<table>
<thead>
<tr>
<th>Title</th>
<th>Multipliers For A Quotient Banach Space And The Nevanlinna-Pick Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nakazi, Takahiko</td>
</tr>
<tr>
<td>Citation</td>
<td>Hokkaido University Preprint Series in Mathematics, 895, [1]</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2008</td>
</tr>
<tr>
<td>DOI</td>
<td>10.14943/84045</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/69704</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>pre895.pdf</td>
</tr>
</tbody>
</table>
Multipliers For A Quotient Banach Space And The Nevanlinna-Pick Theorem

By

Takahiko Nakazi

2000 Mathematics Subject Classification. Primary 47 A 20, Secondary 46 J 15

Keywords and phrases : quotient Bahach space, multiplier, Nevanlinna-Pick theorem, Hardy space

* This research was partially supported by Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science.
Abstract. Let E be a Banach space on a set X and $M(E)$ the space of multipliers of E. In this paper, we study the space of multipliers of the quotient space E/K where K is a closed $M(E)$-invariant subspace in E. When E is the classical Hilbert Hardy space, the Nevanlinna and Pick theorem shows $M(E/K)$ is a quotient algebra of $M(E)$.
§1. Introduction

A Banach space E of functions on a set X is a Banach space whose elements are complex-valued functions defined on X with the usual pointwise addition and scalar multiplication. If ϕ is a complex-valued function on X and ϕf belongs to E for all f in E, then we write that ϕ is an element of $M(E)$, the space of multipliers of E. We assume that the point evaluations are continuous on E, that is, X is embedded in the dual space E^* and that there is no point in X where all the members of E vanish. It is known that $T_\phi : f \to \phi f$ is a bounded operator on E for each ϕ in $M(E)$, since by continuity of point evaluation, each such map has closed graph. $M(E)$ is a closed subalgebra of $B(E)$, the set of bounded operators on E, indeed $M(E)$ is closed in the weak operator topology. Thus we assume that the space $M(E)$ of multipliers of E is an operator algebra on E.

If K is a closed subspace of E then E/K is also a Banach space. We want to define the space of multipliers $M(E/K)$ of E/K. For ϕ in $M(E)$ put

$$S_\phi(f + K) = \phi f + K \quad (f \in E).$$

In general, S_ϕ is not well defined on E/K. We need assume that $M(E)K \subset K$. Suppose $M(E/K) = \{S_\phi; \phi \in M(E)\}$. Then $M(E/K)$ is also an operator algebra on E/K. Put

$$K = \{\phi \in M(E); \phi E \subset K\}$$

then K is a closed ideal in $M(E)$. By the definition, $S_\phi = 0$ if and only if $\phi E \subset K$. Hence $S_\phi = 0$ if and only if ϕ belongs to K. Therefore $S_{\phi + \psi} = S_\phi$ for any ψ in K and so there exists a one-to-one map from $M(E/K)$ onto $M(E)/K$. Moreover this map is contractive. In fact, for any g in K,

$$S_\phi(f + K) = \phi f + K = \phi(f + g) + K$$

and so

$$\|S_\phi(f + K)\| \leq \|\phi(f + g)\| \leq \|\phi\|\|f + g\|.$$

This implies that $\|S_\phi\| \leq \|\phi\|$. Since $S_{\phi + \psi} = S_\phi$ for any ψ in K, $\|S_\phi\| \leq \|\phi + K\|$. Now the following problem is natural.
Problem 1. Is $M(E/K)$ isometrically isomorphic onto $M(E)/K$?

If Problem 1 can be solved positively, then it shows that $M(E)/K$ is an operator algebra on E/K. Suppose

$$M(E/K)' = \{ A \in B(E/K); S_\phi A = AS_\phi \text{ for any } \phi \in M(E) \}.$$

Then $M(E/K)'$ is a commutative algebra in $B(E/K)$ which contains $M(E/K)$. We are interested in the following problem.

Problem 2. Is $M(E/K)'$ equal to $M(E/K)$?

Problem 2 is related to a problem of commuting dilation, that is, if $A \in B(E/K)$ such that $AS_\phi = S_\phi A$ ($\phi \in M(E)$) then does exist $\tilde{A} \in B(E)$ such that $\tilde{A}T_\phi = T_\phi \tilde{A}$ ($\phi \in M(E)$) and $A(f + K) = \tilde{A}f + K$ ($f \in E$)? If $M(E)' = M(E)$ then $A = T_\psi$ for some $\psi \in M(E)$ and so $A = S_\psi$.

