<table>
<thead>
<tr>
<th>Title</th>
<th>Some Fredholm Integration Operators on a Hilbert Space of Holomorphic Functions on the Unit Disc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nakazi, Takahiko</td>
</tr>
<tr>
<td>Citation</td>
<td>Hokkaido University Preprint Series in Mathematics, 891, 1-9</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2008</td>
</tr>
<tr>
<td>DOI</td>
<td>10.14943/84041</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/69700</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>pre891.pdf</td>
</tr>
<tr>
<td>Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP</td>
<td></td>
</tr>
</tbody>
</table>
Some Fredholm Integration Operators on A Hilbert Space of Holomorphic Functions on The Unit Disc

By

Takahiko Nakazi∗

2000 Mathematics Subject Classification. Primary 47 B 38, 47 G 10, Secondary 47 A 53

Keywords and phrases : Fredholm operator, Hilbert space, analytic function, integration operator, multiplication operator

∗ This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education
Abstract. In this paper, we study when M_ϕ, I_ϕ or J_ϕ is a Fredholm operator on a Hilbert space which satisfies few natural axioms.
1. Introduction

Let D be the open unit disc in the complex plane \mathbb{C} and $H(D)$ be the set of all analytic functions on D. $H(\overline{D})$ denotes the set of all analytic functions on \overline{D}. In this paper, \mathcal{H} is a Hilbert space in $H(D)$ which satisfies the following:

1. $z\mathcal{H} \subset \mathcal{H}$.
2. If $a \in D$ then $(z-a)\mathcal{H} \oplus \mathbb{C} = \mathcal{H}$.
3. $\mathcal{H} \supset H(\overline{D})$.

In this paper, we study the following three operators. If ϕ is a function in $H(D)$, put for $z \in D$,

\[
(M_\phi f)(z) = \phi(z)f(z),
\]

\[
(I_\phi f)(z) = \int_0^z f'(\zeta)\phi(\zeta)d\zeta,
\]

\[
(J_\phi f)(z) = \int_0^z f(\zeta)\phi'(\zeta)d\zeta \quad (f \in \mathcal{H}).
\]

Then $(M_\phi f)(z) = (I_\phi f)(z) + (J_\phi f)(z) + \phi(0)f(0)$. It is clear that I_ϕ and J_ϕ are never invertible.

Put $\mathcal{M}(\mathcal{H}) = \{ \phi \in H(D) : M_\phi \mathcal{H} \subseteq \mathcal{H} \}$, $\mathcal{I}(\mathcal{H}) = \{ \phi \in H(D) : I_\phi \mathcal{H} \subseteq \mathcal{H} \}$ and $\mathcal{J}(\mathcal{H}) = \{ \phi \in H(D) : J_\phi \mathcal{H} \subseteq \mathcal{H} \}$. In this paper, we assume that $H(\overline{D}) \subset \mathcal{M}(\mathcal{H})$, $z \in \mathcal{I}(\mathcal{H})$ and $z \in \mathcal{J}(\mathcal{H})$.

2. Multiplication operator M_ϕ

When $\mathcal{M}(\mathcal{H}) = H^\infty(D)$, A. Aleman [1] shows a more general result than Corollary 1 without the condition that $(z-a)\mathcal{H}$ is dense.

Lemma 1. If p is a polynomial with no zeros on ∂D then $\dim \mathcal{H}/p\mathcal{H} < \infty$.

Proof If $|a| > 1$ then $(z-a)^{-1} \in H(\overline{D})$ and so $(z-a)^{-1}$ belongs to $M(\mathcal{H})$. Hence we may assume that the zeros of p are contained in D. By hypothesis on \mathcal{H}, $\dim \mathcal{H}/(z-a)\mathcal{H} = 1$ and so $\dim \mathcal{H}/p\mathcal{H} < \infty$.

Lemma 2. If M is a closed invariant subspace of M_z in \mathcal{H} such that $\dim \mathcal{H}/M < \infty$, then there exists a polynomial p such that $p\mathcal{H} \subseteq M$.

