On possible isolated blow-up phenomena and regularity
criterion of the 3D Navier-Stokes equation along the
streamlines

Chi Hin Chan and Tsuyoshi Yoneda

July 31, 2011

Institute for Mathematics and its Applications, University of Minnesota
207 Church Street SE, Minneapolis, MN 55455-0134, USA
Department of Mathematics, Hokkaido University
Sapporo 060-0810, Japan

Abstract: The first goal of our paper is to give a new type of regularity criterion for solutions u
to Navier-Stokes equation in terms of some supercritical function space condition $u \in L^{\infty}(L^{\alpha,*})$
(with $\frac{3}{4}(17^{\frac{1}{2}} - 1) < \alpha < 3$) and some exponential control on the growth rate of $\text{div}(\frac{u}{|u|})$
along the streamlines of u. This regularity criterion greatly improves a previous result of the first author.
However, we also point out that totally new idea which involves the use of the new supercritical
function space condition is necessary for the success of our new regularity criterion in this paper.

The second goal of our paper is to construct a divergence free vector field u within a flow-invariant
tubular region with increasing twisting of streamlines towards one end of a bundle of streamlines.
The increasing twisting of streamlines is controlled in such a way that the associated quantities $\|u\|_{L^p}$
($2 < p < 3$) and $\|\text{div}(\frac{u}{|u|})\|_{L^6}$ blow up while preserving the finite energy property $u \in L^2$
at the same time. We also briefly mention how this construction is related to the regularity
criterion proved in our paper.

Keywords: Navier-Stokes equation, regularity criterion

Mathematics Subject Classification: 35B65, 76D03, 76D05

1 Introduction

The first goal of this paper is to give a new type of regularity criterion of solutions u to the
Navier-Stokes equation in terms of some weak L^α space condition on the velocity u (with some
$\frac{3}{4}(17^{\frac{1}{2}} - 1) < \alpha < 3$) and some exponential control of $\text{div}(\frac{u}{|u|})$ along the streamlines. The second
goal of this paper is to give possible blow-up situations for 3D-Navier-Stokes equation through the
construction of a finite energy divergence free velocity field u with $u \notin L^\alpha$ with $2 < \alpha < 3$ and
$\text{div} u \notin L^6$. The Navier-Stokes equation on \mathbb{R}^3 is given by

$$
\begin{align*}
\partial_t u - \Delta u + \text{div}(u \otimes u) + \nabla P &= 0, \\
\text{div}(u) &= 0, \quad u|_{t=0} = u_0
\end{align*}
$$

(1.1)
in which \(u \) is a vector-valued function representing the velocity of the fluid, and \(P \) is the pressure. The initial value problem of the above equation is endowed with the condition that \(u(0, \cdot) = u_0 \in L^2(\mathbb{R}^3) \).

Modern regularity theory for solutions to equation (1.1) began with the works of Leray [11] and Hopf [5] in which they established, with respect to any given initial datum \(u_0 \in L^2(\mathbb{R}^3) \) which is weakly divergence free, the existence of a weak solutions \(u : [0, \infty) \times \mathbb{R}^3 \to \mathbb{R}^3 \) lying in the class of \(L^\infty(0, \infty; L^2(\mathbb{R}^3)) \cap L^2(0, \infty; \dot{H}^1(\mathbb{R}^3)) \) which satisfies the global energy inequality. Since the time of Leary and Hopf, any weak solution to equation (1.1) which satisfies the finite energy, finite dissipation, and global energy inequalities is called Leray-Hopf solutions to (1.1).

After the fundamental works of Leray and Hopf, progress in addressing the full regularity of Leray-Hopf solutions has been very slow. It was only in 1960 that significant progress was made by Prodi [13], Serrin [14], Ladyzhenskaya [10], and their joint efforts lead to the following famous Prodi-Serrin-Ladyzhenskaya criterion for Leray-Hopf solutions (see the introduction of [6] for more historical remarks about this).

Theorem 1.1. [Prodi, Serrin, Ladyzhenskaya] Let \(u \in L^\infty(0, T; L^2(\mathbb{R}^3)) \cap L^2(0, T; \dot{H}^1(\mathbb{R}^3)) \) be a Leray-Hopf weak solution to (1.1), which also satisfies \(u \in L^p(0, \infty; L^q(\mathbb{R}^3)) \), for some \(p, q \) satisfying \(\frac{2}{p} + \frac{3}{q} = 1 \), with \(q > 3 \). Then, \(u \) is smooth on \((0, T] \times \mathbb{R}^3\) and is uniquely determined in the following sense

- suppose \(v \in L^\infty(0, T; L^2(\mathbb{R}^3)) \cap L^2(0, T; \dot{H}^1(\mathbb{R}^3)) \) is another Leray-Hopf weak solution such that \(u(0, \cdot) = v(0, \cdot) \). Then, it follows that \(u = v \) on \((0, T] \times \mathbb{R}^3\).

The success of the Prodi-Serrin-Ladyzhenskaya criterion was based on the fact that the integral condition \(u \in L^p(L^q) \) with \(p, q \) satisfying \(\frac{2}{p} + \frac{3}{q} = 1 \) and \(q > 3 \) ensures that the Leray-Hopf solution \(u \) behaves like a solution to a slightly pertubated heat equation. It is also worthwhile to mention that the exceptional case of \(u \in L^\infty(L^3) \) was missed in the above regularity criterion of Prodi, Serrin, and Ladyzhenskaya, and it was not until very recently that the regularity of solutions in the exceptional case \(u \in L^\infty(L^3) \) was finally established in the famous work [6] due to L. Escauriaza, G. Seregin, and V. Sverak.

After the appearance of the Prodi-Serrin-Ladyzhenskaya criterion, many different regularity criteria of solutions to (1.1) was established by researchers working in the regularity theory of (1.1). Among these, for instance, Beirão da Veiga established in [2] a regularity criterion in terms of the integral condition \(\nabla u \in L^p(0, \infty; L^q(\mathbb{R}^3)) \) with \(\frac{2}{p} + \frac{3}{q} = 2 \) (and \(1 < p < \infty \)) imposed on \(\nabla u \). In the same spirit of [2], Beale, Kato and Majda [1] gave a regularity criterion for solutions \(u \) to (1.1) in terms of the condition \(\omega \in L^1(0, \infty; L^\infty(\mathbb{R}^3)) \) imposed on the vorticity \(\omega = \text{curl} \ u \) associated to \(u \). This regularity criterion was further improved by Kozono and Taniuchi in [9] (see also [12]). Besides these, other important works such as [4] and [8], in which type I blow up was excluded for axisymmetric solutions to (1.1), are attracting a lot of attentions. Due to the limitation of space and the vast literature in the regularity theory for solutions to (1.1), we do not try to do a complete survey here.

However, we would like to mention an interesting regularity criterion in [15] due to Vasseur, since it is related to the main result of this paper and also to the previous partial result [3] by the first author. [15] gave a regularity criterion for solutions \(u \) to (1.1) in terms of the integral condition \(\text{div}(\frac{u}{|u|}) \in L^p(0, \infty; L^q(\mathbb{R}^3)) \) with \(\frac{2}{p} + \frac{3}{q} \leq \frac{1}{2} \) imposed on the scalar quantity \(F = \text{div}(\frac{u}{|u|}) \).

One of the main purposes of this paper, however, is to establish the following regularity criterion for solutions \(u \) to (1.1) in terms of some exponential control on the rate of change of \(F = \text{div}(\frac{u}{|u|}) \) along the streamlines of \(u \) and some \(L^\infty \) space condition imposed on \(u \).

Theorem 1.2. Let \(u \in L^\infty(0, T; L^2(\mathbb{R}^3)) \cap L^2(0, T; \dot{H}^1(\mathbb{R}^3)) \) be a Leray Hopf solution to (1.1) which is smooth up to a possible blow up time \(T \) with \(u_0 \in S(\mathbb{R}^3) \). Let us assume that \(u \) and \(F = \text{div}(\frac{u}{|u|}) \) satisfy the following conditions.
$u \in L^\infty(0, T; L^{\alpha, \infty}(\mathbb{R}^3))$, for some given $\alpha \in (2, 3)$ which satisfies $1 + 2(\frac{\alpha}{3} + \frac{2}{3}) > 0$.

- There exists some $r_0 > 0$ and $M_0 > 0$ such that $|u| \leq M_0$ is valid on the region $[0, T] \times \{x \in \mathbb{R}^3 : |x| \geq r_0\}$.

- For some given constants $A > 0$ and $L > 0$, the property $\frac{|u \cdot \nabla F|}{|u|} \leq A|F|$ is valid on $\{(t, x) \in [0, T) \times B(r_0) : |F(t, x)| \geq L\}$ (Here, $B(r_0) = \{x \in \mathbb{R}^3 : |x| < r_0\}$).

Then the smoothness of u can be extended beyond the time T.

Here, we give a few remarks which illustrate the significance of Theorem 1.2. We start with the third condition in Theorem 1.2 in which we see the condition $\frac{|u \cdot \nabla F|}{|u|} \leq A|F|$ imposed on the region $[0, T) \times \{x \in \mathbb{R}^3 : |x| \geq r_0\} \cap \{|F| \geq L\}$. We can see the geometric meaning of the constraint $\frac{|u \cdot \nabla F|}{|u|} \leq A|F|$ on $[0, T) \times \{x \in \mathbb{R}^3 : |x| \geq r_0\} \cap \{|F| \geq L\}$ if we recast it in the following geometric language.

- For any time slice $t \in [0, T)$, and any streamline $\gamma : [0, S) \rightarrow \mathbb{R}^3$ of the velocity profile $u(t, \cdot)$ which is parameterized by arclength (that is, $\frac{d\gamma}{dt} = \frac{u}{|u|}(\gamma(s))$) and with image $\gamma(0, S)$ lying in the region $\{x \in \mathbb{R}^3 : |x| \geq r_0, |F(t, x)| \geq L\}$, we have $\frac{d}{ds}(F(\gamma(s))) \leq A \cdot |F(\gamma(s))|$, for any $0 \leq s \leq S$.

The condition $\frac{d}{ds}(F(\gamma(s))) \leq A \cdot |F(\gamma(s))|$ gives some exponential control on F along each streamline of the fluid within the space region on which both u and $F = \text{div}(\frac{u}{|u|})$ are large. Our original motivation was to prove that the smoothness of the solution $u : [0, T) \times \mathbb{R}^3 \rightarrow \mathbb{R}^3$ to (1.1) can be extended beyond the possible blow up time T under the third condition of Theorem 1.2 and the Leray-Hopf property $u \in L^\infty(L^2) \cap L^2(\dot{H}^1)$ of the solution. But our experience told us that this cannot be so easily achieved without the involvement of the following additional condition (which is the first condition of Theorem 1.2).

$u \in L^\infty(0, T; L^{\alpha, \infty}(\mathbb{R}^3))$, for some given $\alpha \in (2, 3)$ with $1 + 2(\frac{\alpha}{3} + \frac{2}{3}) > 0$.

To clarify the necessity of the condition $u \in L^\infty(L^{\alpha, \infty})$ with some $\alpha \in (2, 3)$ satisfying $1 + 2(\frac{\alpha}{3} + \frac{2}{3}) > 0$, let us mention a piece of work [3] by the first author in which smoothness of a Leray-Hopf solution $u : [0, T) \times \mathbb{R}^3 \rightarrow \mathbb{R}^3$ is established beyond the possible blow up time T under the following condition.

- (condition in the regularity criterion of [3]) $\frac{|u \cdot \nabla F|}{|u|} \leq A|F|$ is valid on $[0, T) \times \mathbb{R}^3$, with $A > 0$ to be a given constant and δ to be a given constant with $0 < \delta < \frac{1}{3}$.

