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IKEDA’S CONJECTURE ON THE PERIOD OF THE
DUKE-IMAMOGLU-IKEDA LIFT

HIDENORI KATSURADA AND HISA-AKI KAWAMURA

ABSTRACT. Let k and n be positive even integers. For a primitive
form f in &35, (SLa2(Z)), let I,,(f) be the Duke-Imamoglu-Tkeda
lift of f to &k (Spn(Z)), and fthe cusp form in Kohnen’s plus sub-
space of weight k—n/2+41/2 for I'j(4) corresponding to f under the

n(f), 1)
i} .0

of the period of I,,(f) to that of f in terms of special values of
certain L-functions of f. This proves the conjecture proposed by

Ikeda [Ike06] concerning the period of the Duke-Imamoglu-Ikeda
lift.

Shimura correspondence. We then express the ratio

1. INTRODUCTION

One of the fascinating problems in the theory of modular forms is
to find the relation between the periods (or the Petersson products) of
cuspidal Hecke eigenforms which are related with each other through
their L-functions. In particular, there are several important results
concerning the relation between the period of a cuspidal Hecke eigen-
form f with respect to an elliptic modular group I" and that of its lift
f Here we mean by the lift f of f a cuspidal Hecke eigenform with
respect to another modular group I"” whose certain L-function can be
expressed in terms of certain L-functions of f. Thus we propose the
following problem:

(f, f
fre
ants of f, for example, the special values of certain L-functions [ for
some integer e.

~

Problem A. Express the ratio in terms of arithmetic invari-

—~

We also propose the following problem:

Problem A’. In addition to the notation and the assumption as Prob-

. f

lem A, consider another lift ]? of f. Then express the ratio == in

{f;

)&

=

terms of arithmetic invariants of f.
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2 HIDENORI KATSURADA AND HISA-AKI KAWAMURA

As will be explained later, these two problems are closely related. R

Zagier [ZagTT7] solved the Problem A for the Doi-Nagamnuma lift f
of f. Murase and Sugano [MS06] solved the Problem A for the Kudla
lift f of f. Kohnen and Skoruppa [KS89] solved the Problem B in the
case f is the Hecke eigenform in Kohnen’s plus subspace corresponding
to f under the Shimura correspondence and fis the Saito-Kurokawa
lift of f (see also Oda [Oda81]). This result also solved the Prob-
lem A combined with the result of Kohnen-Zagier [KZ81]. (See also
Theorem 2.2). We note that this type of period relation is not only
interesting and important in its own right but also plays an important
role in arithmetic theory of modular forms. For instance, by using
Kohnen and Skoruppa’s result, Brown [Bro07] and Katsurada [Kat08a]
independently proved Harder’s conjecture concerning congruence be-
tween Saito-Kurokawa lifts and non-Saito-Kurokawa lifts under mild
conditions. Furthermore, by using this congruence, Brown costructed
a non-trivial element of a certain Bloch-Kato Selmer group. We also
note that this type of conguence relation was conjectured by Doi-Hida-
Ishii [DHI98| in the case f is the Doi-Naganuma lift of f.

Now let f be a primitive form, namely, a normalized Hecke eigten-
form in &y, (SL2(Z)) Then Duke and Imamoglu conjectured, in their
unpublished paper, that there exists a cuspidal Hecke eigenform in
& (Spn(Z)) whose standard L-function can be expressed as
C(s) [T, L(s + k — 4, f), where ((s) is Riemann’s zeta function and
L(s, f) is Hecke’s L-function of f. Ikeda [TkeOI] did construct such a
modular form 7,,(f). We call I,,(f) the Duke-Imamoglu-Tkeda lift of f.

Let f be the cusp form in Kohnen’s plus subspace of weight k—n /2+1/2
for I5(4) corresponding to f under the Shimura correspondence. In

Inlf), In(f))
{(f, 1)
should be expressed as L(k, f){(n) Hzlﬁ_l L(2i + 1, f,Ad)((27) up to
elementary factor, where L(s, f, Ad) is the adjoint L-function of f (cf.
Conjecture A). This is a conjectural generalization of Kohnen and Sko-
ruppa’s result on the Saito-Kurokawa lift. The aim of this paper is
to prove Ikeda’s conjecture and to apply this to Problem A for the

Duke-Imamoglu-Tkeda lift (cf. Theorems 2.1 and 2.2).

We note that I,,(f) is not realized as a theta lift at present except
in the case n = 2. Therefore we cannot use a general method for inner
product formula of theta lifts due to Rallis [Ral88]. The method we
use is to give explicit formulas of several types of Dirichlet series of
Rankin-Selberg type, and compare their residues. We explain it more
precisely.

First let ¢, (s)1 be the first Fourier-Jacobi coeflicient of I,(f) and
On—1(P1,(p)1) = >4 c(A)e(Tr(AZ)) the element of generalized Kohnen’s

[Ike06], Tkeda among others conjectured that the ratio
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plus subspace of weight k — 1/2 with respect to I 0("71)(4) correspond-
ing to ¢r,(s),1 under the Ibukiyama isomorphism o,,_;. In Section 3, we
consider the following Dirichlet series R(s,0n-1(¢1,(5)1)) of Rankin-
Selberg type associated with it:

c(A)P
R(s, 0y = YA
(87 o 1<¢In(f):1)) ZA: e(A)(det A)S

where A runs over all the SL,_1(Z)-equivalence classes of positive defi-
nite half-integral matrices of degree n—1 and e(A) denotes the order of
the unit group of A in SL,,_1(Z). For the precise definition, see Section
3. This type of Dirichlet series was studied by many people in integral
weight case, and its analytic properties are known (cf. Kalinin [Kal84]).
In half-integral weight case, similarly to the integral weight case, we
also get an analytic properties of R(s,0,—1(¢1,(f)1)), and in particular
we can express its residue at £ — 1/2 in terms of the period of ¢, (51
(cf. Corollary to Proposition 3.1). We then rewrite Ikeda’s conjecture
in terms of the relation between the residue of R(s,on_1(¢1,(5),1)) at

s =k —1/2 and the period of f (cf. Conjecture B). In order to prove
Conjecture B, we have to get an explicit formula of R(s, 0n—1(¢1,,(5)1))

in terms of L(s, f,Ad) and L(s, f). To get it, in Section 4, we reduce
our computation to that of certain formal power series, which we call
formal power series of Rankin-Selberg type, associated with local Siegel
series similarly to [IK04] and [IK06] (cf. Theorem 4.2). Section 5 is
devoted to the computation of them. This computation is similar to
those in [IK04] and [IKO06], but is more elaborate and longer than them.
In particular we should be careful in dealing with the case p = 2. Af-
ter overcoming such obstacles we can get explicit formulas of formal
power series of Rankin-Selberg type (cf. Theorem 5.5.1). In Section
6, by using Theorem 5.5.1, we immediately get an explicit formula of
R(s,04-1(¢1,(5),1)) (cf. Theorem 6.2,) and by taking the residue of it
at k — 1/2 we prove Conjecture B, and thetrefore prove Conjecture A
(cf. Theorem 6.3).

We note that we can also give an explicit formula of the Rankin-
Selberg series of I,,(f). However, it does not seem useful for proving
Conjecture A directly from such a formula.

We also note that we can apply the above result to a problem con-
cerning congruence between Duke-Imamoglu-Ikeda lifts and non-Duke-
Imamoglu-Tkeda lifts. This was announced in [KKO8b], and the detail
will be discussed in [KatO8b].

Acknowledgments. The authors thank Professor Y. Ishikawa, Professor
Y. Mizuno and Doctor S. Yamana for their valuable comments.
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Notation. Let R be a commutative ring. We denote by R* and R* the
semigroup of non-zero elements of R and the unit group of R, respec-
tively. We also put S” = {a? | a € S} for a subset S of R. We denote
by M,,,(R) the set of m x n-matrices with entries in R. In particular
put M,,(R) = Mu,(R). Put GL,,(R) = {A € M,,(R) | det A € R*},
where det A denotes the determinant of a square matrix A. For an
m X n-matrix X and an m X m-matrix A, we write A[X] = 'XAX,
where ‘X denotes the transpose of X. Let S,(R) denote the set of
symmetric matrices of degree n with entries in R. Furthermore, if R is
an integral domain of characteristic different from 2, let £,,(R) denote
the set of half-integral matrices of degree n over R, that is, £,,(R) is
the subset of symmetric matrices of degree n whose (i, j)-component
belongs to R or %R according as ¢ = 7 or not. In particular, we put
L, =L,(Z),and L, , = L,(Z,) for a prime number p. For a subset S
of M,,(R) we denote by S* the subset of S consisting of non-degenerate
matrices. If S is a subset of S, (R) with R the field of real numbers, we
denote by S5 (resp. S>¢) the subset of S consisting of positive definite
(resp. semi-positive definite) matrices. GL,(R) acts on the set S, (R)
in the following way:

GLo(R) X Su(R) 3 (g, A) — tgAg € Su(R).

Let G be a subgroup of GL,(R). For a subset B of S,,(R) stable under
the action of G we denote by B/G the set of equivalence classes of B
with respect to G. We sometimes identify B/G with a complete set of
representatives of B/G. We abbreviate B/GL,(R) as B/ ~ if there is
no fear of confusion. Two symmetric matrices A and A’ with entries in
R are said to be equivalent over R’ with each other and write A ~p A’
if there is an element X of GL, (R’) such that A" = A[X]. We also write
A ~ A’ if there is no fear of confusion. For square matrices X and Y

. X O
WewrlteXJ_Y_(O v |-

For an integer D € Z such that D = 0 or = 1 mod 4, let bp be
the discriminant of Q(v/D), and put fp, = /%. We call an integer D
a fundamental discriminant if it is the discriminant of some quadratic

extension of Q or 1. For a fundamental discriminant D, let (%) be the

character corresponding to Q(v/'D)/Q. Here we make the convention
that (£) =1ifD=1.

We put e(z) = exp(2ry/—1x) for x € C. For a prime number p
we denote by v,(*) the additive valuation of Q, normalized so that
vp(p) = 1, and by e,(*) the continuous additive character of Q, such
that e,(z) = e(z) for z € Q.
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2. IKEDA’S CONJECTURE ON THE PERIOD OF THE
DUKE-IMAMOGLU-IKEDA LIFT

On _1n

1TL OTL

and the zero matrix of degree n, respectively. Furthermore, put

I'™ = Sp.(Z) = {M € GLyn(Z) | Jo[M] = J,}.

Put J, = ) , where 1,, and O,, denotes the unit matrix

Let H,, be Siegel’s upper half-space of degree n. Let [ be an integer or
half integer. For a congruence subgroup I" of I'™, we denote by M;(I)
the space of holomorphic modular forms of weight [ with respect to I
We denote by &;(I") the subspace of W;(I") consisting of cusp forms.
For two holomorphic cusp forms F' and G of weight [ with respect to
I' we define the Petersson product (F,G) by

(F,G) = [[™ : [{15,}]"" / F(2)G(Z) det(Im(Z))\d* 7,
MH,

where d*Z denote the invariant volume element on H,, defined as usual.
We call (F, F) the period of F. Let

I )(N):{(C D)eﬂ)

and in particular put IH(N) = Fél)(N). Let p be a prime number.
For a non-zero element a € Q, we put x,(a) = 1,—1, or 0 according
as Qy(a'’?) = Q,,Q,(a*/?) is an unramified quadratic extension of

Q,, or Qp(al/ %) is a ramified quadratic extension of Q,. We note that

Xp(D) = <Q> if D is a fundamental discriminant. For an element 7" of

p
Ly, with n even, put §,(T) = Xp((—=1)"2det T). Let T be an element

of £X. Then (—1)"2det(2T) = 0 or = 1 mod 4, and we define by and
fr as dr = d_1yn/2 get(or) and fr = f(_1)n/2 det(or), TESPectively. Let T be

CEOmmodN},

an element of £ there exists an element T of £ such that T ~z, T.
We then put d7 = 27 and fr = f7. We note that dr and f; are uniquely
determined by 7" up to Z;D—multiple and Z;-multiple, respectively. We

put e,(T") = v,(fp).
Now for T' € L), we define the local Siegel series b, (T, s) by

by(T, s) = > e, (tr(TR))p~ (),
RESh(Qp)/Sn(Zp)

where y1,(R) = [RZ}, +Zj, : Z7]. We remark that there exists a unique
polynomial F,(7, X) in X such that

(1—p~) [T3(1 — p*%)
I gp(T)pn/Q_S

bp(T's) = F(T,p™")



6 HIDENORI KATSURADA AND HISA-AKI KAWAMURA

(cf. Kitaoka [Kit84]). We then define a Laurent polynomial F, (T, X)
as
Fy(B, X) = X% F,(T, p= " 2X),

We remark that F,(B, X~!) = F,(B, X) (cf. [Kat99]). Now let k be a
positive even integer. Let

f(z) = a(m)e(mz)
m=1
be a primitive form in &y, (I'W). Let a,, € C such that a, + ot =
pFH/241/24(p), which we call the Satake p-parameter of f. Then for
a Dirichlet character x we define Hecke’s L-function L(s, f,x) twisted
by x as

L(s, £,x) = [ [{Q=app™ ™72 2x (p)) (1=, 'p =27 2y (p) }

In particular, if y is the principal character we write L(s, f, x) as L(s, f)
as usual. Let
f(z) = c(m)e(mz)

be a cuspidal Hecke eigenform in Kohnen’s plus subspace & sar1/2(L0(4))

corresponding to f under the Shimura correspondence (cf. Kohnen,
[Koh80]). For the precise definition of Kohnen’s plus subspace, we
give it in Section 3 in more general setting. We define a Fourier series

I,(f)(Z)in Z € H, by
L(NZ) = ) anp(Te(tr(T2)),
T€Ln~o

where
k—n/2—1/2
ar, ) (T) = c(or iy "> HF (T, o).

Then Tkeda [Ike01] showed the following:

L.(f)(Z) is a Hecke eigenform in &,(I'™), and its standard
L-function coincides with

) LG +E—1i.f).
i=1
This was first conjectured by Duke and Imamoglu. We call I,,(f) the
Duke-Imamoglu-Tkeda lift of f as in Section 1. We note that I,,(f) is
uniquely determined by ]7 We also note that I5(f) coincides with the
Saito-Kurokawa lift of f.
To formulate Tkeda’s conjecture, put
Ir(s) = 7720 (s/2) and T'g(s) =r(s)[r(s+1).
We note that I'c(s) = 2(27)~*I'(s). Furthermore put
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&(s) =Tr(s)¢(s) and &(s) =Ta(s)¢(s)-
For a Dirichlet character x put
FC(S)L<S> f7 X)
7(X)

where 7(x) is the Gauss sum of y. In particular, we simply write
A(s, f,x) as A(s, f) if x is the principal character. Furthermore, we
define the adjoint L-function L(s, f, Ad) as

s, f,Ad) = H{l—%p (1—o,p )1 —p )},

A(s, f,x) =

I

and put
A(s, f, Ad) =Twr(s+ 1)I'c(s + 2k —n —1)L(s, f, Ad),

and

A(s, f, Ad) = Tr(s)A(s, f, Ad).
We note that

Al —s, f, Ad) = A(s, f, Ad),
and

A(s, f, Ad) =Tc(s)l'c(s+ 2k —n —1)L(s, f, Ad).
Now we have the following diagram of liftings:
& (e 1/2(F0(4)) ~ Gy p (') — &(I'™)

! o f = 1(f)

Then Tkeda [Tke06] among others proposed the following conjecture:

Conjecture A. We have
n/2—1
UnlF), InlF)) _ ganio g Ak, )Em) T A@i+1, f, Ad)€(2i).
<f7 f> =1
where a(n, k) = —(n —3)(k —n/2) —n+ 1.

Remark. When n = 2, Conjecture A holds true; It has been proved
by Kohnen and Skoruppa [KS89] (see also Oda [Oda&1]).

Now our main result in this paper is the following;:

Theorem 2.1. Conjecture A holds true for any positive even integer
n.

By the above theorem, we can solve the Problem A for the Duke-
Imamoglu-Tkeda lift:
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Theorem 2.2. Let the notation be as above. Let D be a fundamen-
tal discriminant D such that (—1)"2D > 0 and suppose that L(k —

n/2, f,(2)) #0. Then
(L(f), T(f)) _ /=1 20k |e(| D) PA(K, f)

U B DR =02, 7, (2)
"R 941, £ Ad)~,
x H @),

where an i =0 or —1 according as n =0 mod 4 or n = 2 mod 4, and
by i is some integer depending only on n and k.

Proof. By Theorem 1 in [KZ8]1], for any such D we have
e(IDD)|? 2" DI EA(R = n/2, f, (D))
(F.) VI

Thus, by Theorem 2.1, the assertion holds. O

(=1)™4A(k, f) ol A2i+1, f, Ad)

.,n/2 — 1 are algebraic numbers and belong to the Hecke field

=1,.
( ) (cf. Shimura [Shi76], [Shi00]). Thus we obtain

for

It is well-known that

Corollary. If all the Fourier coefficients of ]7 are algebraic, then the

(In(f), 1n(f))
(f. fym?
We note that we can multiply some non-zero complex number ¢ with

f so that all the Fourier coefficients of ¢ f belong to Q(f). We also note

that the above result has been proved by Furusawa [Fur84] in case

n = 2, and by Y. Choie and Kohnen [CKO03|] in general case. Thus

Theorem 2.2 can be regarded as a refinement of their results.

ratio 18 algebraic.