Proof Let $N = \mathcal{H} \ominus M$ and $S_z = P_NM_z|N$, then S_z is of finite rank because $\dim N < \infty$. Hence there exists a polynomial p such that $S_{p(z)} = p(S_z) = 0$. Therefore $pN \subset M$ and so $p\mathcal{H} \subset M$.

3
Theorem 1.

(1) If $\phi = Bg$ where B is a finite Blaschke product, and both g and g^{-1} are in $\mathcal{M}(\mathcal{H})$ then M_ϕ is a Fredholm operator.

(2) If M_ϕ is a Fredholm operator on \mathcal{H} then $\phi = Bg$ when B is a finite Blaschke product, g is in $\mathcal{M}(\mathcal{H})$ and g^{-1} is in \mathcal{H}.

(3) For the g in (2), M_g is a Fredholm operator on \mathcal{H} with index $M_\phi \leq$ index $M_g \leq 0$ and there exists a polynomial q such that $q\mathcal{H} \subseteq g\mathcal{H}$ and the zeros are in $\mathbb{C} \setminus D$.

Proof (1) Suppose $\phi = Bg$, $B = \prod_{j=1}^n(z - a_j)/(1 - \bar{a}_jz)$, $\{a_j\} \subset D$, and both g and g^{-1} are in $\mathcal{M}(\mathcal{H})$. Since $\mathcal{M}(\mathcal{H}) \supseteq H(D)$, $\prod_{j=1}^n(1 - \bar{a}_jz)$ is invertible in $\mathcal{M}(\mathcal{H})$ and so $M_\phi(\mathcal{H}) = p\mathcal{H}$ where $p = \prod_{j=1}^n(z - a_j)$.

(2) If M_ϕ is a Fredholm operator then $\dim \mathcal{H}/M_\phi(\mathcal{H}) < \infty$ and so by Lemma 2 there exists a polynomial p such that $\phi f = p$. Therefore ϕ can be factorized as $\phi = Bg$ where B is a finite Blaschke product and $g \in \mathcal{H}$. For $\phi \in \mathcal{H}$ and $\prod_{j=1}^n(1 - \bar{a}_jz)\phi = \prod_{j=1}^n(z - a_j)g \in \mathcal{H}$ where $B = \prod_{j=1}^n(z - a_j)/(1 - \bar{a}_jz)$. Since $\text{Ker}(a_j) = (z - a_j)\mathcal{H}$, g belongs to \mathcal{H}. By the similar argument, there exists a function k in \mathcal{H} and $gk = 1$ because $Bgf = p$. Thus g^{-1} belongs to \mathcal{H}.

We will prove that g belongs to $\mathcal{M}(\mathcal{H})$. Since B is a finite Blaschke product and $\text{Ker}(a_j) = (z - a_j)\mathcal{H}$ for $a \in D$, $\mathcal{H} = K + B\mathcal{H}$ where K is a finite dimensional subspace such that each function in K is a rational function whose poles are in $\mathbb{C} \setminus \bar{D}$. Since $g \in \mathcal{H}$ and $\mathcal{M}(\mathcal{H}) \supseteq H(D)$, $gK \subseteq \mathcal{H}$ and so $g\mathcal{H} \subseteq \mathcal{H}$ because $gB\mathcal{H} \subseteq \mathcal{H}$.

(3) By the proof of (2), $p\mathcal{H} \subseteq Bg\mathcal{H} \subseteq g\mathcal{H}$ and so the first statement is clear. Again by the proof of (2), the zeros of p in D is just the zeros of B. This implies that there exists a polynomial q such that $q\mathcal{H} \subseteq g\mathcal{H}$ and q does not have any zeros in D.

Corollary 1. Suppose that $(z - a)\mathcal{H}$ is dense in \mathcal{H} whenever $a \in \partial D$. Then M_ϕ is a Fredholm operator on \mathcal{H} if and only if $\phi = Bg$ where B is a finite Blaschke product, and both g and g^{-1} are in $\mathcal{M}(\mathcal{H})$.

§ 3. Integral operator I_ϕ

It seems to have not been studied yet in this general setting as Theorem 2.

