<table>
<thead>
<tr>
<th>Title</th>
<th>Singularities of lightcone Gauss images of spacelike hypersurfaces in de Sitter space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kasedou, Masaki</td>
</tr>
<tr>
<td>Citation</td>
<td>Hokkaido University Preprint Series in Mathematics, 911, 1-17</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2008</td>
</tr>
<tr>
<td>DOI</td>
<td>10.14943/84061</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/69719</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
</tbody>
</table>
Singularities of lightcone Gauss images of spacelike hypersurfaces in de Sitter space

Masaki Kasedou

Abstract

We define the notions of lightcone Gauss images of spacelike hypersurfaces in de Sitter space. We investigate the relationships between singularities of these maps and geometric properties of spacelike hypersurfaces as an application of the theory of Legendrian singularities. We classify the singularities and give some examples in the generic case in de Sitter 3-space.

Key words: de Sitter space, Gauss image, spacelike hypersurface, lightcone.

1 Introduction

In this paper, we discuss the extrinsic differential geometry of the spacelike hypersurfaces in de Sitter space. Bleeker and Wilson [3] studied the singularities of the Gauss map of a surface in Euclidean 3-space. In their paper, the main theorem asserts that the generic singularities of Gauss maps are folds or cusps. Banchoff et al. [2], Landis [6] and Platnova [8] studied geometric meanings of cusps of the Gauss map of a surface. Bruce [4] and Romero-Fuster [9] have also independently studied the singularities of the Gauss map and the dual of hypersurface in Euclidean space. The main tool of Bruce and Romero-Fuster for the study is the family of height functions on a hypersurface. Izumiya et al. [5] studied the extrinsic differential geometry on hypersurfaces in hyperbolic space as an application of the theory of Legendrian singularities.

The investigation in this paper is the analogue of that in [5] for spacelike hypersurfaces in de Sitter space. It is known that de Sitter space is a Lorentzian space form with positive curvature which is one of the vacuum solutions of the Einstein equations. In §2 we introduce the notion of the lightcone Gauss image and the lightcone Gauss-Kronecker curvature. The lightcone Gauss-Kronecker curvature is a invariant under the Lorentzian transformation in de Sitter space. In §3,4 we introduce a family of functions that is called the lightcone height function on the spacelike hypersurface. The singular set of the lightcone Gauss image is the lightcone parabolic set of the spacelike hypersurface and this can be interpreted as the discriminant set of the family of height functions. In §5,6 we discuss the contact between hypersurfaces and de Sitter hyperhorospheres. We apply the theory of Legendrian singularities for the study of lightcone Gauss images of generic hypersurfaces. In §8 we classify the singularities of lightcone Gauss images of generic spacelike surfaces in de Sitter 3-space. Here, we have two singularity types.
of lightcone Gauss images, which are cuspidal edges and swallowtails. In §7,9 we construct the
spacelike Monge form in de Sitter space. It makes us to give examples which are corresponding
to generic singularities of lightcone Gauss images.

2 Hypersurfaces in de Sitter space

In this section we introduce the local differential geometry in the explicit way. Let \(\mathbb{R}^{n+1} = \{ x = (x_0, \cdots, x_n) \mid x_i \in \mathbb{R} (i = 0, \cdots, n) \} \) be an \((n+1)\)-dimensional vector space. For any vectors \(x = (x_0, \cdots, x_n), y = (y_0, \cdots, y_n) \) in \(\mathbb{R}^{n+1} \), the pseudo scalar product of \(x \) and \(y \) is defined by

\[
\langle x, y \rangle = -x_0y_0 + \sum_{i=1}^{n} x_iy_i.
\]

We call \((\mathbb{R}^{n+1}, \langle, \rangle) \) a Minkowski \((n+1)\)-space and write \(\mathbb{R}^{n+1}_1 \) instead of \((\mathbb{R}^{n+1}, \langle, \rangle) \).

We say that a vector \(x \in \mathbb{R}^{n+1}_1 \setminus \{0\} \) is spacelike, timelike or lightlike if \(\langle x, x \rangle > 0 \), \(\langle x, x \rangle = 0 \) or \(\langle x, x \rangle < 0 \) respectively. The norm of the vector \(x \in \mathbb{R}^{n+1}_1 \) is defined by \(||x|| = \sqrt{\langle x, x \rangle} \).

For a vector \(v \in \mathbb{R}^{n+1}_1 \setminus \{0\} \) and a real number \(c \), we define a hyperplane with pseudo-normal \(v \) by

\[
\text{HP}(v, c) = \{ x \in \mathbb{R}^{n+1}_1 \mid \langle x, v \rangle = c \}.
\]

We call \(\text{HP}(v, c) \) a spacelike hyperplane, timelike hyperplane or lightlike hyperplane if \(v \) is timelike, spacelike or lightlike respectively.

We now define hyperbolic \(n \)-space by

\[
H^*_n(-1) = \{ x \in \mathbb{R}^{n+1}_1 \mid \langle x, x \rangle = -1, x_0 \geq 1 \}
\]

and de Sitter \(n \)-space by

\[
S^n_1 = \{ x \in \mathbb{R}^{n+1}_1 \mid \langle x, x \rangle = 1 \}.
\]

For any \(x_1, x_2, \cdots, x_n \in \mathbb{R}^{n+1}_1 \), we define a vector \(x_1 \wedge x_2 \wedge \cdots \wedge x_n \) by

\[
x_1 \wedge x_2 \wedge \cdots \wedge x_n = \begin{vmatrix}
-e_0 & e_1 & \cdots & e_n \\
x_0 & x_1 & \cdots & x_n \\
\vdots & \vdots & \ddots & \vdots \\
x_0^n & x_1^n & \cdots & x_n^n
\end{vmatrix},
\]

where \(e_0, e_1, \cdots, e_n \) are the canonical basis of \(\mathbb{R}^{n+1}_1 \) and \(x_i = (x^i_0, x^i_1, \cdots, x^i_n) \) which satisfies that \(\langle x, x_1 \wedge \cdots \wedge x_n \rangle = \det(x, x_1, \cdots, x_n) \), so that \(x_1 \wedge \cdots \wedge x_n \) is pseudo-orthogonal to any \(x_i \) (for \(i = 1, \cdots, n \)).

We also define a set \(LC_a = \{ x \in \mathbb{R}^{n+1}_1 \mid \langle x - a, x - a \rangle \} \), which is called a closed lightcone with vertex \(a \). We denote

\[
LC^*_+ = \{ x = (x_0, \cdots, x_n) \in LC_0 \mid x_0 > 0 \ (x_0 < 0) \}
\]
and call it the future (resp. past) lightcone at the origin.