Let $H^p(1 \leq p \leq \infty)$ be the usual Hardy space of analytic functions on the open unit disc D. When $E = H^2$, Sarason [4] solved Problems 1 and 2 positively. Then a theorem of Nevanlinna-Pick and a theorem of Carathéodary follow. When $E = H^p$ ($1 \leq p \leq \infty, p \neq 2$) and $K = BH^p$ for a Blaschke product with simple zeros, Snyder [5] solved Problems 1 and 2. In this paper, we solve them when $E = H^p$ ($1 \leq p \leq \infty$) and K is arbitrary.

In general, $M(E)$ may not be a supnorm algebra (see [6]). Even if E is a Hilbert space, $M(E)$ is a supnorm algebra on X and dim $M(E)/K = 2$, it is known that we can solve negatively Problem 1 for some E and K (see [1]).

In this paper, for a subset S [S] denotes the closed linear span of S.

§2. General case

For each x in X, put $\tau_x(f) = f(x)$ for a function f on X. We assume that τ_x is bounded on E and $\|\tau_x\|$ denotes the norm of
Thus \(A = 0 \) and so \(A M \) is non-trivial. Moreover the following Proposition 1 solves \(\tau = \ker \) and so \(A^\ast \). Put \(E_x = \ker \tau \cap E \) and \(M(E)_x = \ker \tau \cap M(E) \). If \(K = \{0\} \) then \(K = \{0\} \) and so Problem 1 can be solved trivially. Moreover the following Proposition 1 solves Problem 2.

Proposition 1. If \(M(E)_x E \) is dense in \(E_x \) for any \(x \) in \(X \) then \(M(E)' = M(E) \).

Proof. It is clear that \(M(E) \subseteq M(E)' \). Suppose \(A \in M(E)' \). If \(T_{\phi} \in M(E) \) then \(T_{\phi}^\ast \tau_x = \phi(x) \tau_x \) for any \(x \in X \) because \(\tau_x \in E^\ast \). Hence \(T_{\phi^{-\phi}(x)}(A^\ast \tau_x) = A^\ast(T_{\phi^{-\phi}(x)} \tau_x) = 0 \) because \(A T_{\phi^{-\phi}(x)} = T_{\phi^{-\phi}(x)} A \) and so \(A^\ast \tau_x = 0 \) on \(E_x \) because \(M(E)_x E \) is dense in \(E_x \). This implies \(A \) belongs to \(M(E) \).

Proposition 2. If \(M(E) + K = E \) then \(M(E/K)' = M(E/K) \). If \(f \in E \), put \(\tilde{f} = f + K \). Then we may assume that \(f \in M(E) \) by hypothesis \(M(E) + K = E \). For any \(g \in M(E) \), if \(A \in M(E/K)' \) then for any \(x \in (E/K)^\ast \)

\[
\langle A \tilde{g}, x \rangle = \langle \tilde{g}, A^\ast x \rangle = \langle \tilde{g} \cdot \tilde{1}, A^\ast x \rangle = \langle A S_g \tilde{1}, x \rangle = \langle S_g A \tilde{1}, x \rangle = \langle S_g \tilde{\phi}, x \rangle
\]

where \(\tilde{\phi} = A \tilde{1} \). Since \(M(E) + K = E \), we may assume that \(\phi \in M(E) \) and so \(A = S_{\tilde{\phi}} \).

For a subset \(S \) of \(X \), let \(E|S \) be the restriction of \(E \) to \(S \) and put \(K = \{ f \in E; f = 0 \text{ on } S \} \). Then, \(E|S \) becomes a Banach space of functions on \(S \) under the quotient norm of \(E/K \). We may assume that \(E|S \cong E/K \). Put \(K = \{ \phi \in M(E); \phi = 0 \text{ on } S \} \), then \(M(E)|S \cong M(E)/K \). Even if \(K \) is such a special case, Problems 1 and 2 can not be solved in general. Snyder [5] studied Problem 1,
that is, whether $M(E)|S = M(E|S)$. In this special case, Problem 1 is just an interpolation problem. That is, if f is a function on $S \subset X$ and $f(E|S) \subset E|S$ then does there exist a function F on X such that $FE \subset E$ and $F|S = f$ and $\|F\| = \|f\|$? Therefore the research of Snyder [5] is contained in our one.

Corollary 1. If E is a commutative Banach algebra with unit then $M(E/K)' = M(E/K)$.

