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Abstract

The morphological stability of a growing faceted crystal is discussed. It has been ex-
plained that the interplay between nonuniformity in supersaturation on a growing facet and
anisotropy of surface kinetics derived from the lateral motion of steps leads to a faceted
instability. Qualitatively speaking, as long as the nonuniformity in supersaturation on the
facet is not too large, it can be compensated by a variation of step density along the facet
and the faceted crystal can grow in a stable manner. The problem can be modeled as a
Hamilton-Jacobi equation for height of the crystal surface. The notion of a maximal stable
region of a growing facet is introduced for microscopic time scale approximation of the
original Hamilton-Jacobi equation. It is shown that the maximal stable region keeps its
shape, determined by profile of the surface supersaturation, with constant growth rate by
studying large time behavior of solution of macroscopic time scale approximation. As a
result, a quantitative criterion for the facet stability is given.
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1 Introduction
We are preoccupied with the morphological stability of a growing faceted crystal. In order
to put our task in a broader prospective we may say that we work within a Burton-Cabrera-
Frank type model[1]. A modern derivation of a hierarchy of such models was done by E
and Yip, [2], who obtained a Hamilton-Jacobi equation essentially the same as our (2.4).
While the papers like [2, 3, 4, 5] and other ones deal with the behavior of the whole growing
crystal treating peaks as rarefaction waves and valleys as shocks, we concentrate on a single
fixed peak – a corner which is a step source with a constant in time vertical growth rate.
We apply the approach as in Chernov’s work [6] to study the morphological stability of a
growing faceted crystal in which the interplay between nonuniformity in supersaturation
on a growing facet and anisotropy of surface kinetics derived from the lateral motion of
steps leads to a faceted instability, i.e., the preferred growth of corners and edges of the
faceted crystal, [7, 8, 9, 10]. We may summarize the conclusion of these articles by saying
that as long as the nonuniformity in supersaturation on the facet is not too large, it can
be compensated by a variation of step density along the facet and the faceted crystal can
grow in a stable manner. However, there is no study how the compensating distribution
of steps in time along the surface develops from an initial plane under nonuniformity in
supersaturation.

The molecularly smooth surfaces cannot grow without the surface kinetic processes,
such as the lateral motion of steps and the generation of steps. The surfaces of a growing
polyhedral crystal inclined by a local slope p from the singular face, which is molecularly
smooth, are composed of a parallel array of steps that are distributed with a mean step
separation λ = d/p, where d is the step height. The dimensionless growth speed V in the
direction normal to such a surface is generally expressed using the surface supersaturation
σ and the dimensionless kinetic coefficient m(p) as [1, 7]

V = m(p)σ ,

m(p) =
p

ps
tanh(

ps

p
) , (1.1)

ps = d/2xs ,

where xs is the mean surface diffusion distance of a molecule on the surface, so ps is a
criterion of local slope, generally, the order of ps is 10−2.

The kinetic coefficient m in the form of (1.1) is valid outside the region where there
are no step sources. At the step source we postulate that the position of the surface at
supersaturation σ0 moves upward with speed:

V0 = s(σ0) tanh(
1

s(σ0)
) σ0 , (1.2)

where s(σ0) is the local slope of a growth hillocks formed by a two-dimensional nucleation
or with the aid of screw dislocations. The functional form of s(σ0) depends on the growth
mechanism, i.e., two-dimensional nucleation growth or spiral growth with the aid of screw
dislocations or [11].

Now, we describe our setting: we take a cross-section orthogonal to the edge of the
surface and denote it by an interval (0, L) where the step source is located at the origin. We
consider a quasi-steady situation when the supersaturation equilibrates much faster com-
pared to the motion of the steps. Moreover, in order to simplify the problem and avoid the
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unnecessary difficulties related to solving the diffusion equation we assume that the super-
saturation σ is a given function. Its main property is due to Berg’s effect[12] [13], i.e., σ
is a decreasing function of the distance along the crystal from the origin. We consider a
continuum limit of the step motion (see [2, 5, 7, 8, 9, 10]) this yields a Hamilton-Jacobi
equation for the height of crystal over initially flat surface, see (2.4). In fact, this is a first
order partial differential equation which describes a nonlinear step flux conservation.

