<table>
<thead>
<tr>
<th>Title</th>
<th>Multipliers For A Quotient Banach Space And The Nevanlinna-Pick Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nakazi, Takahiko</td>
</tr>
<tr>
<td>Citation</td>
<td>Hokkaido University Preprint Series in Mathematics, 895, [1]</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2008</td>
</tr>
<tr>
<td>DOI</td>
<td>10.14943/84045</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/69704</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
Multipliers For A Quotient Banach Space And The
Nevanlinna-Pick Theorem

By

Takahiko Nakazi*

2000 Mathematics Subject Classification. Primary 47 A 20, Secondary 46 J 15

Keywords and phrases: quotient Banach space, multiplier, Nevanlinna-Pick theorem, Hardy space

* This research was partially supported by Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science.
Abstract. Let E be a Banach space on a set X and $M(E)$ the space of multipliers of E. In this paper, we study the space of multipliers of the quotient space E/K where K is a closed $M(E)$-invariant subspace in E. When E is the classical Hilbert Hardy space, the Nevanlinna and Pick theorem shows $M(E/K)$ is a quotient algebra of $M(E)$.
§1. Introduction

A Banach space E of functions on a set X is a Banach space whose elements are complex-valued functions defined on X with the usual pointwise addition and scalar multiplication. If ϕ is a complex-valued function on X and ϕf belongs to E for all f in E, then we write that ϕ is an element of $M(E)$, the space of multipliers of E. We assume that the point evaluations are continuous on E, that is, X is embedded in the dual space E^* and that there is no point in X where all the members of E vanish. It is known that $T_\phi : f \to \phi f$ is a bounded operator on E for each ϕ in $M(E)$, since by continuity of point evaluation, each such map has closed graph. $M(E)$ is a closed subalgebra of $B(E)$, the set of bounded operators on E, indeed $M(E)$ is closed in the weak operator topology. Thus we assume that the space $M(E)$ of multipliers of E is an operator algebra on E.

If K is a closed subspace of E then E/K is also a Banach space. We want to define the space of multipliers $M(E/K)$ of E/K. For ϕ in $M(E)$ put

$$S_\phi(f + K) = \phi f + K \quad (f \in E).$$

In general, S_ϕ is not well defined on E/K. We need assume that $M(E) K \subset K$. Suppose $M(E/K) = \{ S_\phi; \phi \in M(E) \}$. Then $M(E/K)$ is also an operator algebra on E/K. Put

$$K = \{ \phi \in M(E); \phi E \subset K \}$$

then K is a closed ideal in $M(E)$. By the definition, $S_\phi = 0$ if and only if $\phi E \subset K$. Hence $S_\phi = 0$ if and only if ϕ belongs to K. Therefore $S_{\phi + \psi} = S_\phi$ for any ψ in K and so there exists a one-to-one map from $M(E/K)$ onto $M(E)/K$. Moreover this map is contractive. In fact, for any g in K,

$$S_\phi(f + K) = \phi f + K = \phi(f + g) + K$$

and so

$$\|S_\phi(f + K)\| \leq \|\phi(f + g)\| \leq \|\phi\| \|f + g\|.$$

This implies that $\|S_\phi\| \leq \|\phi\|$. Since $S_{\phi + \psi} = S_\phi$ for any ψ in K, $\|S_\phi\| \leq \|\phi + K\|$. Now the following problem is natural.
Problem 1. Is $M(E/K)$ isometrically isomorphic onto $M(E)/K$?

If Problem 1 can be solved positively, then it shows that $M(E)/K$ is an operator algebra on E/K. Suppose

$$M(E/K)' = \{ A \in B(E/K); S_\phi A = AS_\phi \text{ for any } \phi \in M(E) \}.$$

Then $M(E/K)'$ is a commutative algebra in $B(E/K)$ which contains $M(E/K)$. We are interested in the following problem.