We now study the extrinsic differential geometry of spacelike hypersurfaces in S^n_1. Let $X : U \rightarrow S^n_1$ be an embedding, where $U \subset \mathbb{R}^{n-1}$ is an open subset. We say X is a spacelike hypersurface in S^n_1 if every non zero vector generated by $\{X_{u_i}(u)\}_{i=1}^{n-1}$ is always spacelike, where $u = (u_1, \ldots, u_{n-1})$ is an element of U and X_{u_i} is a partial derivative of X with respect to u_i. We denote $M = X(U)$ and identify M with U through the embedding X. Since $\langle X, X \rangle \equiv 1$, we have $\langle X_{u_i}, X \rangle \equiv 0$ (for $i = 1, \ldots, n-1$). It follows that a hyperplane spanned by $\{X, X_{u_1}, \ldots, X_{u_{n-1}}\}$ is spacelike. We define a vector

$$e(u) = \frac{X(u) \wedge X_{u_1}(u) \wedge \cdots \wedge X_{u_{n-1}}(u)}{||X(u) \wedge X_{u_1}(u) \wedge \cdots \wedge X_{u_{n-1}}(u)||}.$$

Then we have

$$\langle e, X_{u_i} \rangle \equiv \langle e, X \rangle \equiv 0, \quad \langle e, e \rangle \equiv -1. \quad \text{(for } i = 1, \ldots, n-1).$$

Therefore the vector $X \pm e$ is lightlike. Since $X(u) \in S^n_1$ and $e(u) \in H^n_+(-1)$, we can show that $X(u) \pm e(u) \in LC^n_\pm$. We define a map

$$\mathbb{L}^\pm : U \rightarrow LC^n_\pm$$

by $\mathbb{L}^\pm(u) = X(u) \pm e(u)$, which is called the lightcone Gauss image of X.

We now define the lightcone Gauss-Kronecker curvature and the lightcone mean curvature of the hypersurface $M = X(U)$. Since $\{X_{u_1}(u), e(u), X_{u_1}(u), X_{u_1}(u) \wedge e(u), \ldots, X_{u_{n-1}}(u) \wedge e(u)\}$ is a basis of the vector space $T_p\mathbb{R}_1^{n+1}$, we have the following lemma analogous to ([5], Lemma 2.1).

Lemma 2.1. For any $p = X(u_0) \in M$ and $v \in T_pM$, we have $D_v e \in T_pM$, so that $D_v \mathbb{L}^\pm \in T_pM$. Here, D_v denotes the covariant derivative with respect to the tangent vector v.

We now consider a hypersurface defined by $HP(v, c) \cap S^n_1$. We say that $HP(v, c) \cap S^n_1$ is an elliptic hyperquadric or a hyperbolic hyperquadric if $HP(v, c)$ is spacelike or timelike respectively. We say that $HP(v, 1) \cap S^n_1$ is a de Sitter hyperhorosphere if $HP(v, 1)$ is lightlike. Then we have the following proposition.

Proposition 2.2. Let $X : U \rightarrow S^n_1$ be a spacelike hypersurface in S^n_1. The lightcone Gauss image \mathbb{L}^\pm is constant if and only if the spacelike hypersurface $M = X(U)$ is a part of a de Sitter hyperhorosphere.

Proof. Since $\mathbb{L}^\pm(u)$ is constant \mathbb{L}^\pm, so we have $\langle X(u), \mathbb{L}^\pm \rangle = \langle X(u), X(u) \pm e(u) \rangle = 1$ for any $u \in U$. Therefore, we have $X(U) \subset HP(\mathbb{L}^\pm, +1) \cap S^n_1$.

If $X(U) \subset HP(v, c) \cap S^n_1$ for some $v \in LC^n$ and $c \neq 0$, then we have $\langle X(u), v \rangle = r$ and $\langle X_{u_i}(u), v \rangle = \langle v, v \rangle = 0$. This means that $v = r\mathbb{L}^+(u)$ or $v = r\mathbb{L}^-(u)$. Therefore, \mathbb{L}^\pm is a constant vector $(1/c)v$. \(\square \)

Under the identification of U and M, the derivative $dX(u_0)$ can be identified with the identity mapping id_{T_pM} on the tangent space T_pM, where $p = X(u_0)$. This means that

$$d\mathbb{L}^\pm(u_0) = id_{T_pM} \pm de(u_0).$$

3
By Lemma 2.1, $de(u_0)$ is a linear transformation on the tangent space T_pM, so that $d\mathbb{L}^\pm(u_0)$ is also a linear transformation on T_pM. We respectively call $S_p^\pm = -d\mathbb{L}^\pm(u_0) : T_pM \rightarrow T_pM$ the lightcone shape operator of $M = X(U)$ at $p = X(u_0)$ and $A_p = -de : T_pM \rightarrow T_pM$ the shape operator of $M = X(U)$ at $p = X(u_0)$. We denote the eigenvalue of S_p^\pm by $\bar{\kappa}_p^\pm$ and the eigenvalue of A_p by κ_p. By the relation $S_p^\pm = -id_{T_pM} \pm A_p$, S_p^\pm and A_p have the common eigenvectors and we have a relation $\bar{\kappa}_p^\pm = -1 \pm \kappa_p$.

The lightcone Gauss-Kronecker curvature of $M = X(U)$ at $p = X(u_0)$ is defined to be

$$K^\pm(u_0) = \det S_p^\pm.$$

Since A_p is the shape operator with respect to the Riemannian metric on M induced from the Lorentzian metric on \mathbb{R}_1^{n+1}, we define the Gauss-Kronecker curvature on M by $K(u_0) = \det A_p$.

We say that a point $u \in U$ or $p = X(u)$ is an umbilic point if $S_p^\pm = \bar{\kappa}_p^\pm id_{T_pM}$. Since the eigenvectors of S_p^\pm and A_p are the same, the above condition is equivalent to the condition $A_p = \kappa_p id_{T_pM}$. We say that $M = X(U)$ is totally umbilic if all points on M are umbilic.

Proposition 2.3. Suppose that $M = X(U)$ is totally umbilic. Then $\bar{\kappa}_p^\pm$, κ_p are constant $\bar{\kappa}^\pm$, κ. Under this condition, we have the following classification.

(1) Suppose that $\bar{\kappa}^\pm \neq 0$.

(a) If $0 < |\kappa| = |\bar{\kappa}^\pm + 1| < 1$, then M is a part of a hyperbolic hyperquadric $HP(v, 1) \cap S_1^n$.

(b) If $1 < |\kappa| = |\bar{\kappa}^\pm + 1|$, then M is a part of an elliptic hyperquadric $HP(v, 1) \cap S_1^n$.

(c) If $\kappa = \bar{\kappa}^\pm + 1 = 0$, then M is a part of a hyperbolic hyperquadric $HP(v, 0) \cap S_1^n$.

(2) If $\bar{\kappa}^\pm = 0$, then M is a part of a de Sitter hyperhorosphere.

Proof. By definition, we have $-\mathbb{L}^\pm(u_0) = \bar{\kappa}_p^\pm X_{ui}(u)$ (for $i = 1, \ldots, n-1$) for any $p = X(u) \in M$. Therefore, we have

$$\mathbb{L}^\pm_{ui, u_j}(u) = \bar{\kappa}_{ui}^\pm X_{ui}(u) + \bar{\kappa}_p^\pm X_{ui, u_j}(u).$$

Since $\mathbb{L}^\pm_{ui, u_j} = \mathbb{L}^\pm_{ui, u_i}$ and $X_{ui, u_j} = X_{uj, ui}$, we have $\bar{\kappa}_{uj}^\pm X_{ui}(u) - \bar{\kappa}_{ui}^\pm X_{uj}(u) = 0$. On the other hand, X_{ui} ($i = 1, \ldots, n-1$) are linearly independent, so that $\bar{\kappa}_p^\pm$ is constant $\bar{\kappa}^\pm$. Since $\bar{\kappa}^\pm = \pm \kappa_p - 1$, this means that κ_p^\pm is constant κ^\pm.