Our main results imply that there exists a region of stable growth, i.e., macroscopically
flat region (0, xc), where xc is a critical point so that the crystal shape in (0, xc) is asymp-
totically translation of a fixed profile with the same growth rate at the origin. The critical
point xc depends on σ. If σ is constant, we may set xc = L for any L. In this case any flat
crystal surface stays macroscopically flat and it is stable no matter how large the crystal is.

What we do here is we solve the resulting equation numerically as well as we perform
its rigorous theoretical analysis. In order to solve (2.4), we apply two methods: 1) we solve
numerically the characteristics equation and 2) we solve (2.4) directly by using upwind
differencing.

Our theoretical analysis is based on the introduction of fast time scale (later we will call
it the microscopic time scale) related to a microscopic length parameter, ε ≈ ps, called the
criterion of the local slope. We are able to link the full model (2.4) with ε appearing in the
Hamiltonian Hε to the microscopic time model (3.3) by the theory of viscosity solutions.
Moreover, the problem of studying the asymptotics when ε goes to zero is replaced by the
time asymptotics for (3.3), which is a fast growing subject. Interestingly, the situation we
consider is not covered by the setting considered in [14, 15].

Moreover, we are able to justify rigorously the criterion of stable growth by Chernov,
[7]. Our results show that the asymptotic behavior of local step density can be determined
by the variation of reciprocal of supersaturation under the conditions of stability in the
region x < xc. There is, however, another approach to the problem of the stable growth of
crystals, which is based upon the energetic approach. Rigorous results in this directions can
be found in [16]. It would be very interesting to compare the respective notions of stable
growth and the predictions about the size of stable facets.

The layout of this paper is as follows: in Section 2, we describe in detail the problem
of growing faceted crystal under a given supersaturation. In Section 3, we introduce the
microscopic time approximation and we justify the relation to the full model. in Section
4, we show explicit solution which lead to Chernov’s stability criterion. In Section 5, we
present the numerical results.

2 Growth rate equations based on step motion
We begin by considering a cross section of growing faceted crystal of length L. The in-
terface of the growing facet is given by the function z = u(x, t), where x and z are the
coordinates parallel and normal to the facet, respectively, t is time, and the origin is at the
left end of facet, where a step source is located. The local slope, p, is expressed by the
partial derivative of u with respect to x and the growth rate perpendicular to x–axis, ut, the
partial derivative of u with respect to t.

The normal growth rate at the surface is given by

V (x, t) = m(p)σ(x) ,

where σ(x) is the supersaturation on the surface at point x and m(p) is a kinetic coefficient
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which depends on the step density i.e., local slope p. It is, however, less convenient to work
with V than with ut, the growth rate perpendicular to x–axis. The shear geometry of the
problem yields

ut = m(ux)
√

1 + u2
x σ(x) with p = ux. (2.1)

After specifying the growth rate of the step source using (1.2), the boundary condition at
x = 0 becomes

u(0, t) = ct ,

c =
σ0

ε
tanh(

ε

σ0
) σ0 (2.2)

and we assume that the initial crystal surface is flat,

u(x, 0) = 0 . (2.3)

The growth speed c equals V0 defined in (1.2), where s(σ0) is taken so that s(σ0) = σ0/ε.
Thus, in fact (2.1) is in fact a Hamilton-Jacobi equation, whose Hamiltonian depends

upon ε, because of (2.2):
ut + Hε(x, ux) = 0. (2.4)

We consider two cases of the Hamiltonian Hε, where the kinetic coefficient m(p) =
p tanh(1

p) is suggested by [8, 9, 10]. Namely, we study

(i) H1
ε (x, p) = −m(p

ε )
√

1 + p2 σ(x), (ii) H2
ε (x, p) = −m(p

ε ) σ(x) ,

where the superscript of H is a mark to distinguish between (i) and (ii). The parameter ε
appearing in the last example is the criterion of the local slope. In our numerical study, we
use the following equation for σ(x),

σ(x) = σ0(1 − x2)+, σ0 > 0, (2.5)

where the length is scaled by L and subscript of + denotes the positive part.
The theoretical analysis of (2.4) augmented with the boundary (2.2) and initial con-

ditions (2.3) is performed in Sections 3 and 4. In Section 5 we solve numerically equa-
tion (2.4) from the point of view of both 1) the method of characteristics for (2.4) with a
Hamilton-Jacobi system of ordinary differential equations and 2) the conservation equation
of step flux for (2.4).

