Some Fredholm Integration Operators on A Hilbert Space of Holomorphic Functions on The Unit Disc

By

Takahiko Nakazi

2000 Mathematics Subject Classification. Primary 47 B 38, 47 G 10, Secondary 47 A 53

Keywords and phrases : Fredholm operator, Hilbert space, analytic function, integration operator, multiplication operator

* This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education
Abstract. In this paper, we study when M_ϕ, I_ϕ or J_ϕ is a Fredholm operator on a Hilbert space which satisfies few natural axioms.
§ 1. Introduction
Let D be the open unit disc in the complex plane \mathbb{C} and $H(D)$ be the set of all analytic functions on D. $H(\bar{D})$ denotes the set of all analytic functions on \bar{D}. In this paper, \mathcal{H} is a Hilbert space in $H(D)$ which satisfies the following:

1. $z\mathcal{H} \subset \mathcal{H}$.
2. If $a \in D$ then $(z-a)\mathcal{H} \oplus \mathbb{C} = \mathcal{H}$.
3. $\mathcal{H} \supseteq H(\bar{D})$.

In this paper, we study the following three operators. If ϕ is a function in $H(D)$, put for $z \in D$,

$$(M_{\phi}f)(z) = \phi(z)f(z),$$
$$(I_{\phi}f)(z) = \int_0^z f'(\zeta)\phi(\zeta)d\zeta,$$
$$(J_{\phi}f)(z) = \int_0^z f(\zeta)\phi'(\zeta)d\zeta \quad (f \in \mathcal{H}).$$

Then $(M_{\phi}f)(z) = (I_{\phi}f)(z) + (J_{\phi}f)(z) + \phi(0)f(0)$. It is clear that I_{ϕ} and J_{ϕ} are never invertible.

Put $\mathcal{M}(\mathcal{H}) = \{\phi \in H(D) : M_{\phi}\mathcal{H} \subseteq \mathcal{H}\}$, $\mathcal{I}(\mathcal{H}) = \{\phi \in H(D) : I_{\phi}\mathcal{H} \subseteq \mathcal{H}\}$ and $\mathcal{J}(\mathcal{H}) = \{\phi \in H(D) : J_{\phi}\mathcal{H} \subseteq \mathcal{H}\}$. In this paper, we assume that $H(\bar{D}) \subset \mathcal{M}(\mathcal{H})$, $z \in \mathcal{I}(\mathcal{H})$ and $z \in \mathcal{J}(\mathcal{H})$.

§ 2. Multiplication operator M_{ϕ}
When $\mathcal{M}(\mathcal{H}) = H^{\infty}(D)$, A. Aleman [1] shows a more general result than Corollary 1 without the condition that $(z-a)\mathcal{H}$ is dense.

Lemma 1. If p is a polynomial with no zeros on ∂D then $\dim \mathcal{H}/p\mathcal{H} < \infty$.

Proof. If $|a| > 1$ then $(z-a)^{-1} \in H(\bar{D})$ and so $(z-a)^{-1}$ belongs to $M(\mathcal{H})$. Hence we may assume that the zeros of p are contained in D. By hypothesis on \mathcal{H}, $\dim \mathcal{H}/(z-a)\mathcal{H} = 1$ and so $\dim \mathcal{H}/p\mathcal{H} < \infty$.

Lemma 2. If M is a closed invariant subspace of M_z in \mathcal{H} such that $\dim \mathcal{H}/M < \infty$, then there exists a polynomial p such that $p\mathcal{H} \subseteq M$.

Proof. Let $N = \mathcal{H} \ominus M$ and $S_z = P_NM_z|N$, then S_z is of finite rank because $\dim N < \infty$. Hence there exists a polynomial p such that $S_{p(z)} = p(S_z) = 0$. Therefore $pN \subseteq M$ and so $p\mathcal{H} \subseteq M$.

3
Theorem 1.

1. If \(\phi = Bg \) where \(B \) is a finite Blaschke product, and both \(g \) and \(g^{-1} \) are in \(\mathcal{M}(\mathcal{H}) \) then \(M_\phi \) is a Fredholm operator.

