<table>
<thead>
<tr>
<th>Title</th>
<th>On instant blow-up for semilinear heat equations with growing initial data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Giga, Yoshikazu; Umeda, Noriaki</td>
</tr>
<tr>
<td>Citation</td>
<td>Hokkaido University Preprint Series in Mathematics, 916, 1-13</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2008</td>
</tr>
<tr>
<td>DOI</td>
<td>10.14943/84065</td>
</tr>
<tr>
<td>Doc URL</td>
<td><a href="http://hdl.handle.net/2115/69723">http://hdl.handle.net/2115/69723</a></td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
</tbody>
</table>

**File Information**

pre916.pdf

**Hokkaido University Collection of Scholarly and Academic Papers:** HUSCAP
On instant blow-up for semilinear heat equations with growing initial data

Dedicated to Professor Neil S. Trudinger
on the occasion of his 65th birthday.

Yoshikazu Giga and Noriaki Umeda
Graduate School of Mathematical Sciences,
University of Tokyo
3-8-1, Komaba, Meguro-ku, Tokyo 153-8914, Japan

Abstract

For a semilinear heat equation admitting blow-up solutions a sufficient condition for nonexistence of local-in-time solutions are obtained. In particular, it is shown that if an initial data tends to infinity at space infinity then there is no local-in-time solution. As an application if the solution blows up at space infinity with least blow-up time, the solution cannot be extendable after blow-up time.

Keyword and Phrases: instant blow-up, local-in-time solution, semilinear heat equation.
AMS subject classifications: 35K15, 35K55.

1 Introduction and main theorems

We consider the initial value problem for a semilinear heat equation of the form

\[
\begin{aligned}
&u_t = \Delta u + f(u), & x \in \mathbb{R}^n, t \in (0, T), \\
&u(x, 0) = u_0(x), & x \in \mathbb{R}^n.
\end{aligned}
\]  

(1)
Here we assume that the nonlinear term $f \in C(\mathbb{R})$ satisfies the following conditions:

$$f \text{ is positive, nondecreasing and convex in } (0, \infty) \text{ and } \int_1^\infty \frac{ds}{f(s)} < \infty. \quad (2)$$

The last condition guarantees that a positive constant solution blows up to infinity in finite time. A typical example of $f$ is $f(u) = e^u, |u|^{p-1}u$ and $u_+ (\log(u_+ + 1))^p$ for $p > 1$, where $u_+ = \max\{u, 0\}$.

We are interested in the problem whether there is a local-in-time solution of (1) when an initial datum $u_0$ grows at the space infinity, i.e. $\lim_{|x| \to \infty} u_0(x) = \infty$.

To be precise by a solution $u$ in $\mathbb{R}^n \times [0, T)$ of (1) we mean that $u \in C(\mathbb{R}^n \times [0, T)) \cap C^{2,1}(\mathbb{R}^n \times (0, T))$ satisfies (1). For a given initial data $u_0$ let $T^* = T^*(u_0)$ be the maximal existence time of the solution. If $T^* = \infty$, the solution exists globally in time. If there are several solutions with the same initial datum, we interpret that $T^*$ is the supremum of all existence times of these solutions. If $T^* \in (0, \infty)$, we often say that the solution blows up in finite time.

In this paper among other results we shall prove that $T^* = 0$ when the initial data $u_0$ is growing at the space infinity. In other words there is even no local-in-time solution. We say this phenomenon $T^* = 0$ an instant blow-up. We are able to prove that the instant blow-up occurs for more general initial data $u_0$.

**Theorem 1.** Assume (2) and that $u_0 \in C(\mathbb{R}^n)$ is nonnegative. Assume that there is a sequence $\{x_m\} \subset \mathbb{R}^n$ with $|x_m| \to \infty$ as $m \to \infty$ and a number $r > 0$ such that

$$\lim_{m \to \infty} b_m = \infty, \text{ with } b_m = \inf \{u_0(x) : |x - x_m| \leq r\}. \quad (3)$$

Then $T^* = 0$, i.e., the instant blow-up occurs provided that only nonnegative solutions are considered.