3 The microscopic time scale approximation
We consider the initial-boundary problem of the form,

uε
t + Hε(x, uε

x) = 0, x > 0, t > 0, (3.1)

uε(0, t) = ct, t > 0 and uε(x, 0) = 0, x > 0 (3.2)

with Hε = H1
ε given by (i), m as above and c is a given positive constant smaller than

σ0 = σ(0). In this and next Sections we shall not make any reference to this particular
definition of, but we will use that c < σ(0).
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We approximate the solution uε of (3.1)–(3.2) by introducing a new time variable (the
fast time variable or the microscopic time variable) τ = t/ε so that

uε(x, ετ) = εv(x, τ) + o(ε) as ε → 0.

By replacing τ by t, we see that formally v solves

vt + H(x, vx) = 0, (3.3)

v(0, t) = ct , v(x, 0) = 0 (3.4)

with
H(x, p) = −m(p)σ(x) ≡ H2

ε=1.

We call system (3.3)–(3.4) the microscopic time scale approximation of (3.1)–(3.2). Below,
we will present a rigorous argument why (3.3)–(3.4) is indeed an approximation to (3.1)–
(3.2). In the next section we shall see that both problems (3.1)–(3.2) and (3.3)–(3.4) admit
a C1 solution which is a unique viscosity solution, so we simply say it is a solution. The
reader is referred to [17] and [18] for a general theory of viscosity solutions.

Theorem 3.1 Let uε be the solution of (3.1)–(3.2) and v be the solution of the microscopic
time approximation i.e. (3.3)–(3.4). We assume that σ is a nonnegative decreasing Lipschitz
continuous function and 0 < c < σ0 = σ(0). Then,

vε(x, t) = ε−1uε(x, εt)

converges to v uniformly on every compact set of [0,∞) × [0,∞).

Sketch of the proof. A direct computation shows that vε satisfies

vt + Hε(x, vx) = 0 , v(0, t) = ct , v(x, 0) = 0 (3.5)

with Hε(x, p) = −m(p)σ(x)
√

1 + (εp)2. We shall construct sub- and supersolutions of
(3.5), which are independent from ε.

It is easy to notice that
v+(x, t) = ct

is a supersolution of (3.5) satisfying the initial and boundary conditions. It is clear that
v0 ≡ 0 is a subsolution but the boundary condition is not fulfilled. Since we have assumed
that c < σ0 = σ(0), there is a unique negative value p0 such that m(p0) = c/σ0. We set

v1(x, t) = ctσ(x)/σ0 + p0x

and observe that v1 is a subsolution of (3.5) satisfying the boundary condition but not the
initial condition. Indeed,

v1t + Hε(x, v1x) = cσ(x)/σ0 + Hε(x, ctσ′(x)/σ0 + p0) ≤ cσ(x)/σ0 + H(x, p0) = 0

because of monotonicity of m, as well as of positivity of m and σ. We now set

v−(x, t) = max(v0, v1) = max(0, ctσ(x)/σ0 + p0x)
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and observe that v− is a viscosity subsolution of (3.5) satisfying the initial and boundary
conditions. At the same time we recall that the supremum of a family of viscosity subsolu-
tions is again a viscosity subsolution [18, Lemma 2.4.1].

By a simple comparison theorem (see eg. [17, Theorem 3.3]) of viscosity solutions of
evolution equations, we observe that

v− ≤ vε ≤ v+ in [0,∞) × [0,∞).

