
 

Instructions for use

Title IKEDA'S CONJECTURE ON THE PERIOD OF THE DUKE-IMAMOGLU-IKEDA LIFT

Author(s) Katsurada, Hidenori; Kawamura, Hisa-aki

Citation Hokkaido University Preprint Series in Mathematics, 954, 1-67

Issue Date 2010-2-23

DOI 10.14943/84101

Doc URL http://hdl.handle.net/2115/69761

Type bulletin (article)

File Information pre954.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


IKEDA’S CONJECTURE ON THE PERIOD OF THE
DUKE-IMAMOḠLU-IKEDA LIFT

HIDENORI KATSURADA AND HISA-AKI KAWAMURA

Abstract. Let k and n be positive even integers. For a primitive
form f in S2k−n(SL2(Z)), let In(f) be the Duke-Imamoḡlu-Ikeda
lift of f to Sk(Spn(Z)), and f̃ the cusp form in Kohnen’s plus sub-
space of weight k−n/2+1/2 for Γ0(4) corresponding to f under the

Shimura correspondence. We then express the ratio
〈In(f), In(f)〉

〈f̃ , f̃〉
of the period of In(f) to that of f̃ in terms of special values of
certain L-functions of f . This proves the conjecture proposed by
Ikeda [Ike06] concerning the period of the Duke-Imamoḡlu-Ikeda
lift.

1. Introduction

One of the fascinating problems in the theory of modular forms is
to find the relation between the periods (or the Petersson products) of
cuspidal Hecke eigenforms which are related with each other through
their L-functions. In particular, there are several important results
concerning the relation between the period of a cuspidal Hecke eigen-
form f with respect to an elliptic modular group Γ and that of its lift

f̂ . Here we mean by the lift f̂ of f a cuspidal Hecke eigenform with
respect to another modular group Γ ′ whose certain L-function can be
expressed in terms of certain L-functions of f. Thus we propose the
following problem:

Problem A. Express the ratio
〈f̂ , f̂〉
〈f, f〉e

in terms of arithmetic invari-

ants of f, for example, the special values of certain L-functions f for
some integer e.

We also propose the following problem:

Problem A’. In addition to the notation and the assumption as Prob-

lem A, consider another lift f̃ of f. Then express the ratio
〈f̂ , f̂〉
〈f̃ , f̃〉

in

terms of arithmetic invariants of f.
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2 HIDENORI KATSURADA AND HISA-AKI KAWAMURA

As will be explained later, these two problems are closely related.

Zagier [Zag77] solved the Problem A for the Doi-Nagamnuma lift f̂
of f. Murase and Sugano [MS06] solved the Problem A for the Kudla

lift f̂ of f. Kohnen and Skoruppa [KS89] solved the Problem B in the

case f̃ is the Hecke eigenform in Kohnen’s plus subspace corresponding

to f under the Shimura correspondence and f̂ is the Saito-Kurokawa
lift of f (see also Oda [Oda81]). This result also solved the Prob-
lem A combined with the result of Kohnen-Zagier [KZ81]. (See also
Theorem 2.2). We note that this type of period relation is not only
interesting and important in its own right but also plays an important
role in arithmetic theory of modular forms. For instance, by using
Kohnen and Skoruppa’s result, Brown [Bro07] and Katsurada [Kat08a]
independently proved Harder’s conjecture concerning congruence be-
tween Saito-Kurokawa lifts and non-Saito-Kurokawa lifts under mild
conditions. Furthermore, by using this congruence, Brown costructed
a non-trivial element of a certain Bloch-Kato Selmer group. We also
note that this type of conguence relation was conjectured by Doi-Hida-

Ishii [DHI98] in the case f̂ is the Doi-Naganuma lift of f.
Now let f be a primitive form, namely, a normalized Hecke eigten-

form in S2k−n(SL2(Z)) Then Duke and Imamoḡlu conjectured, in their
unpublished paper, that there exists a cuspidal Hecke eigenform in
Sk(Spn(Z)) whose standard L-function can be expressed as
ζ(s)

∏n
i=1 L(s + k − i, f), where ζ(s) is Riemann’s zeta function and

L(s, f) is Hecke’s L-function of f. Ikeda [Ike01] did construct such a
modular form In(f). We call In(f) the Duke-Imamoḡlu-Ikeda lift of f.

Let f̃ be the cusp form in Kohnen’s plus subspace of weight k−n/2+1/2
for Γ0(4) corresponding to f under the Shimura correspondence. In

[Ike06], Ikeda among others conjectured that the ratio
〈In(f), In(f)〉

〈f̃ , f̃〉
should be expressed as L(k, f)ζ(n)

∏n/2−1
i=1 L(2i + 1, f, Ad)ζ(2i) up to

elementary factor, where L(s, f, Ad) is the adjoint L-function of f (cf.
Conjecture A). This is a conjectural generalization of Kohnen and Sko-
ruppa’s result on the Saito-Kurokawa lift. The aim of this paper is
to prove Ikeda’s conjecture and to apply this to Problem A for the
Duke-Imamoḡlu-Ikeda lift (cf. Theorems 2.1 and 2.2).

We note that In(f) is not realized as a theta lift at present except
in the case n = 2. Therefore we cannot use a general method for inner
product formula of theta lifts due to Rallis [Ral88]. The method we
use is to give explicit formulas of several types of Dirichlet series of
Rankin-Selberg type, and compare their residues. We explain it more
precisely.

First let φIn(f),1 be the first Fourier-Jacobi coefficient of In(f) and
σn−1(φIn(f),1) =

∑
A c(A)e(Tr(AZ)) the element of generalized Kohnen’s
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plus subspace of weight k − 1/2 with respect to Γ
(n−1)
0 (4) correspond-

ing to φIn(f),1 under the Ibukiyama isomorphism σn−1. In Section 3, we
consider the following Dirichlet series R(s, σn−1(φIn(f),1)) of Rankin-
Selberg type associated with it:

R(s, σn−1(φIn(f),1)) =
∑

A

|c(A)|2

e(A)(det A)s
,

where A runs over all the SLn−1(Z)-equivalence classes of positive defi-
nite half-integral matrices of degree n−1 and e(A) denotes the order of
the unit group of A in SLn−1(Z). For the precise definition, see Section
3. This type of Dirichlet series was studied by many people in integral
weight case, and its analytic properties are known (cf. Kalinin [Kal84]).
In half-integral weight case, similarly to the integral weight case, we
also get an analytic properties of R(s, σn−1(φIn(f),1)), and in particular
we can express its residue at k − 1/2 in terms of the period of φIn(f),1

(cf. Corollary to Proposition 3.1). We then rewrite Ikeda’s conjecture
in terms of the relation between the residue of R(s, σn−1(φIn(f),1)) at

s = k − 1/2 and the period of f̃ (cf. Conjecture B). In order to prove
Conjecture B, we have to get an explicit formula of R(s, σn−1(φIn(f),1))

in terms of L(s, f, Ad) and L(s, f̃). To get it, in Section 4, we reduce
our computation to that of certain formal power series, which we call
formal power series of Rankin-Selberg type, associated with local Siegel
series similarly to [IK04] and [IK06] (cf. Theorem 4.2). Section 5 is
devoted to the computation of them. This computation is similar to
those in [IK04] and [IK06], but is more elaborate and longer than them.
In particular we should be careful in dealing with the case p = 2. Af-
ter overcoming such obstacles we can get explicit formulas of formal
power series of Rankin-Selberg type (cf. Theorem 5.5.1). In Section
6, by using Theorem 5.5.1, we immediately get an explicit formula of
R(s, σn−1(φIn(f),1)) (cf. Theorem 6.2,) and by taking the residue of it
at k − 1/2 we prove Conjecture B, and thetrefore prove Conjecture A
(cf. Theorem 6.3).

We note that we can also give an explicit formula of the Rankin-
Selberg series of In(f). However, it does not seem useful for proving
Conjecture A directly from such a formula.

We also note that we can apply the above result to a problem con-
cerning congruence between Duke-Imamoḡlu-Ikeda lifts and non-Duke-
Imamoḡlu-Ikeda lifts. This was announced in [KK08b], and the detail
will be discussed in [Kat08b].

Acknowledgments. The authors thank Professor Y. Ishikawa, Professor
Y. Mizuno and Doctor S. Yamana for their valuable comments.
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Notation. Let R be a commutative ring. We denote by R× and R∗ the
semigroup of non-zero elements of R and the unit group of R, respec-
tively. We also put S2 = {a2 | a ∈ S} for a subset S of R. We denote
by Mmn(R) the set of m × n-matrices with entries in R. In particular
put Mn(R) = Mnn(R). Put GLm(R) = {A ∈ Mm(R) | det A ∈ R∗},
where det A denotes the determinant of a square matrix A. For an
m × n-matrix X and an m × m-matrix A, we write A[X] = tXAX,
where tX denotes the transpose of X. Let Sn(R) denote the set of
symmetric matrices of degree n with entries in R. Furthermore, if R is
an integral domain of characteristic different from 2, let Ln(R) denote
the set of half-integral matrices of degree n over R, that is, Ln(R) is
the subset of symmetric matrices of degree n whose (i, j)-component
belongs to R or 1

2
R according as i = j or not. In particular, we put

Ln = Ln(Z), and Ln,p = Ln(Zp) for a prime number p. For a subset S
of Mn(R) we denote by S× the subset of S consisting of non-degenerate
matrices. If S is a subset of Sn(R) with R the field of real numbers, we
denote by S>0 (resp. S≥0) the subset of S consisting of positive definite
(resp. semi-positive definite) matrices. GLn(R) acts on the set Sn(R)
in the following way:

GLn(R) × Sn(R) 3 (g, A) 7−→ tgAg ∈ Sn(R).

Let G be a subgroup of GLn(R). For a subset B of Sn(R) stable under
the action of G we denote by B/G the set of equivalence classes of B
with respect to G. We sometimes identify B/G with a complete set of
representatives of B/G. We abbreviate B/GLn(R) as B/ ∼ if there is
no fear of confusion. Two symmetric matrices A and A′ with entries in
R are said to be equivalent over R′ with each other and write A ∼R′ A′

if there is an element X of GLn(R′) such that A′ = A[X]. We also write
A ∼ A′ if there is no fear of confusion. For square matrices X and Y

we write X⊥Y =

(
X O
O Y

)
.

For an integer D ∈ Z such that D ≡ 0 or ≡ 1 mod 4, let dD be

the discriminant of Q(
√

D), and put fD =
√

D
dD

. We call an integer D

a fundamental discriminant if it is the discriminant of some quadratic

extension of Q or 1. For a fundamental discriminant D, let
(

D
∗

)
be the

character corresponding to Q(
√

D)/Q. Here we make the convention

that
(

D
∗

)
= 1 if D = 1.

We put e(x) = exp(2π
√
−1x) for x ∈ C. For a prime number p

we denote by νp(∗) the additive valuation of Qp normalized so that
νp(p) = 1, and by ep(∗) the continuous additive character of Qp such
that ep(x) = e(x) for x ∈ Q.



IKEDA’S CONJECTURE 5

2. Ikeda’s conjecture on the Period of the
Duke-Imamoḡlu-Ikeda lift

Put Jn =

(
On −1n

1n On

)
, where 1n and On denotes the unit matrix

and the zero matrix of degree n, respectively. Furthermore, put

Γ (n) = Spn(Z) = {M ∈ GL2n(Z) | Jn[M ] = Jn}.

Let Hn be Siegel’s upper half-space of degree n. Let l be an integer or
half integer. For a congruence subgroup Γ of Γ (n), we denote by Ml(Γ )
the space of holomorphic modular forms of weight l with respect to Γ.
We denote by Sl(Γ ) the subspace of Ml(Γ ) consisting of cusp forms.
For two holomorphic cusp forms F and G of weight l with respect to
Γ we define the Petersson product 〈F,G〉 by

〈F,G〉 = [Γ (n) : Γ{±12n}]−1

∫
Γ\Hn

F (Z)G(Z) det(Im(Z))ld∗Z,

where d∗Z denote the invariant volume element on Hn defined as usual.
We call 〈F, F 〉 the period of F. Let

Γ
(m)
0 (N) =

{(
A B
C D

)
∈ Γ (m)

∣∣∣∣ C ≡ Om mod N

}
,

and in particular put Γ0(N) = Γ
(1)
0 (N). Let p be a prime number.

For a non-zero element a ∈ Qp we put χp(a) = 1,−1, or 0 according
as Qp(a

1/2) = Qp,Qp(a
1/2) is an unramified quadratic extension of

Qp, or Qp(a
1/2) is a ramified quadratic extension of Qp. We note that

χp(D) =
(

D
p

)
if D is a fundamental discriminant. For an element T of

L×
n,p with n even, put ξp(T ) = χp((−1)n/2 det T ). Let T be an element

of L×
n . Then (−1)n/2 det(2T ) ≡ 0 or ≡ 1 mod 4, and we define dT and

fT as dT = d(−1)n/2 det(2T ) and fT = f(−1)n/2 det(2T ), respectively. Let T be

an element of L×
n,p there exists an element T̃ of L×

n such that T̃ ∼Zp T.
We then put dT = dT̃ and fT = fT̃ . We note that dT and fT are uniquely
determined by T up to Z∗

p
2-multiple and Z∗

p-multiple, respectively. We
put ep(T ) = νp(fT ).

Now for T ∈ L×
n,p we define the local Siegel series bp(T, s) by

bp(T, s) =
∑

R∈Sn(Qp)/Sn(Zp)

ep(tr(TR))p−νp(µp(R))s,

where µp(R) = [RZn
p + Zn

p : Zn
p ]. We remark that there exists a unique

polynomial Fp(T,X) in X such that

bp(T, s) = Fp(T, p−s)
(1 − p−s)

∏n/2
i=1(1 − p2i−2s)

1 − ξp(T )pn/2−s
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(cf. Kitaoka [Kit84]). We then define a Laurent polynomial F̃p(T,X)
as

F̃p(B,X) = X−ep(T )Fp(T, p−(n+1)/2X).

We remark that F̃p(B,X−1) = F̃p(B,X) (cf. [Kat99]). Now let k be a
positive even integer. Let

f(z) =
∞∑

m=1

a(m)e(mz)

be a primitive form in S2k−n(Γ (1)). Let αp ∈ C such that αp + α−1
p =

p−k+n/2+1/2a(p), which we call the Satake p-parameter of f . Then for
a Dirichlet character χ we define Hecke’s L-function L(s, f, χ) twisted
by χ as

L(s, f, χ) =
∏

p

{(1−αpp
−s+k−n/2−1/2χ(p))(1−α−1

p p−s+k−n/2−1/2χ(p))}−1.

In particular, if χ is the principal character we write L(s, f, χ) as L(s, f)
as usual. Let

f̃(z) =
∑
m

c(m)e(mz)

be a cuspidal Hecke eigenform in Kohnen’s plus subspace S+
k−n/2+1/2(Γ0(4))

corresponding to f under the Shimura correspondence (cf. Kohnen,
[Koh80]). For the precise definition of Kohnen’s plus subspace, we
give it in Section 3 in more general setting. We define a Fourier series
In(f)(Z) in Z ∈ Hn by

In(f)(Z) =
∑

T∈Ln>0

aIn(f)(T )e(tr(TZ)),

where
aIn(f)(T ) = c(|dT |)fk−n/2−1/2

T

∏
p

F̃p(T, αp).

Then Ikeda [Ike01] showed the following:

In(f)(Z) is a Hecke eigenform in Sk(Γ
(n)), and its standard

L-function coincides with

ζ(s)
n∏

i=1

L(s + k − i, f).

This was first conjectured by Duke and Imamoḡlu. We call In(f) the
Duke-Imamoḡlu-Ikeda lift of f as in Section 1. We note that In(f) is

uniquely determined by f̃ . We also note that I2(f) coincides with the
Saito-Kurokawa lift of f.

To formulate Ikeda’s conjecture, put

ΓR(s) = π−s/2Γ(s/2) and ΓC(s) = ΓR(s)ΓR(s + 1).

We note that ΓC(s) = 2(2π)−sΓ(s). Furthermore put
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ξ(s) = ΓR(s)ζ(s) and ξ̃(s) = ΓC(s)ζ(s).

For a Dirichlet character χ put

Λ(s, f, χ) =
ΓC(s)L(s, f, χ)

τ(χ)
,

where τ(χ) is the Gauss sum of χ. In particular, we simply write
Λ(s, f, χ) as Λ(s, f) if χ is the principal character. Furthermore, we
define the adjoint L-function L(s, f, Ad) as

L(s, f, Ad) =
∏

p

{(1 − α2
pp

−s)(1 − α−2
p p−s)(1 − p−s)}−1,

and put

Λ(s, f, Ad) = ΓR(s + 1)ΓC(s + 2k − n − 1)L(s, f, Ad),

and

Λ̃(s, f, Ad) = ΓR(s)Λ(s, f, Ad).

We note that

Λ(1 − s, f, Ad) = Λ(s, f, Ad),

and

Λ̃(s, f, Ad) = ΓC(s)ΓC(s + 2k − n − 1)L(s, f, Ad).

Now we have the following diagram of liftings:

S+
k−(n−1)/2(Γ0(4)) ' S2k−n(Γ (1)) → Sk(Γ

(n))

f̃ ↔ f 7→ In(f)

Then Ikeda [Ike06] among others proposed the following conjecture:

Conjecture A. We have

〈In(f), In(f)〉
〈f̃ , f̃〉

= 2α(n, k)Λ(k, f)ξ̃(n)

n/2−1∏
i=1

Λ̃(2i + 1, f, Ad) ξ̃(2i),

where α(n, k) = −(n − 3)(k − n/2) − n + 1.

Remark. When n = 2, Conjecture A holds true; It has been proved
by Kohnen and Skoruppa [KS89] (see also Oda [Oda81]).

Now our main result in this paper is the following:

Theorem 2.1. Conjecture A holds true for any positive even integer
n.

By the above theorem, we can solve the Problem A for the Duke-
Imamoḡlu-Ikeda lift:
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Theorem 2.2. Let the notation be as above. Let D be a fundamen-
tal discriminant D such that (−1)n/2D > 0 and suppose that L(k −
n/2, f, (D

∗ )) 6= 0. Then

〈In(f), In(f)〉
〈f, f〉n/2

=

√
−1

an,k2bn,k |c(|D|)|2Λ(k, f)

|D|k−n/2Λ(k − n/2, f, (D
∗ ))

ξ̃(n)

×
n/2−1∏

i=1

Λ̃(2i + 1, f, Ad)

〈f, f〉
ξ̃(2i),

where an,k = 0 or −1 according as n ≡ 0 mod 4 or n ≡ 2 mod 4, and
bn,k is some integer depending only on n and k.

Proof. By Theorem 1 in [KZ81], for any such D we have

|c(|D|)|2

〈f̃ , f̃〉
=

2k−n/2−1|D|k−n/2Λ(k − n/2, f, (D
∗ ))

√
−1

an,k〈f, f〉
.

Thus, by Theorem 2.1, the assertion holds. ¤

It is well-known that
(−1)n/4Λ(k, f)

Λ(k − n/2, f, (D
∗ ))

and
Λ̃(2i + 1, f, Ad)

〈f, f〉
for

i = 1, ..., n/2 − 1 are algebraic numbers and belong to the Hecke field
Q(f) (cf. Shimura [Shi76], [Shi00]). Thus we obtain

Corollary. If all the Fourier coefficients of f̃ are algebraic, then the

ratio
〈In(f), In(f)〉

〈f, f〉n/2
is algebraic.

We note that we can multiply some non-zero complex number c with

f̃ so that all the Fourier coefficients of cf̃ belong to Q(f). We also note
that the above result has been proved by Furusawa [Fur84] in case
n = 2, and by Y. Choie and Kohnen [CK03] in general case. Thus
Theorem 2.2 can be regarded as a refinement of their results.

3. Rankin-Selberg convolution product of the image of
the first Fourier-Jacobi coefficient of the

Duke-Imamoḡlu-Ikeda lift under the Ibukiyama
isomorphism

To prove Conjecture A, we rewrite it in terms of the residue of the
Rankin-Selberg convolution product of a certain half-integral weight
modular form. Let l be a positive integer. Let F (Z) be an element of

Sl−1/2(Γ
(m)
0 (4)). Then F (Z) has the following Fourier expansion:

F (Z) =
∑

A∈Lm>0

aF (A)e(tr(AZ))
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We define the Rankin-Selberg convolution product R(s, F ) of F as

R(s, F ) =
∑

A∈Lm>0/SLm(Z)

|aF (A)|2

e(A)(det A)s
,

where e(A) = #{X ∈ SLm(Z) | A[X] = A}. Put

L′
m>0 = {A ∈ Lm>0 | A ≡ − trr mod 4Lm for some r ∈ Zm}.

We note the r in the above definition is uniquely determined modulo
2Zm by A, which will be denoted by rA. Now we define generalized

Kohnen’s plus subspace of weight l− 1/2 with respective to Γ
(m)
0 (4) as

S+
l−1/2(Γ

(m)
0 (4)) =F (Z) =

∑
A∈Lm>0

c(A)e(tr(AZ)) ∈ Sl−1/2(Γ
(m)
0 (4))

∣∣∣∣ c(A) = 0

unless A ∈ L′
m>0

 .

Then there exists a isomorphism from the space of Jacobi forms of
index 1 to generalized Kohnen’s plus space due to Ibukiyama. To

explain this, let Γ
(m)
J = Γ (m) n Hm(Z), where Hm(Z) is the subgroup

of the Heisenberg group Hm(R) consisting of all elements with integral
entries.

Let Jcusp
l, N (Γ

(m)
J ) denote the space of Jacobi cusp forms of weight l

and index N with respect to the Jacobi group Γ
(m)
J . Let φ(Z, z) ∈

J cusp
l, 1 (Γ

(m)
J ). Then we have the following Fourier-Jacobi expansion:

φ(Z, z) =
∑

T∈Lm, r∈Zm,
4T−trr>0

c(T, r)e(tr(TZ) + rtz).

