ON SOLUTIONS TO WALCHER’S EXTENDED HOLOMORPHIC ANOMALY EQUATION

YUKIKO KONISHI AND SATOSHI MINABE

Abstract. We give a generalization of Yamaguchi–Yau’s result to Walcher’s extended holomorphic anomaly equation.

1. Introduction

Let X be a nonsingular quintic hypersurface in \mathbb{CP}^4. The case of the X and its mirror is the most well-studied example of the mirror symmetry. After the construction of the mirror family of Calabi–Yau threefolds [10], the genus zero Gromov–Witten (GW) potential of X were computed via the Yukawa coupling of the mirror family [4]. The predicted mirror formula was proved first by Givental [7].

For higher genera, Bershadsky–Cecotti–Ooguri–Vafa (BCOV) [2] has predicted that the GW potential at genus g is obtained as a certain limit of the B-model closed topological string amplitude $F(g)$ of genus g \(^1\). They have also proposed a partial differential equation (PDE) for $F(g)$, called the BCOV holomorphic anomaly equation, which determines $F(g)$ up to a holomorphic function. The prediction of BCOV for the genus one GW potential was proved by Zinger [21].

Recently the open string analogue of the mirror symmetry has been developed by Walcher [18] for the pair (X, L) of the quintic 3-fold X defined over \mathbb{R} (called a real quintic) and the set of real points $L = X(\mathbb{R})$ which is a Lagrangian submanifold of X. Open mirror symmetry gave the prediction for the generating function for the disc GW invariants of X with boundary in L and it was proved by Pandharipande–Solomon–Walcher [16]. Then, Walcher [19] further proposed the open string analogue of BCOV, the extended holomorphic anomaly equation, which is a PDE for the B-model topological string amplitude $F(g, h)$ for world-sheets with g handles and h boundaries \(^2\).

At present there are two ways to solve the BCOV holomorphic anomaly equation. The one is to repeatedly use the identity called the special geometry relation, or equivalently to draw Feynman diagrams associated to the perturbative expansion of a certain path integral [2]. The other is to solve the system of PDE’s due to Yamaguchi–Yau [20]. They showed that $F(g)$ multiplied by $(g – 1)$-th powers of the Yukawa coupling, is a polynomial

\(^{2000}\) Mathematics Subject Classification. Primary 14J32; Secondary 14N35, 14J81.

\(^1\) For genus $g = 0$, the third covariant derivative of $F^{(0)}$ is the Yukawa coupling, and for $g = 1$, it is recently proved that $F^{(1)}$ is the Quillen’s norm function [6]. For genus $g \geq 2$, the mathematical definition of $F^{(g)}$ is yet to be known.

\(^2\) There is also a proposal by Bonelli–Tanzini [3].
in finite number of generators and rewrite the holomorphic anomaly equation as PDE’s with respect to these generators. This result were then reformulated into a more useful form by Hosono–Konishi [12, §3.4].

It is a natural problem to generalize these methods to Walcher’s extended holomorphic anomaly equation. The generalization of the Feynman rule method can be obtained from the result of Cook–Ooguri–Yang [5]. The objective of this article is to generalize Yamaguchi–Yau’s and Hosono–Konishi’s results to the extended holomorphic anomaly equation. It gives more tractable method in computations than the one given by the Feynman rule.

The organization of the paper is as follows. In Section 2, we recall the special Kähler geometry of the B-model complex moduli space and Walcher’s extended holomorphic anomaly equation. We also describe the Feynman rule. In Section 3, we rewrite the holomorphic anomaly equation as PDE’s (Theorem 13). In Section 4, we compute several BPS numbers by fixing holomorphic ambiguities with certain assumptions. The assumptions in this section are experimental in a sense. In appendices we include the Feynman diagrams and the solution of the PDE’s for \((g,h) = (0,4)\).

After we finished writing this paper, we were informed that Alim–Längen [1] also obtained a generalization of Yamaguchi–Yau’s result.

Acknowledgments. Y.K. thanks Shinobu Hosono for valuable discussions and helpful comments. This work was initiated when S.M. was staying at Institut Mittag-Leffler (Djursholm, Sweden). He would like to thank the institute for support. The authors are also grateful to J.D. Längen and T. Okuda for informing them of the work of [1] at the 5th Simons Workshop on Mathematics and Physics held at Stony Brook. The work of Y.K. is partly supported by JSPS Research Fellowships for Young Scientists. Research of S.M. is supported in part by 21st Century COE Program at Department of Mathematics, Hokkaido University.

2. Walcher’s extended holomorphic anomaly equation

2.1. Special Kähler geometry. Recall the mirror family of the quintic hypersurface \(X \subset \mathbb{P}^4\) constructed in [10]. Let \(W_\psi\) be the hypersurface in \(\mathbb{P}^4\) defined by

\[
\sum_{i=0}^{4} x_i^5 - 5\psi \prod_{i=0}^{4} x_i = 0.
\]

After taking the quotient by \((\mathbb{Z}/5\mathbb{Z})^3\) and a crepant resolution \(Y_\psi\) of \(W_\psi/(\mathbb{Z}/5\mathbb{Z})^3\), we obtain a one-parameter family of Calabi–Yau threefolds \(\pi : Y \to \mathcal{M}_{\text{cpl}} := \mathbb{P}^1 \setminus \{0, 1/\psi, \infty\}\), where a local coordinate \(z \) of \(\mathcal{M}_{\text{cpl}}\) is given by \(z = (5\psi)^{-5}\).

Consider the variation of Hodge structure of weight three on the middle cohomology groups \(H^3(Y_z, \mathbb{C})\). Let \(0 \subset F^3 \subset F^2 \subset F^1 \subset F^0 = R^3\pi_\ast \mathbb{C} \otimes \mathcal{O}_{\mathcal{M}_{\text{cpl}}}\) be the Hodge filtration and \(\nabla\) be the Gauss–Manin connection. The holomorphic line bundle \(\mathcal{L} := F^3\) over \(\mathcal{M}_{\text{cpl}}\) is called the vacuum line bundle (the fiber of \(\mathcal{L}\) at \(z\) is \(H^3,0(Y_z)\)). Let \(\Omega(z)\) be
a local holomorphic section trivializing \(\mathcal{L} \), i.e. a nowhere vanishing \((3,0)\)-form on \(Y_z \). The Yukawa coupling \(C_{zzz} \) is defined by

\[
C_{zzz} := \int_{X_z} \Omega(z) \wedge (\nabla_{\partial_z})^3 \Omega(z),
\]

which is a holomorphic section of \(\text{Sym}^3(T^*_{\mathcal{M}_{cpl}}) \otimes (\mathcal{L}^*)^2 \), where \(T^*_{\mathcal{M}_{cpl}} \) denotes the holomorphic cotangent bundle of \(\mathcal{M}_{cpl} \). A suitable choice of \(\Omega(z) \) gives ([4])

\[
C_{zzz} = \frac{5}{(1 - 5z \zbar)z^3}.
\]

It also gives the following Picard–Fuchs operator \(D \) which governs the periods of \(\Omega(z) \):

\[
D = \theta_z^4 - 5z(\theta_z + 1)(\theta_z + 2)(\theta_z + 3)(\theta_z + 4),
\]

where \(\theta_z = z \frac{d}{d z} \).