If one takes a relaxed limit

v = lim sup∗vε , v = lim inf∗vε,

we observe that v is a viscosity subsolution and that v is a viscosity supersolution. This is
so by stability results, e.g., [18, Theorem 2.2.1], because Hε → H as ε → 0. The estimate
by v± yields that v− ≤ v ≤ v ≤ v+.

By the comparison theorem, we see that v ≤ v which yields v = v(:= v). This
function is a unique viscosity solution of (3.3)–(3.4). This property v = v implies that
vε converges to the unique viscosity solution of (3.3)–(3.4) locally uniformly in [0,∞) ×
[0,∞). (This technique to deduce convergence without estimating derivatives is due to
Barles and Perthame [19], [20] and Ishii [21]; see also [18, Section 4.6]).

Remark 3.1 The convergence result, (Theorem 3.1), can be easily extended to deal with
more general H

ε and H . For example, it is enough to assume that

(i) Hε ≤ H ≤ 0, (ii) p 7→ H(x, p) is nondecreasing
(iii) Hε(x, 0) = 0, (iv) H(0, p) + c = 0 has a negative solution p = p0

to be able to construct a sub- and supersolution of (3.4) (independent of ε) satisfying the
initial and boundary condition. Indeed, if we define v1 as

v1(x, t) = ctH(x, p0) / H(0, p0) + p0x,

then v− and v+ are still the desired sub- and supersolutions.

4 Explicit forms of solutions
We shall show that the method of characteristics gives an explicit form of solutions of
both (3.1)–(3.2) and its microscopic time scale approximation (3.3)–(3.4). It turns out that
at least near x = 0, the profile of the solution is independent of time. It is of the form
ct + b(x). Obviously, the substitution into the equation yields the relation c + H(x, p) = 0
for p = bx. This leads to another important critical value xc for H in (3.3) apart from xe the
smallest zero of σ; (we shall assume that xe = 1 in order to simplify the notation). Namely,
we set

xc = sup{x > 0| c + H(x, p) = 0 for some p < 0}. (4.1)

We call the interval (0, xc), the maximal stable region of a facet. Since we have assumed
0 < c < σ0 = σ(0), this region is non-empty. Moreover, xc < 1 for H defined by (ii),
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because by the definition of σ the supersaturation vanishes for x ≥ 1. If instead, one defines
xc for H1

ε , then it is clear that xc = 1, because m(p/ε)(1 + p2)1/2 is unbounded.
If q(x) is the unique negative solution of c+H(x, q) = 0, then our explicit formula for

a solution of (3.3) is as follows,
ct + b(x),

where b(x) =
∫ x
0 q(ρ)dρ. This function is well-defined in (0, xc), however it does not

satisfy the initial condition (3.4)2. Thus, our convergence result, Theorem 3.1, says that the
solution of (3.1)-(3.2) behaves like ct + b(x) for large time.

Let us now look at the explicit formula from the view point of the theory of character-
istics. We recall that a Hamilton-Jacobi system of ordinary differential equations for (3.3)
is

dx

dt
= Hp(x, p), (4.2)

dp

dt
= −Hx(x, p). (4.3)

Since function H is constant along the characteristics, i.e., on solution (x(t), p(t)) of (4.2)–
(4.3), thus, by the definition of q(x), we deduce that p(t) = q(x(t)) for t ≥ t0. Moreover,
c + H(0, p(t0)) = 0 for t0 ≥ 0 provided that x(t0) = 0.

This implies that the function below

v(x, t) = ct +
∫ x

0
q(ρ)dρ for 0 < x < X1(t),

is a solution of (3.3). Here x = X1(t) fulfills

dx

dt
= Hp(x, q(x)), x(0) = 0. (4.4)

We note that X1(t) ↑ xc as t → ∞.
On the other hand, it is easy to describe the characteristic starting from t = 0, x > 0,

because by (4.3) and the initial condition (3.2)2 we have p(0) = 0. Thus, we conclude that
p(t) ≡ 0. Hence, x(t) is a solution of

dx

dt
= Hp(x, 0) , t > 0 (4.5)

with x(0) = x0 ∈ (0, 1). It is clear that x(t) ↑ 1 as t → ∞, where x = 1 = xe is a unique
equilibrium of the system for x ≤ 1.

