Some Fredholm Integration Operators on A Hilbert Space of Holomorphic Functions on The Unit Disc

By

Takahiko Nakazi*

2000 Mathematics Subject Classification. Primary 47 B 38, 47 G 10, Secondary 47 A 53

Keywords and phrases : Fredholm operator, Hilbert space, analytic function, integration operator, multiplication operator

* This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education
Abstract. In this paper, we study when M_ϕ, I_ϕ or J_ϕ is a Fredholm operator on a Hilbert space which satisfies few natural axioms.
§ 1. Introduction
Let D be the open unit disc in the complex plane \mathbb{C} and $H(D)$ be the set of all analytic functions on D. $H(\bar{D})$ denotes the set of all analytic functions on \bar{D}. In this paper, \mathcal{H} is a Hilbert space in $H(D)$ which satisfies the following:

1. $z \mathcal{H} \subset \mathcal{H}$.
2. If $a \in D$ then $(z - a)\mathcal{H} \oplus \mathbb{C} = \mathcal{H}$.
3. $\mathcal{H} \supseteq H(\bar{D})$.

In this paper, we study the following three operators. If ϕ is a function in $H(D)$, put for $z \in D$,

\begin{align*}
(M_\phi f)(z) &= \phi(z)f(z), \\
(I_\phi f)(z) &= \int_0^z f'(\zeta)\phi(\zeta)d\zeta, \\
(J_\phi f)(z) &= \int_0^z f(\zeta)\phi'(\zeta)d\zeta \quad (f \in \mathcal{H}).
\end{align*}

Then $(M_\phi f)(z) = (I_\phi f)(z) + (J_\phi f)(z) + \phi(0)f(0)$. It is clear that I_ϕ and J_ϕ are never invertible.

Put $\mathcal{M}(\mathcal{H}) = \{\phi \in H(D) : M_\phi \mathcal{H} \subseteq \mathcal{H}\}$, $\mathcal{I}(\mathcal{H}) = \{\phi \in H(D) : I_\phi \mathcal{H} \subseteq \mathcal{H}\}$ and $\mathcal{J}(\mathcal{H}) = \{\phi \in H(D) : J_\phi \mathcal{H} \subseteq \mathcal{H}\}$. In this paper, we assume that $H(\bar{D}) \subset \mathcal{M}(\mathcal{H})$, $z \in \mathcal{I}(\mathcal{H})$ and $z \in \mathcal{J}(\mathcal{H})$.

§ 2. Multiplication operator M_ϕ
When $\mathcal{M}(\mathcal{H}) = H^\infty(D)$, A. Aleman [1] shows a more general result than Corollary 1 without the condition that $(z - a)\mathcal{H}$ is dense.

Lemma 1. If p is a polynomial with no zeros on ∂D then $\dim \mathcal{H}/p\mathcal{H} < \infty$.

Proof If $|a| > 1$ then $(z - a)^{-1} \in H(\bar{D})$ and so $(z - a)^{-1}$ belongs to $\mathcal{M}(\mathcal{H})$. Hence we may assume that the zeros of p are contained in D. By hypothesis on \mathcal{H}, $\dim \mathcal{H}/(z - a)\mathcal{H} = 1$ and so $\dim \mathcal{H}/p\mathcal{H} < \infty$.

Lemma 2. If M is a closed invariant subspace of M_z in \mathcal{H} such that $\dim \mathcal{H}/M < \infty$, then there exists a polynomial p such that $p\mathcal{H} \subseteq M$.

Proof Let $N = \mathcal{H} \ominus M$ and $S_z = P_NM_z|N$, then S_z is of finite rank because $\dim N < \infty$. Hence there exists a polynomial p such that $S_{p(z)} = p(S_z) = 0$. Therefore $pN \subset M$ and so $p\mathcal{H} \subset M$.