Proof. If E is a commutative Banach algebra with unit then $M(E) = E$ and $K = K$. Hence $M(E) + K = E$. Proposition 2 implies that $M(E/K)' = M(E/K)$.

Proposition 3. If E is a commutative Banach algebra with unit then $M(E)/K = M(E/K)$ where $K = K$.

Proof. By the proof of Corollary 1, $M(E) = E$ and it is easy to see that $M(E)$ is isometrically isomorphic to E. Similarly $M(E/K)$ is isometrically isomorphic to E/K. This implies the proposition.

§3. Two dimensional case

In this section we assume that $M(E) \subset E$. (1) of Theorem 1 is due to Snyder [5] and (2) of Theorem 1 is new.

d_x is called the derivation at x if $d_x(fg) = d_x(f)\tau_x(g) + \tau_x(f)d_x(g)$ ($f, g \in M(E)$).

Proposition 4. Suppose E/K and $M(E/K)$ are of finite dimension 2. Then $(E/K)^* = [\tau_x, \tau_y]$ for $x, y \in X$ with $x \neq y$ or $(E/K)^* = [\tau_x, d_x]$ for $x \in X$ where d_x is a point derivation at x.

Proof. By hypothesis, $M(E/K) = E/K$ as a set. Since $M(E/K)$ is a commutative Banach algebra and dim $M(E/K) = 2$, by [2, Proposition 1] it is easy to see that $M(E/K)^* = [\tau_x, \tau_y]$ for $x, y \in X$ with $x \neq y$ or $M(E/K)^* = [\tau_x, d_x]$ for $x \in X$.

Lemma 1. Suppose $M(E)+K$ is dense in E. If $\phi \in M(E)$ then $S^*d_x = \overline{d_x(\phi)}\tau_x + \tau_x(\phi)d_x$.
Proof. For \(f \in \text{M}(E) \)

\[
\langle f + K, S_\phi^*d_x \rangle = \langle \phi f + K, d_x \rangle = \langle \phi f, d_x \rangle
\]

\[
= d_x(\phi)\tau_x(f) + \tau_x(\phi)d_x(f)
\]

\[
= (f + K, d_x(\phi)\tau_x + \tau_x(\phi)d_x)
\]

Theorem 1. Suppose that \(\text{M}(E) + K = E \), \(E/K \) and \(\text{M}(E/K) \) are of two dimension. If \(\text{M}(E/K) \) is isometrically isomorphic to \(\text{M}(E)/K \), then the following (1) and (2) are valid.

(1) When \((E/K)^* = [\tau_x, \tau_y] \) for \(x, y \in X \) with \(x \neq y \), for given \(u, v \in \mathbb{C} \), there exists \(\phi \in \text{M}(E) \) such that \(\tau_x(\phi) = u \), \(\tau_y(\phi) = v \) and \(\| \phi + K \| \leq 1 \) if and only if

\[
\| \alpha \bar{u} \tau_x + \beta \bar{v} \tau_y \|_* \leq \| \alpha \tau_x + \beta \tau_y \|_* \quad (\alpha, \beta \in \mathbb{C}).
\]

(2) When \((E/K)^* = [\tau_x, d_x] \) for \(x \in X \), for given \(u, v \in \mathbb{C} \), there exists \(\phi \in \text{M}(E) \) such that \(\tau_x(\phi) = u \), \(d_x(\phi) = v \) and \(\| \phi + K \| \leq 1 \) if and only if

\[
\| (\alpha \bar{u} + \beta \bar{v}) \tau_x + \beta \bar{u}d_x \|_* \leq \| \alpha \tau_x + \beta d_x \|_* \quad (\alpha, \beta \in \mathbb{C}).
\]

Proof. (1) If there exists \(\phi \in \text{M}(E) \) such that \(\tau_x(\phi) = u \), \(\tau_y(\phi) = v \) with \(\| \phi + K \| \leq 1 \) then \(S_\phi^* \| \leq 1 \) by hypothesis. This implies that

\[
\| \alpha \bar{u} \tau_x + \beta \bar{v} \tau_y \|_* \leq \| \alpha \tau_x + \beta \tau_y \|_* \quad (\alpha, \beta \in \mathbb{C})
\]

because \(S_\phi^* \tau_x = \overline{\tau_x(\phi)} \tau_x = \bar{u} \tau_x \) and \(S_\phi^* \tau_y = \bar{v} \tau_y \). For the converse, put \(A \in B(H/K), A^* \tau_x = \bar{u} \tau_x \) and \(A^* \tau_y = \bar{v} \tau_y \), then \(\| A^* \| \leq 1 \) and \(A \) belongs to \(\text{M}(E/K)' \). Since \(\text{M}(E) + K = E \), by Proposition 2 \(A = S_\phi \) for some \(\phi \in \text{M}(E) \). By hypothesis, \(\| \phi + K \| \leq 1 \) and \(\tau_x(\phi) = u \) and \(\tau_y(\phi) = v \).

