Some Fredholm Integration Operators on A Hilbert Space of Holomorphic Functions on The Unit Disc

By

Takahiko Nakazi

2000 Mathematics Subject Classification. Primary 47 B 38, 47 G 10, Secondary 47 A 53

Keywords and phrases : Fredholm operator, Hilbert space, analytic function, integration operator, multiplication operator

* This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education
Abstract. In this paper, we study when M_ϕ, I_ϕ or J_ϕ is a Fredholm operator on a Hilbert space which satisfies few natural axioms.
§ 1. Introduction

Let \(D \) be the open unit disc in the complex plane \(\mathbb{C} \) and \(H(D) \) be the set of all analytic functions on \(D \). \(H(\overline{D}) \) denotes the set of all analytic functions on \(\overline{D} \). In this paper, \(\mathcal{H} \) is a Hilbert space in \(H(D) \) which satisfies the following:

1. \(z\mathcal{H} \subset \mathcal{H} \).
2. If \(a \in D \) then \((z-a)\mathcal{H} \oplus \mathbb{C} = \mathcal{H} \).
3. \(\mathcal{H} \supseteq \overline{H(D)} \).

In this paper, we study the following three operators. If \(\phi \) is a function in \(H(D) \), put for \(z \in D \),

\[
(M_\phi f)(z) = \phi(z)f(z),
\]

\[
(I_\phi f)(z) = \int_0^z f'(\zeta)\phi(\zeta)d\zeta,
\]

\[
(J_\phi f)(z) = \int_0^z f(\zeta)\phi'(\zeta)d\zeta \quad (f \in \mathcal{H}).
\]

Then \((M_\phi f)(z) = (I_\phi f)(z) + (J_\phi f)(z) + \phi(0)f(0) \). It is clear that \(I_\phi \) and \(J_\phi \) are never invertible.

Let \(M(\mathcal{H}) = \{ \phi \in H(D) : M_\phi \mathcal{H} \subseteq \mathcal{H} \} \), \(\mathcal{I}(\mathcal{H}) = \{ \phi \in H(D) : I_\phi \mathcal{H} \subseteq \mathcal{H} \} \) and \(\mathcal{J}(\mathcal{H}) = \{ \phi \in H(D) : J_\phi \mathcal{H} \subseteq \mathcal{H} \} \). In this paper, we assume that \(H(\overline{D}) \subset M(\mathcal{H}) \), \(z \in \mathcal{I}(\mathcal{H}) \) and \(z \in \mathcal{J}(\mathcal{H}) \).

§ 2. Multiplication operator \(M_\phi \)

When \(M(\mathcal{H}) = H^\infty(D) \), A. Aleman [1] shows a more general result than Corollary 1 without the condition that \((z-a)\mathcal{H} \) is dense.

Lemma 1. If \(p \) is a polynomial with no zeros on \(\partial D \) then \(\dim \mathcal{H}/p\mathcal{H} < \infty \).

Proof If \(|a| > 1 \) then \((z-a)^{-1} \in H(\overline{D}) \) and so \((z-a)^{-1} \) belongs to \(M(\mathcal{H}) \). Hence we may assume that the zeros of \(p \) are contained in \(D \). By hypothesis on \(\mathcal{H} \), \(\dim \mathcal{H}/(z-a)\mathcal{H} = 1 \) and so \(\dim \mathcal{H}/p\mathcal{H} < \infty \).

Lemma 2. If \(M \) is a closed invariant subspace of \(M_z \) in \(\mathcal{H} \) such that \(\dim \mathcal{H}/M < \infty \), then there exists a polynomial \(p \) such that \(p\mathcal{H} \subseteq M \).

Proof Let \(N = \mathcal{H} \ominus M \) and \(S_z = P_NM_z|N \), then \(S_z \) is of finite rank because \(\dim N < \infty \). Hence there exists a polynomial \(p \) such that \(S_p(z) = p(S_z) = 0 \). Therefore \(pN \subset M \) and so \(p\mathcal{H} \subset M \).
Theorem 1.
(1) If $\phi = Bg$ where B is a finite Blaschke product, and both g and g^{-1} are in $M(\mathcal{H})$ then M_{ϕ} is a Fredholm operator.

