U \rightarrow S^3_1 \), by \(\mathbb{E}(u) = \mathbf{e}(u) \). One can show that for any \(p = \mathbf{x}(u_0) \in M \) and \(\mathbf{v} \in T_pM \), we have \(D\mathbb{E} \mathbf{v} \in T_pM \). So we have a linear transformation \(A_p = -d\mathbb{E} : T_pM \rightarrow T_pM \), which is a self-adjoint operator. Because the restriction of the pseudo-scalar product in \(\mathbb{R}^4_1 \) to \(M \) is still a pseudo-scalar product (\(M \) is timelike), \(A_p \) does not always have real eigenvalues. When \(A_p \) has two distinct eigenvalues \(\kappa_i, i = 1, 2 \), we call them the principal curvature of the surface at \(p \), and the corresponding eigenvectors \(\mathbf{p}_i, i = 1, 2 \), are called the principal directions. The set of points where the eigenvalues coincide is of interest and is labelled the lightlike principal locus.

Proposition 5.1 (1) For a generic timelike surface \(M \) in the de Sitter space, the lightlike principal locus is a smooth curve on \(M \). It can be characterised as the set of points on \(M \) where the two principal directions coincide and become a lightlike direction.

(2) The lightlike principal locus divides the surfaces into two regions. In one of them there are no principal directions and in the other there are two distinct principal directions at each point. In the later case, the principal directions are orthogonal and one is spacelike while the other is timelike.

Proof. (1) The computations here are similar to the case of scalar product. Denote by

\[
E = \langle \mathbf{x}_{u_1}, \mathbf{x}_{u_1} \rangle, \quad F = \langle \mathbf{x}_{u_1}, \mathbf{x}_{u_2} \rangle, \quad G = \langle \mathbf{x}_{u_2}, \mathbf{x}_{u_2} \rangle
\]
the coefficients of the (pseudo) first fundamental form and by

\[l = \langle A_p(x_{u_1}), x_{u_1} \rangle = \langle e, x_{u_1 u_1} \rangle, \]
\[n = \langle A_p(x_{u_1}), x_{u_2} \rangle = \langle e, x_{u_1 u_2} \rangle, \]
\[m = \langle A_p(x_{u_2}), x_{u_2} \rangle = \langle e, x_{u_2 u_2} \rangle. \]

those of the (pseudo) second fundamental form. Then the matrix of \(A_p \) with respect to the basis \(\{ x_{u_1}, x_{u_2} \} \) is given by the usual formula

\[\frac{1}{EG - F^2} \begin{pmatrix} l & m \\ m & n \end{pmatrix} \begin{pmatrix} G & -F \\ -F & E \end{pmatrix}. \]

It follows that the equation of the principal direction is also given by the usual formula

\[(Gm - Fn)du_2^2 + (Gl - En)du_1 du_2 + (Fl - Em)du_1^2 = 0,\]
equivalently by,

\[\begin{vmatrix} du_2^2 & -du_1 du_2 & du_1^2 \\ E & F & G \\ l & m & n \end{vmatrix} = 0. \]

The discriminant of the above quadratic differential equation is

\[\delta(u_1, u_2) = ((Gl - En)^2 - 4(Gm - Fn)(Fl - Em)) (u_1, u_2). \]

The set \(\delta^{-1}(0) \) (the lightlike principal locus) is either empty or form a smooth curve on generic surfaces \(M \). (Recall that on generic two dimensional Riemannian surfaces, the set \(\delta^{-1}(0) \) consists of isolated umbilic points; see for example [27].)

A principal direction \(p = du_1 x_{u_1} + du_2 x_{u_2} \) in \(T_p M \) is lightlike if and only if

\[\langle p, p \rangle = Gdu_2^2 + 2Fdu_1 du_2 + Edu_1^2 = 0. \]

The resultant of this equation with that of the principal directions is

\[(EG - F^2)^2 \left((Gl - En)^2 - 4(Gm - Fn)(Fl - Em) \right). \]

As \(EG - F^2 \neq 0 \), it follows that a principal direction is lightlike at a point \(p \) if and only if \(p \) is on the lightlike principal locus.