Consider the pairing

\[
(\phi, \psi) := \sqrt{-1} \int_{Y_z} \phi \wedge \psi, \quad \phi, \psi \in H^3(Y_z, \mathbb{C}).
\]

Then \((\cdot, \cdot) \) induces a Hermitian metric on \(\mathcal{L} \). Let \(K(z, \bar{z}) := -\log(\Omega(z), \bar{\Omega}(z)) \). This defines a Kähler metric (the Weil-Peterson metric) \(G_{zz} := \partial_z \partial_{\bar{z}} K \) on \(\mathcal{M}_{cpl} \). There is a unique holomorphic Hermitian connection \(D \) on \((T_{\mathcal{M}_{cpl}})^m \otimes \mathcal{L}^n \) whose \((1,0)\)-part \(D_z \) is given by

\[
D_z = \partial_z + m \Gamma^z_{zz} + n(-\partial_z K),
\]

where \(\Gamma^z_{zz} = G^{zz} \partial_z G_{zz} \). An important property of \(G_{zz} \) is the following identity called the special geometry relation [17]

\[
\partial_z \Gamma^z_{zz} = 2G_{zz} - C_{zzz} G_{zz}^2 e^{2K} G_{zz} G^{zz},
\]

where \(C_{zzz} := \overline{C_{zzz}} \).

Now we introduce the open disk amplitude with two insertions \(\triangle_{zz} \), which is the open-sector analogue of the Yukawa coupling. Let \(\mathcal{T} \) be a holomorphic section of \(\mathcal{L}^* \) locally given by

\[
\mathcal{T} = 60 \tau(z), \quad \tau(z) = \sum_{n=0}^{\infty} \left(\frac{z}{(\frac{1}{2} \pi n)^2} \right) \frac{z^{n+\frac{1}{2}}}{z^{n+\frac{1}{2}}},
\]

Here \((\alpha)_n\) is the Pochhammer symbol : \((\alpha)_n := \alpha(\alpha + 1) \cdots (\alpha + n - 1)\) for \(n > 0 \) and \((\alpha)_0 := 1 \). \(\mathcal{T} \) is a solution to

\[
\mathcal{D} \mathcal{T} = \frac{60}{2\pi \sqrt{z}}.
\]

Following [19], we define a \(C^\infty \)-section \(\triangle_{zz} \) of \(\text{Sym}^2(T^*_{\mathcal{M}_{cpl}}) \otimes \mathcal{L}^* \) by

\[
\triangle_{zz} = D_z D_{\bar{z}} \mathcal{T} - e^K C_{zzz} G_{zz}^2 \overline{D_z} \mathcal{T},
\]

where \(\overline{D_z} = \partial_{\bar{z}} + \partial_{\bar{z}} K \) denotes the \((0,1)\)-part of \(\overline{D} \). By (1), it follows that \(\triangle_{zz} \) satisfies the equation

\[
\partial_{\bar{z}} \triangle_{zz} = -C_{zzz} e^K G_{zz}^2 \triangle_{zz},
\]
where $\Delta_{zz} := \overline{\triangle}_{zz}$.

Remark 1. In [19], it is argued that T and Δ_{zz} should be written as

$$T(z) = \int_{Y_2} \Omega(z) \wedge \tilde{\nu}(z), \quad \Delta_{zz} = \int_{Y_2} \Omega(z) \wedge \nabla^2 \tilde{\nu}(z),$$

where $\tilde{\nu}$ is a C^∞–section of the Hodge bundle F^0 which is the ‘real horizontal lift’ of a certain Griffiths normal function ν associated to a family of homologically trivial 2-cycles 3. The normal function ν should be determined from the Lagrangian submanifold $L \subset X$ under the mirror symmetry with D-branes.

2.2. Extended holomorphic anomaly equation. Let $\mathcal{F}^{(g,h)}$ be the B-model topological string amplitude of genus g with h boundaries, and let

$$\mathcal{F}^{(g,h)}_0 := \mathcal{F}^{(g,h)}, \quad \mathcal{F}^{(g,h)}_n := D_z \mathcal{F}^{(g,h)}_{n-1} \ (n \geq 1).$$

$\mathcal{F}^{(g,h)}_n$ is a C^∞–section of the line bundle $(T_{\mathcal{M}_{cpl}}^*)^n \otimes \mathcal{L}^{2g-2+h}$. For $(g, h) = (0, 0), (0, 1),$ (6)

$$\mathcal{F}^{(0,0)}_3 = C_{zzz}, \quad \mathcal{F}^{(0,1)}_2 = \Delta_{zzz}.$$

For $(g, h) = (1, 0), (0, 2)$,4

$$\mathcal{F}^{(1,0)}_1 = \frac{1}{2} \partial_z \log \left(e^{(4-\frac{5}{2})K} G_{zz}^{-1} (1 - 5^5 z)^{-\frac{1}{2}} z^{1-5^5 z} \right),$$

(7)

$$\mathcal{F}^{(0,2)}_1 = -\triangle_{zz} \Delta^z - \frac{1}{2} C_{zzz} \Delta^z \Delta^z + \frac{N}{2} \partial_z K + f^{(0,2)}, \quad f^{(0,2)} = \frac{75}{2(1 - 5^5 z)},$$

where $\chi = -200, c_2 \cdot H = 50, N = 1$ and $\Delta^z = -\frac{\Delta_{zz}}{C_{zzz}}$ (cf. §2.3).

As in [19], define

$$C_{zz}^{zzz} = C_{zzz} e^{2K} G_{zzz}^{-2}, \quad \Delta_{zz}^{zzz} = \Delta_{zz} e^K G_{zzz}^{-1}.$$

Then Walcher’s extended holomorphic anomaly equation for $(g, h) \neq (0, 0), (1, 0), (0, 1), (0, 2)$ is as follows.

$$\partial_{\bar{z}} \mathcal{F}^{(g,h)} = \frac{1}{2} C_{zz}^{zzz} \left(\sum_{g_1, g_2, h_1, h_2} \mathcal{F}^{(g_1, h_1)}_1 \mathcal{F}^{(g_2, h_2)}_1 + \mathcal{F}^{(g-1, h)}_2 \right) - \Delta_{zz} \mathcal{F}^{(g,h-1)}_1.$$

(8)

In the RHS, the summation is over $g_1, h_1, g_2, h_2 \geq 0$ satisfying $g_1 + g_2 = g, h_1 + h_2 = h$ and $(g_1, h_1), (g_2, h_2) \neq (0, 0), (0, 1)$. The second and the third terms in the RHS should be set to zero if $g = 0$ and $h = 0$, respectively.