The above mentioned regularity criterion based on the condition $\frac{|u \cdot \nabla F|}{|u|} \leq A|F|$ (with $0 < \delta < \frac{1}{3}$) was established in [3] through applying the De Giorgi’s method as developed by A. Vasseur in [16]. The main idea of the De Giorgi’s method in [16] is based on the establishment of the following nonlinear recurrence relation of the energy U_k of a truncated function $v_k = |u| - R(1 - \frac{1}{k})$, of the solution u to (1.1) over a certain space time region (for a precise definition of U_k, see section 3 of this paper, or alternatively [16] or [3]),

$U_k \leq C_k R^2 U_{k-1}^{\beta - 1}$, \hspace{1cm} (1.2)

According to the idea in [16], for a given solution u to (1.1) on $[0, T) \times \mathbb{R}^3$ with possible blow up time T, the L^∞-boundedness conclusion $|u| \leq R$ over $[\frac{T}{2}, T) \times \mathbb{R}^3$ (for some sufficiently large R) can be drawn from relation (1.2) provided one can ensure that $0 > \beta > 1$ and $\lambda > 0$ are valid simultaneously.
Roughly speaking, $\lambda > 0$ ensures the smallness of the energy U_1 of the first truncated function v_1, due to the fact that $\frac{1}{\lambda}$ will become small as R is sufficiently large. The smallness of U_1 will trigger the nonlinear recurrence effect of relation (1.2) which eventually causes the very fast decay of U_k to 0 (see Lemma 3.2 which originally appeared in [16]). This resulting decay of U_k to 0 then implies the desired boundedness conclusion $|u| \leq R$ over $[\frac{T}{7}, T] \times \mathbb{R}^3$, which in turn extends the smoothness of u beyond the possible blow up time T. However, it was illustrated in [3] that the requirement that $\beta > 1$ and $\lambda > 0$ have to hold simultaneously prevents us to push the constant δ (in the condition $\frac{|u| |\nabla F|}{|u|^2} \leq A(F)$) to go beyond the range $(0, \frac{1}{3})$. This limitation of the De Giorgi method of [16] basically comes from the fact that the index β in relation (1.2) is typically $\frac{5}{3}$ or $\frac{4}{3}$, which is too large for the survival of the condition $\lambda > 0$ in the same relation (1.2).

As a result, the use of the extra condition $u \in L^\infty(L^{\alpha, \infty})$, with $\alpha \in (2, 3)$ satisfying $1 + 2(\frac{4}{3} + \frac{\beta}{3}) > 0$ can help us to lower the index β of relation (1.2) from the typical $\frac{2}{3}$ or $\frac{4}{3}$ to become as close to 1 as possible, and this in turn ensures the survival of $\lambda > 0$ in the same relation (1.2). On the other hand, we have to address the question of whether the condition of $u \in L^\infty(L^{\alpha, \infty})$, with $\alpha \in (2, 3)$ satisfying $1 + 2(\frac{4}{3} + \frac{\beta}{3}) > 0$ is too strong as an assumption. Note that the constraint $1 + 2(\frac{4}{3} + \frac{\beta}{3}) > 0$ on $2 < \alpha < 3$ is equivalent to the constraint $\frac{2}{3}(17\frac{2}{3} - 1) < \alpha < 3$. This indicates that the condition $u \in L^\infty(L^{\alpha, \infty})$ with such a α lying in $(\frac{4}{3}(17\frac{2}{3} - 1), 3)$ is beyond the classical Prodi-Serrin-Ladyzhenskaya range and the $L^\infty(L^3)$ criterion of [6]. This means that this extra assumption, which is the first technical condition in the hypothesis of Theorem 1.2, is reasonable.

Next, let us mention that there is nothing deep about the second condition in Theorem 1.2, which says that the large velocity region $\{x \in \mathbb{R}^3 : |u(t, x)| > M_0\}$ of the solution is restricted within the open ball $\{x \in \mathbb{R}^3 : |x| < R_0\}$ for some given radius R_0. Even without this second condition as in the hypothesis of Theorem 1.2, the same qualitative result which says that large velocity region of a solution u to (1.1) has to be within a certain ball with some sufficiently large radius R_0 depending on u can be deduced by means of an application of the partial regularity theorem of Caffarelli, Kohn and Nirenberg. So, in this sense, the second condition imposed on Theorem 1.2 is not very crucial and is imposed only for convenience.

Before we finish the discussion about Theorem 1.2, we point out that the proof of Theorem 1.2 as presented in section 4 of our paper closely follows the proof of the regularity criterion in [3]. However, we also point out that we have given completely new idea which allows us to use the extra weak L^α space condition with $\frac{2}{3}(17\frac{2}{3} - 1) < \alpha < 3$ to lower down the index β in (1.2) from the typical value of $\frac{2}{3}$ or $\frac{4}{3}$ to become as close to 1 as possible. For those readers who are interested only in those new ideas contributed to the proof of Theorem 1.2, we have given, in Section 3 of our paper, an outline of those crucial and important ideas which make the old argument of [3] become strong enough to arrive at Theorem 1.2. But we also give, in Section 4 of our paper, the complete details of the proof of Theorem 1.2 by including those new ideas outlined in Section 3 in the technical argument.

Besides the main result in Theorem 1.2, we also will construct, in section 2, a divergence free velocity field u within a stream-tube segment with increasing twisting (i.e. increasing swirl) among the streamlines of u towards the ending cross section of the stream-tube. The construction of such a velocity field u as in section 2 demonstrates the way in which excessive twisting of streamlines towards the ending cross section of the stream-tube can result in the blow up of the quantities $\|u\|_{L^\alpha}$ (for some $2 < \alpha < 3$) and $\|\text{div}(\frac{|u|}{|u|^2})\|_{L^5}$ while at the same time preserving the finite energy property $u \in L^2(\mathbb{R}^3)$ of the fluid. We do not claim that this explicit construction of such a divergence free vector field has anything to do with actual solutions to (1.1). One purpose of such a construction of a divergence free velocity field u with increasing swirl towards the ending cross section of the stream-tube is to illustrate the possibility of having a finite energy velocity field with increasing swirl which is beyond the scope covered by the regularity criterion of Vasseur in [15] and the $L^\infty(L^3)$ criterion of [6]. In a certain sense, the excessive twisting of
streamlines of the velocity field as constructed in Section 2 within a stream-tube segment with almost constant cross section everywhere (see Definition 2.7) will cause the streamlines to become densely packed together towards the ending cross section of the stream-tube, and this denser and denser packing of streamlines eventually leads to the blow up of the velocity field at a singular point lying at the center of the ending cross section of the stream-tube. According to the regularity criterion in Theorem 1.2, one can speculate that if the velocity field u as constructed in Section 2 with increasing swirl towards the ending cross section of the stream-tube can be realized as an instantaneous profile $v(T, \cdot)$ of a time-dependent solution $v : [0, T) \times \mathbb{R}^3 \to \mathbb{R}^3$ to (1.1) in which singularity occurs at the blow up time T, then, it must be that the rate of increase of $F = \text{div}(\frac{u}{|u|})$ along those streamlines with increasing twisting must go beyond the exponential growth rate. Even though the construction in Section 2 is very interesting, it is totally independent of the regularity criterion of Theorem 1.2, and the reader should treat this as a separate topic.

2 Possible blow-up situation of a velocity field with large swirl

In this section, we attempt to characterize a divergence free velocity field u which is specified in a stream-tube segment around a representative streamline (with an incoming cross section and an ending cross section) in a such a way that the streamlines generated by such a velocity field will have unbounded increasing swirl (ie increasing twisting around the representative streamline) towards the ending cross section of the stream-tube segment. The uncontrolled increasing swirl of streamlines towards the ending cross section of the stream-tube segment will lead to an isolated singularity located at the point of intersection between the center representative streamline and the ending cross section of the stream-tube. Based on the above consideration, we will give necessary conditions which characterize the properties $u \in L^2, u \notin L^\alpha$ (for some given $2 < \alpha < 3$) and $\text{div} \frac{u}{|u|} \notin L^6$ of such a velocity field with increasing swirl.

In order to describe such a velocity field u with increasing swirl towards the ending cross section of the stream-tube segment, we first specify the center representative streamline $\gamma_\eta : [0, S) \to \mathbb{R}^3$ as follow.

Definition 2.1. (Representative stream line.)

Let $\gamma_\eta : [0, S) \to \mathbb{R}^3$ be such that

$$\partial_s \gamma_\eta(s) = \frac{u}{|u|}(\gamma_\eta(s)) \quad \text{and} \quad \gamma_\eta(0) = \eta \in \mathbb{R}^3. \tag{2.1}$$

Note that the ending value S is excluded from the definition of the representative streamline, since $\gamma_\eta(S)$ is supposed to be the isolated singularity point created by the unbounded increasing swirl of those streamlines close to the representative streamline. Before we can create the stream-tube segment around the representative streamline γ_η, we need to specify the initial streamplane A with parameter r as follow.

Definition 2.2. (Initial stream plane A with parameter r.) Let $\{\bar{A}_0(r)\}_{r \in (0, 1]}$ be a smooth family of smoothly bounded open set in \mathbb{R}^2 s.t. $A_0(r) \subset \bar{A}_0(r')$ ($r < r'$), $A_0(r) \to \{0\}$ ($r \to 0$). Let

$$A_0(r) = \{x \in \mathbb{R}^3 : R(x - \eta) \in \bar{A}_0(r)\}, \tag{2.2}$$

where R is a rotation matrix s.t. $R(\frac{u}{|u|}(\eta, t)) = (0, 0, 1)$.}

The initial streamplane $A_0(1)$ is exactly the incoming cross section of the stream-tube segment which will be specified. To construct the stream-tube segment with $A_0(1)$ as its incoming cross section, we just need to specify, for each $s \in (0, S)$, the associated stream-plane $A(r, s)$ intersecting γ_s at the point γ_s as follow.

Definition 2.3. (Stream-planes.) Let

$$A(r, s) := \bigcup_{\gamma' \in A_0(r)} \{ \gamma_{\gamma'}(s') : s' \text{ is the minimum among all possible } \tau > 0 \text{ for which } \gamma_{\gamma'}(\tau) \text{ belongs the plane which passes through the point } \gamma_s(s) \text{ and is perpendicular to } \partial_s \gamma_s(s) \}$$

For simplicity, we just set $A(s) := A(1, s)$. Then, we can define the stream-tube to be

$$T^A_{[0, S]} = \bigcup_{0 \leq s < S} A(s) \quad (2.3)$$

We remark that, for any $x \in A(s)$, there is r s.t. $x \in \partial A(r, s)$. This is due to the fact that for each $s \in [0, S)$, $A(r, s)$ is strictly shrinking towards the representative streamline as $r \to 0^+$. Based on this observation, we introduce an orthonormal coordinate frame system within the stream-tube $T^A_{[0, S]}$ in the following definition.

Definition 2.4. For $x, y \in \partial A(r, s)$, let $e_\theta(x) := \lim_{y \to x} \frac{x - y}{|x - y|}$, $e_z(x) := \frac{w}{|w|}(\gamma_s(s))$ and let $e_r(x)$ be s.t.

$$\langle e_z(x), e_r(x) \rangle = \langle e_\theta(x), e_r(x) \rangle = 0 \quad \text{and} \quad |e_r(x)| = 1. \quad (2.4)$$

We emphasize that the notations e_θ, e_z and e_r are borrowed from the notations of the standard cylindrical coordinate frame $\partial_r, \frac{1}{r} \partial_\theta$ and ∂_z for axisymmetric velocity field about the z-axis. This is a good choice of notation, since one can imagine that the representative streamline γ_s plays a similar role as the axi-symmetric axis provided γ_s is relatively straight. Next, in order to describe the increasing swirl of u towards the ending cross section $A(S) = A(1, S)$ of the stream-tube segment $T^A_{[0, S]}$, we will now decompose $\frac{u}{|u|}$ into its radial component, z-component, and swirl component as in the following definition.

