Title

Some Fredholm Integration Operators on A Hilbert Space of Holomorphic Functions on The Unit Disc

Author(s)

Nakazi, Takahiko

Citation

Hokkaido University Preprint Series in Mathematics, 891, 1-9

Issue Date

2008

DOI

10.14943/84041

Doc URL

http://hdl.handle.net/2115/69700

Type

bulletin (article)

File Information

pre891.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
Some Fredholm Integration Operators on A Hilbert Space of Holomorphic Functions on The Unit Disc

By

Takahiko Nakazi*

2000 Mathematics Subject Classification. Primary 47 B 38, 47 G 10, Secondary 47 A 53

Keywords and phrases : Fredholm operator, Hilbert space, analytic function, integration operator, multiplication operator

* This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education
Abstract. In this paper, we study when M_ϕ, I_ϕ or J_ϕ is a Fredholm operator on a Hilbert space which satisfies few natural axioms.
§ 1. Introduction

Let D be the open unit disc in the complex plane \mathbb{C} and $H(D)$ be the set of all analytic functions on D. $H(\bar{D})$ denotes the set of all analytic functions on \bar{D}. In this paper, \mathcal{H} is a Hilbert space in $H(D)$ which satisfies the following:

(1) $z\mathcal{H} \subset \mathcal{H}$.
(2) If $a \in D$ then $(z-a)\mathcal{H} \oplus \mathbb{C} = \mathcal{H}$.
(3) $\mathcal{H} \supset H(\bar{D})$.

In this paper, we study the following three operators. If ϕ is a function in $H(D)$, put for $z \in D$,

$$(M_\phi f)(z) = \phi(z)f(z),$$

$$(I_\phi f)(z) = \int_0^z f'(\zeta)\phi(\zeta) d\zeta,$$

$$(J_\phi f)(z) = \int_0^z f(\zeta)\phi'(\zeta) d\zeta \quad (f \in \mathcal{H}).$$

Then $(M_\phi f)(z) = (I_\phi f)(z) + (J_\phi f)(z) + \phi(0)f(0)$. It is clear that I_ϕ and J_ϕ are never invertible.

Put $\mathcal{M}(\mathcal{H}) = \{\phi \in H(D) : M_\phi \mathcal{H} \subset \mathcal{H}\}$, $\mathcal{I}(\mathcal{H}) = \{\phi \in H(D) : I_\phi \mathcal{H} \subset \mathcal{H}\}$ and $\mathcal{J}(\mathcal{H}) = \{\phi \in H(D) : J_\phi \mathcal{H} \subset \mathcal{H}\}$. In this paper, we assume that $H(\bar{D}) \subset \mathcal{M}(\mathcal{H})$, $z \in \mathcal{I}(\mathcal{H})$ and $z \in \mathcal{J}(\mathcal{H})$.

§ 2. Multiplication operator M_ϕ

When $\mathcal{M}(\mathcal{H}) = H^\infty(D)$, A. Aleman [1] shows a more general result than Corollary 1 without the condition that $(z-a)\mathcal{H}$ is dense.

Lemma 1. If p is a polynomial with no zeros on ∂D then $\dim \mathcal{H}/p\mathcal{H} < \infty$.

Proof If $|a| > 1$ then $(z-a)^{-1} \in H(\bar{D})$ and so $(z-a)^{-1}$ belongs to $M(\mathcal{H})$. Hence we may assume that the zeros of p are contained in D. By hypothesis on \mathcal{H}, $\dim \mathcal{H}/(z-a)\mathcal{H} = 1$ and so $\dim \mathcal{H}/p\mathcal{H} < \infty$.

Lemma 2. If M is a closed invariant subspace of M_z in \mathcal{H} such that $\dim \mathcal{H}/M < \infty$, then there exists a polynomial p such that $p\mathcal{H} \subseteq M$.

Proof Let $N = \mathcal{H} \ominus M$ and $S_z = P_N M_z|N$, then S_z is of finite rank because $\dim N < \infty$. Hence there exists a polynomial p such that $S_{p(z)} = p(S_z) = 0$. Therefore $pN \subset M$ and so $p\mathcal{H} \subset M$.