We now assume that $\bar{\kappa}^\pm \neq 0$. By the assumption, we have $-e_{ui} = \kappa X_{ui}$ (for $i = 1, \ldots, n-1$), so that there exists a constant vector a such that, $a = \kappa X(u) + e(u)$ for any $u \in U$. If $|\kappa| = |\bar{\kappa}^\pm + 1| \neq 0$, then the vector $v = (1/\kappa)a$ satisfies $\langle v, v \rangle = 1 - 1/\kappa^2$ and $\langle X, v \rangle = +1$, so that the assertion (a), (b) follows. If $\kappa = 0$, then $v = a$ satisfies $\langle v, v \rangle = -1$, $\langle X, v \rangle = 0$. so that the assertion (c) follows.

Finally, we assume that $\bar{\kappa}^\pm = 0$. In this case, we have $\mathbb{L}^\pm_{ui} = 0$ (for $i = 1, \ldots, n-1$), so that κ^\pm is constant. Therefore we apply Proposition 2.2. This completes the proof.

Let $p = X(u_0) \in M$ be an umbilic point, we say that p is a positive (or negative) lightcone flat point (or, briefly an L^\pm-flat point) if $\bar{\kappa}^\pm = 0$.

4
Since X_u (for $i = 1, \cdots, n-1$) are spacelike vectors, we have the Riemannian metric (the first fundamental form) $ds^2 = \sum_{i,j=1}^{n-1} g_{ij} du_i du_j$ on $M = X(U)$, where $g_{ij}(u) = \langle X_u(u), X_u(u) \rangle$ for any $u \in U$. We also define a positive (or negative) lightcone second fundamental form by $\bar{h}_{ij}(u) = \langle -L_{\pm} u_i(u), X_u(u) \rangle$, and a second fundamental invariant by $h_{ij}(u) = \langle -e_u(u), X_u(u) \rangle$ for any $u \in U$. By definition, we have the following relation:

$$\bar{h}_{ij}(u) = -g_{ij}(u) \pm h_{ij}(u).$$

The following proposition is analogous to ([5], Proposition 2.4):

Proposition 2.4. Under the above notation, we have the following Weingarten formula:

$$L_{\pm} u_i = -\sum_{j=1}^{n-1} (\bar{h}_{ij})^\pm_j X_u,$$

where $((\bar{h}_{ij})^\pm_j) = (\bar{h}_{ik}(g^{kj}))$ and $(g^{kj}) = (g_{kj})^{-1}$.

As a corollary of the above proposition, we have an explicit expression for the lightcone Gauss-Kronecker curvature by Riemannian metric and the lightcone second fundamental invariant.

Corollary 2.5. With the same notation as in the above proposition, the lightcone Gauss-Kronecker curvature is given by

$$K_{\ell}^\pm = \det(\bar{h}_{ij})^\pm / \det(g_{\alpha\beta}).$$

We say that $p = X(u_0)$ is a positive (or negative) lightcone parabolic point (or, briefly an L^\pm-parabolic point) of X if $K_{\ell}^\pm(u_0) = 0$.

3 Lightcone height functions

In this section we introduce families of functions on a spacelike hypersurface in de Sitter space, which are useful for the study of singularities of lightcone Gauss images and lightcone Gauss maps. Let $X : U \longrightarrow S^n_1$ be a hypersurface. We define a family of functions

$$H : U \times LC^* \longrightarrow \mathbb{R}$$

by $H(u, v) = \langle X(u), v \rangle - 1$. We call H a lightcone height function on $X : U \longrightarrow S^n_1$. We have the following proposition:

Proposition 3.1. Let $H : U \times LC^* \longrightarrow \mathbb{R}$ be a lightcone height function on X. Then

1. $H(u, v) = 0$ if and only if there exist real numbers $\mu, \xi_i \in \mathbb{R}$ ($i = 1, \cdots, n-1$) such that $v = X(u) + \mu e_u + \xi_1 X_u + \cdots + \xi_{n-1} X_{u_{n-1}}$.

2. $H(u, v) = \partial H(u, v) / \partial u_i = 0$ (for $i = 1, \cdots, n-1$) if and only if $v = L^\pm(u)$.

We denote the Hessian matrix of the lightcone height function \(h_{v_0}^\pm(u) = H(u, v_0) \) at \(u_0 \) by \(\text{Hess}(h_{v_0}^\pm)(u_0) \).

Proposition 3.2. Let \(X : U \rightarrow S_1^n \) be a hypersurface in \(S_1^n \) and \(v_0^\pm = L^\pm(u_0) \). Then

1. \(p = X(u_0) \) is an \(L^\pm \)-parabolic point if and only if \(\det \text{Hess}(h_{v_0}^\pm)(u_0) = 0 \).
2. \(p = X(u_0) \) is an \(L^\pm \)-flat point if and only if \(\text{rank} \text{Hess}(h_{v_0}^\pm)(u_0) = 0 \).

The proofs for the above propositions are parallel to those of Propositions 3.1, 3.2 in [5], so that we omit these.

4 Lightcone Gauss images as wave fronts

In this section we naturally interpret the lightcone Gauss image of a spacelike hypersurface in \(S_1^n \) as a wave front set in the theory of Legendrian singularities.

Let \(\pi^\pm : PT^*(LC^\pm_1) \rightarrow LC^\pm_1 \) be the projective cotangent bundles with canonical contact structures. Consider the tangent bundle \(\tau^\pm : TPT^*(LC^\pm_1) \rightarrow PT^*(LC^\pm_1) \) and the differential map \(d\pi^\pm : TPT^*(LC^\pm_1) \rightarrow T(LC^\pm_1) \) of \(\pi^\pm \). For any \(X \in TPT^*(LC^\pm_1) \), there exists an element \(\alpha \in T^*(LC^\pm_1) \) such that \(\tau^\pm(X) = [\alpha] \). For an element \(V \in T_q(LC^\pm_1) \), the property \(\alpha(V) = 0 \) does not depend on the choice of representative of the class \([\alpha]\). Thus, we can define the canonical contact structure on \(PT^*(LC^\pm_1) \) by

\[
K = \{ X \in TPT^*(LC^\pm_1) \mid \tau^\pm(X)(d\pi^\pm(X)) = 0 \}.
\]

On the other hand, we consider a point \(v = (v_0, v_1, \cdots, v_n) \in LC^\pm_1 \), then we have the relation \(v_0 = \pm \sqrt{v_1^2 + \cdots + v_n^2} \). So we adopt the coordinate system \((v_1, \cdots, v_n)\) of the manifold \(LC^\pm_1 \). Then we have the trivialization \(PT^*(LC^\pm_1) \equiv LC^\pm_1 \times P\mathbb{R}^{n-1} \), and call \((v_0, \cdots, v_n), [\xi_1 : \cdots : \xi_n] \) homogeneous coordinates of \(PT^*(LC^\pm_1) \), where \([\xi_1 : \cdots : \xi_n] \) are the homogeneous coordinates of the dual projective space \(P\mathbb{R}^{n-1} \).