Now, we define x = X0(t) as a unique solution of (4.5) with X0(0) = 0. Thus, the
family of all solution (4.5) for x(0) > 0 sweeps all the region X0(t) < x < 1. Finally,

v(x, t) = 0 for X0(t) < x

since for x ≥ 1 we have trivially σ ≡ 0 and as a result v ≡ 0.
Interestingly, there is a gap between X1(t) and X0(t) i.e., X1(t) < X0(t) for t > 0.

This region corresponds to the rarefaction region. It is covered by a monotone family of
x = x(t, r) with respect to r ∈ (q(0), 0), where x = x(t, r) solves (4.2)–(4.3), with
x(0) = 0, p(0) = r. The value v(x(t, r), t) is implicitly determined by

dv

dt
= −H(x(t), p(t)) + p(t)Hp(x(t), p(t)), v(0) = 0.
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By the continuous dependence of initial data, we see that the slope of v is continuous in
x and t so this gives a unique C1 solution of (3.3)–(3.4). The same argument applies to
(3.1)–(3.2), even in the case xc = 1.

We summarize what we obtained.

Theorem 4.1 Assume that σ(x) is a nonnegative decreasing Lipschitz continuous function
which is smooth, except possibly the point xe = 1. The unique C1 solution v of (3.3)–(3.4)
with H = H2

ε=1 is of the form

v(x, t) = ct +
∫ x

0
q(p) dp , for 0 < x < X1(t) ,

v(x, t) = 0 , for X0(t) ≤ x ,

where X1 is a solution of (4.4) and X0 solves (4.5) with X0(0) = 0. The function X1(t) ↑
xc and X0(t) ↑ 1 as t → ∞. Moreover, X1(t) < X0(t) for t > 0.

Remark 4.1 If c ≥ σ(0), then the whole region 0 < x < X0(t) is the rarefaction region
for (3.3)–(3.4). The solution constructed by the method of characteristic does not achieve
the boundary condition in classical sense. However, it is still a viscosity solution of (3.3)–
(3.4).

Remark 4.2 Our results now give a clear view of the solution of (3.1)–(3.2) with small ε.
By Theorem 3.1 and Theorem 4.1 we have

u(x, t) = εv(x, t/ε) + o(ε)
= ε(ct/ε + b(x)) + o(ε)
= ct + εb(x) + o(ε) ,

for x ∈ (0, X1(t/ε)) as ε → 0 for t = O(ε) where

b(x) =
∫ x

0
q(p)dp .

Roughly speaking, u(x, t) is flat up to order ε in the region (0, xc). Outside this region u,
cannot attain the speed c.

We note here that, if we have a solution to (2.4) in the form given by the above Theorem,
i.e.,

u(x, t) = V0t + b(x) ,

then we can have
V0 = m(bx)

√
1 + b2

x σ(x) ,

where bx is a local slope. When bx ¿ 1, this expression is the same criterion of stable
growth of polyhedral crystal as that of Chernov [7],

V0 = m(gx) σ(x) .

We emphasize that this equation is only valid in the region 0 ≤ x < xc, where xc is a
critical length to be determined by (4.1).

8



5 Numerical results
In this section, we solve numerically equation (2.4) having the form of supersaturation
(2.5) under the conditions of (2.2) and (2.3). In our calculations we take c as in (2.2). For
simplicity, we take the ratio of ε to σ0 equal to one, so that c/σ0 = tanh(1).

5.1 Method of characteristics for a Hamilton-Jacobi system
The characteristic curves in the (x, t)-plane for the Hamilton-Jacobi system for (2.4) are
numerically obtained by the ordinary differential equations (4.2) and (4.3) as shown in
Figures 1, 2, 3 and 4 for four different values of σ0 = ε = 1.0, 0.1, 0.01 and 0.001,
respectively. Figures 1(a), 2(a), 3(a) and 4(a) correspond to the case (i) of the Hamiltonian,
while simulation for the microscopic time approximation (i.e., the case of (ii)) are shown
in Figures 1(b), 2(b), 3(b) and 4(b). The characteristic curves starting from the ordinate
axis, x = 0, are obtained by solving simultaneously both (4.2) and (4.3) using the forth-
order Runge-Kutta method [22] and are plotted with solid curves at equal intervals of time
beginning with t = 0.