(2) If M_{ϕ} is a Fredholm operator on \mathcal{H} then $\phi = Bg$ when B is a finite Blaschke product, g is in $M(\mathcal{H})$ and g^{-1} is in \mathcal{H}.

(3) For the g in (2), M_{g} is a Fredholm operator on \mathcal{H} with index $M_{\phi} \leq \text{index } M_{g} \leq 0$ and there exists a polynomial q such that $q\mathcal{H} \subseteq g\mathcal{H}$ and the zeros are in $\mathbb{C}\setminus D$.

Proof (1) Suppose $\phi = Bg$, $B = \prod_{j=1}^{m}(z - a_{j})/(1 - \bar{a}_{j}z)$, $\{a_{j}\} \subset D$, and both g and g^{-1} are in $M(\mathcal{H})$. Since $M(\mathcal{H}) \supseteq H(D)$, $\prod_{j=1}^{m}(1 - \bar{a}_{j}z)$ is invertible in $M(\mathcal{H})$ and so $M_{\phi}(\mathcal{H}) = p\mathcal{H}$ where $p = \prod_{j=1}^{m}(z - a_{j})$. Since $Ker_{\alpha_{j}} = (z - a_{j})\mathcal{H}$, g belongs to \mathcal{H}. By the similar argument, there exists a function k in \mathcal{H} and $gk = 1$ because $Bgf = p$. Thus g^{-1} belongs to \mathcal{H}. We will prove that g belongs to $M(\mathcal{H})$. Since B is a finite Blaschke product and $Ker_{\alpha} = (z - a)\mathcal{H}$ for $a \in D$, $\mathcal{H} = K + B\mathcal{H}$ where K is a finite dimensional subspace such that each function in K is a rational function whose poles are in $\mathbb{C}\setminus \bar{D}$. Since $g \in \mathcal{H}$ and $M(\mathcal{H}) \supseteq H(D)$, $gK \subseteq \mathcal{H}$ and so $g\mathcal{H} \subseteq \mathcal{H}$ because $gB\mathcal{H} \subseteq \mathcal{H}$.

(3) By the proof of (2), $p\mathcal{H} \subseteq Bg\mathcal{H} \subseteq g\mathcal{H}$ and so the first statement is clear. Again by the proof of (2), the zeros of p in D is just the zeros of B. This implies that there exists a polynomial q such that $q\mathcal{H} \subseteq g\mathcal{H}$ and q does not have any zeros in D.

Corollary 1. Suppose that $(z - a)\mathcal{H}$ is dense in \mathcal{H} whenever $a \in \partial D$. Then M_{ϕ} is a Fredholm operator on \mathcal{H} if and only if $\phi = Bg$ where B is a finite Blaschke product, and both g and g^{-1} are in $M(\mathcal{H})$.

§ 3. Integral operator I_{ϕ}
It seems to have not been studied yet in this general setting as Theorem 2.

Lemma 3. If ϕ is a function in $\mathcal{I}(\mathcal{H})$ then $I_{\phi}(\mathcal{H}) = I_{\phi}(z\mathcal{H}) \subseteq z\mathcal{H}$. $I_{\phi}(\mathcal{H}) = z\mathcal{H}$ if and only if ϕ and ϕ^{-1} belongs to $\mathcal{I}(\mathcal{H})$.

Proof By the definition of I_{ϕ} the first statement is clear. We will
show the second one. If both ϕ and ϕ^{-1} belong to $\mathcal{I}(\mathcal{H})$, then

$$z\mathcal{H} = I_1(\mathcal{H}) = I_\phi I_{\phi^{-1}}(\mathcal{H}) \subseteq I_\phi(z\mathcal{H}) \subseteq z\mathcal{H}$$

because I_ϕ and $I_{\phi^{-1}}$ are bounded on \mathcal{H}. Conversely if $I_\phi(\mathcal{H}) = z\mathcal{H}$ then there exists a function g in \mathcal{H} such that

$$\int_0^z g'(\zeta)\phi(\zeta)d\zeta = z$$

and so $g'(z)\phi(z) = 1$.