3
Lemma 2. There exists a polynomial p and $Ker\tau_g$ such that each function in $\mathcal{M}(\mathcal{H})$ and so by Lemma 2 there exists a polynomial p such that $\phi f = p$. Therefore ϕ can be factorized as $\phi = Bg$ where B is a finite Blaschke product and $g \in \mathcal{H}$. For $\phi \in \mathcal{H}$ and $\prod_{j=1}^{n}(1 - a_j)\phi = \prod_{j=1}^{n}(z - a_j)g \in \mathcal{H}$ where $B = \prod_{j=1}^{n}(z - a_j)/(1 - \bar{a}_jz)$.

Proof (1) Suppose $\phi = Bg$, $B = \prod_{j=1}^{n}(z - a_j)/(1 - \bar{a}_jz)$, $\{a_j\} \subset D$, and both g and g^{-1} are in $\mathcal{M}(\mathcal{H})$. Since $\mathcal{M}(\mathcal{H}) \supseteq H(D)$, $\prod_{j=1}^{n}(1 - \bar{a}_jz)$ is invertible in $\mathcal{M}(\mathcal{H})$ and so $M_{{\phi}}(\mathcal{H}) = p\mathcal{H}$ where $p = \prod_{j=1}^{n}(z - a_j)$. Since $Ker\tau_{a_j} = (z - a_j)\mathcal{H}$, g belongs to \mathcal{H}. By the similar argument, there exists a function k in \mathcal{H} and $gk = 1$ because $Bgf = p$. Thus g^{-1} belongs to \mathcal{H}. We will prove that g belongs to $\mathcal{M}(\mathcal{H})$. Since B is a finite Blaschke product and $Ker\tau_a = (z - a)\mathcal{H}$ for $a \in D$, $\mathcal{H} = K + B\mathcal{H}$ where K is a finite dimensional subspace such that each function in K is a rational function whose poles are in $\mathbb{C} \setminus \bar{D}$. Since $g \in \mathcal{H}$ and $\mathcal{M}(\mathcal{H}) \supseteq H(D)$, $gK \subseteq \mathcal{H}$ and so $g\mathcal{H} \subseteq \mathcal{H}$ because $gB\mathcal{H} \subseteq \mathcal{H}$.

(3) By the proof of (2), $p\mathcal{H} \subseteq Bg\mathcal{H} \subseteq g\mathcal{H}$ and so the first statement is clear. Again by the proof of (2), the zeros of p in D is just the zeros of B. This implies that there exists a polynomial q such that $q\mathcal{H} \subseteq g\mathcal{H}$ and q does not have any zeros in D.

Corollary 1. Suppose that $(z - a)\mathcal{H}$ is dense in \mathcal{H} whenever $a \in \partial D$. Then $M_{{\phi}}$ is a Fredholm operator on \mathcal{H} if and only if $\phi = Bg$ where B is a finite Blaschke product, and both g and g^{-1} are in $\mathcal{M}(\mathcal{H})$.

§ 3. Integral operator $I_{{\phi}}$

It seems to have not been studied yet in this general setting as Theorem 2.

Lemma 3. If ϕ is a function in $\mathcal{I}(\mathcal{H})$ then $I_{{\phi}}(\mathcal{H}) = I_{{\phi}}(z\mathcal{H}) \subseteq z\mathcal{H}$. $I_{{\phi}}(\mathcal{H}) = z\mathcal{H}$ if and only if ϕ and ϕ^{-1} belongs to $\mathcal{I}(\mathcal{H})$.

Proof By the definition of $I_{{\phi}}$ the first statement is clear. We will
show the second one. If both \(\phi \) and \(\phi^{-1} \) belong to \(\mathcal{I}(\mathcal{H}) \), then

\[
z\mathcal{H} = I_1(\mathcal{H}) = I_\phi I_{\phi^{-1}}(\mathcal{H}) \subseteq I_\phi(z\mathcal{H}) \subseteq z\mathcal{H}
\]

because \(I_\phi \) and \(I_{\phi^{-1}} \) are bounded on \(\mathcal{H} \). Conversely if \(I_\phi(\mathcal{H}) = z\mathcal{H} \) then there exists a function \(g \) in \(\mathcal{H} \) such that

\[
\int_0^z g'(\zeta)\phi(\zeta)d\zeta = z \quad \text{and so} \quad g'(z)\phi(z) = 1.
\]

Hence \(\phi^{-1} \in H(D) \) and

\[
z\mathcal{H} = I_1(\mathcal{H}) = I_{\phi^{-1}}I_\phi(\mathcal{H}) = I_{\phi^{-1}}(z\mathcal{H})
\]

and so both \(\phi \) and \(\phi^{-1} \) belong to \(\mathcal{I}(\mathcal{H}) \).