(2) In the region \(\delta > 0 \) the equation of the principal directions has two distinct solutions. It has no solutions in the region where \(\delta < 0 \). The two principal directions at points in the region where \(\delta > 0 \) are orthogonal (this follows from the fact that \(\kappa_1 \langle p_1, p_2 \rangle = \langle A_p(p_1), p_2 \rangle = \langle p_1, A_p(p_2) \rangle = \kappa_2 \langle p_1, p_2 \rangle \), and \(\kappa_1 \neq \kappa_2 \)). As neither of them are lightlike, one has to be timelike and the other spacelike (see for example Theorem 3.1.4 in [26]).

\[\square \]
5.1 Evolute and symmetry set

We define the de Sitter evolute of a parametrised timelike surface \(\mathbf{x} : U \to S^3_1 \) to be the set

\[
SE^\pm_M = \bigcup_{i=1}^{2} \left\{ \pm \frac{\kappa_i(u)}{\sqrt{\kappa_i^2(u) + 1}} (\mathbf{x}(u) + \frac{1}{\kappa_i(u)} e(u)), \ u \in U \right\},
\]

where \(\kappa_i(u), \ i = 1, 2 \) are the principal curvature at \(\mathbf{x}(u) \).

The evolute is related to the family of spacelike height functions \(H^S : U \times S^3 \to \mathbb{R} \) given by

\[
H^S(u, v) = \langle \mathbf{x}(u), v \rangle.
\]

The function \(H^S \) measures the contact of the surface with elliptic de Sitter quadrics (see Definition 4.1). Let \(H^S_0(u) = H^S(u, v) \). One can easily show the following.

Proposition 5.2 The spacelike height function \(H^S_0 \) is singular at \(u \) if and only if there exist real numbers \(\lambda, \mu \) such that \(v = \lambda \mathbf{x}(u) + \mu e(u) \) and \(\lambda^2 + \mu^2 = 1 \).

By Proposition 5.2, the discriminant (or catastrophe set) of \(H^S \) is given by

\[
C(H^S) = \left\{ (u, v) \in U \times S^3_1 \left| v = \lambda \mathbf{x}(u) + \mu e(u), \lambda^2 + \mu^2 = 1 \right. \right\}.
\]

We also have

\[
\frac{\partial^2 H^S}{\partial u_i \partial u_j} (u, v) = \langle \mathbf{x}_{u_i u_j}(u), v \rangle = -\lambda g_{ij} + \mu h_{ij}
\]

on \(C(H^S) \), where \(g_{11} = E, g_{12} = g_{21} = F \) and \(g_{22} = G \). If \(\mu = 0 \), then \(v = \pm \mathbf{x} \) and \(\det (\mathcal{H}(H^S_0)(u)) = \det (g_{ij}) \neq 0 \), where \(\mathcal{H} \) denotes the Hessian of \(H^S_0 \). So, \(\det (\mathcal{H}(H^S_0)(u)) = 0 \) if and only if \(\lambda/\mu \) is a principal curvature. It follows that the local bifurcation set, \(LBif(H^S) \), of the family of the spacelike height functions is the evolute of \(M \), that is, \(LBif(H^S) = SE^+_M \cup SE^-_M \).

Remark 5.3 There is no hyperbolic component of the evolute of a timelike surface \(\mathbf{x} : U \to S^3_1 \). The timelike height function \(H^T : U \times S^3_1 \to \mathbb{R} \) is not singular at any point on \(\mathbf{x}(U) \). The reason being that any hyperbolic de Sitter quadric (whose tangent spaces are spacelike) is always transverse to a timelike surface.

The evolute of a timelike surface in \(S^3_1 \) can be interpreted as a caustic in the framework of symplectic geometry (see [1] for details). We have the following assertion whose proof is similar to that of Proposition 4.3 and is omitted.

Proposition 5.4 The de Sitter spacelike height function \(H^S : U \times S^3 \to \mathbb{R} \) on \(\mathbf{x} \) is a Morse family of functions.
For the duality result in this section, we require the normal to the evolute.

Proposition 5.5 Let \(q \) be a smooth point on the de Sitter evolute of a timelike surface \(M \subset S^3_1 \) associated to a point \(p \in M \) not on the lightlike principal locus of \(M \). Then the normal to the evolute at \(q \) is along the principal direction \(p_i \) (\(i = 1 \) or \(2 \)), associated to the principal curvature \(\kappa_i \) defining \(q \).

The proof is similar to that of Proposition 3.3 and is omitted.

We consider now the multi-local singularities of the spacelike height function.