Lemma 3. If ϕ is a function in $\mathcal{I}(\mathcal{H})$ then $I_\phi(\mathcal{H}) = I_\phi(z\mathcal{H}) \subseteq z\mathcal{H}$. $I_\phi(\mathcal{H}) = z\mathcal{H}$ if and only if ϕ and ϕ^{-1} belong to $\mathcal{I}(\mathcal{H})$.

Proof By the definition of I_ϕ the first statement is clear. We will
show the second one. If both ϕ and ϕ^{-1} belong to $I(H)$, then

$$zH = I_1(H) = I_{\phi}I_{\phi^{-1}}(H) \subseteq I_{\phi}(zH) \subseteq zH$$

because I_{ϕ} and $I_{\phi^{-1}}$ are bounded on H. Conversely if $I_{\phi}(H) = zH$ then there exists a function g in H such that

$$\int_0^z g'(\zeta)\phi(\zeta)d\zeta = z$$

and so $g'(z)\phi(z) = 1$.

Hence $\phi^{-1} \in H(D)$ and

$$zH = I_1(H) = I_{\phi^{-1}}I_{\phi}(H) = I_{\phi^{-1}}(zH)$$

and so both ϕ and ϕ^{-1} belong to $I(H)$.

Lemma 4. If p is a polynomial then $I_p(H) + \mathbb{C} \supset p^2H$.

Proof Suppose $g \in H$. Since $z \in I(H)$ by the hypothesis, p belongs to $I(H)$ and so $\int_0^z g(\zeta)p(\zeta)d\zeta \in H$. Since $p' \in M(H)$ and $z \in J(H)$,

$$\int_0^z g(\zeta)p'(\zeta)d\zeta \in H.$$ Hence $f(z) = \int_0^z (2p'(\zeta)g(\zeta) + p(\zeta)g'(\zeta))d\zeta \in H.$

Now the lemma follows because

$$\int_0^z f'(\zeta)p(\zeta)d\zeta = \int_0^z (p^2(\zeta)g(\zeta))'d\zeta = p^2(z)g(z) + p^2(0)g(0).$$

Lemma 5. Suppose that B is a finite Blaschke product, and both g and g^{-1} are in $I(H)$. If $\phi = Bg$ then $\phi \in I(H)$ and dim $H/I_{\phi}(H) < \infty$.

Proof By the hypothesis, $I_B(H) = I_B(zH) = I_B(I_{\phi}(H)) = I_{\phi}(H)$ by Lemma 3. We may assume that

$$B = \prod_{j=1}^n \frac{z - a_j}{1 - \bar{a}_j z} \text{ and } \{a_j\} \subset D.$$ Since $\prod_{j=1}^n (1 - \bar{a}_j z)$ is invertible in $I(H)$, by Lemma 3 $I_{\phi}(H) = I_p(H)$ where $p = \prod_{j=1}^n (z - a_j)$. Lemmas 1 and 4 imply that dim $H/I_{\phi}(H) < \infty$.

Lemma 6. If p is a polynomial then $p(S_z) = S_{p(z)}$.

Proof By hypothesis, $P^NI_z(I - P^N) = 0$. Hence

$$S_{z^2} = P^NI_{z^2}P^N = P^NI_zP^N$$

$$= P^NI_z(I - P^N)I_zP^N + P^NI_zP^NP^NI_zP^N$$

$$= P^NI_zP^NI_zP^N = S_zS_{z^2}.$$
Now it is easy to see that \(p(S_z) = S_{p(z)} \) for a polynomial \(p \).

Lemma 7. If \(M \) is a closed invariant subspace of \(I_z \) and \(\dim \mathcal{H}/M = n < \infty \) then there exists a polynomial \(p \) such that the degree of \(p \leq n \) and \(I_p(\mathcal{H}) \subseteq M \).

Proof If we put \(N = \mathcal{H} \ominus M \), then \(\dim N = n < \infty \) and so there exists a polynomial \(p \) such that \(p(S_z) = 0 \) and the degree of \(p \leq n \). By Lemma 6, \(S_{p(z)} = 0 \) and so \(I_p(N) \subseteq M \). Since \(I_p(M) \subseteq M \), \(I_p(\mathcal{H}) \subseteq M \).