Problem 2. Is $M(E/K)'$ equal to $M(E/K)$?

Problem 2 is related to a problem of commuting dilation, that is, if $A \in B(E/K)$ such that $AS_\phi = S_\phi A$ (for any $\phi \in M(E)$) then does exist $\tilde{A} \in B(E)$ such that $\tilde{A}T_\phi = T_\phi \tilde{A}$ (for any $\phi \in M(E)$) and $A(f + K) = \tilde{A}f + K$ ($f \in E$)? If $M(E)' = \tilde{M}(E)$ then $A = T_\psi$ for some $\psi \in \tilde{M}(E)$ and so $A = S_\psi$.

Let $H^p(1 \leq p \leq \infty)$ be the usual Hardy space of analytic functions on the open unit disc D. When $E = H^2$, Sarason [4] solved Problems 1 and 2 positively. Then a theorem of Nevanlinna-Pick and a theorem of Carathéodary follow. When $E = H^p$ (for $1 \leq p \leq \infty$, $p \neq 2$) and $K = BH^p$ for a Blaschke product with simple zeros, Snyder [5] solved Problems 1 and 2. In this paper, we solve them when $E = H^p$ (for $1 \leq p \leq \infty$) and K is arbitrary.

In general, $M(E)$ may not be a supnorm algebra (see [6]). Even if E is a Hilbert space, $M(E)$ is a supnorm algebra on X and $\dim M(E)/K = 2$, it is known that we can solve negatively Problem 1 for some E and K (see [1]).

In this paper, for a subset S [S] denotes the closed linear span of S.

§2. General case

For each x in X, put $\tau_x(f) = f(x)$ for a function f on X. We assume that τ_x is bounded on E and $\|\tau_x\|$ denotes the norm of
\(\tau_x \) on \(E \). \(\tau_x \) is also bounded on \(M(E) \) and the norm is just one. For

\[|\tau_x(\phi) \cdot \tau_x(f)| = |\tau_x(\phi f)| \leq \|\tau_x\| \cdot \|\phi\| \cdot \|f\| \quad (\phi \in M(E), f \in E) \]

and so \(|\tau_x(\phi)| \cdot \|\tau_x\| \leq \|\tau_x\| \cdot \|\phi\| \). Put \(E_x = \ker \tau_x \cap E \) and \(M(E)_x = \ker \tau_x \cap M(E) \). If \(K = \{0\} \) then \(K = \{0\} \) and so Problem 1 can be solved trivially. Moreover the following Proposition 1 solves Problem 2.

Proposition 1. If \(M(E)_x E \) is dense in \(E_x \) for any \(x \) in \(X \) then \(M(E)' = M(E) \).

Proof. It is clear that \(M(E) \subset M(E)' \). Suppose \(A \in M(E)' \). If \(T_\phi \in M(E) \) then \(T_\phi \tau_x = \phi(x) \tau_x \) for any \(x \in X \) because \(\tau_x \in E^* \). Hence \(T_{\phi-\phi(x)}^*(A^* \tau_x) = A^*(T_{\phi-\phi(x)}^* \tau_x) = 0 \) because \(AT_{\phi-\phi(x)} = T_{\phi-\phi(x)} A \). Therefore for any \(f \in E \), \(\langle T_{\phi-\phi(x)} f, A^* \tau_x \rangle = 0 \) and so \(A^* \tau_x = 0 \) on \(E_x \) because \(M(E)_x E \) is dense in \(E_x \).

Thus \(A^* \tau_x = \psi(x) \tau_x \) \((x \in X) \) and so for any \(f \in E \), \(\psi(x)f(x) = \langle f, A^* \tau_x \rangle = \langle Af, \tau_x \rangle = \langle Af \rangle(x) \). Hence \(Af = \psi f = T_\psi f \) \((f \in E) \). This implies \(A \) belongs to \(M(E) \).

Proposition 2. If \(M(E) + K = E \) then \(M(E/K)' = M(E/K) \).