3. RANKIN-SELBERG CONVOLUTION PRODUCT OF THE IMAGE OF
THE FIRST FOURIER-JACOBI COEFFICIENT OF THE
DUKE-IMAMOGLU-IKEDA LIFT UNDER THE IBUKIYAMA
ISOMORPHISM

To prove Conjecture A, we rewrite it in terms of the residue of the
Rankin-Selberg convolution product of a certain half-integral weight
modular form. Let [ be a positive integer. Let F/(Z) be an element of

&1 /2(1; O(m) (4)). Then F(Z) has the following Fourier expansion:
F(Z)= ) ap(Ae(tr(AZ))

AELm >0
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We define the Rankin-Selberg convolution product R(s, F') of F' as

lar(A)[?
F) = S bk vl N
R(s, F) 2 e(A)(det A)>’
A€Lp~0/SLm(Z)

where e(A) = #{X € SL,,(Z) | A[X] = A}. Put
L ={A€ L,y | A= —"rr mod 4L,, for some r € Z}.

m>0
We note the r in the above definition is uniquely determined modulo
27" by A, which will be denoted by r,. Now we define generalized
Kohnen'’s plus subspace of weight | — 1/2 with respective to I O(m) (4) as

& (13" (4) =
F(Z)= " c(Ae(tr(AZ)) € &_1(I3™ (4)) 1(:111): ?4 €L
AeLm~0 "

Then there exists a isomorphism from the space of Jacobi forms of
index 1 to generalized Kohnen’s plus space due to Ibukiyama. To
explain this, let I' }m) = I'™ x H,,(Z), where H,,(Z) is the subgroup
of the Heisenberg group H,,(R) consisting of all elements with integral
entries.

Let J;\"(I' }m)) denote the space of Jacobi cusp forms of weight [

and index N with respect to the Jacobi group I' }m). Let ¢(Z,z2) €
S }m)) Then we have the following Fourier-Jacobi expansion:

O(Z, z) = E o(T,r)e(tr(TZ) +r'z).
TELp,reZ™,
AT —trr>0

We say that two elements (7, 7) and (77,7") of L,, x Z™ are SL,,(Z)-
equivalent and write (7,7) ~ (T",r") if there exists an element g €
SLn(Z) such that T — “'r'/4 = (T — 'rr/4)[g]. We then define a
Dirichlet series R(s, ¢) as

B (T, r)?
R(s,0) = ) e(T — trr/4)(det(T — trr/4))s

(Tr)

where (7', r) runs over a complete set of representatives of SL,,(Z)-
equivalence classes of £,, X Z™ such that T — 'rr/4 € L,,~0. Now
¢(Z, z) can also be expressed as follows:

o(Zz2)= Y, h(2)8:(2,2),
reZm/2Zm
where h,.(Z) is a holomorphic function on H,,, and

0.(Z,2)= > etr(Z[(A+27')]) +2(A+27"r)2).
AEM1,m(Z)
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We note that h,.(Z) have the following Fourier expansion:
he(Z) = o(T.r)e(tr((T —'rr/4)2)),
T

where T' runs over all elements of £,, such that T — rr/4 is posi-
tive definite. Put h(Z) = (h,(Z)),ezm j2zm. Then h is a vector valued
modular form of weight [ — 1/2 with respect to "™, that is, for each
y=(48)e '™ we have

h(v(2)) = J(v, 2)h((2)).
Here J(v, Z) is an m x m matrix whose entries are holomorphic func-
tions on H,, such that tJ (v, 2)J (v, Z) = |j(v, Z)|* '1,n, where j(v, Z) =
det(CZ + D). In particular, we have

> @D G2) =i 2P Y h(Z2)h(Z
rezm [2Zm rezm [2Zm
We then put
(@) (Z2) = ) h(42).
reZm/2Zm
Then Ibukiyama [Ibu92] showed the following:

Let | be a positive even integer. Then o, gives a C-linear iso-
morphism

(1™ (4)),

which is compatible with the actions of Hecke operators.
We call o, the Ibukiyama isomorphism. We note that

om(@) =Y c((A+'rara)/4 ra)e(tr(AZ)),

AESm(Z)>0

Om - Jl,mllsp<F(m ) =~ 6;r 1/2

where r = r4 denote an element of Z™ such that A4‘tr rs € 4L£,,. This
74 is uniquely determined up to modulo 2Z™, and c¢((A+"*rara)/4,74)
does not depend on the choice of the representative of r4, mod 2Z™.
Furthermore, we have

R(s,om(9) = Y

AEL’ >0/SL77L( )

e((A+ "rr)/4,r)?
e(A)det As 7

and hence
R(s,¢) = 2*™R(s,0m(9)).
Now for ¢, ¢ € J7{P(I; rem )) we define the Petersson product of ¢ and
Y by
(9, ¥) = / &(Z, 2)9(Z, z) det(v)™ " exp(—drv ™' ['y]) dudvdzdy,

r{™\(Hy xCm)
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where Z =u++v—-1lv € H,,, 2z = x + v/—1y € C™. Now we consider
the analytic properties of R(s, ¢).

Proposition 3.1. Let [ be a positive integer. Let ¢(Z,z) € JP(I'™).
Put 7
[m/2]
R(s,0) = Ym(s)€(2s +m+2—20) [ &(4s+2m+4— 41— 2i)R(s, ),
i=1

where

Ym(s) =272 [ Tr(2s — i + 1).
i=1
Then the following assertions hold:
(1) R(s,¢) has a meromorphic continuation to the whole s-plane,
and has the following functional equation:

R(21—3/2 —m/2 — 5,0) = R(s, ).

(2) R(s, ) is holomorphic for Re(s) > 1 — 1/2, and has a simple
pole at s = 1 — 1/2 with the residue 27 TT™? €(2i + 1)(¢, ¢).

Proof. The assertion can be proved in the same manner as in Kalinin
[Kal84], but for the convenience of readers we here give an outline
of the proof. We define the non-holomorphic Siegel Eisenstein series
EM™)(Z, s) by

EM™(Z,s) = (detTm(Z))* Y |§(M, Z)]7>,

Mer{M\rom

where '™ = OA ZB; ) € F(m)}. For the ¢(Z,z) let h(Z) =
(h(Z))rezm j2zm be as above. Since h is a vector valued modular form
with respect to '™ we can apply the Rankin-Selberg method and we

obtain

R(s, ¢) = > (2 (Z)Im(2) P (2, 5)d" Z,
TOm)\H,, reZm /2Zm
where
EM(Z,5) = (25 +m +2 — 2I)
/2]

x ] €@s+2m+4—41—2)E"(Z, s +m/2+1-1).

i=1

It is well-known that £ (Z, s) has a meromorphic continuation to the
whole s-plane, and has the following functional equation:

EM(Z,21 —3/2 —m)2 — s5) = EM(Z, 5).
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Thus the first assertion (1) holds. Furthermore it is holomorphic for
Re(s) > [ — 1/2, and has a simple pole at s = [ — 1/2 with the residue

HE’Z{Q] £(2j + 1). We note that

(¢, ¢) =27 ™1 / > (2 (Z)Im(2) A Z.

rem\H reZm [2Zm

Thus the second assertion (2) holds. O

Now let [ be a positive even integer. For F € 6;[1/2(F0(m)(4)) put

R(s, F)=]]Tr(2s —i+1)
=1
(/2]
x &£(2s+m+2—20) [] €(4s+2m +4— 41 = 20)R(s, F).
=1
We note that
R(s,0m(0)) = 27'R(s, )
for ¢ € JZCUSp( ™). Thus we obtain

Corollary. In addition to the notation and the assumption as Propo-
sition 3.1, suppose that | is even. Then R(s,on,(¢)) has a meromor-
phic continuation to the whole s-plane, and has the following functional
equation:

R(2l = 3/2 = m/2 = s,0,(¢)) = R(s,0m(9))-
Furthermore it is holomorphic for Re(s) > | — 1/2, and has a simple
pole at s =1 — 1/2 with the residue 2™ HEZF] £(2i 4+ 1){(9, ¢).

Let f be a primitive form in &y_,(I'V), and f and I,(f) be as in

T oz

Section 2. Write Z € H,, as Z = ( - > with 7 € H,,_;, 2 € C"!

and 7 € H;. Then we have the following Fourier-Jacobi expansion of

(/)
Lo((% 7)) - Zm (N7,

where ¢, (5 n(T, 2) is called the N-th Fourier-Jacobi coefficient of ,,( f)
and defined by

b= 3 a,n(f)(<t7% g5 ))e(tr(TT)—l—rtz).

TeL,,_1,r€zZn—1,
ANT—trr>0
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We easily see that ¢y, ()~ belongs to kal;f’,p(lﬁ}nfl)) for each N € Z,.
Now we have the following diagram of liftings:

6;: (n— 1)/2( ( )) =] f - f € 62k—n(F(1))

|

I(f) € &(I'™)
n—1 cus n—1
&1 oI5 (4) 2 0w (P1,(90) —— bruna € LTY)
Under the above notation, we propose the following conjecture:

Conjecture B.

Ress:k_l/QR(S, 0-”*1 (¢In(f)’1))

n/2—1

27BN ) T €@ig2i+ DARi+1, £, Ad),
where B(n, k) = —(n — 4)k + (n* — bn + 2)/2.

Then we can show the following:

Theorem 3.2. Under the above notation and the assumption, Conjec-
ture A is equivalent to Conjecture B.

Proof. By Corollary to Main Theorem of [KK08a], we have

(In(f), 1n(f))
(D1.(p)15 PLa(r)1)

(see the remark below). Thus Conjecture A holds true if and only if

=27k, f)E(n)

n/2—
<¢In(f)717 (bl—n(f),l) = 2 k(n 4)+n(n 7 /2+2 H 27/+1 f, Ad)

On the other hand, by Corollary to Proposition 3.1 we have

n/2—1
Rese—p—1/2R(8, 0n-1(01,(11)) = 2" (br.(510s Srana) [ €20+ 1).
i=1
Thus the assertion holds. O

Remark. In [KK08a], we incorrectly quoted Yamazaki’s result in [Yam90].
Indeed “(F,G)” on the page 2026, line 14 of [KKO08a] should read

“%(F, G)” (cf. Krieg [Kri91]) and therefore “2%*="*1” on the page
2027, line 7 of [KK08a] should read “22F="”.



14 HIDENORI KATSURADA AND HISA-AKI KAWAMURA

4. REDUCTION TO LOCAL COMPUTATIONS

To prove Conjecture B, we give an explicit formula for R(s, 0,—1(¢1,()1))
for the first Fourier-Jacobi coeflicient ¢y, (51 of I,(f). To do this, we
reduce the problem to local computations. Put

L, ={AeLly | A=—"rr mod 4L,,, for some r € Z]'}.
Furthermore we put S,,(Z,)e = 2L, and Sy, (Zy)o = Sin(Zp)\Sim(Zy)e-

We note that £;, , = L) = Sp(Zp)* if p # 2.
First we can easily prove the following:

Lemma 4.1. Let m be a positive even integer.

(1) Let A and B be elements of L] Then

1 ra/2 71 rp/2
(tTA/2 <A+tTATA)/4) ~ (tTB/Q (B+t7’BTB)/4)
if A~ B.

(2) Let Ac L], .
(2.1) Let p # 2. Then

(e s )~ (o )

(2.2) Letp=2. Ifry = 0 mod 2, then A ~ 4B with B € L,,,_1 2,
and

(%bzuu%ﬁ@m)”(ég>'

If ra 20 mod 2, then A ~ al4B with a = —1 mod 4 and
B e L,,—22, and we have

1 1/2 0

1 ’I“A/2 N "
(trA/2 (A+"trara)/4 ) 162 ( 413)/4 <g

) .
m—1p- Lhen there exists

1 T’T/Q
trT/Q (T —+ tTTT’T)/4
belongs to L,,,. Thus we can define b(Tl) and f(Tl) as dpay and fpa), re-
spectively. These do not depend on the choice of rr. We note that

det T = 220 (V)2 We also put e5(T) = Vp(frm). We define a
polynomial Fzgl)(T, X) and a Laurent polynomial Fzgl)(T, X) by

FI(T, X) = F,(TW, X),

Let m be a positive even integer. Let T' € L

an element rp € Z""' such that 7O =

and "
(1 _ % (T) (1 —(n+1)/2
FI(T, X) = X% D EO(T,p~ D2 X)),
Let B be a half-integral matrix B over Z, of degree n. Let p # 2. Then

FM(B,X) = F,(1LB, X).



IKEDA’S CONJECTURE 15

Let p = 2. Then

~ (112 if B=aldB
~ Fg(( )J_B',X) . _
EY(B,X) = 1/2 (a+1)/4 with a = —1 mod 4,
F(1LB, X) it B=4B'

Furthermore, for each T' € S,,(Z,) put Y (T, X) = F,(27'T, X) and
E(T, X) = F,(27'T, X).

Now let m and [ be positive integers such that m > [. Then for non-
degenerate symmetric matrices A and B of degree m and [ respectively
with entries in Z, we define the local density a,(A, B) and the primitive
local density (3,(A, B) representing B by A as

(A, B) =270t Tim prCmHE D2y A, (4, B),

and
ﬁp(Aa B) — 275”11 lim pa(fmlJrl(lJrl)/Q)#Ba(A’ B),

a—00

where
Au(A, B) = {X € My(Zy) /9" Myi(Zp) | AIX] = B € p"Si(Zy)e},
and
B.(A,B) = {X € A.(A, B) | rankg, )z, X = [}.
In particular we write a,(A) = a,(A, A). Furthermore put

uW= ¥

A’€G(A)

for a positive definite symmetric matrix A of degree n — 1 with en-
tries in Z, where G(A) denotes the set of SL,,_1(Z)-equivalence classes
belonging to the genus of A. Then by Siegel’s main theorem on the
quadratic forms, we obtain

M(A) = e,_1kpn_1 det A2 H ap(A)!
p
where e, 1 = 1 or 2 according as n = 2 or not, and

(n—2)/2

ko1 =2 [] Tel(2)

i=1
(cf. Theorem 6.8.1 in [Kit93]). Put
Fp=Ado € Zy | vy(dp) < 1}
if p is an odd prime, and

Fo=A{dy €Zy| dy=1mod 4 or dy/4 = —1 mod 4 or 1,(dy) = 3}.
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For dy € F, and a GL,_1(Z),-invariant function w, on £, , we define
a formal power series H,,_1 ,(do,w,, X,Y,t) by

Hn—l,p<d0> Wy, X7 Yva t)

=01 =01
— Z FP( )(AvX)FP( )<Aay)w (A)tup(detA)
. ap(A) : 7
AL,y (do)/GLn-1(Zy)
where L), (do) = {A € L], _,, | DS) = do}. Let ¢, be the constant

function on L}  taking the value 1, and &5, the function on L
assigning the Hasse invariant of A for A € L, . For the definition of the
Hasse invarinat, see Kitaoka [Kit93]. We sometimes drop the suffix and
write ¢y, as ¢, or ¢ and the others if there is no fear of confusion. We
call H,,_1 ,(do,wp, X,Y,t) a formal power series of Rankin-Selberg type.
An explicit formula for H,,_ ,(do, wp, X,Y,t) will be given in the next
section for wy, = ¢,,_1, and €,,_1,. Let F denote the set of fundamental
discriminants, and for [ = 1, put F© = {dy € F | ldy > 0}.

Now let f be a primitive form in &qp_,, (I'V), and f, I,(f), L.
and 0,_1(¢r,(5),1) be as in Section 3. It follows from Lemma 4.1 that
the Fourier coefficient ¢,,, (4, ;) )(T) of 0n_1(dr1,(s)1) is uniquely de-
termined by the genus to which T belongs. Thus, by using the same
method as in Proposition 2.2 of [IS95], similarly to [IKO03|], Theorem
3.3, (1), and [IK04], Theorem 3.2, we obtain

Theorem 4.2. Let the notation and the assumption be as above. Then
for Re(s) > 0, we have

R(87 0n—1(¢1n(f),1))

| —(k—n/2—1/2)(n—2) 2|4 |n/2—k+1/2
= S lelldol)Pldo)

doeF((-1"/?)

X {H Hn—l,p(dﬂy lp, Cp, apap_8+k_1/2) + H Hn—l,p(do, Ep, Op, ()ép,p_s+k_1/2)

p p

where ¢(|do|) is the |do|-th Fourier coefficient of f, and v, is the Satake
p-parameter of f.

5. FORMAL POWER SERIES ASSOCIATED WITH LOCAL SIEGEL
SERIES

Throughout this section we fix a positive even integer n. We also
simply write v, as v and the others if the prime number p is clear from
the context.

In this section we give an explicit formula of H,,_;(do,w, X,Y,t) =
H, 1 ,p(do,w, X, Y, t) for w = ¢,e (cf. Theorem 5.5.1). For the conve-
nience of readers, we here give an outline of the proof. First we rewrite

3
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H,_1(do,w, X,Y,t) in terms of another power series. For d € Z, put
Sim(Zy,d) = {T € S,(Z,) | (=1) "V det T = p*d with some i € Z},

and Sy, (Zy,d)y; = Spu(Zy,d) N Sy (Zy), for © = e or 0. We note that
Sm(Zy,d) = Sy, ( Z,,p’d) for any even mteger j. In particular, if m

is even, put £V, = S, (Z,)x and L m = We also define

e m—1,p m—1,p*

Egi)_hp(d) = Spi(Z,,d)N Eﬁb 1p for 1 =0,1. We note that ﬁgl 1p(d) =
Ly ,(d) for d € Fy. Lot Dy = GL(Z,) (7 p(i )GLm( Z,).

Henceforth, for a GL,,(Z,)-stable subset B of S,,(Q,), we simply write
> rep instead of 37, g, if there is no fear of confusion.