Hence $\phi^{-1} \in H(D)$ and

$$z\mathcal{H} = I_1(\mathcal{H}) = I_{\phi^{-1}} I_\phi(\mathcal{H}) = I_{\phi^{-1}}(z\mathcal{H})$$

and so both ϕ and ϕ^{-1} belong to $\mathcal{I}(\mathcal{H})$.

Lemma 4. If p is a polynomial then $I_p(\mathcal{H}) + \mathbb{C} \supset p^2\mathcal{H}$.

Proof Suppose $g \in \mathcal{H}$. Since $z \in \mathcal{I}(\mathcal{H})$ by the hypothesis, p belongs to $\mathcal{I}(\mathcal{H})$ and so $\int_0^z g'(\zeta)p(\zeta)d\zeta \in \mathcal{H}$. Since $p' \in \mathcal{M}(\mathcal{H})$ and $z \in J(\mathcal{H})$,

$$\int_0^z g(\zeta)p'(\zeta)d\zeta \in \mathcal{H}.$$

Hence $f(z) = \int_0^z (2p'(\zeta)g(\zeta) + p(\zeta)g'(\zeta))d\zeta$ belongs to \mathcal{H}. Now the lemma follows because

$$\int_0^z f'(\zeta)p(\zeta)d\zeta = \int_0^z (p^2(\zeta)g(\zeta))'d\zeta = p^2(z)g(z) + p^2(0)g(0).$$

Lemma 5. Suppose that B is a finite Blaschke product, and both g and g^{-1} are in $\mathcal{I}(\mathcal{H})$. If $\phi =Bg$ then $\phi \in \mathcal{I}(\mathcal{H})$ and $\dim \mathcal{H}/I_\phi(\mathcal{H}) < \infty$.

Proof By the hypothesis, $I_B(\mathcal{H}) = I_B(z\mathcal{H}) = I_B(I_\phi(\mathcal{H})) = I_\phi(\mathcal{H})$ by Lemma 3. We may assume that

$$B = \prod_{j=1}^n \frac{z - a_j}{1 - \bar{a}_j z} \text{ and } \{a_j\} \subset D.$$

Since $\prod_{j=1}^n (1 - \bar{a}_j z)$ is invertible in $\mathcal{I}(\mathcal{H})$, by Lemma 3 $I_\phi(\mathcal{H}) = I_p(\mathcal{H})$ where $p = \prod_{j=1}^n (z - a_j)$. Lemmas 1 and 4 imply that $\dim \mathcal{H}/I_\phi(\mathcal{H}) < \infty$.

Lemma 6. If p is a polynomial then $p(S_z) = S_{p(z)}$.

Proof By hypothesis, $P^N I_z(I - P^N) = 0$. Hence

$$S_z = P^N I_z P^N = P^N I_z P^N$$

$$= P^N I_z (I - P^N) I_z P^N + P^N I_z P^N I_z P^N$$

$$= P^N I_z P^N I_z P^N = S_z S_z.$$
Now it is easy to see that \(p(S_z) = S_{p(z)} \) for a polynomial \(p \).

Lemma 7. If \(M \) is a closed invariant subspace of \(I_z \) and \(\dim \mathcal{H}/M = n < \infty \) then there exists a polynomial \(p \) such that the degree of \(p \leq n \) and \(I_p(\mathcal{H}) \subseteq M \).

Proof If we put \(N = \mathcal{H} \cap M \), then \(\dim N = n < \infty \) and so there exists a polynomial \(p \) such that \(p(S_z) = 0 \) and the degree of \(p \leq n \). By Lemma 6, \(S_{p(z)} = 0 \) and so \(I_p(N) \subseteq M \). Since \(I_p(M) \subseteq M \), \(I_p(\mathcal{H}) \subseteq M \).