It is easy to show that \(X^\bullet \in K^\pm_1 \) if and only if \(\sum_{i=1}^n \mu_i \xi_i = 0 \), where \(\bullet = (x, [\xi]) \) and \(d\pi^\pm(X^\bullet) = \sum_{i=1}^n \mu_i \partial / \partial v_i \in T_qLC^\pm_1 \). An immersion \(i : L \rightarrow PT^*(LC^\pm_1) \) is said to be a Legendrian immersion if \(\text{dim } L = n-1 \) and \(di_q(T_qL) \subset K_{i(q)} \) for any \(q \in L \). The map \(\pi \circ i \) is also called the Legendrian map and the image \(W(i) = \text{image}(\pi \circ i) \), the wave front of \(i \). Moreover, \(i \) (or the image of \(i \)) is called the Legendrian lift of \(W(i) \).

Let \(F : (\mathbb{R}^{n-1} \times \mathbb{R}^k, (u_0, v_0)) \rightarrow (\mathbb{R}, 0) \) be a function germ. We say that \(F \) is a Morse family of hypersurfaces if the map germ \(\Delta^*F : (\mathbb{R}^{n-1} \times \mathbb{R}^k, (u_0, v_0)) \rightarrow (\mathbb{R}^n, 0) \) defined by

\[
\Delta^*F = \left(F, \frac{\partial F}{\partial u_1}, \cdots, \frac{\partial F}{\partial u_{n-1}} \right)
\]

is non singular.

In this case, we have a smooth \((k-1)\)-dimensional smooth submanifold,

\[
\Sigma_*(F) = \left\{ (u, v) \in (\mathbb{R}^{n-1} \times \mathbb{R}^k, (u_0, v_0)) \mid F(u, v) = \frac{\partial F}{\partial u_1}(u, v) = \cdots = \frac{\partial F}{\partial u_{n-1}}(u, v) = 0 \right\}.
\]
and the map germ $\mathcal{L}_F : (\Sigma_*(F), (u_0, v_0)) \rightarrow PT^*\mathbb{R}^k$ defined by

$$\mathcal{L}_F(u, v) = \left(v, \left[\frac{\partial F}{\partial u_1}(u, v) : \cdots : \frac{\partial F}{\partial u_{n-1}}(u, v) \right] \right)$$

is a Legendrian immersion germ. Then we have the following fundamental theorem of Arnol’d and Zakalyukin [1, 11].

Proposition 4.1. All Legendrian submanifold germs in $PT^*\mathbb{R}^k$ are constructed by the above method.

We call F a generating family of $\mathcal{L}_F(\Sigma_*(F))$. Therefore the wave front is

$$W(\mathcal{L}_F) = \left\{ v \in \mathbb{R}^k \mid \exists u \in \mathbb{R}^{n-1} \text{ such that } F(u, v) = \frac{\partial F}{\partial u_1}(u, v) = \cdots = \frac{\partial F}{\partial u_{n-1}}(u, v) = 0 \right\}.$$

We call it the discriminant set of F.

Proposition 4.2. The lightcone height function $H : U \times LC^* \rightarrow \mathbb{R}$ is a Morse family.

Proof. For any $v = (v_0, \cdots, v_n) \in LC^*_+$, we have $v_0 \neq 0$. Without loss of generality, we assume that $v_0 = \sqrt{v_1^2 + \cdots + v_n^2} \geq 0$, so that we have

$$H(u, v) = -x_0(u)\sqrt{v_1^2 + \cdots + v_n^2} + x_1(u)v_1 + \cdots + x_n(u)v_n - 1,$$

where $X(u) = (x_0(u), \cdots, x_n(u))$. We have to prove that the mapping $\Delta^*H : U \times LC^*_+ \rightarrow \mathbb{R}^n$ is non-singular on $(\Delta^*H)^{-1}(0)$. But this computation is similar to [5] (see Proposition 4.2), so that we omit it.

Since H is a Morse family of hypersurfaces, we apply the previous arguments. So that we have the Legendrian immersion germ $\mathcal{L}^\pm : (\Sigma^\pm_*(H), (u_0, v_0^\pm)) \rightarrow PT^*(LC^*_-)$ by

$$\mathcal{L}^\pm(u) = \left(v^\pm, \left[\frac{\partial H}{\partial v_1}(u, v^\pm) : \cdots : \frac{\partial H}{\partial v_n}(u, v^\pm) \right] \right),$$

where $v^\pm = L^\pm(u)$ and $\Sigma^\pm_*(H)$ is a singular set of H

$$\Sigma^\pm_*(H) = (\Delta^*H)^{-1}(0) = \{ (u, v) \in U \times LC^*_\pm \mid v = L^\pm(u) \}.$$

Therefore, we have the Legendrian immersion \mathcal{L}^\pm whose wave front set is the lightcone Gauss image L^\pm.

7
5 Contact with de Sitter hyperhorospheres

In this section we start to review the theory of contact due to Montaldi [7]. Let X_i and Y_i (for $i = 1, 2$) be submanifolds of \mathbb{R}^n with $\dim X_1 = \dim X_2$ and $\dim Y_1 = \dim Y_2$. We say that the contact of X_1 and Y_1 at y_1 is the same type as the contact of X_2 and Y_2 at y_2 if there is a diffeomorphism germ $\Phi : (\mathbb{R}^n, y_1) \to (\mathbb{R}^n, y_2)$ such that $\Phi(X_1) = X_2$ and $\Phi(Y_1) = Y_2$. In this case we write $K(X_1, Y_1; y_1) = K(X_2, Y_2; y_2)$.

Two function germs $g_1, g_2 : (\mathbb{R}^n, a_i) \to (\mathbb{R}, 0)$ ($i = 1, 2$) are K-equivalent if there are a diffeomorphism germ $\Phi : (\mathbb{R}^n, a_1) \to (\mathbb{R}^n, a_2)$, and a function germ $\lambda : (\mathbb{R}^n, a_1) \to \mathbb{R}$ with $\lambda(a_1) \neq 0$ such that $f_1 = \lambda \cdot (g_2 \circ \Phi)$. In [7] Montaldi has shown the following theorem.

Theorem 5.1. (Montaldi [7]) Let X_i and Y_i (for $i = 1, 2$) be submanifolds of \mathbb{R}^n with $\dim X_1 = \dim X_2$ and $\dim Y_1 = \dim Y_2$. Let $g_i : (X_i, x_i) \to (\mathbb{R}^n, y_i)$ be immersion germs and $f_i : (\mathbb{R}^n, y_i) \to (\mathbb{R}^p, 0)$ be submersion germs with $(Y_i, y_i) = (f_i^{-1}(0), y_i)$. Then $K(X_1, Y_1; y_1) = K(X_2, Y_2; y_2)$ if and only if $f_1 \circ g_1$ and $f_2 \circ g_2$ are K-equivalent.