Theorem 2. Suppose \(\mathcal{I}(\mathcal{H}) \) contains \(H(\bar{D}) \) and if \(f \in \mathcal{I}(\mathcal{H}) \) and \(f(a) = 0 \) for some \(a \in D \) then \(f/(z-a) \) belongs to \(\mathcal{I}(\mathcal{H}) \). \(I_{\phi} \) is a Fredholm operator on \(\mathcal{H} \) if and only if \(\phi = Bg \) where \(B \) is a finite Blaschke product, and \(g \) and \(g^{-1} \) are in \(\mathcal{I}(\mathcal{H}) \).

Proof If \(\phi = Bg \), \(B \) is a finite Blaschke product, \(g \in \mathcal{I}(\mathcal{H}) \) and \(g^{-1} \in \mathcal{I}(\mathcal{H}) \) then by Lemma 5 \(I_{\phi}(\mathcal{H}) \) is closed and \(\dim \ker I_{\phi} < \infty \). Since \(\ker I_{\phi} = \mathbb{C} \), index \(I_{\phi} = 1 - \dim \ker I_{\phi} \) and so \(I_{\phi} \) is Fredholm. Conversely if \(I_{\phi} \) is Fredholm then \(I_{\phi}(\mathcal{H}) \) is closed and \(\dim \mathcal{H}/I_{\phi}(\mathcal{H}) < \infty \). Since \(I_z I_{\phi}(\mathcal{H}) \subseteq I_{\phi}(\mathcal{H}) \), by Lemma 7 there exists a polynomial such that \(I_p(\mathcal{H}) \subseteq I_{\phi}(\mathcal{H}) \). By Lemma 4 \(I_p(\mathcal{H}) + \mathbb{C} \supset p^2 \mathcal{H} \). Hence there exists a function \(F \) in \(\mathcal{H} \) and \(c \in \mathbb{C} \) such that \(I_{\phi}(F) + c = p^2 \). Therefore \(F'(z)\phi(z) = 2p(z)\phi'(z) \) and so the Blaschke part of \(\phi \) is a finite one \(B \). Thus \(\phi \) can be factorized as \(\phi = Bg \) where \(g \in \mathcal{I}(\mathcal{H}) \) and \(g \) has no zeros on \(D \) because \(\mathcal{I}(\mathcal{H}) \) is a subalgebra in \(\mathcal{B}(\mathcal{H}) \) and both \(B \) and \(B^{-1} \) are in \(\mathcal{I}(\mathcal{H}) \). Hence

\[
I_{g^{-1}p}(\mathcal{H}) \subseteq I_{g^{-1}I_{\phi}}(\mathcal{H}) = I_B(\mathcal{H}) \subseteq \mathcal{H}
\]

and so \(g^{-1}p \) belongs to \(\mathcal{I}(\mathcal{H}) \). By hypothesis on \(\mathcal{I}(\mathcal{H}) \), \(g^{-1} \) belongs to \(\mathcal{I}(\mathcal{H}) \).

§ 4. **Integral operator** \(J_{\phi} \)

A Fredholm integral operator \(J_{\phi} \) have not studied. But if \(J_{\phi} \) is compact then it is not Fredholm. In some special Hilbert space \(\mathcal{H} \), the compactness of \(J_{\phi} \) have studied.

Lemma 8. If \(\phi \) and \(\psi \) are in \(H(D) \) then \(I_{\psi} J_{\phi} = J_{\phi} M_{\psi} \).

Proof For \(f \in \mathcal{H} \)

\[
(I_{\psi} J_{\phi} f)(z) = \int_0^z (J_{\phi} f)'(\zeta) \psi(\zeta) d\zeta = \int_0^z f(\zeta) \phi'(\zeta) \psi(\zeta) d\zeta = (J_{\phi} M_{\psi} f)(z)
\]
Lemma 9. If J_ϕ is a Fredholm operator on \mathcal{H} then $J_\phi \mathcal{H}$ is a closed invariant subspace of I_ϕ and $\dim \mathcal{H}/J_\phi \mathcal{H} < \infty$. Hence there exists a polynomial p such that $J_\phi \mathcal{H} \supseteq I_p \mathcal{H}$ and so $J_\phi \mathcal{H} + \mathbb{C} \supseteq p^2 \mathcal{H}$.