Theorem 2. Suppose \(\mathcal{I}(\mathcal{H}) \) contains \(H(\bar{D}) \) and if \(f \in \mathcal{I}(\mathcal{H}) \) and \(f(a) = 0 \) for some \(a \in D \) then \(f/(z - a) \) belongs to \(\mathcal{I}(\mathcal{H}) \). \(I_\phi \) is a Fredholm operator on \(\mathcal{H} \) if and only if \(\phi = Bg \) where \(B \) is a finite Blaschke product, and \(g \) and \(g^{-1} \) are in \(\mathcal{I}(\mathcal{H}) \).

Proof If \(\phi = Bg \), \(B \) is a finite Blaschke product, \(g \in \mathcal{I}(\mathcal{H}) \) and \(g^{-1} \in \mathcal{I}(\mathcal{H}) \) then by Lemma 5 \(I_\phi(\mathcal{H}) \) is closed and \(\dim \text{Ker} I_\phi < \infty \). Since \(\text{Ker} I_\phi = \mathbb{C} \), index \(I_\phi = 1 - \dim \text{Ker} I_\phi^* \) and so \(I_\phi \) is Fredholm. Conversely if \(I_\phi \) is Fredholm then \(I_\phi(\mathcal{H}) \) is closed and \(\dim \mathcal{H}/I_\phi(\mathcal{H}) < \infty \). Since \(I_z I_\phi(\mathcal{H}) \subseteq I_\phi(\mathcal{H}) \), by Lemma 7 there exists a polynomial such that \(I_p(\mathcal{H}) \subseteq I_\phi(\mathcal{H}) \). By Lemma 4 \(I_p(\mathcal{H}) + \mathbb{C} \supseteq p^2 \mathcal{H} \). Hence there exists a function \(F \) in \(\mathcal{H} \) and \(c \in \mathbb{C} \) such that \(I_\phi(F) + c = p^2 \). Therefore \(F'(z)\phi(z) = 2p(z)p'(z) \) and so the Blaschke part of \(\phi \) is a finite one \(B \). Thus \(\phi \) can be factorized as \(\phi = Bg \) where \(g \in \mathcal{I}(\mathcal{H}) \) and \(g \) has no zeros on \(D \) because \(\mathcal{I}(\mathcal{H}) \) is a subalgebra in \(\mathcal{B}(\mathcal{H}) \) and both \(B \) and \(B^{-1} \) are in \(\mathcal{I}(\mathcal{H}) \). Hence

\[
I_{g^{-1}p}(\mathcal{H}) \subseteq I_{g^{-1}}I_\phi(\mathcal{H}) = I_B(\mathcal{H}) \subseteq \mathcal{H}
\]

and so \(g^{-1}p \) belongs to \(\mathcal{I}(\mathcal{H}) \). By hypothesis on \(\mathcal{I}(\mathcal{H}) \), \(g^{-1} \) belongs to \(\mathcal{I}(\mathcal{H}) \).

§ 4. Integral operator \(J_\phi \)

A Fredholm integral operator \(J_\phi \) have not studied. But if \(J_\phi \) is compact then it is not Fredholm. In some special Hilbert space \(\mathcal{H} \), the compactness of \(J_\phi \) have studied.

Lemma 8. If \(\phi \) and \(\psi \) are in \(H(D) \) then \(I_\psi J_\phi = J_\phi M_\psi \).

Proof For \(f \in \mathcal{H} \)

\[
(I_\psi J_\phi f)(z) = \int_0^z (J_\phi f)'(\zeta)\psi(\zeta)d\zeta = \int_0^z f(\zeta)\phi'(\zeta)\psi(\zeta)d\zeta = (J_\phi M_\psi f)(z)
\]

6
Lemma 9. If J_ϕ is a Fredholm operator on \mathcal{H} then $J_\phi \mathcal{H}$ is a closed invariant subspace of I_z and $\dim \mathcal{H}/J_\phi \mathcal{H} < \infty$. Hence there exists a polynomial p such that $J_\phi \mathcal{H} \supseteq I_p \mathcal{H}$ and so $J_\phi \mathcal{H} + \mathbb{C} \supseteq p^2 \mathcal{H}$.