We may relax the assumption (3) so that $r = r_m$ depends on $m$ provided that

$$\lim_{m \to \infty} \frac{b_m}{r_m^2 f(b_m)} = 0. \quad (4)$$

Note that this condition is automatically fulfilled if $r_m$ is independent of $m$ by our assumption (2), which in particular says that $f$ is superlinear. We may relax the assumption on nonnegativity of solution by lower boundedness of
the solution in \(\mathbb{R}^n \times [0, T']\) for any \(T' < T^*\) by a comparison principle provided that \(f\) is \(C^1\) in \(\mathbb{R}\). The condition (3) is fulfilled when \(\lim_{|x| \to \infty} u_0(x) = \infty\).

Our result applies to an extension problem of the solution after it blows up. For example it was proved in [4], [5] that the solution \(w(x,t)\) blows up at \(T^* = T^*(M) > 0\) when \(f(u) = |u|^{p-1}u\) or \(e^u\) and the initial data \(w_0\) satisfies \(\lim_{|x| \to \infty} w_0(x) = M > 0\). Moreover, blow-up occurs only at the space infinity. This implies that the profile function \(w(x, T^*)\) at \(t = T^*\) is continuous (in fact \(C^2\)) and positive by a standard linear regularity theory [3] (which has an elliptic counterpart [6]). As in [4], [5] \(\lim_{|x| \to \infty} w(x, T^*) = \infty\).

If we interpret \(w(x, T^*)\) as a new initial data, because of Theorem 1 it is impossible to extend the solution for \(T > T^*\). We call this phenomenon non extendable blow-up. This is clearly related to the notion of ‘complete blow-up’ ([16], [12]), but it is not the same. If \(w_0\) has a direction of mean convergence which is equivalent to say the solution has a least blow-up time, (i.e., the blow-up time \(T^*\) agrees with the blow-up time of a spatially constant solution with an initial data \(\text{sup} w_0\), then the blow-up profile \(w(x, T^*)\) has a blow-up direction (see [3]). As remarked in Appendix the \(w(x, T^*)\) fulfills (3). Thus we always observe the non extendable blow-up.

For the space infinity blow-up the reader is refereed to papers [10], [7], [4], [5], [15], [17], [16], [14] and a review paper [3]. There is a nice book [12] for overview of blow up problems.

The reader may wonder whether there is a local-in-time solution with singularity. We say that \(u \in C([0, T), L^1_{\text{loc}}(\mathbb{R}^n))\) is a strong \(L^1_{\text{loc}}\) solution of (1) with an initial data \(u_0 \in L^1_{\text{loc}}\) if all terms in (1) are in \(C((0, T); L^1_{\text{loc}}(\mathbb{R}^n))\) and satisfy (1) in distribution sense. Here \(L^1_{\text{loc}}\) is a Frechet space equipped with seminorm \(|h|_R = \int_{B(0,R)} |h|(x)dx\), where \(B(x, R)\) is an open ball of radius \(R\) centered at \(x\). We may replace a solution in Theorem 1 by a strong \(L^1_{\text{loc}}\) solution. The strong \(L^1_{\text{loc}}\) solution may have singularity. For example if \(f(u) = u^p\) with \(p > n/(n-2)\) for \(n \geq 3\) then \(u(x) = C_p|x|^{-2/(p-1)}\) with \(C_p = 2((n-2)p-n)/(p-1)^2\) is a stationary strong \(L^1_{\text{loc}}\) solution of (1).

The proof of Theorem 1 depends on a classical Kaplan’s argument [9] to show the existence of blowup which uses principal eigenfunctions of the Laplace operator with the Dirichlet condition. We give another argument based on the energy principle developed by Ball [1] and Levine [11] together with a comparison argument. We need not assume positivity of the solution. We assume that a solution is bounded from below.