2. If \(M_\phi \) is a Fredholm operator on \(\mathcal{H} \) then \(\phi = Bg \) when \(B \) is a finite Blaschke product, \(g \) is in \(\mathcal{M}(\mathcal{H}) \) and \(g^{-1} \) is in \(\mathcal{H} \).

3. For the \(g \) in (2), \(M_g \) is a Fredholm operator on \(\mathcal{H} \) with index \(M_g \leq 0 \) and there exists a polynomial \(q \) such that \(q\mathcal{H} \subseteq g\mathcal{H} \) and the zeros are in \(\mathbb{C} \setminus D \).

Proof (1) Suppose \(\phi = Bg, B = \prod_{j=1}^{n}(z - a_j)/(1 - \bar{a}_j z), \{a_j\} \subset D \), and both \(g \) and \(g^{-1} \) are in \(\mathcal{M}(\mathcal{H}) \). Since \(\mathcal{M}(\mathcal{H}) \supseteq H(D), \prod_{j=1}^{n}(1 - \bar{a}_j z) \) is invertible in \(\mathcal{M}(\mathcal{H}) \) and so \(M_\phi(\mathcal{H}) = p\mathcal{H} \) where \(p = \prod_{j=1}^{n}(z - a_j) \).

2) If \(M_\phi \) is a Fredholm operator then \(\dim \mathcal{H}/M_\phi(\mathcal{H}) < \infty \) and so by Lemma 2 there exists a polynomial \(p \) such that \(\phi f = p \). Therefore \(\phi \) can be factorized as \(\phi = Bg \) where \(B \) is a finite Blaschke product and \(g \in \mathcal{H} \). For \(\phi \in \mathcal{H} \) and \(\prod_{j=1}^{n}(1 - \bar{a}_j z)\phi = \prod_{j=1}^{n}(z - a_j)g \in \mathcal{H} \) where \(B = \prod_{j=1}^{n}(z - a_j)/(1 - \bar{a}_j z) \). Since \(\text{Ker} \tau_{a_j} = (z - a_j)\mathcal{H}, g \) belongs to \(\mathcal{H} \). By the similar argument, there exists a function \(k \) in \(\mathcal{H} \) and \(gk = 1 \) because \(Bgf = p \). Thus \(g^{-1} \) belongs to \(\mathcal{H} \).

We will prove that \(g \) belongs to \(\mathcal{M}(\mathcal{H}) \). Since \(B \) is a finite Blaschke product and \(\text{Ker} \tau = (z - a)\mathcal{H} \) for \(a \in D, \mathcal{H} = K + B\mathcal{H} \) where \(K \) is a finite dimensional subspace such that each function in \(K \) is a rational function whose poles are in \(\mathbb{C} \setminus D \). Since \(g \in \mathcal{H} \) and \(\mathcal{M}(\mathcal{H}) \supseteq H(D) \), \(gK \subseteq \mathcal{H} \) and so \(g\mathcal{H} \subseteq \mathcal{H} \) because \(gB\mathcal{H} \subseteq \mathcal{H} \).

3) By the proof of (2), \(p\mathcal{H} \subseteq Bg\mathcal{H} \subseteq g\mathcal{H} \) and so the first statement is clear. Again by the proof of (2), the zeros of \(p \) in \(D \) is just the zeros of \(B \). This implies that there exists a polynomial \(q \) such that \(q\mathcal{H} \subseteq g\mathcal{H} \) and \(q \) does not have any zeros in \(D \).

Corollary 1. Suppose that \((z - a)\mathcal{H}\) is dense in \(\mathcal{H} \) whenever \(a \in \partial D \). Then \(M_\phi \) is a Fredholm operator on \(\mathcal{H} \) if and only if \(\phi = Bg \) where \(B \) is a finite Blaschke product, and both \(g \) and \(g^{-1} \) are in \(\mathcal{M}(\mathcal{H}) \).

§ 3. Integral operator \(I_\phi \)

It seems to have not been studied yet in this general setting as Theorem 2.