We say that two elements (T, r) and (T ′, r′) of Lm × Zm are SLm(Z)-
equivalent and write (T, r) ∼ (T ′, r′) if there exists an element g ∈
SLm(Z) such that T ′ − tr′r′/4 = (T − trr/4)[g]. We then define a
Dirichlet series R(s, φ) as

R(s, φ) =
∑
(T,r)

|c(T, r)|2

e(T − trr/4)(det(T − trr/4))s
,

where (T, r) runs over a complete set of representatives of SLm(Z)-
equivalence classes of Lm × Zm such that T − trr/4 ∈ Lm>0. Now
φ(Z, z) can also be expressed as follows:

φ(Z, z) =
∑

r∈Zm/2Zm

hr(Z)θr(Z, z),

where hr(Z) is a holomorphic function on Hm, and

θr(Z, z) =
∑

λ∈M1,m(Z)

e(tr(Z[t(λ + 2−1r)]) + 2(λ + 2−1r)tz).
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We note that hr(Z) have the following Fourier expansion:

hr(Z) =
∑

T

c(T, r)e(tr((T − trr/4)Z)),

where T runs over all elements of Lm such that T − trr/4 is posi-
tive definite. Put h(Z) = (hr(Z))r∈Zm/2Zm . Then h is a vector valued

modular form of weight l − 1/2 with respect to Γ (m), that is, for each
γ = ( A B

C D ) ∈ Γ (m) we have

h(γ(Z)) = J(γ, Z)h(γ(Z)).

Here J(γ, Z) is an m × m matrix whose entries are holomorphic func-

tions on Hm such that tJ(γ, Z)J(γ, Z) = |j(γ, Z)|2l−11m, where j(γ, Z) =
det(CZ + D). In particular, we have∑

r∈Zm/2Zm

hr(γ(Z))hr(γ(Z)) = |j(γ, Z)|2l−1
∑

r∈Zm/2Zm

hr(Z)hr(Z).

We then put

σm(φ)(Z) =
∑

r∈Zm/2Zm

hr(4Z).

Then Ibukiyama [Ibu92] showed the following:

Let l be a positive even integer. Then σm gives a C-linear iso-
morphism

σm : J cusp
l, 1 (Γ

(m)
J ) ' S+

l−1/2(Γ
(m)
0 (4)),

which is compatible with the actions of Hecke operators.
We call σm the Ibukiyama isomorphism. We note that

σm(φ) =
∑

A∈Sm(Z)>0

c((A + trArA)/4, rA)e(tr(AZ)),

where r = rA denote an element of Zm such that A+trArA ∈ 4Lm. This
rA is uniquely determined up to modulo 2Zm, and c((A+ trArA)/4, rA)
does not depend on the choice of the representative of rA mod 2Zm.
Furthermore, we have

R(s, σm(φ)) =
∑

A∈L′
m>0/SLm(Z)

|c((A + trr)/4, r)|2

e(A) det As
,

and hence

R(s, φ) = 22smR(s, σm(φ)).

Now for φ, ψ ∈ Jcusp
l, 1 (Γ

(m)
J ) we define the Petersson product of φ and

ψ by

〈φ, ψ〉 =

∫
Γ

(m)
J \(Hm×Cm)

φ(Z, z)ψ(Z, z) det(v)l−m−2 exp(−4πv−1[ty]) dudvdxdy,
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where Z = u +
√
−1v ∈ Hm, z = x +

√
−1y ∈ Cm. Now we consider

the analytic properties of R(s, φ).

Proposition 3.1. Let l be a positive integer. Let φ(Z, z) ∈ J cusp
l, 1 (Γ

(m)
J ).

Put

R(s, φ) = γm(s)ξ(2s + m + 2− 2l)

[m/2]∏
i=1

ξ(4s + 2m + 4− 4l− 2i)R(s, φ),

where

γm(s) = 21−2sm

m∏
i=1

ΓR(2s − i + 1).

Then the following assertions hold:

(1) R(s, φ) has a meromorphic continuation to the whole s-plane,
and has the following functional equation:

R(2l − 3/2 − m/2 − s, φ) = R(s, φ).

(2) R(s, φ) is holomorphic for Re(s) > l − 1/2, and has a simple

pole at s = l − 1/2 with the residue 2m+1
∏[m/2]

i=1 ξ(2i + 1)〈φ, φ〉.

Proof. The assertion can be proved in the same manner as in Kalinin
[Kal84], but for the convenience of readers we here give an outline
of the proof. We define the non-holomorphic Siegel Eisenstein series
E(m)(Z, s) by

E(m)(Z, s) = (det Im(Z))s
∑

M∈Γ
(m)
∞ \Γ (m)

|j(M,Z)|−2s,

where Γ
(m)
∞ =

{(
A B

Om D

)
∈ Γ (m)

}
. For the φ(Z, z) let h(Z) =

(hr(Z))r∈Zm/2Zm be as above. Since h is a vector valued modular form

with respect to Γ(m), we can apply the Rankin-Selberg method and we
obtain

R(s, φ) =

∫
Γ(m)\Hm

∑
r∈Zm/2Zm

hr(Z)hr(Z)Im(Z)l−1/2E (m)(Z, s)d∗Z,

where

E (m)(Z, s) = ξ(2s + m + 2 − 2l)

×
[m/2]∏
i=1

ξ(4s + 2m + 4 − 4l − 2i)E(m)(Z, s + m/2 + 1 − l).

It is well-known that E (m)(Z, s) has a meromorphic continuation to the
whole s-plane, and has the following functional equation:

E (m)(Z, 2l − 3/2 − m/2 − s) = E (m)(Z, s).
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Thus the first assertion (1) holds. Furthermore it is holomorphic for
Re(s) > l − 1/2, and has a simple pole at s = l − 1/2 with the residue∏[m/2]

i=1 ξ(2j + 1). We note that

〈φ, φ〉 = 2−m−1

∫
Γ (m)\Hm

∑
r∈Zm/2Zm

hr(Z)hr(Z)Im(Z)l−1/2d∗Z.

Thus the second assertion (2) holds. ¤

Now let l be a positive even integer. For F ∈ S+
l−1/2(Γ

(m)
0 (4)) put

R(s, F ) =
m∏

i=1

ΓR(2s − i + 1)

× ξ(2s + m + 2 − 2l)

[m/2]∏
i=1

ξ(4s + 2m + 4 − 4l − 2i)R(s, F ).

We note that

R(s, σm(φ)) = 2−1R(s, φ)

for φ ∈ J cusp
l, 1 (Γ

(m)
J ). Thus we obtain

Corollary. In addition to the notation and the assumption as Propo-
sition 3.1, suppose that l is even. Then R(s, σm(φ)) has a meromor-
phic continuation to the whole s-plane, and has the following functional
equation:

R(2l − 3/2 − m/2 − s, σm(φ)) = R(s, σm(φ)).

Furthermore it is holomorphic for Re(s) > l − 1/2, and has a simple

pole at s = l − 1/2 with the residue 2m
∏[m/2]

i=1 ξ(2i + 1)〈φ, φ〉.

Let f be a primitive form in S2k−n(Γ (1)), and f̃ and In(f) be as in

Section 2. Write Z ∈ Hn as Z =

(
τ ′ z
tz τ

)
with τ ∈ Hn−1, z ∈ Cn−1

and τ ′ ∈ H1. Then we have the following Fourier-Jacobi expansion of
In(f):

In(f)

((
τ ′ z
tz τ

))
=

∞∑
N=0

φIn(f),N(τ, z)e(Nτ ′),

where φIn(f),N(τ, z) is called the N -th Fourier-Jacobi coefficient of In(f)
and defined by

φIn(f),N(τ, z) =
∑

T∈Ln−1, r∈Zn−1,

4NT−trr>0

aIn(f)

((
N r/2

tr/2 T

))
e(tr(Tτ) + r tz).
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We easily see that φIn(f),N belongs to J cusp
k, N (Γ

(n−1)
J ) for each N ∈ Z>0.

Now we have the following diagram of liftings:

S+
k−(n−1)/2(Γ

(1)
0 (4)) 3 f̃ −−−→ f ∈ S2k−n(Γ (1))y

In(f) ∈ Sk(Γ
(n))y

S+
k−1/2(Γ

(n−1)
0 (4)) 3 σn−1(φIn(f),1) ←−−− φIn(f),1 ∈ J cusp

k, 1 (Γ
(n−1)
J )

Under the above notation, we propose the following conjecture:

Conjecture B.

Ress=k−1/2R(s, σn−1(φIn(f),1))

= 2β(n, k)〈f̃ , f̃〉
n/2−1∏

i=1

ξ̃(2i)ξ(2i + 1)Λ̃(2i + 1, f, Ad),

where β(n, k) = −(n − 4)k + (n2 − 5n + 2)/2.

Then we can show the following:

Theorem 3.2. Under the above notation and the assumption, Conjec-
ture A is equivalent to Conjecture B.

Proof. By Corollary to Main Theorem of [KK08a], we have

〈In(f), In(f)〉
〈φIn(f),1, φIn(f),1〉

= 2−k+n−1Λ(k, f)ξ̃(n)

(see the remark below). Thus Conjecture A holds true if and only if

〈φIn(f),1, φIn(f),1〉 = 2−k(n−4)+n(n−7)/2+2〈f̃ , f̃〉
n/2−1∏

i=1

ξ̃(2i)Λ̃(2i+1, f, Ad).

On the other hand, by Corollary to Proposition 3.1 we have

Ress=k−1/2R(s, σn−1(φIn(f),1)) = 2n−1〈φIn(f),1, φIn(f),1〉
n/2−1∏

i=1

ξ(2i + 1).

Thus the assertion holds. ¤

Remark. In [KK08a], we incorrectly quoted Yamazaki’s result in [Yam90].
Indeed “〈F,G〉” on the page 2026, line 14 of [KK08a] should read

“1
2〈F,G〉” (cf. Krieg [Kri91]) and therefore “22k−n+1” on the page

2027, line 7 of [KK08a] should read “22k−n”.
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4. Reduction to local computations

To prove Conjecture B, we give an explicit formula for R(s, σn−1(φIn(f),1))
for the first Fourier-Jacobi coefficient φIn(f),1 of In(f). To do this, we
reduce the problem to local computations. Put

L′
m,p = {A ∈ L×

m,p | A ≡ − trr mod 4Lm,p for some r ∈ Zm
p }.

Furthermore we put Sm(Zp)e = 2Lm,p and Sm(Zp)o = Sm(Zp)\Sm(Zp)e.
We note that L′

m,p = L×
m,p = Sm(Zp)

× if p 6= 2.
First we can easily prove the following:

Lemma 4.1. Let m be a positive even integer.

(1) Let A and B be elements of L′
m−1,p. Then(

1 rA/2
trA/2 (A + trArA)/4

)
∼

(
1 rB/2

trB/2 (B + trBrB)/4

)
if A ∼ B.

(2) Let A ∈ L′
m−1,p.

(2.1) Let p 6= 2. Then(
1 rA/2

trA/2 (A + trArA)/4

)
∼

(
1 0
0 A

)
.

(2.2) Let p = 2. If rA ≡ 0 mod 2, then A ∼ 4B with B ∈ Lm−1,2,
and(

1 rA/2
trA/2 (A + trArA)/4

)
∼

(
1 0
0 B

)
.

If rA 6≡ 0 mod 2, then A ∼ a⊥4B with a ≡ −1 mod 4 and
B ∈ Lm−2,2, and we have(
1 rA/2

trA/2 (A + trArA)/4

)
∼

 1 1/2 0
1/2 (a + 1)/4 0
0 0 B

 .

Let m be a positive even integer. Let T ∈ L′
m−1,p. Then there exists

an element rT ∈ Zm−1
p such that T (1) :=

(
1 rT /2

trT /2 (T + trT rT )/4

)
belongs to Lm,p. Thus we can define d

(1)
T and f

(1)
T as dT (1) and fT (1) , re-

spectively. These do not depend on the choice of rT . We note that

det T = 2n−2d
(1)
T (f

(1)
T )2. We also put e

(1)
p (T ) = νp(fT (1)). We define a

polynomial F
(1)
p (T,X) and a Laurent polynomial F̃

(1)
p (T,X) by

F (1)
p (T,X) = Fp(T

(1), X),

and
F̃ (1)

p (T,X) = X−e(1)p (T )F (1)
p (T, p−(n+1)/2X).

Let B be a half-integral matrix B over Zp of degree n. Let p 6= 2. Then

F̃ (1)
p (B,X) = F̃p(1⊥B,X).
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Let p = 2. Then

F̃
(1)
2 (B,X) =


F̃2(

(
1 1/2

1/2 (a + 1)/4

)
⊥B′, X)

if B = a⊥4B′

with a ≡ −1 mod 4,

F̃2(1⊥B′, X) if B = 4B′.

Furthermore, for each T ∈ Sm(Zp)
×
e put F

(0)
p (T,X) = Fp(2

−1T,X) and

F̃
(0)
p (T,X) = F̃p(2

−1T,X).
Now let m and l be positive integers such that m ≥ l. Then for non-

degenerate symmetric matrices A and B of degree m and l respectively
with entries in Zp we define the local density αp(A,B) and the primitive
local density βp(A,B) representing B by A as

αp(A,B) = 2−δm,l lim
a→∞

pa(−ml+l(l+1)/2)#Aa(A,B),

and

βp(A,B) = 2−δml lim
a→∞

pa(−ml+l(l+1)/2)#Ba(A,B),

where

Aa(A,B) = {X ∈ Mml(Zp)/p
aMml(Zp) | A[X] − B ∈ paSl(Zp)e},

and

Ba(A,B) = {X ∈ Aa(A,B) | rankZp/pZpX = l}.
In particular we write αp(A) = αp(A,A). Furthermore put

M(A) =
∑

A′∈G(A)

1

e(A′)

for a positive definite symmetric matrix A of degree n − 1 with en-
tries in Z, where G(A) denotes the set of SLn−1(Z)-equivalence classes
belonging to the genus of A. Then by Siegel’s main theorem on the
quadratic forms, we obtain

M(A) = en−1κn−1 det An/2
∏

p

αp(A)−1

where en−1 = 1 or 2 according as n = 2 or not, and

κn−1 = 22−n

(n−2)/2∏
i=1

ΓC(2i)

(cf. Theorem 6.8.1 in [Kit93]). Put

Fp = {d0 ∈ Zp | νp(d0) ≤ 1}

if p is an odd prime, and

F2 = {d0 ∈ Z2 | d0 ≡ 1 mod 4 or d0/4 ≡ −1 mod 4 or ν2(d0) = 3}.
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For d0 ∈ Fp and a GLn−1(Z)p-invariant function ωp on L×
n−1,p we define

a formal power series Hn−1,p(d0, ωp, X, Y, t) by

Hn−1,p(d0, ωp, X, Y, t)

:=
∑

A∈L′
n−1,p(d0)/GLn−1(Zp)

F̃
(1)
p (A,X)F̃

(1)
p (A, Y )

αp(A)
ωp(A)tνp(det A),

where L′
n−1,p(d0) = {A ∈ L′

n−1,p | d(1)A = d0}. Let ιm,p be the constant
function on L×

m,p taking the value 1, and εm,p the function on L×
m,p

assigning the Hasse invariant of A for A ∈ L×
m,p. For the definition of the

Hasse invarinat, see Kitaoka [Kit93]. We sometimes drop the suffix and
write ιm,p as ιp or ι and the others if there is no fear of confusion. We
call Hn−1,p(d0, ωp, X, Y, t) a formal power series of Rankin-Selberg type.
An explicit formula for Hn−1,p(d0, ωp, X, Y, t) will be given in the next
section for ωp = ιn−1,p and εn−1,p. Let F denote the set of fundamental
discriminants, and for l = ±1, put F (l) = {d0 ∈ F | ld0 > 0}.

Now let f be a primitive form in S2k−n(Γ (1)), and f̃ , In(f), φIn(f),1

and σn−1(φIn(f),1) be as in Section 3. It follows from Lemma 4.1 that
the Fourier coefficient cσn−1(φIn(f),1)(T ) of σn−1(φIn(f),1) is uniquely de-
termined by the genus to which T belongs. Thus, by using the same
method as in Proposition 2.2 of [IS95], similarly to [IK03], Theorem
3.3, (1), and [IK04], Theorem 3.2, we obtain

Theorem 4.2. Let the notation and the assumption be as above. Then
for Re(s) À 0, we have

R(s, σn−1(φIn(f),1))

=
en−1

2
κn−12

−(k−n/2−1/2)(n−2)
∑

d0∈F((−1)n/2)

|c(|d0|)|2|d0|n/2−k+1/2

×

{∏
p

Hn−1,p(d0, ιp, αp, αp, p
−s+k−1/2) +

∏
p

Hn−1,p(d0, εp, αp, αp, p
−s+k−1/2)

}
,

where c(|d0|) is the |d0|-th Fourier coefficient of f̃ , and αp is the Satake
p-parameter of f .

5. Formal power series associated with local Siegel
series

Throughout this section we fix a positive even integer n. We also
simply write νp as ν and the others if the prime number p is clear from
the context.

In this section we give an explicit formula of Hn−1(d0, ω,X, Y, t) =
Hn−1,p(d0, ω,X, Y, t) for ω = ι, ε (cf. Theorem 5.5.1). For the conve-
nience of readers, we here give an outline of the proof. First we rewrite
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Hn−1(d0, ω,X, Y, t) in terms of another power series. For d ∈ Zp put

Sm(Zp, d) = {T ∈ Sm(Zp) | (−1)[(m+1)/2] det T = p2id with some i ∈ Z},

and Sm(Zp, d)x = Sm(Zp, d) ∩ Sm(Zp)x for x = e or o. We note that
Sm(Zp, d) = Sm(Zp, p

jd) for any even integer j. In particular, if m

is even, put L(0)
m,p = Sm(Zp)

×
e and L(1)

m−1,p = L′
m−1,p. We also define

L(l)
m−l,p(d) = Sm−l(Zp, d)∩L(l)

m−l,p for l = 0, 1. We note that L(l)
m−l,p(d) =

L′
m−l,p(d) for d ∈ Fp. Let Dm,i = GLm(Zp)

(
1m−i 0

0 p1i

)
GLm(Zp).

Henceforth, for a GLm(Zp)-stable subset B of Sm(Qp), we simply write∑
T∈B instead of

∑
T∈B/∼ if there is no fear of confusion.

Suppose that m is a positive even integer. For j = 0, 1 and an

element T ∈ L(j)
m−j,p, we define a polynomial G̃

(j)
p (T,X, t) in X and t by

G̃(j)
p (T,X, t)

=

m−j∑
i=0

(−1)ipi(i−1)/2ti
∑

D∈GLm−j(Zp)\Dm−j,i

F̃ (j)
p (T [D−1], X).

We also define a polynomial G
(j)
p (T,X) in X by

G(j)
p (T,X)

=

m−j∑
i=0

(−1)ipi(i−1)/2(X2pm+1−j)i
∑

D∈GLm−j(Zp)\Dm−j,i

F (j)
p (T [D−1], X).

For d0 ∈ Fp and l = 0, 1 put

κ(d0,m − 1, l, t) = {(−1)lm(m−2)/8tm−22−(m−2)(m−1)/2}δ2p

×((−1)m/2, (−1)m/2d0)
l
p p−(m/2−1)lν(d0),

and

κ(d0,m, l, t) = {(−1)m(m+2)/8 ((−1)m/22, d0)2}lδ2p .

Furthermore for an element T ∈ L(1)
m−1,p we define a polynomial B

(1)
p (T, t)

in t by

B(1)
p (T, t) =

(1 − ξp(T
(1))p−m/2+1/2t)

∏(m−2)/2
i=1 (1 − p−2i+1t2)

G
(1)
p (T, p−m+1/2t)

,

and for ω = εl define a formal power series R̃n−1(d0, ω,X, Y, t) in t by

R̃n−1(d0, ω,X, Y, t) = κ(d0, n − 1, l, t)−1
∑

B′∈L(1)
n−1,p(d0)

G̃
(1)
p (B′, X, p−nY t2)

αp(B′)

×Y −e(1)(B′) tν(det B′)B(1)
p (B′, p−n/2−1Y t2)G(1)

p (B′, p−(n+1)/2Y )ω(B′).
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Then

Hn−1(d0, ω,X, Y, t) =
κ(d0, n − 1, l, t)R̃n−1(d0, ω,X, Y, t)∏n

j=1(1 − pj−1−nXY t2)(1 − pj−1−nX−1Y t2)

for ω = εl (cf. Theorem 5.2.6). The polynomials G
(1)
p (T,X) and

B
(1)
p (T, t) are expressed explicitly, and in particular they are deter-

mined by dT and the p-rank of T (cf. Lemmas 5.2.1 and 5.2.3). Thus
we can rewrite the above in more concise form. To explain this, we

generalize the polynomials F̃
(j)
p (T,X) and G̃

(j)
p (T,X, t) for T ∈ L(j)

m−j,p

and we put F̃
(j)
p (T, ξ,X) = X−e(j)(T )F

(j)
p (T, ξX), and

G̃(j)
p (T, ξ,X, t) =

m−j∑
i=0

(−1)ipi(i−1)/2ti
∑

D∈GLm−j(Zp)\Dm−j,i

F̃ (j)
p (T [D−1], ξ,X)

for ξ = ±1, where e(0)(T ) = ep(T ) for T ∈ L(0)
m,p. Then we define a

formal power series P̃
(j)
m−j(n; d0, ω, ξ,X, Y, t) in t by

P̃
(j)
m−j(n; d0, ω, ξ,X, Y, t)

= κ(d0,m − j, l, t)−1
∑

B′∈L(j)
m,p(d0)

G̃
(j)
p (B′, ξ,X, p−nt2Y )

αp(B′)
ω(B′)Y −e(j)(B′)tν(det(B′))

for ω = εl. Here we make the convention that P̃
(0)
0 (n; d0, ω, ξ,X, Y, t) =

1 or 0 according as ν(d0) = 0 or not. An explicit formula of P̃
(j)
m−j(n; d0, ω, ξ,X, Y, t)

for j = 0, 1 will be given (cf. Proposition 5.3.1, and Theorems 5.4.1
and 5.4.2). For simplicity suppose that ν(d0) = 0 or ω = ι. Then we

can rewrite R̃n−1(d0, ω,X, Y, t) in terms of P̃
(j)
m−j(n; d0, ω, ξ,X, Y, t) in

the following way:

R̃n−1(d0, ω,X, Y, t) = (1 − p−nt2)

×{
(n−2)/2∑

l=0

∑
d∈U(n−1,n−1−2l,d0)

P̃
(0)
2l (n; d0d, ω, χ(d), X, Y, t)

×
(n−2−2l)/2∏

i=1

(1 − p−2l−n−2it4)T2l(d0, d, Y )

+

(n−2)/2∑
l=0

P̃
(1)
2l+1(n; d0, ω, 1, X, Y, t)

(n−2−2l)/2∏
i=2

(1 − p−2l−n−2it4)T2l+1(d0, Y, t)},

where U(n− 1, n− 1− 2l, d0) is a certain finite subset of Z∗
2, which will

be defined in Subsection 5.3, and T2r(d0, d, Y ) is a polynomial in Y, and
T2r+1(d0, Y, t) is a polynomial in Y and t (cf. Theorem 5.3.10). Here
the set U(n − 1, n − 1 − 2l, d0) and the polynomials T2r(d0, d, Y ) and
T2r+1(d0, Y, t) will be explicitly given. Thus we get an explicit formula
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for Hn−1(d0, ω,X, Y, t) in this case. Similarly we get an explicit formula
of Hn−1(d0, ω,X, Y, t) for other cases. Each step is elementary, but
rather elaborate. In particular we need a careful analysis for dealing
with the case of p = 2.