Proof. For any \(f \in E \), put \(\tilde{f} = f + K \). Then we may assume that \(f \in M(E) \) by hypothesis \(M(E) + K = E \). For any \(g \in M(E) \), if \(A \in M(E/K)' \) then for any \(x \) in \((E/K)^* \)

\[
\langle A\tilde{g}, x \rangle = \langle \tilde{g}, A^* x \rangle = \langle \tilde{g} \cdot 1, A^* x \rangle = \langle AS_g \tilde{1}, x \rangle = \langle S_g A\tilde{1}, x \rangle = \langle S_g \tilde{\phi}, x \rangle = \langle \tilde{\phi}\tilde{g}, x \rangle
\]

where \(\tilde{\phi} = A\tilde{1} \). Since \(M(E) + K = E \), we may assume that \(\phi \in M(E) \) and so \(\tilde{A} = S_g \)

For a subset \(S \) of \(X \), let \(E|S \) be the restriction of \(E \) to \(S \) and put \(K = \{f \in E; f = 0 \text{ on } S\} \). Then, \(E|S \) becomes a Banach space of functions on \(S \) under the quotient norm of \(E/K \). We may assume that \(E|S \cong E/K \). Put \(K = \{\phi \in M(E); \phi = 0 \text{ on } S\} \), then \(M(E)|S \cong M(E)/K \). Even if \(K \) is such a special case, Problems 1 and 2 cannot be solved in general. Snyder [5] studied Problem 1,
that is, whether \(M(E)|S = M(E|S) \). In this special case, Problem 1 is just an interpolation problem. That is, if \(f \) is a function on \(S \subset X \) and \(f(E|S) \subset E|S \) then does there exist a function \(F \) on \(X \) such that \(FE \subset E \) and \(F|S = f \) and \(\|F\| = \|f\| \)? Therefore the research of Snyder [5] is contained in our one.

Corollary 1. If \(E \) is a commutative Banach algebra with unit then \(M(E/K)' = M(E/K) \).

Proof. If \(E \) is a commutative Banach algebra with unit then \(M(E) = E \) and \(K = K \). Hence \(M(E) + K = E \). Proposition 2 implies that \(M(E/K)' = M(E/K) \).

Proposition 3. If \(E \) is a commutative Banach algebra with unit then \(M(E)/K = M(E/K) \) where \(K = K \).

Proof. By the proof of Corollary 1, \(M(E) = E \) and it is easy to see that \(M(E) \) is isometrically isomorphic to \(E \). Similarly \(M(E/K) \) is isometrically isomorphic to \(E/K \). This implies the proposition.

§3. Two dimensional case

In this section we assume that \(M(E) \subset E \). (1) of Theorem 1 is due to Snyder [5] and (2) of Theorem 1 is new.

\(d_x \) is called the derivation at \(x \) if \(d_x(fg) = d_x(f)\tau_x(g) + \tau_x(f)d_x(g) \) \((f,g \in M(E))\).

Proposition 4. Suppose \(E/K \) and \(M(E/K) \) are of finite dimension 2. Then \((E/K)^* = [\tau_x, \tau_y] \) for \(x, y \in X \) with \(x \neq y \) or \((E/K)^* = [\tau_x, d_x] \) for \(x \in X \) where \(d_x \) is a point derivation at \(x \).

Proof. By hypothesis, \(M(E/K) = E/K \) as a set. Since \(M(E/K) \) is a commutative Banach algebra and \(\dim M(E/K) = 2 \), by [2, Proposition 1] it is easy to see that \(M(E/K)^* = [\tau_x, \tau_y] \) for \(x, y \in X \) with \(x \neq y \) or \(M(E/K)^* = [\tau_x, d_x] \) for \(x \in X \).