Lemma 3. If \(\phi \) is a function in \(\mathcal{I}(\mathcal{H}) \) then \(I_\phi(\mathcal{H}) = I_\phi(z\mathcal{H}) \subseteq z\mathcal{H} \). \(I_\phi(\mathcal{H}) = z\mathcal{H} \) if and only if \(\phi \) and \(\phi^{-1} \) belongs to \(\mathcal{I}(\mathcal{H}) \).

Proof By the definition of \(I_\phi \) the first statement is clear. We will
show the second one. If both ϕ and ϕ^{-1} belong to $\mathcal{I}(\mathcal{H})$, then

$$z\mathcal{H} = I_1(\mathcal{H}) = I_\phi I_{\phi^{-1}}(\mathcal{H}) \subseteq I_{\phi}(z\mathcal{H}) \subseteq z\mathcal{H}$$

because I_ϕ and $I_{\phi^{-1}}$ are bounded on \mathcal{H}. Conversely if $I_{\phi}(\mathcal{H}) = z\mathcal{H}$ then there exists a function g in \mathcal{H} such that

$$\int_0^z g'(\zeta)\phi(\zeta)d\zeta = z$$

and so $g'(z)\phi(z) = 1$. Hence $\phi^{-1} \in H(D)$ and

$$z\mathcal{H} = I_1(\mathcal{H}) = I_{\phi^{-1}}(\mathcal{H}) = I_{\phi}(z\mathcal{H})$$

and so both ϕ and ϕ^{-1} belong to $\mathcal{I}(\mathcal{H})$.

Lemma 4. If p is a polynomial then $I_p(\mathcal{H}) + \mathbb{C} \supset p^2\mathcal{H}$.

Proof Suppose $g \in \mathcal{H}$. Since $z \in \mathcal{I}(\mathcal{H})$ by the hypothesis, p belongs to $\mathcal{I}(\mathcal{H})$ and so $\int_0^z g(\zeta)p(\zeta)d\zeta \in \mathcal{H}$. Since $p' \in \mathcal{M}(\mathcal{H})$ and $z \in J(\mathcal{H})$, $\int_0^z g(\zeta)p'(\zeta)d\zeta \in \mathcal{H}$. Hence $f(z) = \int_0^z (2p'(\zeta)g(\zeta) + p(\zeta)g'(\zeta))d\zeta \in \mathcal{H}$. Now the lemma follows because

$$\int_0^z f'(\zeta)p(\zeta)d\zeta = \int_0^z (p^2(\zeta)g(\zeta))'d\zeta = p^2(z)g(z) + p^2(0)g(0).$$

Lemma 5. Suppose that B is a finite Blaschke product, and both g and g^{-1} are in $\mathcal{I}(\mathcal{H})$. If $\phi = Bg$ then $\phi \in \mathcal{I}(\mathcal{H})$ and dim $\mathcal{H}/I_\phi(\mathcal{H}) < \infty$.

Proof By the hypothesis, $I_B(\mathcal{H}) = I_B(z\mathcal{H}) = I_B(I_\phi(\mathcal{H})) = I_\phi(\mathcal{H})$ by Lemma 3. We may assume that

$$B = \prod_{j=1}^n \frac{z - a_j}{1 - \overline{a_j} z}$$

and $\{a_j\} \subset D$. Since $\prod_{j=1}^n (1 - a_j z)$ is invertible in $\mathcal{I}(\mathcal{H})$, by Lemma 3 $I_\phi(\mathcal{H}) = I_p(\mathcal{H})$ where $p = \prod_{j=1}^n (z - a_j)$. Lemmas 1 and 4 imply that dim $\mathcal{H}/I_\phi(\mathcal{H}) < \infty$.

Lemma 6. If p is a polynomial then $p(S_z) = S_{p(z)}$.

Proof By hypothesis, $P^N I_z(I - P^N) = 0$. Hence

$$S_z = P^N I_z P^N = P^N I_z I_z P^N = P^N I_z(I - P^N) I_z P^N + P^N I_z P^N I_z P^N = P^N I_z P^N I_z P^N = S_z S_z.$$
Now it is easy to see that \(p(S_z) = S_{p(z)} \) for a polynomial \(p \).