We assume that

there exists \(\delta > 0\) such that \(sf(s) \geq (2 + \delta) \int_0^s f(\xi)d\xi\) for \(s > 0\), \((5)\)
and
\[ (sf(s))^{1/2} \text{ is convex for } s > 0, \quad \int_1^\infty \frac{d\xi}{(\xi f(\xi))^{1/2}} < \infty. \]  

Let \( u_0 \) satisfy that there exists sequence \( \{w_{0,m}\}_{m=1}^\infty \) with
\[ w_{0,m} \in L^\infty \cap H^1_0(B) \text{ for } m = 1, 2, \ldots, \]
such that
\[ u_0(x + x_m) \geq w_{0,m}(x) \text{ for } x \in B, \]
\[ w_{0,m}(x) = 0 \text{ for } x \in \partial B, \]
and
\[ \lim_{m \to \infty} \left\{ \int_B \left( \int_0^{w_{0,m}} f(s)ds - \frac{\|\nabla w_{0,m}\|^2}{2} \right) dx \right\} = +\infty, \]
where \( B = B(0, 1) \) i.e., the unit ball.

We are now in position to state an instant blow-up result under a different setting.

**Theorem 2.** Assume (2) and that \( u_0 \in C(R^n) \) is nonnegative. Let \( f \) satisfy (5) and (6). For \( u_0 \) assume that there exists a sequence \( \{w_{0,m}\}_{m=1}^\infty \) with \( w_{0,m} \in L^\infty \cap H^1_0(B) \) satisfying (8), (9) and (10). Then \( T^*(u_0) = 0 \) under the assumption that the solution is bounded from below in \( [0, T'] \) for any \( T' < T^*(u_0) \).

Note that the assumption (3) implies the existence of such \( w_m \).

The rest of the paper is organized as follows. In Section 2 we show Theorem 1 by using the argument in [9]. Theorem 2 is proved by the method of [1] and [11] in Section 3. In Appendix we show that if the solution has a blow-up direction, the blow-up profile satisfies (3).

## 2 Eigenfunction method

We begin by recalling a comparison result.

**Lemma 2.1 (Comparison).** Assume (2) and that \( f \in C^1(R) \). Let \( u(x, t) \) and \( v(x, t) \) be solutions of (1) with initial data \( u_0 \) and \( v_0 \) which are continuous in \( R^n \). Assume that \( v \) is bounded in \( R^n \times [0, T'] \) for any \( T' < T \). Assume that \( u \) is bounded from below in \( \{R^n \times [0, T']\} \) for any \( T' < T \). If \( u_0 \geq v_0 \) in \( R^n \), then \( u \geq v \) in \( R^n \times (0, T) \).
Proof. The proof is based on an maximum principle for a parabolic equation and is standard (see [8], [2] and [13]). We give it for completeness.

We may assume that \( v \) is bounded and continuous in \( \mathbb{R}^n \times [0, T] \) by taking \( T \) smaller. We may assume that \( u \) is continuous in \( \mathbb{R}^n \times [0, T] \). Suppose that the condition was false. Then there would exist a point \((\hat{x}, \hat{y}) \in \mathbb{R}^n \times (0, T)\) such that \( w(\hat{x}, \hat{t}) > 0 \) for \( w = v - u \). We set

\[
Q = \{(x, t) \in \mathbb{R}^n \times (0, T) : w(x, t) > 0\}.
\]

Since \( u < v \) in \( Q \) and \( v \) is bounded, we see that \( u \) is bounded in \( Q \) since we have assumed that \( u \) is bounded from below. By our assumption \( Q \) is a bounded open set in \( \mathbb{R}^n \times (0, T) \). Subtracting (1) for \( u \) from (1) for \( v \) we obtain

\[
w_t = \Delta w + b(x,t)w \quad \text{in } Q
\]

with \( b(x,t) = \int_0^1 f'(u(x,t) + \theta(v(x,t) - u(x,t)))d\theta \). Since \( u \) is bounded in \( Q \), we have \( M_v = \sup_Q b < \infty \). Thus \( w \) solves

\[
\begin{align*}
\begin{cases}
w_t &\leq \Delta w + M_v w, \quad (x, t) \in Q, \\
w & = 0, \quad (x, t) \in \partial Q.
\end{cases}
\end{align*}
\]

We set \( W(x,t) = e^{-(M_v+1)t}w(x,t) \) to set

\[
\begin{align*}
\begin{cases}
W_t &\leq \Delta W - W, \quad (x, t) \in Q, \\
W & = 0, \quad (x, t) \in \partial Q.
\end{cases}
\end{align*}
\]

(If \( Q \) is bounded, we immediately conclude that \( W \) cannot take a possible maximum in \( Q \). However, \( Q \) may be unbounded so we modify \( W \).)

