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Folding maps on spacelike and timelike

surfaces and duality

S. Izumiya∗, M. Takahashi†and F. Tari

May 15, 2007

Abstract

We study the reflectional symmetry of a generically embedded 2-dimensional
surface M in the hyperbolic or de Sitter 3-dimensional spaces. This symmetry is
picked up by the singularities of folding maps that are defined and studied here.
We also define the evolute and symmetry set of M and prove duality results
that relate them to the bifurcation sets of the family of folding maps.

1 Introduction

The investigation in this paper is the analogue of that in [5, 28] for surfaces in the
Euclidean space R3. In [5] is studied the reflectional symmetry of a smooth surface
M ⊂ R3 in planes in R3. A surface M is reflectionally more symmetric across the
planes with normals a principal direction at p ∈ M than any other plane through
p. This reflectional symmetry is studied via the family of folding maps, which is
a 3-parameter family of mappings obtained by conjugating the fold map (x, y, z) →
(x, y2, z) by Euclidean motions ([2, 5]). The following result, with important geometric
consequences, is shown in [5]: the bifurcation set of the family of folding maps is dual
to the union of the focal and symmetry sets of M . The focal set and the symmetry set
also arise as the bifurcation sets of the family of distance squared functions restricted
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†Partially supported by Grant-in-Aid for formation of COE “Mathematics of Nonlinear Structure
via Singularities” and Grants-in-Aid for Scientific Research No. 18840001.

2000 Mathematics Subject Classification. 53A35, 58C30, 57R45.
Key Words and Phrases. Bifurcation sets, duality, evolute, folding maps, height functions, hy-

perbolic space, de Sitter space, singularities, symmetry set.

1



to M . Recall that the distance squared function measures the contact of the surface
with spheres, so the focal set is the centre of osculating spheres and the symmetry set
is the centre of bi-tangent spheres to the surface. The duality result in [5] provides a
powerfull tool for studying the affine geometry of the focal set of M and in turn obtain
geometric information about the surface M itself; see for example [3, 4, 5, 24, 25, 28]
and [7, 8] for the plane curves case.

Here we consider a smooth surface M in the hyperbolic space H3
+(−1) or in the de

Sitter space S3
1 . The hyperbolic and the de Sitter spaces sit in the Minkowski space R4

1

endowed with the Laurentz pseudo scalar product 〈x, y〉 = −x0y0 +x1y1 +x2y2 +x3y3,
where x = (x0, x1, x2, x3) and y = (y0, y1, y2, y3). In section 3 we deal with surfaces
in H3

+(−1). For such surfaces we define the family of folding maps, which is a 3-
parameter family of mappings from H3

+(−1) to H3
+(−1) obtained by conjugating the

fold map (
√

x2
0 + x2

1 + x2
2 + 1, x1, x2, x3) 7→ (

√

x2
0 + x4

1 + x2
2 + 1, x1, x

2
2, x3) by hyper-

bolic motions (see Section 3 for details). The first analogous result to the Euclidean
case is that the surface M is reflectionally more symmetric across the hyperplanes
with normals a principal direction at p ∈ M than any other hyperplane through p.
For the analogous duality result we require some ingredients for dealing with the ex-
trinsic geometry of submanifolds in R

n+1
1 . The first is the duality concepts introduced

by the first author in [9, 10], and the second is the concepts of evolute and symmetry
set of surfaces in H3(−1). The concept of evolute is introduced in [17, 20] and the
symmetry set is defined in this paper. With these ingredients at hand, we show that
the bifurcation set of the family of folding maps is dual to the union of the evolute
and symmetry set (Theorem 3.8). The evolute and symmetry set are the local and
multi-local strata of the bifurcation set of the family of timelike and spacelike height
functions. We draw geometric consequences about the geometry of M from the duality
result.

We also deal in this paper with families of folding maps on spacelike and timelike
surfaces in S3

1 and prove similar results to those for surfaces in the hyperbolic space
(Sections 4 and 5). We need to define for theses cases the notion of evolute and
symmetry set. We do this following the same approach in [17, 20] using the timelike
and spacelike height functions. We observe that timelike surfaces present distinct
geometric properties to those of spacelike surfaces (see Section 5). This is due to the
presence of two lightlike directions on each tangent space of the surface.

2 Preliminaries

The Minkowski (n + 1)-space (Rn+1
1 , 〈, 〉) is the (n + 1)-dimensional vector space Rn+1

endowed with the pseudo scalar product

〈x, y〉 = −x0y0 +

n
∑

i=1

xiyi,

2



for x = (x0, . . . , xn) and y = (y0, . . . , yn) in R
n+1
1 . We say that a vector x in R

n+1
1 \{0}

is
spacelike if 〈x, x〉 > 0,
lightlike if 〈x, x〉 = 0,
timelike if 〈x, x〉 < 0.

The norm of a vector x ∈ R
n+1
1 is defined by ‖x‖ =

√

|〈x, x〉|. Given a vector
v ∈ R

n+1
1 and a real number c, the hyperplane with pseudo normal v is defined by

HP (v, c) = {x ∈ R
n+1
1 | 〈x, v〉 = c}.

We say that HP (v, c) is a spacelike, timelike or lightlike hyperplane if v is timelike,
spacelike or lightlike respectively. We have the following three types of pseudo-spheres
in R

n+1
1 :

Hyperbolic n-space : Hn(−1) = {x ∈ R
n+1
1 | 〈x, x〉 = −1},

de Sitter n-space : Sn
1 = {x ∈ R

n+1
1 | 〈x, x〉 = 1},

(open) lightcone : LC∗ = {x ∈ R
n+1
1 \ {0} | 〈x, x〉 = 0}.

The hyperbolic space has two connected components, Hn
+(−1) = {x ∈ Hn(−1)| x0 ≥

1} and Hn
−
(−1) = {x ∈ Hn(−1)| x0 ≤ −1}. We only consider embedded surfaces in

Hn
+(−1) as the study is similar for those embedded in Hn

−
(−1).

Given n vectors a1, . . . , an ∈ R
n+1
1 , we consider the wedge product a1 ∧ · · · ∧ an

given by

a1 ∧ · · · ∧ an =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−e0 e1 · · · en

a1
0 a1

1 · · · a1
n

a2
0 a2

1 · · · a2
n

...
... · · · ...

an
0 an

1 · · · an
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where {e0, e1, . . . , en} is the canonical basis of R
n+1
1 and ai = (ai

0, a
i
1, . . . , a

i
n), i =

1, . . . , n. One can check that

〈a, a1 ∧ · · · ∧ an〉 = det(a, a1, . . . , an),

so the vector a1 ∧ · · · ∧ an is pseudo orthogonal to ai, for all i = 1, . . . , n.