Definition 5.6 The symmetry set of \(M \), denoted by \(SS \), is defined to be the closure of the set of elliptic de Sitter quadrics that are tangent to \(M \) in at least two distinct points. It is the closure of the multi-local stratum of the bifurcation set of the spacelike height function \(H^S \).

We have the following result analogous to Proposition 3.5.

Proposition 5.7

1. A point \(q \in S^3_1 \) is on the SS of a timelike surface \(M \subset S^3_1 \) if and only if there exists two distinct points \(p_1 \) and \(p_2 \) on \(M \) such that the tangent planes \(T_{p_1}M \) and \(T_{p_2}M \) are symmetric with respect to the sphere orthogonal to the geodesic joining \(p_1 \) and \(p_2 \) and passing through the midpoint of the segment \(p_1p_2 \).

2. Let \(q \) be a smooth point on the SS corresponding to the bi-tangency of an elliptic de Sitter quadric to the surface \(M \) at two points \(p_1 \) and \(p_2 \). Then the normal to the SS at \(q \) is the normal to the sphere in (1).

Proof. The proof is similar to that of Proposition 3.5. We consider, by Lorentz motion, the sphere to be the intersection of the spacelike hyperplane \(x_0 = 0 \) with \(S^3_1 \) and follow the same steps in the proof of Proposition 3.5. \(\Box \)

5.2 The folding family

The folding maps measure the reflectional symmetry of a surface with respect to hyperplanes. We have seen in the case of spacelike surfaces that the hyperplanes of interest are those whose normals are principal directions. In the case of timelike surfaces, when the principal directions exist, one is timelike and the other is spacelike (Proposition 5.1). So we need to consider two families of folding maps. One is with respect to timelike hyperplanes. This family is the same as that considered in §4. The duality result in §3 is valid here too (away from the lightlike principal locus), with duality meaning \(\Delta_5 \)-duality only (recall the there is no hyperbolic component of the evolute of a timelike surface in \(S^3_1 \)). The second family, which we construct below, is the family of folding maps with respect to spacelike hyperplanes. We proceed as in
§3 and §4. Given the parametrisation \(g(u, \theta, \phi) \) of \(S^3_1 \) in §4, we define the folding map with respect to the spacelike hyperplane \(x_0 = 0 \) as the map \(f_3 : S^3_1 \to S^3_1 \) given

\[
f_3((x_0, x_1, x_2, x_3)(u, \theta, \phi)) = g(u^2, \theta, \phi).
\]

In a local chart, say \(x_1 = \pm \sqrt{1 + x_0^2 - x_2^2 - x_3^2} \), with \(x_1 \neq 0 \), the above folding has the following expression

\[
f_3(x_0, \pm \sqrt{1 + x_0^2 - x_2^2 - x_3^2}, x_2, x_3) = (x_0^2, \pm \sqrt{1 + x_0^2 - x_2^2 - x_3^2}, x_2, x_3).
\]

We now proceed as in §3. The spacelike hyperplane \(x_0 = 0 \) is of course arbitrary. If we are interested in studying the reflectional symmetry of the surface \(M \) with respect to all spacelike hyperplanes, we need to consider the family of folding maps parametrised by these hyperplanes. So we define

\[
\bar{G} : S^3_1 \times SO_0(1, 3) \to S^3_1
\]

by \(\bar{G}(p, A) = (A^{-1} \circ f_3 \circ A)(p) \). This is a 6-parameter family of folding maps. However, there are some redundant parameters and we need to consider the quotient of \(SO_0(1, 3) \) by the subgroup of Lorentz motions that preserve \(x_0 = 0 \) (that is, \(HP(e_0, 0) \)).

We consider the action of \(SO_0(1, 3) \) on \(H^3_+(-1) \) defined by \(\nu A \) for any \((A, \nu) \in SO_0(1, 3) \times H^3_+(-1)\). It is well known that this action is transitive. Let

\[
H_0 = \{ A \in SO_0(1, 3) \mid e_0 A = e_0 \}
\]

be an isotropic subgroup of \(SO_0(1, 3) \). Since

\[
H_0 = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & B \end{pmatrix} \mid B \in SO(3) \right\},
\]

we have the canonical diffeomorphisms

\[
SO_0(1, 3)/H_0 \cong SO_0(1, 3)/SO(3) \cong H^3_+(-1).
\]

Therefore the map \(\bar{G} \) gives rise to a 3-parameter family of folding maps

\[
G : S^3_1 \times H^3_+(-1) \to S^3_1.
\]

Given an timelike embedding \(\mathbf{x} : M \to S^3_1 \), we obtain a family

\[
G_{\mathbf{x}} : M \times H^3_+(-1) \to S^3_1
\]

by restriction. We obtain the following results following the same arguments in §3.