3By definition, ν is a holomorphic and horizontal section of the intermediate Jacobian fibration $\mathcal{F}^3 \to \mathcal{M}_{cpl}$ of $Y \to \mathcal{M}_{cpl}$. See, e.g., [9, 11].

4\(\mathcal{F}^{(1,0)}_1\) and \(\mathcal{F}^{(0,2)}_1\) are solutions to the following (extended) holomorphic anomaly equations [2][19].

$$\partial_{\bar{z}} \mathcal{F}^{(1,0)}_1 = \frac{1}{2} C_{zz}^{zzz} - \left(\frac{N}{24} - 1 \right) G_{zzz}, \quad \partial_{\bar{z}} \mathcal{F}^{(0,2)}_1 = -\Delta_{zz} \Delta_{zz} + \frac{N}{2} G_{zzz}.$$
2.3. Propagators and Terminators. We introduce the propagators S^{zz}, S^z, S and the terminators Δ^z, Δ [2, 19]. By definition, they are solutions to

$$
\begin{align*}
\partial_2 S^{zz} &= C^{zz}_z, & \partial_2 S^z &= S^{zz}G_{zz}, & \partial_2 S &= S^zG_{zz}, \\
\partial_2 \Delta^z &= \Delta^z, & \partial_2 \Delta &= \Delta^zG_{zz}.
\end{align*}
$$

These equation can be solved by using (1) and (5). The solutions of the propagators are [2, p.391].

$$
S^{zz} = \frac{1}{C^{zzz}} \left(2\partial_z \log(e^K|f|^2) - \partial_z \log(vG_{zz}) \right),
$$

$$
S^z = \frac{1}{C^{zzz}} \left((\partial_z \log(e^K|f|^2))^2 - v^{-1}\partial_z v \partial_z \log(e^K|f|^2) \right),
$$

$$
S = \left(S^2 - \frac{1}{2} D_z S^{zz} - \frac{1}{2}(S^{zz})^2 C_{zzz} \right) \partial_z \log(e^K|f|^2) + \frac{1}{2} D_z S^2 + \frac{1}{2} S^{zz} S^z C_{zzz}.
$$

Here f, v are holomorphic functions of z. We take $f = z^{-\frac{j}{5}}$ and $v = \frac{\psi}{g\psi^2} (z = 1, \psi)$ so that S^{zz}, S^z, S do not diverge at $z = \infty$. Solutions of the terminators are [19, (3.12)]

$$
\Delta^z = -\frac{\Delta^{zz}}{C_{zzz}}, \quad \Delta = D_z \Delta^z.
$$

2.4. Feynman Rule. We describe the Feynman rule which gives a solution to (8).

For non-negative integers g,h,m, and n, we define $C^{(g,h)}_{n;m}$ recursively as follows.

$$
C^{(0,0)}_{0;m} = 0, \quad C^{(0,0)}_{1;m} = 0,
$$

$$
C^{(0,1)}_{0;m} = 0, \quad C^{(0,1)}_{1;m} = 0,
$$

$$
C^{(0,2)}_{0;0} = \frac{N}{2},
$$

$$
C^{(1,0)}_{0;0} = 0, \quad C^{(1,0)}_{1;0} = \frac{\chi}{24} - 1,
$$

$$
C^{(g,h)}_{n;0} = C^{(g,h)}_{n;1} \quad \text{if} \quad 2g - 2 + h + n \geq 1,
$$

$$
C^{(g,h)}_{n;0} = C^{(g,h)}_{n;1} \quad \text{if} \quad 2g - 2 + h + n \geq 1,
$$

$$
C^{(g,h)}_{n;m+1} = (2g - 2 + h + n + m)C^{(g,h)}_{n;m}.
$$

Definition 2. A Feynman diagram G is a finite labeled graph

$$
G = (V; E^\text{in}_0, E^\text{in}_1, E^\text{in}_2, E^\text{out}_0, E^\text{out}_1, j),
$$

which consists of the following data.

(i) Each vertex $v \in V$ is labeled by a pair of non-negative integers (g_v, h_v).

(ii) There are three kinds of inner edges $E^\text{in} = E^\text{in}_0 \sqcup E^\text{in}_1 \sqcup E^\text{in}_2$ and two kinds of outer edges $E^\text{out} = E^\text{out}_0 \sqcup E^\text{out}_1$. The end points of the edges are specified by the collection of maps $j = (j^\text{in}_0, j^\text{in}_1, j^\text{in}_2, j^\text{out}_0, j^\text{out}_1)$:

$$
\begin{align*}
&j^\text{in}_0 : E^\text{in}_0 \to (V \times V)/\sigma, \quad j^\text{in}_1 : E^\text{in}_1 \to V \times V, \quad j^\text{in}_2 : E^\text{in}_2 \to (V \times V)/\sigma, \\
&j^\text{out}_0 : E^\text{out}_0 \to V, \quad j^\text{out}_1 : E^\text{out}_1 \to V,
\end{align*}
$$

where $\sigma : V \times V \to V \times V$ is the involution interchanging the first and the second factors.

\footnote{If rewritten in the ψ-coordinate, (10) are the same as those used in [19, 3.11][20, (2.21)].}
In a more plain language, an edge of type E^{in}_1 has both endpoints attached to vertices, and an edge of type E^{out}_1 has only one endpoint attached to a vertex. We represent edges of types E^{in}_0 and E^{out}_0 by solid lines, edges of types E^{in}_2 and E^{out}_1 by dashed lines and an edge of type E^{in}_1 by a half-solid, half-dashed line. See Fig. 1.