Lemma 7. If \(M \) is a closed invariant subspace of \(I_z \) and \(\dim \mathcal{H}/M = n < \infty \) then there exists a polynomial \(p \) such that the degree of \(p \leq n \) and \(I_p(\mathcal{H}) \subseteq M \).

Proof If we put \(N = \mathcal{H} \ominus M \), then \(\dim N = n < \infty \) and so there exists a polynomial \(p \) such that \(p(S_z) = 0 \) and the degree of \(p \leq n \). By Lemma 6, \(S_{p(z)} = 0 \) and so \(I_p(N) \subseteq M \). Since \(I_p(M) \subseteq M \), \(I_p(\mathcal{H}) \subseteq M \).

Theorem 2. Suppose \(\mathcal{I}(\mathcal{H}) \) contains \(H(D) \) and if \(f \in \mathcal{I}(\mathcal{H}) \) and \(f(a) = 0 \) for some \(a \in D \) then \(f/(z-a) \) belongs to \(\mathcal{I}(\mathcal{H}) \). \(I_\phi \) is a Fredholm operator on \(\mathcal{H} \) if and only if \(\phi = Bg \) where \(B \) is a finite Blaschke product, and \(g \) and \(g^{-1} \) are in \(\mathcal{I}(\mathcal{H}) \).

Proof If \(\phi = Bg \), \(B \) is a finite Blaschke product, \(g \in \mathcal{I}(\mathcal{H}) \) and \(g^{-1} \in \mathcal{I}(\mathcal{H}) \) then by Lemma 5 \(I_\phi(\mathcal{H}) \) is closed and \(\dim \text{Ker} I_\phi < \infty \). Since \(\text{Ker} I_\phi = \mathbb{C} \), index \(I_\phi = 1 - \dim \text{Ker} I_\phi^* \) and so \(I_\phi \) is Fredholm. Conversely if \(I_\phi \) is Fredholm then \(I_\phi(\mathcal{H}) \) is closed and \(\dim \mathcal{H}/I_\phi(\mathcal{H}) < \infty \). Since \(I_z I_\phi(\mathcal{H}) \subseteq I_\phi(\mathcal{H}) \), by Lemma 7 there exists a polynomial such that \(I_p(\mathcal{H}) \subseteq I_\phi(\mathcal{H}) \). By Lemma 4 \(I_p(\mathcal{H}) \) is a subalgebra in \(\mathcal{B}(\mathcal{H}) \) and both \(B \) and \(B^{-1} \) are in \(\mathcal{I}(\mathcal{H}) \). Hence

\[
I_{g^{-1}p}(\mathcal{H}) \subseteq I_{g^{-1}I_\phi}(\mathcal{H}) = I_{Bp}(\mathcal{H}) \subseteq \mathcal{H}
\]

and so \(g^{-1}p \) belongs to \(\mathcal{I}(\mathcal{H}) \). By hypothesis on \(\mathcal{I}(\mathcal{H}) \), \(g^{-1} \) belongs to \(\mathcal{I}(\mathcal{H}) \).

§ 4. **Integral operator \(J_\phi \)**

A Fredholm integral operator \(J_\phi \) have not studied. But if \(J_\phi \) is compact then it is not Fredholm. In some special Hilbert space \(\mathcal{H} \), the compactness of \(J_\phi \) have studied.

Lemma 8. If \(\phi \) and \(\psi \) are in \(H(D) \) then \(I_\psi J_\phi = J_\phi M_\psi \).

Proof For \(f \in \mathcal{H} \)

\[
(I_\psi J_\phi f)(z) = \int_0^z (J_\phi f)'(\zeta)\psi(\zeta)d\zeta = \int_0^z f(\zeta)\phi'(\zeta)\psi(\zeta)d\zeta = (J_\phi M_\psi f)(z)
\]
Lemma 9. If J_ϕ is a Fredholm operator on \mathcal{H} then $J_\phi \mathcal{H}$ is a closed invariant subspace of I_z and $\dim \mathcal{H}/J_\phi \mathcal{H} < \infty$. Hence there exists a polynomial p such that $J_\phi \mathcal{H} \supseteq I_p \mathcal{H}$ and so $J_\phi \mathcal{H} + C \supseteq p^2 \mathcal{H}$.