Lemma 1. Suppose \(M(E)+K \) is dense in \(E \). If \(\phi \in M(E) \) then \(S_\phi d_x = \overline{d_x(\phi)\tau_x + \tau_x(\phi)d_x} \).
Proof. For $f \in M(E)$
\[
\langle f + K, S^*_d \rangle = \langle \phi + K, d \rangle = \langle \phi, d \rangle
\]
\[
= \langle f + K, \tau_x(\phi) + d \rangle
\]
\[
= \langle f + K, d \rangle \tau_x(\phi) + \tau_x(\phi) d
\]

Theorem 1. Suppose that $M(E) + K = E$, E/K and $M(E/K)$ are of two dimension. If $M(E/K)$ is isometrically isomorphic to $M(E)/K$ then the following (1) and (2) are valid.

(1) When $(E/K)^* = [\tau_x, \tau_y]$ for $x, y \in X$ with $x \neq y$, for given $u, v \in \mathbb{C}$, there exists $\phi \in M(E)$ such that $\tau_x(\phi) = u$, $\tau_y(\phi) = v$ and $\|\phi + K\| \leq 1$ if and only if

\[
\|\alpha \bar{u} \tau_x + \beta \bar{v} \tau_y\|_* \leq \|\alpha \tau_x + \beta \tau_y\|_*(\alpha, \beta \in \mathbb{C})
\]

(2) When $(E/K)^* = [\tau_x, d_x]$ for $x \in X$, for given $u, v \in \mathbb{C}$, there exists $\phi \in M(E)$ such that $\tau_x(\phi) = u, d_x(\phi) = v$ and $\|\phi + K\| \leq 1$ if and only if

\[
\|(\alpha \bar{u} + \beta \bar{v}) \tau_x + \beta \bar{u} d_x\|_* \leq \|\alpha \tau_x + \beta d_x\|_*(\alpha, \beta \in \mathbb{C})
\]

Proof. (1) If there exists $\phi \in M(E)$ such that $\tau_x(\phi) = u, \tau_y(\phi) = v$ with $\|\phi + K\| \leq 1$ then $\|S^*_x\| \leq 1$ by hypothesis. This implies that

\[
\|\alpha \bar{u} \tau_x + \beta \bar{v} \tau_y\|_* \leq \|\alpha \tau_x + \beta \tau_y\|_*(\alpha, \beta \in \mathbb{C})
\]

because $S^*_x \tau_x = \tau_x(\phi) \tau_x = \bar{u} \tau_x$ and $S^*_y \tau_y = \bar{v} \tau_y$. For the converse, put $A \in \mathcal{B}(H/K)$, $A^* \tau_x = \bar{u} \tau_x$ and $A^* \tau_y = \bar{v} \tau_y$, then $\|A^*\| \leq 1$ and A belongs to $M(E/K)'$. Since $M(E) + K = E$, by Proposition 2 $A = S^*_\phi$ for some $\phi \in M(E)$. By hypothesis, $\|\phi + K\| \leq 1$ and $\tau_x(\phi) = u$ and $\tau_y(\phi) = v$.

(2) If there exists $\phi \in M(E)$ with $\tau_x(\phi) = u, d_x(\phi) = v$ with $\|\phi + K\| \leq 1$ then $\|S^*_x\| \leq 1$ by hypothesis. This and Lemma 1 imply

\[
\|(\alpha \bar{u} + \beta \bar{v}) \tau_x + \beta \bar{u} d_x\|_* \leq \|\alpha \tau_x + \beta d_x\|_*(\alpha, \beta \in \mathbb{C})
\]
For the converse, put $A \in B(H/K)$, $A^*\tau_x = \bar{u}\tau_x$ and $A^*d_x = \bar{v}\tau_x + \bar{u}d_x$, then $\|A^*\| \leq 1$ and A belongs to $M(E/K)'$ by Lemma 1. By Proposition 2 $A = S_\phi$ for some $\phi \in M(E)$. By hypothesis, $\|\phi + \mathcal{K}\| \leq 1$ and $\tau_x(\phi) = u$ and $\tau_y(\phi) = v$.