Theorem 5.8 For a residual set of timelike embeddings \(\mathbf{x} : M \to S^3_1 \), the family \(G_{\mathbf{x}} \) is a generic family of mappings.
Proposition 5.9 For a residual set of timelike embeddings \(x : M \rightarrow S^3_1 \), the folding maps in the family \(G_x \) have local singularities \(\mathcal{A} \)-equivalent to one in Table 1.

We consider now the map \(G'_x : M \setminus L \rightarrow S^3_1 \), where \(L \) denotes the lightlike principal locus.

Theorem 5.10 The bifurcation set \(\text{Bif}(G'_x) \) of the folding map on \(M \setminus L \) is the \(\Delta_1 \)-dual of the de Sitter evolute and the symmetry set of \(M \setminus L \). More precisely, the local stratum of the bifurcation set is the \(\Delta_1 \)-dual of the de Sitter evolute and the multi-local stratum is the \(\Delta_1 \)-dual of the symmetry set.

Proof. The proof is similar to that of Theorem 3.8 and follows from Propositions 5.5 and 5.7. \(\square \)

6 Appendix: Proof of Proposition 5.4

Proof. Any \(v = (v_0, v_1, v_2, v_3) \in S^3_1 \), satisfies \(-v_0^2 + v_1^2 + v_2^2 + v_3^2 = 1 \). We can assume, without loss of the generality, that \(v_3 \neq 0 \). Then \(v_3 = \pm \sqrt{1 + v_0^2 - v_1^2 - v_2^2} \), and

\[
H^S(u, v) = -x_0(u)v_0 + x_1(u)v_1 + x_2(u)v_2 \pm x_3(u)\sqrt{1 + v_0^2 - v_1^2 - v_2^2}.
\]

We prove that the mapping

\[
\Delta H^S = \left(\frac{\partial H^S}{\partial u_1}, \frac{\partial H^S}{\partial u_2} \right)
\]

is non-singular at \((u_1, u_2, v) \in C(H^S)\). The Jacobian matrix of \(\Delta H^S \) is given by

\[
\begin{pmatrix}
\langle x_{u_1u_1}, v \rangle & \langle x_{u_1u_2}, v \rangle \\
\langle x_{u_2u_1}, v \rangle & \langle x_{u_2u_2}, v \rangle
\end{pmatrix} = \begin{pmatrix}
-x_0u_1 + x_3u_1 & x_1u_1 - x_3u_1 & x_2u_1 - x_3u_1 & v_0 \\
-v_0u_1 + x_3u_1 & x_1u_1 - x_3u_1 & x_2u_1 - x_3u_1 & v_1 \\
-x_0u_2 + x_3u_2 & x_1u_2 - x_3u_2 & x_2u_2 - x_3u_2 & v_3 \\
-v_0u_2 + x_3u_2 & x_1u_2 - x_3u_2 & x_2u_2 - x_3u_2 & v_3
\end{pmatrix}.
\]

Since \((u_1, u_2, v) \in C(H^S)\), we have \(v = \lambda x(u) + \mu e(u) \), for some \(\lambda \) and \(\mu \) with \(\lambda^2 + \mu^2 = 1 \). If \(\mu = 0 \), the Jacobian matrix of \(\Delta H^S \) is of full rank as \(\det (g_{ij}) \neq 0 \).