Proof If J_ϕ is Fredholm on \mathcal{H} then $J_\phi \mathcal{H}$ is a closed subspace and by Lemma 8 $I_z(J_\phi \mathcal{H}) \subseteq J_\phi \mathcal{H}$. By Lemma 7 there exists a polynomial q such that $I_q \mathcal{H} \subseteq J_\phi \mathcal{H}$. Lemma 4 implies this lemma.

Theorem 3. Suppose that there exists a function g in \mathcal{H} such that g' does not belong to H^2. Suppose that any function in \mathcal{H} has radial limits almost everywhere. Then there does not exist J_ϕ which is a Fredholm operator on \mathcal{H}.

Proof If J_ϕ is Fredholm on \mathcal{H} then $J_\phi \mathcal{H} + C \supseteq p^2 \mathcal{H}$ for some polynomial by Lemma 9. For any G in $p^2 \mathcal{H}$ there exists a function f in \mathcal{H} such that $f(z)\phi'(z) = G'(z)$ $(z \in D)$. By hypothesis, there exists G in $p^2 \mathcal{H}$ such that $G' \notin H^2$ and so G' does not have radial limits on a set of positive measure on ∂D (see [2, Appendix A]). On the other hand, if $G = p^2$ then G has radial limits almost everywhere on ∂D. By hypothesis, f has radial limits almost everywhere. This contradiction implies that J_ϕ is not Fredholm.

§ 5. Relation between M_ϕ and I_ϕ

Put $Df(z) = f'(z)$ and $J = J_z$, that is, $Jf(z) = \int_0^z f(\zeta) d\zeta$. Then

$$DJf = f \text{ and } JDf = f - f(0).$$

It is easy to see that $I_\phi J = JM_\phi$ and $DI_\phi = M_\phi D$. Put

$$\mathcal{H}^D = \{ f \in H(D) : Df \in \mathcal{H} \}$$

Suppose that D and J are bounded on \mathcal{H} and for f in \mathcal{H}^D put $\|f\|_D^2 = \|Df\|^2 + |f(0)|^2$. Then \mathcal{H}^D is a Hilbert space. Put

$$\mathcal{H}^I = \{ f \in H(D) : Jf \in \mathcal{H} \}$$

and for f in \mathcal{H}^I $\|f\|_I = \|Jf\|$. Then \mathcal{H}^I is a Hilbert space. D is isometric from $\mathcal{H}^D_0 = \{ f \in \mathcal{H}^D : f(0) = 0 \}$ onto \mathcal{H}. J is isometric from \mathcal{H}^I onto $\mathcal{H}_0 = \{ f \in \mathcal{H} : f(0) = 0 \}$. Since $DI_\phi = M_\phi D$, I_ϕ is bounded on \mathcal{H}^D if and only if M_ϕ is bounded on \mathcal{H}. Hence $I(\mathcal{H}^D) = M(\mathcal{H})$. Moreover I_ϕ is Fredholm on \mathcal{H}^D if and only if M_ϕ is Fredholm on \mathcal{H}. Since $JM_\phi = I_\phi J$,
\(\mathcal{I}(\mathcal{H}^j) = \mathcal{M}(\mathcal{H}), \) and \(I_\phi \) is Fredholm on \(\mathcal{H}^j \) if and only if \(M_\phi \) is Fredholm on \(\mathcal{H}. \) Moreover \((\mathcal{H}^j)^D = (\mathcal{H}^D)^j = \mathcal{H}. \) Hence \(\mathcal{I}(\mathcal{H}) = \mathcal{M}(\mathcal{H}^D) = \mathcal{M}(\mathcal{H}^j) \), and \(I_\phi \) is Fredholm on \(\mathcal{H} \) if and only if \(M_\phi \) is Fredholm on \(\mathcal{H}^D \) and \(\mathcal{H}^j \).