5.1. Preliminaries.

For two elements S and T of Sm(Zp)
× and a nonnegative integer

i ≤ m, we introduce a modification αp(S, T, i) of the local densitiy as
follows:

αp(S, T, i) = 2−1 lim
e→∞

p(−m2+m(m+1)/2)eAe(S, T, i),

where
Ae(S, T, i) = {X ∈ Ae(S, T ) | X ∈ Dm,i}.

Lemma 5.1.1. Let S and T be elements of Sm(Zp)
×.

(1) Let Ω(S, T ) = {w ∈ Mm(Zp) | S[w] ∼ T}, and Ω(S, T, i) =
Ω(S, T ) ∩ Dm,i. Then

αp(S, T )

αp(T )
= #(Ω(S, T )/GLm(Zp))p

−m(ν(det T )−ν(det S))/2,

and

αp(S, T, i)

αp(T )
= #(Ω(S, T, i)/GLm(Zp))p

−m(ν(det T )−ν(det S))/2.

(2) Let Ω̃(S, T ) = {w ∈ Mm(Zp) | S ∼ T [w−1]}, and Ω̃(S, T, i) =

Ω̃(S, T ) ∩ Dm,i. Then

αp(S, T )

αp(S)
= #(GLm(Zp)\Ω̃(S, T ))p(ν(det T )−ν(det S))/2,

and

αp(S, T, i)

αp(S)
= #(GLm(Zp)\Ω̃(S, T, i))p(ν(det T )−ν(det S))/2.

Proof. The assertion (1) follows from Lemma 2.2 of [BS87]. Now by
Proposition 2.2 of [Kat99] we have

αp(S, T ) =
∑

W∈GLm(Zp)\eΩ(S,T )

βp(S, T [W−1])pν(det W ).

Then βp(S, T [W−1]) = αp(S) or 0 according as S ∼ T [W−1] or not.
Thus the assertion (2) holds. ¤

A non-degenerate square matrix D = (dij)m×m with entries in Zp is
said to be reduced if D satisfies the following two conditions:

(a) For i = j, dii = pei with a non-negative integer ei;

(b) For i 6= j, dij is a non-negative integer satisfying dij ≤ pej − 1
if i < j and dij = 0 if i > j.
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It is well known that we can take the set of all reduced matrices as a
complete set of representatives of GLm(Zp)\Mm(Zp)

×. Let l = 0 or 1

according as m is even or odd. For B ∈ L(l)
m,p put

Ω̃(l)(B) = {W ∈ GLm(Qp) ∩ Mm(Zp) | B[W−1] ∈ L(l)
m,p}.

Furthermore put Ω̃(l)(B, i) = Ω̃(l)(B) ∩ Dm.i. Let n0 ≤ m, and ψn0,m

be the mapping from GLn0(Qp) into GLm(Qp) defined by ψn0,m(D) =
1m−n0⊥D.

Lemma 5.1.2. (1) Let p 6= 2. Let Θ ∈ GLn0(Zp) ∩ Sn0(Zp), and B1 ∈
Sm−n0(Zp)

×.

(1.1) Let n0 be even. Then ψm−n0,m induces a bijection

GLm−n0(Zp)\Ω̃(l)(pB1) ' GLm(Zp)\Ω̃(l)(Θ⊥pB1),

where l = 0 or 1 according as m is or even or odd.
(1.2) Let n0 be odd. Then ψm−n0,m induces a bijection

GLm−n0(Zp)\Ω̃(l)(pB1) ' GLm(Zp)\Ω̃(l′)(Θ⊥pB1),

where l = 0 or 1 according as m is or even or odd, and l′ = 1
or 0 according as m is or even or odd.

(2) Let p = 2. Let m be a positive integer, and n0 an even integer not
greater than m, and Θ ∈ GLn0(Z2) ∩ Sn0(Z2)e.

(2.1) Let B1 ∈ Sm−n0(Z2)
×. Then ψm−n0,m induces a bijection

GLm−n0(Z2)\Ω̃(l)(2l+1B1) ' GLm(Z2)\Ω(l)(2lΘ⊥2l+1B1),

where l = 0 or 1 according as m is or even or odd.
(2.2) Suppose that m is even. Let a ∈ Z2 such that a ≡ −1 mod 4,

and B1 ∈ Sm−n0−2(Z2)
×. Then ψm−n0−1,m induces a bijection

GLm−n0−1(Z2)\Ω̃(1)(a⊥4B1)

' GLm(Z2)\Ω̃(0)(Θ⊥
(

2 1

1
1+a
2

)
⊥2B1).

(2.3) Suppose that m is even, and let B1 ∈ Sm−1−n0(Z2)
×. Then

ψm−n0−1,m induces a bijection

GLm−n0−1(Z2)\Ω̃(1)(4B1) ' GLm(Z2)\Ω̃(0)(Θ⊥2⊥2B1).

(3) The assertions (1),(2) remain valid if one replaces Ω̃(B) by Ω̃(B, i).

Proof. (1) Clearly the mapping ψm−n0,m induces an injection from

GLm−n0(Zp)\Ω̃(l)(pB1) to GLm(Zp)\Ω̃(l)(Θ⊥pB1). To prove the surjec-

tivity of φ, take a representative D of an element of GLm(Zp)\Ω̃(l)(Θ⊥pB1).
Without loss of generality we may suppose that D is a reduced ma-

trix. Since (Θ⊥pB1)[D
−1] ∈ Sm(Zp), we have D =

(
1n0 0
0 D1

)
with

D1 ∈ Ω̃(l)(pB1). This proves the assertion (1.1). The assertion (1.2)
can be proved in the same way as above.
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(2) As in (1), the mapping ψm−n0,m induces an injection from

GLm−n0(Z2)\Ω̃(l)(2l+1B1) to GLm(Z2)\Ω(l)(2lΘ⊥2l+1B1). Then the sur-
jectivity of φ in case l = 0 can be proved in the same manner as (1).
To prove the surjectivity of φ in case l = 1, take a reduced matrix

D =

(
D1 D12

0 D2

)
with D1 ∈ Mn0(Z2)

×, D2 ∈ Mm−n0(Z2)
×, D12 ∈

Mn0,m−n0(Z2). Then (2Θ⊥4B1)[D
−1] ∈ L′

m,2 if and only if 2Θ[D−1
1 ] ∈

4Ln0,2. In this case we can take D as D =

(
1n0 0
0 D2

)
. Thus the

surjectivity of φ can be proved in the same as above.
The assertion (2.2) can be proved in the same way as above.
To prove (2.3), we may suppose that n0 = 0 in view of (2.1). Let

D ∈ Ω̃(1)(4B1). Then

4B1[D
−1] = tr0r0 + 4B′

with r0 ∈ Zm−1
2 and B′ ∈ Lm−1,2. Then we can take r ∈ Zm−1

2 such
that

4 tD−1 trrD−1 ≡ tr0r0 mod 4Lm−1,2.

Furthermore, 2rD−1 is uniquely determined modulo 2Zm−1
2 by r0. Put

D̃ =

(
1 r
0 D

)
. Then D̃ belongs to Ω̃(0)(2⊥2B1), and the mapping

D 7→ D̃ induces a bijection in question. ¤

Corollary. Suppose that m is even. Let B ∈ L(1)
m−1,p. Then there exists

a bijection

ψ : GLm−1(Zp)\Ω̃(1)(B) ' GLm(Zp)\Ω̃(0)(
(

2 rB
trB (B+trBrB)/2

)
)

such that ν(det(ψ(W ))) = ν(det(W )) for any W ∈ GLm−1(Zp)\Ω̃(1)(B).

This induces a bijection ψi from GLm−1(Zp)\Ω̃(1)(B, i) to

GLm(Zp)\Ω̃(0)(
(

2 rB
trB (B+trBrB)/2

)
, i) for i = 0, · · · ,m − 1.

Proof. Let p 6= 2. Then we may suppose rB = 0, and the assertion
follows from (1.2). Let p = 2. If rB ≡ 0 mod 2 we may suppose that
rB = 0, and the assertion follows from (2.3). If rB 6≡ 0 mod 4, we may
suppose that B = a⊥4B1 with B1 ∈ Lm−2,2 and rB = (1, 0, . . . , 0).
Thus the assertion follows from (2.2). ¤

Lemma 5.1.3. Suppose that p 6= 2.
(1) Let B ∈ Sm(Zp)

×. Then

αp(p
rdB) = prm(m+1)/2αp(B)
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for any non-negative integer r and d ∈ Z∗
p.

(2) Let U1 ∈ GLn0(Zp) ∩ Sn0(Zp) and B1 ∈ Sm−n0(Zp)
×. Then

αp(pB1⊥U1) = αp(pB1)

×

{
2
∏n0/2

i=1 (1 − p−2i)(1 + χ((−1)n0/2 det U1)p
−n0/2)−1 if n0 even,

2
∏(n0−1)/2

i=1 (1 − p−2i) if n0 odd.

Proof. The assertions follow from the proof of Theorem 5.6.3 and The-
orem 5.6.4, (a) of Kitaoka [Kit93]. ¤

Lemma 5.1.4. (1) Let B ∈ Sm(Z2)
×. Then

α2(2
rdB) = 2rm(m+1)/2α2(B)

for any non-negative integer r and d ∈ Z∗
2.

(2) Let n0 be even, and U1 ∈ GLn0(Z2) ∩ Sn0(Z2)e. Then for B1 ∈
Sm−n0(Z2)

× we have

α2(U1⊥2B1) = α2(2B1)

×

{
2
∏n0/2

i=1 (1 − 2−2i)(1 + χ((−1)n0/2 det U1)p
−n0/2)−1 if B1 ∈ Sm−n0(Z2)e,

2
∏(n0−1)/2

i=1 (1 − 2−2i) if B1 ∈ Sm−n0(Z2)o,

and for u0 ∈ Z∗
2 and B2 ∈ Sm−n0−1(Z2)

× we have

α2(u0⊥2U1⊥4B2) = α2(2B2)2
(m−2)(m−1)/2+1

n0/2∏
i=1

(1 − 2−2i).

Proof. The assertions follow from the proof of Theorem 5.6.3 and The-
orem 5.6.4, (a) of Kitaoka [Kit93]. ¤

Now let R be a commutative ring. Then the group GLm(R) × R∗

acts on Sm(R). We write B1 ≈R B2 if B2 ∼R ξB1 with some ξ ∈ R∗.

Let m be a positive integer. Then for B ∈ Sm(Zp) let S̃m,p(B) denote
the set of elements of Sm(Zp) such that B′ ≈Zp B, and let Sm−1,p(B)
denote the set of elements of Sm−1(Zp) such that 1⊥B′ ≈Zp B.

Lemma 5.1.5. Let m be a positive even integer. Let B ∈ Sm(Z2)
×
o .

Then ∑
B′∈Sm−1,2(B)/∼

1

α2(B′)
=

#(S̃m,2(B)/ ∼)

2α2(B)
.

Proof. For a positive integer l let l = l1 + · · · + lr be the partition
of l by positive integers, and {si}r

i=1 the set of non-negative inte-
gers such that 0 ≤ s1 < · · · < sr. Then for a positive integer e
let S0

l (Z2/2
eZ2, {li}, {si}) be the subset of Sl(Z2/2

eZ2) consisting of
symmetric matrices of the form 2s1U1⊥2s2U2⊥ · · ·⊥2srUr with Ui ∈
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Sli(Z2/2
eZ2) unimodular. Let B ∈ Sm(Z2)o and det B = (−1)m/2d.

Then B is equivalent, over Z2, to a matrix of the following form:

2t1W1⊥2t2W2⊥ · · ·⊥2trWr,

where 0 = t1 < t1 < · · · < tr and W1, ...,Wr−1, and Wr are unimodular
matrices of degree n1, ..., nr−1, and nr, respectively, and in particular,
W1 is odd unimodular. Then by Lemma 3.2 of [IS95], similarly to (3.5)
of [IS95], for a sufficiently large integer e, we have

#(S̃m,2(B)/ ∼)

α2(B)
=

∑
eB∈ eSm,2(B)/∼

1

α2(B̃)

= 2m−12−ν(d)+
Pr

i=1 ni(ni−1)e/2−(r−1)(e−1)−
P

1≤j<i≤r ninjtj

×
r∏

i=1

#(SLni
(Z2/2

eZ2))
−1#S̃(0)

m (Z2/2
eZ2, {ni}, {ti}, B),

where S̃
(0)
m (Z2/2

eZ2, {ni}, {ti}, B) is the subset of S
(0)
m (Z2/2

eZ2, {ni}, {ti})
consisting of matrices A such that A ≈Z2/2eZ2 B. We note that our local

density α2(B̃) is 2−m times that in [IS95] for B̃ ∈ Sm(Z2). If n1 ≥ 2,
put r′ = r, n′

1 = n1 − 1, n′
2 = n2, .., n

′
r = nr, and t′i = ti for i = 1, ..., r′,

and if n1 = 1, put r′ = r−1, n′
i = ni+1 and t′i = ti+1 for i = 1, ..., r′. Let

S
(0)
m−1(Z2/2

eZ2, {n′
i}, {t′i}, B) be the subset of S

(0)
m−1(Z2/2

eZ2, {n′
i}, {t′i})

consisting of matrices B′ ∈ Sm−1(Z2/2
eZ2) such that 1⊥B′ ≈Z2/2eZ2 B.

Then, similarly, we obtain∑
B′∈Sm−1,2(B)/∼

1

α2(B′)

= 2m−22−ν(d)+
Pr′

i=1 n′
i(n

′
i−1)e/2−(r′−1)(e−1)−

P

1≤j<i≤r′ n′
in

′
jt′j

×
r′∏

i=1

#(SLn′
i
(Z2/2

eZ2))
−1#S

(0)
m−1(Z2/2

eZ2, {n′
i}, {t′i}, B).

Take an element A of S̃
(0)
m (Z2/2

eZ2, {ni}, {ti}, B). Then A = 2s1U1⊥2s2U2⊥ · · ·⊥2srUr

with Ui ∈ Sni
(Z2/2

eZ2) unimodular. Put U1 = (uλµ)n1×n1 . Then by
the assumption there exists an integer 1 ≤ λ ≤ n1 such that uλλ ∈ Z∗

2.
Let λ0 be the least integer such that uλ0λ0 ∈ Z∗

2, and V1 be the ma-
trix obtained from U1 by interchanging the first and λ0-th lows and

the first and λ0-th columns. Write V1 as V1 =

(
v1 v1
tv1 V ′

)
with

v1 ∈ Z∗
2,v1 ∈ M1,n1−1(Z2), and V ′ ∈ Sn1−1(Z2). Here we understand

that V ′ − tv1v1 is the empty matrix if n1 = 1. Then

V1 ∼
(

v1 0
0 V ′ − tv1v

−1
1 v1

)
.
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Then the map A 7→ v1
−1(2t1(V ′ − tv1v

−1
1 v1)⊥2t2U2⊥ · · ·⊥2trUr) in-

duces a map Υ from S̃
(0)
m (Z2/2

eZ2, {ni}, {ti}, B) to S
(0)
m−1(Z2/2

eZ2, {n′
i}, {t′i}, B).

By a simple calculation, we obtain

#Υ−1(B′) = 2(e−1)n1(2n1 − 1)

for any B′ ∈ S
(0)
m−1(Z2/2

eZ2, {n′
i}, {t′i}, B). We also note that

#SLn1(Z2/2
eZ2) = 2(e−1)(2n1−1)2n1−1(2n1 −1)#(SLn1−1(Z2/2

eZ2)) or 1

according as n1 ≥ 2 or n1 = 1, and

r∑
i=1

ni(ni − 1)e/2 − (r − 1)(e − 1) −
∑

1≤j<i≤r

ninjtj

= en1 +
r′∑

i=1

n′
i(n

′
i − 1)e/2 − (r′ − 1)(e − 1) +

∑
1≤j<i≤r′

n′
in

′
jt

′
j,

where en1 = (n1 − 1)e or en1 = 1 − e according as n1 ≥ 2 or n1 = 1.
Hence

2m−12−ν(d)+
Pr

i=1 ni(ni−1)e/2−(r−1)(e−1)−
P

1≤j<i≤r ninjtj

×
r∏

i=1

#(SLni
(Z2/2

eZ2))
−1#S̃(0)

m (Z2/2
eZ2, {ni}, {ti}, B)

= 2 · 2m−22−ν(d)+
Pr′

i=1 n′
i(n

′
i−1)e/2−(r′−1)(e−1)−

P

1≤j≤i≤r′ n′
in

′
jt′j

×
r∏

i=1

#(SLn′
i
(Z2/2

eZ2))
−1#S

(0)
m−1(Z2/2

eZ2, {n′
i}, {t′i}, B).

This proves the assertion. ¤

The following lemma follows from [[IK06], Lemma 3.4]:

Lemma 5.1.6. Let l be a positive integer, and q, U and Q variables.
Put φr(q) =

∏m
i=1(1 − qi) for a nonzero integer r. Then

l∏
i=1

(1 − U−1Qq−i+1)U l

=
l∑

m=0

φl(q
−1)

φl−m(q−1)φm(q−1)

l−m∏
i=1

(1 − Qq−i+1)
m∏

i=1

(1 − Uqi−1)(−1)mq(m−m2)/2.
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5.2. Formal power series of Andrianov type.

Let G̃
(l)
p (T,X, t) be the polynomial and in X and t, and G

(l)
p (T,X)

the polynomial in X defined at the beginning of Section 5. We note
that

G̃(l)
p (T,X, 1) = X−e(l)(T )G(l)

p (T,Xp−(n+1)/2).

For a m × m half-integral matrix B over Zp, let (W, q) denote the
quadratic space over Zp/pZp defined by the quadratic form q(x) =
B[x] mod p, and define the radical R(W ) of W by

R(W ) = {x ∈ W | B(x,y) = 0 for any y ∈ W},
where B denotes the associated symmetric bilinear form of q. We then
put lp(B) = rankZp/pZpR(W )⊥, where R(W )⊥ is the orthogonal comple-

ment of R(W )⊥ in W. Furthermore, in case lp(B) is even, put ξp(B) = 1

or −1 according as R(W )⊥ is hyperbolic or not. In case lp(B) is odd,

we put ξp(B) = 0. Here we make the convention that ξp(B) = 1 if

lp(B) = 0. We note that ξp(B) is different from the ξp(B) in general,

but they coincide if B ∈ Lm,p ∩ 1
2
GLm(Zp).

Let m be a positive even integer. For B ∈ L(1)
m−1,p put B(1) =(

1 r/2
tr/2 (B + trr)/4

)
, where r is an element of Zm−1

p such that B +

trr ∈ 4Lm−1,p. Then we put ξ(1)(B) = ξ(B(1)) and ξ
(1)

(B) = ξ(B(1)).
These do not depend on the choice of r, and we have ξ(1)(B) = ξ(B).

Let p 6= 2. Then an element B of L(1)
m−1,p is equivalent, over Zp, to

Θ⊥pB2 with Θ ∈ GLm−n1−1(Zp) ∩ Sm−n1−1(Zp) and B2 ∈ Sn1(Zp).

Then ξ(B) = 0 if n1 is odd, and ξ
(1)

(B) = χ((−1)(m−n1)/2 det Θ) if n1 is

even. Let p = 2. Then an element B ∈ L(1)
m−1,2 is equivalent, over Z2, to

a matrix of the form 2Θ⊥B1, where Θ ∈ GLm−n1−2(Z2)∩Sm−n1−2(Z2)e

and B1 is one of the following three types:

(I) B1 = a⊥4B2 with a ≡ −1 mod 4, and B2 ∈ Sn1(Z2)e;

(II) B1 ∈ 4Sn1+1(Z2);

(III) B1 = a⊥4B2 with a ≡ −1 mod 4, and B2 ∈ Sn1(Z2)o.

Then ξ
(1)

(B) = 0 if B1 is of type (II) or type (III). Let B1 be of type
(I). Then (−1)(m−n1)/2a det Θ mod (Z∗

2)
2 is uniquely detemined by B,

as will be shown in Lemma 5.3.2, and we have

ξ
(1)

(B) = χ((−1)(m−n1)/2a det Θ).

Suppose that p 6= 2, and let U = Up be a complete set of representa-
tives of Z∗

p/(Z
∗
p)

2. Then, for each positive integer m and d ∈ Up, there
exists a unique, up to Zp-equivalence, element of Sm(Zp) ∩ GLm(Zp)
such that whose determinant is (−1)[(m+1)/2]d, which will be denoted
by Θm,d. Suppose that p = 2, and put U = U2 = {1, 5}. Then for
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each positive even integer m and d ∈ U2 there exists a unique, up to
Z2-equivalence, element of Sm(Z2)e ∩ GLm(Z2) whose determinant is
(−1)m/2d, which will be also denoted by Θm,d. In particular, if p is any
prime number and m is even, we put Θm = Θm,1 We make the conven-
tion that Θm,d is the empty matrix if m = 0. For an element d ∈ U we
use the same symbol d to denote the coset d mod (Z∗

p)
2.