Proof If J_ϕ is Fredholm on \mathcal{H} then $J_\phi \mathcal{H}$ is a closed subspace and by Lemma 8 $I_z(J_\phi \mathcal{H}) \subseteq J_\phi \mathcal{H}$. By Lemma 7 there exists a polynomial q such that $I_q \mathcal{H} \subseteq J_\phi \mathcal{H}$. Lemma 4 implies this lemma.

Theorem 3. Suppose that there exists a function g in \mathcal{H} such that g' does not belong to H^2. Suppose that any function in \mathcal{H} has radial limits almost everywhere. Then there does not exist J_ϕ which is a Fredholm operator on \mathcal{H}.

Proof If J_ϕ is Fredholm on \mathcal{H} then $J_\phi \mathcal{H} + \mathbb{C} \supseteq p^2 \mathcal{H}$ for some polynomial by Lemma 9. For any G in $p^2 \mathcal{H}$ there exists a function f in \mathcal{H} such that $f(z)\phi'(z) = G'(z) \ (z \in D)$. By hypothesis, there exists G in $p^2 \mathcal{H}$ such that $G' \notin H^2$ and so G' does not have radial limits on a set of positive measure on ∂D (see [2, Appendix A]). On the other hand, if $G = p^2$ then G has radial limits almost everywhere on ∂D. By hypothesis, f has radial limits almost everywhere. This contradiction implies that J_ϕ is not Fredholm.

§ 5. Relation between M_ϕ and I_ϕ

Put $Df(z) = f'(z)$ and $J = J_z$, that is, $Jf(z) = \int_0^z f(\zeta)d\zeta$. Then

$$DJf = f \quad \text{and} \quad JDf = f - f(0).$$

It is easy to see that $I_\phi J = JM_\phi$ and $DI_\phi = M_\phi D$. Put

$$\mathcal{H}^D = \{f \in H(D) : Df \in \mathcal{H}\}$$

Suppose that D and J are bounded on \mathcal{H} and for f in \mathcal{H}^D put $\|f\|^2_D = \|Df\|^2 + |f(0)|^2$. Then \mathcal{H}^D is a Hilbert space. Put

$$\mathcal{H}^I = \{f \in H(D) : Jf \in \mathcal{H}\}$$

and for f in \mathcal{H}^I $\|f\|_I = \|Jf\|$. Then \mathcal{H}^I is a Hilbert space.

D is isometric from $\mathcal{H}_0^D = \{f \in \mathcal{H}^D : f(0) = 0\}$ onto \mathcal{H}. J is isometric from \mathcal{H}^I onto $\mathcal{H}_0 = \{f \in \mathcal{H} : f(0) = 0\}$. Since $DI_\phi = M_\phi D$, I_ϕ is bounded on \mathcal{H}^D if and only if M_ϕ is bounded on \mathcal{H}. Hence $I(\mathcal{H}^D) = \mathcal{M}(\mathcal{H})$. Moreover I_ϕ is Fredholm on \mathcal{H}^D if and only if M_ϕ is Fredholm on \mathcal{H}. Since $JM_\phi = I_\phi J$,
\(\mathcal{I}(\mathcal{H}^J) = \mathcal{M}(\mathcal{H}), \) and \(I_\phi \) is Fredholm on \(\mathcal{H}^J \) if and only if \(M_\phi \) is Fredholm on \(\mathcal{H} \). Moreover \((\mathcal{H}^J)^D = (\mathcal{H}^D)^J = \mathcal{H} \). Hence \(\mathcal{I}(\mathcal{H}) = \mathcal{M}(\mathcal{H}^D) = \mathcal{M}(\mathcal{H}^J) \), and \(I_\phi \) is Fredholm on \(\mathcal{H} \) if and only if \(M_\phi \) is Fredholm on \(\mathcal{H}^D \) and \(\mathcal{H}^J \).