Suppose that m is a positive even mteger For j = 0,1 and an
element 7 € £Y . we define a polynomial G (T, X,t)in X and t by

m—j,p’

GO(T, X, t)

m—j
= ) (—1)ipe > FI(T[D™'], X).
i=0 DEG Ly~ j(Zp)\Dm—j,i

We also define a polynomial GY )(T, X) in X by

GYN(T, X)
m—j
_ Z(_1)zpz(z—1)/2(X2pm+1—])Z Z FISJ)(T[D‘l],X).
=0 DEGLm—j(ZP)\’Dm—J}i

For dy € F, and [ = 0,1 put
K(do,m —1,1,t) = {(=1)"mtm=2)/8gm=2p=(m=2)(m=1)/2302
X((—l)m/2, (_1)m/2d0); pf(m/271)lu(al0)7

and
/€<d07 m, la t) = {(_1)m(m+2)/8 ((_1)m/227 dO)Q}pr'

Furthermore for an element 7" € ES}_LP we define a polynomial Bfol) (T,t)
in ¢ by

1 — &,(TW)p~m/21/24) [T 22 (1 — p2it1e?)
G (T, p=m+1/2t)

)

BT, t) = (

and for w = ¢! define a formal power series én_l(do, w,X,Y,t) in t by

3 GY(B, X, p Y ?)
a,(B')

Ry (do,w, X, Y, t) = k(dg,n — 1,1,1)""

Brectt | (do)

Xy_e<1)(B/) tl/(det B,)Bél) (B/, p_n/2_1Yt2>G](31) (B/, p—(n-l-l)/QY)w(B’).
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Then
'Li(d07 n— 17 l7 t)énfl(dOa W, X: Yva t)
T (L —p XY ) (L= p XY 2)

Hn—l(d07 W, X7 Y7 t) =

for w = &' (cf. Theorem 5.2.6). The polynomials GY(T, X) and

Bz(,l)(T, t) are expressed explicitly, and in particular they are deter-
mined by dr and the p-rank of T (cf. Lemmas 5.2.1 and 5.2.3). Thus
we can rewrite the above in more concise form To explain thls we

generalize the polynomials F/ (T, X) and GY)(T, X, t) for T € £Y) ip
and we put F7(T, ¢, X) = XD ED(T, £X), and
GOT,e, X, =S (-p 3 FO(T[De X)

DeGLm—j(Zp)\Dm—j,i

3

Il
o

i

for ¢ = 41, where ¢(T) = ¢,(T) for T € E(O) Then we define a
formal power series P(J i(nydo,w, &, X, Y t) in t by

ﬁr&?—g(”? d07 W, 57 X7 Y7 t)

S GY(B ¢, X, p Y iy ,
= K’(dO?m _]7l7t) ! Z s ( Of(B/)p )CU(B/)Y « >(B )ty(det(B 2
P

BeL$),(do)

for w = €. Here we make the convention that ﬁ( )(n do,w 5 X Y,t) =

1 or 0 according as v(dp) = 0 or not. An explicit formula of P j(nido,w, &, X, Y t)
for 7 = 0,1 will be given (cf. Proposition 5.3.1, and Theorems 5.4.1
and 5.4.2). For simplicity suppose that v(dy) = 0 or w = ¢. Then we

can rewrite R,_1(do,w, X,Y,t) in terms of P(]) j(nsdo,w, &, X, Y t) in
the following way:

Enfl(d()a W, X7 Y7 t) = (1 - pintQ)
(n—2)/2

<{ Y > Py (n: dod, w, x(d), X, Y, t)
=0 deU(n—1,n—1-2l,do)
(n—2-21)/2
< [T =p " Tu(dy,d,Y)

=1
(n—2)/2 (n—2—21)/2

+ Z P2(l14)rl(”5d0=°">1vaY7t) (1= p 2" 2t Ty (do, Y, 1)},
1=0

i

I
N

where U(n—1,n—1—2l,dp) is a certain finite subset of Z3, which will
be defined in Subsection 5.3, and T5,(dy, d, Y') is a polynomial in Y, and
Tor11(do, Y,t) is a polynomial in Y and ¢ (cf. Theorem 5.3.10). Here
the set U(n — 1,n — 1 — 2[,dy) and the polynomials T5,.(dy, d,Y) and
Tor11(do, Y, t) will be explicitly given. Thus we get an explicit formula
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for H,_1(dp,w, X,Y,t) in this case. Similarly we get an explicit formula
of H, 1(dp,w, X,Y,t) for other cases. Each step is elementary, but
rather elaborate. In particular we need a careful analysis for dealing
with the case of p = 2.

5.1. Preliminaries.

For two elements S and T of S,,(Z,)* and a nonnegative integer
i < m, we introduce a modification (S, T,%) of the local densitiy as
follows:
(S, T,i) = 27" lim pl-m*tmmtD/2e A (S T i),
where

A(S,T,i) ={X € A(S,T) | X € Dpni}.

Lemma 5.1.1. Let S and T be elements of S,,(Z,)*.
(1) Let QS.T) = {w € My,(Z,) | Sjw] ~ T}, and Q(S,T,i) =
Q(S,T)ND,,;. Then

(S, T) —m(v(det T)—v(det S))/2
G2 L) (S, T) /G L (Z,))p™ ,
= #OST)/GL(Z,)
and
aP(S’ T7l) — #(Q(S, T,i)/GLm(Zp))p_m(y(detT)_y(dEtS))/2.
o, (T)

(2) Let S, T) = {w € My(Z,) | S ~ Tw™]}, and Q(S,T,i) =

Q(S,T)N Dy, ;. Then

C¥p<S, T) _ #(GLm(Zp)\ﬁ(S, T))p(y(detT)—u(detS))/Q’
ap(S)
and
ap(sa T>Z) _ #(GLm(Zp>\§(S, T’Z-))p(z/(detT)—u(detS))/Q.
ap(S)

Proof. The assertion (1) follows from Lemma 2.2 of [BS87]. Now by
Proposition 2.2 of [Kat99] we have

p(ST)= Y GBS T et
W EGLm (Zp)\Q(S,T)
Then 3,(S,T[W™1]) = a,(S) or 0 according as S ~ T[W '] or not.
Thus the assertion (2) holds. O

A non-degenerate square matrix D = (d;;)mxm With entries in Z, is
said to be reduced if D satisfies the following two conditions:

(a) For i = j, d;; = p° with a non-negative integer e;;
(b) For ¢ # j, d;; is a non-negative integer satisfying d;; < p% — 1
if i <janddy=0ifi>j.
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It is well known that we can take the set of all reduced matrices as a
complete set of representatives of GL,,(Z,)\M,,(Z,)*. Let [ =0 or 1

according as m is even or odd. For B € C,%),p put
QO(B) = {W € GL,(Q,) N M,(Z,) | BW '] € L) }.

Furthermore put Q(l)(B,i) = (NZ(Z)(B) N Dypi. Let ng < m, and ¢y m
be the mapping from GL,,(Q,) into GL,,(Q,) defined by 1, (D) =
Lm—noLD.
Lemma 5.1.2. (1) Let p # 2. Let © € GL,,(Z,) N Sy (Z,), and By €
Sm*nO(Zp)X'
(1.1) Let ng be even. Then ), —ny.m induces a bijection
CLunng 2\ (pB1) = GL(Z,)\ 0 (O LpBy),
where | = 0 or 1 according as m is or even or odd.
(1.2) Let ng be odd. Then Vy,—n,m induces a bijection
G Ly (Zp)\Q (pB1) = GLn(Z,)\Q (O LpBy),
where | = 0 or 1 according as m is or even or odd, and I’ = 1
or 0 according as m s or even or odd.
(2) Let p=2. Let m be a positive integer, and ng an even integer not

greater than m, and © € G Ly, (Z2) N Spy(Za)e.
(2.1) Let By € Sp—ny(Z2)*. Then y,—py.m induces a bijection
GLi—ny(Z2)\QW (24 By) ~ G L, (Z,)\QV (2'0 L1241 By),

where | =0 or 1 according as m s or even or odd.
(2.2) Suppose that m is even. Let a € Zy such that a = —1 mod 4,
and By € Sp—ng—2(Za)*. Then m_ny—1.m induces a bijection

G L —ny—1(Z2)\QW (aL4B))
~ GLn(Z:)\QV(6L (f %) 12B,).
(2.3) Suppose that m is even, and let By € Sy _1_ny(Z2)*. Then

Ym—no—1,m nduces a bijection

GLu—ng—1(Zo)\QW(4By) ~ GL,,(Z2)\Q(61212B).
(3) The assertions (1),(2) remain valid if one replaces Q(B) by Q(B, 7).
Proof. (1) Clearly the mapping ¢y, —nym induces an injection from
G Lo (Z,)\QY (pBy) to GL,,(Z,)\QV (0 LpB,). To prove the surjec-

tivity of ¢, take a representative D of an element of GLm(Zp)\ﬁ(l) (©LpBy).
Without loss of generality we may suppose that D is a reduced ma-

trix. Since (©LpB1)[D~] € S,,(Z,), we have D = < 180 l()) ) with
1

Dy € QU(pB,). This proves the assertion (1.1). The assertion (1.2)
can be proved in the same way as above.
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(2) As in (1), the mapping ¢, —n,m induces an injection from
G Lo (Z2)\QO (21 By) to G Ly (Z2)\Q® (20 121 By). Then the sur-
jectivity of ¢ in case [ = 0 can be proved in the same manner as (1).
To prove the surjectivity of ¢ in case [ = 1, take a reduced matrix

D = (Dl D ) with Dy € M, (Z2)*, Dy € My, _ny(Zo)*, D1y €

0 D,
Mg m—no(Z2). Then (20L4By)[D~'] € L], , if and only if 20[D;'] €
4L,, 2. In this case we can take D as D = ( 180 lg ) . Thus the
2

surjectivity of ¢ can be proved in the same as above.
The assertion (2.2) can be proved in the same way as above.
To prove (2.3), we may suppose that ng = 0 in view of (2.1). Let

D € QW(4B;). Then

4Bl {Dil] = t?”o?"() + 4B/
with 7o € Z5"' and B’ € L£,,_15. Then we can take r € ZJ"* such
that

4'D " trrD™ = trgrg mod 4L, 1 5.

Furthermore, 2rD~! is uniquely determined modulo 2Z5"~* by 7. Put

D = ( (1) lr? ) . Then D belongs to Q(O)(2L2Bl), and the mapping

D — D induces a bijection in question. O

Corollary. Suppose that m is even. Let B € ESL)_LP. Then there exists
a bijection

01 0L (Z0\00(B) = GLLZ NV (2 02 )

such that v(det(w(W))) = v(det(W)) for any W € GLy_1(Z,)\QW(B).
This induces a bijection V; from G Ly, 1(Z,)\QM (B, i) to

CLn(ZNYO (1L, (el Eryya ) 20) fori =0, m = 1.

Proof. Let p # 2. Then we may suppose rg = 0, and the assertion
follows from (1.2). Let p = 2. If r5 = 0 mod 2 we may suppose that
rp = 0, and the assertion follows from (2.3). If r5 # 0 mod 4, we may
suppose that B = al4B; with B; € L£,,_25 and rp = (1,0,...,0).
Thus the assertion follows from (2.2). O

Lemma 5.1.3. Suppose that p # 2.
(1) Let B € S, (Zy)*. Then

ap(pdB) = p™" V20, (B)
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for any non-negative integer r and d € Z,.
(2) Let Uy € GLyy(Zy) N Spy(Zy) and By € Sp—ny(Zy)*. Then

ap(pB1LUL) = oy (pB1)
2 H”O/Q( P2 (1 + x((=1)"/2 det Uy)p~0/2)=1 if ng even,
X
2112 (1 — p2) if ng odd.

Proof. The assertions follow from the proof of Theorem 5.6.3 and The-
orem 5.6.4, (a) of Kitaoka [Kit93]. O

Lemma 5.1.4. (1) Let B € S,,(Z2)*. Then
OZQ(QTdB) = 2rm(m+1)/2a2(B)

for any non-negative integer r and d € Z3.
(2) Let ng be even, and Uy € GLy (Z2) N Spy(Zs).. Then for By €
Si—no(Z2)* we have

Oég(UlJ_2Bl) == Oé2(231>

2H”°/2( 2%‘)(1 +X((=1)™2det Un)p™2) ™t i Bi € S (Zo
X

and for ug € Z2 and By € Syy—no—1(Z2)* we have

no/2
g (g L2071 LABy) = ap(2B,)2m=2)(m=1)/2+1 H(l _ 92,

i=1

Proof. The assertions follow from the proof of Theorem 5.6.3 and The-
orem 5.6.4, (a) of Kitaoka [Kit93]. O

Now let R be a commutative ring. Then the group GL,,(R) x R*
acts on S,,(R). We write By ~gr By if By ~r £B; with some £ € R*.
Let m be a positive integer. Then for B € S,,(Z,) let S,,,(B) denote
the set of elements of S,,(Z,) such that B’ =z B, and let S,,_1,(B)
denote the set of elements of S,,_1(Z,) such that 115" =~z B.

Lemma 5.1.5. Let m be a positive even integer. Let B € S,,(Zs)”.
Then

1 #(Sma2(B)/ ~)
2 az(B) 20,(B)

B'e€Sm—1,2(B)/~

Proof. For a positive integer [ let | = [; + --- + [, be the partition
of | by positive integers, and {s;}/_, the set of non-negative inte-
gers such that 0 < s; < --- < s,. Then for a positive integer e
let SP(Zo/2°Zs, {l;},{s:}) be the subset of S;(Zy/2°Zy) consisting of
symmetric matrices of the form 2%1U; 12%2U, 1 --- 12U, with U; €

Jes
o>
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S).(Zg/2¢Z5) unimodular. Let B € S,,(Z2), and det B = (—1)™/2d.
Then B is equivalent, over Zs, to a matrix of the following form:

2L, L2 Wy L - - 120 W,,

where 0 =t <ty < --- <t and Wy, ...,W,_1, and W, are unimodular
matrices of degree ny,...,n,_1, and n,., respectively, and in particular,
Wi is odd unimodular. Then by Lemma 3.2 of [IS95], similarly to (3.5)
of [IS95], for a sufficiently large integer e, we have

#(Sma(B)/ ~) _ 1
ay(DB) a Z as(B)

BESm 2(B)/~
_ 2m—12—1/(d)+22:1 ni(ni—1)e/2—(r—1)(e—1)=321 < j i<, MiNjt;

X H#(SLni(Z2/2ezz))‘1#§§2)(Z2/26Z2,{ni},{ti},B),

where S\ (Zy/2°Zy, {n;}, {t;}, B) is the subset of S\ (Zy/2°Z, {n;}, {t;})
consisting of matrices A such that A ~z, 2.z, B. We note that our local
density aq(B) is 27 times that in [IS95] for B € S,,(Z5). If ny > 2,

put ' =mrny =ny —1,nh =ng,.,n. =n,, and t; =t; fori =1,...,7,
andif ny =1, put " =r—1,n, =n;y and t; =t fori =1, ...,r". Let
SO (Z)2°Z, {n}}, {;}, B) be the subset of S\ | (Zy/2°Z, {n}}, {t}})
consisting of matrices B’ € S,,,_1(Z2/2°Z5) such that 11 B’ ~z, sz, B.
Then, similarly, we obtain

> =
!
B'€Sm_1.2(B)/~ az(B')

/
_ 2m—22—u(d)+2§:1 ni(n;—1)e/2—(r'=1)(e=1)=301 < j i<y MML;

) [T #(SLuy(Z2)2°2)) " S8 1 (2)2° 2y, {n}}, {E)}, B).
=1

Take an element A of §£,9)(Z2/26Z2, {ni},{t;}, B). Then A = 251U, L2%2Uy L --- 125U,
with U; € S,,(Z2/2°Z3) unimodular. Put Uy = (uxu)n,xn,- Then by
the assumption there exists an integer 1 < A < n; such that uyy, € Z3.
Let A¢ be the least integer such that wuy,\, € Z3, and V; be the ma-
trix obtained from U; by interchanging the first and Ag-th lows and

the first and Ag-th columns. Write V| as V; = ( tU1 “;1, ) with

Vi
vy € Z5,vi € My, -1(Zs), and V' € S,,_1(Z5). Here we understand
that V' — ‘vyv; is the empty matrix if n; = 1. Then

U1 0
‘GN(O V’—tvlvllvl)'
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Then the map A +— v, ' (20(V! — tvioytvy) 122U, L --- 1250,) in-
duces amap T from S (Z/2°Zs, {n;}, {t:}, B) to S\, (Z2/2°Zs, {n;},{t;}, B).

By a simple calculation, we obtain
#T7YB') =2 Umogm _q)
for any B’ € Sr(r?)_1<Z2/2€Z2, {n;},{t}}, B). We also note that
HSL, (Zy)2°Zy) = 20~ VCm—Ngm=-lom _ 1\ U (ST, (Zy/2°Z5)) or 1

according as n; > 2 or ny = 1, and

Zn, n;—1)e/2—(r—1)(e—1) Z nin;t;
1<j<i<r

/

= em—i-Zn (n, —1)e/2 — (' —1)(e — 1) Z ngnts,

=1 1<j<i<r!

where e,, = (n; —1)e or e,, = 1 — e according as n; > 2 or n; = 1.
Hence

2m—12—1/(d)+zg:1 ni(ni—1)e/2—(r—1)(e—1)=321 < j i<, MiNjt;

x [ [ #(SLn (22/2°2)) " #8227, {ni}, {t:}, B)

i=1

— 2 . 2777,—22 ( )+Zz 1 Z(nL )8/2 ( 1)(671)721§j§i<7‘/ nzn]t;
x [ #(SLuy(Z2/2°Z0)) 7 S5 (Z/2°Z, {0}, {1i}, B).
=1

This proves the assertion. O

The following lemma follows from [[IK06], Lemma 3.4]:

Lemma 5.1.6. Let | be a positive integer, and q,U and Q@ variables.
Put ¢,(q) =TI~ (1 — ¢") for a nonzero integer r. Then

l
[[a-v"Qe !
i=1
l—m m

Z d)l _1 H 71+1 H(l . Uq271>(_1)mq(mfm2)/2

i=1 i=1
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5.2. Formal power series of Andrianov type.

Let Cj,(,l) (T, X,t) be the polynomial and in X and ¢, and Gg) (T, X)
the polynomial in X defined at the beginning of Section 5. We note
that

~(l _ v —eO(@ —(n+1)/2
GI(T, X, 1) = X" DGW(T, Xp >/_).
For a m x m half-integral matrix B over Z,, let (W,q) denote the

quadratic space over Z,/pZ, defined by the quadratic form g(x) =
B[x] mod p, and define the radical R(W) of W by

RW)={xeW | B(x,y) =0 forany y € W},

where B denotes the associated symmetric bilinear form of g. We then
put /,(B) = rankg, .z, R(W)*, where R(W)* is the orthogonal comple-
ment of R(W)* in W. Furthermore, in case ,(B) is even, put &,(B) = 1
or —1 according as R(W)* is hyperbolic or not. In case I,(B) is odd,
we put £,(B) = 0. Here we make the convention that &,(B) = 1 if
I,(B) = 0. We note that &,(B) is different from the &,(B) in general,
but they coincide if B € Ly, , N 3G Ly (Zy).