Lemma 5.2.1. Let n be the fixed positive even integer. Let B ∈ L(1)
n−1,p

and put ξ0 = χ((−1)n/2 det B).
(1) Let p 6= 2, and supposse that B = Θn−n1−1,d⊥pB1 with d ∈ U and
B1 ∈ Ln1,p. Then

G(1)
p (B, Y )

=



1 if n1 = 0,

(1 − ξ0p
n/2Y )

n1/2−1∏
i=1

(1 − p2i+nY 2)(1 + pn1/2+n/2ξ
(1)

(B)Y ) if n1 is positive

and even,

(1 − ξ0p
n/2Y )

(n1−1)/2∏
i=1

(1 − p2i+nY 2) if n1 is odd.

(2) Let p = 2, and supposoe that B = 2Θ⊥B1 with Θ ∈ Sn−n1−2(Z2)e ∩
GLn−n1−2(Z2) and B1 ∈ Sn1+1(Z2). Then

G
(1)
2 (B, Y )

×



1 if n1 = 0,

(1 − ξ02
n/2Y )

n1/2−1∏
i=1

(1 − 22i+nY 2)(1 + 2n1/2+n/2ξ
(1)

(B)Y ) if n1 is positive

and B1 is of type (I),

(1 − ξ02
n/2Y )

n1/2∏
i=1

(1 − 22i+nY 2) if B1 is of type (II)

or (III).

Here we remark that n1 is even.

Proof. By Corollary to Lemma 5.1.2 and by definition we have G
(1)
p (B, Y ) =

Gp(B
(1), Y ). Thus the assertion follows from Lemma 9 of [Kit84]. ¤

Lemma 5.2.2. Let m be a positive even integer, and l = 0 or 1. Let

B ∈ L(l)
m−l,p. Then

F̃ (l)(B,X) =
∑

B′∈L(l)
m−l,p/GLm−l(Zp)

X−e(l)(B′)αp(B
′, B)

αp(B)

×G(l)(B′, p(−m−1)/2X)(p−1X)(ν(det B)−ν(det B′))/2.
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Proof. We have

F̃ (l)(B,X)

=
∑

W∈GLm−l(Zp)\eΩ(l)(B)

X−e(l)(B)G(l)(B[W−1], p(−m−1)/2X)X2ν(det W )

=
∑

B′∈L(l)
m−l,p/GLm−l(Zp)

∑
W∈GLm−l(Zp)\eΩ(l)(B′,B)

X−e(l)(B)G(l)(B′, p(−m−1)/2X)X2ν(det W )

=
∑

B′∈L(l)
m−l,p/GLm−l(Zp)

X−e(l)(B′)#(GLm−l(Zp)\Ω(B′, B))p(ν(det B)−ν(det B′))/2

×G(l)(B′, p(−m−1)/2X)(p−1X)(ν(det B)−ν(det B′))/2.

Thus the assertion follows from (2) of Lemma 5.1.1. ¤

Now let B
(1)
p (B, t) be the polynomial in t defined at the beginning

of Section 5. Then by Lemma 5.2.1 we have the following:

Lemma 5.2.3. Let n be the fixed positive even integer. Let B ∈ L(1)
n−1,p.

(1) Let p 6= 2, and supposse that B = Θn−n1−1,d⊥pB1 with d ∈ U and
B1 ∈ Ln1,p. Then

B(1)
p (B, t) =


(1 − ξ

(1)
(B)p(n1−n+1)/2t)

(n−n1−2)/2∏
i=1

(1 − p−2i+1t2) if n1 even,

(n−n1−1)/2∏
i=1

(1 − p−2i+1t2) if n1 odd.

(2) Let p = 2, and supposoe that B = 2Θ⊥B1 ∈ L′
n−1,2 with Θ ∈

Sn−n1−2(Z2)e ∩ GLn−n1−2(Z2) and B1 ∈ Sn1+1(Z2). Then

B(1)
p (B, t)

=


(1 − ξ

(1)
(B)p(n1−n+1)/2t)

(n−n1−2)/2∏
i=1

(1 − p−2i+1t2) if B1 is of type (I),

(n−n1−2)/2∏
i=1

(1 − p−2i+1t2) if B1 is of type (II) or (III).

For a non-degenerate half-integral matrix T over Zp of degree n, put

R(l)(T,X, t) =
∑

w

F̃ (l)
p (T [w], X)tν(det w).

This type of formal power series was first introduced by Andrianov
[And87] to study the standard L-function of Siegel modular form of in-
tegral weight. Therefore we call it the formal power series of Andrianov
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type. (See also Böcherer [Böc86].) The following proposition follows
from (1) of Lemma 5.1.1.

Proposition 5.2.4. Let m be a positive even integer and l = 0 or 1.

Let T ∈ L(l)
m−l,p. Then

∑
B∈L(1)

m−l,p

F̃
(l)
p (B,X)αp(T,B)

αp(B)
tν(det B) = tν(det T )R(l)(T,X, p−m+lt2).

The following theorem is due to [KK09].

Theorem 5.2.5. Let T be an element of L(1)
n−1,p. Then

R(1)(T,X, t) =
B

(1)
p (T, pn/2−1t)G̃

(1)
p (T,X, t)∏n−1

j=1 (1 − pj−1X−1t)(1 − pj−1Xt)
.

In [BS87], Böcherer and Sato got a similar formula for T ∈ Ln,p. We
note that the above formula for p 6= 2 can be derived directly from
Theorem 20.7 in [Shi00] (see also Zhuravlev [Zhu85]). However, we
note that we cannot use their results to prove the above formula for
p = 2. Now by Theorem 5,2,5, we can rewrite Hn−1(ω, d0, X, Y, t) in

terms of R̃n−1(d0, ω,X, Y, t) in the following way:

Theorem 5.2.6. We have

Hn−1(d0, ω,X, Y, t) =
κ(d0, n − 1, l, t)R̃n−1(d0, ω,X, Y, t)∏n

j=1(1 − pj−1−nXY t2)(1 − pj−1−nX−1Y t2)

for ω = εl.

Proof. By Lemma 5.2.2 and Proposition 5.2.4, we have

Hn−1(d0, ω,X, Y, t) =
∑

B∈L(1)
n−1,p(d0)

F̃
(1)
p (B,X)

αp(B)
ω(B)tν(det B)

×
∑

B′∈L(1)
n−1,p

Y −e(1)(B′)G
(1)
p (B′, p−(n+1)/2Y )αp(B

′, B)

αp(B′)
(p−1Y )(ν(det B)−ν(det B′))/2.

Let B and B′ be elements of L(1)
n−1,p, and suppose that αp(B

′, B) 6= 0.

Then we note that B ∈ L(1)
n−1,p(d0) if and only if B′ ∈ L(1)

n−1,p(d0). Hence
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by Theorem 5.2.2 we have

Hn−1(d0, ω,X, Y, t)

=
∑

B′∈L(1)
n−1,p(d0)

G
(1)
p (B′, p−(n+1)/2Y )Y −e(1)(B′)

αp(B′)
(pY −1)ν(det B′)/2ω(B′)

×
∑

B∈L(1)
n−1,p

F̃
(1)
p (B,X)αp(B

′, B)

αp(B)
(t2p−1Y )ν(det B)/2

=
∑

B′∈L(1)
n−1,p(d0)

G
(1)
p (B′, p−(n+1)/2Y )Y −e(1)(B′)

αp(B′)
tν(det B′)ω(B′)R(B′, X, t2Y p−n)

=
∑

B′∈L(1)
n−1,p(d0)

G̃
(1)
p (B′, X, p−nY t2)

αp(B′)
ω(B′)Y −e(1)(B′)tν(det B′)

× B
(1)
p (B′, p−n/2−1Y t2)G

(1)
p (B′, p−(n+1)/2Y )∏n

j=1(1 − pj−1−nXY t2)(1 − pj−1−nX−1Y t2)
.

¤

5.3. Formal power series of modified Koecher-Maass type.

For a, b ∈ Q×
p let (a, b)p the Hilbert symbol on Qp. Let r be an

even integer. Then for d0 ∈ Fp and l = 0, 1 let κ(d0, r − 1, l, t) and
κ(d0, r, l, t) be as those defined at the beginning of Section 5. We note
that κ(d0, r, l, t) = 1 and

κ(d0, r − 1, l, t) = ((−1)r/2, (−1)r/2d0)
l
p p−(r/2−1)lν(d0)

if p 6= 2. Let j = 0, 1, and d0 ∈ Fp. We then define a formal power

series P
(j)
r−j(d0, ω, ξ,X, t) in t by

P
(j)
r−j(d0, ω, ξ,X, t) = κ(d0, r−j, lω, t)−1

∑
B∈L(j)

r−j,p(d0)

F̃
(j)
p (B, ξ,X)

αp(B)
ω(B)tν(det B)

for ω = ι or ε, where lω = 0 or 1 according as ω = ι or ε. In particular

we put P
(j)
r−j(d0, ω,X, t) = P

(j)
r−j(d0, ω, 1, X, t). This type of formal power

series appears in an explicit formula of the Koecher-Maass series associ-
ated with the Siegel Eisenstein series and the Duke-Imamoḡlu-Ikeda lift
(cf. [IK04], [IK06]). Therefore we say that this formal power series is

of Koecher-Maass type. For T ∈ L(j)
r−j,p let G̃

(j)
p (T, ξ,X, t) be the poly-

nomial and for ξ = ±1, j = 0, 1 and ω = ι, ε, let P̃
(j)
r−j(n; d0, ω, ξ,X, Y, t)

be the formal power series in t as defined at the beginning of Section
5, which will be said to be of modified Koecher-Maass type.
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Remark. For a variable X we introduce the symbol X1/2 so that
(X1/2)2 = X, and for an integer a write Xa/2 = (X1/2)a. Under this con-

vention, we can write X−e(1)(T )tν(det T ) as Xδ2p(n−2)/2Xν(d0)(X−1/2t)ν(det T )

if T ∈ L′
m−1,p(d0) with a positive even integer m.

The relation between P̃
(j)
r−j(n; d0, ω, ξ,X, Y, t) and P

(j)
r−j(d0, ω, ξ,X, t)

will be given in the following proposition:

Proposition 5.3.1. Let r be a positive even integer. Let ω = εl with
l = 0, 1, and j = 0, 1. Then

P̃
(j)
r−j(n; d0, ω, ξ,X, Y, t) = P

(j)
r−j(d0, ω, ξ,X, tY −1/2)

r−j∏
i=1

(1−t4p−n−r+j−2+i).

Proof. For i = 0, ..., r − j put

P̃
(j)
r−j,i(d0, ω, ξ,X, t) =

∑
B∈L(j)

r−j,p(d0)

∑
D∈Dr−j,i

F̃
(j)
p (B[D−1], ξ,X)

αp(B)
ω(B)tν(det B).

Then by (2) of Lemma 5.1.1 we have

P̃
(j)
r−j,i(d0, ω, ξ,X, t)

=
∑

B∈L(j)
r−j,p(d0)

1

αp(B)

∑
B′∈L(j)

r−j,p

F̃
(j)
p (B′, ξ,X)αp(B

′, B, i)

αp(B′)
ω(B)

× p−(ν(det B)−ν(det B′))/2tν(det B).

Let B and B′ elements of L(j)
r−j,p, and suppose that αp(B

′, B, i) 6= 0.

Then we note that B ∈ L(j)
r−j,p(d0) if and only if B′ ∈ L(j)

r−j,p(d0). Hence
by (1) of Lemma 5.1.1 we have

P̃
(j)
r−j,i(d0, ω, ξ,X, t)

=
∑

B′∈L(j)
r−j,p(d0)

F̃
(j)
p (B′, ξ,X)

αp(B′)
pν(det B′)/2ω(B′)

∑
B∈L(j)

r−j,p

(tp−1/2)ν(det B)αp(B
′, B, i)

αp(B)

=
∑

B′∈L(j)
r−j,p(d0)

F̃
(j)
p (B′, ξ,X)

αp(B′)
pν(det B′)/2(tp−1/2)ν(det B′)(t2p−r+j−1)i#Dr−j,i.

By Lemma 3.2.18 in [And87], we have

#Dr−j,i =
φr−j(p)

φi(p)φr−j−i(p)
.
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Hence

P̃
(j)
r−j,i(d0, ω, ξ,X, t)

=
∑

B′∈L(j)
r−j,p(d0)

F̃
(j)
p (B′, ξ,X)

αp(B′)
ω(B′)tν(det B′) φr−j(p)

φi(p)φr−j−i(p)
(t2p−r+j−1)i

=
φr−j(p)

φi(p)φr−j−i(p)
κ(d0, r − j, lω, t)P

(j)
r−j(d0, ω, ξ,X, t)(t2p−r+j−1)i.

Then by the remark just before this proposition we obtain

P̃
(j)
r−j(n; d0, ω, ξ,X, Y, t)

=

r−j∑
i=0

(−1)ipi(i−1)/2(p−nt2Y )iκ(d0, r − j, lω, t)−1P̃
(j)
r−j,i(d0, ω, ξ,X, tY −1/2).

Thus, by (3.2.34) of [And87], we have

P̃
(j)
r−j(n; d0, ω, ξ,X, t)

=

r−j∑
i=0

(−1)ipi(i+1)/2(p−n−r+j−2t4)i φr−j(p)

φi(p)φr−j−i(p)
P

(j)
r−j(d0, ω, ξ,X, tY −1/2)

= P
(j)
r−j(d0, ω, ξ,X, tY −1/2)

r−j∏
i=1

(1 − t4p−n−r+j−2+i).

¤

Now we consider a partial series of P̃
(j)
r−j(n; d0, ω, ξ,X, Y, t). Let r be

an even integer. First let p 6= 2. Then put

Q(0)
r (n; d0, ε

l, ξ,X, Y, t)

=
∑

B′∈Sr(Zp,d0)∩Sr(Zp)

G̃
(l)
p (pB′, ξ,X, p−nt2Y )

αp(pB′)
ε(pB′)l(tY −1/2)ν(det pB′),

and

Q
(1)
r−1(n; d0, ε

l, ξ,X, Y, t) = ((d0, (−1)r/2)pp
(r−2)ν(d0)/2)l

×
∑

B′∈p−1Sr−1(Zp,d0)∩Sr−1(Zp)

G̃
(l)
p (pB′, ξ,X, p−nt2Y )

αp(pB′)
ε(pB′)l(tY −1/2)ν(det pB′).

Next let p = 2. Then put

Q
(1)
r−1(n; d0, ε

l, ξ,X, Y, t) = κ(d0, r − 1, l, t)−1

×
∑

B′∈Sr−1(Z2,d0)∩Sr−1(Zp)

G̃
(1)
2 (4B′, ξ,X, 2−nt2Y )

α2(4B′)
ε(4B′)l(tY −1/2)ν2(det(4B′)),
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and

Q(0)
r (n; d0, ε

l, ξ,X, Y, t) = κ(d0, r, l, t)
−1

×
∑

B′∈Sr(Z2,d0)∩Sr(Z2)e

G̃
(0)
2 (2B′, ξ,X, 2−nt2Y )

α2(2B′)
ε(B′)l(tY −1/2)ν(det(2B′)).

Here we make the convention that Q
(0)
0 (n; d0, ε

l, ξ,X, Y, t) = 1 or 0
according as ν(d0) = 0 or not.

To consider the relation between

P̃
(j)
r−j(n; d0, ε

l, ξ,X, Y, t) and Q
(j)
r−j(n; d0, ε

l, ξ,X, Y, t),

and to express R̃n−1(d0, ε
l, X, Y, t) in terms of P̃

(j)
r−j(n; d0, ε

l, ξ,X, Y, t),
we provide some more preliminary results. First we review the canon-
ical forms of the quadratic forms over Z2 following Watson [Wat76].

Lemma 5.3.2. Let B ∈ L×
m,2. Then B is equivalent, over Z2, to a

matrix of the following form:

⊥r
i=02

i(Vi⊥Ui),

where Vi = ⊥ki
j=1cij with 0 ≤ ki ≤ 2, cij ∈ Z∗

2 and Ui = 1
2
Θmi,d with

0 ≤ mi, d ∈ U . The degrees ki and mi of the matrices are uniquely
determined by B. Furthermore we can take the matrix ⊥r

i=02
i(Vi⊥Ui)

uniquely so that it satisfies the following conditions:

(c.1) ci1 = ±1 or ±3 if ki = 1 and (ci1, ci2) = (1,±1), (1,±3), (−1,−1),
or (−1, 3) if ki = 2;

(c.2) ki+2 = ki = 0 if Ui+2 = 1
2
Θmi+2,5 with mi+2 > 0;

(c.3) − det Vi ≡ 1 mod 4 if ki = 2 and Ui+1 = 1
2
Θmi+1,5 with mi+1 >

0;
(c.4) (−1)ki−1 det Vi ≡ 1 mod 4 if ki, ki+1 > 0;

(c.5) Vi 6=
(

−1 0
0 ci2

)
if ki−1 > 0;

(c.6) Vi = φ, (±1),

(
1 0
0 ±1

)
, or

(
−1 0
0 −1

)
if ki+2 > 0.

The matrix satisfying the conditions (c.1) ∼ (c.6) is called the canonical
form of B.

The following lemma follows from [[Kit93], Theorem 3.4.2].

Lemma 5.3.3. Let m and r be integers such that 0 ≤ r ≤ m, and
d0 ∈ Z×

p .
(1) Let p 6= 2, and T ∈ Sr(Zp, d0). Then for any d ∈ U we have

ε(Θm−r,d⊥T ) = ((−1)[(m−r+1)/2]d, d0)pε(T ).

Furthermore we have

ε(pT ) =

{
(p, d0)pε(T ) if r even,

(p, (−1)(r+1)/2)pε(T ) if r odd,
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and

ε(aT ) = (a, d0)
r+1
p ε(T )

for any a ∈ Z∗
p.

(2) Let p = 2, and T ∈ Sr(Z2, d0). Suppose that m − r is even, and let
d ∈ U . Then for Θ = 2Θm−r,d or Θ = 2Θm−r−2⊥(−d) we have

ε(Θ⊥T ) = (−1)(m−r)(m−r+2)/8((−1)(m−r)/2d, (−1)[(r+1)/2]d0)2ε(T ),

and

ε(Θm−r,d⊥T ) = (−1)(m−r)(m−r+2)/8(2, d)2((−1)(m−r)/2d, (−1)[(r+1)/2]d0)2ε(T ).

Furthermore we have

ε(2T ) = (2, d0)
r+1
2 ε(T ),

and

ε(a⊥T ) = (a, (−1)[(r+1)/2]+1d0)2ε(T )

for any a ∈ Z∗
2, and

ε(aT ) =

{
(a, d0)2ε(T ) if r even,

(a, (−1)(r+1)/2)2ε(T ) if r odd

for any a ∈ Z∗
2.

Henceforth, for a while, we abbreviate Sr(Zp) and Sr(Zp, d) as Sr,p

and Sr,p(d), respectively. Furthermore we abbreviate Sr(Z2)x and Sr(Z2, d)x

as Sr,2;x and Sr,2(d)x, respectively, for x = e, o.

Let m be an even integer. Let p 6= 2. For ξ = ±1 let H
(0)
m,ξ and H

(1)
m−1,ξ

be functions on Sm(Zp)
× and on Sm−1(Zp)

×, respectively satisfying the
following conditions:

(H-p-1) H
(0)
m,ξ(Θm−2r,d⊥pB) = H

(0)
2r,ξχ(d)(pB) for any ξ = ±1, d ∈ U and

B ∈ S2r(Zp);

(H-p-2) H
(1)
m−1,ξ(Θm−2r−2,d⊥pB) = H

(1)
2r+1,ξ(pdB) for any ξ = ±1, d ∈ U

and B ∈ S2r+1(Zp);

(H-p-3) H
(0)
m,ξ(Θm−2r−1⊥pB) = H

(1)
2r+1,ξ(−pB) for any ξ = ±1, and B ∈

S2r+1(Zp);

(H-p-4) H
(1)
m−1,ξ(Θm−2r−1,d⊥pB) = H

(0)
2r,ξχ(d)(pB) for any ξ = ±1, d ∈ U

and B ∈ S2r(Zp);

(H-p-5) H
(0)
m,ξ(dB) = H

(0)
m,ξ(B) for any ξ = ±1, d ∈ Z∗

p and B ∈ Sm(Zp).

Let d0 ∈ Fp. Then we put

Q(1)(d0, H
(1)
m−1,ξ, 2r + 1, εl, t) = κ(d0,m − 1, l, t)−1

×
∑
d∈U

∑
B∈p−1S2r+1,p(d0d)∩S2r+1,p

H
(1)
m−1,ξ(Θm−2r−2,d⊥pB)ε(Θm−2r−2,d⊥pB)l

αp(Θm−2r−2,d⊥pB)
tν(det(pB)).
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For any d ∈ U we put

Q(1)(d0, d,H
(1)
m−1,ξ, 2r, ε

l, t) = κ(d0,m − 1, l, t)−1

×
∑

B∈S2r,p(d0d)∩S2r,p

H
(1)
m−1,ξ((−Θm−2r−1,d)⊥pB)ε((−Θm−2r−1,d)⊥pB)l

αp((−Θm−2r−1,d)⊥pB)
tν(det(pB)),

and

Q(0)(d0, d,H
(0)
m,ξ, 2r, ε

l, t)

=
∑

B∈S2r,p(d0d)∩S2r,p

H
(0)
m,ξ(Θm−2r,d⊥pB)ε(Θm−2r,d⊥pB)l

α2(Θm−2r,d⊥pB)
tν(det(pB)).

Here we make the convention that

Q(0)(d0, 1, H
(0)
m,ξ,m, εl, t)

=
∑

B∈Sm,p(d0)∩Sm,p

H
(0)
m,ξ(pB)ε(pB)l

α2(pB)
tν(det(pB)).

Furthermore put

Q(0)(d0, H
(0)
m,ξ, 2r + 1, εl, t)

=
∑
d∈U

∑
B∈p−1S2r+1,p(d0d)∩S2r+1,p

H
(0)
m,ξ(Θm−2r−1,d⊥pB)ε(Θm−2r−1,d⊥pB)l

αp(Θm−2r−1,d⊥pB)
tν(det(pB)).