Figures 1, 2, 3 and 4, except Figure 3(c), also show the characteristic curves plotted in
dashed lines with local slope p = 0 from the abscissa axis, t = 0, at equal intervals of space
beginning with x = 0.1, and the characteristic curve plotted in dash-dotted lines starting
from the origin has a constant local slope p given by c + H1

ε (0, p) = 0 in Figures 1(a), 2(a),
3(a) and 4(a), and p given by c + H2

ε (0, p) = 0, i.e., p = σ0 in Figures 1(b), 2(b), 3(b) and
4(b). As time increases, these characteristic curves approach x = 1, where σ(1) = 0. All
figures, except Figure 1(a), display the rarefaction region between the characteristic curve
from the origin and the characteristic curves from the ordinate axis x = 0, as mentioned
just before Theorem 4.1. The rarefaction region is not visible in Figure 1(a).

We will discuss the differences visible on the plots for various values of parameters. On
first picture the simulations for ε = 1.0 and σ0 = 1.0 are presented. The plot on Figure 1(b)
clearly indicates that the characteristic curves emanating from the line x = 0 converge to
the critical point xc, while Figure 1(a) shows that the characteristic curves starting at x = 0
approach x = 1 as time progresses. Figure 2 presents the results for ε = 0.1 and σ0 = 0.1.
Despite of the similarity between Figure 1(b) and Figure 2(b) showing convergence to the
critical point xc of the characteristic curves beginning at x = 0, there is a pronounced
difference between the calculations for ε = 1.0 = σ0 and ε = 0.1 = σ0. Namely, Figure
2(a) shows that the characteristics bend around xc and they are expected to approach x = 1
after long time.

The characteristic curves for ε = 0.01 and σ0 = 0.01 are drawn on Figure 3. Its part (a),
compared to Figure 2(a), suggests that the curves emanating from the axis x = 0 converge
to xc as time develops. However even in this case, xc is not a stationary point. This
statement is supported by Figure 3(c), showing that the characteristic curves go beyond xc

and the propagation lasts ten times longer time than in Figure 2(a). This is why the point xc

in Figure 3(a) is a metastable point. Figure 3(b) also clearly shows that the characteristics
curves starting from x = 0 converge to the critical point xc, this is in accordance with
Figure 1(b).

Since the solution uε of (ii) for general ε = σ0 is obtained by a simple scaling of
the solution w of (ii) with ε = 1 by uε(x, t) = εw(x, t), the behavior of convergence is
independent of ε. Figure 4 shows the characteristic curves for ε = 0.001 and σ0 = 0.001.
When ε decreases, the characteristic curves starting from x = 0 appear to be closer to xc
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than in the case of large ε, as shown in Figure 4(a). This tendency is consistent with the
microscopic time scale approximation, discussed in Section 3. The characteristics curves,
starting from x = 0 in Figure 4(b), also converge to the critical point xc, in the same way
as in Figure1(b).

5.2 Conservation equation of step flux
The equation of (2.4) has the form of a conservation of step flux equation:

ut = Sε(x, ux) , (5.1)

where Sε(x, ux) is

(i) S1
ε (x, ux) = 1

ε tanh( ε
ux

)
√

1 + u2
x σ(x), (ii) S2

ε (x, ux) = 1
ε tanh( ε

ux
) σ(x) ,

where the superscript of S corresponds to the case of (i) or (ii). We solve numerically equa-
tion (5.1) augmented with the boundary condition (2.2) and the initial condition (2.3) for
the supersaturation having the form (2.5). For this purpose we use the upwind differencing
scheme, see [22].