Definition 2.5. (Decomposition of normalized streamline.)

Let ω_θ, ω_r, and ω_z be s.t.

$$\frac{u}{|u|}(x) = \omega_\theta(x)e_\theta(x) + \omega_r(x)e_r(x) + \omega_z(x)e_z(x). \quad (2.5)$$

Remark 2.6. We see that $\omega_\theta^2 + \omega_r^2 + \omega_z^2 = 1$ and $\omega_z(x) \to 1$ ($x \to \gamma_s(s)$) if u is smooth.

In order to give a model of possible blow-up situation, we need to define “uniformly bundle” as follows:

Definition 2.7. We call that “the stream-tube segment $T^A_{[0, S]}$ has a uniformly bundle” if the following two properties hold:

- For any $B(0) \subseteq A(0)$ and any $s \in [0, S]$, we have $C^{-1} \leq \frac{|B(s)|}{|B(0)|} \leq C$, for some universal constant $C > 0$. Here, $B(s)$ is defined in the same way as $A(r, s)$ through replacing $A_0(r)$ by $B(0)$ in Definition 2.3.

- For the same universal constant $C > 0$, we have $\sup_{y \in A(0)} u \cdot e_z(y) \leq C \inf_{y \in A(0)} u \cdot e_z(y)$.

6
Remark 2.8. Since \(\int_{B(0)} u \cdot e_z(y) d\sigma_y = \int_{B(s)} u \cdot e_z(y) d\sigma_y \) by divergence free, we see \(u \cdot e_z(x) = \lim_{t \to 0} \int_{B(s)} u \cdot e_z(y) d\sigma_y \approx \lim_{t \to 0} \frac{1}{|B(s)|} \int_{B(0)} u \cdot e_z(y) d\sigma_y = u \cdot e_z(x') \) for any two points \(x \in A(s) \) and \(x' \in A(0) \) connected by a streamline passing through \(A(0) \) and \(A(s) \), if \(A(s) \) has a uniformly bundle.

Remark 2.9. If \(A(s) \) has a uniformly bundle, we can see from divergence free condition

\[
\int_{B(0)} u \cdot e_z(y) d\sigma_y = \int_{B(s)} u \cdot e_z(y) d\sigma_y \approx |B(s)||u \cdot e_z| = |B(s)||u|_{\omega_z}
\]

and then

\[
\frac{\int_{B(0)} u \cdot e_z(y) d\sigma_y}{|B(s)||u|_{\omega_z}(x)} \approx |u(x)| \quad \text{for} \quad x \in B(s) \subset A(s).
\]

Now, we want to characterize the properties \(u \in L^2 \), \(u \notin L^\alpha \) (for some given \(2 < \alpha < 3 \) and \(\text{div}_{\Omega} \notin L^6 \) in terms of some conditions specifying how fast the streamlines are increasing their swirl towards the ending cross section \(A(s) \) of the stream-tube segment \(T_{[0,S]}^A \).

To specify the increasing swirl of streamlines towards the ending cross section \(A(S) \) of the stream-tube segment \(T_{[0,S]}^A \), we need to decompose each stream-plane \(A(s) \) into the disjoint union of a countable list of ring-shaped regions \(A_j(s) \) as follow. We first select a decreasing sequence of positive numbers \(\{r_j\}_{j=1}^\infty \) dropping down to \(0(r_j \searrow 0) \) as \(j \to \infty \). We then set \(A_j(s) := A(r_j, s) \setminus A(r_{j+1}, s) \). Notice that \(A_j(s) \) is shrinking towards the representative streamline \(\gamma_0 \) as \(j \) becomes large. We also set

\[
\omega_z^{A_j}(s) := \int_{A_j(s)} \omega_z(y) d\sigma_y / |A_j(s)|.
\]

That is, \(\omega_z^{A_j}(s) \) is the average of \(\omega_z \) over the ring-shaped region \(A_j(s) \) in the stream-plane \(A(s) \). We can assume, according to Definition 2.7, that

\[
|A_j(s)| \approx |A_j(0)| \quad \text{for} \quad s \in (0,S).
\]

Since we require that \(u \) blows up at the isolated singular point \(\gamma_0(S) \) lying in \(A(S) \), in light of condition (2.9) and (2.7), we would require that, as \(s \) becomes close to \(S \), \(\omega_z^{A_j}(s) \) should become small as \(j \) becomes large, which indicates that the average swirl (or twisting) of those streamlines passing through \(A_j(s) \) should become large as \(s \to S \) and \(j \to \infty \).

Now, in order to ensure that \(u \in L^2 \), we impose \((S-s)^{1-\epsilon} \) as the lower bound for \(\omega_z \) as follow.

- (The condition to ensure \(u \in L^2 \)) For any \(0 < s < S \), we have \((S-s)^{1-\epsilon} \leq \omega_z(\gamma_{0'}(s)) < 1 \) for any \(\gamma_{0'} \in A(0) \).

The purpose of the above condition is to prevent the swirl of streamlines passing through \(A_j(s) \) to become too large as \(s \to S \) and \(j \to \infty \), because we want to have the finite energy property for \(u \). Under the condition \((S-s)^{1-\epsilon} \leq \omega_z(\gamma_{0'}(s)) < 1 \) and (2.7), a direct calculation yields the finite \(L^2 \) property of \(u \) as follow.

\[
\|u\|_{L^2}^2 \approx \|u\|_{L^2(T_{[0,S]}^A)}^2 = \int_{T_{[0,S]}^A} \frac{\omega_z(A(0))}{\omega_z(x)} dx \approx \int_0^S \int_0^S \frac{\omega_z(A(0))}{\omega_z(\gamma_{0'}(s))} dx ds \leq \int_0^S \frac{C}{(S-s)^{1-2\epsilon}} dx < \infty.
\]

In order to ensure that \(u \notin L^\alpha \), we impose \((S-s)^{1/2} \) as the upper bound for \(\omega_z \) as follow.
• (The condition to ensure \(u \not\in L^\alpha \)) Let \(\{S_j\}_j \subset [0, S) \) be s.t. \(S_j \to S \ (j \to \infty) \) and
\[
|A_j(0)| \int_0^{S_j} (S - s)^{-1} ds \geq C.
\]

For any \(0 < s < S_j \), we have
\[
|\omega_2(\gamma_{\eta'}(s))| \leq (S - s)^{1/\alpha} \quad \text{for} \quad \eta' \in A_j(0).
\]

We show \(u \not\in L^\alpha \). By Remark 2.6, we see \(\omega^{A_j}(0) \approx 1 \). Thus
\[
\|u\|_{L^\alpha} \approx \|u\|_{L^\alpha(T_{[0, S]}^{A_j})} = \int_{T_{[0, S]}^{A_j}} \left| \frac{\omega^{A_j}(0)}{\omega_2(x)} \right|^\alpha dx
\geq \sum_j \int_0^{S_j} \int_{A_j} \left| \frac{\omega^{A_j}(0)}{\omega_2(\gamma_{\eta}(s))} \right|^\alpha dy ds \geq \sum_j \int_0^{S_j} \frac{|A_j(0)|}{(S - s)} ds = \infty. \tag{2.12}
\]

In order to show \(\|\text{div}(\frac{\omega_2}{u})\|_{L^\alpha} = \infty \), we impose \((S - s)^{-1} \) as the upper bound for \(|\partial_\omega \omega^{A_j}(s)|^6 \) as follow.

• (The condition to ensure \(\text{div}(u/|u|) \not\in L^\beta \)) Let \(\{\tilde{S}_j\}_j \subset [0, S) \) be s.t. \(S_j < \tilde{S}_j < S \) and
\[
|A_j(0)| \int_{\tilde{S}_j}^{S_j} (S - s)^{-1} ds \geq C,
\]

where \(C \) is a universal constant. For any \(S_j < s < \tilde{S}_j \), we have
\[
|\partial_\omega \omega^{A_j}(s)|^6 > (S - s)^{-1}.
\]

Remark 2.10. There exists \(\omega_2 \) which satisfies the above three conditions. In fact, we can choose \(\omega_2 \) in order to satisfy \(\omega(\gamma_{\eta'}(s)) = (S - s)^{1/2 - \epsilon} \) and \(\omega^{A_j}(s) = (S - s)^{1/2 - \epsilon} \) for \(\eta' \in A_j(0), \ s \in [0, \tilde{S}_j] \) and \(j = 1, 2, \ldots \).

We need to get a rough expression of \(\frac{1}{A_j(s)} \sum_{j \in A_j(s)} \text{div}(\frac{u}{|u|}) dy \) as follow. Let \(s > 0 \) be fixed. Then, for any \(s_1 > s \) to be sufficiently close to \(s \), we consider the following stream-tube \(T_{[s, s_1]}^{A_j} \) connecting the stream-plane \(A_j(s) \) to \(A_j(s_1) \).
\[
T_{[s, s_1]}^{A_j} = \bigcup_{s \leq \tau \leq s_1} A_j(s). \tag{2.13}
\]

From Definition 2.3, we can view the stream-tube \(T_{[s, s_1]}^{A_j} \) as being formed by the union of those streamlines which first pass into the stream-tube through the cross section \(A_j(s) \) and eventually leave the same stream-tube through the cross section \(A_j(s_1) \). Since \(s_1 \) is chosen to be close to \(s \), the stream-tube \(T_{[s, s_1]}^{A_j} \) is roughly the same as the product \(A_j(s) \times [s, s_1] \), which, together with
condition (2.9), makes the following deduction justifiable.

\[
\frac{1}{A_j(s)} \int_{A_j(s)} \text{div} \left(\frac{u}{|u|} \right) dy = \lim_{s_1 \to s} \frac{1}{(s_1 - s)} \int_{s_1}^{s_1} \frac{1}{|A_j(\tau)|} \int_{A_j(\tau)} \text{div} \left(\frac{u}{|u|} \right) dy \, d\tau \\
\approx \lim_{s_1 \to s} \frac{1}{(s_1 - s)|A_j(s)|} \int_{A_j(s)} \text{div} \left(\frac{u}{|u|} \right) dy \\
= \lim_{s_1 \to s} \frac{1}{A_j(s)(s_1 - s)} \left\{ \int_{A_j(s_1)} \frac{u}{|u|} \ v \, d\sigma - \int_{A_j(s)} \frac{u}{|u|} \ v \, d\sigma \right\} \\
= \lim_{s \to s_1} \frac{1}{A_j(s)(s_1 - s)} \left\{ \int_{A_j(s_1)} \omega \, d\sigma - \int_{A_j(s)} \omega \, d\sigma \right\} \\
= \lim_{s \to s_1} \frac{1}{A_j(s)(s_1 - s)} \left(\omega A_j(s) - \omega A_j(s) \right) \\
= \frac{1}{|A_j(s)|} \partial \omega \, \omega A_j(s) = \left(\partial \omega \omega A_j(s) + \frac{\partial A_j(s)}{|A_j(s)|} \omega A_j(s) \right).
\]

Hence, it follows from the above calculation and an application of Hölder inequality that

\[
\int_{A_j(s)} |\text{div} \left(\frac{u}{|u|} \right) |^6 \geq \frac{1}{|A_j(s)|^6} \left(\int_{A_j(s)} \text{div} \left(\frac{u}{|u|} \right) \right)^6 \\
= |A_j(s)| \left(\frac{\partial \omega \omega A_j(s)}{|A_j(s)|} + \frac{\partial A_j(s)}{|A_j(s)|} \omega A_j(s) \right)^6 \\
= |A_j(0)| \left(\frac{\partial \omega \omega A_j(s)}{|A_j(s)|} + \frac{\partial A_j(s)}{|A_j(s)|} \omega A_j(s) \right)^6 \\
\geq |A_j(0)||\partial \omega A_j(s)|^6.
\]

Therefore,

\[
\left\| \text{div} \left(\frac{u}{|u|} \right) \right\|_{L^5[T_0^T, A_j(s)]} \approx \sum_j \int_{[0,T]} A_j(s) \int |\text{div} \left(\frac{u}{|u|} \right) |^6 \geq \sum_j \int_{[S_j, T_j]} |A_j(0)||\partial \omega A_j(s)|^6 ds \geq \sum_j C = \infty.
\]

3 Outline of the proof of Theorem 1.2

The proof of Theorem 1.2 is quite similar to the one in [3]. The purpose of this section is just to outline those crucial and important changes which have to be made to the structure of the proof as presented in [3], so that the modified proof will be strong enough to give the result of Theorem 1.2. In other words, we will only state the essential changes to the main argument in [3] which are the new ideas contributed in this paper.