Let m be a positive even integer. For B € E,%),Lp put BY =

( trl/Q (B -11:{7?7’)/4 ) , where r is an element of Zg"”_l such that B +

“rr € ALy, Then we put €0(B) = ¢(BW) and € (B) = £(BW).
These do not depend on the choice of 7, and we have ¢)(B) = ¢(B).
Let p # 2. Then an element B of ET(:LLP is equivalent, over Z,, to
©L1pB, with © € GLyy—p,—1(Zy) N Sp—ny-1(Z,) and By € Sy, (Z,).
Then £(B) = 0 if n; is odd, and g(l)(B) = x((=1)m=m)/2 det ©) if n, is
even. Let p = 2. Then an element B € E,(i)_m is equivalent, over Z,, to

a matrix of the form 20 1L By, where © € GL,,_pn,—2(Z2) N Sp—n,—2(Z2).
and By is one of the following three types:

(I) By = al4B, with a = —1 mod 4, and By € Sy, (Z2).;

(II) B1 € 4Sn1+1(Z2);

(IIT) By = al4By with a = —1 mod 4, and By € Sy, (Z2),.

Then E(l)(B) = 0 if By is of type (II) or type (III). Let By be of type
(I). Then (—1)(™="1)/2q det © mod (Z3)" is uniquely detemined by B,
as will be shown in Lemma 5.3.2, and we have

€V(B) = x((=1)" " det ©).

Suppose that p # 2, and let & = U, be a complete set of representa-
tives of Z¢/(Z;)". Then, for each positive integer m and d € U,, there
exists a unique, up to Z,-equivalence, element of S,,(Z,) N GL,,(Z,)
such that whose determinant is (—1)™+1/2d which will be denoted
by ©O,,4. Suppose that p = 2, and put Y = Uy = {1,5}. Then for
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each positive even integer m and d € U, there exists a unique, up to
Zs-equivalence, element of S,,(Z3). N GL,,(Z3) whose determinant is
(—1)™/2d, which will be also denoted by ©,, 4. In particular, if p is any
prime number and m is even, we put 0,, = ©,,; We make the conven-
tion that ©,, 4 is the empty matrix if m = 0. For an element d € U we
use the same symbol d to denote the coset d mod (Z)".

Lemma 5.2.1. Let n be the fized positive even integer. Let B € ES_)LP
and put & = x((=1)"?det B).

(1) Let p # 2, and supposse that B = ©,,_p,—14LpBy with d € U and
By € L,, . Then

1
GI(B,Y)
( 1 if ny =0,
ni1/2—1
(1= &p™?Y) H (1—p*"Y?)(1 —i—p”l/“"/zg(l)(B)Y) if n, is positive
_ i=1
N and even,
(n1-1)/2 ‘
(1 — &p™?Y) H (1 —p*t"Y?) if n; is odd.
\ i=1

(2) Let p =2, and supposoe that B =201 By with © € S,,_,,, 2(Z3).N
GLn_nl_Q(ZQ) and B1 S Sn1+1(ZQ). Then
Gy (B,Y)
( 1 if n, =0,
ni/2—1
(1-&2"2Y) T (1 —22ny?)(1 + 2/ 2 (B)Y) if ny is positive

i=1

% and By is of type (I),
n1/2
(1= &2 ) [J(1 - 22y?) if By is of type (II)
i=1
L or (III).

Here we remark that ny is even.

Proof. By Corollary to Lemma 5.1.2 and by definition we have G;l) (B,Y) =
G,(BW,Y). Thus the assertion follows from Lemma 9 of [Kit84]. O

Lemma 5.2.2. Let m be a positive even integer, and | = 0 or 1. Let

B e £ Then

m—Ll,p*
FO(B, X) = > X
BreLl) | /GLy_1(Zp)

XG«(Z)(BI7 p(—m—l)/QX)(p—lX)(y(det B)—v(det B’))/Q.

() (B, B)
O‘p(B)
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Proof. We have

FO(B, X)
_ Z X—eU)(B)G(z) (B[W—l]’p(—m—l)/2X)X2u(det W)
W EGLy_i(Zp)\QW (B)
— Z Z X—E(U(B)G(l)(B/?p(—m—l)/QX)XZV(det W)
BreL) | /GLy_1(Zp) WEGLm_1(2)\QW(B,B)
_ Z X_e(l)(B’)#(GLm_l(Zp)\Q(B’, B))p(u(det B)—v(det B"))/2

BreLl) | /GLuy_1(Zp)

><G(l) (BI,p(fmfl)/2X)<p71X)(u(det B)—v(det B’))/2'

Thus the assertion follows from (2) of Lemma 5.1.1. O

Now let B,(,I)(B,t) be the polynomial in ¢ defined at the beginning
of Section 5. Then by Lemma 5.2.1 we have the following:

Lemma 5.2.3. Let n be the fized positive even integer. Let B € £7(11_)1 »

(1) Let p # 2, and supposse that B = ©,,_p,—141pBy with d € U and
By € L,, ;. Then

(n—m1—2)/2
(1- E(l)(Bm(nﬁnH)/zt) H (1- p721+1t2) if ny even,
B(l) (B, t) — i=1

p (n—n1—1)/2
(1 — p~2+h?) if ny odd.
i=1
(2) Let p = 2, and supposoe that B = 201B, € L, _,, with © €

Sn_nl_z(ZQ)e N GLn_nl_g(Zz) and By € Sn1+1(Z2). Then
1
B{V(B,t)

(n—n1-2)/2
(1—&" By T (- p 2*42) if By is of type (1),
=1

(n—m1—2)/2
H (1—p 1% if By is of type (II) or (III).
i=1

For a non—degenerate half-integral matrix 7" over Z, of degree n, put

T X t ZF tu(detw)

This type of formal power series was first introduced by Andrianov
[And87] to study the standard L-function of Siegel modular form of in-
tegral weight. Therefore we call it the formal power series of Andrianov
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type. (See also Bocherer [Boc86].) The following proposition follows
from (1) of Lemma 5.1.1.

Proposition 5.2.4. Let m be a positive even integer and | = 0 or 1.
Let T e £ Then

m_l)p'

a0}
Z Fy” (B, X)a,(T, B)ty(det B) _ 4 T) RO (T, X, =2,

a,(B)

(1)
BeL,”, .,

The following theorem is due to [KK09).

Theorem 5.2.5. Let T' be an element of Efll_)ljp. Then

B (T, p" )G (T, X 1)
[ (1= p X 1)(1 - pi= 1 Xt)

RI(T, X, t) =

In [BS87], Bocherer and Sato got a similar formula for 7" € £,,,,. We
note that the above formula for p # 2 can be derived directly from
Theorem 20.7 in [Shi00] (see also Zhuravlev [Zhu853]). However, we
note that we cannot use their results to prove the above formula for
p = 2. Now by Theorem 5,2,5, we can rewrite H, ;(w,do, X,Y,t) in
terms of En_l(do,w, X,Y,t) in the following way:

Theorem 5.2.6. We have

"i(dOa n— 17 la t)Rn—l(dOa W, X7 K t)
T p T XYR)(1 - p TV )

Hn—l(dCH W, Xv Y7 t) -

for w = €.

Proof. By Lemma 5.2.2 and Proposition 5.2.4, we have

FY(B, X)
H, (dy,w, X,Y,t) = —P ) (B) v det B)
1( 0, W, sy Ly ) Z Oép(B) w( )
BeL'l | (do)
_eM(py ~(1 —(n
Yy UGB p Y ay(B B

-y (v(det B)—v/(det B’))/Q'
a,(B’) v )

B’eﬁﬁfﬂl’p

Let B and B’ be elements of ﬁﬁ}_)Lp, and suppose that a,(B’, B) # 0.

Then we note that B € £ (dp) if and only if B’ € £ (dp). Hence

n—1,p n—1,p
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by Theorem 5.2.2 we have
Hn—l(d(b W, XJ Y7 t)

N e
O‘p(B/>

(py—l)u(det B’)/2W(B/)

Bec, (do)

(1)
% Z Fp (BaX)@p(B/:B)<t2p—1y)u(det3)/2

B (1) O[p(B)
€L, ,
W) gt =(n+1)/2y )y —eD(B) /
_ 2 : G ( P ) tl/(detB )CU(B/)R(B/, )(7 t2Yp_

B/
B’ ﬁgll)lp(do) p( )
S GM(B, X, p Y t2)
a oy (B')

w(B/)Yfﬁn (B’)tlf(det B’)
Brectt | (do)

B(B,p~" Y )Gy (B, p~ 2y
[T, (1= pr En XY ) (1 — pp XY 12

5.3. Formal power series of modified Koecher-Maass type.

For a,b € Q let (a,b), the Hilbert symbol on Q,. Let r be an
even integer. Then for dy € F, and | = 0,1 let x(do,r — 1,1,t) and
k(do, 1, t) be as those defined at the beginning of Section 5. We note
that x(do,r,(,t) =1 and

R(do, = 1,1,t) = ((=1)"7%, (=1)"2dy);, p~ /2~ Do)
if p # 2 Let j =0,1, and dy € F,. We then define a formal power
series P (do,w & X, t) in ¢ by

FY(B, ¢, X)

PP (do,w, &, X, t) = k(do, 7—j, Ly )" w(B)t )

a,(B

BeLY, (do) »(B)
for w=1 or g, where [, = 0 or 1 according as w = ¢ or €. In particular
we put P (do,w, X, t) = (do, w, 1, X, t). This type of formal power

series appears in an explicit formula of the Koecher-Maass series associ-
ated with the Siegel Eisenstein series and the Duke-Imamoglu-Ikeda lift
(cf. [IKO04], [IK06]). Therefore we say that this formal power series is

of Koecher-Maass type. For T € ET Zip let éz(oj) (T, &, X, t) be the poly-

nomial and for { = +1,7 =0,1 and w = ¢, ¢, let R@j(n; do,w, &, X, Y, t)
be the formal power series in t as defined at the beginning of Section
5, which will be said to be of modified Koecher-Maass type.

")
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Remark. For a variable X we introduce the symbol X2 so that
(X'/2)2 = X, and for an integer a write X%/? = (X'/2)@. Under this con-
vention, we can write X~ (D(detT) qg xo2p(n=2)/2 xv(do) (X —1/2¢)v(det T)
if T e Em 1p(do) with a positive even integer m.

The relation between P i(nsdo,w, &, X, Y, t) and P(j (do,w, &, X, 1)
will be given in the followmg proposition:

Proposition 5.3.1. Let r be a positive even integer. Let w = &' with
[=0,1, and 7 = 0,1. Then

r—j
PV (n; do,w, €, X, Y, t) = P9 (do,w, €, Xty V3 [[(1—ttp -2+,
i=1

Proof. For 1 =0,...,r — j put

~(; B[D! X
CUNTAPR S T SU Sl CE N
Be[:(]) ( )DE'DT iy

Then by (2) of Lemma 5.1.1 we have
ﬁrgi)],z(d(% w, 57 X7 t)

1 F9(B' ¢ X)a, (B B.i
— P ( 75) )Ofp< 9 77/)(4}(_8)
Z( : ap(B) Z( : ap(B )
BeL,”; (do) BeL,”,

—(v(det B)—v(det B’ ))/Qtu(det B) )

Xp

Let B and B’ elements of Egj ;p» and suppose that ap(B’,B,z') # 0.

Then we note that B € £ (dp) if and only if B’ € [,r ]p(do)- Hence

=3P

by (1) of Lemma 5.1.1 we have

ﬁr(z)j,i(d(b W 67 X7 t)

Esj)(B”§7X) (det B')/2 / _1/2\w(det B) (B, B, 4)
= —P ot pyvlde w(B') (tp~1/2)r(det B) P20 0 2
Z a,(B’) Z a,(B)

() )
B'eL;”; (do) BeL;:”,

F(] B’ X ’ _ e —r
Z (T%)p detB)/z(f;p 1/2) v(d tB)(t2p +j— 1) #Dr e

(©)]
BeL;”, (do)

By Lemma 3.2.18 in [And87], we have

¢r—j (p)
6i(p)pr—j—i(p)

#Dr—j,i =
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Hence
ﬁr(]—)],z(d()a w, 57 X7 t)

B F(B6X) o vaensy  Dr—i(D) 2 _rij-1yi
= 2 Tamy B e e

()
Brect) . (do)

) E Loy ) PO (do, w, €, X, £) (271,

¢i(p)¢r—j-i(p)
Then by the remark just before this proposition we obtain
ﬁ?“(i)] (TL, d0> w, 57 X> Y7 t)
= Y (PP EY Y (do, r = Lo t) T B (do, w0, € X 1Y),

Thus, by (3.2.34) of [And87], we have

<

Il
o

ﬁr@—)j (na dO) W, 67 X7 t)

r—j
_ Z(_l)z‘pi(i—i-l)/Q(p—n—r+j—2t4)i ¢rfj (p) Pr(i)j(d(),w,f, X, tY_l/g)

p ¢i(p)dr—j-i(p)
r—j
= P9 (do,w, &, X, 1y V) T2 — ¢tprnrtiz2eiy,
i=1

g

Now we consider a partial series of ﬁr@j (n;do,w, &, X, Y, t). Let r be
an even integer. First let p £ 2. Then put

Qq(“O) (n) dO? Ela 57 XJ }/7 t)

~(0) —n42
_ Z Gp (pB/aga);:p t Y)8(pB,)l<tY_1/2)V(deth/),
B/ €Sy (Zp,do)NSy(Zyp) o (PB’)
and
Q213 do, £',€, X, Y, 1) = ((do, (=1)7/2),pl" =2 )2)
GP(pB, £, X, p~12Y) ,
AT B’ l z€Y-71/2 V(deth)'
x > B e(pB)'( )

Blepflsy‘_1(Zp,do)ﬂST_l(Zp)
Next let p = 2. Then put
Qs'l—)l(na dOa Ela 57 X7 Y7 t) = /{(d07 r— ]-7 l7 t)_l

3 GV (AB' ¢, X, 27 %Y)

AB' l tYfl/Q vo(det(4B"))
as(4B') S ) 7

X

B’esr,l(Zz,do)mST,l(Zp)
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and
Q£0)<n§d075l,§aX7Yat) = li(do,’f’, l)t)_l
~(0) —n42
% Z Gy’ (2B',¢&,X,27" Y)g(B/)l(ty—l/Z)u(det(QB’))'

/
B'€S,(Za,do)NSr (Za)e az(2B')
Here we make the convention that Qéo)(n;do,gl,é,X, Y,t) = 1or0
according as v(dy) = 0 or not.

To consider the relation between

ﬁygi)j(na d07€la€7XaKt) and Qg'.]jj(na d07€l7€7XaKt)7

and to express ﬁn_l(do,sl,X, Y,t) in terms of ﬁﬁ)j(n; do, e, €, X, Y, ),
we provide some more preliminary results. First we review the canon-
ical forms of the quadratic forms over Z, following Watson [Wat76].

Lemma 5.3.2. Let B € L ,. Then B is equivalent, over Zs, to a
matriz of the following form:

Lio2'(Vi L)),

where V; = L?;lcij with 0 < k; < 2,¢;; € Z5 and U; = %@mi,d with
0 < my,d € U. The degrees k; and m; of the matrices are uniquely
determined by B. Furthermore we can take the matrix J_ZTZOQi(l/iJ_Ui)
uniquely so that it satisfies the following conditions:
(C].) ci1 = =x1 or +3 kaz =1and (Cﬂ,CQ) = (]., :|:].), (1, :t?)), (—]_, —]_>,
or (—1,3) if k; = 2;
(C2) ki+2 = k’z =0 Zf UH_Q = %Gmi+275 with My > 0;
(c.3) —detV; =1mod 4 if k; =2 and U3, = %@mmﬁ with m;q >
0;
(C4) (—1)'1%_1 detV; =1 mod 4 ’lf ki, ]i]i+1 > 0,

12

(c.6) Vi = ¢, (£1), ( é fl ) or ( _01 _01 ) if kivg > 0.

The matrix satisfying the conditions (c.1) ~ (c.6) is called the canonical
form of B.
The following lemma follows from [[Kit93], Theorem 3.4.2].

Lemma 5.3.3. Let m and r be integers such that 0 < r < m, and

dy € Z;

(1) Let p# 2, and T € S,(Z,,dy). Then for any d € U we have
e(Om_ralT) = (1)1 7V2d, dy),e(T).

Furthermore we have

{ (p, do)pe(T) if r even,

e(pT) = (p, (_1)(r+1)/2)p5<T) if r odd,
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and
e(aT) = (a,dy)"e(T)

p
Jor any a € Z.
(2) Let p=2, and T € S,(Zs,dy). Suppose that m — r is even, and let
deU. Then for © =20,,_,4 or © =20,,_,_51(—d) we have

£(OLT) = (_1)(m—r)(m—r+2)/8((_1)(m—r)/2d7 (—1)[(7"+1)/2]d0)25(T),
and
£(Opr g LT) = (=1)tm= =282 q), ((—1)m=/2q (— 1) D/ A gy )oe(T).
Furthermore we have
£(2T) = (2,do);<(T),
and
S(aLT) = (a, (—1) /241 G0),e(T)
for any a € Z3, and

{ (a,dy)2e(T) if r even,

e(al) = (a, (—1)TD/2),e(T)  if 7 odd

for any a € Z3.

Henceforth, for a while, we abbreviate S,(Z,) and S,(Z,,d) as S,
and S, ,(d), respectively. Furthermore we abbreviate S,.(Z,), and S, (Zs, d).,
as Sy2. and S, o(d),, respectively, for z = e, o.

Let m be an even integer. Let p # 2. For £ = +1 let Hr(i)g and Hgll’f
be functions on S,,,(Z,)* and on S,,_1(Z,)*, respectively satisfying the
following conditions:

0 0
(H-p-1) H(On-2ralpB) = HY
B e SQT<ZP);
(H-p-2) H | (On2—24LpB) = Hy),\ (pdB) for any € = £1,d € U
and B € Sy41(Z,);
(H-p-3) H,(Opo,—1LpB) = HYY., (—pB) for any € = £1, and B €
S2r1+1(zp>; )
(H-p-4) HY | (Onsr1alpB) = HY,
and B € Sy,.(Z,);

(H-p-5) HY,(dB) = HY,(B) for any € = £1,d € Z and B € S,,(Z,).