We set \( W_\epsilon = W - \epsilon(|x|^2 + At) \) with \( A = 2n + 1 \) and small \( \epsilon > 0 \) to be determined later. It follow that

\[
(\partial_t - \Delta + 1)W_\epsilon < 0 \quad (x, t) \in Q. \tag{14}
\]

For \((\tilde{x}, \tilde{t}) \in Q\) there exist \( \alpha > 0 \) such that \( W(\tilde{x}, \tilde{t}) > \alpha \). Let \( \epsilon > 0 \) small enough. Then we see

\[
W_\epsilon(\tilde{x}, \tilde{t}) = W - \epsilon(|\tilde{x}|^2 + \tilde{A}t) \geq \frac{\alpha}{2} > 0
\]

as well as \( w = v - u \). We now put \( R = \epsilon^{-1/2}(\sup W)^{1/2} \). It is easily seen that \( W_\epsilon(x,t) < 0 \) for \( |x| > R \). Since \( W_\epsilon \) is continuous in \( Q \), There exists \((\tilde{x}, \tilde{t}) \in B_R \times [0, T] \cap Q\) such that

\[
W_\epsilon(\tilde{x}, \tilde{t}) = \sup\{W_\epsilon(x,t) \in B_R \times [0, T] \cap Q\}.
\]

5
It follows that

\[(W_\varepsilon)_t(\hat{x}, \hat{t}) \geq 0, \quad \Delta W_\varepsilon(\hat{x}, \hat{t}) \leq 0, \quad W_\varepsilon(\hat{x}, \hat{t}) \geq 0.\]

Thus we have

\[(\partial_t - \Delta + 1)W_\varepsilon(\hat{x}, \hat{t}) \geq 0,\]

and we have a contradiction to (14). We thereby get

\[w(x, t) \leq 0,\]

and \[u(x, t) \geq v(x, t).\]

**Proof of Theorem 1.** Let \(\{b_m\}_{m=1}^\infty\) and \(\{x_m\}_{m=1}^\infty\) be as in Theorem 1 with \(r = r_m\) satisfying (4). Set \(\lambda_m > 0\) denote the principal eigenvalue of \(-\Delta\) with Dirichlet problem in \(B_{r_m}(0)\), and let \(\phi_m(x) \geq 0\) denote the corresponding positive eigenfunction normalized by \(\int_{B_{r_m}(0)} \phi_m(x)dx = 1\). By scaling it is easy to observe that

\[\lambda_m = \frac{c}{r_m^2}\]

with some \(c > 0\). Define

\[G_m(t) = \int_{B(x_m, r_m)} u(x, t)\phi_m(x - x_m)dx.\]

Let \(n_m(x)\) denote the outward unit normal to \(B(0, r_m)\) at \(x \in \partial B(0, r_m)\). Integrating by parts, by the fact that \(\phi_m = 0\) and \(\partial\phi_m/\partial n_m \leq 0\) on \(\partial B(0, r_m)\) with the unit normal vector \(n_m\), and applying Green’s formula and Jensen’s inequality, we obtain

\[G'_m(t) = \int_{B(x_m, r_m)} u_t(x, t)\phi_m(x - x_m)dx\]
\[\geq \int_{B(x_m, r_m)} \{((\Delta u(x, t) + f(u(x, t)))\}\phi_m(x - x_m)dx\]
\[\geq -\lambda_m G_m(t) + f(G_m(t)).\]