Lemma 4. If \(p \) is a polynomial then \(I_p(\mathcal{H}) + \mathbb{C} \supseteq p^2\mathcal{H} \).

Proof Suppose \(g \in \mathcal{H} \). Since \(z \in \mathcal{I}(\mathcal{H}) \) by the hypothesis, \(p \) belongs to \(\mathcal{I}(\mathcal{H}) \) and so \(\int_0^z g(t)\phi(t)d\zeta \in \mathcal{H} \). Since \(p'(\zeta) \in \mathcal{M}(\mathcal{H}) \) and \(z \in J(\mathcal{H}) \), \(\int_0^z g(\zeta)p'(\zeta)d\zeta \in \mathcal{H} \). Hence \(f(z) = \int_0^z (2p'(\zeta)g(\zeta) + p(\zeta)g'(\zeta))d\zeta \in \mathcal{H} \). Now the lemma follows because

\[
\int_0^z f'(\zeta)p(\zeta)d\zeta = \int_0^z (p^2(\zeta)g(\zeta))'d\zeta = p^2(z)g(z) + p^2(0)g(0).
\]

Lemma 5. Suppose that \(B \) is a finite Blaschke product, and both \(g \) and \(g^{-1} \) are in \(\mathcal{I}(\mathcal{H}) \). If \(\phi = Bg \) then \(\phi \in \mathcal{I}(\mathcal{H}) \) and \(\dim \mathcal{H}/I_\phi(\mathcal{H}) < \infty \).

Proof By the hypothesis, \(I_B(\mathcal{H}) = I_B(z\mathcal{H}) = I_B(I_\phi(\mathcal{H})) = I_\phi(\mathcal{H}) \) by Lemma 3. We may assume that

\[
B = \prod_{j=1}^n \frac{z - a_j}{1 - \bar{a}_j z} \quad \text{and} \quad \{a_j\} \subset D.
\]

Since \(\prod_{j=1}^n (1 - a_j z) \) is invertible in \(\mathcal{H} \), by Lemma 3 \(I_\phi(\mathcal{H}) = I_p(\mathcal{H}) \) where \(p = \prod_{j=1}^n (z - a_j) \). Lemmas 1 and 4 imply that \(\dim \mathcal{H}/I_\phi(\mathcal{H}) < \infty \).

Lemma 6. If \(p \) is a polynomial then \(p(S_z) = S_{p(z)} \).

Proof By hypothesis, \(P^N I_z(I - P^N) = 0 \). Hence

\[
S_{z^2} = P^N I_{z^2}P^N = P^N I_z I_z P^N = P^N I_z(I - P^N)P^N + P^N I_z P^N I_z P^N = P^N I_z P^N I_z P^N = S_z S_z.
\]
Now it is easy to see that $p(S_z) = S_{p(z)}$ for a polynomial p.

Lemma 7. If M is a closed invariant subspace of I_z and $\dim \mathcal{H}/M = n < \infty$ then there exists a polynomial p such that the degree of $p \leq n$ and $I_p(\mathcal{H}) \subseteq M$.

Proof If we put $N = \mathcal{H} \ominus M$, then $\dim N = n < \infty$ and so there exists a polynomial p such that $p(S_z) = 0$ and the degree of $p \leq n$. By Lemma 6, $S_{p(z)} = 0$ and so $I_p(N) \subseteq M$. Since $I_p(M) \subseteq M$, $I_p(\mathcal{H}) \subseteq M$.