\section{Examples}

Let \(dA \) denote the normalized Lebesgue area measure on \(D \) and \(\omega \) a positive function on \(D \) which is summable with respect to \(dA \). Put

\[
\mathcal{D}^2(\omega) = \{ f \in H(D) : \| f \|_{2,\omega}^2 = |f(0)|^2 + \int_D |f'(z)|^2 \omega(z)dA(z) < \infty \}
\]

and

\[
L^2_a(\omega) = \{ f \in H(D) : \| f \|_{L^2_a}^2 = \int_D |f(z)|^2 \omega(z)dA(z) < \infty \}.
\]

Then \(\mathcal{D}^2(\omega) \) is called a weighted Dirichlet space and \(L^2_a(\omega) \) is called a weighted Bergman space when \(\mathcal{D}^2(\omega) \) and \(L^2_a(\omega) \) are nontrivial Hilbert spaces. It is easy to see that \((\mathcal{D}^2(\omega))^J = L^2_a(\omega) \) and \((L^2_a(\omega))^D = \mathcal{D}^2(\omega) \).

If \(\omega(z) = (1 - |z|^2)^\alpha \) and \(\alpha > -1 \), we will write \(\mathcal{D}^2(\omega) = \mathcal{D}^2_\alpha \) and \(L^2_a(\omega) = \mathcal{L}^2_a,\alpha \). It is known that \(\mathcal{D}^2_\alpha \) and \(\mathcal{L}^2_a,\alpha \) are nontrivial Hilbert spaces. \(\mathcal{D}_1 \) is the Hardy space \(H^2 \), \(\mathcal{D}_2 \) is the Bergman space \(L^2_a \) and \(\mathcal{D}_0 \) is the Dirichlet space. If \(\mathcal{H} = \mathcal{D}_\alpha \) or \(\mathcal{L}^2_a,\alpha \) then \(\mathcal{H} \) satisfies the condition (1), (2) and (3) in Introduction. It is known that \(H(\bar{D}) \subset \mathcal{M}(\mathcal{D}_a) \subset H^\infty(D) \) and \(\mathcal{M}(\mathcal{L}^2_a,\alpha) = H^\infty(D) \). Hence Theorem 1 can apply to \(\mathcal{D}_a \) for any \(\alpha > -1 \). If \(\alpha > 1 \) then \((z - a)\mathcal{D}_a \) is dense in \(\mathcal{D}_\alpha \) whenever \(a \in \partial D \). Hence Corollary 1 can apply to \(\mathcal{D}_\alpha \) for \(\alpha > 1 \). If \(\alpha = 1 \) then \(\mathcal{D}(\mathcal{D}_a) = \mathcal{M}(\mathcal{D}_a) = H^\infty(D) \), Theorem 2 can apply to \(\mathcal{D}_a \) for \(\alpha > -1 \). It is known [3] that \(\mathcal{M}(\mathcal{D}_a) = H^\infty(D) \) for \(\alpha > 1 \) and \(\mathcal{M}(\mathcal{D}_a) = \mathcal{D}_a \) for \(-1 < \alpha < 0 \). Hence \(\mathcal{I}(\mathcal{L}^2_a,\alpha) = H^\infty(D) \) for \(\alpha > 1 \) and \(\mathcal{I}(\mathcal{L}^2_a,\alpha) = \mathcal{D}_a \) for \(-1 < \alpha < 0 \). Hence Theorem 2 can apply to \(\mathcal{L}^2_a,\alpha \) for \(\alpha > 1 \) and \(-1 < \alpha < 0 \). By a theorem in [3], it is easy to see that \(\mathcal{I}(\mathcal{L}^2_a,\alpha) = \mathcal{M}(\mathcal{D}_\alpha) \) \((0 \leq \alpha \leq 1 \) satisfies the conditions in Theorem 2. Hence Theorem 2 can apply to \(\mathcal{L}^2_a,\alpha \).

When \(\mathcal{D}^2(\omega) \) or \(L^2_a(\omega) \) is a Hilbert space \(\mathcal{H} \), it is important in order to study composition operator that \(\mathcal{H} \) satisfies three conditions in Introduction. It will be interesting to determine such a weight \(\omega \).

References

Takahiko Nakazi
Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060-0810, Japan
nakazi@math.sci.hokudai.ac.jp