We can apply the above theorem to our case. Let $v_0 \in LC^*$. We define $h_0 : S^n_1 \to \mathbb{R}$ by $h_0(w) = \langle w, v_0 \rangle - 1$. Then we have a de Sitter hyperhorosphere $h_0^{-1}(0) = HP(v_0, +1) \cap S^n_1$. We write $HS(v_0, +1) = HP(v_0, +1) \cap S^n_1$. For any $u_0 \in U$, we consider the lightlike vector $v_0^\pm = \mathbb{L}^\pm(u_0)$. Then we have

$$h_0 \circ X(u_0) = H(u_0, \mathbb{L}^\pm(u_0)) = 0.$$

We also have relations

$$\frac{\partial h_0}{\partial u_i} \circ X(u_0) = \langle X_{u_i}(u_0), \mathbb{L}^\pm(u_0) \rangle = 0,$$

for $i = 1, \ldots, n - 1$. This means that the de Sitter hyperhorosphere $h_0^{-1}(0) = HS(v_0^\pm, +1)$ is tangent to $M = X(U)$ at $p = X(u_0)$. In this case, we call $HS(v_0^\pm, +1)$ the *tangent de Sitter hyperhorosphere* of $M = X$ at $p = X(u)$ (or u_0), which we write $HS^\pm(X, u_0)$. Let v_1 and v_2 be lightlike vectors. We say that $HS(v_1, +1)$ and $HS(v_2, +1)$ are parallel if v_1 and v_2 are linearly independent. Then we have the following proposition.

Proposition 5.2. Let $X : U \to S^n_1$ be a hypersurface. Consider two points $u_1, u_2 \in U$. Then $\mathbb{L}^\pm(u_1) = \mathbb{L}^\pm(u_2)$ if and only if $HS^\pm(X, u_1) = HS^\pm(X, u_2)$.

We now review some notions of Legendrian singularity theory to study the contact between hypersurfaces and de Sitter hyperhorospheres. We say that Legendrian immersion germs $i_j : (U_j, u_j) \to (PT^* \mathbb{R}^n, p_j)$ ($j = 1, 2$) are *Legendrian equivalent* if there exists a contact diffeomorphism germ $H : (PT^* \mathbb{R}^n, p_1) \to (PT^* \mathbb{R}^n, p_2)$ such that H preserves fibers of π and $H(U_1) = U_2$. A Legendrian immersion germ i_1 is said *Legendrian stable* if there are a neighborhood U in the map space of Legendrian immersions (in the Whitney C^∞ topology) such that for any elements of U are Legendrian equivalent to i_1.

8
Proposition 5.3. (Zakalyukin [12]) Let i_1, i_2 be Legendrian immersion germs such that regular sets of $\pi \circ i_1$ and $\pi \circ i_2$ are respectively dense. Then i_1, i_2 are Legendrian equivalent if and only if corresponding wave front sets $W(i_1)$ and $W(i_2)$ are diffeomorphic as set germs.

Let $F_i : (\mathbb{R}^n \times \mathbb{R}^k, (a_i, b_i)) \rightarrow (\mathbb{R}, c)$ ($k = 1, 2$) be k-parameter unfoldings of function germs f_i, we say F_1 and F_2 are \mathcal{P}-\mathcal{K}-equivalent if there exists a diffeomorphism germ $\Phi : (\mathbb{R}^n \times \mathbb{R}^k, (a_1, b_1)) \rightarrow (\mathbb{R}^n \times \mathbb{R}^k, (a_2, b_2))$ of the form $\Phi(u, x) = (\phi_1(u, x), \phi_2(x))$ for $(u, x) \in \mathbb{R}^n \times \mathbb{R}^k$ and a function germ $\lambda : (\mathbb{R}^n \times \mathbb{R}^k, (a_1, b_1)) \rightarrow \mathbb{R}$ such that $\lambda(a_1, b_1) \neq 0$ and $F_1(u, x) = \lambda(u, x) \cdot (F_2 \circ \Phi)(u, x)$.

Theorem 5.4. (Arnol’d, Zakalyukin [1, 11]) Let $F, G : (\mathbb{R}^k \times \mathbb{R}^n, 0) \rightarrow (\mathbb{R}, 0)$ be Morse families and denote their Legendrian immersion by $\mathcal{L}_F, \mathcal{L}_G$. Then

(1) \mathcal{L}_F and \mathcal{L}_G are Legendrian equivalent if and only if F and G are \mathcal{P}-\mathcal{K}-equivalent.

(2) \mathcal{L}_F is Legendrian stable if and only if F is \mathcal{K}-versal deformation.

Let $L_i^\pm : (U, u_i) \rightarrow (LC_i^\pm, v_i^\pm)$ (for $i = 1, 2$) be de Sitter Gauss image germs of hypersurface germs $X_i : (U, u_i) \rightarrow (S_i^n, p_i)$. We say L_1^\pm and L_2^\pm are \mathcal{A}-equivalent if and only if there exist diffeomorphism germs $\phi : (U, u_1) \rightarrow (U, u_2)$ and $\Phi : (S_1^n, v_1^\pm) \rightarrow (S_2^n, v_2^\pm)$ such that $\Phi \circ L_1^\pm = L_2^\pm \circ \phi$.

We denote $h_{i,v_i^\pm} : (U, u_i) \rightarrow (\mathbb{R}, 0)$ by $h_{i,v_i^\pm}(u) = H_i(u, v_i^\pm)$; Then we have $h_{i,v_i^\pm}(u) = (v_i^\pm) \circ X_i(u)$. By Theorem 5.1,

$$K(X_1(U), HS_i^\pm(X_1, u_1), v_i^\pm) = K(X_2(U), HS_i^\pm(X_2, u_2), v_i^\pm)$$

if and only if h_{1,v_1^\pm} and h_{2,v_2^\pm} are \mathcal{K}-equivalent.

We denote $Q_i^\pm(X, u_0)$ the local ring of the function germ $h_{i,v_i^\pm} : (U, u_0) \rightarrow \mathbb{R}$ by

$$Q^\pm(X, u_0) = C_{u_0}^\infty(U) / \langle h_{v_0} \rangle_{C_{u_0}^\infty},$$

where $v_0^\pm = L_i^\pm(u_0)$ and $C_{u_0}^\infty(U)$ is the local ring of function germs at u_0 with the unique maximal ideal \mathfrak{m}.

Proposition 5.5. Let $F, G : (\mathbb{R}^k \times \mathbb{R}^n, 0) \rightarrow (\mathbb{R}, 0)$ be Morse families. Suppose that Legendrian immersion germs \mathcal{L}_F and \mathcal{L}_G are Legendrian stable, then the following conditions are equivalent:

(1) $(W(\mathcal{L}_F), 0)$ and $(W(\mathcal{L}_G), 0)$ are diffeomorphic as set germs.

(2) \mathcal{L}_F and \mathcal{L}_G are Legendrian equivalent.

(3) $Q(f)$ and $Q(g)$ are isomorphic as \mathbb{R}-algebras, where $f = F \big|_{\mathbb{R}^k \times \{0\}}$ and $g = G \big|_{\mathbb{R}^k \times \{0\}}$.