3
Theorem 1.

(1) If $φ = Bg$ where B is a finite Blaschke product, and both g and g^{-1} are in $\mathcal{M}(\mathcal{H})$ then $M_φ$ is a Fredholm operator.

(2) If $M_φ$ is a Fredholm operator on \mathcal{H} then $φ = Bg$ when B is a finite Blaschke product, g is in $\mathcal{M}(\mathcal{H})$ and g^{-1} is in \mathcal{H}.

(3) For the g in (2), M_g is a Fredholm operator on \mathcal{H} with index $M_φ$ ≤ index $M_g ≤ 0$ and there exists a polynomial q such that $q\mathcal{H} ⊆ g\mathcal{H}$ and the zeros are in $\mathbb{C}\setminus D$.

Proof (1) Suppose $φ = Bg$, $B = \prod_{j=1}^{n}(z - a_j)/(1 - \bar{a}_j z)$, $\{a_j\} \subset D$, and both g and g^{-1} are in $\mathcal{M}(\mathcal{H})$. Since $\mathcal{M}(\mathcal{H}) \supseteq H(\bar{D})$, $\prod_{j=1}^{n}(1 - \bar{a}_j z)$ is invertible in $\mathcal{M}(\mathcal{H})$ and so $M_φ(\mathcal{H}) = p\mathcal{H}$ where $p = \prod_{j=1}^{n}(z - a_j)$.

(2) If $M_φ$ is a Fredholm operator then $\dim \mathcal{H}/M_φ(\mathcal{H}) < \infty$ and so by Lemma 2 there exists a polynomial p such that $φf = p$. Therefore $φ$ can be factorized as $φ = Bg$ where B is a finite Blaschke product and $g \in \mathcal{H}$. For $φ \in \mathcal{H}$ and $\prod_{j=1}^{n}(1 - \bar{a}_j z)φ = \prod_{j=1}^{n}(z - a_j)g \in \mathcal{H}$ where $B = \prod_{j=1}^{n}(z - a_j)/(1 - \bar{a}_j z)$. Since $\ker τ_{a_j} = (z - a_j)\mathcal{H}$, g belongs to \mathcal{H}. By the similar argument, there exists a function k in \mathcal{H} and $gk = 1$ because $Bgf = p$. Thus g^{-1} belongs to \mathcal{H}. We will prove that g belongs to $\mathcal{M}(\mathcal{H})$. Since B is a finite Blaschke product and $\ker τ_a = (z - a)\mathcal{H}$ for $a \in D$, $\mathcal{H} = K + B\mathcal{H}$ where K is a finite dimensional subspace such that each function in K is a rational function whose poles are in $\mathbb{C}\setminus \bar{D}$. Since $g \in \mathcal{H}$ and $\mathcal{M}(\mathcal{H}) \supseteq H(\bar{D})$, $gK \subseteq \mathcal{H}$ and so $g\mathcal{H} \subseteq \mathcal{H}$ because $gB\mathcal{H} \subseteq \mathcal{H}$.

(3) By the proof of (2), $p\mathcal{H} \subseteq Bg\mathcal{H} \subseteq g\mathcal{H}$ and so the first statement is clear. Again by the proof of (2), the zeros of p in D is just the zeros of B. This implies that there exists a polynomial q such that $q\mathcal{H} \subseteq g\mathcal{H}$ and q does not have any zeros in D.

Corollary 1. Suppose that $(z - a)\mathcal{H}$ is dense in \mathcal{H} whenever $a \in \partial D$. Then $M_φ$ is a Fredholm operator on \mathcal{H} if and only if $φ = Bg$ where B is a finite Blaschke product, and both g and g^{-1} are in $\mathcal{M}(\mathcal{H})$.

§ 3. Integral operator $I_φ$

It seems to have not been studied yet in this general setting as Theorem 2.

Lemma 3. If $φ$ is a function in $\mathcal{I}(\mathcal{H})$ then $I_φ(\mathcal{H}) = I_φ(z\mathcal{H}) \subseteq z\mathcal{H}$. $I_φ(\mathcal{H}) = z\mathcal{H}$ if and only if $φ$ and $φ^{-1}$ belongs to $\mathcal{I}(\mathcal{H})$.