Proof If J_ϕ is Fredholm on \mathcal{H} then $J_\phi \mathcal{H}$ is a closed subspace and by Lemma 8 $I_z(J_\phi \mathcal{H}) \subseteq J_\phi \mathcal{H}$. By Lemma 7 there exists a polynomial q such that $I_q \mathcal{H} \subseteq J_\phi \mathcal{H}$. Lemma 4 implies this lemma.

Theorem 3. Suppose that there exists a function g in \mathcal{H} such that g' does not belong to H^2. Suppose that any function in \mathcal{H} has radial limits almost everywhere. Then there does not exist J_ϕ which is a Fredholm operator on \mathcal{H}.

Proof If J_ϕ is Fredholm on \mathcal{H} then $J_\phi \mathcal{H} + \mathbb{C} \supseteq p^2 \mathcal{H}$ for some polynomial by Lemma 9. For any G in $p^2 \mathcal{H}$ there exists a function f in \mathcal{H} such that $f(z) = G'(z)$ $(z \in D)$.

By hypothesis, there exists G in $p^2 \mathcal{H}$ such that $G' \notin H^2$ and so G' does not have radial limits on a set of positive measure on ∂D (see [2, Appendix A]). On the other hand, if $G = p^2$ then G has radial limits almost everywhere on ∂D. By hypothesis, f has radial limits almost everywhere. This contradiction implies that J_ϕ is not Fredholm.

§ 5. Relation between M_ϕ and I_ϕ

Put $Df(z) = f'(z)$ and $J = J_z$, that is, $Jf(z) = \int_0^z f(\zeta) d\zeta$. Then

$$DJf = f \quad \text{and} \quad JDf = f - f(0).$$

It is easy to see that $I_\phi J = JM_\phi$ and $DI_\phi = M_\phi D$. Put

$$\mathcal{H}^D = \{ f \in H(D) : Df \in \mathcal{H} \}$$

Suppose that D and J are bounded on \mathcal{H} and for f in \mathcal{H}^D put $\|f\|^2_D = \|Df\|^2 + |f(0)|^2$. Then \mathcal{H}^D is a Hilbert space. Put

$$\mathcal{H}^J = \{ f \in H(D) : Jf \in \mathcal{H} \}$$

and for f in \mathcal{H}^J $\|f\|_J = \|Jf\|$. Then \mathcal{H}^J is a Hilbert space.

D is isometric from $\mathcal{H}^D_0 = \{ f \in \mathcal{H}^D : f(0) = 0 \}$ onto \mathcal{H}. J is isometric from \mathcal{H}^J onto $\mathcal{H}_0 = \{ f \in \mathcal{H} : f(0) = 0 \}$. Since $DI_\phi = M_\phi D$, I_ϕ is bounded on \mathcal{H}^D if and only if M_ϕ is bounded on \mathcal{H}. Hence $I(\mathcal{H}^D) = M(\mathcal{H})$. Moreover I_ϕ is Fredholm on \mathcal{H}^D if and only if M_ϕ is Fredholm on \mathcal{H}. Since $JM_\phi = I_\phi J$,

7
\(\mathcal{I}(\mathcal{H}^J) = \mathcal{M}(\mathcal{H}), \) and \(I_\phi \) is Fredholm on \(\mathcal{H}^J \) if and only if \(M_\phi \) is Fredholm on \(\mathcal{H} \). Moreover \((\mathcal{H}^J)^D = (\mathcal{H}^D)^J = \mathcal{H} \). Hence \(\mathcal{I}(\mathcal{H}) = \mathcal{M}(\mathcal{H}^D) = \mathcal{M}(\mathcal{H}^J) \), and \(I_\phi \) is Fredholm on \(\mathcal{H} \) if and only if \(M_\phi \) is Fredholm on \(\mathcal{H}^D \) and \(\mathcal{H}^J \).