Theorem 2. Suppose $\mathcal{I}(\mathcal{H})$ contains $H(\overline{D})$ and if $f \in \mathcal{I}(\mathcal{H})$ and $f(a) = 0$ for some $a \in D$ then $f/(z - a)$ belongs to $\mathcal{I}(\mathcal{H})$. I_ϕ is a Fredholm operator on \mathcal{H} if and only if $\phi = Bg$ where B is a finite Blaschke product, and g and g^{-1} are in $\mathcal{I}(\mathcal{H})$.

Proof If $\phi = Bg$, B is a finite Blaschke product, $g \in \mathcal{I}(\mathcal{H})$ and $g^{-1} \in \mathcal{I}(\mathcal{H})$ then by Lemma 5 $I_\phi(\mathcal{H})$ is closed and dim $\text{Ker} I_\phi < \infty$. Since $\text{Ker} I_\phi = \mathbb{C}$, index $I_\phi = 1 - \text{dim Ker} I_\phi$ and so I_ϕ is Fredholm. Conversely if I_ϕ is Fredholm then $I_\phi(\mathcal{H})$ is closed and dim $\mathcal{H}/I_\phi(\mathcal{H}) < \infty$. Since $I_z I_\phi(\mathcal{H}) \subseteq I_\phi(\mathcal{H})$, by Lemma 7 there exists a polynomial such that $I_p(\mathcal{H}) \subseteq I_\phi(\mathcal{H})$. By Lemma 4 $I_p(\mathcal{H}) + \mathbb{C} = p^2 \mathcal{H}$. Hence there exists a function F in \mathcal{H} and $c \in \mathbb{C}$ such that $I_\phi(F) + c = p^2$. Therefore $F'(z)\phi(z) = 2p(z)p'(z)$ and so the Blaschke part of ϕ is a finite one B. Thus ϕ can be factorized as $\phi = Bg$ where $g \in \mathcal{I}(\mathcal{H})$ and g has no zeros on D because $\mathcal{I}(\mathcal{H})$ is a subalgebra in $\mathcal{B}(\mathcal{H})$ and both B and B^{-1} are in $\mathcal{I}(\mathcal{H})$. Hence

$$I_{g^{-1}p}(\mathcal{H}) \subseteq I_{g^{-1}I_\phi(\mathcal{H})} = I_B(\mathcal{H}) \subseteq \mathcal{H}$$

and so $g^{-1}p$ belongs to $\mathcal{I}(\mathcal{H})$. By hypothesis on $\mathcal{I}(\mathcal{H})$, g^{-1} belongs to $\mathcal{I}(\mathcal{H})$.

§ 4. Integral operator J_ϕ

A Fredholm integral operator J_ϕ have not studied. But if J_ϕ is compact then it is not Fredholm. In some special Hilbert space \mathcal{H}, the compactness of J_ϕ have studied.

Lemma 8. If ϕ and ψ are in $H(D)$ then $I_\psi J_\phi = J_\phi M_\psi$.

Proof For $f \in \mathcal{H}$

$$(I_\psi J_\phi f)(z) = \int_0^z (J_\phi f)'(\zeta)\psi(\zeta)d\zeta = \int_0^z f'(\zeta)\phi'(\zeta)\psi(\zeta)d\zeta = (J_\phi M_\psi f)(z)$$
Lemma 9. If J_ϕ is a Fredholm operator on \mathcal{H} then $J_\phi \mathcal{H}$ is a closed invariant subspace of I_z and $\dim \mathcal{H} / J_\phi \mathcal{H} < \infty$. Hence there exists a polynomial p such that $J_\phi \mathcal{H} \supseteq I_p \mathcal{H}$ and so $J_\phi \mathcal{H} + \mathbb{C} \supseteq p^2 \mathcal{H}$.

Proof If J_ϕ is Fredholm on \mathcal{H} then $J_\phi \mathcal{H}$ is a closed subspace and by Lemma 8 $I_z(J_\phi \mathcal{H}) \subseteq J_\phi \mathcal{H}$. By Lemma 7 there exists a polynomial q such that $I_q \mathcal{H} \subseteq J_\phi \mathcal{H}$. Lemma 4 implies this lemma.