For a vertex $v \in V$, we set

$$L_{i,v} = \{ e \in E^{\text{in}}_i \mid j^i(e) = (v,v) \}, \quad L_i = \bigcup_{v \in V} L_{i,v}, \quad (i = 0, 2),$$

$$L_{1,v} = \{ e \in E^{\text{in}}_1 \mid j^1(e) = (v,v) \}.$$

In other words, $L_{i,v}$ is the number of self-loops attached to the vertex v whose edges are of the type E^{in}_i. Define non-negative integers $n^\text{in}_v, n^\text{out}_v, m^\text{in}_v$ and m^out_v by

$$n^\text{in}_v = \#\{ e \in E^\text{in}_2 \mid v \in j^\text{in}_2(e) \} + \#\{ e \in E^\text{in}_1 \mid j^\text{in}_1(e) = (v,v) \} + L_2,v + L_1,v,$$

$$m^\text{in}_v = \#\{ e \in E^\text{in}_0 \mid v \in j^\text{in}_0(e) \} + \#\{ e \in E^\text{in}_1 \mid j^\text{in}_1(e) = (v,v) \} + L_0,v + L_1,v,$$

$$n^\text{out}_v = \#\{ e \in E^\text{out}_1 \mid v \in j^\text{out}_1(e) \}, \quad m^\text{out}_v = \#\{ e \in E^\text{out}_0 \mid v \in j^\text{out}_0(e) \}.$$

The valence $\text{val}(v)$ of $v \in V$ is given by $\text{val}(v) = n^\text{in}_v + m^\text{in}_v$, where $n^\text{in}_v := n^\text{in}_v + n^\text{out}_v$ (the number of solid lines attached to v), $m^\text{in}_v := m^\text{in}_v + m^\text{out}_v$ (the number of dashed lines attached to v). See Fig. 2.

Definition 3. (i) For a Feynman diagram G, define

$$F_G = \prod_{v \in V} \widetilde{C}_{n^\text{in}_v,m^\text{in}_v}^{(g_v,h_v)} \cdot \prod_{e \in E^\text{in}_0} (-2S) \cdot \prod_{e \in E^\text{in}_2} (-S^2) \cdot \prod_{e \in E^\text{out}_0} (-S^2z) \cdot \prod_{e \in E^\text{out}_1} \Delta \cdot \prod_{e \in E^\text{out}_2} \Delta^z. \quad (19)$$

(ii) Let $\text{Aut}(G)$ be the automorphism group of G. Define the group A_G by

$$A_G = \prod_{e \in L_0 \cup L_2} \mathbb{Z}/2\mathbb{Z} \rtimes \text{Aut}(G),$$

i.e. A_G fits into the following exact sequence:

$$1 \to (\mathbb{Z}/2\mathbb{Z})^{\#L_0 + \#L_2} \to A_G \to \text{Aut}(G) \to 1.$$

This means that each self-loop of type E^{in}_0 and E^{in}_2 contributes the factor 2 to $\#A_G$.

Definition 4. Let $\mathcal{G}(g, h)$ be the set of (isomorphism classes of) Feynman diagrams G which satisfy the following conditions.

(i) G is connected.

(ii) For any $v \in V$, $\tilde{C}_{n^\text{in}_v,m^\text{in}_v}^{(g_v,h_v)} \neq 0$.

(iii) G satisfies $\sum_{v \in V} g_v + \#E^{\text{in}} - \#V + 1 = g$ and $\sum_{v \in V} h_v + \#E^{\text{out}} = h$.

(iv) For any $v \in V$, $\text{val}(v) > 0$.

Note that the set $\mathcal{G}(g, h)$ is a finite set. Note also that the graph whose amplitude is $\mathcal{F}(g, h)$, i.e. the graph with only one vertex with label (g, h) and without edges is not a member of $\mathcal{G}(g, h)$ by (iv).
(i) \[\begin{array}{c}
v_1 \quad e \quad v_2
\end{array} \quad = -2S \]

(ii) \[\begin{array}{c}
v_1 \quad e \quad v_2
\end{array} \quad = -S^z \]

(iii) \[\begin{array}{c}
v_1 \quad e \quad v_2
\end{array} \quad = -S^{zz} \]

(iv) \[\begin{array}{c}
v \quad e \quad \circ
\end{array} \quad = \Delta \]

(v) \[\begin{array}{c}
v \quad e \quad \circ
\end{array} \quad = \Delta^z \]

Figure 1. Three types of inner edges and propagators: (i) \(e \in E^\text{in}_0 \), \(j^\text{in}_0(e) = \{v_1, v_2\} \), (ii) \(e \in E^\text{in}_1 \), \(j^\text{in}_1(e) = (v_1, v_2) \), (iii) \(e \in E^\text{in}_2 \), \(j^\text{in}_2(e) = \{v_1, v_2\} \). Two types of outer edges and terminators: (iv) \(e \in E^\text{out}_0 \), \(j^\text{out}_0(e) = v \), (v) \(e \in E^\text{out}_1 \), \(j^\text{out}_1(e) = v \).

![Figure 1](image1.png)

Figure 2. A vertex \(v \) labeled by \((g_v, h_v)\) to which \(n_v = n_v^\text{in} + n_v^\text{out} \) solid lines and \(m_v = m_v^\text{in} + m_v^\text{out} \) dashed lines are attached and its value.

Define

\[
F_{FD}^{(g,h)} := - \sum_{G \in G(g,h)} \frac{1}{\#A_G} F_G.
\]

The next result follows from [5].

Proposition 5. \(\partial_z F_{FD}^{(g,h)} \) is the RHS of (8).

Therefore, the general solution \(F^{(g,h)} \) of Walcher’s holomorphic anomaly equation is of the form

\[
F^{(g,h)} = F_{FD}^{(g,h)} + f^{(g,h)},
\]

where \(f^{(g,h)} \) is the holomorphic ambiguity which can not be determined from the equation (8).
2.5. Holomorphic ambiguity. Recall that the holomorphic ambiguity \(f^{(g,0)} \) \((g \geq 2) \) is of the form [2][20, (2.30)]

\[
f^{(g,0)} = \frac{a_0 + a_1 z + \cdots + a_{2g-1} z^{2g-1}}{(1 - 5^g z)^{2g-2}} + \sum_{i=0}^{\lfloor \frac{2g-2}{2} \rfloor} z^i
\]

for the closed sector \(h = 0 \). Huang–Klemm–Quackenbush [13] determined the holomorphic ambiguity up to \(g \leq 51 \) by using the vanishing of the BPS numbers \(n^0_4 \) (cf. footnote 4), the gap condition at the conifold point \(z = \frac{1}{5^g} \) and the regularity condition at the orbifold point \(z = \infty \).