(2) If there exists \(\phi \in \text{M}(E) \) with \(\tau_x(\phi) = u \), \(d_x(\phi) = v \) with \(\| \phi + K \| \leq 1 \) then \(S_\phi^* \| \leq 1 \) by hypothesis. This and Lemma 1 imply

\[
\| (\alpha \bar{u} + \beta \bar{v}) \tau_x + \beta \bar{u}d_x \|_* \leq \| \alpha \tau_x + \beta d_x \|_* \quad (\alpha, \beta \in \mathbb{C}).
\]
For the converse, put $A \in \mathcal{B}(H/K)$, $A^* \tau_x = \bar{u} \tau_x$ and $A^* d_x = \bar{v} \tau_x + \bar{u} d_x$, then $\|A^*\| \leq 1$ and A belongs to $M(E/K)'$ by Lemma 1. By Proposition 2 $A = S_\phi$ for some $\phi \in M(E)$. By hypothesis, $\|\phi + K\| \leq 1$ and $\tau_x(\phi) = u$ and $\tau_y(\phi) = v$.

In Theorem 1, if (1) or (2) is valid then $M(E/K)$ is isometrically isomorphic to $M(E)/K$.

Corollary 2. In Theorem 1, if E is a Hilbert space then there exist k_x and h_x in E such that

$$\tau_x(f) = (f, k_x) \quad (f \in E)$$

and

$$d_x(f) = (f, h_x) \quad (f \in E)$$

and the following (1) and (2) are valid.

1. When $(E/K)^* = [\tau_x, \tau_y]$ for $x, y \in X$ with $x \neq y$, for given $u, v \in \mathbb{C}$, there exists $\phi \in M(E)$ such that $\tau_x(\phi) = u, \tau_y(\phi) = v$ and $\|\phi + K\| \leq 1$ if and only if

$$|\alpha|^2 (1 - |u|^2)(k_x, k_x) + \alpha \bar{\beta}(1 - \bar{u}v)(k_x, k_y) + \bar{\alpha} \beta(1 - u\bar{v})(k_y, k_x) + |\beta|^2 (1 - |v|^2)(k_y, k_y) \geq 0$$

for any $\alpha, \beta \in \mathbb{C}$.

2. When $(E/K)^* = [\tau_x, d_x]$ for $x \in X$, for given $u, v \in \mathbb{C}$, there exists $\phi \in M(E)$ such that $\tau_x(\phi) = u, d_x(\phi) = v$ and $\|\phi + K\| \leq 1$ if and only if

$$(|\alpha|^2 - |\alpha \bar{u} + \beta \bar{v}|^2)(k_x, k_x) + (\alpha \bar{\beta} - (\alpha \bar{\beta}|u|^2 + |\beta|^2 u\bar{v}))(k_x, k_y) + (\bar{\alpha} \beta - (\bar{\alpha} \beta|u|^2 + |\beta|^2 \bar{u}v))(h_x, k_x) + |\beta|^2 (1 - |u|^2)(h_x, h_x) \geq 0$$

for any $\alpha, \beta \in \mathbb{C}$.

The condition of (1) in Corollary 2 shows that the 2×2 matrix \{(1 - |u|^2)(k_x, k_x), (1 - \bar{u}v)(k_x, k_y), (1 - u\bar{v})(k_y, k_x), (1 - |v|^2)(k_y, k_y)\} is nonnegative. When $(k_x, h_x) = 0$, the condition of (2) in Corollary 2 shows that the 2×2 matrix \{(1 - |u|^2)(k_x, k_x), \bar{u}v(h_x, k_x), u\bar{v}(k_x, h_x), (1 - |u|^2 - |v|^2)(h_x, h_x)\} is nonnegative.
When dim $E/K \geq 3$, even if dim E/K is finite, it is difficult to describe $(E/K)^*$ except $K = \{f \in E : f(x_j) = 0 \ 1 \leq j \leq \dim E/K\}$ and $x_i \neq x_j (i \neq j)$. Therefore we could not generalize (2) of Theorem 1.