Let p = 2. Let H
(0)
m,ξ and H

(1)
m−1,ξ be functions on Sm(Zp)

× and on

Sm−1(Z2)
×, respectively satisfying the following conditions:

(H-2-1) H
(0)
m,ξ(Θm−2r,d⊥2B) = H

(0)
2r,ξχ(d)(2B) for any ξ = ±1, d ∈ U and

B ∈ S2r(Z2);

(H-2-2) H
(1)
m−1,ξ(2Θm−2r−2,d⊥4B) = H

(1)
2r+1,ξ(4dB) for any ξ = ±1, d ∈ U

and B ∈ S2r+1(Z2);

(H-2-3) H
(0)
m,ξ(2⊥Θm−2r−2⊥2B) = H

(1)
2r+1,ξ(−4B) for any ξ = ±1, and

B ∈ S2r+1(Z2);

(H-2-4) H
(1)
m−1,ξ(−a⊥2Θm−2r−2,d⊥4B) = H

(0)
2r,ξχ(a)(2B) for any ξ = ±1, a ∈

U and B ∈ S2r(Z2),

(H-2-5) H
(0)
m,ξ(dB) = H

(0)
m,ξ(B) for any ξ = ±1, d ∈ Z∗

2 and B ∈ S2r(Z2).
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Let d0 ∈ F2. Then we put

Q(1)(d0, H
(1)
m−1,ξ, 2r + 1, εl, t) = κ(d0,m − 1, l, t)−1

×

∑
d∈U

∑
B∈S2r+1,2(d0d)∩S2r+1,2;e

H
(1)
m−1,ξ(2Θm−2r−2,d⊥4B)

× ε(2Θm−2r−2,d⊥4B)l

α2(2Θm−2r−2,d⊥4B)
tm−2r−2+ν(det(4B))

+
∑

B∈S2r+1,2(d0)∩S2r+1,2;o

H
(1)
m−1,ξ(2Θm−2r−2⊥4B)

× ε(2Θm−2r−2⊥4B)l

α2(2Θm−2r−2⊥4B)
tm−2r−2+ν(det(4B))

+
∑

B∈S2r+2,2(d0)∩S2r+2,2;o

H
(1)
m−1,ξ(−1⊥2Θm−2r−4⊥4B)

× ε(−1⊥2Θm−2r−4⊥4B)l

α2(−1⊥2Θm−2r−4⊥4B)
tm−2r−4+ν(det(4B))

}
.

We note that

Q(1)(d0, H
(1)
m−1,ξ, m − 1, εl, t) = κ(d0,m − 1, l, t)−1

×
∑

B∈Sm−1,2(d0)∩Sm−1,2

H
(1)
m−1,ξ(4B)

ε(4B)l

α2(4B)
tν(det(4B)).

For any d ∈ U put

Q(1)(d0, d,H
(1)
m−1,ξ, 2r, ε

l, t) = κ(d0,m − 1, l, t)−1

×
∑

B∈S2r,2(d0d)∩S2r,2;e

H
(1)
m−1,ξ(−d⊥2Θm−2r−2⊥4B)

× ε(−d⊥2Θm−2r−2⊥4B)l

α2(−d⊥2Θm−2r−2⊥4B)
tm−2r−2+ν(det(4B)),

and

Q(0)(d0, d,H
(0)
m,ξ, 2r, ε

l, t) = κ(d0,m, l, t)−1

×
∑

B∈S2r,2(d0d)∩S2r,2;e

H
(0)
m,ξ(Θm−2r,d⊥2B)ε(Θm−2r,d⊥2B)l

α2(Θm−2r,d⊥2B)
tν(det(2B)).

Here we make the convention that

Q(0)(d0, 1, H
(0)
m,ξ,m, εl, t) = κ(d0, m, l, t)−1

×
∑

B∈Sm,2(d0)∩Sm,2;e

H
(0)
m,ξ(2B)ε(2B)l

α2(2B)
tν(det(2B)).
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Furthermore put

Q(0)(d0, H
(0)
m,ξ, 2r + 1, εl, t) = κ(d0,m, l, t)−1

×
∑

B∈S2r+2,2(d0)∩S2r+2,2;o

H
(0)
m,ξ(Θm−2r−2⊥2B)ε(Θm−2r−2⊥2B)l

α2(Θm−2r−2⊥2B)
tν(det(2B)).

Proposition 5.3.4. (1) Let p 6= 2.

(1.1) We have

Q(0)(d0, H
(0)
m,ξ, 2r + 1, εl, t) =

Q(1)(d0, H
(1)
2r+1,ξ, 2r + 1, εl, t)

φ(m−2r−2)/2(p−2)

if lν(d0) = 0, and

Q(0)(d0, H
(0)
m,ξ, 2r + 1, ε, t) = 0

if ν(d0) = 1.
(1.2) Let d ∈ U . Then

Q(0)(d0, d,H
(0)
m,ξ, 2r, ε

l, t)

=
(1 + p−(m−2r)/2χ(d))Q(0)(d0d, 1, H

(0)
2r,ξχ(d), 2r, ε

l, t)

2φ(m−2r)/2(p−2)

if lν(d0) = 0, and

Q(0)(d0, d,H
(0)
m,ξ, 2r, ε, t) = 0

if ν(d0) = 1.

(2) Let p = 2.

(2.1) We have

Q(0)(d0, H
(0)
m,ξ, 2r + 1, εl, t) =

Q(1)(d0, H
(1)
2r+1,ξ, 2r + 1, εl, t)

φ(m−2r−2)/2(2−2)

if lν(d0) = 0, and

Q(0)(d0, H
(0)
m,ξ, 2r + 1, ε, t) = 0

if ν(d0) > 0.
(2.2) Let d ∈ U . Then

Q(0)(d0, d,H
(0)
m,ξ, 2r, ε

l, t)

=
(1 + 2−(m−2r)/2χ(d))Q(0)(d0d, 2r,H

(0)
2r,ξχ(d), 2r, ε

l, t)

2φ(m−2r)/2(2−2)

if lν(d0) = 0, and

Q(0)(d0, d,H
(0)
m,ξ, 2r, ε, t) = 0

if ν(d0) > 0.
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Proof. (1) We note that

(−Θm−2r−1,d)⊥pB ∼ d(−Θm−2r−1)⊥pB ≈ (−Θm−2r−1)⊥dpB

for d ∈ U and B ∈ p−1S2r+1,p(d0d), and the mapping

S2r+1,p(d0d) 3 B 7→ dB ∈ S2r+1,p(d0)

is a bijection. Furthermore by Lemma 5.3.3 we have

ε((−Θm−2r−1,d)⊥pB) = (d, d0)pε(pB),

and ε(dpB) = ε(pB). Thus the assertion (1.1) follows from (H-p-3),(H-
p-5) and Lemma 5.1.3. Now by (H-p-2) and Lemmas 5.1.3 and 5.3.3,
we have

Q(0)(d0, d,H
(0)
m,ξ, 2r, ε

l, t) =
(1 + p−(m−2r)/2χ(d))((−1)(m−2r)/2d, d0)

l
p

2φ(m−2r)/2(p−2)

×Q(0)(d0d,H
(0)
2r,ξχ(d), 2r, ε

l, t).

Thus the assertion (1.2) immediately follows in case lν(d0) = 0. Now
suppose that l = 1 and ν(d0) = 1. Take an element a ∈ Z∗

p such
that (a, p)p = −1. Then the mapping S2r(Zp) 3 B 7→ aB ∈ S2r(Zp)
induces a bijection from S2r,p(dd0) to itself, and ε(apB) = −ε(pB) and
αp(apB) = αp(pB) for B ∈ S2r,p(dd0). Furthermore by (H-p-5) we have

Q(0)(d0d,H
(0)
2r,ξχ(d), 2r, ε

l, t) =
∑

B∈p−1S2r(dd0)∩S2r

H
(0)
2r,ξχ(d)(apB)ε(apB)

αp(apB)

= −Q(0)(d0d,H
(0)
2r,ξχ(d), 2r, ε

l, t).

Hence Q(0)(d0d,H
(0)
2r,ξχ(d), 2r, ε

l, t) = 0. This completes the assertion.

(2) We prove (2.1). First suppose that l = 0, or l = 1 and d0 ≡
1 mod 4. Fix a complete set B of representatives of (S2r+2,2(d0) ∩
S2r+2,2;o)/ ≈ . Then 2−1S2r+1,2(d0) ∩ S2r+1,2 = ∪B∈BS2r+1,2(B). We
note that for any B′ ∈ S2r+1,2(B), we have 1⊥B′ ≈ B, and hence

H
(0)
2r+2,ξ(2B) = H

(0)
2r+2,ξ(2⊥2B′) = H

(1)
2r+1,ξ(4B

′).

Thus, similarly to (1.1) we have

Q(0)(d0, H
(0)
m,ξ, 2r + 1, ι, t)

=
∑
B∈B

H
(0)
2r+2,ξ(2B)

φ(m−2r−2)/2(2−2)2(r+1)(2r+3)α2(B)
#(S̃2r+2,2(B)/ ∼)tν(det(2B)).

Hence by Lemma 5.1.5 we have

Q(0)(d0, H
(0)
m,ξ, 2r + 1, εl, t) = 2(2r+1)rt−2r

×
∑

B′∈2−1S2r+1,2(d0)∩S2r+1,2

H
(0)
2r+1,ξ(4B

′)

φ(m−2r−2)/2(2−2)α2(4B′)
tν(det(4B′)).
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This proves the assertion for l = 0. Now let d0 ≡ 1 mod 4, and put
ξ0 = (2, d0)2. Then by Lemma 5.3.3 we have

ε(Θm−2r−2⊥2B) = (−1)m(m+2)/8+r(r+1)/2+(r+1)2ξ0ε(B).

Furthermore for any a ∈ Z∗
2 we have ε(aB)l = ε(B)l, and α2(aB) =

α2(B). Thus, by using the same argument as above we obtain

Q(0)(d0, H
(0)
m,ξ, 2r + 1, ε, t) = (−1)m(m+2)/8ξ0

×
∑
B∈B

H
(0)
2r+2,ξ(2B)(−1)m(m+2)/8+r(r+1)/2+(r+1)2ξ0ε(B)

φ(m−2r−2)/2(2−2)2(r+1)(2r+3)α2(B)
#(S̃2r+2,2(B)/ ∼)tν(det(2B)).

We note that ε(1⊥B′) = ε(4B′) for B′ ∈ S2r+1,2. Hence, again by
Lemma 5.1.5, we have

Q(0)(d0, H
(0)
m,ξ, 2r + 1, εl, t) = (−1)r(r+1)/2((−1)r+1, (−1)r+1)22

(2r+1)rt−2r

×
∑

B′∈2−1S2r+1,2(d0)∩S2r+1,2

H
(0)
2r+1,ξ(4B

′)ε(B)

φ(m−2r−2)/2(2−2)α2(4B′)
tν(det(4B′)).

This proves the assertion for l = 1 and d0 ≡ 1 mod 4.
Next suppose that l = 1 and 4−1d0 ≡ −1 mod 4, or l = 1 and

8−1d0 ∈ Z∗
2. Then there exists an element a ∈ Z∗

2 such that (a, d0)2 =
−1. Then the map 2B 7→ 2aB induces a bijection of 2S2r+2(Z2, d0)o

to itself. Furthermore H
(0)
2r+2,ξ(2aB) = H

(0)
2r+2,ξ(2B), ε(2aB) = −ε(2B),

and α2(2aB) = α2(2B). Thus the assertion can be proved by using the
same argument as in the proof of (1.2). The assertion (2.2) can be
proved by (H-2-1) and Lemmas 5.1.4 and 5.3.3 similarly to (1.2). ¤
Proposition 5.3.5. (1) Let p 6= 2.

(1.1) We have

Q(1)(d0, H
(1)
m−1,ξ, 2r + 1, εl, t) =

Q(1)(d0, H
(1)
2r+1,ξ, 2r + 1, εl, t)

φ(m−2r−2)/2(p−2)
.

(1.2) Let d ∈ U . Then

Q(1)(d0, d,H
(0)
m−1,ξ, 2r, ε

l, t) =
Q(0)(d0d, H

(0)
2r,ξχ(d), 2r, ε

l, t)

2φ(m−2r−2)/2(p−2)

if lν(d0) = 0, and

Q(1)(d0, d,H
(0)
m−1,ξ, 2r, ε

l, t) = 0

otherwise.

(2) Let p = 2.

(2.1) We have

Q(1)(d0, H
(1)
m−1,ξ, 2r + 1, εl, t) =

Q(1)(d0, H
(1)
2r+1,ξ, 2r + 1, εl, t)

φ(m−2r−2)/2(2−2)
.
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(2.2) Let d ∈ U . Then

Q(1)(d0, d,H
(0)
m−1,ξ, 2r, ε

l, t) =
Q(0)(d0d, H

(0)
2r,ξχ(d), 2r, ε

l, t)

2φ(m−2r−2)/2(2−2)

if lν(d0) = 0, and we have

Q(1)(d0, d,H
(0)
m−1,ξ, 2r, ε

l, t) = 0

otherwise.

Proof. (1.1) We may suppose that r < (m−2)/2. We note the mapping
S2r+1(Zp) 3 B 7→ dB ∈ S2r+1(Zp) induces a bijection of S2r+1(Zp)(d0d)
to S2r+1(Zp)(d0). We also note that ε(dB) = ε(B), and αp(dB) =
αp(B). Hence, by (H-p-2), Lemmas 5.1.3 and 5.3.3, similarly to (1.2)
of Proposition 5.3.4, we have

Q(1)(d0, H
(1)
m,ξ, 2r + 1, εl, t) = p(m/2−1)lν(d0)((−1)m/2d0, (−1)lm/2)p

×
∑

B∈p−1S2r+1,p(d0)∩S2r+1,p

H
(1)
2r+1,ξ(pB)ε(pB)l

2φ(m−2r−2)/2(p−2)αp(pB)
tν(det(pB))

×
∑
d∈U

(1 + p−(m−2r−2)/2χ(d))((−1)(m−2r−2)/2d, (−1)r+1d0d)l
p.

Thus the assertion clearly holds if lν(d0) = 0. Suppose that l = 1 and
ν(d0) = 1. Then

((−1)(m−2r−2)/2d, (−1)r+1d0d)p

= χ(d)((−1)r+1, (−1)r+1d0d)p((−1)m/2, (−1)m/2d0)p,

and therefore∑
d∈U

(1 + p−(m−2r−2)/2χ(d))((−1)(m−2r−2)/2d, (−1)r+1d0)p

= 2p−(m−2r−2)/2((−1)r+1, (−1)r+1d0d)p((−1)m/2, (−1)m/2d0)p.

This completes the assertion.
(1.2) By (H-p-4) and by Lemmas 5.1.3 and 5.3.3, we have

Q(1)(d0, d,H
(1)
m−1,ξ, 2r, ε

l, t)

=
Q(0)(d0d,H

(0)
2r,ξχ(d), 2r, ε

l, t)

2φ(m−2r−2)/2(p−2)
((−1)(m−2r)/2d, d0)

l
p.

Thus the assertion (1.2) immediately follows if lν(d0) = 0. The asser-
tion for l = 1 and ν(d0) = 1 can also be proved by using the same
argument as the latter half of (1.2) of Proposition 5.3.4.
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(2.1) We may suppose that r < (m − 2)/2. Put

Q(11)(d0, H
(1)
m−1,ξ, 2r + 1, εl, t) = κ(d0,m − 1, l, t)−1

×
∑
d∈U

∑
B∈S2r+1,2(d0d)∩S2r+1,2;e

H
(1)
m−1,ξ(2Θm−2r−2,d⊥4B)εl(2Θm−2r−2,d⊥4B)

α2(2Θm−2r−2,d⊥4B)

×tm−2r−2+ν(det(4B)),

Q(12)(d0, H
(1)
m−1,ξ, 2r + 1, εl, t) = κ(d0,m − 1, l, t)−1

×
∑

B∈S2r+1,2(d0)∩S2r+1,2;o

H
(1)
m−1,ξ(2Θm−2r−2⊥4B)εl(2Θm−2r−2⊥4B)

α2(2Θm−2r−2⊥4B)

×tm−2r−2+ν(det(4B)),

and

Q(13)(d0, H
(1)
m−1,ξ, 2r + 1, εl, t) = κ(d0,m − 1, l, t)−1

×
∑

B∈S2r+2,2(d0)∩S2r+2,2;o

H
(1)
m−1,ξ(−1⊥2Θm−2r−4⊥4B)

× εl(−1⊥2Θm−2r−4⊥4B)

α2(−1⊥2Θm−2r−4⊥4B)
tm−2r−4+ν(det(4B)).

Then

Q(1)(d0, H
(1)
m−1,ξ, 2r + 1, εl, t) = Q(11)(d0, H

(1)
m−1,ξ, 2r + 1, εl, t)

+ Q(12)(d0, H
(1)
m−1,ξ, 2r + 1, εl, t) + Q(13)(d0, H

(1)
m−1,ξ, 2r + 1, εl, t).

We have

ε(2Θm−2r−2,d⊥4B) = (−1)m(m−2)/8(−1)r(r+1)/2((−1)m/2, (−1)m/2d0)2

×((−1)r+1, (−1)r+1d0d)2(d0, d)2 ε(4B)

for d ∈ U and B ∈ S2r+1(Z2, dd0). Thus, similarly to (1.1), we obtain

Q(11)(d0, H
(1)
m−1,ξ, 2r + 1, εl, t) = (−1)r(r+1)l/2t−2r((−1)r+1, (−1)r+1d0)

l
2

× 2(m/2−1)lν(d0)
∑

B∈S2r+1,2(d0)∩S2r+1,2;e

2r(2r+1)H
(1)
2r+1,ξ(4B)ε(4B)l

2 · 2m−2r−2φ(m−2r−2)/2(2−2)α2(4B)
tν(det(4B))

×
∑
d∈U

(1 + 2−(m−2r−2)/2χ(d))(d, d0)
l
2.
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It follows from Lemma 5.3.2, (c.2) that Q(12)(d0, H
(1)
m−1,ξ, 2r + 1, εl, t)

can also be expressed as

Q(12)(d0, H
(1)
m−1,ξ, 2r + 1, εl, t) = κ(d0,m − 1, l, t)−1

× 1

2

∑
d∈U

∑
B∈S2r+1,2(d0d)∩S2r+1,2;o

H
(1)
m−1,ξ(2Θm−2r−2,d⊥4B)εl(2Θm−2r−2,d⊥4B)

α2(2Θm−2r−2,d⊥4B)

×tm−2r−2+ν(det(4B)).

Hence, in the same manner as above, we obtain

Q(12)(d0, H
(1)
m−1,ξ, 2r + 1, εl, t) = (−1)r(r+1)l/2t−2r((−1)r+1, (−1)r+1d0)

l
2

× 2(m/2−1)lν(d0)
∑

B∈S2r+1,2(d0)∩S2r+1,2;o

2r(2r+1)H
(1)
2r+1,ξ(4B)ε(4B)l

2 · 2m−2r−2φ(m−2r−2)/2(2−2)α2(4B)
tν(det(4B))

×
∑
d∈U

(d, d0)
l
2.

Furthermore we have

ε(−1⊥2Θm−2r−4⊥4B) = (−1)m(m−2)/8(−1)r(r+1)/2((−1)m/2, (−1)m/2d0)2

×((−1)r+1, (−1)r+1d0)2(2, d0)2ε(2B)

for d ∈ U and B ∈ S2r+2(Z2, dd0) ∩ S2r+2,2;o. Hence

Q(13)(d0, H
(1)
m−1,ξ, 2r + 1, εl, t) = (−1)r(r+1)l/2t−2r−2((−1)r+1, (−1)r+1d0)

l
2

×(2, d0)
l
2 2(m/2−1)lν(d0)

∑
B∈S2r+2,2(d0)∩S2r+2,2;o

H
(0)
2r+2,ξ(2B)ε(4B)l

φ(m−2r−4)/2(2−2)α2(2B)
tν(det(4B))

= (((−1)r+12, d0)2(−1)(r+1)(r+2)/2)l2(m/2−1)lν(d0)

×
∑

B∈S2r+2,2(d0)∩S2r+2,2;o

H
(0)
2r+2,ξ(2B)ε(2B)l

φ(m−2r−4)/2(2−2)α2(2B)
tν(det(2B))

=
Q(0)(d0, H

(0)
2r+2,ξ, 2r + 1, εl, t)

φ(m−2r−4)/2(2−2)
2(m/2−1)lν(d0).

First suppose that l = 0 or ν(d0) is even. Then (d, d0)
l
2 = 1. Hence

Q(11)(d0, H
(1)
m−1,ξ, 2r + 1, εl, t) + Q(12)(d0, H

(1)
m−1,ξ, 2r + 1, εl, t)

=
Q(1)(d0, H

(1)
2r+1,ξ, 2r + 1, εl, t)

2(m−2r−2)(1−ν(d0)/2)φ(m−2r−2)/2(2−2)
.

Furthermore by (2.1) of Proposition 5.3.4, we have

Q(13)(d0, H
(1)
m−1,ξ, 2r + 1, εl, t) =

Q(1)(d0, H
(1)
2r+1,ξ, 2r + 1, εl, t)

φ(m−2r−4)/2(2−2)
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if d0 ≡ 1 mod 4, and

Q(13)(d0, H
(1)
m−1,ξ, 2r + 1, εl, t) = 0

if 4−1d0 ≡ −1 mod 4. Thus summing up these two quantities, we prove
the assertion. Next suppose that l = 1 and ν(d0) = 3. Then, by using
the same argument as above we obtain

Q(13)(d0, H
(1)
m−1,ξ, 2r + 1, εl, t) = 0.

We also note that (d, d0) = χ(d). Hence

Q(12)(d0, H
(1)
m−1,ξ, 2r + 1, ε, t) = 0,

and therefore

Q(11)(d0, H
(1)
m−1,ξ, 2r + 1, ε, t) = (−1)r(r+1)/2t−2r2r(2r+1)((−1)r+1, (−1)r+1d0)2

×23(m/2−1)
∑

B∈S2r+1,2(d0)∩S2r+1,2;e

H
(1)
2r+1,ξ(4B)ε(4B)

2 · 2m−2r−2φ(m−2r−2)/2(2−2)α2(4B)
tν(det(4B))

×
∑
d∈U

(1 + 2−(m−2r−2)/2χ(d))χ(d))

= (−1)r(r+1)/2t−2r2r(2r+1)((−1)r+1, (−1)r+1d0)2 23r

×
∑

B∈S2r+1,2;e(d0)

H
(1)
2r+1,ξ(4B)ε(4B)

φ(m−2r−2)/2(2−2)α2(4B)
tν(det(4B)).