Thus, we obtain

\[G'_m(t) \geq -\lambda_m G_m(t) + f(G_m(t)).\]
Let us consider the system of ordinary differential equations

\[
\begin{aligned}
g_m'(t) &= -\lambda_m g_m(t) + f(g_m(t)), \\
g_m(0) &= G_m(0) \geq b_m.
\end{aligned}
\tag{18}
\]

Define \( T_{g_m} = \sup\{t \geq 0 : g_m(t) < \infty\} \) and \( T_{G_m} = \sup\{t \geq 0 : G_m(t) < \infty\} \). Since \( G_m \geq g_m \), we obtain \( T_{g_m} \geq T_{G_m} \). If \( r_m \) is a constant so that \( \lambda_m = \lambda \) is depend of \( m \), then

\[
T_{g_m} \leq \int_{b_m}^\infty \frac{d\xi}{-\lambda \xi + f(\xi)} \to 0 \text{ as } m \to \infty.
\]

This implies that \( T_{G_m} \to 0 \) as \( m \to \infty \). In particular for sufficiently large \( m \), \( T_{G_m} < T \). This is a contradiction since \( u \) is continuous in \( \mathbb{R}^n \times [0,T) \).

We shall discuss the case that \( r_m \to 0 \) as \( m \to \infty \) satisfying (4). By L’Hospital’s theorem we have

\[
\lim_{m \to \infty} \frac{T^*(b_m)}{T_{g_m}} = \lim_{m \to \infty} \frac{\int_{b_m}^\infty d\xi/f(\xi)}{\int_{b_m}^\infty d\xi/(-\lambda \xi + f(\xi))}
= \lim_{m \to \infty} \frac{-\lambda_m b_m + f(b_m)}{f(b_m)}
= \lim_{m \to \infty} \frac{-cb_m/r_m^2 + f(b_m)}{f(b_m)},
\]

where \( c > 0 \) is used in (16). From (4) we obtain

\[
\lim_{m \to \infty} \frac{T^*(b_m)}{T_{g_m}} = 1,
\]

where \( T_{g_m} = \int_{b_m}^\infty d\xi/(-\lambda \xi + f(\xi)) \). Again we get \( T_{G_m} \to 0 \) as \( m \to \infty \) which is a contradiction. \( \Box \)

**Remark 2.2.** So far we did not use Lemma 2.1. Even if we consider the sign changing solution for the nonnegative initial data, by comparison (Lemma 2.1) it must be nonnegative provided that it is bounded from below in \( \mathbb{R}^n \times [0,T'] \) for any \( T' < T \).

### 3 Energy method

In this section, we prove Theorem 2.
For $m = 1, 2, \ldots$, we consider a problem:

\[
\begin{aligned}
(w_m)_t &= \Delta w_m + f(w_m), & x \in B, t > 0, \\
 w_m(x, 0) &= w_{0,m}(x), & x \in B, \\
 w_m &= 0 & x \in \partial B,
\end{aligned}
\]

(19)

where $w_{0,m} \in L^\infty \cap H_0^1(B)$ satisfies (8), (9) and (10), and $B = B(0,1)$

By comparison in $B$ we have

\[
u(x + x_m, t) \geq w_m(x, t) \text{ in } B
\]

for $m = 1, 2, \ldots$. Put

\[
\phi_m(t) = \int_B w_m^2(x, t) dx
\]

(20)

and

\[
E_m(t) = \int_B \left( \frac{|\nabla w|^2}{2} - \int_0^w f(\xi)d\xi \right) dx.
\]

(21)

The ideas of the proof of next two lemmas are standard and go back to [1] and [11]. We give it for completeness.

**Lemma 3.1 (Monotonicity of energy).** Let $E_m(t)$ be as in (21). Then

\[
E'_m(t) \leq 0.
\]

**Proof.** From the proof of [12, Lemma 17.5] and the fact that

\[
\frac{d}{dt} \left( \int_0^w f(\xi)d\xi \right) = f(w)w_t,
\]

we obtain

\[
E'_m(t) = - \int_B w_m^2(x, t) dx \leq 0.
\]

**Lemma 3.2 (Differential inequality for $L^2$ norm).** Define $\phi_m$ and $E_m$ in (20) and (21). Then

\[
\phi'_m(t) \geq -2E_m(0) + cg(\phi_m(t))
\]

with $g(\xi) = (\xi f(\xi))^{1/2}$ and $c = c(\delta)$. 