By the above propositions, we have following theorem.
Theorem 5.6. Let $X_i : (U, u_i) \rightarrow (S^0_i, p_i)$ (for $i = 1, 2$) be hypersurface germs such that the corresponding Legendrian immersion germs are Legendrian stable. Then the following conditions are equivalent:

1. Lightcone Gauss image germs L_1^\pm and L_2^\pm are A-equivalent.
2. Legendrian immersion germs L_1 and L_2 are Legendrian equivalent.
3. Lightcone height function germs H_1 and H_2 are $P-K$-equivalent.
4. $h_{1,\nu_1^{\pm}}$ and $h_{2,\nu_2^{\pm}}$ are K-equivalent.
5. $K(X_1(U), HS^\pm(X_1, u_1), \nu_1^{\pm}) = K(X_2(U), HS^\pm(X_2, u_2), \nu_2^{\pm})$.
6. Local rings $Q^\pm(X_1, u_1)$ and $Q^\pm(X_2, u_2)$ are isomorphic as \mathbb{R}-algebras.

Proof. Since L_1 and L_2 are Legendrian stable, regular sets of L_1 and L_2 are respectively dense, by Proposition 5.3, the conditions (1) and (2) are equivalent. And we apply Theorem 5.4, the conditions (2) and (3) are equivalent. By the previous arguments from Theorem 5.1, the conditions (4) and (5) are equivalent.

If we assume the condition (3), then $P-K$-equivalence preserves the K-equivalence, so that the condition (4) holds. Since the local ring $Q^\pm(X_1, u_1)$ is K-invariant, this means that the condition (6) holds. By Proposition 5.5, the condition (6) implies the condition (2).

In the next section, we will prove that the assumption of the Theorem 5.6 is generic property in the case when $n \leq 6$. In general we have the following proposition.

Proposition 5.7. Let $X_i : (U, u_i) \rightarrow (S^0_i, p_i)$ (for $i = 1, 2$) be hypersurface germs such that their L^\pm-parabolic sets have no interior points as subspaces of U. If lightcone Gauss image germs L_1^\pm and L_2^\pm are A-equivalent, then

$$K(X_1(U), HS^\pm(X_1, u_1), \nu_1^{\pm}) = K(X_2(U), HS^\pm(X_2, u_2), \nu_2^{\pm}).$$

In this case, $(X_1^{-1}(HS(L_1^\pm(u_1), +1)), u_1)$ and $(X_2^{-1}(HS(L_2^\pm(u_2), +1)), u_2)$ are diffeomorphic as set germs.

Proof. Since the L^\pm-parabolic point set is a singular set of the lightcone Gauss image, the corresponding Legendrian immersion germs L_i satisfy the hypothesis of Proposition 5.3. If L_1^\pm and L_2^\pm are A-equivalent, then L_1 and L_2 are Legendrian equivalent. By Theorem 5.4, H_1 and H_2 are $P-K$-equivalent, so that $h_{1,\nu_1^{\pm}}$ and $h_{2,\nu_2^{\pm}}$ are K-equivalent. Applying Theorem 5.1, the first assertion holds.

On the other hand, we have $(X_1^{-1}(HS(L_1^\pm(u_1), +1)), u_1) = (h_{1,\nu_1^{\pm}}^{-1}(0), u_1)$. Since K-equivalence preserves the zero level sets, $(X_1^{-1}(HS(L_1^\pm(u_1), +1)), u_1)$ and $(X_2^{-1}(HS(L_2^\pm(u_2), +1)), u_2)$ are diffeomorphic as set germs.
For a hypersurface germ X, we call $(X^{-1}(HS(L^+(u_0), +1)), u_0)$ the tangent de Sitter hyperhorospherical indicatrix germ of X. By Proposition 5.7, the diffeomorphic type of the tangent de Sitter horospherical indicatrix germ is an invariant under the A-equivalence among lightcone Gauss image germs. We define the \mathcal{K}-codimension (or Tyurina number) of the function germ $h_{\nu^\pm_0}$ by

$$ H\text{-ord}^\pm(X, u_0) = \dim C_{u_0}^\infty / \langle h_{\nu^\pm_0}(u_0), \partial h_{\nu^\pm_0}(u_0)/\partial u_i \rangle_{C_{u_0}^\infty}, $$

where $\nu^\pm_0 = L^\pm(u_0)$. We also have the notion of corank of the function germ:

$$ H\text{-corank}^\pm(X, u_0) = (n - 1) - \text{rank Hess}(h_{\nu^\pm_0}(u_0)). $$

By Proposition 3.2, $p = X(u_0)$ is a L^\pm-parabolic point if and only if $H\text{-corank}^\pm(X, u_0) \geq 1$. Moreover, p is a L^\pm-flat point if and only if $H\text{-ord}^\pm(X, u_0) = n - 1$.

We say a function germ $f : (\mathbb{R}^{n-1}, a) \rightarrow \mathbb{R}$ has the A_k-type singularity at a if f is \mathcal{K}-equivalent to the germ

$$ g(u_1, \cdots, u_{n-1}) = \pm u_1 \pm \cdots \pm u_{n-2} \pm u_{n-1}^{k+1}. $$

6 Generic properties

In this section we consider generic properties of hypersurfaces in S^n_1. We consider the map space of spacelike embeddings $\text{Sp-Emb}(U, S^n_1)$ with Whitney C^∞-topology. We define the function $\mathcal{H} : S^n_1 \times LC^* \rightarrow \mathbb{R}$ by

$$ \mathcal{H}(x, v) = \langle x, v \rangle - 1, $$

and denote $\mathcal{H}_x(v) = \mathcal{H}(x, v)$. Then \mathcal{H}_x is a submersion for any $x \in S^n_1$. For any spacelike hypersurface $X \in \text{Sp-Emb}(U, S^n_1)$, we have $H = \mathcal{H} \circ (X \times \text{id}_{LC^*})$. We also have the ℓ-jet extension

$$ j_1^\ell \mathcal{H} : U \times LC^* \rightarrow J^\ell(U, \mathbb{R}) $$

defined by $j_1^\ell \mathcal{H}(x, v) = j^\ell h_v(u)$. We consider the trivialization

$$ J^\ell(U, \mathbb{R}) \equiv U \times \mathbb{R} \times J^\ell(n-1, 1). $$

For any submanifold $Q \subset J^\ell(n-1, 1)$, we denote $\tilde{Q} = U \times \{0\} \times Q$. Then we have the following proposition as a corollary of Lemma 6 of Wassermann.

Proposition 6.1. (Wassermann [10]) Let Q be a submanifold of $J^\ell(n-1, 1)$. Then the set

$$ T_Q = \{ X \in \text{Sp-Emb}(U, S^n_1) \mid j_1^\ell H \text{ is transversal to } \tilde{Q} \} $$

is a residual subset of $\text{Sp-Emb}(U, S^n_1)$. If Q is a closed subset, then T_Q is open.
We remark that if corresponding height function h_{v_0} is ℓ-determined relative to \mathcal{K}, then H is a \mathcal{K}-versal deformation if and only if H is transversal to $\mathcal{K}_{h_{v_0}}^\ell$, where $\mathcal{K}_{h_{v_0}}^\ell$ is the \mathcal{K}-orbit through $j^\prime h_{v_0}(0) \in J^\ell(n-1,1)$. Applying Theorem 5.4, this condition is equivalent to the condition that corresponding Legendrian immersion germ is Legendrian stable. From the previous arguments and the appendix of [5], we have following proposition. (See also [1].)