We require some properties of contact manifolds and Legendrian submanifolds for
the duality results in this paper (for more details see for example [1]). Let N be a
(2n + 1)-dimensional smooth manifold and K be a field of tangent hyperplanes on N .
Such a field is locally defined by a 1-form α. The tangent hyperplane field K is said
to be non-degenerate if α∧ (dα)n 6= 0 at any point on N. The pair (N, K) is a contact
manifold if K is a non-degenerate hyperplane field. In this case K is called a contact
structure and α a contact form.
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A submanifold i : L ⊂ N of a contact manifold (N, K) is said to be Legendrian if
dim L = n and dix(TxL) ⊂ Ki(x)

at any x ∈ L. A smooth fibre bundle π : E → M is

called a Legendrian fibration if its total space E is furnished with a contact structure
and the fibres of π are Legendrian submanifolds. Let π : E → M be a Legendrian
fibration. For a Legendrian submanifold i : L ⊂ E, π ◦ i : L → M is called a
Legendrian map. The image of the Legendrian map π ◦ i is called a wavefront set of i

and is denoted by W (i).
In [9, 10, 20] are considered five double fibrations. We recall here only those that

are needed in this paper (and keep the notation of [9, 10, 20]).
(1) (a) Hn(−1) × Sn

1 ⊃ ∆1 = {(v, w) | 〈v, w〉 = 0},
(b) π11 : ∆1 −→ Hn(−1), π12 : ∆1 −→ Sn

1 ,
(c) θ11 = 〈dv, w〉|∆1, θ12 = 〈v, dw〉|∆1.

(5) (a) Sn
1 × Sn

1 ⊃ ∆5 = {(v, w) | 〈v, w〉 = 0},
(b) π51 : ∆5 −→ Sn

1 ,π52 : ∆5 −→ Sn
1 ,

(c) θ51 = 〈dv, w〉|∆5, θ52 = 〈v, dw〉|∆5.

Here, πi1(v, w) = v and πi2(v, w) = w for i = 1, 5, 〈dv, w〉 = −w0dv0+
∑n

i=1 widvi

and 〈v, dw〉 = −v0dw0 +
∑n

i=1 vidwi. The 1-forms θ−1
i1 (0) and θ−1

i2 (0), i = 1, 5, define
the same tangent hyperplane field over ∆i which is denoted by Ki.

Theorem 2.1 ([9, 10, 20]) The pairs (∆i, Ki), i = 1, 5, are contact manifolds and
πi1 and πi2 are Legendrian fibrations.

Remark 2.2 (1) Given a Legendrian submanifold i : L → ∆i, i = 1, 5, Theorem 2.1
states that πi1(i(L)) is dual to πi2(i(L)) and vice-versa. We shall call this duality
∆i-duality.

(2) If π11(i(L)) is smooth at a point π11(i(u)), then π12(i(u)) is the normal vector
to the hypersurface π11(i(L)) ⊂ Hn

+(−1) at π11(i(u)). Conversely, if π12(i(L)) is
smooth at a point π12(i(u)), then π11(i(u)) is the normal vector to the hypersurface
π12(i(L)) ⊂ Sn

1 . The same properties hold for the ∆5-duality.

3 Surfaces in H3
+(−1)

Spacelike surfaces are those with tangent space at any point containing only spacelike
vectors. So any surface in the hyperbolic space H3

+(−1) is a spacelike surface, but this
is not the case for surfaces in S3

1 . An important observation for spacelike surfaces M
in H3

+(−1) and S3
1 is that the restriction of the pseudo-scalar product in R4

1 to M is a
scalar product, so the differential of the Gauss map can be represented by a symmetric
matrix (more details below). We shall deal in details with surfaces in H3

+(−1) and
make some observations about spacelike surfaces in S3

1 in §4 as their study is similar.

4



The extrinsic geometry of hypersurfaces in the hyperbolic space is studied in [9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 21]. Let M be an 2-dimensional manifold embedded
in H3

+(−1). Given a local chart i : U → M , where U is an open subset of R2, we
denote by x : U → H3

+(−1) such embedding and identify x(U) with U through the
embedding x and write M = x(U).

Since 〈x, x〉 ≡ −1, we have 〈xui
, x〉 ≡ 0, for i = 1, 2, where u = (u1, u2) ∈ U and

xui
= ∂x/∂ui. We define the spacelike unit normal vector e(u) to the surface at x(u)

by

e(u) =
x(u) ∧ xu1

(u) ∧ xu2
(u)

‖x(u) ∧ xu1
(u) ∧ xu2

(u)‖ .

It follows that the vectors x ± e are lightlike. Let

E : U → S3
1 and L

± : U → LC∗

be the maps defined by E(u) = e(u) and L±(u) = x(u) ± e(u). These are called,
respectively, the de Sitter Gauss indicatrix and the lightcone Gauss indicatrix of M
([15]).

For any p = x(u0) ∈ M and v ∈ TpM, one can show that DvE ∈ TpM, where
Dv denotes the covariant derivative with respect to the tangent vector v. Since the
derivative dx(u0) can be identified with the identity mapping 1TpM on the tangent
space TpM, we have dL±(u0) = 1TpM ± dE(u0), under the identification of U and M
via the embedding x.

The linear transformation Ap = −dE(u0), called the de Sitter shape operator, is a
self-adjoint operator. Because the restriction of the pseudo-scalar product in R4

1 to M
is a scalar product, Ap has an orthogonal basis formed by its eigenvectors (when its
eigenvalues are distinct). Its eigenvalues κi, i = 1, 2, are called the (de Sitter) principal
curvature and the corresponding eigenvectors pi, i = 1, 2, are called the (de Sitter)
principal directions. The linear transformation S±

p = −dL±(u0), labelled the lightcone
shape operator of M at p, is also a self-adjoint operator. It has the same eigenvectors
as Ap but its eigenvalues are distinct from those of Ap. In fact the eigenvalues κ̄±

i of
S±

p satisfy κ̄±

i = −1 ± κi, i = 1, 2. We say that a point p = x(u0) ∈ M is an umbilic
point if Ap = k(p)1TpM . We also say that M is totally umbilic if all points of M are
umbilic.

Definition 3.1 A surface given by the intersection of H3
+(−1) with a spacelike, time-

like or lightlike hyperplane is called respectively sphere, equidistant surface or horo-
sphere. The intersection of the surface with timelike hyperplane through the origin is
called a plane.

Proposition 3.2 [6, 15, 17] Suppose that M = x(U) is totally umbilic. Then κ(p) is
a constant κ for all p ∈ M . Under this condition, we have the following classification.

(1) If κ2 > 1, then M is a part of a sphere.
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(2) If κ2 = 1, then M is a part of a horosphere.
(3) If κ2 < 1, then M is a part of an equidistant surface. In particular, if κ = 0,

then M is a part of a plane.

3.1 Evolute and symmetry set

In [17] (see also [16] for the curves case) is introduced the notion of evolute (or focal
surface) of a hypersurface in hyperbolic space. For a surface x : U → H3

+(−1), the
total evolute (evolute for short) of x(U) = M is defined by

TE± =

2
⋃

i=1

{

± κi(u)
√

|κ2
i (u) − 1|

(

x(u) +
1

κi(u)
e(u)

)

, u ∈ U

}

,

where κi, i = 1, 2, are the de Sitter principal curvature at x(u). Observe that TE−

is the reflection of TE+ with respect to the origin (so we have two copies of the total
evolute). We assume here that p = x(u) is not a horoparabolic point, that is, κ2

i (u) 6= 1
for i = 1, 2 (this is equivalent to the lightcone principal curvature not vanishing at u).
The evolute has the following decomposition

TE± = HE± ∪ SE±,

where HE± is the hyperbolic space component of the evolute and corresponds to points
u where κ2

i (u) > 1 and SE± is the de Sitter component of the evolute and corresponds
to points u where κ2

i (u) < 1.
The evolute has some interesting geometric properties. Let

HT : U × H3(−1) → R

denote the hyperbolic timelike height function given by HT (u, v) = 〈x(u), v〉, and

HS : U × S3
1 → R

denote the hyperbolic spacelike height function given by HS(u, v) = 〈x(u), v〉. The
function HT measures the contact of the surface with spheres and HS measures its
contact with equidistant surfaces (see Definition 3.1). One can show that the evolute
is the union of the local strata of the bifurcation sets LBif(HT ) and LBif(HS) of the
families HT and HS respectively ([17]). More precisely,

LBif(HT ) = HE+ ∪ HE−,
LBif(HS) = SE+ ∪ SE−.