(pB) for any £ = £1,d € U and

)(pB) for any £ = +1,d e U

Let dy € F,. Then we put
QW(do, HY | .2 +1,€t) = w(do,m — 1,1,4)"

(1) !
% Z Z Hm_l’g(@m—Qr—Q,dJ-pB)6(®m—2r—2,dJ—pB) tu(det(pB)).
ap<@m72r72,dJ-pB)

de€U Bep~!Sari1,p(dod)NS2r+1,p
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For any d € U we put

QW (dy, d, H'" 15,27‘ ¢ t) = k(do,m —1,1,)""

Z (( m— 27‘—1,d)J—pB)E((_@m—ZT_lad)J‘pB)lty(det(pB))

X 3
ap((=Om—2r-1,4) LpB)

BeSarp (dod)ﬁSan
and

QO (do, d, HY,, 21, )

m,&?
(0) t
) > Hy ¢ (Om—2ra L pB)e(Om2ra LPB) ey
BE S o (@S Q9 (@m—QT,deB>

Here we make the convention that

QO (do, 1, H”. m, e, t)

m,e
= 3 H,(pB J<B) ey
BESm p(do)NSm.p az(pB)
Furthermore put
QO (do, HY,, 2r +1,¢, 1)
- Z Z Hfrg’é(@m*Qr*ldJ‘pB) (Om—2r—1,4LpB)' 4v(det(pB))

CVp<®m 2r— 1dJ—pB)

dell Bep=1Sar11,p(dod)NS2r+1,p

Let p = 2. Let H(O) and H'! )15 be functions on S,,(Z,)* and on
Sin—1(Zs)*, respectlvely satisfying the following conditions:

(H-2-1) HY(Om-2412B) = Hy' ,(2B) for any § = £1,d € U and

2r,6x(d)
Be SQT(ZQ),
(H-2-2) H | (2643,_2414B) = HYY), | (4dB) for any ¢ = +1,d € U

and B € Sy41(Zs);
(H-2-3) H, (2102 212B) = H{,
Be 52r+1(Z2)
) 0
(H-2—4) Hr(n)fl,f( aLQ@m—QT—Q,dJ—é‘:B) Hér)gx(a
U and B € S,.(Zs),
(H-2-5) H{)\(dB) = H{)(B) for any € = 1,d € Z; and B € Sy, (Zy).

(—=4B) for any ¢ = +1, and

(2B) forany £ = +1,a €



IKEDA’S CONJECTURE 35
Let dy € F5. Then we put
QW(do, HY | .2 + 1, 1) = w(dg,m — 1,1,8) 7"

x 43 3 Hy) 1 (200 2 5,4 14B)

deU BeSar41,2(dod)NS2r+1,2;5e

% 6(2('_')m72r72,dJ-43)l tm—?r—2+u(det(4B))
042<2@m72r72,dJ—4B)

+ > HY | (20,25 14B)

BeSar41,2(do)NS2r41,2;0

€(20y,—2,—214B)' ym—2r—24u(det(4B))
&%) (2@m—2r—2J—4B)

I 3 HY | (~1120,, 5,_414B)

BeSar42,2(do)NS2r4-2,2;0

y e(— 1L2@m_2r—4i43)l gm—2r—4-+v(det(4B))
ag(—lLQGm—Qr—4J—4B) '

We note that
Q(l) (d07 Hr(ill,§7 m — 17 Ela t) = H(doﬂ m— 1’ l’ t)_l

l

(1) €(4B) v(det(4B))

x ) HyfUB) it .
BeSm—1,2(do)NSm—1,2

For any d € U put
QW (do,d, HYY | o 2, € t) = K(dy,m — 1,1,1) "
1
x > HY | (~dL120,, 3, _»14B)

BeS2r,2(dod)NSar,2;e
€(—dL120,, 9, 5 14B) ym—2r—2+v(det(4B))
o (—d120,,_9,_5 1 4B) ’

and

Q(O) (do’ d, H(O)

m,§? 2T7 El7 t) = H(do, m, l’ t)il
(0) !
H (@m—%dLQB)E(Gm—%dJ-zB) (det(2B))

m,§
X Z a2(@m—2r,dJ-2B) .

BESQT,2 (dOd)mS}r,?;e

Here we make the convention that
Q(O)(d()) 17 Hﬁ,(l)’)gv m, Ela t) = K;(d()a m, la t)_l
0
H'.(2B)e(2B)"

8 Z a2(2B)

Besm,Q(dO)mSm,Q;e

v(det(2B))
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Furthermore put
QO (do, HY.,2r + 1, 1) = k(do, m, 1,1)"

m,&?
H (0202 12B)e(Oy_2,—5 L 2B)"
x > ’
a2(®m—2r—2J—2B)

BeSar42,2(do)NS2r+2,250

Proposition 5.3.4. (1) Let p # 2.
(1.1) We have

tl/(det(2B)) )

QU (do,HQT_Hg,QT-l-l el t)
¢(m—2r—2 /2< )

Q) (do, H,,),

m§,2r+1,al,t) =
if lv(dy) =0, and
QU (dO,HmS,Qr—i-l g,1)=0

Zf V(d()) =1.
(1.2) Letd € U. Then

QO (dy,d, H

m§,2r,5l t)
(L p iy ))Q(O)(dod,l,H(o) 2, el 1)

B 2¢(m72r )/2 (P )

if lv(dy) =0, and
QO (dy,d, HY,,2r,e,t) = 0
'lf V(do) =1
(2) Let p=2.
(2.1) We have

QO (dy, B QW (do, Hyp, 1 ¢, 2 + 1, 1)
, ¢(m72r72)/2(2_2)

m,&?

2r + 1,6, t) =

if lv(dy) = 0, and
Q) (dy, H e 2r+1,et)=0

’Lf I/(do) > 0.
(2.2) Letd e U. Then

QO (do,d, HY,, 2r,', 1)
(1 4+ 2-m=20/23 (@) Q) (dod, 2r, H

arex(d) 27 el t)
2¢(m—2r)/2 (2_ )

if lv(dy) =0, and
Q) (do, d, H,,

mf’

2r,e,t) =0
Zf V(d()) > 0.
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Proof. (1) We note that
(=Om-2r-1,a) LpB ~ d(=Op,_2,—1) LpB = (—=O,,_2,—1) LdpB
for d € U and B € p~'S5,11,(dod), and the mapping
Sor41p(dod) 5 B +— dB € Sy 41 ,(do)
is a bijection. Furthermore by Lemma 5.3.3 we have

e((=Om—2r-1.4)LpB) = (d, do)pe(pB),
and £(dpB) = e(pB). Thus the assertion (1.1) follows from (H-p-3),(H-

p-5) and Lemma 5.1.3. Now by (H-p-2) and Lemmas 5.1.3 and 5.3.3,
we have

(L4 p = @) (1), ),
2¢(m—2r )/2 (P_Q)

xQ (dod, H, .21, €', 1).

Thus the assertion (1.2) 1mmed1ately follows in case lv(dy) = 0. Now
suppose that [ = 1 and v(dy) = 1. Take an element a € Z3 such
that (a,p), = —1. Then the mapping S5.(Z,) > B — aB € Ss.(Z,)
induces a bijection from Sy, ,(ddp) to itself, and e(apB) = —e(pB) and
a,(apB) = a,(pB) for B € Sy, ,(ddy). Furthermore by (H-p-5) we have

QO (dy, d, H"

m,&?

or, el 1) =

HY. . (apB)e(apB)
2r,&x(d)
Q(O)<d0d H2 Ex(d)? 2?”, Elat) = Z Xa (apB)
Bep—18,(ddo)NSa p
= —Q(dod, Hy, (.21, 1).

Hence QO (dd, Hzg)g (d) 2r, el t) = 0. This completes the assertion.
(2) We prove (2.1). First suppose that [ = 0, or I = 1 and dy =
1 mod 4. Fix a complete set B of representatives of (Saq422(do) N
Sort22:0)/ A~ . Then 2718511 9(do) N Sori12 = UpenSari12(B). We
note that for any B’ € Sy,112(B), we have 1L B’ ~ B, and hence

0 0 1
Hérzrlg(QB) H2(r)+2 5(2J—2‘B ) H2(r)+1 5(43,)

Thus, similarly to (1.1) we have
QO (do, HY,, 2r +1,1,)

(0)
Hy, '\ ¢ (2B) .
- - v (det(2B))
= BZ% ¢(m_2r_2)/2<2 )2(r+1)(2r+3) OZQ(B) #(82r+2,2(B)/ )t .
S

Hence by Lemma 5.1.5 we have

Q 0)(d H 27,, + 1 <€l t) — 2(2T+1)T‘t727"

mE’

« Z H2r+1 §(4B) tu(det(4B’)).
P(m—2r-2)/2(27%)az(4B')

B’€27155,41,2(do)NS2r 11,2
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This proves the assertion for [ = 0. Now let dy = 1 mod 4, and put
& = (2,dp)2. Then by Lemma 5.3.3 we have

5(@m—2r—2j—23) — (_1)m(m+2)/8+r(7"+1)/2+(7”+1)2gog(B).
Furthermore for any a € Z} we have e(aB)! = ¢(B)!, and ay(aB) =
as(B). Thus, by using the same argument as above we obtain

QO (dy, HY, 2r + 1,¢,t) = (—1)™m+2)/3¢,

g (2B)(— 1)m(m+2)/8+r(r+l)/2+(r+1) £0e(B)

2r4+2,¢
X
1;3 P(m-2r-2)/2(272)20+ D+ ay (B)

We note that (1LB') = ¢(4B’) for B’ € Sy.412. Hence, again by
Lemma 5.1.5, we have

Q(O)(do,HT(,?,)g,QT‘+1,5l,t) ( 1)T(r+1)/2(( 1)r+ ( )r+1) o(2r+1)ry—2r

#(«§2r+2,2(B)/ N)tV(det(2B))‘

% Z 2r+1§( B,)€< ) (det(4B’))_
P(m—2r-2)/2(27%)az(4B')

B’€27155,41,2(do)NS2r 41,2

This proves the assertion for [ = 1 and dy = 1 mod 4.
Next suppose that [ = 1 and 4 !'dy = —1 mod 4, or [ = 1 and
87 'dy € Z%. Then there exists an element a € Z} such that (a,dy)s =

—1. Then the map 2B +— 2aB induces a bijection of 2S5y, ,9(Zs2, dp),
to itself. Furthermore Hé l_2£<2aB) = HQ(SZ_ZE(QB),E(QCLB) = —¢(2B),
and as(2aB) = a2(2B). Thus the assertion can be proved by using the

same argument as in the proof of (1.2). The assertion (2.2) can be
proved by (H-2-1) and Lemmas 5.1.4 and 5.3.3 similarly to (1.2). O
Proposition 5.3.5. (1) Let p # 2.

(1.1) We have

QW (do, H, ¢, 2 + 1, 1)

QW (de, HY | 2r + 1,6\ 1) =
(o e ) ¢(m—2r—2)/2(17_2)

(1.2) Letd € U. Then

QO (dod, H” ex(ay 275 €5 1)

QW (do,d, HY | . 2r & 1) =
1€ 20(m—2r—2)/2(p72)

if lv(dy) = 0, and
QW (dy,d, HY ¢, 2r,e' 1) = 0
otherwise.
(2) Let p=2.
(2.1) We have
QW (dy, H2r+1 o2r+1,eh1)

QU (do, HYy 1 ¢ 2 + 1,6, 1) =
(do 1,6 ) Pm—2r—2)/2(272)
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(2.2) Letd e U. Then
QO (dod, Hy ) 0> 27,2, 1)
20(m—2r—2) /2(2 2)

Q(l) (d07 da H;Ss)—l,ga 27", 517 t) =

if lv(dy) = 0, and we have
QW(do,d, HY ., 2r,e', 1) = 0
otherwise.

Proof. (1.1) We may suppose that r < (m—2)/2. We note the mapping
Sor+1(Z,) > B +— dB € Sa41(Z,) induces a bijection of Sy,11(Z,)(dod)
to Sor41(Z,)(dp). We also note that e(dB) = &(B), and «a,(dB) =
a,(B). Hence, by (H-p-2), Lemmas 5.1.3 and 5.3.3, similarly to (1.2)
of Proposition 5.3.4, we have

Q(1)<d H 27“—1—1 5 t) p(m/2*1)lv(do)(( )m/2d ( )lm/2)p

) z
) 5 Hopi1e@B)E(PB) o))

20(m—2r—2)/2(p72) 0p(pB)

Bep~!Sart1,p(do)NS2r41,p

XD (L4 p () (), (— 1) dyd),
deU

Thus the assertion clearly holds if lv(dy) = 0. Suppose that [ = 1 and
v(dy) = 1. Then
((_1)(m—2r—2)/2d7 (_ )T-‘,—ld d)
= x(@)((=1)" (=1)dod)p((=1)"2, (=1)"2dy),,

and therefore

Z(l —|—p_(m_QT_Q)/QX(d))((—1)(m_2r_2)/2d, (_1)r+1d0>p
deu

= 2p A=) (= 1) dod), ((—1)™2, (=1)™2do)-

This completes the assertion.
(1.2) By (H-p-4) and by Lemmas 5.1.3 and 5.3.3, we have

Q(l) (dO; d7 Hr(ri) 1,¢ QT gl t)

QO (dod, HY. . 2r el 1)
_ 2r,&x(d) ((_1)(m—2r)/2d7 dO);

2¢(m721‘72)/2(p 2)

Thus the assertion (1.2) immediately follows if [v(dy) = 0. The asser-
tion for | = 1 and v(dy) = 1 can also be proved by using the same
argument as the latter half of (1.2) of Proposition 5.3.4.
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(2.1) We may suppose that r < (m — 2)/2. Put

QW (do, HYY | ., 2r +1,€,t) = k(do,m — 1,1,¢)"
(1)

y Z Z H " (2@m or—2414B)e (2@m—2r—2,dJ—4B)
2(20,—2r—2,414DB)

deU BeSary1,2(dod)NS2r41,2;5¢
> tm—2r—2+u(det(4B))

Y

QU (do, HY | ¢, 2r + 1,6, ) = k(do,m — 1,1,4)™"

. 5 H' | (20,2, 14B)e'(20,,_3,_» LAB)
a2<2@m72r72J—4B)

BeSar+41,2(do)NS2r+1,2;0
> tm72r72+u(det(4B))

?

and
@<13><do,H£i>wzr+1s t) = w(do,m —1,0,1)”"
X > HY | (1126, 5,_414B)
BeSar42,2(do)NS2r+2,250
El(_lj—QGm*QT*‘lJ_ZlB) tm—?r—4+u(det(4B)).
&2(—1J_2@m,27.,4j_48)
Then

QD (do, HY | ¢ 2r + 1,6, t) = QUV(do, HYY | o, 2r + 1,6, 1)
+ Q (12) (d07 H’,’ri)—]_7£7 2r + ]-7 €l7 t) + Q(13)(d07 H’,si)—]_7€7 2r + ]-7 6l7t>‘

We have

E(20m2r—24L4B) = (=1)" B2, (<1)"2dg),
X (=1, (1) dod)a(do, d)> £(4B)

for d € U and B € So,11(Zy,ddy). Thus, similarly to (1.1), we obtain

QU (do, HO ¢ 2r +1,€l, ) = (—1)7 D22 (1)1 (1)1 d )
or (2r+1)H(1) (4B)€(4B)l

% 2(m/2—1)lu(d0) Z 2r+1,¢
. om—2r—2 -2
BeS2r41,2(do)NS2r41,2;e 2.2 ¢(m—2r—2)/2<2 )062(43)

XY (L4272 (d)) (d, o)
deud

v(det(4B))
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It follows from Lemma 5.3.2, (c.2) that Q(m)(do,Hfi)_Lg,Qr + 1,el,t)
can also be expressed as
QU (do, HYY | ¢, 2r + 1,6\ t) = k(do,m — 1,1,4)™"

Ll S 5 H | (204 2,-2414B)e (20, 5,54 14B)
2 &2(2@m72T72,dJ—4B)

deU BESar41,2(dod)NS2r41,2;0
> tm72r72+u(det(48)),

Hence, in the same manner as above, we obtain
Q(12)(d0, ]i(i)_l’57 2 + 1, €l,t) _ (_1)r(r+1)l/2t72r((_1>r+1 (_ >r+1d0>12
2r(2r+1)H( ) (43) (4B)l

% 2(m/2—1)lu(d0) 2r+1,§
Z 2272 "2¢ 0 0 9)/2(27%) 2 (43)
X ) (d.dy)y

deld

v(det(4B))

BeSor41,2(do)NS2r+1,2;0

Furthermore we have
(1126, 54 LAB) = (1) A1, (1) ),
X ((—1)"1, (=1)"*1dy)a(2, do )oc(2B)
for d € U and B € Sy,19(Zs, ddy) N Say42,2,. Hence
Q (d Hm 1,60 2r + 1, €l, t) = (—1)T(T+1)l/2t_2r_2((_1)7’+1 (_1)r+1d0)12
(0) !
X (2, o), 2m/2=Diw(do) Z Hy, 5 ¢(2B)e(4B)
BESar12.2(do)NS2rt2.2:0 ¢(m72r74)/2(2 )OéQ(QB)
= ((( )r+12 d) ( )(r+1)(r+2)/2) o(m/2=1)lv(do)
> Z Hégzrz 5(23)5(23)l
Pm—2r—1)/2(272)2(2B)

B€S2r42,2(do)NS2r42,2;0

B QU )(d07H27"+2 o2r+1,¢ t)Q(m/z—l)zu(do)_
Pm—2r—1)/2(272)

First suppose that [ = 0 or v(dp) is even. Then (d,dy), = 1. Hence
QU (do, HY | o 2r + 1,6, 8) + QU (do, HLY | . 2r +1,€,8)

v(det(4B))

v(det(2B))

B QW (do, Hyp, 1,27 + 1, 1)
- 9(m=2r-2)(1- V(do)/2)¢(m_2r_2)/2(2_2)'
Furthermore by (2.1) of Proposition 5.3.4, we have

Q(l) (d07 HQ(:«)+1 &) 2r + 1a Ela t)

Pm—2r—1)/2(272)

QU (do, HYY | 2r +1,6\,¢) =
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if dy =1 mod 4, and
QU (do, HYY |, 2r +1,,4) =0

if 47'dy = —1 mod 4. Thus summing up these two quantities, we prove
the assertion. Next suppose that [ = 1 and v(dy) = 3. Then, by using
the same argument as above we obtain

QU (dy, HYY | ., 2r +1,€,8) = 0,
We also note that (d, dy) = x(d). Hence

QU (do, HY | . 27 +1,e,t) = 0,

1,6
and therefore

Q(ll)(do, HT(;)_L& 2 + 1, €,t) _ (_1)r(r+1)/2t—2r2r(2r+1)((_1)7"-%-17 (_1)r+1d0)2

«93(m/2-1) Z H2r+1 §(4B> c(4B)
2 . 2m—2’r‘ Q(b m—27‘—2)/2(2_2>a2(4B)

BeSar11,2(do)NS2r41,2;e

tu(det (4B))

x Y (142720 (d))x(d))

— (_1)T(T+1)/2t72r27‘(27‘+1) ((_1>T+1 (_1>T+1d0)2 237’

(1)
% Z H2r+1£(4B) (4B) 7fz/(dot(4B))
¢(m—27"—2)/2(2_ )a2(4B)

BeSar41,2;¢(do)

This proves the assertion.
(2.2) The assertion can be proved in the same manner as in (1.2). O

Now to apply Propositions 5.3.4 and 5.3.5 to the formal power se-

ries R,_1(dy,w, X,Y,t) and Q2r+1<dOaW n, X,Y,t) we give some more
lemmas.