Theorem 3. Suppose that there exists a function g in \mathcal{H} such that g' does not belong to H^2. Suppose that any function in \mathcal{H} has radial limits almost everywhere. Then there does not exist J_ϕ which is a Fredholm operator on \mathcal{H}.

Proof If J_ϕ is Fredholm on \mathcal{H} then $J_\phi \mathcal{H} + \mathbb{C} \supseteq p^2 \mathcal{H}$ for some polynomial by Lemma 9. For any G in $p^2 \mathcal{H}$ there exists a function f in \mathcal{H} such that $f(z)\phi'(z) = G'(z) \quad (z \in D)$.

By hypothesis, there exists G in $p^2 \mathcal{H}$ such that $G' \notin H^2$ and so G' does not have radial limits on a set of positive measure on ∂D (see [2, Appendix A]). On the other hand, if $G = p^2$ then G has radial limits almost everywhere on ∂D. By hypothesis, f has radial limits almost everywhere. This contradiction implies that J_ϕ is not Fredholm.

§ 5. Relation between M_ϕ and I_ϕ

Put $Df(z) = f'(z)$ and $J = J_z$, that is, $Jf(z) = \int_0^z f(\zeta) d\zeta$. Then $DJf = f$ and $JDf = f - f(0)$.

It is easy to see that $I_\phi J = JM_\phi$ and $DI_\phi = M_\phi D$. Put $\mathcal{H}^D = \{ f \in H(D) : Df \in \mathcal{H} \}$

Suppose that D and J are bounded on \mathcal{H} and for f in \mathcal{H}^D put $\|f\|^2_D = \|Df\|^2 + |f(0)|^2$. Then \mathcal{H}^D is a Hilbert space. Put $\mathcal{H}^I = \{ f \in H(D) : Jf \in \mathcal{H} \}$

and for f in \mathcal{H}^I $\|f\|_I = \|Jf\|$. Then \mathcal{H}^I is a Hilbert space.

D is isometric from $\mathcal{H}_0^D = \{ f \in \mathcal{H}^D : f(0) = 0 \}$ onto \mathcal{H}. J is isometric from \mathcal{H}^I onto $\mathcal{H}_0 = \{ f \in \mathcal{H} : f(0) = 0 \}$. Since $DI_\phi = M_\phi D$, I_ϕ is bounded on \mathcal{H}^D if and only if M_ϕ is bounded on \mathcal{H}. Hence $I(\mathcal{H}^D) = \mathcal{M}(\mathcal{H})$. Moreover I_ϕ is Fredholm on \mathcal{H}^D if and only if M_ϕ is Fredholm on \mathcal{H}. Since $JM_\phi = I_\phi J$,

7
\(\mathcal{I}(\mathcal{H}^J) = \mathcal{M}(\mathcal{H}), \) and \(I_\phi \) is Fredholm on \(\mathcal{H}^J \) if and only if \(M_\phi \) is Fredholm on \(\mathcal{H} \). Moreover \((\mathcal{H}^J)^D = (\mathcal{H}^D)^J = \mathcal{H} \). Hence \(\mathcal{I}(\mathcal{H}) = \mathcal{M}(\mathcal{H}^D) = \mathcal{M}(\mathcal{H}^J) \), and \(I_\phi \) is Fredholm on \(\mathcal{H} \) if and only if \(M_\phi \) is Fredholm on \(\mathcal{H}^D \) and \(\mathcal{H}^J \).