So the evolute parametrises the spheres or equidistant surfaces that have degenerate
contact with M (i.e., parametrises the set of v for which HT

v = HT (·, v) or HS
v =

6



HS(·, v) has a singularity of type A2 or worse). Observe that if u is a degenerate
singularity of HT

v (resp. HS
v) then it is also a degenerate singularity of HT

−v (resp.
HS

−v). This is why we have two copies TE+ and TE− of the evolute. The evolute can
also be characterised as a caustic, and therefore has generic Lagrangian singularities
[17, 20].

We have the following observation needed for the duality result in this paper.

Proposition 3.3 Let q be a smooth point on the evolute associated to the principal
curvature κi, i = 1 or 2. Then the normal to the evolute at q is along the principal
direction pi associated to κi.

Proof. Let c±i : U → H3(−1) ∪ S3
1 , i = 1, 2, given by

c±i (u) = ± κi(u)
√

|κ2
i (u) − 1|

(

x(u) +
1

κi(u)
e(u)

)

,

be a local parametrisation of the evolute. Let p be the point on the surface correspond-
ing to the point q on the evolute. As q is a smooth point on the evolute, the principal
curvatures are distinct at p. We can then choose a local parametrisation x : U →
H3

+(−1) of the surface at p so that ui =constant, i = 1, 2, represent the lines of cur-
vatures. The part of the evolute that is associated to a given principal curvature κi is
parametrised by c±i (u) = λ(u)(x(u)+1/κi(u)e(u)) where λ(u) = ±κi(u)/

√

|κ2
i (u) − 1|.

We have
〈

c±i , pi

〉

= 0 as pi is tangent to M . Because of the chosen parametrisation,
we have

〈

xuj
, pi

〉

= 0 for j 6= i. Also 〈eui
, pi〉 = 〈de.xui

, pi〉 = 〈−κixui
, pi〉 and

〈

euj
, pi

〉

= −κj

〈

xuj
, pi

〉

= 0 for j 6= i. Therefore,

〈

∂c±
i

∂ui
, pi

〉

=
〈

λui

(

x + 1
κi

e
)

+ λ
(

xui
+ 1

κi
eui

+
(

∂
∂ui

1
κi

)

e
)

, pi

〉

= 0

and for j 6= i,

〈

∂c±
i

∂uj
, pi

〉

=
〈

λuj

(

x + 1
κi

e
)

+ λ
(

xuj
+ 1

κi
euj

+
(

∂
∂uj

1
κi

)

e
)

, pi

〉

= 0 ,

which proves the assertion. 2

We consider now the multi-local strata of the bifurcation sets of the spacelike and
timelike height functions. (This is analogous to the study of the multi-local stratum
of the distance squared function on surfaces in the Euclidean space R3.)

Definition 3.4 The symmetry set of M , denoted by SS, is the closure of the set
spheres in H3(−1) or equidistant surfaces in S3

1 that are tangent to M in at least two
distinct points. It is the union of the closure of the multi-local strata of the bifurcation
sets of the spacelike and timelike family of height functions HS and HT .
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We denote by SST (resp. SSS) the component of the symmetry set related to the
timelike (resp. spacelike) family of height function.

Proposition 3.5 (1) A point q ∈ H3(−1)∪S3
1 is on the SS of a surface M ⊂ H3

+(−1)
if and only if there exists two distinct points p1 and p2 on M such that the tangent
planes Tp1

M and Tp2
M are symmetric with respect to the equidistant surface orthogonal

to the geodesic joining p1 and p2 and passing through the midpoint of the segment p1p2.
(2) Let q be a smooth point on the SS corresponding to the bi-tangency of a sphere

(resp. equidistant surface) to the surface M at two points p1 and p2. Then the normal
to the SS at q is the normal to the equidistant surface in (1).

Proof. (1) Let x1 : U1 → M and x2 : U2 → M be local coordinates on M around
x1(0, 0) = p1 and x2(0, 0) = p2. By a hyperbolic motion, we can suppose that the
equidistant surface orthogonal to the geodesic joining p1 and p2 and passing through
the midpoint of the segment p1p2 is given by x2 = 0. If v0 = (0, 0, 1, 0), then p2 =
p1 − 2 〈p1, v0〉v0.

The height function HT
v (resp. HS

v) has two singularities at p1 and p2 at the same
level if and only if v = λp1 +µe1 = αp2 +βe2 with −λ2 +µ2 = −1 and −α2 +β2 = −1
(resp. −λ2 + µ2 = 1 and −α2 + β2 = 1) and 〈p1, v〉 = 〈p2, v〉. Here e1 and e2 are
the normal vectors to the surface at p1 and p2 respectively. Since 〈pi, pi〉 = −1 and
〈pi, ei〉 = 0 for i = 1, 2, it follows that

〈p1, v〉 = −λ = α 〈p1, p2〉 + β 〈p1, e2〉 . (1)

We have 〈p1 − p2, v〉 = 0. Therefore 〈p1 − p2, αp2 + βe2〉 = 0, equivalently,

α + α 〈p1, p2〉 + β 〈p1, e2〉 = 0 (2)

It follows from equations (1) and (2) that λ = α and hence µ = ±β. We can
assume that µ = β by changing the orientation of the surface at p2 if necessary (by
taking −e2 as the normal vector at p2). Now λp1 + µe1 = αp2 + βe2, so e1 − e2 is
parallel to p1 − p2, and hence is parallel to v0. This implies that e2 is symmetric to e1

with respect to the plane x2 = 0 and hence the normal plane Np2
M (generated by p2

and e2) is symmetric to the normal plane Np1
M (generated by p1 and e1) with respect

to x2 = 0. Consequently, Tp2
M is symmetric to Tp1

M with respect to x2 = 0.