This proves the assertion.
(2.2) The assertion can be proved in the same manner as in (1.2). ¤

Now to apply Propositions 5.3.4 and 5.3.5 to the formal power se-

ries R̃n−1(d0, ω,X, Y, t) and Q
(1)
2r+1(d0, ω, η,X, Y, t) we give some more

lemmas.

Lemma 5.3.6. Let m be an even integer, and r an integer such that
r ≤ m. Let d ∈ U and ξ0 = ±1.
(1) Suppose that r is even.

(1.1) Let B′ ∈ Sr(Zp). Then

G̃(0)
p (Θm−r,d⊥pB′, ξ0, X, t) = G̃(0)

p (pB′, ξ0χ(d), X, t).

(1.2) Let B′ ∈ Sr−1(Zp). Then

G̃(1)
p (Θm−r,d⊥pB′, ξ0, X, t) = G̃(1)

p (pdB′, ξ0, X, t).

(2) Suppose that r is odd.

(2.1) Let B′ ∈ Sr(Zp). Then

G̃(0)
p (Θm−r,d⊥pB′, ξ0, X, t) = G̃(1)

p (−pdB′, ξ0, X, t).
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(2.2) Let B′ ∈ Sr−1(Zp). Then

G̃(1)
p (Θm−r,d⊥pB′, ξ0, X, t) = G̃(0)

p (pB′, ξ0χ(d), X, t).

Proof. Let m − r be even. Then by Lemma 9 of [Kit84], we have

G(0)
p (Θm−r,d⊥pB′, ξ0, X) = G(0)

p (pB′, ξ0χ(d), X)

for B′ ∈ Sr(Zp). Hence by Lemma 5.2.2 we have

F̃ (0)
p (Θm−r,d⊥pB′, ξ0, X) = F̃ (0)

p (pB′, ξ0χ(d), X)

for B′ ∈ Sr(Zp). Thus the assertion (1.1) follows from (1.1) of Lemma
5.1.2. Furthermore we have

F̃ (1)
p (Θm−r,d⊥pB′, ξ0, X) = F̃p(1⊥Θm−r,d⊥pB′, ξ0, X)

= F̃p(d⊥Θm−r⊥pB′, ξ0, X) = F̃p(1⊥Θm−r⊥pdB′, ξ0, X)

= F̃p(1⊥pdB′, ξ0, X) = F̃ (1)
p (pdB′, ξ0, X)

for B′ ∈ Sr−1(Zp). Thus the assertion (1.2) follows from (1.2) of Lemma
5.1.2. The other assertions can be proved in a similar way. ¤

Lemma 5.3.7. Let p = 2. Let m and r be even integers, and ξ0 = ±1.
(1) Let d ∈ U .

(1.1) Let B′ ∈ Sr(Z2)e. Then

G̃
(0)
2 (Θm−r,d⊥2B′, ξ0, X, t) = G̃

(0)
2 (2B′, ξ0χ(d), X, t),

(1.2) Let B′ ∈ Sr−1(Z2). Then

G̃
(1)
2 (2Θm−r,d⊥4B′, ξ0, X, t) = G̃

(1)
2 (4dB′, ξ0, X, t).

(2)

(2.1) Let a ∈ U and B′ ∈ Sr(Z2). Then

G̃
(1)
2 (−a⊥2Θm−r−2⊥4B′, ξ0, X, t) = G̃

(0)
2 (2B′, ξ0χ(a), X, t).

(2.2) Let B′ ∈ Sr−1(Z2)e and a ∈ Z∗
2. Then

G̃
(0)
2 (Θm−r⊥2a⊥2B′, ξ0, X, t) = G̃

(1)
2 (4aB′, ξ0, X, t).

Proof. The assertion can be proved in a way similar to Lemma 5.3.6.
¤

Let R̃n−1(d0, ω,X, Y, t) be the formal power series defined at the

beginning of Section 5. We express R̃n−1(d0, ω,X, Y, t) in terms of

Q̃
(0)
2r (d0d, ω, χ(d), X, Y, t) and Q̃

(1)
2r+1(d0, ω, 1, X, Y, t). Henceforth, for d0 ∈

Fp and non-negative integers m, r such that r ≤ m, put U(m, r, d0) =
{1},U ∩ {d0}, or U according as r = 0, r = m, or 1 ≤ r ≤ m − 1.
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Theorem 5.3.8. Let d0 ∈ Fp, and ξ0 = χ(d0). For d ∈ U(n − 1, n −
2r − 1, d0) put

D2r(d0, d, Y, t)

=

{
(1 − ξ0p

−n−1/2Y t2) if r = 0,

(1 − ξ0p
−1/2Y )(1 + pr−1/2χ(d)Y )(1 − p−n−1/2+rχ(d)Y t2) if r > 0.

(1) Suppose that p 6= 2.

(1.1) Let ω = ι, or ω = ε and ν(d0) = 0. Then

R̃n−1(d0, ω,X, Y, t)

=

(n−2)/2∑
r=0

∏r−1
i=1 (1 − p2i−1Y 2)

∏(n−2r−2)/2
i=1 (1 − p−2i−n−1Y 2t4)

2φ(n−2r−2)/2(p−2)

×
∑

d∈U(n−1,n−2r−1,d0)

D2r(d0, d, Y, t)Q̃
(0)
2r (n; d0d, ω, χ(d), X, Y, t)

+

(n−2)/2∑
r=0

∏r
i=1(1 − p2i−1Y 2)

∏(n−2r−2)/2
i=1 (1 − p−2i−n−1Y 2t4)

φ(n−2r−2)/2(p−2)

×(1 − ξ0p
−1/2Y )Q̃

(1)
2r+1(n; d0, ω, 1, X, Y, t).

(1.2) Let ν(d0) = 1. Then

R̃n−1(d0, ε,X, Y, t)

=

(n−2)/2∑
r=0

∏r
i=1(1 − p2i−1Y 2)

∏(n−2r−2)/2
i=1 (1 − p−2i−n−1Y 2t4)

φ(n−2r−2)/2(p−2)

×(1 − ξ0p
−1/2Y )Q̃

(1)
2r+1(n; d0, ε, 1, X, Y, t).

(2) Suppose that p = 2.

(2.1) Let ω = ι, or ω = ε and ν(d0) = 0. Then

R̃n−1(d0, ω,X, Y, t)

=

(n−2)/2∑
r=0

∏r−1
i=1 (1 − 22i−1Y 2)

∏(n−2r−2)/2
i=1 (1 − 2−2i−n−1Y 2t4)

2φ(n−2r−2)/2(2−2)

×
∑

d∈U(n−1,n−2r−1,d0)

D2r(d0, d, Y, t)Q̃
(0)
2r (n; d0d, ω, χ(d), X, Y, t)

+

(n−2)/2∑
r=0

∏r
i=1(1 − 22i−1Y 2)

∏(n−2r−2)/2
i=1 (1 − 2−2i−n−1Y 2t4)

φ(n−2r−2)/2(2−2)

×(1 − ξ0p
−1/2Y )Q̃

(1)
2r+1(n; d0, ω, 1, X, Y, t).
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(2.2) Let 4−1d0 ≡ 1 mod 4, or 8−1d0 ∈ Z∗
2. Then

R̃n−1(d0, ε,X, Y, t)

=

(n−2)/2∑
r=0

∏r
i=1(1 − 22i−1Y 2)

∏(n−2r−2)/2
i=1 (1 − 2−2i−n−1Y 2t4)

φ(n−2r−2)/2(2−2)

×(1 − ξ0p
−1/2Y )Q̃

(1)
2r+1(n; d0, ε, 1, X, Y, t).

Proof. Let p 6= 2. Let B be a symmetric matrix of degree 2r or 2r +
1 with entries in Zp. Then we note that Θn−2r−2,d⊥pB belongs to
Ln−1,p(d0) if and only if B ∈ S2r+1,p(p

−1d0d)∩S2r+1,p, and that Θn−2r−1,d⊥pB
belongs to Ln−1,p(d0) if and only if B ∈ S2r,p(d0d) ∩ S2r,p. Thus by the
theory of Jordan forms, we have

R̃n−1(d0, ω,X, Y, t)

=

(n−2)/2∑
r=0

∑
d∈U(n−1,n−2r−2,d0)

∑
B′∈p−1S2r+1,p(d0d)∩S2r+1,p

G
(1)
p (Θn−2r−2,d⊥pB′, p−(n+1)/2Y )

αp(Θn−2r−2,d⊥pB′)

×B(1)
p (Θn−2r−2,d⊥pB′, p−n/2−1Y t2)G̃(1)

p (Θn−2r−2,d⊥pB′, 1, X, p−nt2Y )

×ω(Θn−2r−2,d⊥pB′)Y −e(1)(pB′)tν(det(pB′))

+

(n−2)/2∑
r=0

∑
d∈U(n−1,n−2r−1,d0)

∑
B′∈S2r,p(d0d)∩S2r,p

G
(1)
p (Θn−2r−1,d⊥pB′, p−(n+1)/2Y )

αp(Θn−2r−1,d⊥pB′)

×B(1)
p (Θn−2r−1,d⊥pB′, p−n/2−1Y t2)G̃(1)

p (Θn−2r−1,d⊥pB′, 1, X, p−nt2Y )

×ω(Θn−2r−1,d⊥pB′)Y −e(1)(pB′)tν(det(pB′)).

By Lemmas 5.2.1 and 5.2.3 we have

G(1)
p (Θn−2r−2,d⊥pB′, p−(n+1)/2Y )B(1)

p (Θn−2r−2,d⊥pB′, p−n/2−1Y t2)

=
r∏

i=1

(1 − p2i−1Y 2)

(n−2r−2)/2∏
i=1

(1 − p−2i−n−1Y 2t4)(1 − ξ0p
−1/2Y ),

and

G(1)
p (Θn−2r−1,d⊥pB′, p−(n+1)/2Y )B(1)

p (Θn−2r−1,d⊥pB′, p−n/2−1Y t2)

=
r−1∏
i=1

(1 − p2i−1Y 2)

(n−2r−2)/2∏
i=1

(1 − p−2i−n−1Y 2t4)D2r(d0, d, Y, t).

Put H
(1)
2i−1,ξ(B) = G̃

(1)
p (B, ξ,X, p−nt2Y ) for B ∈ S2i−1(Zp), and H

(0)
2i,ξ(B) =

G̃
(0)
p (B, ξ,X, p−nt2Y ) for B ∈ S2i(Zp) and ξ = ±1. Then H

(1)
2i−1,ξ and

H
(0)
2i,ξ satisfy the conditions (H-p-1) ∼ (H-p-5) by Lemmas 5.3.6 and

5.3.7. Thus the assertion (1) in case p 6= 2 follows from Propositions
5.3.4 and 5.3.5.

Next let p = 2. Let B be a symmetric matrix of degree 2r or
2r + 1 with entries in Z2, and d ∈ U . We note that 2Θn−2r−2,d⊥4B
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belongs to Ln−1,2(d0) if and only if B ∈ S2r+1,2(d0d)∩S2r+1,2, and that
−d⊥2Θn−2r−2⊥4B belongs to Ln−1,2(d0) if and only if B ∈ S2r+2,2(d0d)∩
S2r+2,2. Then by the theory of canonical forms, we have

R̃n−1(d0, ω,X, Y, t)

=

(n−2)/2∑
r=0

{
∑

d∈U(n−1,n−2r−2,d0)

∑
B′∈S2r+1,2(d0d)∩S2r+1,2;e

G(1)
p (2Θn−2r−2,d⊥4B′, 2−(n+1)/2Y )

×B(1)
p (2Θn−2r−2,d⊥4B′, p−n/2−1Y t2)

G̃
(1)
2 (2Θn−2r−2,d⊥4B′, 1, X, 2−nt2Y )

α2(2Θn−2r−2,d⊥4B′)

×ω(2Θn−2r−2,d⊥4B′)Y −e(1)(4B′)−(n−2r−2)tν(det(4B′))+n−2r−2

+
∑

B′∈S2r+1,2(d0)∩S2r+1,2;o

G(1)
p (2Θn−2r−2⊥4B′, 2−(n+1)/2Y )

×B(1)
p (2Θn−2r−2⊥4B′, p−n/2−1Y t2)

G̃
(1)
2 (2Θn−2r−2⊥4B′, 1, X, 2−nt2Y )

α2(2Θn−2r−2⊥4B′)

×ω(2Θn−2r−2⊥4B′)Y −e(1)(4B′)−(n−2r−2)tν(det(4B′))+n−2r−2

+
∑

B′∈S2r+2,2(d0)∩S2r+2,2;o

G(1)
p (−1⊥2Θn−2r−4⊥4B′, 2−(n+1)/2Y )

×B(1)
p (−1⊥2Θn−2r−4⊥4B′, p−n/2−1Y t2)

G̃
(1)
2 (−1⊥2Θn−2r−4⊥4B′, 1, X, 2−nt2Y )

α2(−1⊥2Θn−2r−4⊥4B′)

×ω(−1⊥2Θn−2r−4⊥4B′)Y −e(1)(4B′)−(n−2r−4)tν(det(4B′))+n−2r−4}

+

(n−2)/2∑
r=0

∑
d∈U(n−1,n−2r−1,d0)

∑
B′∈S2r,2(d0d)∩S2r,2;e

G(1)
p (−d⊥2Θn−2r−2⊥4B′, 2−(n+1)/2Y )

×B(1)
p (−d⊥2Θn−2r−2⊥4B′, p−n/2−1Y t2)

G̃
(1)
2 (−d⊥2Θn−2r−2⊥4B′, 1, X, 2−nt2Y )

α2(−d⊥2Θn−2r−2⊥4B′)

×ω(−d⊥2Θn−2r−2⊥4B′)Y −e(1)(4B′)−(n−2r−2)tν(det(4B′))+n−2r−2.

Thus the assertion (1) in case p = 2 can be proved in the same way as
above. Similarly the assertion (2) can be proved. ¤

Now to rewrite the above theorem, first we express P̃
(1)
m−1(n; d0, ω, η,X, Y, t)

in terms of Q
(1)
2r+1(n; d0, ω, η,X, Y, t) and Q

(0)
2r (n; d0d, ω, η,X, Y, t).

Proposition 5.3.9. Let m be an even integer. Let d0 ∈ Fp, and η =
±1.
(1) (1.1) Let l = 0 or ν(d0) = 0. Then

P̃
(1)
m−1(n; d0, ε

l, η,X, Y, t)

=

(m−2)/2∑
r=0

1

φ(m−2−2r)/2(p−2)
Q

(1)
2r+1(n; d0, ε

l, η,X, Y, t)
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+

(m−2)/2∑
r=0

∑
d∈U(m−1,m−1−2r,d0)

1

2φ(m−2−2r)/2(p−2)
Q

(0)
2r (n; d0d, εl, ηχ(d), X, Y, t).

(1.2) Let ν(d0) = 1. Then

Q
(0)
2r (n; d0d, ε, ηχ(d), X, Y, t) = 0

for any d and

P̃
(1)
m−1(n; d0, ε, η,X, Y, t)

=

(m−2)/2∑
r=0

1

φ(m−2−2r)/2(p−2)
Q

(1)
2r+1(n; d0, ε, η,X, Y, t).

(2) (2.1) Let l = 0 or ν(d0) = 0. Then

P (0)
m (n; d0, ε

l, η,X, Y, t)

=

m/2∑
r=0

∑
d∈U(m,m−2r,d0)

1 + p(−m+2r)/2χ(d)

2φ(m−2r)/2(p−2)
Q

(0)
2r (n; d0d, εl, ηχ(d), X, Y, t)

+

(m−2)/2∑
r=0

1

φ(m−2r)/2(p−2)
Q

(1)
2r+1(n; d0, ε

l, η,X, Y, t).

(2.2) Let ν(d0) ≥ 1. Then

P̃ (0)
m (n; d0, ε, η,X, Y, t) = 0.

Proof. The assertion can be proved in a way similar to Theorem 5.3.8.
¤

Corollary. Let r be a non-negative integer. Let d0 be an element of
Fp and ξ = ±1.
(1) Let l = 0 or ν(d0) = 0. Then

Q
(0)
2r (n; d0, ε

l, ξ,X, Y, t)

=
r∑

m=0

∑
d∈U(2r,2m,d0)

(−1)m(χ(d) + p−m)p−m2

2φm(p−2)
P̃

(0)
2r−2m(n; d0d, εl, ξχ(d), X, Y, t)

+
r−1∑
m=0

(−1)m+1p−m−m2

φm(p−2)
P̃

(1)
2r−2m−1(n; d0, ε

l, ξ,X, Y, t)),

and
Q

(1)
2r+1(n; d0, ε

l, ξ,X, Y, t)

=
r∑

m=0

(−1)mp−m−m2

φm(p−2)
P̃

(1)
2r+1−2m(n; d0, ε

l, ξ,X, Y, t)

+
r∑

m=0

∑
d∈U(2r+1,2m+1,d0)

(−1)m+1p−m−m2

2φm(p−2)
P̃

(0)
2r−2m(n; d0d, εl, ξχ(d), X, Y, t)).
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(2) Let ν(d0) > 0. We have

Q
(1)
2r+1(n; d0, ε, ξ,X, Y, t) =

r∑
m=0

(−1)mpm−m2

φm(p−2)
P̃

(1)
2r+1−2m(n; d0, ε, ξ,X, Y, t),

and

Q
(0)
2r (n; d0, ε, ξ,X, Y, t) = 0.

Proof. We prove the assertion (1) by induction on r. Clearly the asser-
tion holds for r = 0. Let r ≥ 1 and suppose that the assertion holds
for any r′ < r. Then by Proposoition 5.3.9 we have

Q̃
(1)
2r+1(n; d0, ε

l, ξ,X, Y, t)

= P̃
(1)
2r+1(n; d0, ε

l, ξ,X, Y, t) −
r∑

i=1

1

φi(p−2)
Q

(1)
2r+1−2i(n; d0, ε

l, ξ,X, Y, t)

−
r∑

i=0

∑
d∈U(2r+1,2i+1;d0)

1

2φi(p−2)
Q

(0)
2r−2i(n; d0d, εl, ξχ(d), X, Y, t).

Then by the induction hypothesis and a direct calculation, we get the

desired result for Q̃
(1)
2r+1(n; d0, ε

l, ξ,X, Y, t). We also get the result for

Q̃
(1)
2r (n; d0, ε

l, ξ,X, Y, t), and this completes the induction. Similarly the
assertion (2) can be proved.

¤

Theorem 5.3.10. Let the notation be as in Theorem 5.3.8.
(1) Suppose that ν(d0) = 0 or ω = ι. Put ξ0 = χ(d0) and ζd = χ(d).
Then

R̃n−1(d0, ω,X, Y, t) = (1 − p−nt2)

×{
(n−2)/2∑

l=0

∑
d∈U(n−1,n−1−2l,d0)

P̃
(0)
2l (n; d0d, ω, ζd, X, Y, t)

(n−2−2l)/2∏
i=1

(1−p−2l−n−2it4)T2l(d0, d, Y )

+

(n−2)/2∑
l=0

P̃
(1)
2l+1(n; d0, 1, X, Y, ω, t)

(n−2−2l)/2∏
i=2

(1−p−2l−n−2it4)T2l+1(d0, Y, t)},

where T2r(d0, d, Y ) is a polynomial in Y, and T2r+1(d0, Y, t) is a poly-
nomial in Y and t and of degree at most 2 with respect to t, and in
particular

Tn−2(d0, d, Y ) =
1

2
(1−p−1/2ξ0Y )p(n−2)/2−1/2Y ζd(1+ζdY p(n−2)/2−1/2)

(n−4)/2∏
i=1

(1−p2i−1Y 2),

and

Tn−1(d0, Y, t) =

(n−2)/2∏
i=1

(1 − p2i−1Y 2).
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(2) Suppose that ν(d0) > 0 and ω = ε. Then

R̃n−1(d0, ω,X, Y, t) = (1 − ξ0p
−1/2Y )

(n−2)/2∑
l=0

P̃
(1)
2l+1(n; d0, ω, 1, X, Y, t)

×(p2l+1Y 2)(n−2l−2)/2
∏l

i=1(1 − p2i−1Y 2)
∏(n−2−2l)/2

i=1 (1 − p−2l−n−2i−2t4)

φ(n−2−2l)/2(p−2)
.

Proof. (1) By Theorem 5.3.8 and Corollary to Proposition 5.3.9, we
have

R̃n−1(d0, ω; X,Y, t)

=

(n−2)/2∑
r=0

∏r−1
i=1 (1 − p2i−1Y 2)

∏(n−2r−2)/2
i=1 (1 − p−2i−n−1Y 2t4)

2φ(n−2r−2)/2(p−2)

×
∑

d1∈U(n−1,n−2r−1,d0)

D2r(d0, d1, Y, t){
r∑

m=0

∑
d2∈U(2r,2m,d0d1)

(−1)m(χp(d2) + p−m)p−m2

2φm(p−2)

×P̃
(0)
2r−2m(n; d0d1d2, ω, χ(d1)χ(d2), X, Y ; t)

+
r−1∑
m=0

(−1)m+1p−m−m2

φm(p−2)
P̃

(1)
2r−2m−1(n; d0d1, ω, χ(d1), X, Y ; t))}

+

(n−2)/2∑
r=0

∏r
i=1(1 − p2i−1Y 2)

∏(n−2r−2)/2
i=1 (1 − p−2i−n−1Y 2t4)

2φ(n−2r−2)/2(p−2)

×(1 − ξ0p
−1/2Y ){

r∑
m=0

(−1)mp−mp−m2

φm(p−2)
P̃

(1)
2r+1−2m(n; d0, ω, 1, X, Y, t)

+
r−1∑
m=0

∑
d2∈U(2r+1,2m+1,d0)

(−1)m+1p−m−m2

2φm(p−2)
P̃

(0)
2r−2m(n; d0d2, ω, χ(d2), X, Y, t)}.