For \(h > 0 \), we assume that \(\mathcal{F}^{(g,h)} \) has poles of order at most \(2g - 2 + h \) at \(z = \frac{1}{5^g} \) and also that the asymptotic behaviour at \(z = \infty \) is \(F^{(g,h)} \sim z^{\frac{2g-2+h}{2}} \) [19, §3.3]. Therefore we put the following ansatz for \(f^{(g,h)} \):

\[
f^{(g,h)} = \begin{cases}
\frac{a_0 + a_1 z + \cdots + a_{3g-3+\frac{h}{2}} z^{3g-3+\frac{h}{2}}}{(1 - 5^g z)^{2g-2+h}} & (h \text{ even}), \\
\sqrt{z}(a_0 + a_1 z + \cdots + a_{3g-3+\frac{h}{2}} z^{3g-3+\frac{h}{2}}) & (h \text{ odd}).
\end{cases}
\]

(22)

3. Polynomiality and PDE’s for \(\mathcal{F}^{(g,h)} \)

In this section, we consider extending Yamaguchi–Yau’s and Hosono–Konishi’s results [20, 12] to \(\mathcal{F}^{(g,h)} \).

3.1. The generators of polynomial ring. Let \(\theta_z = z \frac{\partial}{\partial z} \).

We define

\[
A_p = \frac{\theta_z G_{zzz}}{G_{zzz}}, \quad B_p = \frac{\theta_z e^{-K}}{e^{-K}} \quad (p = 1, 2, \ldots), \\
Q_p = \frac{1}{\theta_z} T \quad (p = 0, 1, 2, \ldots), \\
R_1 = z^{\frac{5}{4}} e^{K} C_{zzz} \bar{T} \bar{T}, \quad R_2 = z^{\frac{5}{2}} e^{K} C_{zzz} T.
\]

(23)

The generators \(A_p \)’s and \(B_p \)’s were defined in [20]. The new ingredients are \(Q_p \)’s, \(R_1 \) and \(R_2 \) which are necessary for incorporating \(\Delta_{zz} \).

Consider the polynomial ring

\[
I = \mathbb{C}(z)[A_1, B_1, B_2, B_3, Q_0, Q_1, Q_2, Q_3, R_1, R_2]
\]

(24)

with coefficients in the field of rational functions \(\mathbb{C}(z) \).

Lemma 6. 1. \(A_p \in I \ (p \geq 2) \), \(B_p \in I \ (p \geq 4) \), \(Q_p \in I \ (p \geq 4) \).

2. \(\theta_z I \subseteq I \)
Proof. First, notice that the logarithmic derivation θ_z acts as follows:

\[
\begin{align*}
\theta_z A_p &= A_{p+1} - A_p A_1, \\
\theta_z B_p &= B_{p+1} - B_p B_1, \\
\theta_z Q_p &= \frac{1}{2} Q_p + Q_{p+1}, \\
\theta_z R_1 &= \left(\frac{5}{2} - A_1 - B_1 + \frac{\theta_z C_{zzz}}{C_{zzz}} \right) R_1 + R_2, \\
\theta_z R_2 &= \left(\frac{7}{2} - B_1 + \frac{\theta_z C_{zzz}}{C_{zzz}} \right) R_2.
\end{align*}
\]

(25)

Next we show $A_2, B_4, Q_4 \in I$. By the special geometry relation (1), we have

\[
A_2 = -2A_1 B_1 + 2B_1^2 + 2B_1 - 4B_2 + \frac{\theta_z (zC_{zzz})}{zC_{zzz}} (1 + A_1 + 2B_1) + h(z).
\]

(26)

Here $h(z)$ is determined by comparing the behaviour of the RHS and the LHS at $z = 0$:

\[h(z) = \frac{1 - 3 \cdot 5^4 z}{1 - 5^5 z}.
\]

Let us write the Picard–Fuchs operator as $D = \sum_{p=0}^{4} H_p(z) \theta_z^p$ where $H_p(z) \in \mathbb{C}[z]$. Since $De^{-K} = 0$, B_4 satisfies

\[
B_4 = -\sum_{p=1}^{3} \frac{H_p(z)}{H_4(z)} B_p - \frac{H_0(z)}{H_4(z)} = 0.
\]

(27)

Moreover, since T satisfies (3),

\[
Q_4 = -\sum_{p=0}^{3} \frac{H_p(z)}{H_4(z)} Q_p + \frac{60}{241} z.
\]

(28)

These together with (25) implies that I is closed with respect to the logarithmic derivation θ_z. Moreover, by applying θ_z recursively, we can show that $A_p \in I$ ($p \geq 3$), $B_p \in I$ ($p \geq 5$), $Q_p \in I$ ($p \geq 5$).

\[\Box\]

3.2. Polynomiality. For simplicity, we will use the notation

\[
V_1 = A_1 + 2B_1 + 1, \quad V_2 = B_2 - B_1 V_1
\]

(29)

from here on.

Since D_z acts on $(T_{M_{cpl}})^m \otimes \mathcal{L}^n$ as

\[
D_z = \frac{1}{z} (\theta_z + m A_1 + n B_1),
\]

we have the following

\textbf{Lemma 7.} Let f be a section of $(T_{M_{cpl}})^m \otimes \mathcal{L}^n$. Then $D_z f \in I$ if $f \in I$ and $D_z f \in \sqrt{z} I$ if $f \in \sqrt{z} I$.

\textbf{Lemma 8.} $F_n^{(g,h)} \in z^\frac{b}{2} I$.

3.3. Rewriting the extended holomorphic anomaly equation (8). There are relations among the ∂_2-derivatives of the generators (23).
Lemma 11.

\[\partial_z B_2 = V_1 \partial_z B_1 \]
\[\partial_z B_3 = (A_2 + 2A_1 + 3B_1 + 3B_2 + 3A_1B_1 + 1) \partial_z B_1 \]
\[= \left(-V_2 + \frac{\theta_z(z^3C_{zzz})}{z^3C_{zzz}} V_1 + h(z) - 1 \right) \partial_z B_1 \]
\[\partial_z Q_p = 0 \quad (p = 0, 1, 2, \ldots) \]
\[\partial_z R_2 = -R_1 \partial_z B_1 \]

Proof. The first and the second equations were obtained from (1) in [20]. The third is trivial since \(Q_p \)'s do not depend on \(z \). The calculation of \(\partial_z R_2 \) is as follows.

\[\partial_z R_2 = z^{a+1} C_{zzz} \left(\partial_z \tilde{T} + \partial_z K \cdot \tilde{T} \right) = zG_{zz} R_1 = -R_1 \partial_z B_1 \]

where we have used the identity \(G_{zz} = \partial_z \partial_z K(z, \tilde{z}) = -\partial_z B_1/z \).

If one assumes that \(\partial_z A_1 \), \(\partial_z B_1 \), \(\partial_z R_1 \) are independent, the Walcher’s extended holomorphic equation (8) is rewritten as follows.