(2) We consider the setting in (1) and deal with the multi-local singularities of the
timelike height function. The case of the spacelike height function follows in the same
way. Consider the map ΦT : U1 × U2 × H3

+(−1) → R
5 given by

(u, v,v) 7→
(

〈x1(u),v〉 − 〈x2(v),v〉, 〈x1u1
(u),v〉, 〈x1u2

(u),v〉, 〈x2v1
(v),v〉, 〈x2v2

(v),v〉
)

with u = (u1, u2) and v = (v1, v2). Then SST = π3((Φ
T )−1(0)), where π3 is the

canonical projection to the third component. To prove the statement it is enough to

8



show that 〈v0, dv〉 = 0 at q, where v ∈ SST . Since (u, v, v) ∈ (ΦT )−1(0), we have
〈x1(u) − x2(v), v〉 = 0. By differentiating, we have 〈x1(u) − x2(v), dv〉 = 0, and the
assertion follows from the fact that p1 − p2 is parallel to v0. 2

3.2 The folding family

We shall restrict our study to 2-dimensional surfaces in H3
+(−1). However, the con-

struction of the family of folding maps we give here is valid in Hn
+(−1), n ≥ 3, and for

any embedded submanifold in Hn
+(−1). For the surface case in H3

+(−1), the folding
maps can be represented locally by a map-germ (R2, 0) → (R3, 0). The singularities of
such mappings are well known (see for example [22]) and one can deduce interesting
geometrical properties of the surface from the singularities of the folding maps.

In the Euclidean case, given a plane P ⊂ R3, the folding map in R3 with respect to
P identifies points with the same distance to P . If we want to follow this construction
for surfaces embedded in the hyperbolic space H3

+(−1), we need to identify points with
the same distance to some “flat” object. Planes are surfaces with de Sitter principal
curvatures vanishing at all points ([6, 17]) and horospheres are surfaces with lightcone
principal curvatures vanishing at all points ([15]). As we are aiming to pick up the
principal directions of the surface M and the fact that these are the same for the
de Sitter and lightcone shape operators, it is enough to consider folding with respect
to planes. We observe that a folding with respect to an equidistant surface can be
brought, by a hyperbolic motion, to a folding with respect to a plane.

Following the construction in the Euclidean case, folding with respect to a plane in
H3

+(−1) means taking two distinct points on the same geodesic that are at the same
distant d from the plane and mapping them to the point on this geodesic that is at
a distant d2 to the plane. This maps is slightly messy to work with, and as we are
only interested in its A-singularities, where A denotes the Mather left-right group, we
shall construct an A-equivalent map as follows. (This new map still sends symmetric
points with respect to a fixed plane to the same image.)

The planes of interest above are timelike as they are normal to a geodesic which has
a spacelike tangent vector. Consider folding with respect to the timelike hyperplane
x2 = 0. So we seek a fold map that identifies any two points (x0, x1, x2, x3) and
(x0, x1,−x2, x3) in H3

+(−1). As

H3
+(−1) = {(

√

x2
1 + x2

2 + x2
3 + 1, x1, x2, x3) | (x1, x2, x3) ∈ R

3},
we define the folding map with respect to the timelike hyperplane x2 = 0 as the map

f1 : H3
+(−1) → H3

+(−1)

given by

f1(
√

x2
1 + x2

2 + x2
3 + 1, x1, x2, x3) = (

√

x2
1 + x4

2 + x2
3 + 1, x1, x

2
2, x3).
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We now proceed as in [2, 5]. The timelike hyperplane x2 = 0 is of course arbitrary.
If we are interested in studying the reflectional symmetry of the surface M with respect
to all timelike hyperplanes, we need to consider the family of folding maps parametrised
by these hyperplanes. Let SO0(1, 3) denotes the positive Lorentz group. We define

F̄ : H3
+(−1) × SO0(1, 3) → H3

+(−1)

by F̄ (p, A) = (A−1◦f1◦A)(p). This is a 6-parameter family of folding maps. However,
there are some redundant parameters that can be eliminated by consider the quotient
of SO0(1, 3) by the subgroup of H2 preserving x2 = 0 (i.e., HP (e2, 0)). We then obtain
a family

F : H3
+(−1) × SO0(1, 3)/H2 → H3

+(−1).

We shall now show that SO0(1, 3)/H2
∼= S3

1 . We consider the action of SO0(1, 3)
on S3

1 defined by vA for any (A, v) ∈ SO0(1, 3)× S3
1 . It is well known that this action

is transitive. Consider the two isotropic subgroups of SO0(1, 3) defined by

Hi = {A ∈ SO0(1, 3) | eiA = ei }, i = 2, 3.

Let

P(3,4) =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









∈ SO0(1, 3)

so that e2P(3,4) = e3. One can show that if A ∈ H3 then P(3,4)AP−1
(3,4) ∈ H2, so that we

have a diffeomorphism

Ψ : SO0(1, 3)/H3 −→ SO0(1, 3)/H2

between homogeneous spaces defined by Ψ([A]) =
[

P(3,4)AP−1
(3,4)

]

. Since

H3 =

{(

B t0

0 1

)

∣

∣

∣
B ∈ SO0(1, 2)

}

,

we have the canonical diffeomorphisms

SO0(1, 3)/H2
∼= SO0(1, 3)/SO0(1, 2) ∼= S3

1 .

Therefore the family of folding maps F can be considered as a family

F : H3
+(−1) × S3

1 → H3
+(−1).

Given an embedding x : M → H3
+(−1), we obtain a family

Fx : M × S3
1 → H3

+(−1)

by restriction. We have the following result.
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Theorem 3.6 For a residual set of embeddings x : M → H3
+(−1), the family Fx is

a generic family of mappings.

Proof. The map f1 defined above is a fold map, so it is an A-stable map. Therefore,
the corresponding 3-dimensional family F is an A-versal family of mappings in the
sense of Montaldi [23]. The assertion follows now from Montaldi’s theorem in [23]. 2

For a given v ∈ S3
1 and a point p0 ∈ M , one can choose local coordinates so

that Fv
x (p) = Fx(p, v) can be considered locally as a map-germ (R2, 0) → (R3, 0). It

follows from Theorem 3.6 that for generic embeddings of the surface, only singularities
of Ae-codimension ≤ 3 can occur in the members of the family of folding maps (3
being the dimension of the parameters space S3

1). So we have the following result.

Proposition 3.7 For a residual set of embeddings x : M → H3
+(−1), the folding

maps Fv
x : M → H3

+(−1) in the family Fx have local singularities A-equivalent to one
in Table 1. Moreover, these singularities are versally unfolded by the family Fx.

Table 1: Ae-codimension ≤ 3 singularities of map-germs (R2, 0) → (R3, 0) ([22]).

Normal form Name Ae-codimension

(x, y, 0) Immersion 0
(x, y2, xy) Cross-cap 0
(x, y2, x2y ± y2k+1), k = 1, 2, 3 Bk k
(x, y2, y3 ± xk+1y), k = 2, 3 Sk k
(x, y2, xy3 ± xky), k = 3 Ck k

It also follows from Theorem 3.6 that for a generic embedding x : M → H3
+(−1)

and for v in an open and dense subset of S3
1 , the map Fv

x : M → H3
+(−1) is stable,

i.e., is locally an immersion, a cross-cap or a pair of transverse planes. The set of
vectors v ∈ S3

1 for which Fv
x is not A-stable is the bifurcation set, Bif(Fx), of Fx.

This set consists of vectors v for which Fv
x has a singularity more degenerate than

a cross-cap (generically one of the Bk, Sk, Ck in Proposition 3.7) or the image has a
multi-local singularity of type self tangency or worse. We have the following duality
result, analogous to the one in [5] for the Euclidean case, where duality here refers to
∆1-duality when the evolute/symmetry set lies in the hyperbolic space and ∆5-duality
when it is in the de Sitter space (see Theorem 2.1 and Remark 2.2).