Just in the same way as [3], we will follow the parabolic De Giorgi’s method developed by Vasseur in [16]. So, let us fix our notation as follow. We remark that, without the lost of generality, we will assume that the possible blow up time \(T \) is just 1.

- for each \(k \geq 0 \), let \(Q_k = [T_k, 1] \times \mathbb{R}^3 \), in which \(T_k = \frac{3}{4} - \frac{1}{2^{k+2}} \).
- for each \(k \geq 0 \), let \(v_k = \{ |u| - R(1 - \frac{1}{2^k}) \}^+ \).
- for each \(k \geq 0 \), let \(w_k = \{ |u| - R^\beta(1 - \frac{1}{2^k}) \}^+ \), with \(\beta > 1 \) to be selected later.
Proposition 3.1. Let u be a suitable weak solution for the Navier-Stokes equation on $[0,1] \times \mathbb{R}^3$ which satisfies the condition that $\left| u \nabla F \right| \leq A|F|$, where A is some finite-positive constant, and γ is some positive number satisfying $0 < \gamma < \frac{1}{3}$. Then, there exists some constant $C_{p,\beta}$, depending only on $1 < p < \frac{3}{2}$, and $\beta = \frac{6-2p}{3(1-p)}$, and also some constants $0 < \alpha, K < \infty$, which do depend on our suitable weak solution u, such that the following inequality holds

$$U_k \leq C_{p,\beta} 2 \log \left\{ \frac{1}{R^{3-2p+\frac{3}{2} - \frac{3}{2p}}} \| u \|_{L^{\infty}(0,1,L^2(\mathbb{R}^3))}^2 U_k^{-\frac{2}{3}} + \right.$$

$$(1 + A)(1 + \frac{1}{\alpha})(1 + K^{1-\frac{1}{\beta}})(1 + \| u \|_{L^{\infty}(0,1,L^2(\mathbb{R}^3))}) \times$$

$$\left. \left([R^{\frac{3}{2}} - 2p + \frac{3}{2} - \gamma - \frac{1}{\beta}] U_k^{-\frac{2}{3}} + \frac{1}{R^{\frac{3}{2}} - 2\gamma - \frac{2}{\beta}} U_k^{\frac{2}{3}} \right) \right\},$$

for every sufficiently large $R > 1$.

The nonlinear recurrence relation as given in (3.1) was indeed the main cornerstone leading to the regularity criterion in [3]. More precisely, the structure of (3.1) directly gives the smallness of U_1 as long as R is sufficiently large. The smallness of U_1, together with the nonlinear recurrence structure of relation (3.1), then allowed us to deduce in [3] the decay of U_k to 0 (as $k \to \infty$) by means of the following useful lemma as appeared in [16].

Lemma 3.2. For any given constants B, $\beta > 1$, there exists some constant C_0^* such that for any sequence $\{a_k\}_{k \geq 1}$ satisfying $0 < a_1 \leq C_0^*$ and $a_k \leq B^k a_{k-1}^\beta$, for any $k \geq 1$, we have $\lim_{k \to \infty} a_k = 0$.

The resulting decay of U_k to 0 as $k \to \infty$ allowed the first author to draw the conclusion that u is essentially bounded by some sufficiently large constant $R > 1$ over $[\frac{1}{4}, 1) \times \mathbb{R}^3$, and this lead to the following theorem in [3].

Theorem 3.3. Let $u : [0,T] \times \mathbb{R}^3 \to \mathbb{R}^3$ be a Leray-Hopf solution to (1.1) which is smooth on $[0,T] \times \mathbb{R}^3$ (with T to be the possible blow up time) and which satisfies the condition that $\left| u \nabla F \right| \leq A|F|$, in which A is some positive constant, and γ is some positive constant for which $0 < \gamma < \frac{1}{3}$. Then, it follows that the u is L^∞-bounded on $[\frac{1}{4}, 1) \times \mathbb{R}^3$ and hence the smoothness of u can be extended beyond T.

In this paper we will refine the γ in Theorem 3.3 to be 1. As indicated in the introduction, the problem we face here is that those powers of U_{k-1} such as $\frac{5-\gamma}{3p}$, $\frac{5}{3p}$ and $\frac{3}{2}$ (appearing in Proposition 3.1), are too far from 1. However, the use of Lemma 3.2 only requires that $\beta > 1$, so the extra condition $u \in L^\infty(0,1;L^{3,\infty}(\mathbb{R}^3))$, with $\alpha \in (2,3)$ satisfying $1 + 2(\frac{3}{4} + \frac{3}{2}) > 0$ can help us to bring the powers of U_{k-1} to become very close to 1, and this in turn allows us to replace the old condition $\left| u \nabla F \right| \leq A|F|$ with $\gamma \in (0, \frac{1}{3})$ by the new one $\left| u \nabla F \right| \leq A|F|$.

Technically speaking, the key idea which allows us to use the condition $u \in L^\infty(L^{\alpha,\infty})$ (with $\alpha \in (2,3)$ satisfying $1 + 2(\frac{3}{4} + \frac{3}{2}) > 0$) to lower down the powers of U_{k-1} to become close
to 1 is the following lemma. We can establish the following lemma for any truncations $w_{k-1} = (|u| - R^3(1 - \frac{1}{2^{k-1}}))^+$ (with $k \geq 2$) of a Leray-Hopf solution $u \in L^\infty(0, 1; L^2(\mathbb{R}^3)) \cap L^2(0, 1; H^1(\mathbb{R}^3))$ satisfying the condition $u \in L^\infty(0, 1; L^{\alpha, \gamma}(\mathbb{R}^3))$ for some given $\alpha \in (2, 3)$. Then, the truncation $w_{k-1} = (|u| - R^3(1 - \frac{1}{2^{k-1}}))^+$ of $|u|$ satisfies the following inequality for each $k \geq 2$ and each δ with $0 < \delta < \frac{4}{3}$.

$$
\int_{Q_{k-1}} w_{k-1}^{\frac{4}{3}} \leq C_0 \left\{ \frac{2^{\alpha-1}}{\alpha - 2} \|u\|_{L^\infty(0, 1; L^{\alpha, \gamma}(\mathbb{R}^3))} \right\}^{\frac{2}{3} - \delta} \frac{U_{k-1}^{1+\delta}}{R^3(\alpha - 2)(\frac{4}{3} - \delta)},
$$

(3.2)

in which C_0 is a universal constant essentially arising from the Sobolev embedding theorem. In the same way, the truncation $v_k = (|u| - R^3(1 - \frac{1}{2^k}))^+$ also satisfies the following inequality for each $k \geq 2$ and each δ with $0 < \delta < \frac{4}{3}$.

$$
\int_{Q_{k-1}} v_k^{\frac{4}{3}} \leq C_0 \left\{ \frac{2^{\alpha-1}}{\alpha - 2} \|u\|_{L^\infty(0, 1; L^{\alpha, \gamma}(\mathbb{R}^3))} \right\}^{\frac{2}{3} - \delta} \frac{U_{k-1}^{1+\delta}}{R^3(\alpha - 2)(\frac{4}{3} - \delta)},
$$

(3.3)

Proof. To begin, let $u \in L^\infty(0, 1; L^2(\mathbb{R}^3)) \cap L^2(0, 1; H^1(\mathbb{R}^3))$ to be a Leray-Hopf solution which satisfies the condition $u \in L^\infty(0, 1; L^{\alpha, \gamma}(\mathbb{R}^3))$ for some given α with $2 < \alpha < 3$. Recall that the truncation $w_{k-1} = (|u| - R^3(1 - \frac{1}{2^{k-1}}))^+$ satisfies the property that $|\nabla w_{k-1}| \leq D_{k-1} \leq 5^k d_{k-1}$, for $k \geq 2$ (The relation $|\nabla w_{k-1}| \leq D_{k-1}$ can be verified easily, while the relation $D_{k-1} \leq 5^k d_{k-1}$ was justified in Lemma 4.1 of [9]). So, it follows from standard interpolation inequality that

$$
\int_{Q_{k-1}} w_{k-1}^{\frac{4}{3}} \leq C_0 \|w_{k-1}\|_{L^{\infty}(Q_{k-1})}^{\frac{4}{3}} \|\nabla w_{k-1}\|_{L^2(Q_{k-1})}^{\frac{2}{3}} U_{k-1}
$$

(3.4)

But according to the assumption that $u \in L^\infty(0, 1; L^{\alpha, \gamma}(\mathbb{R}^3))$, we can control $\int_{\mathbb{R}^3} w_{k-1}^2(t, x)dx$ (for each $k \geq 2$) uniformly over $t \in [0, 1]$ as follow.

$$
\int_{\mathbb{R}^3} w_{k-1}^2(t, x)dx = 2 \int_0^\infty \int_{\mathbb{R}^3} r \{x \in \mathbb{R}^3 : w_{k-1}(t, x) > r\} |dr|
$$

$$
\leq 2 \int_0^\infty \int_{\mathbb{R}^3} r \{x \in \mathbb{R}^3 : |u(t, x)| > r + R^3(1 - \frac{1}{2^{k-1}})\} |dr|
$$

$$
\leq 2 \int_0^\infty (r + R^3)^2 \{x \in \mathbb{R}^3 : |u(t, x)| > r + \frac{R^3}{2}\} |dr|
$$

$$
= 2 \int_{\mathbb{R}^3} r \{x \in \mathbb{R}^3 : |u(t, x)| > r\} |dr|
$$

$$
\leq 2 \|u\|_{L^\infty(\mathbb{R}^3)} \int_0^\infty r^{1-\alpha} dr
$$

$$
= \frac{2^{\alpha-1}}{\alpha - 2} \|u\|_{L^\infty(\mathbb{R}^3)} \frac{R^\alpha}{R^3(\alpha - 2)}.
$$
Hence, inequality (3.2) follows from the above two inequality estimations. By the same way, we can also derive inequality (3.3) by replacing \(w_k \) by \(v_k = (|u| - R (1 - \frac{1}{2})) \) and \(R^\delta \) by \(R \).

As a corollary of Lemma 3.4, we have the following result which allows us to raise up the index for the terms \(\| \chi_{\{w_k > 0\}} \|_{L^q (Q_{k-1})} \) and \(\| \chi_{\{v_k > 0\}} \|_{L^q (Q_{k-1})} \).

Lemma 3.5. Suppose that the given suitable weak solution \(u : [0, 1] \times \mathbb{R}^3 \to \mathbb{R} \) satisfies the condition \(u \in L^\infty (0, 1; L^{\alpha, \infty} (\mathbb{R}^3)) \) for some given \(\alpha \in (2, 3) \). Then, for any \(1 < q < \infty \), and any \(1 \leq \delta < \frac{2}{3} \), we have

\[
\| \chi_{\{w_k > 0\}} \|_{L^q (Q_{k-1})} \leq C_{(\alpha, \delta, q)} \frac{2 \beta}{\alpha} \frac{\| u \|_{L^\infty (Q_{k-1})}^{\frac{1}{2} - \delta \frac{3}{\alpha}}}{R^{\frac{1}{2} + \frac{\beta (2 - \delta)}{\alpha}}},
\]

in which the constant \(C_{(\alpha, \delta, q)} \) is given by \(C_{(\alpha, \delta, q)} = C_0 \left[\frac{2^{1 - \frac{3}{\alpha} - \delta}}{(\alpha - 2)} \right]^{\frac{3}{\alpha} - \delta} \), with \(C_0 \) to be a universal constant arising from the Sobolev embedding theorem and standard interpolation.