8
Proof. Differentiating (20) with respect to \( t \) and multiplying \( 1/2 \), we have

\[
\frac{1}{2} \phi'_m(t) = \int_B w w_t \, dx
\]

\[
= \int_B w (\Delta w + f(w)) \, dx
\]

\[
= \int_B (-|\nabla w|^2 + w f(w)) \, dx
\]

From (5) we obtain

\[
\frac{1}{2} \phi'_m(t) \geq \int_B \left( -|\nabla w|^2 + \delta w f(w) + 2 \int_0^w f(\xi) \, d\xi \right) \, dx
\]

\[
= -2E_m(t) + \int_B \delta w f(w) \, dx.
\]

From Lemma 3.1 and the fact that \( g(\xi) = (\xi f(\xi))^{1/2} \) is convex, we have

\[
\frac{1}{2} \phi'_m(t) \geq -2E(0) + cg \left( \int_B w^2 \, dx \right)
\]

\[
= -2E(0) + c\phi_m
\]

by Jensen’s inequality, where \( c = \delta |B| \).

\[\square\]

Lemma 3.3. Assume that \( g \in C([0, \infty)) \) is positive, nondecreasing and convex in \([0, \infty)\). Assume that \( \int_1^\infty \frac{d\xi}{g(\xi)} \leq C < \infty \). Then there exists a sequence \( \{\eta_m\}_{m=1}^\infty \) such that \( \lim_{m \to \infty} \eta_m = \infty \) and

\[
\lim_{m \to \infty} \int_1^\infty \frac{d\xi}{\eta_m + g(\xi)} = 0.
\]

Proof. Assume that

\[
\lim_{m \to \infty} \int_1^\infty \frac{d\xi}{\eta_m + g(\xi)} \geq \epsilon > 0.
\]

Then for any \( M > 1 \)

\[
\lim_{m \to \infty} \int_M^\infty \frac{d\xi}{\eta_m + g(\xi)} \geq \frac{\epsilon}{2} \quad \text{or} \quad \lim_{m \to \infty} \int_1^M \frac{d\xi}{\eta_m + g(\xi)} \geq \frac{\epsilon}{2}.
\]

However, for any \( \epsilon > 0 \) we can take \( M > 1 \) large enough such that

\[
\lim_{m \to \infty} \int_M^\infty g(\xi) < \frac{\epsilon}{2}.
\]
Thus we obtain
\[
\lim_{m \to \infty} \int_{M}^{\infty} \frac{d\xi}{\eta_m + g(\xi)} \leq \lim_{m \to \infty} \int_{M}^{\infty} \frac{d\xi}{g(\xi)} < \frac{\epsilon}{2}.
\]

On the other hand, for any \( M > 1 \)
\[
\int_{1}^{M} \frac{d\xi}{\eta_m + g(\xi)} = \int_{1}^{M} \frac{g(\xi)}{\eta_m + g(\xi)} \cdot \frac{d\xi}{g(\xi)} \leq \frac{g(M)}{\eta_m + g(M)} \int_{1}^{M} \frac{d\xi}{g(\xi)} \leq \frac{Cg(M)}{\eta_m + g(M)} \to 0 \text{ as } m \to 0.
\]

Thus we have
\[
\lim_{m \to \infty} \int_{1}^{M} \frac{d\xi}{\eta_m + g(\xi)} < \frac{\epsilon}{2}
\]
for any \( M > 1 \). We thereby have a contradiction. Thus we obtain
\[
\lim_{m \to \infty} \int_{1}^{\infty} \frac{d\xi}{\eta_m + g(\xi)} = 0.
\]

**Proof of Theorem 2.** By Lemma 2.1 we may assume that \( u \) is nonnegative. From Lemma 3.2 we have
\[
\phi_m'(t) \geq -2E_m(0) + c_m g(\phi_m(t)).
\]