Theorem 3.8 The bifurcation set Bif(Fx) of the family of folding maps on a surface
M ⊂ H3

+(−1) is the dual of the evolute and the symmetry set of M . More precisely,
the local stratum of the bifurcation set is the dual of the evolute and the multi-local
stratum is the dual of the symmetry set.

11



Proof. We take the surface M , without loss of generality, in the hyperbolic Monge
form (see [15])

x(u1, u2) = (
√

g2(u1, u2) + u2
2 + u2

2 + 1, g(u1, u2), u1, u2)

at the origin, where g and its first derivatives vanishing at the origin. We write
j2g(u1, u2) = a20u

2
1 + a21u1u2 + a22u

2
2. The restriction of the folding map f to M is

given by

f1(u1, u2) = (
√

g2(u1, u2) + u4
1 + u2

2 + 1, g(u1, u2), u
2
1, u2).

If we project to the tangent space of H3
+(−1) at x(0, 0) (i.e., to the space x0 = 0) we

obtain a map-germ (R2, 0) → (R3, 0) which is A-equivalent to f1 and is given by

f̃1(u1, u2) = (g(u1, u2), u
2
1, u2).

This map-germ has a singularity of type cross-cap at the origin if and only if a21 6= 0,
if and only if the normal to the hyperplane x2 = 0 is not along a principal direction.
It follows then that the local component of the bifurcation set of Fx is the surface
in S3

1 traced by the (unit) principal directions of M . However, by Proposition 3.3, a
principal direction is the normal to the evolute and by Theorem 2.1 (see also Remark
2.2), these normals trace the dual of the evolute. Here, duality refers to ∆1-duality
when the evolute lies in the hyperbolic space and ∆5-duality when it is in the de Sitter
space.

The duality for the multi-local stratum of the bifurcation set of the folding map
follows from Proposition 3.5, Theorem 2.1 and Remark 2.2. 2

Since the family Fx is an A-versal unfolding of each of its singularities, we can
deduce the model (up-to diffeomorphism) of its bifurcation set Bif(Fx), and hence of
the dual of the evolute and symmetry set. The models for the local singularities are
given in Figure 1.

We can deduce from Theorem 3.8 and from the results in [17] the following geo-
metric characterisations of the singularities of the folding maps:

B1: general smooth point of evolute.
S2: de Sitter parabolic smooth point of the evolute.
S3: cusp of Gauss at smooth point of the evolute.
B2: general cusp point of the evolute.
B3: cusp point of the evolute in closure of de Sitter parabolic curve on SS.
C3: intersection point of cuspidal-edge and parabolic curve on the evolute.

Following [5, 28], we shall call the pre-image on M of the de Sitter parabolic set
of the evolute the sub-parabolic curve of M . In the Euclidean case, the sub-parabolic
curve is the locus of points where lines of curvature have geodesic inflections. It is also
the locus of points where one principal curvature has an extremal value along lines of

12



B1 B2 B3

S2 S3

C3

Figure 1: Bifurcation sets (local strata in thin and multi-local strata in thick).

the other principal curvature [24]. We have a similar characterisation for surfaces in
the hyperbolic space. Recall that the restriction of the pseudo scalar product to the
hyperbolic space is a scalar product, so this space is a Riemannian manifold. For a
parametrised surface M we define

E = 〈xu1
, xu1

〉 , F = 〈xu1
, xu2

〉 , G = 〈xu2
, xu2

〉

as the coefficients of the (de Sitter) first fundamental form and by

l = 〈Ap(xu1
), xu1

〉 = 〈e, xu1u1
〉 ,

m = 〈Ap(xu1
), xu2

〉 = 〈e, xu1u2
〉 ,

n = 〈Ap(xu2
), xu2

〉 = 〈e, xu2u2
〉

as the coefficients of the (de Sitter) second fundamental form. Then the lines of
curvature (i.e., curves on M whose tangent at each point is a principal direction) are
given, in the parameters space, by the usual equation

(Gm − Fn)du2
2 + (Gl − En)du2du1 + (F l − Em)du2

1 = 0

(see for example [27]).

Proposition 3.9 The sub-parabolic curve of an embedded surface M in H3
+(−1) can

be characterised as follows.
(1) It is the locus of points where one principal curvature has an extremal value

along lines of the other principal curvature.
(2) It is the locus of points where the other lines of curvature have geodesic inflec-

tions.
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Proof. (1) We take the surface in hyperbolic Monge form as in the proof of Theorem
3.8 and write j3g(u1, u2) = a20u

2
1 + a22u

2
2 + a30u

3
1 + a31u

2
1u2 + a32u1u

2
2 + a33u

3
2. Then

folding along the hyperplane x2 = 0 yields a singularity worse than a cross-cap. The
folding map f̃1(u1, u2) = (g(u1, u2), u

2
1, u2) has an S2-singularity if and only if a32 = 0

(and a30 6= 0). A calculation shows that the 1-jet of the principal curvature associated
to the other principal direction (0, 0, 0, 1) at the origin (which is contained in the
hyperplane x2 = 0) is given by j1κ2 = 2a22 +2a32u1 +6a33u2. It has an extremal value
along the line of principal curvature associated to (0, 0, 1, 0) if and only if a32 = 0,
which proves statement (1).

(2) Solving the equation of the lines of curvature with the hyperbolic Monge form
setting above, we get the initial term of the line of curvature tangent to (0, 1) in the
parameter space. It is given by (u1(s), u2(s)) = ((a32/2(a20 − a22))s

2 + h.o.t, s). The
principal curve x(u1(s), u2(s)) has a geodesic inflection at the origin if and only if
a32 = 0, if and only if x(0, 0) is a sub-parabolic point. 2

4 Spacelike surfaces in S3
1

The situation here is similar to that of surfaces in H3
+(−1). Let x : U → S3

1 be a
spacelike surface, where U is an open subset of R2. Then the normal unit vector at
x(u), given by

e(u) =
x(u) ∧ xu1

(u) ∧ xu2
(u)

‖x(u) ∧ xu1
(u) ∧ xu2

(u)‖ ,

is timelike. The map
E : U → H3

+(−1)

defined by E(u) = e(u) is called the hyperbolic Gauss indicatrix of x(U) = M . One
can show that for any p = x(u0) ∈ M and v ∈ TpM , we have Dve ∈ TpM . So we have
a linear transformation Ap = −dE : TpM → TpM , called the hyperbolic shape operator
of M at p, which is a self-adjoint operator. Because the restriction of the pseudo-scalar
product in R4

1 to M is a scalar product (M is spacelike), Ap has an orthogonal basis
formed by its eigenvectors when its eigenvalues are distinct. Its eigenvalues κi, i = 1, 2,
are called the hyperbolic principal curvature and the corresponding eigenvectors pi, i =
1, 2, are called the hyperbolic principal directions. We say that a point p = x(u0) ∈ M
is an umbilic point if Ap = k(p)idTpM . We also say that M is totally umbilic if all points
of M are umbilic.

Definition 4.1 A surface given by the intersection of S3
1 and a spacelike hyperplane,

a timelike hyperplane or a lightlike hyperplane is respectively called a hyperbolic, an
elliptic or a parabolic de Sitter quadric. In particular, we call an elliptic (resp. hy-
perbolic) de Sitter quadric through the origin a flat elliptic (resp. hyperbolic) de Sitter
quadric.
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The following classification of totally umbilic spacelike surfaces in the de Sitter
space follows in exactly the same way as that of surfaces in hyperbolic space.