Lemma 5.3.6. Let m be an even integer, and r an integer such that
r<m. Letd e U and {§ = £1
(1) Suppose that r is even.

(1.1) Let B' € S,.(Z,). Then
61()0) (Gm—r,dJ—pBlv 607 Xv t) = é;()O) (pB/a gOX(d)v X7 t)
(1.2) Let B' € S,_1(Z,). Then
GM(OralpB, €, X, t) = GV (pdB', &, X, t).

(2) Suppose that r is odd.
(2.1) Let B' € S,.(Z,). Then

é(O) (@m—'r,d—]—pB/7 607 X? t) = éél) (_de/J 507 X? t)

p
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(2.2) Let B' € S,_1(Z,). Then
él(jl) (@m—r,dJ—pB/> 507 Xa t) - ééO) (pB/7 SOX(d)v X7 t)
Proof. Let m — r be even. Then by Lemma 9 of [Kit84], we have
G (Om-ralpB'.&, X) = G} (pB', &x(d), X)

P
for B" € S,(Z,). Hence by Lemma 5.2.2 we have

FO ralpB' &, X) = F(pB', &ox(d), X)

P
for B € S,(Z,). Thus the assertion (1.1) follows from (1.1) of Lemma
5.1.2. Furthermore we have

FY(Op_ralpB' &0, X) = F,(116,,_qlpB', &, X)

p
= F,(dLOy,_, LpB',&, X) = F,(110,,_, LpdB', &, X)

= F,(11pdB',&, X) = FY (pdB', &, X)

for B' € S,_1(Z,). Thus the assertion (1.2) follows from (1.2) of Lemma
5.1.2. The other assertions can be proved in a similar way. U

Lemma 5.3.7. Let p = 2. Let m and r be even integers, and & = +1.
(1) Let d € U.

(1.1) Let B' € S.(Z3).. Then
620)(®m—T,dJ—2B/7 &]7 X7 t) = ég)) (2B/7 SOX(d)a X7 t)a
(1.2) Let B' € S,_1(Z3). Then
égl)(zgm—r,dJ—4Bla 507 X7 t) = égl) (4dB/7 507 X7 t)

(2)
(2.1) Let a e U and B' € S.(Zy). Then

G (—al20,, , o 14B' &, X, t) = G (2B, &x(a), X, t).
(2.2) Let B' € S,_1(Z3). and a € Z;. Then
ég)) (@m—rJ_Z&J_QB/, 507 X7 t) = éél) (4CLB/, 60’ X’ t)

Proof. The assertion can be proved in a way similar to Lemma 5.3.6.
0

Let }Aén_l(do,w,X, Y,t) be the formal power series defined at the
beginning of Section 5. We express én_l(do,w,X,Y,t) in terms of
QW (dod,w, x(d), X, Y, t) and QY. (do,w, 1, X, Y, ). Henceforth, for dy €
F, and non-negative integers m,r such that » < m, put U(m,r,dy) =
{1}, U N {dp}, or U according as r = 0,r =m,or 1 <r <m —1.
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Theorem 5.3.8. Let dy € F,, and § = x(do). Ford e U(n — 1,n —
2r — 1,dy) put
DQT(d07 d: Y7 t)
B (1 — &p " Y2Y'1?) if r =0,
Tl (L= &p A1 4 pr 2 ()Y (1 — p T YETN(DY ) if > 0.
(1) Suppose that p # 2.
(1.1) Let w =1, or w=c¢ and v(dy) = 0. Then

ﬁn_l(do, w, )(7 Y, t)

nZ?)/2 (1 pE-1y2) H(nl%” 2)/2(1 — p2imn=ly 244
20(n—2r—2)/2(p732)
X Z DQT(d07d7 Y7 t)ég?(n,dod,W,X(d),X,Kt)

deU(n—1,n—2r—1,do)

(n—2)/2

[T, (L= Y T 220 = p oty
+ Z -
Pn—2r—2)/2(P~2)

X (1 - fop_lﬂy)@ggﬂn, d07 W, 17 X7 Yva t)
(1.2) Let v(dy) = 1. Then

Ro_1(dy, e, X, Y, )

Z) [T, (1—p*1y?) H(n 2r— 2)/2(1 _ pRimnmly2py
—0 Cb(n—zr—z)/z(p 2)
(1= Eop~ PYVQW, (5 doy e, 1, X, Y, 1),
(2) Suppose that p = 2.
(2.1) Let w =1, orw =€ and v(dy) = 0. Then

Enfl(dm W X7 Y? t)

B (HZZ)/Z H:;ll(l _ 22i_1Y2) H£n12r 2)/2(1 o 2—2i—n—1y2t4>
— 2¢(n—2r—2)/2(27 )

X > Do, (do, d, Y, )Q (n; dod, w, x(d), X, Y, t)

det(n—1,n—2r—1,do)

S UL o) i BT G
¢(n72r72)/2 (272)

x(1— fop_l/QY)@ngll(n; do,w, 1, XY t).
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(2.2) Let 4 'dy = 1 mod 4, or 8 'dy € Z3. Then
Ry _1(dy, e, X, Y, t)

S I (= 2V IR ey
0 Pn-2r-2)/2(277)
(1= Eop~ PYVQW, (5 doye, 1, X, Y, 1),
Proof. Let p # 2. Let B be a symmetric matrix of degree 2r or 2r +
1 with entries in Z,. Then we note that ©,_9,_241pB belongs to
£n—l,p(d0) if and only ifB e Sgr+17p(p71d0d)ﬂ52r+17p, and that @n—Qr—l,dJ—pB

belongs to L£,,_1,(dp) if and only if B € S, ,(dod) N S, Thus by the
theory of Jordan forms, we have

én—l(dOa w, X7 Y7 t)

Yy S L 0%
ap(®n—2r—2,dj—pB/)

r=0 deU(n—1,n—2r—2,do) B'€p~1Sart1,p(dod)NS2r+1,p

XB;(;D(@"—W—?JLPB,,p_n/2_1Yt2)é§,1)(@n—Qr—Q,d_LpB/, 1, X, p_nt2y)
Xu}(@n_QT_Q dJ_pB/)Y_E<1)(pB/)tl/(det(pB’))
(n—2)/2 ) i
+ Z Z Z Gy’ (©n—2r—14LpB',p Y)
/
r=0  deU(n—1,n—2r—1,do) B'€Sar p(dod)NSar,p p(On_2r—1,41pB’)
XBz(;l)(@”—QT—l,dJ—pB/,pin/271Yt2)éz(,1)(@n—zr—l,dlpB/, 1, X, pint2Y)
Xw(On_2r-1 d_LpB/)Y_em(pB/)t”(det(PB’))‘
By Lemmas 5.2.1 and 5.2.3 we have
G(l)(@n—Qr—Q,deB” p_(n—H)/QY)BI()l)(@n—Qr—2,dJ—pB,, p_n/Z_IYtQ)

p
(n—2r—2)/2
— H 22 ly2 H (1 . p72ifnfly2t4>(1 . gopfl/Qy),
i=1
and
GV (On—op—1.alpB p~ " VPY)BI(O, 1 aLpB,p " * Y1)
r—1 (n—2r—2)/2
H 27, 1y2 H (1 . p_2z_n_1Y2t4)D27«(d0, d, Y, t)
2:1 =1

Put HQZ Le(B) = GY(B.&, X,p Y ) for B € Sy;_1(Z,), and Hy,(B) =
GY(B,&, X, p"t?Y) for B € Sy(Z,) and € = +1. Then Hy}, , and
Hé?)g satisfy the conditions (H-p-1) ~ (H-p-5) by Lemmas 5.3.6 and

5.3.7. Thus the assertion (1) in case p # 2 follows from Propositions
5.3.4 and 5.3.5.

Next let p = 2. Let B be a symmetric matrix of degree 2r or
2r + 1 with entries in Z,, and d € U. We note that 20,,_9, 24148
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belongs to L,,—12(dp) if and only if B € Sy, 112(dod) N Sa,41.2, and that
—d120,,_9,_514B belongs to L,,_1 2(dp) if and only if B € Sy, 122(dod)N
Sort2.2. Then by the theory of canonical forms, we have

En—l(dm W, X7 Y7 t)

= Y ¢ > > G (20,,_9_04L4B', 2~ "12Y)

r=0 deU(n—1,n—2r—2,dp) BIGSQrJrLQ(dod)ﬂSngrLz;e
G820, _9_24L4B', 1, X, 27"2Y)
@2(20y,_2r—2,414D5’)
Xw(26n727472 dJ_4B/)Yf€(1) (4B’)7(n72r72)tu(det(4B’))+n72r72
+ > G V(20,95 L4B', 27Dy

B'eSar41,2(do)NS2r+1,2;0

BZ()l) (2®n—2T—2,d—L4B/a p—N/2—1Yt2)

éél) (2@n—2r_2J_4B/7 1’ X’ 2*nt2y)
3(20,, 2,2 L4B')
W(Q@ —9 —QJ—4B,)Y_€(1)(4B/)_(n_2r_2)ty(det(4B/))+n—2T—2
* Z Gl(?l)(_lj-2@n—2r—4l4B/, 2_(”+1)/2y>

B'€Sar42,2(do)NS2r42,2;0

xBY)(20,, g, o LAB', p "> 1Y 1)

G (=1120, o4 14B' 1, X,2774%Y)
062(— ].J_2®n_27~_4J_4B/)

(_1J_2@n_2r_4_L4B/)Y—B(1>(4B’)—(n—2r—4)tu(dct(4B/))+n—2r—4}
(n—2)/2

+ 2 > S GO(-d120, 5 o LdB, 2Py

r=0 deU(n—1,n—2r—1,do) B’€S2r,2(dod)NS2r 2;e

G (=d 120, o »14B' 1, X,27"42Y)
as(—d120, 4, _, 4B’

( d120, 5. QJ_4B’)Y ¢ (4B")— (n—2r—2)yv(det(4B"))+n—2r—2

Thus the assertion (1) in case p = 2 can be proved in the same way as
above. Similarly the assertion (2) can be proved. O

x BV (—1120,_5,_4 L4B', p~"*71Y?)

x B{V(—d120,_5,_» LAB',p "1V 1?)

Now to rewrite the above theorem, first we express P( ) 71 (nsdo,w,m, X, Y 1)
in terms of Qg)ﬂ(n, do,w,n, X,Y,t) and Qg?? (n; dod, w,n, X,Y,t).

Proposition 5.3.9. Let m be an even integer. Let dy € F,, and n =
+1.

(1) (1.1) Let I =0 or v(dy) = 0. Then
ﬁ(l) (n;d07€lv777X7Y7t)

Qgill (n) d07 Ela m, X? Yu t)

(m—2)/2
>

¢(m 2—2r /2(]9 )
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(m—2)/2

1
+ Z Z — QW (n; dod, €', px(d), X, Y, t).

r=0  deU(m—1,m—1—2r,do) 20 (m-2-20)/2(P™?)
(1.2) Let v(dy) = 1. Then

Qg?") (TL, dod, &€, nX(d)7 Xa Y: t) =0

for any d and
P(l) (In’a d07 &, XJ }/7 t)

1
Z ¢ 9 o )/2( 2) gr)Jrl(nu d0767n7X7Y7t)‘

(2) (2.1) Letl = 0 or v(dy) = 0. Then
Pr(r?)<n;d07€l777aX7Y7t)

m/2

1 (—m—+2r)/2 d
= Z Z ;;p ( X2<) ) (0)(n dod, €', nx(d), X, Y, 1)
r=0 deU (m,m—2r do) (m—2r)/2\P

/2 )Q2r+1(n do,e’:‘ 777X Yt)

(2.2) Let y(do) 2 1. Then
és?)(n; do,e,m, X, Y t) = 0.

Proof. The assertion can be proved in a way similar to Theorem 5.3.8.
0

Corollary. Let r be a non-negative integer. Let dy be an element of
Fp and £ = £1.
(1) Let I =0 or v(dy) = 0. Then

QW (n;dy, ', €, X, Y, t)
(=)™ (x(d) +p™™)p~™

= PO, (n:dod, e, x(d), X, Y, 1)
_9 2r—2m 0 5 Ly
m=0 deld (2r,2m.do) 20m(p?)
r—1 2
—1 m+1,—m—m?* _
+ Z ( >¢ (p2 PQ(:)—Qm—l(nﬂ d07€l7€7XaKt))7
m=0 m\P )
and
Q2r+1(n; d07€l7£7X7 Y7t>
~ (=D)mp ™ S .
=N L B (nido,el € XY )
_92 2r+1—2m ) RN s Ly
m=0 gbm(p )

T (D™ S0
- Z Z 2¢m(p72) P?T—Qm(n7 d0d7 €, §X<d), X7 Y7 t))

m=0 deU (2r+1,2m~+1,do)
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(2) Let v(dy) > 0. We have

T 2

—1ympm—m* _
(=1)™™™™ 5

1
Qgr)-i-l (n; d07 €, £7 X7 Y? t) = ¢ p_g) 2r+1—-2m

(nu d07 g, gv XJ Y7 t)v

and
O n:do,e, &, X, Y, t) = 0.

Proof. We prove the assertion (1) by induction on r. Clearly the asser-
tion holds for r = 0. Let » > 1 and suppose that the assertion holds
for any " < r. Then by Proposoition 5.3.9 we have

~§“)+1(na d076l7§7X7 Y7 t)

N : 1
= P2(5)+1(n7 d07€l7£7X7}/7t) - Qb( _2)Q§1L1_2i<n;d0,8l,g,X,Kt)
Z:l i(p
d 1
(0) . !
— 09 (nidod, £ Ex(d), X, Y, 1),
DD S S RN

i=0 deld(2r+1,2i+1;do)
Then by the mductlon hypothesis and a direct calculation, we get the
desired result for QQT +1(" do,e',&, X, Y, t). We also get the result for

er (n;do, €', €, X, Y, t), and this completes the induction. Similarly the
assertion (2) can be proved.

g

Theorem 5.3.10. Let the notation be as in Theorem 5.5.8.
(1) Suppose that v(dy) = 0 or w = 1. Put & = x(dy) and 3 = x(d).
Then

Rn,l(do,w, X, Y, t) = (1 — pintQ)

(n—2)/2 (n—2—-21)/2
<{ ) Y. Bmdedw XYty [ () Tulds,dY)
I=0  deU(n—1,n—1—21,do) i=1
(n—2)/2 (n—2-21)/2
+ Z P2(l14)r1(n; do, 1, X,Y,w,t) H (1_2772[7”72@754)7721“(6[0,Y,t)},
=0 1=2

where Ty, (do,d,Y) is a polynomial in Y, and T 11(dy, Y, t) is a poly-
nomial in Y and t and of degree at most 2 with respect to t, and in
particular

(n—4)/2
1 - n— — n— - i—
Toa(do,d,Y) = S (1=p™ 26 )p" 2212V G 14Guyp22712) T (1=-p* 1Y),
=1
and
(n—2)/2

Toaldo,Y,t) =[] (1=p"'Y?).

i=1
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(2) Suppose that v(dy) > 0 and w = €. Then
B (n—2)/2
Ro1(do,w, X, Y,t) = (1= &p 2Y) Y Py)i(nido,w, 1, X, Y1)
1=0
(p2l+ly2)(n72l72)/2 Hi‘:1( p2i- 1y2) H(n 2— 21)/2(1 _p72l7n72i72t4)
¢(n7272l)/2(p ?)