Proof By the definition of $I_φ$ the first statement is clear. We will
show the second one. If both ϕ and ϕ^{-1} belong to $\mathcal{I}(\mathcal{H})$, then

$$z\mathcal{H} = I_1(\mathcal{H}) = I_\phi I_{\phi^{-1}}(\mathcal{H}) \subseteq I_\phi(z\mathcal{H}) \subseteq z\mathcal{H}$$

because I_ϕ and $I_{\phi^{-1}}$ are bounded on \mathcal{H}. Conversely if $I_\phi(\mathcal{H}) = z\mathcal{H}$ then there exists a function g in \mathcal{H} such that

$$\int_0^z g(\zeta)\phi(\zeta)d\zeta = z$$

and so $g'(z)\phi(z) = 1$.

Hence $\phi^{-1} \in H(D)$ and

$$z\mathcal{H} = I_1(\mathcal{H}) = I_{\phi^{-1}} I_\phi(\mathcal{H}) = I_{\phi^{-1}}(z\mathcal{H})$$

and so both ϕ and ϕ^{-1} belong to $\mathcal{I}(\mathcal{H})$.

Lemma 4. If p is a polynomial then $I_p(\mathcal{H}) + \mathbb{C} \supseteq p^2\mathcal{H}$.

Proof Suppose $g \in \mathcal{H}$. Since $z \in \mathcal{I}(\mathcal{H})$ by the hypothesis, p belongs to $\mathcal{I}(\mathcal{H})$ and so $\int_0^z g(\zeta)p(\zeta)d\zeta \in \mathcal{H}$. Since $p' \in \mathcal{M}(\mathcal{H})$ and $z \in J(\mathcal{H})$, $\int_0^z g(\zeta)p'(\zeta)d\zeta$ belongs to \mathcal{H}. Hence $f(z) = \int_0^z (2p'(\zeta)g(\zeta) + p(\zeta)g'(\zeta))d\zeta$ belongs to \mathcal{H}. Now the lemma follows because

$$\int_0^z f'(\zeta)p(\zeta)d\zeta = \int_0^z (p^2(\zeta)g(\zeta))'d\zeta = p^2(z)g(z) + p^2(0)g(0).$$

Lemma 5. Suppose that B is a finite Blaschke product, and both g and g^{-1} are in $\mathcal{I}(\mathcal{H})$. If $\phi = Bg$ then $\phi \in \mathcal{I}(\mathcal{H})$ and $\dim \mathcal{H}/I_\phi(\mathcal{H}) < \infty$.

Proof By the hypothesis, $I_B(\mathcal{H}) = I_B(z\mathcal{H}) = I_B(I_\phi(\mathcal{H})) = I_\phi(\mathcal{H})$ by Lemma 3. We may assume that

$$B = \prod_{j=1}^n \frac{z - a_j}{1 - \bar{a}_j z} \text{ and } \{a_j\} \subset D.$$

Since $\prod_{j=1}^n (1 - \bar{a}_j z)$ is invertible in $\mathcal{I}(\mathcal{H})$, by Lemma 3 $I_\phi(\mathcal{H}) = I_p(\mathcal{H})$ where $p = \prod_{j=1}^n (z - a_j)$. Lemmas 1 and 4 imply that $\dim \mathcal{H}/I_\phi(\mathcal{H}) < \infty$.

Lemma 6. If p is a polynomial then $p(S_z) = S_p(z)$.

Proof By hypothesis, $P^N I_z (I - P^N) = 0$. Hence

$$S_{z^2} = P^N I_{z^2} P^N = P^N I_z I_z P^N$$

$$= P^N I_z (I - P^N) I_z P^N + P^N I_z P^N I_z P^N$$

$$= P^N I_z P^N I_z P^N = S_z S_z.$$
Now it is easy to see that \(p(S_\zeta) = S_{p(z)} \) for a polynomial \(p \).