We note that for any d1 ∈ U we have

P̃
(1)
2r+1−2m(n; d0d1, ω, χ(d1), X, Y, t) = P̃

(1)
2r+1−2m(n; d0, ω, 1, X, Y, t).

Hence
(A) R̃n−1(d0, ω,X, Y, t)

=

(n−2)/2∑
l=0

∑
d∈U(n−1,n−1−2l,d0)

P̃
(0)
2l (n; d0d, ω, χ(d), X, Y, t)

×{
(n−2−2l)/2∑

m=0

(
1

2

∑
d1∈U(n−1−2l,2m,d0d)

D2l+2m(d0, d1, Y, t)(χ(d1)χ(d)+p−m)(−1)mp−m2

−u2l+2m(Y )(1 − ξ0p
−1/2Y )(−1)mp−m−m2

))

×
∏l+m−1

i=1 (1 − p2i−1Y 2)
∏(n−2l−2m−2)/2

i=1 (1 − p−2i−n−1Y 2t4)

2φm(p−2)φ(n−2−2l)/2−m(p−2)
}
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+

(n−2)/2∑
l=0

P̃
(1)
2l+1(n; d0, ω, 1, X, Y, t)

×{
(n−2−2l)/2∑

m=0

((1 − ξ0p
−1/2Y )(−1)mp−m−m2

)

×
∏l+m

i=1 (1 − p2i−1Y 2)
∏(n−2l−2m−2)/2

i=1 (1 − p−2i−n−1Y 2t4)

φm(p−2)φ(n−2−2l)/2−m(p−2)

−
(n−4−2l)/2∑

m=0

1

2

∑
d∈U

D2l+2m+2(d0, d, Y, t)(−1)mp−m−m2

×
∏l+m

i=1 (1 − p2i−1Y 2)
∏(n−2l−2m−4)/2

i=1 (1 − p−2i−n−1Y 2t4)

φm(p−2)φ(n−4−2l)/2−m(p−2)
},

where u2l+2m(Y ) = 1 or 1− p2l+2m−1Y 2 according as l + m = 0 or not.
Now recall that U(n−1, n−1, d0) is {d0} or the empty set according

as ν(d0) = 0 or not. Hence for d ∈ U(n − 1, n − 1, d0) we have

1

2

∑
d1∈U(n−1,2m,d0d)

D2m(d0, d1, Y, t)(χ(d1)χ(d) + p−m)

−(1 − p2m−1Y 2)(1 − ξ0p
−1/2Y )p−m

= ξ0p
−1/2Y (1 − p−nt2) or ξ0(1 − p−1Y 2)(1 − p−nt2)pm−1/2Y

according as m = 0 or 1 ≤ m ≤ (n − 2)/2. Furthermore we have

1

2

∑
d1∈U(n−1−2l,2m,d0d)

D2l+2m(d0, d1, Y, t)(χ(d1)χ(d) + p−m)

−(1 − p2l+2m−1Y 2)(1 − ξ0p
−1/2Y )p−m

= ζd(1 − p−1/2ξ0Y )(1 − p−nt2)pl+m−1/2Y (1 + ζdY pl−1/2)

for any 1 ≤ l ≤ (n− 2)/2, 0 ≤ m ≤ (n− 2l− 2)/2 and d ∈ U(n− 1, n−
1 − 2l, d0). We also have

(1 − ξ0p
−1/2Y )p−m(1 − p−2n+2l+2m+1Y 2t4)

−1

2

∑
d1∈U

D2l+2m+2(d0, d1, Y, t)p−m(1 − p−n+2m+2l+2)

= (1 − p−1/2ξ0Y )p−n+m+2l+2(1 − p−n+m+2l+2Y 2t4)

+(1 − p−1/2ξ0Y )(1 − p−n+2m+2l+2)p2l+m−n+1Y 2t2(1 − p−nt2)

for any 0 ≤ l ≤ (n − 2)/2 and 0 ≤ m ≤ (n − 2l − 2)/2. Hence

R̃n−1(d0, ω,X, Y, t) = ξ0p
−1/2Y (1 − p−nt2)

×
(n−2)/2∑

m=0

(−1)mpm−m2

∏m−1
i=0 (1 − p2i−1Y 2)

∏(n−2m−2)/2
i=1 (1 − p−2i−n−1Y 2t4)

φm(p−2)φ(n−2)/2−m(p−2)
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+

(n−2)/2∑
l=1

∑
d∈U(n−1,n−1−2l,d0)

P̃
(0)
2l (n; d0d, ω, ζd, X, Y, t)

×(1 − ξ0p
−1/2Y )(1 − p−nt2)pl−1/2ζdY (1 + ζdY pl−1/2)

×
(n−2−2l)/2∑

m=0

(−1)mpm−m2

∏l+m−1
i=1 (1 − p2i−1Y 2)

∏(n−2l−2m−2)/2
i=1 (1 − p−2i−n−1Y 2t4)

2φm(p−2)φ(n−2−2l)/2−m(p−2)

+

(n−2)/2∑
l=0

P̃
(1)
2l+1(n; d0, ω, 1, X, Y, t)

×{(1 − ξ0p
−1/2Y )p−n+2+2l

×
(n−2−2l)/2∑

m=0

(−1)mpm−m2

∏l+m
i=1 (1 − p2i−1Y 2)

∏(n−2l−2m−2)/2
i=1 (1 − p−2i−n−1Y 2t4)

φm(p−2)φ(n−2−2l)/2−m(p−2)

+Y 2t2p2l−n+1(1 − ξ0p
−1/2Y )(1 − p−nt2)

×
(n−4−2l)/2∑

m=0

(−1)mpm−m2

∏l+m
i=1 (1 − p2i−1Y 2)

∏(n−2l−2m−4)/2
i=1 (1 − p−2i−n−1Y 2t4)

φm(p−2)φ(n−4−2l)/2−m(p−2)
}.

Then the assertion (1) follows from Lemma 5.1.6.
(2) By (1.2) and (2.2) of Theorem 5.3.8 and (2) of Corollary to

Proposition 5.3.9, we have

R̃n−1(d0, ω,X, Y, t) =

(n−2)/2∑
l=0

P̃
(1)
2l+1(n; d0, ω, 1, X, Y, t)

×
(n−2−2l)/2∑

m=0

((−1)m(1 − ξ0p
−1/2Y )pm−m2

)

×
∏l+m

i=1 (1 − p2i−1Y 2)
∏(n−2l−2m−2)/2

i=1 (1 − p−2i−n−1Y 2t4)

φm(p−2)φ(n−2−2l)/2−m(p−2)
.

Thus the assertion follows from Lemma 5.1.6.
¤

5.4. Explicit formulas of formal power series of Koecher-Maass
type.

In this section we give an explicit formula for P
(l)
m (d0, ω, ξ,X, t) for

ω = ι, ε. We write P
(l)
m (d0, ω,X, t) = P

(l)
m (d0, ω, 1, X, t) as stated before.

Theorem 5.4.1. Let m be even, and d0 ∈ Fp. Put ξ0 = χ(d0). Then
we have the following:
(1)

P (0)
m (d0, ι, X, t) =

(p−1t)ν(d0)

φm/2−1(p−2)(1 − p−m/2ξ0)
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×(1 + t2p−m/2−3/2)(1 + t2p−m/2−5/2ξ2
0) − ξ0t

2p−m/2−2(X + X−1 + p1/2−m/2 + p−1/2+m/2)

(1 − p−2Xt2)(1 − p−2X−1t2)
∏m/2−1

i=1 (1 − t2p−2i−1X)(1 − t2p−2i−1X−1)
.

(2)

P (0)
m (d0, ε,X, t) =

1

φm/2−1(p−2)(1 − p−m/2ξ0)

× ξ2
0∏m/2

i=1 (1 − t2p−2iX)(1 − t2p−2iX−1)
,

where δ2p is Kronecker’s delta.

Theorem 5.4.2. Let m be even, and d0 ∈ Fp. Put ξ0 = χ(d0). Then
we have the following:
(1)

P
(1)
m−1(d0, ι, X, t) =

(p−1t)ν(d0)(1 − ξ0t
2p−5/2)

φ(m−2)/2(p−2)(1 − t2p−2X)(1 − t2p−2X−1)

× 1∏(m−2)/2
i=1 (1 − t2p−2i−1X)(1 − t2p−2i−1X−1)

.

(2)

P (1)
m (d0, ε,X, t) =

(p−1t)ν(d0)(1 − ξ0t
2p−1/2−m)

φ(m−2)/2(p−2)

× 1∏(m−2)/2
i=1 (1 − t2p−2iX)(1 − t2p−2iX−1)

.

Theorem 5.4.1 follows from [[IK06], Theorem 3.1], and Theorem 5.4.2
can be proved in the same way as in Theorem 5.4.1, but for the conve-
nience of readers we give a proof to them. Let m be an even positive
integer. For l = 0, 1 and j = 0, 1 put

K
(l)
m−l(d0, ε

j, X, t)

= κ(d0,m−l, j, t)−1
∑

B′∈L(l)
r,p(d0)

G
(l)
p (2l−1B′, p−(m+1)/2X)ε(B′)j

αp(B′)
X−e(l)(B′)tν(det B′).

Proposition 5.4.3. Let m and d0 be as above. Then, for l = 0, 1, we
have

P
(l)
m−l(d0, ω,X, t) =

m−l∏
i=1

(1 − t2Xpi−m+l−2)−1K
(l)
m−l(d0, ω,X, t).

Proof. We note that B′ belongs to L(l)
m−l,p(d0) if B belongs to L(l)

m−l,p(d0)

and αp(B
′, B) 6= 0. Hence by Lemma 5.2.2 for ω = εj with j = 0, 1 we

have

P
(l)
m−l(d0, ω,X, t) = κ(d0,m − l, j, t)−1
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×
∑

B∈L(l)
m−l,p(d0)

1

αp(B)

∑
B′

G
(l)
p (B′, p−(m+1)/2X)X−e(l)(B′)αp(B

′, B)ω(B′)

αp(B′)

×(p−1X)(ν(det B)−ν(det B′))/2tν(det B)

= κ(d0,m − l, j, t)−1
∑

B′∈L(l)
m−l,p(d0)

G
(l)
p (B′, p−(m+1)/2X)ω(B′)

αp(B′)
X−e(l)(B′)

×
∑

B∈L(l)
m−l,p(d0)

αp(B
′, B)

αp(B)
(p−1X)(ν(det B)−ν(det B′))/2tν(det B).

Hence by [[BS87], Theorem 5], and by (1) of Lemma 5.1.1, we have∑
B

αp(B
′, B)

αp(B)
(p−1X)(ν(det B)−ν(det B′))/2tν(det B)

=
∑
W

αp(B
′, B′[W ])(t2Xp−1p−m+l)ν(det W )tν(det B′)

=
m−l∏
i=1

(1 − t2Xpi−m+l−2)−1tν(det B′).

Thus the assertion holds. ¤

Proof of Theorem 5.4.1. Let b∗p(T, s) be the primitive Siegel series
in (cf. [IK06], Page 176 ), and

D̃(t, σ, d0, ω) =
∑

B′∈Sm,p(d0)e

b∗p(B
′/2, σ)ω(B′)

αp(B′)
te

(0)(B′)

for ω = εl. Then
K(0)

m (d0, ω, p−σ, t)

= κ(d0,m, l, t)−1tν(d0) 1 − χ(d0)p
m/2−σ

(1 − p−σ)
∏m/2

i=1 (1 − p2i−2σ)
D̃(tpσ, σ+(m+1)/2, d0, ω)

for any complex number σ. The both-hand sides of the above are poly-
nomials in p−σ. Now, for a p-adic number d define a formal power series
D(t, σ, d, ω) by

D(t, σ, d, ω) =
∞∑
i=0

∑
B∈Sm,p;e

det B=pid

b∗p(B
′/2, σ)ω(B′)

αp(B′)
ti

as in [IK06]. Let d0 ∈ Fp and l = ν(d0). Then

tlD̃(t, σ, d0, ω) =
1

2
(D(t, σ, p−l(−1)m/2d0, ω)+(−1)lD(−t, σ, p−l(−1)m/2d0, ω)).

Thus the assertion follows from Theorem 3.1 in [IK06] and Proposition
5.4.3. ¤
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Remark. We should remark that there is a misprint in [IK06]; the
right hand side on page 186, line 3 of it should be

2(−2s−2)δ2pp−1p−s(1 − p−k)(1 + p−1−k−2s)

(p−2)n/2−1
.

In order to prove Theorems 5.4.2, we introduce some notation. Let
r be an even integer. For l = 0, 1 and d0 ∈ Z×

p put

ζr−1(d0, ε
l, u) = κ(d0, r − 1, l, u)−1

∑
T∈Sr−1,p(d0)/∼

ε(T )l

αp(T )
uν(det T ),

and

ζr(d0, ε
l, u) = κ(d0, r, l, u)−1

∑
T∈Sr,p;e(d0)/∼

ε(T )l

αp(T )
uν(det T ).

We make the convention that ζ0(d0, ε
l, u) = 1 or 0 according as d0 ∈

Z∗
p or not. Now for an integer m, and d ∈ Zp, let Zm(u, εl, d) and

Z∗
m(u, εl, d) be the formal power series in Theorems 5.1, 5.2, and 5.3 of

[IS95]. Put

Zm,e(u, εl, d) =
1

2
(Zm(u, εl, d) + Zm(−u, εl, d)),

Zm,o(u, εl, d) =
1

2
(Zm(u, εl, d) − Zm(−u, εl, d)).

We also define Z∗
m,e(u, εl, d) and Z∗

m,o(u, εl, d) in the same way. Fur-
thermore put x(i) = e or o according as i is even or odd. Let p 6= 2,
and p−id0 ∈ Z∗

p with i = 0 or 1. Then

ζm(d0, ε
l, u) = Zm,x(i)(p

−(m+1)/2((−1)(m+1)/2, p)pu, εl, p−i(−1)(m+1)/2d0)

or

ζm(d0, ε
l, u) = Zm,x(i)(p

−(m+1)/2u, εl, p−i(−1)[(m+1)/2]d0)

according as m is odd and l = 1, or not. Let p = 2 and m is odd. Then

ζm(d0, ε
l, u) = 2mZm,x(ν(d0))(2

−(m+1)/2u, εl, 2−ν(d0)(−1)(m+1)/2d0).

Let p = 2 and m be an even integer. First suppose d0 ≡ 1 mod 4. Then

ζ∗
m(d0, ε

l, u) = 2mZ∗
m,e(2

−(m+1)/2u, εl, (−1)m/2d0).

Next suppose 4−1d0 ≡ −1 mod 4. Then

ζ∗
m(d0, ε

l, u) = 2mZ∗
m,e(2

−(m+1)/2u, εl, 4−1(−1)m/2d0).

Finally suppose 8−1d0 ∈ Z∗
2. Then

ζ∗
m(d0, ε

l, u) = 2mZ∗
n,o(2

−(m+1)/2u, εl, 8−1(−1)m/2d0).

Here we recall that the definition of local density in our paper is a little
bit different from that in [IS95].
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Proposition 5.4.4. Let m be a positive even integer. Let d0 ∈ Fp. For
a positive even integer r and d ∈ U put

c(r, d0, d,X) = (1 − χ(d0)p
−1/2X)

×
r/2−1∏
i=1

(1 − p2i−1X2)(1 − χ(d)pr/2−1/2X).

Here we understand that c(0, d0, d,X) = 1. Furthermore, for a positive
odd integer r put

c(r, d0, X) = (1 − χ(d0)p
−1/2X)

(r−1)/2∏
i=1

(1 − p2i−1X2).

(1) Let p 6= 2.

(1.1) Let l = 0 or ν(d0) = 0. Then

K
(1)
m−1(d0, ε

l, X, t)

= Xν(d0)/2{
(m−2)/2∑

r=0

∑
d∈U(m−1,m−2r−1,d0)

p−r(2r+1)(tX−1/2)2rc(2r, d0, d,X)

21−δ(m−2)/2,rφ(m−2r−2)/2(p−2)

×(p, d0d)l
pζ2r(d0d, εl, tX−1/2)

+

(m−2)/2∑
r=0

p−(r+1)(2r+1)(tX−1/2)2r+1c(2r + 1, d0, X)

φ(m−2r−2)/2(p−2)
}

×ζ2r+1(p
−1d0, ε

l, tX−1/2).

(1.2) Let ν(d0) = 1. Then

K
(1)
m−1(d0, ε,X, t)

= (X1/2)ν(d0)

(m−2)/2∑
r=0

p−(r+1)(2r+1)(p,−1)r+1(tX−1/2)2r+1c(2r + 1, d0, X)

φ(m−2r−2)/2(p−2)

×ζ2r+1(p
−1d0, ε, tX

−1/2).

(2) Let p = 2.

(2.1) Let l = 0 or (−1)m/2d0 ≡ 1 mod 4. Then

K
(1)
m−1(d0, ε

l, X, t)

= (X1/2)ν(d0){
(m−2)/2∑

r=0

∑
d∈U(m−1,m−2r−1,d0)

(tX−1)2r2−r(2r+1) c(2r, d0, d,X)

21−δ(m−2)/2,rφ(m−2r−2)/2(2−2)

×ζ∗
2r(d0d, ε, tX−1/2)

+

(m−2)/2∑
r=0

(tX−1/2)2r+12−(r+1)(2r+1) 2
−eν(d0)(m−2r−2)/2c(2r + 1, d0, X)

φ(m−2r−2)/2(2−2)

×ζ2r+1(d0, ε, tX
−1/2)},
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where ν̃(d0) = 0 or 1 according as ν(d0) is even or odd.
(2.2) Suppose that (−1)m/24−1d0 ≡ 1 mod 4 or 8−1d0 ∈ Z∗

2. Then

K
(1)
m−1(d0, ε,X, t) = Xν(d0)/2

(m−2)/2∑
r=0

(tX−1/2)2r+12−(r+1)(2r+1) c(2r + 1, d0, X)

φ(m−2r−2)/2(2−2)

×ζ2r+1(d0, ε, tX
−1/2).

Proof. Let p 6= 2, and let l = 0 or ν(d0) = 0. Then by Lemma 5.2.1
and Proposition 5.3.5, and by using the same argument as in (1) of
Theorem 5.3.8, we have

K
(1)
m−1(d0, ε

l, X, t) =

(m−2)/2∑
r=0

∑
d∈U(m−1,m−2r−1,d0)

c(2r, d0, d,X)

21−δ(m−2)/2,rφ(m−2r−2)/2(p−2)

×
∑

B∈S2r,p(d0d)∩S2r,p

ε(pB)l

αp(pB)
X−e(0)(pB)tν(det(pB)

+

(m−2)/2∑
r=0

(tX−1/2)2r+1c(2r + 1, d0, d,X)

φ(m−2r−2)/2(p−2)

×
∑

B∈p−1S2r+1,p(d0)∩S2r+1,p

ε(pB)l

αp(pB)
X−e(1)(pB)tν(det(pB).

Thus the assertion (1.1) follows from Lemma 5.3.3 by remarking that
p−1S2r,p(d0d)∩S2r,p = S2r,p(d0d) and p−1S2r+1,p(d0)∩S2r+1,p = S2r+1(p

1−2[(ν(d0)+1)/2]d0).
Similarly the assertion (1.2) can be proved by remarking that ζ2r(d0, ε, tX

−1/2) =
0. The assertion for p = 2 can also be proved by using the same argu-
ment as in (2) of Theorem 5.3.8 by remarking that

4−1S2r,2(d0) ∩ S2r,2 = S2r,2(d0)

and

4−1S2r+1,2(d0) ∩ S2r+1,2 = S2r+1,2(d0).

¤

Proof of Theorem 5.4.2 in case p 6= 2. (1) First let d0 ∈ Z∗
p. Then

by (1.1) of Proposition 5.4.4, we have

Km−1(d0, ι, X, t) =
1

φ(m−2)/2(p−2)

+2−1

(m−2)/2∑
r=1

∑
d∈U(m−1,m−2r−1,d0)

p−r(2r+1)(t2X−1)r

r−1∏
i=1

(1−p2i−1X2)φ(m−2r−2)/2(p
−2)−1

×(1 − p−1/2ξ0X)(1 + ξpr−1/2X)ζ2r(d0d, ι, tX−1/2)
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+

(m−2)/2∑
r=0

p−(2r+1)(r+1)(t2X−1)r+1/2

r∏
i=1

(1 − p2i−1X2)φ(m−2r−2)/2(p
−2)−1

×(1 − p−1/2ξ0X)ζ2r+1(pd0, ι, tX
−1/2).

Here we put ξ = χ(d) for d ∈ U . By Theorem 5.1 of [IS95], we have

ζ2r+1(pd0, ι, tX
−1/2) =

p−1tX−1/2

φr(p−2)(1 − p−2t2X−1)
∏r

i=1(1 − p2i−3−2rt2X−1)
,

and

ζ2r(d0d, ι, tX−1/2) =
(1 + ξ0ξp

−r)(1 − ξ0ξp
−r−2t2X−1)

φr(p−2)(1 − p−2t2X−1)
∏r

i=1(1 − p2i−3−2rt2X−1)
.

Hence Km−1(d0, ι, X, t) can be expressed as

Km−1(d0, ι, X, t) =
S(d0, ι, X, t)

φ(m−2)/2(p−2)(1 − p−2t2X−1)
∏(m−2)/2

i=1 (1 − p2i−m−1t2X−1)
,

where S(d0, ι, X, t) is a polynomial in t of degree m. Now we have

2−1(1−p−1/2ξ0X)
∑
ξ=±1

(1+ξp(m−2)/2−1/2X)(1+ξ0ξp
−(m−2)/2)(1−ξ0ξp

−(m−2)/2−2t2X−1)

= (1 − p−1X2)(1 − p−2t2X−1) + p−2t2X−1(1 − ξ0p
−1/2X)(1 − p−m+2).