Lemma 12. The equation (8) is equivalent to the system of PDE’s:

\[\left[-R_1 \frac{\partial}{\partial R_2} - 2 \frac{\partial}{\partial A_1} + \frac{\partial}{\partial B_1} + V_1 \frac{\partial}{\partial B_2} \right. \]
\[+ \left(-V_2 + \frac{\theta_z(z^3C_{zzz})}{z^3C_{zzz}} V_1 + h(z) - 1 \right) \frac{\partial}{\partial B_3} \right] P^{(g,h)} = 0 , \]
\[\frac{\partial P^{(g,h)}}{\partial A_1} = -\frac{1}{2} \left(\sum_{g_1+g_2=g, h_1+h_2=h} P^{(g_1,h_1)} P^{(g_2,h_2)} + P^{(g-1,h)} \right) + (B_1 Q_0 - Q_1) P^{(g,h-1)} , \]
\[\frac{\partial P^{(g,h)}}{\partial R_1} = -P^{(g,h-1)} . \]

Here the summation in (35) runs over \((g_1, h_1), (g_2, h_2)\) such that \((g_1, h_1) \neq (0, 0), (0, 1)\).

Proof. By (8), we have

\[\partial_z P^{(g,h)} = \frac{1}{2} \partial_z \left(zC_{zzz}S_{zz} \right) \left(\sum_{g_1+g_2=g, h_1+h_2=h} P^{(g_1,h_1)} P^{(g_2,h_2)} + P^{(g-1,h)} \right) \]
\[- \partial_z \left(z^3 C_{zzz} \Delta \right) \cdot P^{(g,h-1)} . \]

Note that, by (31)(33),

\[\partial_z (zC_{zzz}S_{zz}) = -(\partial_z A_1 + 2\partial_z B_1) , \]
\[\partial_z (z^3 C_{zzz} \Delta) = -(\partial_z A_1 + 2\partial_z B_1) (-Q_1 + B_1 Q_0) + \partial_z R_1 . \]

On the other hand, by (33), \(\partial_z \) in the LHS is as follows:

\[\partial_z = \partial_z R_1 \frac{\partial}{\partial R_1} + \partial_z A_1 \frac{\partial}{\partial A_1} + \partial_z B_1 \left[-R_1 \frac{\partial}{\partial R_2} + \frac{\partial}{\partial B_1} + V_1 \frac{\partial}{\partial B_2} \right. \]
\[+ \left(-V_2 + \frac{\theta_z(z^3C_{zzz})}{z^3C_{zzz}} V_1 + h(z) - 1 \right) \frac{\partial}{\partial B_3} . \]
Inserting these and comparing the coefficients of $\partial_z A_1, \partial_z B_1, \partial_z R_1$, one obtains Lemma 12.

To write the equations in a more useful form, we change the generators. We define

$$
u = B_1, \quad v_1 = V_1 + \frac{3}{5}, \quad v_2 = V_2 + \frac{2}{25},
$$

$$v_3 = B_3 - B_1 \left(-V_2 + \frac{\theta_z(z^3C_{zzz})}{z^3C_{zzz}} V_1 + h(z) - 1 \right) + s(z),$$

(37)\[m_1 = \frac{2}{25} Q_0 + \frac{3}{5} Q_1 + Q_2 - R_1, \]

$$m_2 = Q_0 \left(s(z) - \frac{2}{25} \theta_z(z^3C_{zzz}) \right) + Q_1 \left(\frac{23}{25} - h(z) \right) - Q_2 \frac{\theta_z(z^3C_{zzz})}{z^3C_{zzz}} + Q_3 - R_2 - B_1 R_1,$$

where

$$s(z) = \frac{12}{25} - \frac{1}{5} h(z) + \frac{3}{25} \frac{\theta_z(z^3C_{zzz})}{z^3C_{zzz}}.$$\[(38) \]

Define the ring

$$J := \mathbb{C}(z)[u, v_1, v_2, v_3, Q_0, Q_1, Q_2, Q_3, m_1, m_2].$$

It is isomorphic to I since (37) is invertible. Notice that $\theta_z : J \to J$ increases the degree in u at most by 1.

Now we regard $P^{(g,h)} \in J$. Then (34) implies $P^{(g,h)}$ is independent of u. In turn, $P^{(g,h)}_n \in J$ has degree at most n in u. Following [12, (3-4.3)], let us define u-independent polynomials $Y_0, Y_1, W_0, W_1, W_2 \in J$ by

$$Y_0 + u Y_1 = P^{(g,h-1)}_1,$$

$$W_0 + uW_1 + u^2 W_2 = \text{(the RHS of (35))}.$$\[(39) \]

Then applying the change of generators (37) to the equations (34)(35)(36), we obtain

Theorem 13. The equation (8) is equivalent to the following system of PDE’s for $P^{(g,h)} \in J$:

$$\frac{\partial}{\partial u} P^{(g,h)} = 0,$$

(40)\[\frac{\partial}{\partial m_1} P^{(g,h)} = Y_0, \quad \frac{\partial}{\partial m_2} P^{(g,h)} = Y_1, \]

$$\frac{\partial}{\partial v_1} P^{(g,h)} = W_0, \quad \frac{\partial}{\partial v_2} P^{(g,h)} = -W_1 + \frac{\theta_z(z^3C_{zzz})}{z^3C_{zzz}} W_2, \quad \frac{\partial}{\partial v_3} P^{(g,h)} = -W_2.$$\[(40) \]

Let us comment on the constant of integration. Decompose $P^{(g,h)}$ as

$$P^{(g,h)} = \hat{P}^{(g,h)} + P^{(g,h)}|_{v_1,v_2,v_3,m_1,m_2=0},$$

where $\hat{P}^{(g,h)}$ consists of terms of degree ≥ 1 with respect to at least one of v_1, v_2, v_3, m_1, m_2. The equations (40) can determine $\hat{P}^{(g,h)}$, but not the second term. The latter is a priori
a polynomial in Q_0, Q_1, Q_2, Q_3 with $\mathbb{C}(z)$ coefficients. However, the choice of the new generators (37) is “good” (cf. [12, (3-4.d)]) so that we have the following

Proposition 14.

$$P^{(g,h)}|_{v_1,v_2,v_3,m_1,m_2=0} = (z^3C_{zzz})^{g+h-1}z^{\frac{h}{2}}f^{(g,h)}.$$

Proof. We have

$$S^{zz} = \frac{v_1}{zC_{zzz}}, \quad S^z = \frac{uv_1 + v_2}{z^2C_{zzz}},$$

$$S = \frac{1}{z^4C} \left[- \frac{1}{2} u^2 v_1 - \left(u + \frac{5}{2} \frac{z}{1-5z} \right) v_2 + \frac{v_3}{2} \right],$$

$$\Delta^z = \frac{1}{z^2 C_{zzz}} (-m_1 + Q_1 v_1 + Q_0 v_2),$$

$$\Delta = \frac{1}{z^2 C_{zzz}} \left[um_1 - m_2 - uQ_0 v_1 - v_2 \left(uQ_0 + \frac{5}{1-5z} Q_0 + Q_1 \right) + Q_0 v_3 \right].$$