Lemma 7. If \(M \) is a closed invariant subspace of \(I_\zeta \) and \(\dim H/M = n < \infty \) then there exists a polynomial \(p \) such that the degree of \(p \leq n \) and \(I_p(H) \subseteq M \).

Proof If we put \(N = H \ominus M \), then \(\dim N = n < \infty \) and so there exists a polynomial \(p \) such that \(p(S_\zeta) = 0 \) and the degree of \(p \leq n \). By Lemma 6, \(S_{p(z)} = 0 \) and so \(I_p(N) \subseteq M \). Since \(I_p(M) \subseteq M \), \(I_p(H) \subseteq M \).

Theorem 2. Suppose \(I(H) \) contains \(H(\bar{D}) \) and if \(f \in I(H) \) and \(f(a) = 0 \) for some \(a \in D \) then \(f/(z-a) \) belongs to \(I(H) \). \(I_\phi \) is a Fredholm operator on \(H \) if and only if \(\phi = Bg \) where \(B \) is a finite Blaschke product, and \(g \) and \(g^{-1} \) are in \(I(H) \).

Proof If \(\phi = Bg \), \(B \) is a finite Blaschke product, \(g \in I(H) \) and \(g^{-1} \in I(H) \) then by Lemma 5 \(I_\phi(H) \) is closed and \(\dim \ker I_\phi < \infty \). Since \(\ker I_\phi = C \), index \(I_\phi = 1 - \dim \ker I_\phi \) and so \(I_\phi \) is Fredholm. Conversely if \(I_\phi \) is Fredholm then \(I_\phi(H) \) is closed and \(\dim H/\ker I_\phi < \infty \). Since \(I_\zeta I_\phi(H) \subseteq I_\phi(H) \), by Lemma 7 there exists a polynomial such that \(I_p(H) \subseteq I_\phi(H) \). By Lemma 4 \(I_p(H) + C \supseteq p^2H \). Hence there exists a function \(F \) in \(H \) and \(c \in C \) such that \(I_\phi(F) + c = p^2 \). Therefore \(F'(z)\phi(z) = 2p(z)p'(z) \) and so the Blaschke part of \(\phi \) is a finite one \(B \). Thus \(\phi \) can be factorized as \(\phi = Bg \) where \(g \in I(H) \) and \(g \) has no zeros on \(D \) because \(I(H) \) is a subalgebra in \(B(H) \) and both \(B \) and \(B^{-1} \) are in \(I(H) \). Hence

\[
I_{g^{-1}p}(H) \subseteq I_{g^{-1}}I_\phi(H) = I_B(H) \subseteq H
\]

and so \(g^{-1}p \) belongs to \(I(H) \). By hypothesis on \(I(H) \), \(g^{-1} \) belongs to \(I(H) \).

§ 4. Integral operator \(J_\phi \)

A Fredholm integral operator \(J_\phi \) have not studied. But if \(J_\phi \) is compact then it is not Fredholm. In some special Hilbert space \(H \), the compactness of \(J_\phi \) have studied.

Lemma 8. If \(\phi \) and \(\psi \) are in \(H(D) \) then \(I_\psi J_\phi = J_\phi M_\psi \).

Proof For \(f \in H \)

\[
(I_\psi J_\phi f)(z) = \int_0^z (J_\phi f)'(\zeta)\psi(\zeta)d\zeta = \int_0^z f(\zeta)\phi'(\zeta)\psi(\zeta)d\zeta = (J_\phi M_\psi f)(z)
\]
Lemma 9. If \(J_{\phi} \) is a Fredholm operator on \(\mathcal{H} \) then \(J_{\phi} \mathcal{H} \) is a closed invariant subspace of \(I_{z} \) and \(\dim \mathcal{H}/J_{\phi} \mathcal{H} < \infty \). Hence there exists a polynomial \(p \) such that \(J_{\phi} \mathcal{H} \supseteq I_{p} \mathcal{H} \) and so \(J_{\phi} \mathcal{H} + \mathbb{C} \supseteq p^{2} \mathcal{H} \).