Hence

2−1
∑

d∈U(m−1,m−2r−1,d0)

p(m−1)(−m+2)/2(t2X−1)(m−2)/2

(m−2)/2−1∏
i=1

(1−p2i−1X2)

×(1 − p−1/2ξ0X)(1 + ξp(m−2)/2−1/2X)ζm−2(d0d, ι, tX−1/2)

+p−(m−1)m/2(t2X−1)(m−2)/2+1/2

(m−2)/2∏
i=1

(1 − p2i−1X2)(p−2)−1

×(1 − p−1/2ξ0X)ζm−1(pd0, ι, tX
−1/2)

=
(1 − ξ0p

−5/2t2)
∏(m−2)/2−1

i=0 (1 − p2i−1X2)

φ(m−2)/2(p−2)(1 − p−2t2X−1)
∏(m−2)/2

i=1 (1 − p2i−m−1t2X−1)
,

and therefore S(d0, ι, X, t) can be expressed as

(B) S(d0, ι, X, t)

=

(m−2)/2−1∏
i=0

(1 − p2i−1X2)(1 − p−5/2ξ0t
2) + (1 − p−m+1t2X−1)U(X, t),

where U(X, t) is a polynomial in X,X−1 and t. Now by Proposition
5.4.3, we have

P
(1)
m−1(d0, ι, X, t)

=
S(d0, ι, X, t)

φ(m−2)/2(p−2)(1 − p−2t2X−1)
∏(m−2)/2

i=1 (1 − p2i−m−1t2X−1)
∏m−1

i=1 (1 − pi−m−1Xt2)
.
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Hence the power series P
(1)
m−1(d0, ι, X, t) is a rational function in t.

Since we have F̃
(1)
p (T,X−1) = F̃

(1)
p (T,X) for any T ∈ L(1)

m−1,p, we have

P
(1)
m−1(d0, ι, X

−1, t) = P
(1)
m−1(d0, ι, X, t). This implies that the reduced

denominator of the rational function P
(1)
m−1(d0, ι, X, t) in t is at most

(1−p−2t2X−1)(1−p−2t2X)

(m−2)/2∏
i=1

{(1−p2i−m−1t2X−1)(1−p2i−m−1t2X)}.

Hence we have

(C) S(ι, d0, X, t) =

(m−2)/2∏
i=1

(1 − p2i−m−2t2X)(a0(X) + a1(X)t2)

with a0(X), a1(X) are polynomials in X +X−1. We easily see a0(X) =
1. By substituting p(m−1)/2X1/2 for t in (B) and (C), and comparing
them we see a1(X) = −p−5/2ξ0. This proves the assertion.

Next let d0 ∈ pd′
0 with d′

0 ∈ Z∗
p. Put ξ0 = χ(d′

0). Then by (1.1) of
Proposition 5.4.4, we have

Km−1(d0, ι, X, t)

= X1/2{2−1

(m−2)/2∑
r=1

∑
d∈U(m−1,m−2r−1,d0)

p−r(2r+1)(t2X−1)r

r−1∏
i=1

(1−p2i−1X2)φ(m−2r−2)/2(p
−2)−1

×(1 + ξpr−1/2X)ζ2r(d0d, ι, tX−1/2)

+

(m−2)/2∑
r=0

p−(2r+1)(r+1)(t2X−1)r+1/2

r∏
i=1

(1 − p2i−1X2)φ(m−2r−2)/2(p
−2)−1

×(1 − p−1/2ξ0X)ζ2r+1(p
−1d0, ι, tX

−1/2)}.
By Theorem 5.1 of [IS95], we have

ζ2r+1(p
−1d0, ι, tX

−1/2) =
1

φr(p−2)(1 − p−2t2X−1)
∏r

i=1(1 − p2i−3−2rt2X−1)
,

and

ζ2r(d0d, ι, tX−1/2) =
p−1tX−1/2

φr(p−2)(1 − p−2t2X−1)
∏r

i=1(1 − p2i−3−2rt2X−1)
.

Thus the assertion can be proved in the same manner as above.
(2) First let d0 ∈ Z∗

p. Then by (1.1) of Proposition 5.4.4, we have

Km−1(d0, ε,X, t) =
1

φ(m−2)/2(p−2)

+2−1

(m−2)/2∑
r=1

∑
d∈U(m−1,m−2r−1,d0)

p−r(2r+1)(t2X−1)r

r−1∏
i=1

(1−p2i−1X2)φ(m−2r−2)/2(p
−2)−1

×(1 − p−1/2ξ0X)(1 + ξpr−1/2X)ξ0ξζ2r(d0d, ε, tX−1/2)
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+

(m−2)/2∑
r=0

p−(2r+1)(r+1)(t2X−1)r+1/2

r∏
i=1

(1 − p2i−1X2)φ(m−2r−2)/2(p
−2)−1

×(1 − p−1/2ξ0X)ζ2r+1(pd0, ε, tX
−1/2).

By Theorem 5.2 of [IS95],

ζ2r(d0d, ε, tX−1/2) =
1 + ξ0ξp

−r

φr(p−2)
∏r

i=1(1 − p−2it2X−1)
,

and

ζ2r+1(pd0, ε, tX
−1/2) =

p−r−1tX−1/2

φr(p−2)
∏r+1

i=1 (1 − p−2it2X−1)
.

Thus the assertion can be proved in the same as in (1).
Next let d0 ∈ pZ∗

p. Then by (1.2) of Proposition 5.4.4, we have

Km−1(d0, ε,X, t)

= X1/2{
(m−2)/2∑

r=0

p−(2r+1)(r+1)(t2X−1)r+1/2

r∏
i=1

(1−p2i−1X2)φ(m−2r−2)/2(p
−2)−1

×(1 − p−1/2ξ0X)ζ2r+1(p
−1d0, ε, tX

−1/2).}
By Theorem 5.2 of [IS95],

ζ2r+1(p
−1d0, ε, tX

−1/2) =
1

φr(p−2)
∏r

i=1(1 − p−2it2X−1)
.

Hence
Km−1(d0, ε,X, t)

= p−1t

(m−2)/2∑
r=0

p−(2r+1)r(p−2t2X−1)r

r∏
i=1

(1 − p2i−1X2)φ(m−2r−2)/2(p
−2)−1

× 1

φr(p−2)
∏r

i=1(1 − p−2it2X−1)
.

The assertion can be proved in the same as in (1). ¤

Proof of Theorem 5.4.2 in case p = 2. The assertion can also be
proved by using the same argument as above. ¤

Theorem 5.4.5. Let d0 ∈ Fp and ξ0 = χ(d0). Let ξ = ±1.
(1) Let m be even. Then

P (0)
m (d0, ι, ξ,X, t) =

(p−1t)ν(d0)

φm/2−1(p−2)(1 − p−m/2ξ0)

×(1 + t2p−m/2−3/2ξ)(1 + t2p−m/2−5/2ξξ0) − ξ0t
2p−m/2−2(X + X−1 + p1/2−m/2ξ + p−1/2+m/2ξ)

(1 − p−2Xt2)(1 − p−2X−1t2)
∏m/2−1

i=1 (1 − t2p−2i−1X)(1 − t2p−2i−1X−1)
,
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and

P (0)
m (d0, ε, ξ,X, t) =

1

φm/2−1(p−2)(1 − p−m/2ξ0)

ξ2
0∏m/2

i=1 (1 − t2p−2iX)(1 − t2p−2iX−1)
.

(2) Let m be even. Then

P
(1)
m−1(d0, ι, ξ,X, t)

=
(p−1t)ν(d0)(1 − ξ0t

2p−5/2ξ)

(1 − t2p−2X)(1 − t2p−2X−1)
∏(m−2)/2

i=1 (1 − t2p−2i−1X)(1 − t2p−2i−1X−1)φ(m−2)/2(p−2)
,

and

P
(1)
m−1(d0, ε, ξ,X, t)

=
(p−1t)ν(d0)(1 − ξ0t

2p(−1/2−m)ξ)∏m/2
i=1 (1 − t2p−2iX)(1 − t2p−2iX−1)φ(m−2)/2(p−2)

.

Proof. We note that there exist polynomials S
(l)
m−l(d0, ωp, ξ,X, t) and

S
(l)
m−l(d0, ωp, X, t) such that

P
(l)
m−l(d0, ωp, ξ,X, t)/tν(d0) = S

(l)
m−l(d0, ωp, ξ,X, t2)

and

P
(l)
m−l(d0, ωp, X, t)/tν(d0) = S

(l)
m−l(d0, ωp, X, t2)

for l = 0, 1. We also note that

S
(l)
m−l(d0, ωp, ξ,X, t2) = S

(l)
m−l(d0, ωp, ξX, ξt2).

Thus the assertion follows from Theorems 5.4.1 and 5.4.2. ¤

5.5. Explicit formulas of formal power series of Rankin-Selberg
type.

We prove our main result in this section.

Theorem 5.5.1. Let d0 ∈ Fp and put ξ0 = χ(d0).
(1) We have

Hn−1(d0, ι, X, Y, t)

= (2−(n−1)(n−2)/2tn−2)δ2,pφ(n−2)/2(p
−2)−1(p−1t)ν(d0)(1−p−nt2)

n/2−1∏
i=1

(1−p−2n+2it4)

× (1 + p−2t2)(1 + p−3ξ2
0t

2) − p−5/2t2ξ0(X + X−1 + Y + Y −1)

(1 − p−2XY t2)(1 − p−2XY −1t2)(1 − p−2X−1Y t2)(1 − p−2X−1Y −1t2)

× 1∏n/2−1
i=1 (1 − p−2i−1XY t2)(1 − p−2i−1XY −1t2)(1 − p−2i−1X−1Y t2)(1 − p−2i−1X−1Y −1t2)

.

(2) We have

Hn−1(d0, ε,X, Y, t) = ((−1)n(n−2)/82−(n−1)(n−2)/2tn−2)δ2,p
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×((−1)n/2, (−1)n/2d0)pφ(n−2)/2(p
−2)−1(1−p−nt2)

n/2−1∏
i=1

(1−p−2n+2it4)(tp−n/2)ν(d0)

× (1 + p−nt2)(1 + p−n−1ξ2
0t

2) − p−1/2−nt2ξ0(X + X−1 + Y + Y −1)

{(1 − p−nXY t2)(1 − p−nXY −1t2)(1 − p−nX−1Y t2)(1 − p−nX−1Y −1t2)

× 1∏n/2−1
i=1 (1 − p−2iXY t2)(1 − p−2iXY −1t2)(1 − p−2iX−1Y t2)(1 − p−2iX−1Y −1t2)

,

where (a, b)p denotes the Hilbert symbol of a, b ∈ Qp.

Proof. First suppose that ν(d0) = 0 and ω = ι. For an integer l put

V (l, X, Y, t)

= (1−t2p−2XY −1)(1−t2p−2X−1Y −1)
l∏

i=1

(1−t2p−2i−1XY −1)(1−t2p−2i−1X−1Y −1).

Then by Proposition 5.3.1 and Theorems 5.4.1, 5.4.2, and (1) of The-
orem 5.3.10, we have

R̃n−1(d0, ω,X, Y, t) = (1 − p−nt2)

×[

(n−4)/2∑
l=0

∑
d∈U(n−1,n−1−2l,d0)

(n−2−2l)/2∏
i=1

(1 − p−2l−n−2it4)T2l(d0, d, Y )

×
∏2l

i=1(1 − t4p−n−2l−2+i)S
(0)
2l (d0d, ι, ζd, X, Y, t)

V (l, X, Y, t)

+

(n−2)/2∑
l=0

(n−2−2l)/2∏
i=2

(1 − p−2l−n−2it4)T2l+1(d0, d, Y, t)

×
∏2l+1

i=1 (1 − t4p−n−2l−3+i)S
(1)
2l+1(d0, ι, X, Y, t)

V (l − 1, X, Y, t)

+

∏(n−3)/2
i=1 (1 − p2i−1Y 2)

∏n−2
i=1 (1 − t4p−2n+i)

φ(n−4)/2(p−2)V ((n − 2)/2, X, Y, t)

×1

2

∑
d∈U

(1 − p−1/2ξ0Y )p(n−2)/2−1/2ζdY (1 + ζdY p(n−2)/2−1/2)

(1 − p(−n+2)/2ξ0ζd)

×{(1 + t2Y −1p−(n−2)/2−3/2ζd)(1 + t2Y −1p−(n−2)/2−5/2ζd)

−ξ0ζdt
2Y −1p−(n−2)/2(X + X−1 + p1/2−(n−2)/2ζd + p−1/2+(n−2)/2ζd)}

+

∏(n−1)/2
i=1 (1 − p2i−1Y 2)

∏n−1
i=1 (1 − t4p−2n−1+i)(1 − ξ0t

2p−5/2Y −1)

φ(n−2)/2(p−2)V ((n − 2)/2, X, Y, t)
,

where S
(0)
2r (d0d, ι, ζd, X, Y, t) and S

(1)
2r+1(d0, ι, X, Y, t) are polynomials in

t of degree at most 4 and 2, respectively. Hence R̃n−1(d0, ι, X, Y, t) can
be expressed as

R̃n−1(d0, ι, X, Y, t)
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=
(1 − p−nt2)

∏(n−2)/2
i=1 (1 − p−n−2it4)S(d0, ι, X, Y, t)

φ(n−2)/2(p−2)V ((n − 2)/2, X, Y, t)
],

where S(d0, ι, X, Y, t) is a polynomial in t of degree at most 2n such
that
(D) S(d0, ι, X, Y, t)

=
1

φ(n−2)/2(p−2)
{(1 − p−1/2ξ0Y )p(n−2)/2−1/2Y

∑
ζ=±1

(1 + ζp(n−3)/2Y )ζ

×
(n−2)/2−1∏

i=1

(1 − p2i−1Y 2)

(n−2)/2∏
i=1

(1 − p−2i−1−nt4)
1 − p−n+2

1 − p(−n+2)/2ξ0ζ

×((1 + t2Y −1p−(n−2)/2−3/2ζ)(1 + t2Y −1p−(n−2)/2−5/2ζ)

−ξ0ζt2Y −1p−(n−2)/2(X + X−1 + p1/2−(n−2)/2ζ + p−1/2+(n−2)/2ζ))

+(1−p−1/2ξ0Y )

(n−2)/2∏
i=1

(1−p2i−1Y 2)

(n−2)/2∏
i=1

(1−p−2i−1−nt4)(1+p−nt2)(1−p−5/2ξ0t
2Y −1)}

+(1 − p−n+1XY −1t2)(1 − p−n+1X−1Y −1t2)U(d0, X, Y, ι, t)

with U(d0, ι, X, Y, t) a polynomial in t. Hence by Theorem 5.2.6 we
have

Hn−1(d0, ι, X, Y, t) = κ(d0, n − 1, l, t)(1 − p−nt2)

n/2−1∏
i=1

(1 − p−2n+2it4)

× S(d0, ι, X, Y, t)

(1 − p−2XY t2)(1 − p−2XY −1t2)(1 − p−2X−1Y t2)(1 − p−2X−1Y −1t2)

× 1∏n/2−1
i=1 (1 − p−2i−1XY t2)(1 − p−2i−1XY −1t2)(1 − p−2i−1X−1Y t2)(1 − p−2i−1X−1Y −1t2)

× 1∏(n−2)/2
i=1 (1 − p−2iXY t2)(1 − p−2iX−1Y t2)

.

Hence the power series R̃n−1(d0, ι, X, Y, t) is a rational function in t, is
invariant under the transformation Y 7→ Y −1 (cf. the proof of Theo-
rem 5.4.2). This implies that the reduced denominator of the rational
function Hn−1(d0, ι, X, Y, t) in t is at most

(1 − p−2XY t2)(1 − p−2XY −1t2)(1 − p−2X−1Y t2)(1 − p−2X−1Y −1t2)

×
n/2−1∏

i=1

(1−p−2i−1XY t2)(1−p−2i−1XY −1t2)(1−p−2i−1X−1Y t2)(1−p−2i−1X−1Y −1t2)

and therefore we have

(E) S(d0, ι, X, Y, t)
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= tν(d0)a0(d0, X, Y ) + a1(d0, X, Y )t2 + a2(d0, X, Y )t4

φ(n−2)/2(p−2)

×
(n−2)/2∏

i=1

(1 − p−2iXY t2)(1 − p−2iX−1Y t2),

where ai(d0, X, Y ) (i = 0, 1, 2) is a Laurent polynomial in X and Y .
We can easily see a0(d0, X, Y ) = 1. First let ν(d0) = 0. Then by substi-
tuting p(n−1)/2X i/2Y 1/2 (i = ±1) for t in (D) and (E), and comparing
them, we obtain

1 + a1(d0, X, Y )pn−1X iY + a2(d0, X, Y )p2(n−1)X2iY 2

= 1+pn−1X iY (p−2+p−3−p−5/2(X+X−1+Y +Y −1)ξ0)+p2n−2X2iY 2p−5

for i = ±1. Hence a1(d0, X, Y ) = p−2+p−3−p−5/2(X+X−1+Y +Y −1)ξ0

and a2(d0, X, Y ) = p−5. This proves the assertion in case ν(d0) = 0. In
case ν(d0) > 0, in the same manner as above we have

1 + a1(d0, X, Y )pn−1X iY + a2(d0, X, Y )p2(n−1)X2iY 2 = 1 + pn−3X iY

for i = ±1. Hence a1(d0, X, Y ) = p−2 and a2(d0, X, Y ) = 0. This proves
the assertion in case ν(d0) > 0.

Similarly the assertion for ν(d0) = 0 and ω = ε can be proved. Next
suppose that ν(d0) > 0 and ω = ε. Then the assertion can be proved
similarly by using Proposition 5.3.1 and Theorems 5.4.1, 5.4.2, and (2)
of Theorem 5.3.10. ¤

6. Proof of Conjecture B

Now we give an explicit form of R(s, σn−1(φIn(f),1)) for the first
Fourier-Jacobi coefficient φIn(f),1 of the Duke-Imamoḡlu-Ikeda lift.

Proposition 6.1. Let k and n be positive even integers. Given a prim-

itive form f in S2k−n(Γ (1)), let f̃ ∈ S+
k−n/2+1/2(Γ0(4)) be as in Section

2. Then

R(s, f̃) = L(2s − 2k + n + 1, f, Ad)
∑

d0∈F(−1)n/2

|c(|d0|)|2|d0|−s

×
∏

p

{(1 + p−2s+2k−n−1)(1 + p−2s+2k−n−2χp(d0)
2) − 2p−2s+2k−n−3/2χp(d0)a(p)},

where c(|d0|) is the |d0|-th Fourier coefficient of f̃ , and a(p) is the p-th
Fourier coefficient of f.
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Proof. By using the same argument as in Theorem 4.2, we can show
that we have

R(s, f̃) = κ1

∑
d0∈F(−1)

|c
ef (|d0|)|2|d0|n/2−k+1/2

×

{∏
p

H1,p(d0, ιp, αp, αp, p
−s+k−n/2+1/2) +

∏
p

H1,p(d0, ε, αp, αp, p
−s+k−n/2+1/2)

}
.

By Theorem 5.5.1, for any d0 we have∏
p

H1,p(d0, ιp, αp, αp, p
−s+k−n/2+1/2) =

∏
p

H1,p(d0, εp, αp, αp, p
−s+k−n/2+1/2)

= |d0|−s+k−n/2−1/2L(2s − 2k + n + 1, f, Ad)

×
∏

p

((1 + p−2s+2k−n−1)(1 + p−2s−2k−n−2χp(d0)
2) − 2p−2s+2k−n−3/2χp(d0)a(p)).

Thus the assertion holds. ¤
Theorem 6.2. Let k and n be positive even integers. Given a prim-

itive form f ∈ S2k−n(Γ (1)), let f̃ ∈ S+
k−n/2+1/2(Γ0(4)) and φIn(f),1 ∈

J cusp
k, 1 (Γ (n−1),J) be as in Section 2 and Section 3, respectively. Put

λn = en−1

2

∏n/2−1
i=1 ξ̃(2i). Then, we have

R(s, σn−1(φIn(f),1)) = λn2(−s−1/2)(n−2)ζ(2s+n−2k+1)−1

n−2
2∏

i=1

ζ(4s+2n−4k+2−2i)−1

×{R(s−n/2+1, f̃)ζ(2s−2k+3)

n−2
2∏

i=1

L(2s−2k+2i+2, f, Ad)ζ(2s−2k+2i+2)

+(−1)n(n−2)/8R(s, f̃)ζ(2s−2k+n+1)

n−2
2∏

i=1

L(2s−2k+2i+1, f, Ad)ζ(2s−2k+2i+1)}.

Proof. The assertion follows directly from Theorems 4.2 and 5.5.1, and
Proposition 6.1. ¤

Theorem 6.3. Conjecture B holds true for any positive even integer
n.

Proof. The assertion trivially holds if n = 2. Suppose that n ≥ 4. By
Theorem 6.2 we have

(F) R(s, σn−1(φIn(f),1)) =

n/2−1∏
i=1

ξ̃(2i)2(−s−1/2)(n−2)T (s)

×

U(s)−1R(s − n/2 + 1, f̃)

n−2
2∏

i=1

Λ̃(2s − 2k + 2i + 2, f, Ad)ξ̃(2s − 2k + 2i + 2)
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+(−1)n(n−2)/8R(s, f̃)

n−2
2∏

i=1

L(2s − 2k + 2i + 1, f, Ad)ζ(2s − 2k + 2i + 1)

 ,

where

T (s) = ΓR(2s+n−2k+1)

(n−2)/2∏
i=1

ΓR(4s+2n−4k+2−2i)
n−1∏
i=1

ΓR(2s−i+1),

and

U(s) = ΓR(2s − 2k + 3)ΓR(2s − n + 2)

×
(n−2)/2∏

i=1

(ΓC(2s− 2k + 2i + 2)ΓC(2s−n + 2i + 1)ΓR(2s− 2k + 2i + 2)).

We note that R(s, f̃) is holomorphic at s = k − 1/2. Thus by taking
the residue of the both-sides of (F) at s = k − 1/2 , we get

Ress=k−1/2R(s, σn−1(φIn(f),1)) = 2−k(n−2)

n/2−1∏
i=1

ξ̃(2i)
T (k − 1/2)

U(k − 1/2)

×Ress=k−n/2+1/2R(s, f̃)

n−2
2∏

i=1

Λ(2i + 1, f, Ad)ξ(2i + 1).

We easily see that

T (k − 1/2)

U(k − 1/2)
= 2(n−1)(n−2)/2.

By Theorem 1 in [KZ81], we have

Ress=k−n/2+1/2R(s, f̃) = 22k−n〈f̃ , f̃〉.
Thus the assertion follows from Corollary to Proposition 3.1. ¤
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