Proposition 4.2 Suppose that M = x(U) is a totally umbilic spacelike surface in S3
1 .

Then κ(p) is constant κ. Under this condition, we have the following classification.
(1) If κ2 > 1, then M is a part of a hyperbolic de Sitter quadric.
(2) If κ2 = 1, then M is a part of a parabolic de Sitter quadric.
(3) If κ2 < 1, then M is a part of an elliptic de Sitter quadric. In particular, if

κ = 0, then M is a part of a flat elliptic de Sitter quadric.

We now introduce the notion of evolute of a spacelike surface in de Sitter space.
For a spacelike surface x : U → S3

1 , we define the total evolute of x(U) = M by

TE±

M =

2
⋃

i=1

{

± κi(u)
√

|κ2
i (u) − 1|

(

x(u) +
1

κi(u)
e(u)

)

u ∈ U

}

,

where κi, i = 1, 2, are the de Sitter principal curvature at x(u). We assume here that
κ2

i (u) 6= 1 for i = 1, 2. The total evolute has the following decomposition

TE± = HE± ∪ SE±,

where HE± denotes the hyperbolic part of the total evolute and corresponds to point
u where κ2

i (u) < 1 and SE± denotes the de Sitter part of the total evolute and corre-
sponds to point u where κ2

i (u) > 1.
The evolute has some interesting geometric properties. Let

HT : U × H3(−1) → R

denote the de Sitter timelike height function given by HT (u, v) = 〈x(u), v〉, and

HS : U × S3
1 → R

denote the de Sitter spacelike height function given by HS(u, v) = 〈x(u), v〉. The
function HT measures the contact of the surface with hyperbolic de Sitter quadrics
and HS measures its contact with elliptic de Sitter quadrics (see Definition 4.1). One
can show that the evolute is the union of the local strata of the bifurcation sets
LBif(HT ) and LBif(HS) of the families HT and HS respectively. More precisely,

LBif(HT ) = HE+ ∪ HE−,
LBif(HS) = SE+ ∪ SE−.

One can also characterise the hyperbolic and de Sitter evolute of a spacelike surface
in the de Sitter space as a caustic in the framework of symplectic geometry and consider
the geometric meaning of its singularities.
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Proposition 4.3 The de Sitter timelike (resp. spacelike) height function HT : U ×
H3

+(−1) → R (resp. HS : U × S3
1 → R) on x is Morse family of functions.

See the Appendix for the proof and a corollary.

By the method for constructing the Lagrangian immersion germ from Morse fam-
ily, we can define a Lagrangian immersion germs L(HT ) and L(HS) whose generating
families are the de Sitter timelike and spacelike height functions of M = x(U) respec-
tively. Therefore, we have the Lagrangian immersion L(HT ) (resp. L(HS)) whose
caustic is the hyperbolic evolute (resp. de Sitter evolute) of x(U).

We consider now the multi-local singularities of the spacelike and timelike height
functions.

Definition 4.4 The symmetry set of M , denoted by SS, is defined to be the closure
of the set of elliptic and hyperbolic de Sitter quadrics that are tangent to M in at
least two distinct points. It is the union of the closure of the multi-local strata of the
bifurcation sets of the spacelike and timelike height functions HS and HT respectively.

As the surface is spacelike, we have everywhere defined principal directions (away
from umbilic points) and these are spacelike. So we are interested in measuring the
reflectional symmetry of the surface with respect to timelike hyperplanes. We proceed
as in §3 and start by considering folding with respect to the hyperplane x2 = 0.
For the de Sitter space, unlike for the hyperbolic space, one needs several charts to
express it as the graph of a function. We start by defining the fold map using a global
parametrisation.

Let g(u, θ, φ) = (x0, x1, x2, x3)(u, θ, φ) be a parametrisation of the de Sitter space
S3

1 given by
x0 = u,

x1 =
√

1 + u2 cos θ sin φ,

x2 =
√

1 + u2 cos φ,

x3 =
√

1 + u2 sin θ sin φ,

where u ∈ R, 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π. We define the folding map with respect to
the hyperplane x2 = 0 as the map f2 : S3

1 → S3
1 given

f2 ((x0, x1, x2, x3)(u, θ, φ)) = g(u, θ, t(φ))

where

t(φ) =
π

2
− 2

π
(φ − π

2
)2.

This is basically a folding map on each level sphere x0 =constant in S3
1 . We can then

follow the same analysis in §3 and deduce the same duality result, where the evolute
and symmetry set refere to the sets defined in this section. In practise, as we are
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considering local or multi-local properties of the surface, we can choose a different
folding map f2 defined on a chart where S3

1 is given as a graph of a function. For
example, we can work with the local chart x0 = ±

√

−1 + x2
1 + x2

2 + x2
3, with x0 6= 0,

and define the folding map as

f2(±
√

−1 + x2
1 + x2

2 + x2
3, x1, x2, x3) = (±

√

−1 + x2
1 + x4

2 + x2
3, x1, x

2
2, x3).

5 Timelike surfaces in S3
1

Some aspect of the extrinsic differential geometry of timelike hypersurfaces in Sn
1 from

the view point of singularity theory are studied in [9]. The tangent space at each
point on a timelike surface in S3

1 is timelike, so it contains two lightlike directions.
This makes such surfaces behave in a distinct way to the spacelike ones.

Let x : U → S3
1 denote an embedding of a timelike surface, where U is an open

subset of R2. For any u ∈ U , we have 〈x(u), x(u)〉 = 1, so 〈xui
(u), x(u)〉 = 0, i = 1, 2.

We also have a unit normal vector e(u) to the surface at p = x(u) given by

e(u) =
x(u) ∧ xu1

(u) ∧ xu2
(u)

‖x(u) ∧ xu1
(u) ∧ xu2

(u)‖ .

The vector e(u) is spacelike. We can define in the de Sitter Gauss map E : U → S3
1 ,

by E(u) = e(u). One can show that for any p = x(u0) ∈ M and v ∈ TpM , we
have Dve ∈ TpM . So we have a linear transformation Ap = −dE : TpM → TpM ,
which is a self-adjoint operator. Because the restriction of the pseudo-scalar product
in R4

1 to M is still a pseudo-scalar product (M is timelike), Ap does not always have
real eigenvalues. When Ap has two distinct eigenvalues κi, i = 1, 2, we call them the
principal curvature of the surface at p, and the corresponding eigenvectors pi, i = 1, 2,
are called the principal directions. The set of points where the eigenvalues coincide is
of interest and is labelled the lightlike principal locus.

Proposition 5.1 (1) For a generic timelike surface M in the de Sitter space, the
lightlike principal locus is a smooth curve on M . It can be characterised as the set
of points on M where the two principal directions coincide and become a lightlike
direction.

(2) The lightlike principal locus divides the surfaces into two regions. In one of
them there are no principal directions and in the other there are two distinct principal
directions at each point. In the later case, the principal directions are orthogonal and
one is spacelike while the other is timelike.