Proof. (1) By Theorem 5.3.8 and Corollary to Proposition 5.3.9, we
have

X

En—l(dOa W, Xa Y> t)
(n—2)/2 Hr:_l(l o p%*lYQ) H(n—Qr—Q)/Q(l . p—2i7nfly2t4>

_ i=1 =1
; 2¢(n—2r—2)/2(19_2)
T _1 m d + —m 7m2
D DR R ot D B i
di€U(n—1,n—2r—1,do) m=0 dyld(2r,2m,dod;) m\P
x Py 5, (n; dodydy, w, X(ch ) x(d), X, Y3 1)
m+1 —m—m? _
+ Z ) P2(7})72m71(n; dodluwa X(d1>7X> Y7t>>}
(n 2)/2 i n—2r— 2im—
. Z Hz ) 2 1Yz)H( 12 2)/2(1—]9 2 1th4)
2¢ n72r72)/2(p )
r 1 . —m?2 ~
X(l - 5 p_1/2Y){ ( ) p _2p P2(7}—)0—1—2m(n7 d07w7 17 X7K t)
= Pn(p™?)
r—1 (_1)m+1p—m—m2 ~

",
-2 r—2m
m=0 dy el (2r+1,2m~+1,do) 2¢m (p )

We note that for any d; € U we have
pé:il_%n(n; dodl’ W, X(d1)7 Xa Y7 t) = pQ(:—)I—I—Qm(n; dO; W, ].7 X, K t)

Hence

(A) En—l(d07w7X7Kt)

(n7 dOan w, X(d2)7 Xa Y7 t)}

(n-2)/2 N
Z PQ(ZO) (n;dod,w, x(d), X, Y, t)
1=0  deU(n—1,n—1-2do)
(n—2-20/2 |
<{ Y. & > Datram(do, dy, Y, 1) (x(dy)x(d)+p~™) (=1)p™™
m=0 dy €U (n—1-21,2m,dod)

2

—Unppom (V) (1 — &p~ 2Y ) (=1)"p™ ™))
Hﬁzﬂ_l(l 2i— 1Y2) H(n 21—2m— 2)/2(1 . p—2i7nfly2t4)
2¢m< 2)o n72721)/27m(p_2)

}
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(n—2)/2
T Z P2(114)r1(”;d0,w,1,X,Y,t)
1=0
(n—2—21)/2

{3 ((1—&p V) (=1

70— V) I (1 oy
¢m (p_2 ) ¢(n72721)/27m (p_2)
(n—4-21)/2 1

- > 5ZD21+2m+2(d07d;th)(—l)mpfmfm

m=0 deU

X

2

YA TR0 ey
¢m(p_2)¢(n74721)/27m(p_2)
where g0, (Y) = 1 or 1 — p?*2m=1Y2 according as [ +m = 0 or not.

Now recall that U(n—1,n—1,dp) is {dy} or the empty set according
as v(dp) = 0 or not. Hence for d € U(n — 1,n — 1,dy) we have

1 —m
3 > Do (do, d1, Y, 1) (x(d1)x(d) +p~™)
d1€U(n—1,2m,dod)
_(1 . p2m_1Y2)(1 . gop—1/2y)p—m
_ gop—1/2y(1 . p_nt2) or 50(1 . p_1Y2)(1 . p_”t2)pm_1/2y
according as m =0 or 1 < m < (n — 2)/2. Furthermore we have

% ) Datom(do, dy, Y, ) (x(da) x(d) +p~™)

d1eU(n—1—21,2m,dod)
_(1 o p2l+2m—1y2)(1 o fOp_l/QY)p_m
— Cd(l . pfl/Zé-Oy)(l _pfntQ)pH»mfl/Qy(l + Cdelfl/Q)

forany 1 <1< (n—2)/2,0<m< (n—20—2)/2andd e U(n—1,n—
1 —2l,dp). We also have

(1 . £0p71/2y)p7m(1 . p72n+21+2m+1y2t4>

1 I
-3 Z Dopyomia(do, dy, Y, t)p~™(1 — p~ 2242
drel

=(1- pfl/Qfoy)pfn+m+2l+2<1 _ pfn+m+2l+2y2t4)
+(1 o p_1/2§0Y)(]- . p—n+2m+2l+2)p21+m—n+lY2t2(1 i p—ntQ)
forany 0 <1< (n—2)/2and 0 <m < (n— 2] —2)/2. Hence
Roa(do,w, XY, 1) = &p™ Y (1= pt?)

D AT | e /1 i s
- p
m—=0 gbm (p_g)qb(n—Q)/Q—m(p_2)
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(n-2)/2
+ > > P (n; dod, w, Ca, X, Y, t)

I=1 detd(n—1,n—1—2L,do)
(1= &p 2Y) (1= p~)p Y (1 + CaY P2
(n—2-21)/2 o Hl+m 1( pgi_lyg) H('n72172m72)/2(1 N p_Qi_n_lygt4)

X (—1 =1
mzo ) 2¢m(p72)¢(n—2—2l)/2—m(p72)
(n—2)/2 _
+ Z P2(l1—|)—1(n;d07w717X7Y7t)
=0

X{(l o ﬁgp_lﬁY)p_nHHl
R e I (= YA T — ey
)

1
x Z_ (=1)"p G (D72)P(n—2-20)/2-m (P2
YL g Y (1 - )

(n—4-20)/2 l+m i— n—2l—2m—4 —2%i—n—
P SR U ) 1 L e 0 Y
m=0 gbm( )¢ n74721)/27m(p72)

Then the assertion (1) follows from Lemma 5.1.6.
(2) By (1.2) and (2.2) of Theorem 5.3.8 and (2) of Corollary to
Proposition 5.3.9, we have

(n—2)/2
Ro-i(do,w, X, Y, ) = > Py} (nido,w, 1, X, Y, t)
=0

(n—2—-21)/2
m — mme
XY (D)= gp Y )
m=0
5 Hi;ﬂln(l . p2i—1Y2> ngfl—?m—?)/?(l . p—2i—n—ly2t4>
¢m(p_2)¢(n—2—2l)/2—m<p_2>

Thus the assertion follows from Lemma 5.1.6.
O

5.4. Explicit formulas of formal power series of Koecher-Maass
type.

In this section We glve an explicit formula for p! (do,w &, X,t) for
w = t,e. We write P! (do,w X,t) = Py (do,w, 1, X, t) as stated before.

Theorem 5.4.1. Let m be even, and dy € F,. Put & = x(do). Then
we have the following:

(1)

(p~'t)(®)

P(O)(do7 L, X, t) = By L(p2) (1 — p~m/2&,)
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(1+ t2p*m/2*3/2)(1 + t2p*m/2*5/2§§) _ §0t2p’m/2’2(X + X! _I_p1/2fm/2 _’_p71/2+m/2)

X
(1= p 2X2)(1 - p2X12) [ (1 = 2p 21 X) (1 = 2p 21X )
(2) 1
PO(dy,e, X,t) =
(do ) Omyo—1(p72) (1 — p~™/2&)
) &
Hini/f(l —2p~2 X)(1 — t2p*2"X*1)7

where 09, s Kronecker’s delta.

Theorem 5.4.2. Let m be even, and dy € F,. Put § = x(do). Then
we have the following:

(1)
P,Szl(do, 1, X, t) = (p:lt)lf(do)(l - Eot2p/2) .
Sim-22(p ) (1 = Pp2X) (1= Pp2X )
1
TP ey X)L Py X )
(2)

(p—lt)u(do)<1 _ fot2p_1/2_m)
Pim—2)/2(P~%)
1
% H(m—2)/2(1 — 2p=2X)(1 — t2p—2¢X—1)'

i=1

Theorem 5.4.1 follows from [[IK06], Theorem 3.1], and Theorem 5.4.2
can be proved in the same way as in Theorem 5.4.1, but for the conve-
nience of readers we give a proof to them. Let m be an even positive
integer. For [ = 0,1 and 7 = 0,1 put

Kﬁll(do, Ej, X, t)

PW(dy,e, X,t) =

1) foyl— —(m ;
Gé)(Ql 1B p ( +1)/2X)6(B/)J €O B et B

:'%(d()?m_luj?t)il a (B/)
P

BreLt)(do)

Proposition 5.4.3. Let m and dy be as above. Then, for I = 0,1, we
have

m—l

P’r(r?—l(doa W, X7 t) = H(l o t2Xpiim+li2)ilK£rlz)—l(d07 W X7 t)

i=1
Proof. We note that B" belongs to ﬁﬁf}_,,p(do) if B belongs to Egl)_l’p(do)
and a,(B’, B) # 0. Hence by Lemma 5.2.2 for w = ¢/ with j = 0,1 we
have

Pr(,nlb)_l(d(bw7 X7 t) - K<d07m - l?j? t)_l
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S L G )X (B B
ay(B')

% (p—lX)(y(det B)—v(det B’))/Qtz/(det B)

Gy (B',p~ P X)(B) oy

- ’%<d07m_l7j7t)71 a (B/)
p

Brecl) | (do)

/
% Z (B, B) (p—1X>(V(det B)—v(det B'))/24v(det B)

o, (B
Bec) | (do) »(B)
Hence by [[BS87], Theorem 5], and by (1) of Lemma 5.1.1, we have
ay(B', B) (qu)(u(det B)—v(det B'))/24v(det B)
ap(B)

- Zap(BlvB/[W] (thp_l _m“)l’(detW)tu(detB')
w

m—1
_ H(l . t2Xpi—m+l—2>—1tu(det B’)‘
i=1
Thus the assertion holds. O

Proof of Theorem 5.4.1. Let b5(T),s) be the primitive Siegel series
n (cf. [IK0G], Page 176 ), and
- b*(B'/2,0)w(B’ ,
D(t,o,dp,w) = Y pB/2:0)(B) o)

/
B'€Sm,p(do)e op(B')

for w = &!. Then
K(O)(dmwap_out)

m

o X<d0)pm/2—a

(1= p ) [IZ5 (1 = p22)
for any complex number o. The both-hand sides of the above are poly-
nomials in p~?. Now, for a p-adic number d define a formal power series
D(t,o,d,w) by

D(t,o,d,w) ZZ

1=0 BESm,pse )
det B=p?d

as in [IKO06]. Let dy € F, and | = v(dy). Then

= k(dy, m, 1, t) ") D(tp°, o+(m+1) /2, do, w)

'/20 (B

~ 1
tl‘D(ta g, dOaw) = §(D<t7 g, p_l<_1)m/2d07w)+(_1)lD(_t7 0-7p_l(_1)m/2d07w))'

Thus the assertion follows from Theorem 3.1 in [IK06] and Proposition
5.4.3. 3
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Remark. We should remark that there is a misprint in [IK06]; the
right hand side on page 186, line 3 of it should be
2(72372)621,])71 73(1 _ pfk)(l +p717k72s)
(p=2)n/2-1 :

In order to prove Theorems 5.4.2, we introduce some notation. Let
r be an even integer. For [ = 0,1 and dy € Z) put

Cr—l(doﬁl,u) = H(do,'r’ -1, l,u)*l Z 8(T)l uu(detT)’
ap(T)
Tesrfl,p(do)/w

and
T l
Cr(dO;&‘l’u) = l{(d()?q“’l?u)—l Z 5( 11 uu(detT)‘
res,mtioy~ 2T

We make the convention that (y(do,e',u) = 1 or 0 according as dy €
Z: or not. Now for an integer m, and d € Z,, let Zm(u, el d) and

7 (u, €', d) be the formal power series in Theorems 5.1, 5.2, and 5.3 of
1S95]. Put

1
Trme(u, el d) = i(Zm(u,el, d) + Zp(—u, €', d)),

1
Zinoltse',d) = 5 (Zn(u, €', d) = Z(—u, €', d)).

We also define Z7, . (u,e',d) and Z, ,(u,e',d) in the same way. Fur-
thermore put x(i) = e or o according as i is even or odd. Let p # 2,
and p~'dp € Z; with ¢ =0 or 1. Then

Gnldo, ') = Zyn ey (0~ " V(1) D2 p)yu, el p~ (1) D 2y )
or
Cm(do, €', u) = Zom i) (p (/2 £l p=i(—1) /2 g )
according as m is odd and [ = 1, or not. Let p = 2 and m is odd. Then
Cm(d()a €l7 U) — 27an’x(V(d0))(27(Tn+1)/2u7 gl’ 27V(d0)<_1)(m+1)/2d0)'
Let p = 2 and m be an even integer. First suppose dy = 1 mod 4. Then
G (do, €'y u) = 2m 27, (27D 2y gl (1) 2dy).

Next suppose 4 'dy = —1 mod 4. Then

(i (do, 'y u) = 2m 27, (27D 2y gl 47 (—1)™2dy).
Finally suppose 8 'dy € Z%. Then

¢ (do, €' u) = 2mZ:;O(2’(””1)/2u7 el 871 (—=1)™/2dy).

Here we recall that the definition of local density in our paper is a little
bit different from that in [IS95].
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Proposition 5.4.4. Let m be a positive even integer. Let dy € F,. For
a positive even integer r and d € U put
c(r,do, d, X) = (1 — x(do)p~ /%2 X)
r/2—1

> H Qz 1X2 (1 X(d)pT/Q_l/QX).

Here we understand that ¢(0, dy,d, X)) = 1. Furthermore, for a positive
odd integer r put

(r-1)/2
c(r,do, X) = (1= x(do)p™?X) J[ (1—-p*"'X?).

i=1
(1) Let p # 2.
(1.1) Letl =0 orv(dy) = 0. Then
Kv(vi)—l<d07‘€l7X7 t)

(m—2)/2

_ xvl)/2 Z Z p X2 (2, dy, d, X)
- —
r=0  detd(m—1,m—2r—1,do) 210220 592 (p2)

X (p, dod)} Cor (dod, €', tX /%)

+ "X prHVEHD (X122 H (20 + 1, dy, X) }
—0 ¢(m—2r—2)/2(p_2)
XCQT’-‘Fl(p_ldOa gla tX—1/2)'
(1.2) Let v(dy) = 1. Then
KW (do,e, X, 1)
(m=2)/2 _, T r — r
_ <X1/2)V(do) Z p DY ()L (X Y 2) 2+ (20 41, dg, X))
i Pm—2r-2)/2(P77)
XC27‘+1(p_1d07 g, tX_1/2)~
(2) Let p = 2.
(2.1) Let 1l =0 or (—=1)™%dy = 1 mod 4. Then
K?Si)—1<d07 517 Xa t)
(m—=2)/2
B B c(2r,dy,d, X)
_ (X1/2)1/(d0){ (tX 1)27‘2 r(2r+1) — -
; dEZ/{(m—l,zm:—Qr—l,do) 2! 6(m72)/2’T¢(m*2r72)/2(2 2)
x (5 (dod, e, tX /%)
(m—2)/2 e o
n Z (tX—1/2)2r+12—(7‘+1)(2r+1)2 (do)(m=2r=2)/20(2p + 1, dy, X)
—0 P(m—2r—2)/2(272)

X C2r+1 (d07 g, tX71/2>}7
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where v(dy) = 0 or 1 according as v(dy) is even or odd.
(2.2) Suppose that (—1)™/?47'dy = 1 mod 4 or 8 'dy € Z}. Then

(m—-2)/2
Kfi)_l(d075’X’ t) = xv(do)/2 Z (tX—1/2)27"+12—(7"+1)(27‘+1) c(2r +1,dy, X)
r=0 ¢(m72r72)/2(272)

X Cori1(do, &, tX12).

Proof. Let p # 2, and let | = 0 or v(dy) = 0. Then by Lemma 5.2.1
and Proposition 5.3.5, and by using the same argument as in (1) of
Theorem 5.3.8, we have

(m—2)/2

c(2r,dy,d, X
KD (o X = 3 3 (2r, do, d, X)

=6, 2
(m—2)/2,r
r=0  deU(m—1,m—2r—1,do) 2 D(m—2r—2)/2(P™?)

l
% 5(2938) X ¢ (pB) p(det(pB)
BESQr’p(dod)ﬁSan ap(p )
(m—2)/2

N (tX Y22+ e(2r +1,dy,d, X)

¢(m—2r—2)/2 (p_2>

\3
Il
o

l
x E(pB) X—e(l)(pB)tu(det(pB).

a,(pB)

Thus the assertion (1.1) follows from Lemma 5.3.3 by remarking that
pil‘S’QT,p(dOd)mSQr,p = SQr,p(dOd) and pil'S’QT—i—l,p(dO)mS%‘-&—l,p = 527”-1—1 (p172[(y(d0)+1)/21d0)-
Similarly the assertion (1.2) can be proved by remarking that (s, (dy, ¢, tX ~1/?) =

0. The assertion for p = 2 can also be proved by using the same argu-

ment as in (2) of Theorem 5.3.8 by remarking that

47185,9(do) M Sapn = Sor2(do)

Bep=182,41,p(do)NS2r41,p

and
4_152r+1,2<d0) N So41,2 = Sort1,2(dp).

Proof of Theorem 5.4.2 in case p # 2. (1) First let dy € Z;. Then
by (1.1) of Proposition 5.4.4, we have

1
Km— (d0>L7 X’ t) = T
' Pm—2)72(p~?)
(m—2)/2 r—1
+2—1 Z Z p—r(2r+1)(t2X—1)r (1—p22_1X2)¢(m—2r—2)/2(p_2)_1

1

.
I

r=1 deld(m—-1,m—2r—1,do)

x(1—p 26 X) (1 + &p" V2 X) Cor (dod, 1, t X112
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(m—2)/2 .

+ p_(2r+1)(7"+1)(t2X—1)T+1/2 H(l . p%_lXQ)Qb(m_zr_z)/z(p_2)_1
r=0 i=1

X(1 = p 26X ) Corr (pdo, 1, tX2).
Here we put £ = x(d) for d € U. By Theorem 5.1 of [[S95], we have
—ltX—l/Z
¢r(p_2)(1 _ _2t2X ) 1‘[Z 1<1 — p2i—3—2rt2X—1>’

C2T+1 (pd07 L, tX71/2> =

and
(L4 &&p~")(1 = &&p " X1

Cor(dod, 1, tX~Y?) =

gb"'( )( _2t2X ) HZ 1(]_ _ p2i—3—2rt2X_1) .
Hence K,,_1(do,t, X,t) can be expressed as
S(do, ¢, X, 1)

Km—l(d(]) Ly X7 t) -

Gpm—z/2(p72) (1 — p 22X 1) [[177 221 — pri-m-12X 1)
where S(do, ¢, X, t) is a polynomial in ¢ of degree m. Now we have
2—1(1_p—1/2§0X) Z (1+§p(m_2)/2_1/2X)(1+§o§p_(m_2)/2)(1—§0§p_(m_2)/2_2t2X_1)
£=+1
= (1=p ' X1 =p 22X ) +p 2 PX (1 = &opm EX) (1 - p ),
Hence
(m—2)/2—1
2—1 Z p(m—l)(—m+2)/2(t2X—1)(m—2)/2 H (1_p27,—1X2)
det(m—1,m—2r—1,do) i=1
« (1 . p_l/Q&)X)(l + §p(m_2)/2_1/2X>Cm—2(d0d, L 75‘)(—1/2)
(m—2)/2 ’
4p~ (DM 2 (42 x—1)(m=2)/2+1/2 H (1—p21X2)(p2)~!
i=1
X (1= p 26 X) G (pdo, 1, tX %)
(1-& p‘5/2t2) H(m 2)/2- 1(1 pr-1X?2)
m-2)2(p~2) (1 = p 22X ) [T 22 (1 = priom=12X 1)
and therefore S(do, ¢, X, t) can be expressed as
(B) S(d07 L, Xa t)
(m—2)/2—1
= ] a-p""'XA-p %) + (1—p "X THU(X 1),

=0

where U(X,t) is a polynomial in X, X! and t. Now by Proposition
5.4.3, we have
P (do, 1, X, 1)
S(do,t, X, t)
 Gpmenp(p (= p 22X TP - pem e X ) [T (= pm X))
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Hence the power series P W) 1(d0,L X,t) is a rational function in ft.
Since we have Fp(l)(T,X b= F( )(T X) for any T € Em 1p>
PW (dy,1, X1, t) = P (dy, ¢, X,t). This implies that the reduced

denominator of the rational function P( 1(do, ¢, X, t) in t is at most

we have

(m—2)/2
(l—p_2t2X ) 1 —p Qt X H { 2@ m— 1t X~ )(1—p2i_m_1t2X)}.