Notice that every monomial term in the propagators S^{zz}, S^z, S and the terminators Δ^z, Δ contains at least one of v_1, v_2, v_3, m_1, m_2. Therefore the Feynman diagram part $\mathcal{F}^{(g,h)}_{FD}$ of $\mathcal{F}^{(g,h)}$ has degree at least one with respect to one of v_1, v_2, v_3, m_1, m_2 by (19)(20). This implies that the first term in the RHS of

$$P^{(g,h)} = (z^3C_{zzz})^{g+h-1}z^{\frac{h}{2}}\mathcal{F}^{(g,h)}_{FD} + (z^3C_{zzz})^{g+h-1}z^{\frac{h}{2}}f^{(g,h)}$$

vanishes as v_1, v_2, v_3, m_1, m_2 go to zero. This proves the proposition.

\[\square\]

4. Fixing holomorphic ambiguity and $n^{(g,h)}_d$

Let $\omega_0(z), \omega_1(z), \omega_2(z), \omega_3(z)$ be the following solutions to the Picard–Fuchs equation $D\omega = 0$ about $z = 0$.

$$\omega_i(z) = \partial^j \left(\sum_{n \geq 0} \frac{(5\rho+1)_{5n}}{(\rho+1)n!} z^{n+\rho} \right) \bigg|_{\rho = 0}.$$

Let $t = \omega_1(z)/\omega_0(z)$ be the mirror map and consider the inverse $z = z(q)$ where $q = e^t$. Explicitly, these are

$$\omega_0(z) = 1 + 120z + 113400z^2 + \cdots,$$

$$\omega_1(z) = \omega_0(z) \log z + 770z + 810225z^2 + \cdots,$$

$$t = 770z + 717825z^2 + \frac{3225308000}{3} z^3 + \cdots,$$

$$z = q - 770q^2 + 171525q^3 + \cdots.$$

Let

$$F^{(g,h)}_A = \lim_{z \to 0} \mathcal{F}^{(g,h)}(z) \omega_0(z)^{2g+h-2},$$

(41)
for \((g, h)\) satisfying \(2g + h - 2 > 0\).\(^6\) The limit \(\bar{z} \to 0\) in the RHS means

\[
G_{zz} \to \frac{dt}{dz}, \quad e^K \to \omega_0(z), \quad \Delta_{zz} \to D_z D_z T.
\]

Define \(n_{d}^{(g,h)}\) for \(h > 0\)\(^7\) by the formula [15] [14] [19, (3.22)]:

\[
\begin{aligned}
\text{the terms in positive powers in } q \text{ of } & \sum_{g=0}^{\infty} g_s 2^{g+h-2} F_A^{(g,h)} \\
&= \sum_{g=0}^{\infty} \sum_{d} \sum_{k} n_{d}^{(g,h)} \frac{1}{k} \left(2 \sin \frac{k g_s}{2}\right)^{2^{g+h-2}} q^{kd}.
\end{aligned}
\]

Here the summation of \(k\) is over positive odd integers and that of \(d\) is over positive even (resp. odd) integers when \(h\) is even (resp. odd).

Remark 15. It is expected that \(F_A^{(g,h)}\) is the \(A\)-model topological string amplitude of genus \(g\) with \(h\) boundaries for the real quintic 3-fold \((X, L)\), and that \(n_{d}^{(g,h)}\) be the BPS invariants in the class \(d \in H_2(X, L; Z)\). See [7, 21] for \((g, h) = (0,0), (1,0)\) and [18, 16] for \((g, h) = (0,1)\).

In order to fix the holomorphic ambiguity, we put the following assumptions.

(i) If \(h\) is even, the \(q\)-constant term in \(F_A^{(g,h)}\) vanishes except for \((g, h) = (0,2)\).

(ii) \(n_{d}^{(g,h)} = 0\) for \(d \leq d_0\) where \(d_0\) is the smallest number necessary to completely determine unknown parameters in \(f^{(g,h)}\). For example, \(d_0 = 3\) for \((g, h) = (0,3), (1,1)\),

\(d_0 = 6\) for \((g, h) = (1,2), (0,4)\) and \(d_0 = 9\) for \((g, h) = (1,3), (0,5)\).

The numbers \(n_{d}^{(g,h)}\) obtained under these assumptions are listed in Tables 1 and 2.

Remark 16. The boundary conditions proposed in [19] are the condition (i) and the condition that

\[
(43) \quad n_{d}^{(g,h)} = 0 \text{ if } n_{d}^{2g+h-1} = 0
\]

These do not give enough equations to fix the unknown parameters of \(f^{(g,h)}\), unless \((g, h) = (0,1), (0,2), (0,3), (1,1)\). For this reason we assumed (ii) instead of (43).

Remark 17. For the cases listed in Tables 1 and 2, \(n_{d}^{(g,h)}\) turn out to be integers. However, for \((g, h) = (0,7), (1,5), (2,1)\), the holomorphic ambiguities determined by our assumptions do not give integral \(n_{d}^{(g,h)}\)’s.

\(^6\)For \((g, h) = (0,0), (1,0), (0,1), (0,2)\), one should consider

\[
\partial^n_{t} F_A^{(g,h)} = \left(\frac{dz}{dt}\right)^n \lim_{\bar{z} \to 0} F_A^{(g,h)}(t) \omega_0^{2g+h-2}
\]

where \(n = 3, 1, 2, 1\), respectively.

\(^7\)For \(h = 0\), the BPS number \(n_d^0\) is defined by [8]

\[
\sum_{g=0}^{\infty} g_s 2^{g-2} F_A^{(g,0)} = \sum_{g=0}^{\infty} \sum_{d>0} \sum_{k>0} n_{d}^{1/k} \left(2 \sin \frac{k q_s}{2}\right)^{2g-2} q^{kd} + \text{polynomial in } \log q.
\]
Table 1. $n_d^{(g,h)}$ for $(g,h) = (0,4), (0,5), (0,6)$

<table>
<thead>
<tr>
<th>d</th>
<th>$n_d^{(0,4)}$</th>
<th>$n_d^{(0,5)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>-307669500</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>-1290543544800</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>-4192442370526500</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>-11974312128284645400</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>-31709386561589633978460</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>$-79870219101822591783739800$</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>$-194146223749422074623095454800$</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>10969992383850000</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>88807052603386080000</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>453871851092663617206000</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>$1856308715086126538509560000$</td>
<td>0</td>
</tr>
</tbody>
</table>

Remark 18. As a final remark, let us comment on the expansion about the conifold point $z = \frac{1}{5\pi}$. By expanding $\mathcal{F}^{(0,4)}$ about $z = \frac{1}{5\pi}$, we see that there is no gap condition such as the one found in [13, (1.2)]. On the other hand, if one imposes the gap condition to $\mathcal{F}^{(0,4)}$ instead of $n_6^{(0,4)} = 0$, then the integrality of $n_d^{(0,4)}$’s does not hold.