Our numerical results, for the same conditions as in Figures 1, 2, 3 and 4, are shown in
Figures 5, 6, 7 and 8, respectively. All top figures represent the graph of the growth rates
V as a function of x at various time t. All bottom figures represent the profiles of crystal,
i.e., the height z = u(x, t) scaled by σ0. The results in the case of (i) are shown in Figures
5(a), 6(a) 7(a) and 8(a), while for the microscopic time approximation, i.e., in the case of
(ii), are shown in Figures 5(b), 6(b), 7(b) and 8(b).

Numerical results, as shown in Figures 5(b), 6(b), 7(b) and 8(b), demonstrate the max-
imal stable region of a facet as mentioned in Section 4, where the stable region is not
perfectly flat but changes according to the term

∫ x
0 q(p) dp as in Theorem 4.1. When the

number of figure increases from 5 to 7, i.e., ε decreases, the results (a) are closer to (b)
as shown in Figures 5, 6 and 7. In other words the case (i) get closer to the case (ii) with
decreasing ε. Finally we notice that, we can not distinguish between Figures 8 (a) and 8 (b).
As mentioned in Remark 4.2, the facet in the region (0, xc) is flat up the order of ε1. All
numerical results, as shown in Figures 5, 6, 7 and 8 are consistent both with the microscopic
time scale approximation of Section 3 and with the numerical method of characteristics.
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Figure Captions
Figure 1 The characteristic curves in (x, t) plane for a Hamilton-Jacobi system (2.4), σ(x)

= σ(0)(1 − x2)+, σ0 =1, ε = 1 and c = tanh(1)σ0; the solid curves are obtained by
the ordinary differential equations (4.2) and (4.3); the dashed curves have a constant
local slope for p = 0 starting from t =0; the dash-dotted curve starting from the origin
has a constant local slope p given by c + H1

ε (0, p) = 0; the dotted line represents the
critical point xc; (a) corresponds to the case of (i) H1

ε (x, p) = −m(p
ε )

√
1 + p2 σ(x).

(b) corresponds to the case of (ii) H2
ε (x, p) = −m(p

ε ) σ(x); the dash-dotted curve
starting from the origin has a constant local slope p given by c + H2

ε (0, p) = 0, i.e.,
p = σ0. A rarefaction region develops between the dash-dotted curve and the solid
curves.

Figure 2 The characteristic curves in (x, t)-plane for σ0 = 0.1, ε = 0.1 and c = tanh(1)σ0;
all curves are represented as in Figure 1. A rarefaction region develops between the
dash-dotted curve and the solid curves.

Figure 3 The characteristic curves in (x, t)-plane for σ0 = 0.01, ε = 0.01 and c =
tanh(1)σ0; all curves are represented as in Figure 1. A rarefaction region develops
between the dash-dotted curve and the solid curves. (c) the characteristic curves
propagate ten times slower than in (a).

Figure 4 The characteristic curves in (x, t)-plane for σ0 = 0.001, ε = 0.001 and c =
tanh(1)σ0; all curves are represented as in Figure 1. A rarefaction region develops
between the dash-dotted curve and the solid curves.

Figure 5 The growth rates V as a function of x at various time instances t in the top
figure, and the profiles of crystal, i.e., the height z = u(x, t) scaled by σ0 in the
bottom for the same conditions as Figure 1, i.e., σ0 = 1, ε = 1 and c = tanh(1)σ0;
(a) corresponds to the case of (i), and (b) corresponds to the case of (ii), i.e., the
microscopic time approximation.

Figure 6 The growth rates V as a function of x at various time instances t in the top figure,
and the profiles of crystal, i.e., the height z = u(x, t), scaled by σ0 in the bottom for
the same conditions as Figure 2, i.e., σ0 = 0.1, ε = 0.1 and c = tanh(1)σ0; (a)
corresponds to the case of (i), and (b) corresponds to the case of (ii).

Figure 7 The growth rates V as a function of x at various time instances t in the top figure,
and the profiles of crystal, i.e., the height z = u(x, t) scaled by σ0 in the bottom for
the same conditions as Figure 3, i.e., σ0 = 0.01, ε = 0.01 and c = tanh(1)σ0; (a)
corresponds to the case of (i), and (b) corresponds to the case of (ii).