In Theorem 1, if (1) or (2) is valid then $M(E/K)$ is isometrically isomorphic to $M(E)/\mathcal{K}$.

Corollary 2. In Theorem 1, if E is a Hilbert space then there exist k_x and h_x in E such that

$$\tau_x(f) = (f, k_x) \quad (f \in E)$$

and

$$d_x(f) = (f, h_x) \quad (f \in E)$$

and the following (1) and (2) are valid.

1. When $(E/K)^* = [\tau_x, \tau_y]$ for $x, y \in X$ with $x \neq y$, for given $u, v \in \mathbb{C}$, there exists $\phi \in M(E)$ such that $\tau_x(\phi) = u, \tau_y(\phi) = v$ and $\|\phi + \mathcal{K}\| \leq 1$ if and only if

$$|\alpha|^2(1 - |u|^2)(k_x, k_x) + \alpha\bar{\beta}(1 - \bar{u}v)(k_x, k_y) + \bar{\alpha}\beta(1 - u\bar{v})(k_y, k_x) + |\beta|^2(1 - |v|^2)(k_y, k_y) \geq 0$$

for any $\alpha, \beta \in \mathbb{C}$.

2. When $(E/K)^* = [\tau_x, d_x]$ for $x \in X$, for given $u, v \in \mathbb{C}$, there exists $\phi \in M(E)$ such that $\tau_x(\phi) = u, d_x(\phi) = v$ and $\|\phi + \mathcal{K}\| \leq 1$ if and only if

$$\begin{align*}
(|\alpha|^2 - |\alpha\bar{u} + \beta\bar{v}|^2)(k_x, k_x) + (\alpha\bar{\beta} - (\alpha\bar{\beta}|u|^2 + |\beta|^2u\bar{v}))(k_x, k_y) \\
+ (\bar{\alpha}\beta - (\bar{\alpha}\beta|u|^2 + |\beta|^2\bar{u}v))(h_x, k_x) + |\beta|^2(1 - |u|^2)(h_x, h_x) \geq 0
\end{align*}$$

for any $\alpha, \beta \in \mathbb{C}$.

The condition of (1) in Corollary 2 shows that the 2×2 matrix $\{(1 - |u|^2)(k_x, k_x), (1 - \bar{u}v)(k_x, k_y), (1 - u\bar{v})(k_y, k_x), (1 - |v|^2)(k_y, k_y)\}$ is nonnegative. When $(k_x, h_x) = 0$, the condition of (2) in Corollary 2 shows that the 2×2 matrix $\{(1 - |u|^2)(k_x, k_x), \bar{u}v(h_x, k_x), u\bar{v}(k_x, h_x), (1 - |u|^2 - |v|^2)(h_x, h_x)\}$ is nonnegative.
When \(\dim E/K \geq 3 \), even if \(\dim E/K \) is finite, it is difficult to describe \((E/K)^*\) except \(K = \{ f \in E : f(x) = 0 \ 1 \leq j \leq \dim E/K \} \) and \(x_i \neq x_j(i \neq j) \). Therefore we could not generalize (2) of Theorem 1.

§4. Hardy space \(H^p \) \((1 \leq p \leq \infty) \)

In this section, we solve Problems 1 and 2 when \(E = H^p \) for \(1 \leq p \leq \infty \). When \(E = H^\infty \), we can solve trivially Problems 1 and 2 by Corollary 2 and Proposition 4. If \(\dim H^p/K < \infty \) then \(M(H^p) + K = H^p \) and so \(M(H^p/K)' = M(H^p/K) \) by Proposition 2. However we have to work more in order to prove \(M(H^p/K) = M(H^p)/K \).