§4. Hardy space H^p (1 $\leq p \leq \infty$)

In this section, we solve Problems 1 and 2 when $E = H^p$ for $1 \leq p \leq \infty$. When $E = H^\infty$, we can solve trivially Problems 1 and 2 by Corollary 2 and Proposition 4. If dim $H^p/K < \infty$ then $M(H^p) + K = H^p$ and so $M(H^p/K)' = M(H^p/K)$ by Proposition 2. However we have to work more in order to prove $M(H^p/K) = M(H^p)/K$.

Let W be a nonnegative function in L^1 with $\log W$ in $L^1 = L^1(d\theta/2\pi)$. Then there exists an outer function h in H^1 with $W = |h|$. For $1 \leq p < \infty$, $H^p(W)$ denotes the closure of analytic polynomials in $L^p(W) = L^1(Wd\theta/2\pi)$. Then $H^p(W) = h^{-1/p}H^p$ and so we may assume that $H^p(W)$ is a Banach space of analytic functions on D. It is known that the point evaluations of points in D are continuous on $H^p(W)$. It is well known that $M(H^p(W)) = H^\infty$.

Theorem 2. For $1 \leq p \leq \infty$, let K be a closed subspace of $H^p(W)$ with $M(H^p(W))K \subseteq K$. Then $M(H^p(W)/K)' = M(H^p(W)/K)$ and $M(H^p(W)/K) = M(H^p(W))/K$. where $K = \{\phi \in M(H^p(W)) : \phi H^p(W) \subseteq K\}$.

Proof. Since $M(H^p(W)) = H^\infty$, $K = QH^\infty$ for some inner function and $K = QH^p(W)$. Since $M(H^p(W)/K) \subseteq M(H^p(W)/K)'$, we will show that $M(H^p(W)/K)' \subseteq M(H^p(W)/K)$. If $A \in M(H^p(W)/K)'$ then there exists ψ in $H^p(W)$ such that $A(1 + K) = \psi + K$. For any polynomial $f = h^{-1/p}F$ in $H^p(W)$, $\|f + K\|_W \leq \|A\|\|f + K\|_W$. Since $K = QH^p(W) = h^{-1/p}QH^p$, if $1/p + 1/q = 1$

$$
\|\psi f + QH^p(W)\|_W = \sup\{|\psi f, g|_W : g \in \{QH^p(W)\}^\perp \text{ and } \|g\|_W \leq 1\}
= \sup\left\{|\int \psi h^{-1/p}FQh^{-1/q}G|h|dm| : G \in H_0^q \text{ and } \|G\|_q \leq 1\right\}
$$
\[
\begin{align*}
\sup & \left\{ \left| \int \psi \bar{Q} F G dm \right| : G \in H_0^q \text{ and } \|G\|_q \leq 1 \right\} \\
& \leq \|A\| \|f\|_w = \|A\| \|F\|_p \\
& \text{because } \{QH^p(W)\}^\perp = Q\bar{h}^{1/p}[h]^{-1} \tilde{H}_0^q. \text{ Thus}
\sup & \left\{ \left| \int \psi \bar{Q} F G d\theta / 2\pi \right| : F \in H^p, G \in H_0^q, \|F\|_p \leq 1 \text{ and } \|G\|_q \leq 1 \right\} \leq \|A\|
\end{align*}
\]

By the factorization theorem of \(H^1 \),
\[
\sup \{ \left| \int \psi \bar{Q} K d\theta / 2\pi \right| : K \in H_0^1 \text{ and } \|K\|_1 \leq 1 \} \leq \|A\|
\]

Since \((\bar{Q}H_0^1)^* = L^\infty/\bar{Q}H^\infty\), \(\|\psi + QH^\infty\| \leq \|A\| \). Hence there exists a function \(\phi \) in \(H^\infty \) such that \(S_\phi = A \) and \(\|\phi + K\| = \|S_\phi\| \). Thus \(A \) belongs to \(M(\text{H}^p(W)/K) \). Therefore \(M(\text{H}^p(W)/K)' = M(\text{H}^p(W)/K) \) and \(M(\text{H}^p(W)/K) = M(\text{H}^p(W)/K) \).

Corollary 3. For \(1 \leq p \leq \infty \), \(M(\text{H}^p(W)/QH^p(W)) = H^\infty/QH^\infty \) for any inner function \(Q \).
References

Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060-0810, Japan
nakazi@math.hokudai.ac.jp