Figure 8 The growth rates V as a function of x at various time instances t in the top figure,
and the profiles of crystal, i.e., the height z = u(x, t) scaled by σ0 in the bottom for
the same conditions as for Figure 4, i.e., σ0 = 0.001, ε = 0.001 and c = tanh(1)σ0;
(a) corresponds to the case of (i), and (b) corresponds to the case of (ii).
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Figure 1: (a) The characteristic curves in (x, t) plane for a Hamilton-Jacobi system (2.4), σ(x)
= σ(0)(1 − x2)+, σ0 =1, ε = 1 and c = tanh(1)σ0; the solid curves are obtained by the ordinary
differential equations (4.2) and (4.3); the dashed curves have a constant local slope for p = 0
starting from t =0; the dash-dotted curve starting from the origin has a constant local slope p
given by c + H1

ε (0, p) = 0; the dotted line represents the critical point xc; (a) corresponds to the
case of (i) H1

ε (x, p) = −m(p
ε
)
√

1 + p2 σ(x).

0 xc 1

x

t
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Figure 1: (b) the case of (ii) H2
ε (x, p) = −m(p

ε
) σ(x); the dash-dotted curve starting from the

origin has a constant local slope p given by c + H2
ε (0, p) = 0, i.e., p = σ0. A rarefaction region

develops between the dash-dotted curve and the solid curves.
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Figure 2: (a) The characteristic curves in (x, t)-plane for σ0 = 0.1, ε = 0.1 and c = tanh(1)σ0;
all curves are represented as in Figure 1. A rarefaction region develops between the dash-dotted
curve and the solid curves.
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Figure 2: (b)
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Figure 3: (a) The characteristic curves in (x, t)-plane for σ0 = 0.01, ε = 0.01 and c =
tanh(1)σ0; all curves are represented as in Figure 1; A rarefaction region develops between
the dash-dotted curve and the solid curves.
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Figure 3: (b)

0 xc 1

x

t

18



Figure 3: (c) the characteristic curves propagate ten times slower than in (a).
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Figure 4: (a) The characteristic curves in (x, t)-plane for σ0 = 0.001, ε = 0.001 and c =
tanh(1)σ0; all curves are represented as in Figure 1. A rarefaction region develops between the
dash-dotted curve and the solid curves.
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Figure 4: (b)
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Figure 5: (a) The growth rates V as a function of x at various time instances t in the top figure,
and the profiles of crystal, i.e., the height z = u(x, t) scaled by σ0 in the bottom for the same
conditions as Figure 1, i.e., σ0 = 1, ε = 1 and c = tanh(1)σ0; (a) corresponds to the case of (i),
and
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Figure 5: (b) corresponds to the case of (ii), i.e., the microscopic time approximation.
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Figure 6: (a) The growth rates V as a function of x at various time instances t in the top figure,
and the profiles of crystal, i.e., the height z = u(x, t), scaled by σ0 in the bottom for the same
conditions as Figure 2, i.e., σ0 = 0.1, ε = 0.1 and c = tanh(1)σ0; (a) corresponds to the case
of (i), and
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Figure 6: (b) corresponds to the case of (ii).
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Figure 7: (a) The growth rates V as a function of x at various time instances t in the top figure,
and the profiles of crystal, i.e., the height z = u(x, t) scaled by σ0 in the bottom for the same
conditions as Figure 3, i.e., σ0 = 0.01, ε = 0.01 and c = tanh(1)σ0; (a) corresponds to the case
of (i), and
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Figure 7: (b) corresponds to the case of (ii).
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Figure 8: (a) The growth rates V as a function of x at various time instances t in the top figure,
and the profiles of crystal, i.e., the height z = u(x, t) scaled by σ0 in the bottom for the same
conditions as for Figure 4, i.e., σ0 = 0.001, ε = 0.001 and c = tanh(1)σ0; (a) corresponds to
the case of (i), and
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Figure 8: (b) corresponds to the case of (ii).
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