In the same way, we have the following estimate for \(\| \chi_{\{v_k > 0\}} \|_{L^q (Q_{k-1})} \), with \(1 < q < \infty \) and \(1 \leq \delta < \frac{2}{3} \).

\[
\| \chi_{\{v_k > 0\}} \|_{L^q (Q_{k-1})} \leq C_{(\alpha, \delta, q)} \frac{2 \beta}{\alpha} \frac{\| u \|_{L^\infty (Q_{k-1})}^{\frac{1}{2} - \delta \frac{3}{\alpha}}}{R^{\frac{1}{2} + \frac{\beta (2 - \delta)}{\alpha}}},
\]

Remark Notice that the constant \(C_{(\alpha, \delta, q)} \) as appears in inequality (3.6) blows up to \(\infty \) as the choice of \(\alpha \) approaches to 2, which means that inequality (3.6) applies only in the case of \(\alpha > 2 \). We also point out that replacing the old Lemma 3.2 and Lemma 3.3 in [3] by the above lemma (i.e. Lemma 3.5) is the crucial decision leading to the final success of our new proof of Theorem 1.2 (see the next section, in which we will give all the details of the new proof of Theorem 1.2).

Proof. We recall that the sequence of truncations \(w_k \) is defined to be \(w_k = (|u| - R^3 (1 - \frac{1}{2})) \). So, it is easy to see that \(\{ w_k > 0 \} \subset \{ w_{k-1} > R^3 \} \). Hence, it follows from inequality (3.2) that

\[
\int_{Q_{k-1}} \chi_{\{w_k > 0\}} \leq \int_{Q_{k-1}} \chi_{\{w_{k-1} > R^3 \}} \\
\leq \frac{2^{1 + \delta}}{\alpha} \int_{Q_{k-1}} w_{k-1}^2 \\
\leq \frac{2^{1 + \delta}}{\alpha} \cdot C_0 \left[\frac{2^{1 - \frac{3}{\alpha} - \delta}}{(\alpha - 2)} \right]^{\frac{3}{\alpha} - \delta} \frac{\| u \|_{L^\infty (Q_{k-1})}^{\frac{1}{2} - \delta \frac{3}{\alpha}}}{R^{\frac{1}{2} + \frac{\beta (2 - \delta)}{\alpha}}},
\]

Hence, inequality (3.6) follows from taking the power \(\frac{1}{q} \) on both sides of the above inequality. The deduction of inequality (3.7) follows in the same way.

In order to adopt to the new hypothesis \(|u \cdot \nabla F| \leq A |u| \cdot |F| \) on \(\{ (t, x) \in [0, 1] \times B (r_0) : |F(t, x)| \geq L \} \) (for some given constant \(L > 0 \)), the second refinement is on the function \(\psi \) appearing in Step five of the proof in [3]. We redefine the function \(\psi : \mathbb{R} \to \mathbb{R} \) as the one which satisfies the following conditions

- \(\psi (t) = 1 \), for all \(t \geq L + 1 \).
- \(0 < \psi (t) < 1 \), for all \(t \) with \(L < t < L + 1 \).
- \(\psi (t) = 0 \), for all \(-L \leq t \leq L \).
• \(-1 < \psi(t) < 0\), for all \(t \) with \(-L - 1 < t < -L\).

• \(\psi(t) = -1\), for all \(t \leq -L - 1\).

• \(0 \leq \frac{d}{dt} \psi \leq 2\), for all \(t \in \mathbb{R}\).

We further remark that the smooth function \(\psi: \mathbb{R} \to \mathbb{R}\) characterized by the above properties must also satisfy the property that \(\frac{d}{dt} \psi(t) = 0\), on \(t \in (-\infty, -L - 1) \cup (-L, L) \cup (L + 1, \infty)\).

We remark further that the smooth function \(\psi: \mathbb{R} \to \mathbb{R}\) characterized by the above properties must also satisfy the property that \(\frac{d}{dt} \psi(t) = 0\), on \(t \in (-\infty, -L - 1) \cup (-L, L) \cup (L + 1, \infty)\).

Up to this point, we have already spelled out all the important changes that have to be made to the old argument in [3]. In the next section, we will redo the old argument in [3] by including all those important changes given here, and see the way in which the modified new argument will lead to the result of Theorem 1.2.

4 Appendix: Technical steps of the proof of Theorem 1.2.

The purpose of this section is to convince the readers of the correctness of the outline in the previous section through giving all the technical details of the proof of Theorem 1.2. Except those crucial and important changes as given in the outline of the previous section, the structure of the proof of theorem 1.2 is in many aspects the same as the one in [3]. It is also not surprising that some of the technical aspects of the proof of Theorem 1.2 as given below are directly transported (or copied) from that of the proof of Theorem 1.2 has already been given in the outline of the previous section, and we spell out all the details of the proof of Theorem 1.2 here only for the sake of completeness. Moreover, we remark that, within this section, the definitions of \(T_k, Q_k, v_k, w_k, d_k\) etc were given in the beginning of section 3. Moreover, the possible finite blow up time for the solution \(u；[0, 1) \times \mathbb{R}^3 \to \mathbb{R}^3\) under consideration is assumed to be 1.

Step one

To begin the argument, we recall that, according to Lemma 5 in [16], the truncations \(v_k = \{|u| - R(1 - \frac{1}{k})\}\) of a given suitable weak solution \(u : [0, 1] \times \mathbb{R}^3 \to \mathbb{R}^3\) satisfy the following inequality in the sense of distribution.

\[
\partial_t \left(\frac{v_k^2}{2} \right) + \triangle \left(\frac{v_k^2}{2} \right) + \text{div} \left(\frac{v_k^2}{2} \right) + \frac{v_k}{|u|} \nabla P \leq 0.
\] (4.1)

Next, let us consider the variables \(\sigma, t\) verifying \(T_{k-1} \leq \sigma \leq T_k \leq t \leq 1\). Then, we have

• \(\int R_3 \int_{\mathbb{R}^3} \frac{\partial_t v_k^2}{2} dx \, ds = \int R_3 \int_{\mathbb{R}^3} \frac{v_k^2(t,x)}{2} dx \, ds - \int R_3 \int_{\mathbb{R}^3} \frac{v_k^2(\sigma,x)}{2} dx \, ds\).

• \(\int R_3 \int_{\mathbb{R}^3} \Delta (\frac{v_k^2}{2}) dx \, ds = 0\).

• \(\int R_3 \int_{\mathbb{R}^3} \text{div} \left(\frac{v_k^2}{2} \right) u \, dx \, ds = 0\).

So, it is straightforward to see that

\[
\int R_3 \frac{v_k^2(t,x)}{2} dx + \int_{\sigma}^{t} \int R_3 d^2_k dx \, ds \leq \int R_3 \frac{v_k^2(\sigma,x)}{2} dx + \int_{\sigma}^{t} \int R_3 \frac{v_k}{|u|} \nabla P \, dx \, ds,
\]

for any \(\sigma, t\) satisfying \(T_{k-1} \leq \sigma \leq T_k \leq t \leq 1\). By taking the average over the variable \(\sigma\), we yield

\[
\int R_3 \frac{v_k^2(t,x)}{2} dx + \int_{T_{k-1}}^{T_k} \int R_3 d^2_k dx \, ds \leq \frac{1}{6} \int_{T_{k-1}}^{T_k} \int R_3 v_k^2(u,x) dx \, ds + \int_{T_{k-1}}^{t} \int R_3 \frac{v_k}{|u|} \nabla P \, dx \, ds.
\]
By taking the sup over \(t \in [T_k, 1] \), the above inequality will give the following

\[
U_k \leq \frac{4^{k+1}}{6} \int_{Q_{k-1}} v_k^2 + \int_{T_k-1} \frac{v_k}{|u|} u \nabla P dx |ds.
\]

But, by using the interpolation inequality \(\| f \|_{L^\infty(\mathbb{R}^3)} \leq \| f \|^{\frac{3}{2}}_{L^2(\mathbb{R}^3)} \| \nabla f \|^{\frac{3}{2}}_{L^2(\mathbb{Q}_k)} \) (see Lemma 3.1 of [3] or [16]) and the inequality \(\| \chi_{v_k>0} \|_{L^4(\mathbb{Q}_{k-1})} \leq (\frac{2}{\pi})^{\frac{1}{2}} C \frac{1}{R_k^2} U_k^{\frac{5}{2}} \) (see Lemma 3.2 of [3] or [16]), we can carry out the following estimate.

\[
\int_{Q_{k-1}} v_k^2 = \int_{Q_{k-1}} v_k^2 \chi_{\{v_k>0\}} \\
\leq (\int_{Q_{k-1}} v_k^{10})^{\frac{3}{5}} \| \chi_{\{v_k>0\}} \|_{L^\frac{2}{5}(Q_{k-1})} \\
\leq \| v_k \|^{2}_{L^\frac{10}{3}(Q_{k-1})} \frac{2^{\frac{10}{5}}}{R_k^2} C \frac{1}{R_k^2} U_k^{\frac{5}{2}} \\
\leq \| v_k-1 \|^{2}_{L^\frac{10}{3}(Q_{k-1})} \frac{2^{\frac{10}{5}}}{R_k^2} C \frac{1}{R_k^2} U_k^{\frac{5}{2}} \\
\leq C U_k^{\frac{5}{2}} \frac{2^{\frac{10}{5}}}{R_k^2}.
\]

As a result, we have the following conclusion

\[
U_k \leq \frac{2^{\frac{10}{5}}}{R_k^2} C U_k^{\frac{5}{2}} + \int_{T_k-1} \frac{v_k}{|u|} u \nabla P dx |ds. \tag{4.2}
\]

Step two

Now, in order to estimate the term \(\int_{T_k-1} \frac{v_k}{|u|} u \nabla P dx |ds \), we would like to carry out the following computation

\[
-\Delta P = \sum \partial_i \partial_j (u_i u_j) \\
= \sum \partial_i \partial_j \{(1 - \frac{w_k}{|u|}) u_i (1 - \frac{w_k}{|u|}) u_j \} + 2 \sum \partial_i \partial_j \{(1 - \frac{w_k}{|u|}) u_i \frac{w_k}{|u|} u_j \} + \sum \partial_i \partial_j \{ \frac{w_k}{|u|} u_i \frac{w_k}{|u|} u_j \},
\]

in which \(w_k \) is given by \(w_k = \{ |u| - R^\beta (1 - \frac{1}{x_k}) \}^+ \), and \(\beta > 1 \) is some arbitrary index which will be determined later. This motivates us to decompose \(P \) as \(P = P_{k1} + P_{k2} + P_{k3} \), in which

\[
-\Delta P_{k1} = \sum \partial_i \partial_j \{(1 - \frac{w_k}{|u|}) u_i (1 - \frac{w_k}{|u|}) u_j \}, \tag{4.3}
\]

\[
-\Delta P_{k2} = \sum \partial_i \partial_j \{2(1 - \frac{w_k}{|u|}) u_i \frac{w_k}{|u|} u_j \} \tag{4.4}
\]

\[
-\Delta P_{k3} = \sum \partial_i \partial_j \{ \frac{w_k}{|u|} u_i \frac{w_k}{|u|} u_j \}. \tag{4.5}
\]

Here, we have to remind ourself that the cutting functions which are used in the decomposition of the pressure are indeed \(w_k = \{ |u| - R^\beta (1 - \frac{1}{x_k}) \}^+ \), for all \(k \geq 0 \), in which \(\beta \) is some suitable
Hence, it follows from Hölder’s inequality that

\[D_k^2 = \frac{R^3(1 - \frac{1}{p})}{|u|} \chi_{\{|w_k| > 0\}} |\nabla u|^2 + \frac{|w_k|}{|u|} |\nabla u|^2. \]

Then, just like what happens to the cutting functions \(v_k \), we have the following assertions about the cutting functions \(w_k \), which are easily verified (see [16]).