§ 6. Examples
Let \(dA \) denote the normalized Lebesgue area measure on \(D \) and \(\omega \) a positive function on \(D \) which is summable with respect to \(dA \). Put

\[
\mathcal{D}^2(\omega) = \{ f \in H(D) : \| f \|^2_D = |f(0)|^2 + \int_D |f'(z)|^2 \omega(z) dA(z) < \infty \}
\]
and

\[
L^2_a(\omega) = \{ f \in H(D) : \| f \|^2_{L^2_a} = \int_D |f(z)|^2 \omega(z) dA(z) < \infty \}.
\]

Then \(\mathcal{D}^2(\omega) \) is called a weighted Dirichlet space and \(L^2_a(\omega) \) is called a weighted Bergman space when \(\mathcal{D}^2(\omega) \) and \(L^2_a(\omega) \) are nontrivial Hilbert spaces. It is easy to see that \((\mathcal{D}^2(\omega))^j = L^2_a(\omega) \) and \((L^2_a(\omega))^D = \mathcal{D}^2(\omega) \).

If \(\omega(z) = (1 - |z|^2)^\alpha \) and \(\alpha > -1 \), we will write \(\mathcal{D}^2(\omega) = \mathcal{D}^2_\alpha \) and \(L^2_a(\omega) = L^2_{a,\alpha} \). It is known that \(\mathcal{D}^2_\alpha \) and \(L^2_{a,\alpha} \) are nontrivial Hilbert spaces. \(\mathcal{D}_1 \) is the Hardy space \(H^2 \), \(\mathcal{D}_2 \) is the Bergman space \(L^2_a \) and \(\mathcal{D}_0 \) is the Dirichlet space.

If \(\mathcal{H} = \mathcal{D}_\alpha \) or \(L^2_{a,\alpha} \) then \(\mathcal{H} \) satisfies the condition (1), (2) and (3) in Introduction. It is known that \(\mathcal{H}(\bar{D}) \subset \mathcal{M}(\mathcal{D}_\alpha) \subset H^\infty(D) \) and \(\mathcal{M}(L^2_{a,\alpha}) = H^\infty(D) \). Hence Theorem 1 can apply to \(\mathcal{D}_\alpha \) for any \(\alpha > -1 \). If \(\alpha \geq 1 \) then \((z-a)\mathcal{D}_\alpha \) is dense in \(\mathcal{D}_\alpha \) whenever \(a \in \partial D \). Hence Corollary 1 can apply to \(\mathcal{D}_\alpha \) for \(\alpha \geq 1 \).

\(\mathcal{I}(L^2_{a,\alpha}) = \mathcal{M}(L^2_{a,\alpha}) \subset H^\infty(D), \) Theorem 2 can apply to \(\mathcal{D}_\alpha \) for \(\alpha > -1 \). It is known [3] that \(\mathcal{M}(\mathcal{D}_\alpha) = H^\infty(D) \) for \(\alpha > 1 \) and \(\mathcal{M}(\mathcal{D}_\alpha) = \mathcal{D}_\alpha \) for \(-1 < \alpha < 0 \). Hence \(\mathcal{I}(L^2_{a,\alpha}) = H^\infty(D) \) for \(\alpha > 1 \). Since \(\mathcal{I}(\mathcal{D}_\alpha) = \mathcal{M}(L^2_{a,\alpha}) = H^\infty(D) \), Theorem 2 can apply to \(\mathcal{D}_\alpha \) for \(\alpha > -1 \). By a theorem in [3], it is easy to see that \(\mathcal{I}(L^2_{a,\alpha}) = \mathcal{M}(\mathcal{D}_\alpha) \) (0 \(\leq \alpha \leq 1 \)) satisfies the conditions in Theorem 2. Hence Theorem 2 can apply to \(L^2_{a,\alpha} \).

When \(\mathcal{D}^2(\omega) \) or \(L^2_a(\omega) \) is a Hilbert space \(\mathcal{H} \), it is important in order to study composition operator that \(\mathcal{H} \) satisfies three conditions in Introduction. It will be interesting to determine such a weight \(\omega \).

References

Takahiko Nakazi
Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060-0810, Japan
nakazi@math.sci.hokudai.ac.jp