Now suppose that \(\mu \neq 0 \). We show that the rank of the matrix

\[
X = \begin{pmatrix}
-x_0u_1 + x_3u_1 & x_1u_1 - x_3u_1 & x_2u_1 - x_3u_1 & v_0 \\
-x_0u_2 + x_3u_2 & x_1u_2 - x_3u_2 & x_2u_2 - x_3u_2 & v_3
\end{pmatrix}
\]

is 2.
is 2 at \((u, v) \in C(H^S)\). For this, it is enough to show that the rank of the matrix

\[
A = \begin{pmatrix}
-x_0 + x_3 v_0 & x_1 - x_3 v_1 & x_2 - x_3 v_2 \\
-x_{0u_1} + x_{3u_1} v_0 & x_{1u_1} - x_{3u_1} v_1 & x_{2u_1} - x_{3u_1} v_2 \\
-x_{0u_2} + x_{3u_2} v_0 & x_{1u_2} - x_{3u_2} v_1 & x_{2u_2} - x_{3u_2} v_2 \\
\end{pmatrix}
\]

is 3 at \((u, v) \in C(H^S)\). Let \(a_i = \begin{pmatrix} x_i \\ x_{iu_1} \\ x_{iu_2} \end{pmatrix}\) for \(i = 0, \ldots, 3\). Then

\[
A = \left(-a_0 + a_3 v_0, a_1 - a_3 v_1, a_2 - a_3 v_2 \right),
\]

and hence

\[
\det A = \frac{v_0}{v_3} \det(a_1, a_2, a_3) - \frac{v_1}{v_3} \det(a_0, a_2, a_3) + \frac{v_2}{v_3} \det(a_0, a_1, a_3) + \frac{v_3}{v_3} \det(a_1, a_2, a_3)
\]

\[
= \frac{1}{v_3} \langle (v_0, v_1, v_2, v_3), x \wedge x_{u_1} \wedge x_{u_2} \rangle
\]

\[
= \frac{1}{v_3} \lambda \| x \wedge x_{u_1} \wedge x_{u_2} \| e
\]

\[
= \frac{\mu}{v_3} \| x \wedge x_{u_1} \wedge x_{u_2} \| \neq 0
\]

for \((u, v) \in C(H^S)\). This completes the proof.

Following the method in [1] for constructing Lagrangian immersion germs from Morse families, we can define a Lagrangian immersion germ whose generating family is the spacialike height function of \(M\) as follows. We consider the local charts \(U_i = \{ v = (v_0, \ldots, v_3) \in S^3_1 \mid v_i \neq 0 \} \) of \(S^3_1\). Since \(T^*S^3_1|U_i\) is a trivial bundle, we define the maps

\[
L_i(H^S) : C(H^S) \rightarrow T^*S^3_1|U_i, \ i = 1, 2, 3,
\]

by

\[
L_i(H^S)(u, v) = (v, -x_0(u) + x_i(u) \frac{v_0}{v_i}, x_1(u) - x_i(u) \frac{v_1}{v_i}, x_1(u) - x_i(u) \frac{v_1}{v_i}, x_3(u) - x_i(u) \frac{v_3}{v_i})
\]

where \(v = (v_0, \ldots, v_3) \in S^3_1\) and \((x_0, \ldots, \hat{x_i}, \ldots, x_3)\) indicates that the \(i\)-th component \(x_i\) is removed.

One can show that if \(U_i \cap U_j \neq \emptyset\) for \(i \neq j\), then \(L_i(H^S)\) and \(L_j(H^S)\) are Lagrangian equivalent. (The equivalence is given by the local coordinate change of \(S^3_1\) and its Lagrangian lift.) Therefore we can define a global Lagrangian immersion \(L(H^S) : C(H^S) \rightarrow T^*S^3_1\).
Corollary 6.1 Under the above notation, \(L(H^S) \) is a Lagrangian immersion and the \(\text{de Sitter spacelike height function} \) \(H^S : U \times S^3_1 \rightarrow \mathbb{R} \) is its generating family.

A consequence of Corollary 6.1 is that the evolute of \(M = \mathbf{x}(U) \) is the caustic of the Lagrangian immersion \(L(H^S) \). In particular, the evolute of a generic surface has generic Lagrangian singularities ([1]).

Acknowledgements. Work on this paper was initiated during the visit of the first two authors to Durham University. The visit of the first author was supported by the EPSRC Maths Small Grant EP/E000851, while the second author held a Durham University Grey College Fellowship. We would like to thank EPSRC and Grey College for their support.

References

S. Izumiya, Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan

e-mail: izumiya@math.sci.hokudai.ac.jp

M. Takahashi, Mathematical Science, Common Subject Division, Muroran Institute of Technology, Muroran 050-8585, Japan

e-mail: masatomo@mmm.muroran-it.ac.jp

F. Tari, Department of Mathematical Sciences, Durham University, Science Laboratories, South Road, Durham DH1 3LE, UK

e-mail: farid.tari@durham.ac.uk