Appendix A. Examples of Feynman diagrams

Feynman diagrams for $\mathcal{F}_{FD}^{(0,3)}$ and $\mathcal{F}_{FD}^{(1,1)}$ have been given in eqs. (2.109) and (2.108) of [19] respectively ($\#G(0,3) = \#G(1,1) = 4$). For $(g,h) = (0,4)$, we have $\#G(0,4) = 19$. See Fig. 3. It is clear that the number of Feynman diagrams grows rapidly as g and h increase. For example, one can check that $\#G(0,5) = 83$, $\#G(1,2) = 29$, $\#G(2,1) = 97$.
<table>
<thead>
<tr>
<th>d</th>
<th>$n_d^{(1,1)}$</th>
<th>d</th>
<th>$n_d^{(1,2)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>-222535</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>-472460880</td>
<td>8</td>
<td>-1798092240</td>
</tr>
<tr>
<td>9</td>
<td>-970639017980</td>
<td>10</td>
<td>-391089328975</td>
</tr>
<tr>
<td>11</td>
<td>-1925950714205525</td>
<td>12</td>
<td>-3254492224834500</td>
</tr>
<tr>
<td>13</td>
<td>-3771152449472734885</td>
<td>14</td>
<td>11749281716111889000</td>
</tr>
<tr>
<td>15</td>
<td>-7341083828377813352445</td>
<td>16</td>
<td>7585803372459666836250</td>
</tr>
<tr>
<td>17</td>
<td>$-14254813486499789264497980$</td>
<td>18</td>
<td>284100639663878543462155290</td>
</tr>
<tr>
<td>19</td>
<td>$-27655486644196368361422400900$</td>
<td>20</td>
<td>881568399267730913608111758000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d</th>
<th>$n_d^{(1,3)}$</th>
<th>d</th>
<th>$n_d^{(1,4)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>59476704611850</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>376498723243912410</td>
<td>14</td>
<td>-510835096894879500</td>
</tr>
<tr>
<td>15</td>
<td>1597793312432171312570</td>
<td>16</td>
<td>-4625213168889849497100</td>
</tr>
<tr>
<td>17</td>
<td>56230269250477655418000</td>
<td>18</td>
<td>$-26075494174267321098602160$</td>
</tr>
<tr>
<td>19</td>
<td>17697465511801448466779111250</td>
<td>20</td>
<td>$-116382815077174964736448167150$</td>
</tr>
</tbody>
</table>

Table 2. $n_d^{(g,h)}$ for $(g, h) = (1,1), (1,2), (1,3), (1,4)$

APPENDIX B. $f^{(0,4)}$ AND $P^{(0,4)}$

$$f^{(0,4)} = \frac{2 - 20125z + 7061875z^2 - 86493078125z^3}{10000(1 - 3125z)^2}.$$
Figure 3. The elements G in $G(0,4)$ and the orders of A_G. The vertices are expressed as bordered Riemann surfaces to visualize the labeling.
\[+ m_1 \left(\frac{375 \cdot z^2 \cdot Q_0}{2(-1 + 3125 \cdot z)^2} - \frac{5 \cdot z \cdot Q_1}{2(-1 + 3125 \cdot z)} + m_2 \cdot Q_0 \cdot Q_1 \right) + m_1^2 \left(\frac{9 \cdot Q_0 \cdot Q_1}{10} - \frac{Q_1^2}{2} \right) - m_1 \cdot Q_0^2 \cdot Q_1 \cdot v_3 \]
\[+ v_2 \cdot \left(\frac{-375 \cdot z^2 \cdot Q_0^2}{4(-1 + 3125 \cdot z)^2} + \frac{3 \cdot m_1^2 \cdot Q_0^2}{4} + \frac{5 \cdot z \cdot Q_0 \cdot Q_1}{2(-1 + 3125 \cdot z)} - \frac{m_2 \cdot Q_0^2 \cdot Q_1}{2} \right) \]
\[+ m_1 \left(\frac{\left(-9 + 43750 \cdot z \cdot Q_0^2 \cdot Q_1^2\right)}{10(-1 + 3125 \cdot z)} + \frac{Q_0 \cdot Q_1^2}{2} + \frac{Q_0^2 \cdot Q_1 \cdot v_3}{2} \right) \]
\[+ v_1 \cdot \left(\frac{m_1^2 \cdot Q_1}{2} - \frac{\left(2 - 9500 \cdot z + 16015625 \cdot z^2\right) \cdot Q_1^2}{20(-1 + 3125 \cdot z)} + \frac{\left(9 + 12500 \cdot z\right) \cdot m_1^2 \cdot Q_1^2}{20(-1 + 3125 \cdot z)} \right) \]
\[+ m_1 \left(\frac{375 \cdot z^2 \cdot Q_1}{2(-1 + 3125 \cdot z)^2} + \frac{m_2 \cdot Q_0^2}{2} \right) + \left(\frac{3 \cdot m_1^2 \cdot Q_0^2}{2} + \frac{\left(-9 + 43750 \cdot z\right) \cdot Q_0^2 \cdot Q_1^2}{20(-1 + 3125 \cdot z)} - \frac{Q_0 \cdot Q_1^3}{2} \right) \]
\[- \frac{Q_0^3 \cdot Q_1 \cdot v_3}{2} - m_2 \cdot Q_0 \cdot Q_1^2 \cdot v_3 \cdot v_1 \cdot \left(\frac{-375 \cdot z^2 \cdot Q_0 \cdot Q_1}{2(-1 + 3125 \cdot z)^2} - \frac{3 \cdot m_1^2 \cdot Q_0 \cdot Q_1}{2} + \frac{5 \cdot z \cdot Q_1^2}{4(-1 + 3125 \cdot z)} \right) \]
\[- \frac{m_2 \cdot Q_0 \cdot Q_1^2}{2} + m_1 \left(\frac{-9 \cdot Q_0 \cdot Q_1^2}{10} + \frac{Q_1^3}{2} \right) + \frac{Q_0^2 \cdot Q_1^2 \cdot v_3}{2} \cdot v_1 \).

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8914 Japan

E-mail address: konishi@ms.u-tokyo.ac.jp

Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo 060-0810, Japan

E-mail address: minabe@math.sci.hokudai.ac.jp