Theorem 6.2. if $n \leq 6$, there exists an open subset $\mathcal{O} \subset \text{Sp-Emb}(U,S^n_1)$ such that for any $X \in \mathcal{O}$, corresponding Legendrian immersion germ \mathcal{L} is Legendrian stable.

7 Spacelike de Sitter Monge form

In this section we consider the analogous notion for a spacelike hypersurface in de Sitter n-space. We now consider the function $f(u_1, \cdots, u_{n-1})$ with $f(0) = 0$ and $f_u(0) = 0$. Then we have a spacelike hypersurface in S^n_1 by

$$X_f(u) = \left(-f(u), -\sqrt{1 + f^2(u) - u_1^2 - \cdots - u_{n-1}^2}, u_1, \cdots, u_{n-1}\right),$$

where U is an open neighborhood at 0. We can easily calculate $e(0) = (1, 0, \cdots, 0)$; therefore $L(0) = (\pm 1, 0, \cdots, 0)$. We call X_f a *spacelike de Sitter Monge form* (briefly, spacelike Monge form). Then we have the following proposition.

Proposition 7.1. Any spacelike surface in S^n_1 is locally given by the spacelike Monge form.

Proof. Let $X : U \rightarrow S^n_1$ be a spacelike hypersurface. Since we can apply Lorentzian motions of Minkowski $(n+1)$-space such that S^n_1 is the invariant set, without loss of generality, we assume that $p = X(0) = (0, -1, 0, \cdots, 0)$. We have a basis $\{X(0), e(0), X_{u_1}(0), \cdots, X_{u_{n-1}}(0)\}$ of $T_p\mathbb{R}^{n+1}$ such that $T_pM = \langle X_{u_1}(0), \cdots, X_{u_{n-1}}(0)\rangle_{\mathbb{R}}$. Applying the Gram-Schmidt procedure, we have a pseudo orthonormal basis $\{X(0), e(0), e_1, \cdots, e_{n-1}\}$ of $\mathbb{R}^{n+1}_{\mathbb{R}}$ such that $T_pM = \langle e_1, \cdots, e_{n-1}\rangle_{\mathbb{R}}$.

In particular, $\{e_1, \cdots, e_{n-1}\}$ is an orthonormal basis of spacelike subspace T_pM, T_pM is considered to be a subspace of $\mathbb{R}_0^n = \{(0, x_1, \cdots, x_n) \ | \ x_i \in \mathbb{R}\}$. By a rotation of the space \mathbb{R}_0^n, we assume that $T_pM = \{(0, 0, x_2, \cdots, x_n) \ | \ x_i \in \mathbb{R}\}$. We remark that this rotation can be considered to be a Lorentzian motion of $\mathbb{R}_{\mathbb{R}}^{n+1}$.

Therefore, the hypersurface germ (M, p) is written in the form

$$X(u) = (-f(u), -g(u), u_1, \cdots, u_{n-1}),$$

with function germs $f(u), g(u)$. Since $M \subset S^n_1$, we have a relation $g^2(u) = 1 + f^2(u) - u_1^2 - \cdots - u_{n-1}^2$. By a rotation of the space \mathbb{R}_0^n, we can assume $g(u) \geq 0$, so that we have

$$g(u) = \sqrt{1 + f^2(u) - u_1^2 - \cdots - u_{n-1}^2}.$$

Since $T_pM = \{(0, 0, x_2, \cdots, x_n) \ | \ x_i \in \mathbb{R}\}$, the conditions $f(0) = f_u(0) = 0$ ($i = 1, \cdots, n-1$) are automatically satisfied. This completes the proof. □
For the lightlike vector \(v_0 = (\pm 1, -1, 0, \cdots, 0) \), we consider the de Sitter hyperhorosphere \(HS(v_0, +1) \). Then we have the spacelike Monge form of \(HS(v_0, +1) \).

\[
X_{HS^\pm} = \left(\frac{1}{2}(u_1^2 + \cdots + u_{n-1}^2), -1 + \frac{1}{2}(u_1^2 + \cdots + u_{n-1}^2), u_1, \cdots, u_{n-1} \right).
\]

Here we can check the relation \(\langle v_0^\pm, X_{HS^\pm}(u) \rangle = 1 \). On the other hand, we have \(X_{HS^\pm}(0) = (0, -1, 0, \cdots, 0) \) and \(X_{HS^\pm, u}(0) \) is the \(x_{i+1} \)-axis for \(i = 1, \cdots, n - 1 \). This means that \(T_pM = T_p(X_{HS^\pm}(U)) \). Therefore \(X_{HS^\pm}(U) \subset HS(v_0^\pm, +1) \) is the tangent de Sitter hyperhorosphere of \(M = X(U) \) at \(p = X(0) \). It follows from this fact that the tangent de Sitter hyperhorospherical indicatrix germ of the spacelike Monge form \(X_f \) is given as follows:

\[
X_f^{-1}(HS(v_0^\pm, +1)) = \{ (u_1, \cdots, u_{n-1}) | \pm 2f(u) = u_1^2 + \cdots + u_{n-1}^2 \}.
\]

Since the lightcone height function of \(X_f \) at \(v_0^\pm \) is

\[
h_{v_0^\pm}(u) = \pm f(u) + \sqrt{1 + f^2(u) - u_1^2 - \cdots - u_{n-1}^2} - 1,
\]

we can calculate the Hessian matrix; then we have \(\text{Hess} h_{v_0^\pm}(0) = \pm \text{Hess} (f(0)) - I_{n-1} \), where \(I_{n-1} \) is an identity matrix.

On the other hand, since \(f(0) = f_u(0) = 0 \), We may write

\[
f(u) = \frac{1}{2}\kappa_1 u_1^2 + \cdots + \frac{1}{2}\kappa_{n-1} u_{n-1}^2 + g(u),
\]

where \(g \in M_{n-1}^3 \) and \(\kappa_1, \cdots, \kappa_{n-1} \) are eigenvalues of \(\text{Hess} (f(0)) \). Under this representation, we can easily calculate \((X_f)_{u_i,u_j}(0) = (-f_{u_i,u_j}(0), \delta_{ij}, 0, \cdots, 0) \). It follows from that this fact

\[
\tilde{h}_{ij}^\pm(0) = \pm f_{u_i,u_j}(0) - \delta_{ij} = \delta_{ij}(\pm \kappa_i - 1),
\]

and \(g_{ij}(0) = \delta_{ij} \). Therefore, we have \(\tilde{\kappa}_i^\pm(0) = -1 \pm \kappa_i \)

and

\[
K^\pm_\ell(0) = \prod_{i=1}^{n-1} \tilde{\kappa}_i^\pm(0) = \prod_{i=1}^{n-1}(-1 \pm \kappa_i).
\]

The tangent de Sitter hyperhorospherical indicatrix germ is given by

\[
X_f^{-1}(HS(v_0^\pm, +1)) = \{ (u_1, \cdots, u_{n-1}) | \tilde{\kappa}_1^\pm(0)u_1^2 + \cdots + \tilde{\kappa}_{n-1}^\pm(0)u_{n-1}^2 \pm 2g(u) = 0 \}.
\]

8 Spacelike surfaces in de Sitter 3-space

In this section we consider \(n = 3 \). In this case we call \(X : U \rightarrow S^3_1 \) a spacelike surface and \(HS(v_0, +1) \) a de Sitter horosphere etc. By Theorem 6.2 and the classification of function germs [1], we have he following theorem.
Theorem 8.1. There exists an open dense subset $O \subset \text{Sp-Emb}(U, S^n_1)$ such that for any $X \in O$, the following conditions holds.