§ 6. Examples

Let \(dA \) denote the normalized Lebesgue area measure on \(D \) and \(\omega \) a positive function on \(D \) which is summable with respect to \(dA \). Put

\[
\mathcal{D}^2(\omega) = \{ f \in H(D) : \| f \|_{2,\omega}^2 = |f(0)|^2 + \int_D |f'(z)|^2 \omega(z) dA(z) < \infty \}
\]

and

\[
L^2_a(\omega) = \{ f \in H(D) : \| f \|_{L^2_a(\omega)}^2 = \int_D |f(z)|^2 \omega(z) dA(z) < \infty \}.
\]

Then \(\mathcal{D}^2(\omega) \) is called a weighted Dirichlet space and \(L^2_a(\omega) \) is called a weighted Bergman space when \(\mathcal{D}^2(\omega) \) and \(L^2_a(\omega) \) are nontrivial Hilbert spaces. It is easy to see that \((\mathcal{D}^2(\omega))^D = L^2_a(\omega) \) and \((L^2_a(\omega))^D = \mathcal{D}^2(\omega) \).

If \(\omega(z) = (1 - |z|^2)^\alpha \) and \(\alpha > -1 \), we will write \(\mathcal{D}^2(\omega) = \mathcal{D}^2 \) and \(L^2_a(\omega) = L^2_a \). It is known that \(\mathcal{D}^2 \) and \(L^2_a \) are nontrivial Hilbert spaces. \(\mathcal{D}_1 \) is the Hardy space \(H^2 \), \(\mathcal{D}_2 \) is the Bergman space \(L^2_a \) and \(\mathcal{D}_0 \) is the Dirichlet space.

If \(\mathcal{H} = \mathcal{D}_a \) or \(L^2_a \), then \(\mathcal{H} \) satisfies the condition (1), (2) and (3) in Introduction. It is known that \(H(D) \subset \mathcal{M}(\mathcal{D}_a) \subset H^\infty(D) \) and \(\mathcal{M}(L^2_a) = H^\infty(D) \). Hence Theorem 1 can apply to \(\mathcal{D}_a \) for any \(\alpha > -1 \). If \(\alpha \geq 1 \) then \((z - a)^\alpha \mathcal{D}_a \) is dense in \(\mathcal{D}_a \) whenever \(a \in \partial D \). Hence Corollary 1 can apply to \(\mathcal{D}_a \) for \(\alpha \geq 1 \).

\(\mathcal{I}(L^2_{a,\alpha}) = \mathcal{M}((L^2_{a,\alpha})^D) = \mathcal{M}(\mathcal{D}_a) \) and \(H(D) \subset \mathcal{M}(\mathcal{D}_a) \subset H^\infty(D) \). Since \(\mathcal{I}(\mathcal{D}_a) = \mathcal{M}(L^2_{a,\alpha}) = H^\infty(D) \), Theorem 2 can apply to \(\mathcal{D}_a \) for \(\alpha > -1 \). It is known [3] that \(\mathcal{M}(\mathcal{D}_a) = H^\infty(D) \) for \(\alpha > 1 \) and \(\mathcal{M}(\mathcal{D}_a) = \mathcal{D}_a \) for \(-1 < \alpha < 0 \). Hence \(\mathcal{I}(L^2_{a,\alpha}) = H^\infty(D) \) for \(\alpha > 1 \) and \(\mathcal{I}(L^2_{a,\alpha}) = \mathcal{D}_a \) for \(-1 < \alpha < 0 \). Hence Theorem 2 can apply to \(L^2_{a,\alpha} \) for \(\alpha > 1 \) and \(-1 < \alpha < 0 \). By a theorem in [3], it is easy to see that \(\mathcal{I}(L^2_{a,\alpha}) = \mathcal{M}(\mathcal{D}_a) \) \((0 \leq \alpha \leq 1) \) satisfies the conditions in Theorem 2. Hence Theorem 2 can apply to \(L^2_{a,\alpha} \).

When \(\mathcal{D}^2(\omega) \) or \(L^2_a(\omega) \) is a Hilbert space \(\mathcal{H} \), it is important in order to study composition operator that \(\mathcal{H} \) satisfies three conditions in Introduction. It will be interesting to determine such a weight \(\omega \).

References

Takahiko Nakazi
Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060-0810, Japan
nakazi@math.sci.hokudai.ac.jp