Proof. (1) The computations here are similar to the case of scalar product. Denote
by

E = 〈xu1
, xu1

〉 , F = 〈xu1
, xu2

〉 , G = 〈xu2
, xu2

〉
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the coefficients of the (pseudo) first fundamental form and by

l = 〈Ap(xu1
), xu1

〉 = 〈e, xu1u1
〉 ,

n = 〈Ap(xu1
), xu2

〉 = 〈e, xu1u2
〉 ,

m = 〈Ap(xu2
), xu2

〉 = 〈e, xu2u2
〉

those of the (pseudo) second fundamental form. Then the matrix of Ap with respect
to the basis {xu1

, xu2
} is given by the usual formula

1

EG − F 2

(

l m
m n

) (

G −F
−F E

)

.

It follows that the equation of the principal direction is also given by the usual formula

(Gm − Fn)du2
2 + (Gl − En)du1du2 + (F l − Em)du2

1 = 0,

equivalently by,
du2

2 −du1du2 du2
1

E F G
l m n

= 0.

The discriminant of the above quadratic differential equation is

δ(u1, u2) =
(

(Gl − En)2 − 4(Gm − Fn)(F l − Em)
)

(u1, u2).

The set δ−1(0) (the lightlike principal locus) is either empty or form a smooth curve
on generic surfaces M . (Recall that on generic two dimensional Riemannian surfaces,
the set δ−1(0) consists of isolated umbilic points; see for example [27].)

A principal direction p = du1xu1
+ du2xu2

in TpM is lightlike if and only if

〈p, p〉 = Gdu2
2 + 2Fdu1du2 + Edu2

1 = 0.

The resultant of this equation with that of the principal directions is

(EG − F 2)2
(

(Gl − En)2 − 4(Gm − Fn)(F l − Em)
)

.

As EG − F 2 6= 0, it follows that a principal direction is lightlike at a point p if and
only if p is on the lightlike principal locus.

(2) In the region δ > 0 the equation of the principal directions has two distinct
solutions. It has no solutions in the region where δ < 0. The two principal directions
at points in the region where δ > 0 are orthogonal (this follows from the fact that
κ1 〈p1, p2〉 = 〈Ap(p1), p2〉 = 〈p1, Ap(p2)〉 = κ2 〈p1, p2〉, and κ1 6= κ2). As neither of
them are lightlike, one has to be timelike and the other spacelike (see for example
Theorem 3.1.4 in [26]). 2
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5.1 Evolute and symmetry set

We define the de Sitter evolute of a parametrised timelike surface x : U → S3
1 to be

the set

SE±

M =

2
⋃

i=1

{

± κi(u)
√

κ2
i (u) + 1

(

x(u) +
1

κi(u)
e(u)

)

, u ∈ U

}

,

where κi(u), i = 1, 2 are the principal curvature at x(u).
The evolute is related to the family of spacelike height functions

HS : U × S3
1 → R

given by HS(u, v) = 〈x(u), v〉. The function HS measures the contact of the surface
with elliptic de Sitter quadrics (see Definition 4.1). Let HS

v(u) = HS(u, v). One can
easily show the following.

Proposition 5.2 The spacelike height function HS
v is singular at u if and only if there

exist real numbers λ, µ such that v = λx(u) + µe(u) and λ2 + µ2 = 1.

By Proposition 5.2, the discriminant (or catastrophe set) of HS is given by

C(HS) =
{

(u, v) ∈ U × S3
1

∣

∣

∣
v = λx(u) + µe(u), λ2 + µ2 = 1

}

.

We also have
∂2HS

∂ui∂uj

(u, v) = 〈xuiuj
(u), v〉 = −λgij + µhij

on C(HS), where g11 = E, g12 = g21 = F and g22 = G. If µ = 0, then v =
±x and det (H(HS

v)(u)) = det (gij) 6= 0, where H denotes the Hessian of HS
v. So,

det (H(hS
v )(u)) = 0 if and only if λ/µ is a principal curvature. It follows that the local

bifurcation set, LBif(HS), of the family of the spacelike height functions is the evolute
of M , that is, LBif(HS) = SE+

M ∪ SE−

M .

Remark 5.3 There is no hyperbolic component of the evolute of a timelike surface
x : U → S3

1 . The timelike height function HT : U × S3
1 → R is not singular at any

point on x(U). The reason being that any hyperbolic de Sitter quadric (whose tangent
spaces are spacelike) is always transverse to a timelike surface.

The evolute of a timelike surface in S3
1 can be interpreted as a caustic in the

framework of symplectic geometry (see [1] for details). We have the following assertion
whose proof is similar to that of Proposition 4.3 and is omitted.

Proposition 5.4 The de Sitter spacelike height function HS : U × S3
1 → R on x is a

Morse family of functions.
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For the duality result in this section, we require the normal to the evolute.

Proposition 5.5 Let q be a smooth point on the de Sitter evolute of a timelike surface
M ⊂ S3

1 associated to a point p ∈ M not on the lightlike principal locus of M . Then
the normal to the evolute at q is along the principal direction pi (i = 1 or 2), associated
to the principal curvature κi defining q.

The proof is similar to that of Proposition 3.3 and is omitted.
We consider now the multi-local singularities of the spacelike height function.

Definition 5.6 The symmetry set of M , denoted by SS, is defined to be the closure
of the set of elliptic de Sitter quadrics that are tangent to M in at least two distinct
points. It is the closure of the multi-local stratum of the bifurcation set of the spacelike
height function HS.

We have the following result analogous to Proposition 3.5.

Proposition 5.7 (1) A point q ∈ S3
1 is on the SS of a timelike surface M ⊂ S3

1 if and
only if there exists two distinct points p1 and p2 on M such that the tangent planes
Tp1

M and Tp2
M are symmetric with respect to the sphere orthogonal to the geodesic

joining p1 and p2 and passing through the midpoint of the segment p1p2.
(2) Let q be a smooth point on the SS corresponding to the bi-tangency of an elliptic

de Sitter quadric to the surface M at two points p1 and p2. Then the normal to the
SS at q is the normal to the sphere in (1).

Proof. The proof is similar to that of Proposition 3.5. We consider, by Lorentz
motion, the sphere to be the intersection of the spacelike hyperplane x0 = 0 with S3

1

and follow the same steps in the proof of Proposition 3.5. 2

5.2 The folding family

The folding maps measure the reflectional symmetry of a surface with respect to
hyperplanes. We have seen in the case of spacelike surfaces that the hyperplanes
of interest are those whose normals are principal directions. In the case of timelike
surfaces, when the principal directions exist, one is timelike and the other is spacelike
(Proposition 5.1). So we need to consider two families of folding maps. One is with
respect to timelike hyperplanes. This family is the same as that considered in §4. The
duality result in §3 is valid here too (away from the lightlike principal locus), with
duality meaning ∆5-duality only (recall the there is no hyperbolic component of the
evolute of a timelike surface in S3

1). The second family, which we construct below, is
the family of folding maps with respect to spacelike hyperplanes. We proceed as in
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§3 and §4. Given the parametrisation g(u, θ, φ) of S3
1 in §4, we define the folding map

with respect to the spacelike hyperplane x0 = 0 as the map f3 : S3
1 → S3

1 given

f3 ((x0, x1, x2, x3)(u, θ, φ)) = g(u2, θ, φ).