- \(|\nabla w_k| \leq D_k \), for all \(k \geq 0 \).
- \(|\nabla (\frac{w_k}{|u|})| \leq 3D_k \), for all \(k \geq 0 \), and \(1 \leq i \leq 3 \).
- \(|\nabla (\frac{w_k}{|u|})u_i| \leq 2D_k \), for any \(k \geq 0 \), and \(1 \leq i \leq 3 \).
- \(D_k \leq 5^{\frac{2}{3}}d_k \) as long as \(R \) is larger than some fixed constant \(R_0 \) (see Lemma 4.1 of [3] for a proof of this).

Now, let us recall that we have already used the cutting functions \(w_k \) to obtain the decomposition \(P = P_{k1} + P_{k2} + P_{k3} \), in which \(P_{k1} \), \(P_{k2} \), and \(P_{k3} \) are described in equations (4.3), (4.4), and (4.5) respectively.

Due to the incompressible condition \(\text{div}(u) = 0 \), we have the following two identities

- \(\int_{\mathbb{R}^3} \frac{v_k}{|u|} u \nabla P_{k2} \, dx = \int_{\mathbb{R}^3} (\frac{v_k}{|u|} - 1) u \nabla P_{k2} \, dx. \)
- \(\int_{\mathbb{R}^3} \frac{v_k}{|u|} u \nabla P_{k3} \, dx = \int_{\mathbb{R}^3} (\frac{v_k}{|u|} - 1) u \nabla P_{k3} \, dx. \)

Hence, it follows that

\[
\int_{T_{k-1}}^{1} |\int_{\mathbb{R}^3} \frac{v_k}{|u|} u \nabla P \, dx| \, dt \leq \int_{T_{k-1}}^{1} |\int_{\mathbb{R}^3} \nabla (\frac{v_k}{|u|})uP_{k1} \, dx| \, dt + \int_{Q_{k-1}} (1 - \frac{v_k}{|u|}) |u||\nabla P_{k2}| \\
+ \int_{Q_{k-1}} (1 - \frac{v_k}{|u|}) |u||\nabla P_{k3}|. \tag{4.6}
\]

Step 3

We are now ready to deal with the term \(\int_{Q_{k-1}} (1 - \frac{v_k}{|u|}) |u||\nabla P_{k2}| \). For this purpose, let \(p \) be such that \(1 < p < \frac{3}{2} \), and let \(q = \frac{p}{2-p} \), so that \(2 < q < \infty \). We remark that the purpose of the condition \(1 < p < \frac{3}{2} \) is to ensure that the quantity \(\frac{2p}{2-p} \) will satisfy the condition \(2 < \frac{2p}{2-p} < \frac{10}{3} \), which is required in the forthcoming inequality estimation (4.9). Next, by applying Hölder’s inequality, we find that

\[
|| (1 - \frac{v_k}{|u|})u ||_{L^q(\mathbb{R}^3)} \leq || (1 - \frac{v_k}{|u|})u ||_{L^3(\mathbb{R}^3)}^{\frac{2}{3}} || (1 - \frac{v_k}{|u|})u ||_{L^\infty(\mathbb{R}^3)}^{1 - \frac{2}{3}} \\
\leq R^{1 - \frac{2}{q}} || (1 - \frac{v_k}{|u|})u ||_{L^2(\mathbb{R}^3)}^{\frac{2}{3}} \\
\leq R^{\frac{2}{3} - 1} || u ||_{L^\infty(0,1; L^2(\mathbb{R}^3))}^{2(1 - \frac{2}{3})} \\
\leq R^{\frac{2}{3} - 1} || u ||_{L^\infty(0,1; L^2(\mathbb{R}^3))}^{2(1 - \frac{2}{3})} \\
\leq R^{\frac{2}{3} - 1} || u ||_{L^\infty(0,1; L^2(\mathbb{R}^3))}^{2(1 - \frac{2}{3})} \left(\int_{\mathbb{R}^3} |\nabla P_{k2}|^p \, dx \right)^{\frac{1}{p}}.
\]

Hence, it follows from Hölder’s inequality that

\[
\int_{\mathbb{R}^3} (1 - \frac{v_k}{|u|}) |u||\nabla P_{k2}| \, dx \leq R^{\frac{2}{3} - 1} || u ||_{L^\infty(0,1; L^2(\mathbb{R}^3))}^{2(1 - \frac{2}{3})} \left(\int_{\mathbb{R}^3} |\nabla P_{k2}|^p \, dx \right)^{\frac{1}{p}}.
\]
Hence, we have
\[
\int_{Q_{k-1}} \left(1 - \frac{w_k}{|u|}\right)|u||\nabla P_{k2}| \leq R^{2\beta-1} \|u\|_{L^\infty((0,1;L^2(\mathbb{R}^3)))}^2 \|\nabla P_{k2}\|_{L^p(Q_{k-1})}.
\] (4.7)

But, we recognize that
\[
\nabla P_{k2} = \sum R_i R_j \{2(1 - \frac{w_k}{|u|})u_i \nabla \frac{w_k}{|u|} u_j + 2(1 - \frac{w_k}{|u|})u_j \frac{w_k}{|u|} \nabla u_i - 2 \nabla \frac{w_k}{|u|} u_i \frac{w_k}{|u|} u_j\}.
\]
Moreover, it is straightforward to see that for any \(1 \leq i, j \leq 3\), we have
- \(|2(1 - \frac{w_k}{|u|})u_i \nabla \frac{w_k}{|u|} u_j + 2(1 - \frac{w_k}{|u|})u_j \frac{w_k}{|u|} \nabla u_i| \leq 8R^3D_k.
- \(|2\nabla \frac{w_k}{|u|} u_i \frac{w_k}{|u|} u_j| \leq 8w_kD_k.

So, we can decompose \(\nabla P_{k2}\) as \(\nabla P_{k2} = G_{k21} + G_{k22}\), where \(G_{k21}\) and \(G_{k22}\) are given by
- \(G_{k21} = \sum R_i R_j \{2(1 - \frac{w_k}{|u|})u_i \nabla \frac{w_k}{|u|} u_j + 2(1 - \frac{w_k}{|u|})u_j \frac{w_k}{|u|} \nabla u_i\}.
- \(G_{k22} = -\sum R_i R_j \{2\nabla \frac{w_k}{|u|} u_i \frac{w_k}{|u|} u_j\}.

In order to use inequality (4.7), we need to estimate \(\|G_{k21}\|_{L^p(Q_{k-1})}\) and \(\|G_{k22}\|_{L^p(Q_{k-1})}\) respectively, for \(p\) with \(1 < p < \frac{5}{2}\). Indeed, by applying the Zygmund-Calderon Theorem, we can deduce that
- \(\|G_{k21}\|_{L^p(Q_{k-1})} \leq C_pR^3\|D_k\|_{L^p(Q_{k-1})},\]
- \(\|G_{k22}\|_{L^p(Q_{k-1})} \leq C_p\|w_kD_k\|_{L^p(Q_{k-1})},\)

where \(C_p\) is some constant depending only on \(p\). But it turns out that
\[
\|D_k\|_{L^p(Q_{k-1})}^p = \int_{Q_{k-1}} D_k^p \chi_{\{w_k > 0\}}
\leq \left\{ \int_{Q_{k-1}} D_k^2 \right\}^{\frac{p}{2}} \|\chi_{\{w_k > 0\}}\|_{L^{\frac{2p}{p-2}}(Q_{k-1})}
\leq 5^{\frac{p}{2}} \|d_k\|_{L^p(Q_{k-1})} \frac{2^{\frac{5(2-p)k}{3}}} {R^\alpha(\frac{2-p}{3})^{\alpha(\alpha-2)(\frac{2}{\alpha} - \delta)}} \cdot \|u\|_{L^\infty(\text{L}^\infty^\ast)} \ U_{k-1}^{(1+\delta)(\frac{2-p}{3})}
\leq C_{\alpha,p,\delta} \frac{2^{\frac{5(2-p)k}{3}}} {R^\alpha(\frac{2-p}{3})^{\alpha(\alpha-2)(\frac{2}{\alpha} - \delta)}} \cdot \|u\|_{L^\infty(\text{L}^\infty^\ast)} \ U_{k-1}^{(1+\delta)(\frac{2-p}{3})}.
\]

That is, we have
\[
\|D_k\|_{L^p(Q_{k-1})} \leq C_{\alpha,p,\delta} \frac{2^{\frac{5(2-p)k}{3}}} {R^\alpha(\frac{2-p}{3})^{\alpha(\alpha-2)(\frac{2}{\alpha} - \delta)}} \cdot \|u\|_{L^\infty(\text{L}^\infty^\ast)} \ U_{k-1}^{\frac{1}{2} + \delta(\frac{2-p}{3})}.
\]