Proof If \(J_{\phi} \) is Fredholm on \(\mathcal{H} \) then \(J_{\phi} \mathcal{H} \) is a closed subspace and by Lemma 8 \(I_{z}(J_{\phi} \mathcal{H}) \subseteq J_{\phi} \mathcal{H} \). By Lemma 7 there exists a polynomial \(q \) such that \(I_{q} \mathcal{H} \subseteq J_{\phi} \mathcal{H} \). Lemma 4 implies this lemma.

Theorem 3. Suppose that there exists a function \(g \) in \(\mathcal{H} \) such that \(g' \) does not belong to \(H^{2} \). Suppose that any function in \(\mathcal{H} \) has radial limits almost everywhere. Then there does not exist \(J_{\phi} \) which is a Fredholm operator on \(\mathcal{H} \).

Proof If \(J_{\phi} \) is Fredholm on \(\mathcal{H} \) then \(J_{\phi} \mathcal{H} + \mathbb{C} \supseteq p^{2} \mathcal{H} \) for some polynomial by Lemma 9. For any \(G \) in \(p^{2} \mathcal{H} \) there exists a function \(f \) in \(\mathcal{H} \) such that \(f(z)\phi'(z) = G'(z) \) \((z \in D) \).

By hypothesis, there exists \(G \) in \(p^{2} \mathcal{H} \) such that \(G' \notin H^{2} \) and so \(G' \) does not have radial limits on a set of positive measure on \(\partial D \) (see [2, Appendix A]). On the other hand, if \(G = p^{2} \) then \(G \) has radial limits almost everywhere on \(\partial D \). By hypothesis, \(f \) has radial limits almost everywhere. This contradiction implies that \(J_{\phi} \) is not Fredholm.

§ 5. Relation between \(M_{\phi} \) and \(I_{\phi} \)

Put \(Df(z) = f'(z) \) and \(J = J_{z} \), that is, \(Jf(z) = \int_{0}^{z} f(\zeta) d\zeta \). Then

\[DJf = f \quad \text{and} \quad JDf = f - f(0). \]

It is easy to see that \(I_{\phi} J = JM_{\phi} \) and \(DI_{\phi} = M_{\phi} D \). Put

\[\mathcal{H}^{D} = \{ f \in H(D) : Df \in \mathcal{H} \} \]

Suppose that \(D \) and \(J \) are bounded on \(\mathcal{H} \) and for \(f \) in \(\mathcal{H}^{D} \) put \(\| f \|_{D}^{2} = \| Df \|^{2} + |f(0)|^{2} \). Then \(\mathcal{H}^{D} \) is a Hilbert space. Put

\[\mathcal{H}^{J} = \{ f \in H(D) : Jf \in \mathcal{H} \} \]

and for \(f \) in \(\mathcal{H}^{J} \) \(\| f \|_{J} = \| Jf \| \). Then \(\mathcal{H}^{J} \) is a Hilbert space.

\(D \) is isometric from \(\mathcal{H}_{0}^{D} = \{ f \in \mathcal{H}^{D} : f(0) = 0 \} \) onto \(\mathcal{H} \). \(J \) is isometric from \(\mathcal{H}^{J} \) onto \(\mathcal{H}_{0} = \{ f \in \mathcal{H} : f(0) = 0 \} \). Since \(DI_{\phi} = M_{\phi} D \), \(I_{\phi} \) is bounded on \(\mathcal{H}^{D} \) if and only if \(M_{\phi} \) is bounded on \(\mathcal{H} \). Hence \(I(\mathcal{H}^{D}) = \mathcal{M}(\mathcal{H}) \). Moreover \(I_{\phi} \) is Fredholm on \(\mathcal{H}^{D} \) if and only if \(M_{\phi} \) is Fredholm on \(\mathcal{H} \). Since \(JM_{\phi} = I_{\phi} J \),
\[I(\mathcal{H}^J) = \mathcal{M}(\mathcal{H}), \] and \(I_\phi \) is Fredholm on \(\mathcal{H}^J \) if and only if \(M_\phi \) is Fredholm on \(\mathcal{H} \). Moreover \((\mathcal{H}^J)^D = (\mathcal{H}^D)^J = \mathcal{H} \). Hence \(I(\mathcal{H}) = \mathcal{M}(\mathcal{H}^D) = \mathcal{M}(\mathcal{H}^J) \), and \(I_\phi \) is Fredholm on \(\mathcal{H} \) if and only if \(M_\phi \) is Fredholm on \(\mathcal{H}^D \) and \(\mathcal{H}^J \).