Hence we have
(m—2)/2
(C)  S(do, X, t)= [] (1=p" " X)(ao(X) + ar(X)t?)
i=1

with ag(X),a;(X) are polynomials in X + X 1. We easily see ao(X) =
1. By substituting p™~1/2X1/2 for ¢ in (B) and (C), and comparing
them we see a;(X) = —p~°/2£,. This proves the assertion.

Next let dy € pdy with dy € Z7. Put & = x(d;). Then by (1.1) of
Proposition 5.4.4, we have

Km—l(dOa 2 X7 t)

(m—2)/2 r—1
— X1/2{2—1 Z Z p 2r+1 7‘ 2z 1X (m—2r—2)/2(p_2)_1
r=1 deld(m—1,m—2r—1,do) 2:1
X (1+&p" 2 X) Gor(dod, 0, tX7)
(m—2)/2 . |
+ Z p*(2r+1)(7‘+1)(t2X71)r+1/2 H(l . P2271X2)¢(m_27«_2)/2(piz)fl
r=0 =1

X (1= p 26 X) Coppa (p™ o, 1, tX2)).
By Theorem 5.1 of [IS95], we have
1
C2r+1(p_1d0a L, tX—1/2) =

6= p P PX I, (1= 7 2 PX )

and
p X1
Or(p?)(1 = p 22X ) [T (1 — p# 322X 1)
Thus the assertion can be proved in the same manner as above.
(2) First let dy € Zy. Then by (1.1) of Proposition 5.4.4, we have

Cor(dod, 1, tX7Y?) =

1
Kp-i(do, e, X, t) = —————~
( ) Pm—2)/2(p?)
(m=2)/2 r—1
+2—1 Z Z p—r(2r+1)(t2X—1)r (1—1921_1X2)¢(m—2r—2)/2(p_2)_1

1

.
I

r=1 deUd(m—-1,m—2r—1,do)
X (1= p 26 X) (1 + 9" X) o6 Cop(dod, 2, X 12)
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(m—2)/2 r
+ p_(2r+1)(7"+1)(t2X—1)T+1/2 H(l . p22_1X2)¢(m—27«—2)/2(p_Q)_l
r=0 i=1
X (1= p & X)Corpa (pdo, £, LX72).
By Theorem 5.2 of [[S95],
1+ &ép™"
¢r(p?) [T (1 = p~22 X 1)

Cor(dod, e, tX~Y?) =
and

—'r—ltX—l/2
o (p~2) TI2) (1 — p 22X 1)

Thus the assertion can be proved in the same as in (1).
Next let dy € pZy;. Then by (1.2) of Proposition 5.4.4, we have

Km—l(d07 g, X7 t)

Cory1(pdo, £, t X %) =

(m—2)/2 r
_ X1/2{ Z p—(27"+1)(r+1) (tQX—l)r+1/2 H(1_pgl_lXQ)Qb(meer)/Q(p_2)_1
r=0 =1

X(1=p™ 26 X)Coria (" do, 8, tX12).}
By Theorem 5.2 of [IS95],
1

Or(p?) [y (1 —p722 X1

C2r+1(p71d07 g, tX71/2) =

Hence
Km 1(d07 &, X7 t)
(TTL 2 /2 r
=p 1t Z D (2r+1)r 2t2X )r H(l - p2271X2)¢(m_2r_2)/2(piz)fl
i=1
1
o T (= p X1
The assertion can be proved in the same as in (1). U

Proof of Theorem 5.4.2 in case p = 2. The assertion can also be
proved by using the same argument as above. U

Theorem 5.4.5. Let dy € F, and § = x(dp). Let £ = £1.
(1) Let m be even. Then

(p~'t)" (™)
Prmja—1(p72)(1 — p~m2&)
y (1 + t2p—m/2—3/2€)(1 + t2p—m/2—5/2££0) _ 50t2p—m/2—2(X + X1 _|_p1/2—m/2£ +p—1/2+m/2€)
1—p2X2)(1 — p2X 142 771/2—1 1 — 2p~2-1X)(1 — 2p~2-1X-1
=1

P7Sf?)(d07l’7€7X7t) =

)
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and

1 &
Gmja-1(p2)(L = p~™2&) [T (1 — 2p=2X) (1 — 12p~2 X 1)
(2) Let m be even. Then

Pyg))(dngagaX)t) =

Pr(nlll(d()? Ly 57 X) t)

(p_lt)”(do) (1 o fot2p_5/2§)
(1—2p2X)(1 — #2p2X ) T[] 22 (1 — #2p 21 X) (1 — £2p =251 X 1) b2 (p2)

1=

Y

and
Pr(nlzl(d(b g, 57 X; t)

_ (p~ )" (1 — &t*pTHEmE)
[T = 22 X) (1= 2p=2 X))o (p~2)
Proof. We note that there exist polynomials Sf,ll)_l(do,wp,é“ , X, t) and
S,(,?_l(do, wy, X, t) such that

PO (dy,wy, €, X, 1) /179 = SV (dy w, & X 17)
and
PY (dy, wy, X, 1) /1) = U (dy w,, X, 2)
for [ = 0,1. We also note that
S (do,wy, &, X,1%) = SY (dy, wy, X, £17).
Thus the assertion follows from Theorems 5.4.1 and 5.4.2. Ul

5.5. Explicit formulas of formal power series of Rankin-Selberg
type.

We prove our main result in this section.

Theorem 5.5.1. Let dy € F, and put & = x(do).

(1) We have
Hy1(do, 1, X, Y, 1)
n/2—1
= (2O g oy (p7?) T (T ) (1—p ) [ (1—p Y
i=1

(L4+p22) (14 p3t2) —p P2 (X + X '+ YV + Y1)
(1 —p2XY2)(1 —p2XY " H2)(1 — p2 XY 2)(1 — p2X 1Y ~142)

1
X .
H?ﬁ*l(l _ p*%*lXYt?)(l _ prileyfth)(l _ p72i71X71Yt2)<1 _ prileflyfltZ)
(2) We have

Hoa(do, 2, X, Y, 1) = (=10 2052000272402y,
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n/2—1
X (=12 (=1)"2d)pd(nsy o (p~2)  (1=p %) [ (1—p 2 2t (tp/2) )
i=1
(1 _|_pfnt2)(1 _‘_pfnflgth) o p71/27nt2§0(X + Xfl 1Y + Yfl)
(= p XY (1 — p XY 1) (1 — p XY 2)(1 — pnX-1Y 132
1

X

Hn/z_l(l _ p—QzXYtZ)(l _ p—2iXY—lt2)<1 _ p—QiX—IYtQ)(l _ p—QiX—IY—1t2)

i=1
where (a,b), denotes the Hilbert symbol of a,b € Q,.

)

Proof. First suppose that v(dy) = 0 and w = ¢. For an integer [ put

V(l,X,Y,t)

!
— (1—t2p_2XY_1)(1—t2p_2X_1Y_1) H(l—t2p_2i_1XY_l)(1—t2p_2i_1X_1Y_1).
i=1
Then by Proposition 5.3.1 and Theorems 5.4.1, 5.4.2, and (1) of The-
orem 5.3.10, we have
Ry1(do,w, X, Y, t) = (1 — p~"t?)

(n—4)/2 (n—2-21)/2

<[ ) > [T a-p 2" Tu(de,d,Y)

=0 deU(n—1,n—1-2l,do) i=1

H2l (1 B t4p—n—21—2+i)55?) (dod, LG, XY, t)

i=1
- VL X, Y.0)
(n—2)/2 (n—2-21)/
+ Z H p 22N Ty 4 (do, d, Y )
X H?lztl(l B t4p_n_2l_3+i)séll—)&-1(d07 L Xv Y> t)
V(I-1,X,Y,t)

H(n 3) /2( 2¢—1Yz) H;z:—f(l - t4p—2n+i)
Pm-1)2(p72)V((n —2)/2, X, Y. 1)

1 1— 1/2 (n—2)/2-1/2 Y(1 Y (n—2)/2-1/2
x23° ( SY)p GY (1+GYp )
2 (1 = plr 2260 Ca)

deu
X{(l + tQY_lp_(n_2)/2_3/2C )(1 + tQY_lp_(n_2)/2_5/2C )
_é&OCdtQY 1, —(n— 2)/2(X + X _'_p1/2 n—2) /2<— +p—1/2+ /2< )}
H(n 1)/2( Qz ly2> Hn 1(1 - t4p—2n 1—|—z>( _ fot2p_5/2Y )
%—2)/2(29 AV —2)/2,X.Y.1) ’
where Ség)(dod7 t,Cq, X, Y, 1) and Ségrl(do, t, X,Y,t) are polynomials in
t of degree at most 4 and 2, respectively. Hence R,,_1(dp,¢, X,Y,t) can
be expressed as

Enfl (d07 L, Xa Ya t)
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_ =y TP —p ) S(do, 1 X, Vi),
Pm-22(p72)V ((n—2)/2, X, Y 1) ’
where S(do,t, X,Y,t) is a polynomial in ¢ of degree at most 2n such
that

(D) S(d(]vLaXv Y7 t)

1
= {(L—p Y)Y (14 (Y )¢
P(n-2)/2(P7%) ;;1
(n—2)/2-1 (n—2)/2 - p—"+2
2i—1vy,2 —2i—1—n 4
< [ a-v»"v) ] -»p t)l—p“"“)/?gog
i=1 i=1

X((l +t2yflp7(n72)/273/2€~><1 _'_t2Y71p7(n72)/275/2<)
_£0<t2yflpf(n72)/2(X+Xfl _|_p1/27(n72)/2<-+p71/2+(n72)/2<-))

(n—2)/2 (n—2)/2
+(1—p_1/2§oY) H (1_p21—1y2) H (1_p—2z—1—nt4)<1+p—nt2)(1_p—5/250t2y—1)}
i=1 i=1

H1 = p XY T (L - p T X TY U (do, X, Y, )

with U(dp,t, X,Y,t) a polynomial in t. Hence by Theorem 5.2.6 we
have

n/2—1
H,_1(do, 0, X, Y, t) = k(do,n — 1,1, 1) (1 —p~") J] (1 —p"+*¢")
i=1
% S(d())L)Xa}/vt)
(1 —=p2XY ) (1 —p2XY " 12)(1 — p2X1Y2)(1 — p2X 1Y —142)
1
H?ﬁ_l(l — p2-IXY ) (1 — p 21X Y - 12) (1 — p2i-1X -1V §2) (1 — p~2-1X 1Y -142)
1
* -2 ' ~ '
[LE777(1 = p 2 XYt2)(1 — p~2 X -1Y'¢2)

X

Hence the power series R,,_1(do, ¢, X,Y,t) is a rational function in ¢, is
invariant under the transformation Y +— Y ! (cf. the proof of Theo-
rem 5.4.2). This implies that the reduced denominator of the rational
function H,,_1(dp,¢, X,Y,t) in t is at most

(1— p2XYE)(1 — p XY 12)(1 — p2X 1Y) (1 — p 2X 1y~ 1g2)
n/2—1
% H (1_p—2i—1XYt2)(1_p—2i—1Xy—lt2)(1_p—2i—1X—1Yt2)(1_p—2i—1X—1y—1t2)
=1
and therefore we have

(E) S(d07L7X7 Yat)
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. ty(do) ao(do, X, Y) + a; (do, )(7 Y)t2 + &Q(do, X, Y)t4
Pn—2)/2(P7?)

(n—2)/2
< [ a=pXy)1-p 2 X'V,
i=1
where a;(dy, X,Y) (i = 0,1,2) is a Laurent polynomial in X and Y.
We can easily see ag(dy, X,Y) = 1. First let v(dy) = 0. Then by substi-
tuting p"~V/2X/2y1/2 (j = £1) for t in (D) and (E), and comparing
them, we obtain

14 a1(do, X, Y)p" 1 XY + ay(dy, X, Y)p?n Y X 2y?

— 1+pn—1Xiy(p—2+p—3_p—5/2<X+X—1+Y+Y—1>§0>+p2n—2X2iy2p—5

fori = +£1. Hence a1(do, X,Y) = p 2 4p 3 —p (X + X1 +Y +Y 1)
and ay(dy, X,Y) = p~5. This proves the assertion in case v(dy) = 0. In
case v(dy) > 0, in the same manner as above we have

14 a1 (do, X, Y)p" ' XY + ag(do, X, V)PPV X2Y2 = 1 4 p"3XY

for i = 1. Hence a;(dy, X,Y) = p~2 and ay(dy, X,Y’) = 0. This proves
the assertion in case v(dy) > 0.

Similarly the assertion for v(dy) = 0 and w = € can be proved. Next
suppose that v(dy) > 0 and w = . Then the assertion can be proved
similarly by using Proposition 5.3.1 and Theorems 5.4.1, 5.4.2, and (2)
of Theorem 5.3.10. U

6. PRoOF OoF CONJECTURE B
Now we give an explicit form of R(s,on—1(¢r,(s),1)) for the first
Fourier-Jacobi coefficient ¢y, (y) 1 of the Duke-Imamoglu-Ikeda lift.

Proposition 6.1. Let k and n be positive even integers. Given a prim-
itive form f in Sop_n(I'Y), let f € 6;_71/2“/2(%(4)) be as in Section
2. Then

R(s,f)=L(2s —2k+n+1,f,Ad) > |e(|do|)[*|do| *
doE]'—(71>n/2
« H{(l +p72s+2k7n71)<1 _|_p72s+2k7n72xp<d0)2> _ 2p723+2k7n73/2xp<d0)a(p)}’

p

where c(|do|) is the |do|-th Fourier coefficient of f, and a(p) is the p-th
Fourier coefficient of f.
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Proof. By using the same argument as in Theorem 4.2, we can show
that we have

R(s,[y=r1 Y lej(|do|)[?|do|"/*~*+1/2

doeF(=1)

X {H H, ,(do, tp, ayp, ap’p—s+k—n/2+1/2) + H Hy,(do, e, 0, Oép)p—s+k—n/2+1/2)} _

p p
By Theorem 5.5.1, for any dy we have

HHLp(do, Lp, Qtp, a,p,p—s+k:—n/2+1/2) — HHLp(dOa Epy O, ap’p—s+k—n/2+1/2)
p p

= |do|5TF 22025 — 2k 4+ n 4 1, f, Ad)
« H((l + p—23+2k—n—1)(1 + p—2s—2k—n—2Xp(d0)2> _ 2p_25+2k_”_3/2xp(do)a(p)).

Thus the assertion holds. O

Theorem 6.2. Let k and n be positive even integers. Given a prim-

itive form f € Sy (I'W), let | € S, nj212(10(4)) and ér, 51 €

quSp(F("* 7) be as in Section 2 and Section 3, respectively. Put
= =21 H"/2 L€(2i). Then, we have

n—2

2

R(s,00-1(61,()1)) = M2V 2540 —2k+1) 7" [ [ ¢(4s+2n—4k+2-2i) "

i=1

x{R(s—n/2+1, f)((25—2k+3) | [ L(2s—2k+2i+2, f, Ad)¢(25—2k+2i+2)
i=1
nT72
(=1 DER(s, F)C(2s—2k+n+1) [ [ L(25—2k+2i+1, f, Ad)((25—2k+2i+1)}.
i=1
Proof. The assertion follows directly from Theorems 4.2 and 5.5.1, and
Proposition 6.1. O

Theorem 6.3. Conjecture B holds true for any positive even integer
n.

Proof. The assertion trivially holds if n = 2. Suppose that n > 4. By

Theorem 6.2 we have
n/2—1

(F) R(s,0p-1(Pr1,(5).1)) H §22 ST (g)

xQU(s)'R(s —n/2+1, f) A(2s — 2k + 2i + 2, f, Ad)E(2s — 2k + 2i + 2)

v ‘

.
I
_



IKEDA’S CONJECTURE 65

n—2
2
+H(=1)"28R(s, f) [ L(2s — 2k + 20 + 1, £ Ad)((25 — 2k +2i + 1) ¢,
i=1
where
(n=2)/2 n-1
T(s) =Tr(2s+n—2k+1) J[ Tr(ds+2n—4k+2-2i) [[Tr(2s—i+1),
i=1 =1
and
U(s) =T'r(2s — 2k + 3)['r(2s —n +2)
(n=2)/2
x J] (To(2s—2k+2i+2)Tc(2s —n+ 2+ 1)Tr(2s — 2k + 2i + 2)).
=1

We note that R(s, f) is holomorphic at s = k — 1/2. Thus by taking
the residue of the both-sides of (F) at s =k —1/2 | we get
n/2—1

ReSs:kfl/ZR(Syan—1<¢1n(f): ) =2 Hn2) H 5 — 1;33

n—2

2

xRese_pnj2e1/2R(s, f) [ [ A2 + 1, £, Ad)&(2i + 1).
i=1
We easily see that
T(k—1/2)
Uk —1/2)
By Theorem 1 in [KZ8&1], we have

Ress_p_n/or12R (5, ) = 227(f, f).

Thus the assertion follows from Corollary to Proposition 3.1. g

_ 2(n—1)(n—2)/2'
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