Hence, it follows that
\[
\|G_{k21}\|_{L^p(Q_{k-1})} \leq C_{\alpha,p,\delta} \frac{2^{\frac{5(2-p)k}{3}}} {R^\alpha(\frac{2-p}{3})^{\alpha(\alpha-2)(\frac{2}{\alpha} - \delta)}} \cdot \|u\|_{L^\infty(\text{L}^\infty^\ast)} \ U_{k-1}^{\frac{1}{2} + \delta(\frac{2-p}{3})}.
\] (4.8)
On the other hand, we have
\[
\|w_kD_k\|_{L^p(Q_{k-1})}^p = \int_{Q_{k-1}} w_k^p D_k^p \leq \left\{ \int_{Q_{k-1}} w_k^{2p} \right\}^{\frac{2p}{p+1}} \left\{ \int_{Q_{k-1}} D_k^2 \right\}^{\frac{4}{p+1}} \leq C_p \left(\int_{Q_{k-1}} w_k^{2p} \right)^{\frac{2p}{p+1}} U_{k-1}^{\frac{4}{p+1}},
\]
Now, let us recall that \(1 < p < \frac{5}{4}\), and put \(r = \frac{2p}{2-p}\), we then recognize that \(2 < r = \frac{2p}{2-p} < \frac{10}{3}\), if \(1 < p < \frac{5}{4}\). So, we can have the following estimation
\[
\int_{Q_{k-1}} w_k^{2p} = \int_{Q_{k-1}} w_k^\alpha \chi_{\{w_k > \frac{a_0}{r}\}} \leq \frac{1}{R^{3(\frac{1}{r} - \frac{\alpha}{2})}} \int_{Q_{k-1}} w_k^\alpha \leq \frac{C_{\alpha,\delta} \|u\|_{L^\infty(L^{\alpha,\gamma})}}{R^{3(\frac{1}{r} - \frac{\alpha}{2})} ((\alpha - 2)(\frac{\alpha}{2} - \delta))} 2^\left(\frac{8(1-\alpha)}{3(2-p)}\right) U_{k-1}^{1+\frac{\delta}{2}}.
\]
Hence, it follows that
\[
\|G_{k22}\|_{L^p(Q_{k-1})} \leq C_p \|w_k D_k\|_{L^p(Q_{k-1})} \leq \frac{C_{\alpha,\delta} \|u\|_{L^\infty(L^{\alpha,\gamma})}}{R^{3(\frac{1}{r} - \frac{\alpha}{2})} ((\alpha - 2)(\frac{\alpha}{2} - \delta))} 2^\left(\frac{8(1-\alpha)}{3(2-p)}\right) U_{k-1}^{1+\frac{\delta}{2}}.
\]
By combining inequalities (4.7), (4.8), (4.10), we deduce that
\[
\int_{Q_{k-1}} (1 - \frac{v_k}{|u|}) |u| |\nabla P_{k3}| \leq \frac{2^\left(\frac{10-8p}{sp}\right)}{R^{3(\frac{1}{r} - \frac{\alpha}{2})} ((\alpha - 2)(\frac{\alpha}{2} - \delta)) - \frac{\delta}{2}} C(\alpha, p, \delta; u) U_{k-1}^{1+\frac{\delta}{2}},
\]
in which the constant \(C(\alpha, p, \delta; u)\) is in the form of
\[
C(\alpha, p, \delta; u) = C_{\alpha,\delta} \|u\|_{L^\infty(L^{\alpha,\gamma})}^{2(1-\frac{1}{\alpha})} \|u\|_{L^\infty(L^{\alpha,\gamma})}^{\frac{\delta}{2}}.
\]
As for the term \(\int_{Q_{k-1}} (1 - \frac{v_k}{|u|}) |u| |\nabla P_{k3}|\). We first notice that
\[
P_{k3} = \sum R_i R_j \left\{ \frac{w_k}{|u|} u_i u_j \right\}.
\]
So, we know that
\[
\nabla P_{k3} = \sum R_i R_j \{\nabla \left[\frac{w_k}{|u|} u_i \right] \frac{w_k}{|u|} u_j + \frac{w_k}{|u|} u_j \nabla \left[\frac{w_k}{|u|} u_i \right] \},
\]
with
\[
|\nabla \left[\frac{w_k}{|u|} u_i \right] \frac{w_k}{|u|} u_j + \frac{w_k}{|u|} u_j \nabla \left[\frac{w_k}{|u|} u_i \right] | \leq 6w_k D_k.
\]
Again, by the Riesz’s theorem, we have \(\|\nabla P_{k3}\|_{L^p(\mathbb{R}^3)} \leq C_p \|w_k D_k\|_{L^p(\mathbb{R}^3)}\), in which \(C_p\) is some constant depending only on \(p\). So, we can repeat the same type of estimation, just as what we have done to the term \(\int_{Q_{k-1}} (1 - \frac{v_k}{|u|}) |u| |\nabla P_{k2}|\), to conclude that
\[
\int_{Q_{k-1}} \left(1 - \frac{v_k}{|u|}\right) |u| \|\nabla P_{k3}\| \leq R^{\frac{2}{3}} \|u\|^{2(1 - \frac{1}{p})} L^{\infty}\left((0,1;L^2(\mathbb{R}^3))\right) \|\nabla P_{k3}\|_{L^p(Q_{k-1})}
\]
\[
\leq \frac{2}{R^{\frac{1}{3}} \|u\|^{\frac{2}{3} + \frac{2}{2p}}} C(\alpha, p, \delta; u) \left(\frac{2}{2p} \right)\left(\frac{2}{3} - \delta\right) - \frac{2}{p} = \beta(\frac{\alpha}{3}) - 1.
\]

(4.13)

in which the constant \(C(\alpha, p, \delta; u)\) is again in the form of (4.12).

We have to ensure that the quantity \(\beta[\frac{10 - 8p}{3p} + \frac{(2 - p)}{2p}](\alpha - 2)(\frac{2}{3} - \delta) - \frac{2}{p}\) is strictly greater than 0. To this end, recall that \(p > 1\) can be as close to 1 as possible, and \(\delta > 0\) can also be as close to 0 as possible. So, by passing to the limit as \(p \to 1^+\), and \(\delta \to 0^+\), we have

\[
\lim_{p \to 1^+, \delta \to 0^+} \beta[\frac{10 - 8p}{3p} + \frac{(2 - p)}{2p}](\alpha - 2)(\frac{2}{3} - \delta) - \frac{2}{p} = \beta(\frac{\alpha}{3}) - 1.
\]

(4.14)

Now, we insist that the choice of \(\beta\) has to satisfy the condition \(\beta > \frac{3}{\alpha}\), under which we must have the limiting value \(\beta(\frac{\alpha}{3}) - 1\) to be strictly positive. Hence, for such a choice of \(\beta\), it follows from (4.14) that the following relation holds for all \(p > 1\) to be sufficiently close to 1, and all \(\delta > 0\) to be sufficiently close to 0.

\[
\beta\left[\frac{10 - 8p}{3p} + \frac{(2 - p)}{2p}(\alpha - 2)(\frac{2}{3} - \delta) - \frac{2}{p}\right] > 0.
\]

(4.15)

Step four

We now have to raise up the index for the term \(\int_{T_k-1}^{1} \int_{B(r_0)} |\nabla (\frac{v_k}{|u|})| u P_{k1} dx ds\).

Recall that, in the hypothesis of Theorem 1.2, there is some constant \(M_0 > 0\) for which \(|u| \leq M_0\) is valid on the outer region \([0,1] \times \{ x \in \mathbb{R}^3 : |x| \geq r_0\}\) for some given radius \(r_0 > 0\). As a result, we will now choose \(R > 2M_0\) so that, for each \(k \geq 1\) and \(t \in [0,1)\) we have \(|u(t, \cdot)| \geq R(1 - \frac{1}{2k}) \subset B(r_0)\), which means that both \(v_k(t, \cdot)\) and \(d_k(t, \cdot)\) are compactly supported in \(B(r_0)\). Hence, for such a choice of \(R > 2M_0\), we always can express \(U_k\) as

\[
U_k = \frac{1}{2} \sup_{t \in [T_k, 1]} \int_{B(r_0)} v_k^2(t, \cdot) dx + \int_{T_k}^{1} \int_{B(r_0)} d_k^2 dx dt.
\]

Since \(\nabla (\frac{v_k}{|u|}) = -R(1 - \frac{1}{2k})F_k\chi_{v_k > 0}\), we have for any \(R > 2M_0\) that

\[
|\int_{\mathbb{R}^3} \nabla (\frac{v_k}{|u|}) u P_{k1} dx| = |\int_{B(r_0)} R(1 - \frac{1}{2k})F_k\chi_{v_k > 0} P_{k1} dx|
\]
\[
\leq R |\int_{B(r_0)} F_k\chi_{v_k > 0} | P_{k1} - (P_{k1})_{B(r_0)} dx|
\]
\[
+ R |\int_{B(r_0)} F_k\chi_{v_k > 0} | (P_{k1})_{B(r_0)} dx|,
\]

for all \(k \geq 1\), and all \(\frac{1}{2} < t < 1\) (here, the symbol \((P_{k1})_{B}\) stands for the average value of \(P_{k1}\) over the ball \(B\)). From now on, we will always assume, within this section, that our choice of \(R\) has to satisfy \(R > 2M_0\). Now, since \(P_{k1} = \sum R_i R_j \{(1 - \frac{w_{ik}}{|u|})u_i (1 - \frac{w_{jk}}{|u|})u_j\}\), it follows from the Riesz’s Theorem in the theory of singular integral that \(\|P_{k1}(t, \cdot)\|_{L^2(\mathbb{R}^3)} \leq C_2 R^3 \|u(t, \cdot)\|_{L^2(\mathbb{R}^3)}\), for all \(t \in [0,1]\), in which \(C_2\) is some constant depending only on 2. So, we can use the Holder’s
inequality to carry out the following estimation
\[
|\langle P_k \rangle_{B(r_0)}(t)| \leq \frac{1}{|B(r_0)|} \int_{B(r_0)} |P_k(t, x)| dx
\leq \frac{1}{|B(r_0)|^{\frac{1}{p}}} \|P_k(t, \cdot)\|_{L^p(B(r_0))}
\leq \frac{1}{|B(r_0)|^{\frac{1}{p}}} C_2 R^3 \|u(t, \cdot)\|_{L^2(\mathbb{R}^3)}
\leq C(r_0) R^3 \|u\|_{L^\infty(0,1; L^2(\mathbb{R}^3))},
\]
in which the constant \(C(r_0) = \frac{1}{|B(r_0)|^{\frac{1}{p}}} C_2 \) depends on \(r_0 \). As a result, it follows that
\[
\left| \int_{\mathbb{R}^3} \nabla \left(\frac{w_k}{|u|} \right) u P_k x dx \right| \leq R \int_{B(r_0)} |F| \chi_{\{v_k > 0\}} |P_k - \langle P_k \rangle_{B(r_0)}| dx
+ C(r_0) R \|u\|_{L^\infty(0,1; L^2(\mathbb{R}^3))} \int_{B(r_0)} R^3 |F| \chi_{\{v_k > 0\}}
\]
(4.16)
Indeed, the operator \(R_i R_j \) is indeed a Zygmond-Calderon operator, and so \(R_i R_j \) must be a bounded operator from \(L^\infty(\mathbb{R}^3) \) to \(BMO(\mathbb{R}^3) \). Hence we can deduce that
\[
\|P_k(t, \cdot) - \langle P_k \rangle_{B(r_0)}(t)\|_{BMO} = \|P_k(t, \cdot)\|_{BMO}
\leq C_0 \|(1 - \frac{w_k}{|u|}) u_i - (1 - \frac{w_k}{|u|}) u_j\|_{L^\infty(\mathbb{R}^3)}
\leq C_0 R^{2\beta},
\]
for all \(t \in (0, 1) \), in which \(C_0 \) is some constant depending only on \(\mathbb{R}^3 \).

Just as the proof of the main result in [3], at this stage, we need the assist of the following Lemma, which is a straightforward corollary of the famous \(BMO \) result [7] of John and Nirenberg. For a proof of this lemma, we refer to Lemma 4.3 of [3].

Lemma 4.1. (see [3]) Let \(B \) be a ball with finite radius sitting in \(\mathbb{R}^3 \). There exists some finite positive constants \(\alpha \) and \(K \), depending only on \(B \), such that for every \(\mu > 0 \), every \(f \in BMO(\mathbb{R}^3) \) with \(\int_B \mu |f| dx = 0 \), and \(p \) with \(1 < p < \infty \), we have
\[
\int_B \mu |f| \leq \frac{2p}{\alpha(p-1)} \{ 1 + K^{1-\frac{1}{p}} \} \|f\|_{BMO} \left(\int_B \mu \right)^{\frac{1}{p}} + \int_B \mu \log^+ \mu.
\]
So, we now apply Lemma 4.1 with \(\mu = |F| \chi_{\{v_k > 0\}} \), and \(f = P_k - \langle P_k \rangle_{B(r_0)} \) to deduce that
\[
\int_{B(r_0)} |F| \chi_{\{v_k > 0\}} |P_k - \langle P_k \rangle_{B(r_0)}| dx \leq \frac{2pC_0}{\alpha(p-1)} \left(1 + K^{1-\frac{1}{p}} \right) \times
\{(\int_{B(r_0)} R^{2p\beta} |F| \chi_{\{v_k > 0\}})^{\frac{1}{p}} + \int_{B(r_0)} R^{2\beta} |F|^\log^+ |F| \chi_{\{v_k > 0\}} \},
\]
in which the symbol \(\langle P_k \rangle_{B(r_0)} \) stands for the mean value of \(P_k \) over the open ball \(B(r_0) \). Since we know that \(\{v_k > 0\} \) is a subset of \(\{|u| > \frac{\beta}{2}\} \), for all \(k \geq 1 \), so it follows from the above inequality
that
\[
\int_{B(r_0)} |F| \chi_{\{v_k > 0\}} |P_k| dx \leq \frac{2C_0}{\alpha} \frac{p}{p-1} 4^{\beta} \{1 + K^{1-\frac{1}{\beta}}\} \times \\
\{(\int_{B(r_0)} |u|^{2\beta}|F| \chi_{\{v_k > 0\}})^{\frac{1}{\beta}} \times \\
+ \int_{B(r_0)} |u|^{2\beta}|F| \log^+ |F| \chi_{\{v_k > 0\}}\}.
\]