§ 6. Examples

Let \(dA \) denote the normalized Lebesgue area measure on \(D \) and \(\omega \) a positive function on \(D \) which is summable with respect to \(dA \). Put

\[D^2(\omega) = \{ f \in H(D) : \| f \|^2_D = |f(0)|^2 + \int_D |f'(z)|^2 \omega(z) dA(z) < \infty \} \]

and

\[L^2_\alpha(\omega) = \{ f \in H(D) : \| f \|^2_D = \int_D |f(z)|^2 \omega(z) dA(z) < \infty \}. \]

Then \(D^2(\omega) \) is called a weighted Dirichlet space and \(L^2_\alpha(\omega) \) is called a weighted Bergman space when \(D^2(\omega) \) and \(L^2_\alpha(\omega) \) are nontrivial Hilbert spaces. It is easy to see that \((D^2(\omega))^J = L^2_\alpha(\omega) \) and \((L^2_\alpha(\omega))^D = D^2(\omega) \).

If \(\omega(z) = (1 - |z|^2)^\alpha \) and \(\alpha > -1 \), we will write \(D^2(\omega) = D^2_\alpha \) and \(L^2_\alpha(\omega) = L^2_\alpha \). It is known that \(D^2_\alpha \) and \(L^2_\alpha \) are nontrivial Hilbert spaces. \(D_1 \) is the Hardy space \(H^2 \), \(D_2 \) is the Bergman space \(L^2_0 \) and \(D_0 \) is the Dirichlet space. If \(\mathcal{H} = D_\alpha \) or \(L^2_\alpha \) then \(\mathcal{H} \) satisfies the condition (1), (2) and (3) in Introduction. It is known that \(H(D) \subset \mathcal{M}(D_\alpha) \subset H^\infty(D) \) and \(\mathcal{M}(L^2_\alpha) = H^\infty(D) \). Hence Theorem 1 can apply to \(D_\alpha \) for any \(\alpha > -1 \). If \(\alpha \geq 1 \) then \((z - a)^\alpha \) is dense in \(D_\alpha \) whenever \(a \in \partial D \). Hence Corollary 1 can apply to \(D_\alpha \) for \(\alpha \geq 1 \). \(I(L^2_\alpha) = \mathcal{M}(L^2_\alpha)^D = \mathcal{M}(D_\alpha) \) and \((H(D) \subset \mathcal{M}(D_\alpha) \subset H^\infty(D) \). Since \(I(D_\alpha) = \mathcal{M}(D_\alpha)^J = H^\infty(D) \), Theorem 2 can apply to \(D_\alpha \) for \(\alpha > -1 \). It is known [3] that \(\mathcal{M}(D_\alpha) = H^\infty(D) \) for \(\alpha > 1 \) and \(\mathcal{M}(D_\alpha) = D_\alpha \) for \(-1 < \alpha < 0 \). Hence \(I(L^2_\alpha) = H^\infty(D) \) for \(\alpha > 1 \) and \(I(L^2_\alpha) = D_\alpha \) for \(-1 < \alpha < 0 \). Hence Theorem 2 can apply to \(L^2_\alpha \) for \(\alpha > 1 \) and \(-1 < \alpha < 0 \). By a theorem in [3], it is easy to see that \(I(L^2_\alpha) = \mathcal{M}(D_\alpha) \) \((0 \leq \alpha \leq 1) \) satisfies the conditions in Theorem 2. Hence Theorem 2 can apply to \(L^2_\alpha \).

When \(D^2(\omega) \) or \(L^2_\alpha(\omega) \) is a Hilbert space \(\mathcal{H} \), it is important in order to study composition operator that \(\mathcal{H} \) satisfies three conditions in Introduction. It will be interesting to determine such a weight \(\omega \).

References

Takahiko Nakazi
Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060-0810, Japan
nakazi@math.sci.hokudai.ac.jp