1. The L^\pm-parabolic set $K^{-1}(0)$ is a regular curve. We call such a curve the L^\pm-parabolic curve.

2. The lightcone Gauss image L^\pm along the L^\pm-parabolic curve is a cuspidal edge except at isolated points. At this points L^\pm is swallowtail.

Here, a map germ $L : (\mathbb{R}^2, a) \to (\mathbb{R}^3, b)$ is called the cuspidal edge if it is A-equivalent to the germ (u_1, u_2^2, u_3^3) and the swallowtail if it is A-equivalent to the germ $(3u_1^4+u_1^2u_2, 4u_1^3+2u_1u_2, u_2)$.

Figure 1: Cuspidal edge

Figure 2: Swallowtail

The assertion of Theorem 8.1 can be interpreted as saying that the Legendrian lift L^\pm of the lightcone Gauss image L^\pm is Legendrian stable at each point. In this case, the lightcone Gauss image L^\pm has only cuspidal edges and swallowtails as singularities.

Corollary 8.2. Let $O \subset \text{Sp-Emb}(U, S^n_1)$ be the same open dense subset as in Theorem 8.1. Let $X \in O$, $v^\pm_0 = L^\pm(u_0)$ and $h_{v^\pm_0} : (U, u_0) \to \mathbb{R}$ be the lightcone height function germ at u_0. Then we have the following.

1. The point u_0 is an L^\pm-parabolic point of X if and only if $\text{H-corank}^\pm(X, u_0) = 1$ (that is, u_0 is not an L^\pm-flat point). In this case, $h_{v^\pm_0}$ has the A_k-type singularity for $k = 2, 3$.

2. Suppose that u_0 is an L^\pm-parabolic point of X. Then the following conditions are equivalent:

 (a) L^\pm has the cuspidal edge at u_0;

 (b) $h_{v^\pm_0}$ has the A_2-type singularity;

 (c) $\text{H-ord}^\pm(X, u_0) = 2$;

 (d) The tangent de Sitter horospherical indicatrix germ is an ordinary cusp, where a curve $C \subset \mathbb{R}^2$ is called an ordinary cusp if it is diffeomorphic to the curve given by $\{(u_1, u_2) \mid u_1^2 - u_2^3 = 0\}$.

3. Suppose that u_0 is an L^\pm-parabolic point of X. Then the following conditions are equivalent:
(a) L^\pm has the swallowtail at u_0;
(b) $h_{u_0^\pm}$ has the A_3-type singularity;
(c) $\text{H-ord}^\pm(X, u_0) = 3$;
(d) The tangent de Sitter horospherical indicatrix germ is a point or a tachnodal, where a curve $C \subset \mathbb{R}^2$ is called an tachnodal if it is diffeomorphic to the curve given by $\{(u_1, u_2) | u_1^2 - u_2^2 = 0\}$;
(e) For each $\varepsilon > 0$, there exist L^\pm-non-parabolic points $u_1, u_2 \in U$ such that $||u_0 - u_i|| < \varepsilon$ for $i = 1, 2$, and the tangent de Sitter horospheres to $M = X(U)$ at u_1 and u_2 are equal.

Proof. Since $n = 3$, u_0 is L^\pm-parabolic point if and only if $\text{H-corank}^\pm(X, u_0) \geq 1$. By classification of singularities, $h_{u_0^\pm}$ has only the A_2 or A_3-type singularities. We can avoid the case that u_0 is L^\pm-flat point, so that $\text{H-corank}^\pm(X, u_0) = 1$.

By Theorem 5.6, the conditions of (2) are equivalent. Similarly, the conditions (a),(b),(c),(d) of (3) are also equivalent. Suppose that corresponding Gauss image has swallowtail at u_0. We can observe that there is a self-intersection curve approaching u_0. (cf. Figure 2.) On this curve, there are two distinct points u_1 and u_2 such that $L^\pm(u_1) = L^\pm(u_2)$. By Lemma 5.2, this means that tangent de Sitter horospheres to $M = X(U)$ at u_1 and u_2 are equal. On the other hand, if the Gauss image has cuspidal edge at u_0, there are no self-intersection on L^\pm. (cf. Figure 1.) This means that (3)(a) is equivalent to (3)(e). This completes the proof.

![Figure 3: ordinary cusp](image1.png) ![Figure 4: tachnodal](image2.png)

9 Examples in de Sitter 3-space

In this section we give some examples using the spacelike Monge form in de Sitter space.

Example 9.1. If $f(u_1, u_2) = \frac{1}{3}u_1^3 + \frac{1}{2}u_1^2$, then

$$X_f(u_1, u_2) = \left(-\frac{1}{3}u_1^3 - \frac{1}{2}u_1^2, -\sqrt{1 + \left(\frac{1}{3}u_1^3 + \frac{1}{2}u_1^2\right)^2} - u_1^2 - u_2^2, u_1, u_2\right),$$
and $\kappa_1 = 1, \kappa_2 = 0$. Then we have $\tilde{\kappa}_1^+(0) = 0, \tilde{\kappa}_2^+(0) = -1, \tilde{\kappa}_1^-(0) = -2$ and $\tilde{\kappa}_2^-(0) = -1$. So the origin is not L^--parabolic point but a L^+-parabolic point. The positive tangent de Sitter horospherical indicatrix germ is the ordinary cusp $\{(u_1, u_2) \mid 2u_1^3 = 3u_2^2\}$. Therefore, the lightcone Gauss image \mathbb{L}^- is non-singular at the origin and \mathbb{L}^+ is a cuspidal edge at the origin.

Example 9.2. If $f(u_1, u_2) = \frac{1}{2}u_1^4 + \frac{1}{2}u_1^2$, then

$$X_f(u_1, u_2) = \begin{pmatrix} -\frac{1}{2}u_1^4 - \frac{1}{2}u_1^2, & -\sqrt{1 + \left(\frac{1}{2}u_1^4 + \frac{1}{2}u_1^2\right)^2 - u_1^2 - u_2^2, & u_1, u_2 \end{pmatrix},$$

and $\kappa_1 = 1, \kappa_2 = 0$. For the same reason as in the previous example, the origin is not L^--parabolic point but a L^+-parabolic point. The positive tangent de Sitter horospherical indicatrix germ is the tachnodal $\{(u_1, u_2) \mid u_1^4 = u_2^2\}$. Therefore, the lightcone Gauss image \mathbb{L}^- is non-singular at the origin and \mathbb{L}^+ is a swallowtail at the origin.

Acknowledgment

The author wishes to express his thanks to Professor Shyuichi Izumiya, Kentaro Saji and Takashi Sano for good advice and valuable discussions.

References

Masaki Kasedou,
Department of Mathematics, Hokkaido University,
Sapporo 060-0810, Japan.
e-mail: kasedou@math.sci.hokudai.ac.jp