§ 6. Examples

Let \(dA \) denote the normalized Lebesgue area measure on \(D \) and \(\omega \) a positive function on \(D \) which is summable with respect to \(dA \). Put

\[
\mathcal{D}^2(\omega) = \{ f \in H(D) : \| f \|_D^2 = | f(0) |^2 + \int_{D} | f'(z) |^2 \omega(z) dA(z) < \infty \}
\]

and

\[
L_a^2(\omega) = \{ f \in H(D) : \| f \|_{L_a^2}^2 = \int_{D} | f(z) |^2 \omega(z) dA(z) < \infty \}.
\]

Then \(\mathcal{D}^2(\omega) \) is called a weighted Dirichlet space and \(L_a^2(\omega) \) is called a weighted Bergman space when \(\mathcal{D}^2(\omega) \) and \(L_a^2(\omega) \) are nontrivial Hilbert spaces. It is easy to see that \((\mathcal{D}^2(\omega))^J = L_a^2(\omega) \) and \((L_a^2(\omega))^D = \mathcal{D}^2(\omega) \).

If \(\omega(z) = (1 - |z|^2)^\alpha \) and \(\alpha > -1 \), we will write \(\mathcal{D}^2(\omega) = \mathcal{D}^2_\alpha \) and \(L_a^2(\omega) = L_a^2_\alpha \). It is known that \(\mathcal{D}^2_\alpha \) and \(L_a^2_\alpha \) are nontrivial Hilbert spaces. \(\mathcal{D}_1 \) is the Hardy space \(H^2 \), \(\mathcal{D}_2 \) is the Bergman space \(L_a^2 \) and \(\mathcal{D}_0 \) is the Dirichlet space. If \(\mathcal{H} = \mathcal{D}_\alpha \) or \(L_a^2_\alpha \) then \(\mathcal{H} \) satisfies the condition (1), (2) and (3) in Introduction. It is known that \(H(\bar{\mathcal{D}}) \subset \mathcal{M}(\mathcal{D}_\alpha) \subset H^\infty(D) \) and \(\mathcal{M}(L_a^2_\alpha) = H^\infty(D) \). Hence Theorem 1 can apply to \(\mathcal{D}_\alpha \) for any \(\alpha > -1 \). If \(\alpha \geq 1 \) then \((z - a) \mathcal{D}_\alpha \) is dense in \(\mathcal{D}_\alpha \) whenever \(a \in \partial D \). Hence Corollary 1 can apply to \(\mathcal{D}_\alpha \) for \(\alpha \geq 1 \).

\(\mathcal{I}(L_a^2_\alpha) = \mathcal{M}(L_a^2_\alpha)^D = \mathcal{M}(\mathcal{D}_\alpha) \) and \(H(\bar{\mathcal{D}}) \subset \mathcal{M}(\mathcal{D}_\alpha) \subset H^\infty(D) \). Since \(\mathcal{I}(\mathcal{D}_\alpha) = \mathcal{M}(L_a^2_\alpha) = H^\infty(D) \), Theorem 2 can apply to \(\mathcal{D}_\alpha \) for \(\alpha > -1 \). It is known [3] that \(\mathcal{M}(\mathcal{D}_\alpha) = H^\infty(D) \) for \(\alpha > 1 \) and \(\mathcal{M}(\mathcal{D}_\alpha) = \mathcal{D}_\alpha \) for \(-1 < \alpha < 0 \). Hence \(\mathcal{I}(L_a^2_\alpha) = H^\infty(D) \) for \(\alpha > 1 \) and \(\mathcal{I}(L_a^2_\alpha) = \mathcal{D}_\alpha \) for \(-1 < \alpha < 0 \). Hence Theorem 2 can apply to \(L_a^2_\alpha \) for \(\alpha > 1 \) and \(-1 < \alpha < 0 \). By a theorem in [3], it is easy to see that \(\mathcal{I}(L_a^2_\alpha) = \mathcal{M}(\mathcal{D}_\alpha) \) (0 \(\leq \alpha \leq 1 \)) satisfies the conditions in Theorem 2. Hence Theorem 2 can apply to \(L_a^2_\alpha \).

When \(\mathcal{D}^2(\omega) \) or \(L_a^2(\omega) \) is a Hilbert space \(\mathcal{H} \), it is important in order to study composition operator that \(\mathcal{H} \) satisfies three conditions in Introduction. It will be interesting to determine such a weight \(\omega \).

References

Takahiko Nakazi
Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060-0810, Japan
nakazi@math.sci.hokudai.ac.jp