If \( E_m(0) < 0 \) and \( \phi_m(0) > 0 \), then there exist a constant \( T_m > 0 \) such that \( \lim_{t \to T_m} \phi_m(t) = \infty \), and
\[
T_m \leq \int_{\phi_m(0)}^{\infty} \frac{d\xi}{-2E_m(0) + c_m g(\xi)}.
\]

From (10) we see that
\[
\lim_{m \to \infty} E_m(0) = -\infty.
\]

Thus from Lemma 3.3 we obtain
\[
\lim_{m \to \infty} T_m = 0.
\]

Since \( u \geq 0 \), by a comparison in \( B \) we have \( T^* \leq T_m \). This implies \( T^*(u_0) = 0 \).
4 Appendix

In this section we shall show that if $u_0$ is a profile at blow-up having a blow-up direction in the sense of [5] and continuous, then (3) is fulfilled. We consider the solution $w$ of the initial value problem (1) with an initial data $w_0$ having a direction $\psi \in S^{n-1}$ means convergence in [3]. One of equivalent definition reads: there exists a positive constant $M$ such that $0 \leq w_0 \leq M$ and

$$\inf_{x \in B(x_m, r_m)} (w_0(x) - M_m) \geq 0$$

with sequences $\{r_m\}_{m=1}^{\infty} \subset (0, \infty), \{x_m\}_{m=1}^{\infty} \subset \mathbb{R}^n$, and $\{M_m\}_{m=1}^{\infty}$ satisfying $r_m \to \infty, M_m \to M$ as $m \to \infty$. It turns out that this condition is equivalent to say that the solution has a least blow-up time (see [15], [3]).

From [15, Theorem 1.5] and [3, Theorem 3.2] the solution $w$ satisfies that for each $R > 0$

$$\lim_{m \to \infty} \sup_{x \in B(x_m, R)} (v(t) - w(x, t)) = 0,$$

(22)

where $v$ is a solution of (1) with an initial data $M$, and the solution $w$ has a blow-up direction at $t = T$. In other words there exist a direction $\psi \in S^{n-1}$, sequences $\{x_m\}_{m=1}^{\infty}$ and $\{t_m\}_{m=1}^{\infty}$ such that $x_m/|x_m| \to \psi$ and $w(x_m, t_m) \to \infty$ as $m \to \infty$.

If we let $u_0(x) = w(x, T^*) = \lim_{t \to T^*} w(x, t)$ with $T^* = T^*(M)$, then $u_0$ has a blow-up direction.

Lemma 4.1. Assume that $w_0 \in C(\mathbb{R}^n)$ has a direction of mean convergence. Let $w$ be the solution of (1) with an initial data $w_0$. Then the blowup profile $u_0(x) = w(x, T^*)$ fulfills the assumption (3) of Theorem 1.

Proof. From (22) we see that there exists a sequence $\{(x_m, t_m)\}_{m=1}^{\infty}$ satisfying $t_m \to T^*$ as $m \to \infty$ such that

$$\lim_{m \to \infty} \sup_{x \in B(x_m, R)} (v(t_m) - u(x, t_m)) = 0.$$

Thus, since $\lim_{m \to \infty} v(t_m) = \infty$, we have

$$\lim_{m \to \infty} \inf_{x \in B(x_m, R)} u(x, t_m) = \infty$$

for any $x \in B(0, R)$. We set $b_m = \inf_{x \in B(x_m, R)} u(x, t_m)$. Then $u_0(x) = w(x, T^*)$ satisfies (3). \qed
Acknowledgement. The work of the first author is partly supported by the Grant-in-Aid for Scientific Research, No.18204011, the Japan Society for the Promotion of Science (JSPS). Much of the work of the second author was done while he visited the Hokkaido University during 2003-2005 and the University of Tokyo during 2005-2008 as a postdoctoral fellow. Its hospitality is gratefully acknowledged as well as support from formation of COE “Mathematics of Nonlinear Structures via Singularities” (Hokkaido University) and COE “New Mathematical Development Center to Support Scientific Technology” (University of Tokyo), supported by JSPS.

References