Let \(W \) be a nonnegative function in \(L^1 \) with \(\log W \) in \(L^1(d\theta/2\pi) \). Then there exists an outer function \(h \) in \(H^1 \) with \(W = |h| \). For \(1 \leq p < \infty \), \(H^p(W) \) denotes the closure of analytic polynomials in \(L^p(W) = L^1(Wd\theta/2\pi) \). Then \(H^p(W) = h^{-1/p}H^p \) and so we may assume that \(H^p(W) \) is a Banach space of analytic functions on \(D \). It is known that the point evaluations of points in \(D \) are continuous on \(H^p(W) \). It is well known that \(M(H^p(W)) = H^\infty \).

Theorem 2. For \(1 \leq p \leq \infty \), let \(K \) be a closed subspace of \(H^p(W) \) with \(M(H^p(W))/K \subseteq K \). Then \(M(H^p(W))/K' = M(H^p(W)/K) \) and \(M(H^p(W)/K) = M(H^p(W))/K \) where \(K = \{ \phi \in M(H^p(W)) : \phi H^p(W) \subseteq K \} \).

Proof. Since \(M(H^p(W)) = H^\infty \), \(K = QH^\infty \) for some inner function and \(K = QH^p(W) \). Since \(M(H^p(W)/K) \subseteq M(H^p(W)/K)' \), we will show that \(M(H^p(W)/K)' \subseteq M(H^p(W)/K) \). If \(A \in M(H^p(W)/K)' \), then there exists \(\psi \in H^p(W) \) such that \(A(1+K) = \psi + K \). For any polynomial \(f = h^{-1/p}F \) in \(H^p(W) \), \(\|\psi f + K\|_W \leq \|A\|\|f + K\|_W \). Since \(K = QH^p(W) = h^{-1/p}QH^p \), if \(1/p + 1/q = 1 \)

\[
\|\psi f + QH^p(W)\|_W \\
= \sup \{ |\langle \psi f, g \rangle_W | : g \in \{ QH^p(W) \}^\perp \text{ and } \|g\|_W \leq 1 \} \\
= \sup \left\{ \int \psi h^{-1/p}F \bar{Q} h^{-1/q} G |h|dm : G \in H^q_0 \text{ and } \|G\|_q \leq 1 \right\}
\]
\[
\begin{align*}
= \sup \Big\{ \left| \int \psi \bar{Q}FGd\theta \right| : & \ G \in H_0^q \text{ and } \|G\|_q \leq 1 \Big\} \\
\leq & \ |A|F\|_w = |A|F\|_p
\end{align*}
\]

because \(\{QH^p(W)\}^\perp = Q\bar{h}^{1/p}|h|^{-1}H_0^q \). Thus
\[
\sup \Big\{ \left| \int \psi \bar{Q}FGd\theta/2\pi \right| : \ F \in H^p, G \in H_0^q, \|F\|_p \leq 1 \text{ and } \|G\|_q \leq 1 \Big\} \leq \|A\|
\]

By the factorization theorem of \(H^1 \),
\[
\sup\{ \left| \int \psi \bar{Q}Kd\theta/2\pi \right| : K \in H_0^1 \text{ and } \|K\|_1 \leq 1 \} \leq \|A\|
\]

Since \((\bar{Q}H_0^1)^* = L^\infty/QH^\infty \), \(\|\psi + QH^\infty\| \leq \|A\|. \) Hence there exists a function \(\phi \) in \(H^\infty \) such that \(S_\phi = A \) and \(\|\phi + K\| = \|S_\phi\|. \) Thus \(A \) belongs to \(M(H^p(W)/K) \). Therefore \(M(H^p(W)/K)' = M(H^p(W)/K) \) and \(M(H^p(W)/K) = M(H^p(W)/K). \)

Corollary 3. For \(1 \leq p \leq \infty \), \(M(H^p(W)/QH^p(W)) = H^\infty/QH^\infty \) for any inner function \(Q \).
References

Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060-0810, Japan
nakazi@math.hokudai.ac.jp