In a local chart, say x1 = ±
√

1 + x2
0 − x2

2 − x2
3, with x1 6= 0, the above folding has

the following expression

f3(x0,±
√

1 + x2
0 − x2

2 − x2
3, x2, x3) = (x2

0,±
√

1 + x4
0 − x2

2 − x2
3, x2, x3).

We now proceed as in §3. The spacelike hyperplane x0 = 0 is of course arbitrary. If
we are interested in studying the reflectional symmetry of the surface M with respect to
all spacelike hyperplanes, we need to consider the family of folding maps parametrised
by these hyperplanes. So we define

Ḡ : S3
1 × SO0(1, 3) → S3

1

by Ḡ(p, A) = (A−1◦f3 ◦A)(p). This is a 6-parameter family of folding maps. However,
there are some redundant parameters and we need to consider the quotion of SO0(1, 3)
by the subgroup of Lorentz motions that preserve x0 = 0 (that is, HP (e0, 0)).

We consider the action of SO0(1, 3) on H3
+(−1) defined by vA for any (A, v) ∈

SO0(1, 3) × H3
+(−1). It is well known that this action is transitive. Let

H0 = {A ∈ SO0(1, 3) | e0A = e0 }

be an isotropic subgroup of SO0(1, 3). Since

H0 =

{(

1 t0

0 B

)

∣

∣

∣
B ∈ SO(3)

}

,

we have the canonical diffeomorphisms

SO0(1, 3)/H0
∼= SO0(1, 3)/SO(3) ∼= H3

+(−1).

Therefore the map Ḡ gives rise to a 3-parameter family of folding maps

G : S3
1 × H3

+(−1) → S3
1 .

Given an timelike embedding x : M → S3
1 , we obtain a family

Gx : M × H3
+(−1) → S3

1

by restriction. We obtain the following results following the same arguments in §3.

Theorem 5.8 For a residual set of timelike embeddings x : M → S3
1 , the family Gx

is a generic family of mappings.
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Proposition 5.9 For a residual set of timelike embeddings x : M → S3
1 , the folding

maps in the family Gx have local singularities A-equivalent to one in Table 1.

We consider now the map G′

x : M \L → S3
1 , where L denotes the lightlike principal

locus.

Theorem 5.10 The bifurcation set Bif(G′

x) of the folding map on M \ L is the ∆1-
dual of the de Sitter evolute and the symmetry set of M \ L. More precisely, the local
stratum of the bifurcation set is the ∆1-dual of the de Sitter evolute and the multi-local
stratum is the ∆1-dual of the symmetry set.

Proof. The proof is similar to that of Theorem 3.8 and follows from Propositions 5.5
and 5.7. 2

6 Appendix: Proof of Proposition 5.4

Proof. Any v = (v0, v1, v2, v3) ∈ S3
1 , satisfies −v2

0 + v2
1 + v2

2 + v2
3 = 1. We can assume,

without loss of the generality, that v3 6= 0. Then v3 = ±
√

1 + v2
0 − v2

1 − v2
2, and

HS(u, v) = −x0(u)v0 + x1(u)v1 + x2(u)v2 ± x3(u)
√

1 + v2
0 − v2

1 − v2
2.

We prove that the mapping

∆HS =

(

∂HS

∂u1
,
∂HS

∂u2

)

is non-singular at (u1, u2, v) ∈ C(HS). The Jacobian matrix of ∆HS is given by





〈xu1u1
, v〉 〈xu1u2

, v〉 −x0u1
+ x3u1

v0

v3
x1u1

− x3u1

v1

v3
x2u1

− x3u1

v2

v3

〈xu2u1
, v〉 〈xu2u2

, v〉 −x0u2
+ x3u2

v0

v3

x1u2
− x3u2

v1

v3

x2u2
− x3u2

v2

v3



 .

Since (u1, u2, v) ∈ C(HS), we have v = λx(u) + µe(u), for some λ and µ with
λ2 + µ2 = 1. If µ = 0, the Jacobian matrix of ∆HS is of full rank as det (gij) 6= 0.
Now suppose that µ 6= 0. We show that the rank of the matrix

X =





−x0u1
+ x3u1

v0

v3

x1u1
− x3u1

v1

v3

x2u1
− x3u1

v2

v3

−x0u2
+ x3u2

v0

v3
x1u2

− x3u2

v1

v3
x2u2

− x3u2

v2

v3




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is 2 at (u, v) ∈ C(HS). For this, it is enough to show that the rank of the matrix

A =













−x0 + x3
v0

v3
x1 − x3

v1

v3
x2 − x3

v2

v3

−x0u1
+ x3u1

v0

v3
x1u1

− x3u1

v1

v3
x2u1

− x3u1

v2

v3

−x0u2
+ x3u2

v0

v3

x1u2
− x3u2

v1

v3

x2u2
− x3u2

v2

v3













is 3 at (u, v) ∈ C(HS). Let ai =





xi

xiu1

xiu2



 for i = 0, . . . , 3. Then

A =

(

−a0 + a3
v0

v3
, a1 − a3

v1

v3
, a2 − a3

v2

v3

)

,

and hence

detA =
v0

v3

det(a1, a2, a3) −
v1

v3

det(a0, a2, a3) +
v2

v3

det(a0, a1, a3) +
v3

v3

det(a1, a2, a3)

=
1

v3

〈(v0, v1, v2, v3) , x ∧ xu1
∧ xu2

〉

=
1

v3

〈λx + µe, ‖x ∧ xu1
∧ xu2

‖e〉

=
µ

v3

‖x ∧ xu1
∧ xu2

‖ 6= 0

for (u, v) ∈ C(HS). This completes the proof. 2

Following the method in [1] for constructing Lagrangian immersion germs from
Morse families, we can define a Lagrangian immersion germ whose generating family
is the spacelike height function of M as follows. We consider the local charts Ui =
{v = (v0, . . . , v3) ∈ S3

1 | vi 6= 0 } of S3
1 . Since T ∗S3

1 |Ui is a trivial bundle, we define
the maps

Li(H
S) : C(HS) → T ∗S3

1 |Ui, i = 1, 2, 3,

by

Li(H
S)(u, v) =

(

v,−x0(u) + xi(u)v0

vi
, x1(u)− xi(u)v1

vi
, ̂xi(u) − xi(u)vi

vi
, x3(u)−xi(u)v3

vi

)

where v = (v0, . . . , v3) ∈ S3
1 and (x0, . . . , x̂i, . . . , x3) indicates that the i-th component

xi is removed.
One can show that if Ui∩Uj 6= ∅ for i 6= j, then Li(H

S) and Lj(H
S) are Lagrangian

equivalent. (The equivalence is given by the local coordinate change of S3
1 and its

Lagrangian lift.) Therefore we can define a global Lagrangian immersion L(HS) :
C(HS) → T ∗S3

1 .
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Corollary 6.1 Under the above notation, L(HS) is a Lagrangian immersion and the
de Sitter spacelike height function HS : U × S3

1 → R is its generating family.

A consequence of Corollary 6.1 is that the evolute of M = x(U) is the caustic of
the Lagrangian immersion L(HS). In particular, the evolute of a generic surface has
generic Lagrangian singularities ([1]).
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