So, we can conclude from inequality (4.16), and the above inequality that
\[
\int_{T_k-1}^{1} \int_{\mathbb{R}^3} \nabla (\frac{v_k}{|u|})u P_k dx dt \leq R \frac{2C_0}{\alpha} \frac{p}{p-1} 4^{\beta}(1 + K^{1-\frac{1}{\beta}}) \times \\
\{(\int_{T_k-1}^{1} \int_{B(r_0)} |u|^{2\beta}|F| \chi_{\{v_k > 0\}})^{\frac{1}{\beta}} \\
+ \int_{T_k-1}^{1} \int_{B(r_0)} |u|^{2\beta}|F| \log(1 + |F|) \chi_{\{v_k > 0\}}\} \\
+ C(r_0) 2^{\beta} R \|u\|_{L^\infty(L^2)} \int_{T_k-1}^{1} \int_{B(r_0)} |u|^{2\beta}|F| \chi_{\{v_k > 0\}}.
\]

In order to use the given hypothesis that \(|u \cdot \nabla|F|(t,x) \leq A|u(t,x)||F(t,x)|\), for any \((t,x) \in [0,1] \times B(r_0)\) satisfying \(|F(t,x)| \geq L\) (with \(L > 0\) to be the given constant in Theorem 1.2), we carry out the following estimate.
\[
\int_{T_k-1}^{1} \int_{B(r_0)} |u|^{2\beta}|F| \log(1 + |F|) \chi_{\{v_k > 0\}} \leq \int_{T_k-1}^{1} \int_{B(r_0)} |u|^{2\beta}|F| \log(1 + |F|) \chi_{\{|F| \leq L + 1\}} \chi_{\{v_k > 0\}} \\
+ \int_{T_k-1}^{1} \int_{B(r_0)} |u|^{2\beta}|F| \log(1 + |F|) \chi_{\{|F| > L + 1\}} \chi_{\{v_k > 0\}} \\
\leq (L + 1) \log(L + 2) \int_{T_k-1}^{1} \int_{B(r_0)} |u|^{2\beta} \chi_{\{v_k > 0\}} \\
+ \int_{T_k-1}^{1} \int_{B(r_0)} |u|^{2\beta}|F| \log(1 + |F|) \chi_{\{|F| > L + 1\}} \chi_{\{v_k > 0\}}.
\]

Step five To deal with the second term in the last line of inequality (4.18), we consider the sequence \(\{\phi_k\}_{k=1}^{\infty}\) of nonnegative continuous functions on \([0, \infty)\), which are defined by

- \(\phi_k(t) = 0\), for all \(t \in [0, C_k]\).
- \(\phi_k(t) = t - C_k\), for all \(t \in (C_k, C_k + 1)\).
- \(\phi_k(t) = 1\), for all \(t \in [C_k + 1, +\infty)\).

where the symbol \(C_k\) stands for \(C_k = R(1 - \frac{1}{2^k})\), for every \(k \geq 1\). Here, we remark that, for the purpose of taking spatial derivative, the composite function \(\phi_k(|u|)\) is a good substitute for \(\chi_{\{v_k > 0\}} = \chi_{\{|u| > R(1 - \frac{1}{2^k})\}}\), since \(\phi_k\) is Lipschitz. Moreover, we also need a smooth function \(\psi: \mathbb{R} \rightarrow \mathbb{R}\) satisfying the following conditions that:

- \(\psi(t) = 1\), for all \(t \geq L + 1\).
• $0 < \psi(t) < 1$, for all t with $L < t < L + 1$.
• $\psi(t) = 0$, for all $-L \leq t \leq L$.
• $-1 < \psi(t) < 0$, for all t with $-L - 1 < t < -L$.
• $\psi(t) = -1$, for all $t \leq -L - 1$.
• $0 \leq \frac{d}{dt} \psi \leq 2$, for all $t \in \mathbb{R}$.

We further remark that the smooth function $\psi : \mathbb{R} \rightarrow \mathbb{R}$ characterized by the above properties must also satisfy the property that $\psi'(t) = \frac{d}{dt} \psi(t) = 0$, on $t \in (-\infty, -L - 1) \cup (-L, L) \cup (L + 1, \infty)$, which will be employed in forthcoming inequality estimations 4.20 and 4.23 without explicit mention. With the above preparation, let β be such that $\frac{1}{2} < \beta < \frac{10}{3\alpha}$, with α to be the given index as specified in Theorem 1.2.

We now consider the function $F = \text{div}(\frac{u}{|u|})$, and recall that our solution u satisfies $|u \cdot \nabla F| \leq A|F| \cdot |u|$ on $(t, x) \in [0, 1) \times B(r_0) : |F(t, x)| \geq L$. for some given constant $L > 0$.

It follows that

- $|u \cdot \nabla F|(t, x) \leq L + 1|u(t, x)|$ if $(t, x) \in [0, 1) \times B(r_0)$ satisfies $L \leq |F(t, x)| \leq L + 1$.
- $|u \cdot \nabla F| \leq |u|$, is valid on $[0, 1) \times B(r_0) \cap \{|F(s)| \geq L\}$.

Then, we carry out the following calculation on $[0, 1) \times B(r_0)$, for each $k \geq 1$.

$$
\text{div}\{|u|^{2\beta - 1}u\psi(F)\log(1 + |F|)\phi_k(|u|)\} = -(2\beta - 1)|u|^{2\beta}F\psi(F)\log(1 + |F|)\phi_k(|u|) \\
- |u|^{2\beta + 1}F\psi(F)\log(1 + |F|)\chi_{\{|u| < C_k\}} \\
+ |u|^{2\beta - 1}\frac{d\psi}{dt}(u \cdot \nabla F)\log(1 + |F|)\phi_k(|u|) \\
+ |u|^{2\beta - 1}\psi(F)\frac{u \cdot \nabla F}{1 + |F|}\phi_k(|u|).
$$

(4.19)

Since $R > 2M_b$ ensures that, for each $t \in [0, 1)$, $\phi_k(|u|)(t, \cdot)$ is compactly supported in $B(r_0)$, we have the following equality for each $t \in [0, 1)$.

$$
\int_{B(r_0)} \text{div}\{|u|^{2\beta - 1}u\psi(F)\log(1 + |F|)\phi_k(|u|)\} = 0.
$$

So, it follows from inequality (4.19) that

$$
A_1 + A_2 \leq \int_{T_{k-1}} \int_{B(r_0)} |u|^{2\beta - 1}\frac{d\psi}{dt}(F) \cdot |u \cdot \nabla F|\log(1 + |F|)\phi_k(|u|) \\
+ \int_{T_{k-1}} \int_{B(r_0)} |u|^{2\beta - 1}|\psi(F)| \cdot |u \cdot \nabla F| \cdot (1 + |F|)\phi_k(|u|) \\
\leq \int_{T_{k-1}} \int_{B(r_0)} |u|^{2\beta - 1}(2)(A(L + 1)|u|)\log(L + 2)\phi_k(|u|) \\
+ \int_{T_{k-1}} \int_{B(r_0)} |u|^{2\beta - 1} \cdot A \cdot |u|\phi_k(|u|) \cdot \chi_{\{|F| \geq L\}} \tag{4.20}
$$

\[\leq A[2(L + 1)\log(L + 2) + 1] \int_{T_{k-1}} \int_{B(r_0)} |u|^{2\beta}\phi_k(|u|) \]

\[\leq A[2(L + 1)\log(L + 2) + 1] \int_{T_{k-1}} \int_{B(r_0)} |u|^{2\beta} \chi_{\{u_k > 0\}}. \]
in which the terms \(\Lambda_1 \), and \(\Lambda_2 \) are given by

- \(\Lambda_1 = (2\beta - 1) \int_{t \in R} |u|^{2\beta} F \psi(F) \cdot \log(1 + |F|) \phi_k(|u|) \).
- \(\Lambda_2 = \int_{t \in R} |u|^{2\beta+1} (F \psi(F)) \cdot \log(1 + |F|) \chi_{\{|u| < C_k+1\}} \).

We then notice that

- Since \(\beta > \frac{3}{\alpha} > 1 \), we have \(\Lambda_1 \geq \int_{t \in R} |u|^{2\beta} (F \psi(F)) \log(1 + |F|) \chi_{\{|u| \geq C_k+1\}} \).
- \(\Lambda_2 \geq \frac{R}{2} \int_{t \in R} |u|^{2\beta} F \psi(F) \log(1 + |F|) \chi_{\{|u| < C_k+1\}}, \) for every \(k \geq 1 \). Notice that this is true because \(C_k = R(1 - \frac{1}{k}) \), and that \((1 - \frac{1}{k^2}) \geq \frac{1}{2} \), for every \(k \geq 1 \).

Since \(|F| \chi_{\{|F| > L+1\}} \leq |F| \psi(F) = F \psi(F) \), it follows from inequality (4.20) that

\[
\int_{t \in R} |u|^{2\beta} F \psi(F) \log(1 + |F|) \chi_{\{|F| > L+1\}} \chi_{\{|v_k > 0\}} \\
\leq \int_{t \in R} |u|^{2\beta} F \psi(F) \log(1 + |F|) \chi_{\{|v_k > 0\}} \\
\leq \int_{t \in R} |u|^{2\beta} F \psi(F) \log(1 + |F|) \chi_{\{|u| < C_k+1\}} \\
+ \int_{t \in R} |u|^{2\beta} F \psi(F) \log(1 + |F|) \chi_{\{|u| \geq C_k+1\}} \\
\leq \frac{2}{\alpha} \Lambda_2 + \Lambda_1 \\
\leq 2A[2(L + 1) \log(L + 2) + 1] \int_{Q_k \in R} |u|^{2\beta} \chi_{\{|v_k > 0\}}.
\]

By using inequality (3.3) in Lemma 3.4, we raise up the index for the term \(\int_{Q_k \in R} |u|^\theta \chi_{\{|v_k > 0\}} \), for any \(\theta \) with \(0 < \theta < \frac{10}{\alpha} \), in the following way

\[
\int_{Q_k \in R} |u|^\theta \chi_{\{|v_k > 0\}} = \int_{Q_k \in R} \{R(1 - \frac{1}{2^k}) + v_k\}^\theta \chi_{\{|v_k > 0\}} \\
\leq C_\theta \{R^\theta \int_{Q_k \in R} \chi_{\{|v_k > 0\}} + \int_{Q_k \in R} v_k^\theta \chi_{\{|v_k > 0\}} \} \\
\leq \frac{C_\theta}{R^{\frac{\alpha}{\theta} - \theta + (\alpha - 2)\frac{\alpha}{\theta} - 1}} \int_{Q_k \in R} v_k^{\frac{\alpha}{\theta} - 1} \\
\leq \frac{C_\theta}{R^{\frac{\alpha}{\theta} - \theta + (\alpha - 2)\frac{\alpha}{\theta} - 1}} \int_{Q_k \in R} |u| \leq \{\frac{2^{\alpha - 1}}{\theta - 2} U_k^{1 + \delta}
\]

for every \(\theta \) with \(0 < \theta < \frac{10}{\alpha} \), where \(C_\theta \) is some positive constant depending only on \(\theta \). Hence it
Since \(R > |H| \), hence it follows from inequalities (4.21) and our last inequality that
\[
\begin{align*}
\int_{T_{k-1}}^{1} \int_{B(r_0)} |u|^{2\beta} |F| \cdot \log(1 + |F|) \chi_{\{v_k > 0\}} & \leq (L + 1) \log(L + 2) \int_{T_{k-1}}^{1} \int_{B(r_0)} |u|^{2\beta} \chi_{\{v_k > 0\}} \\
& + \int_{T_{k-1}}^{1} \int_{B(r_0)} |u|^{2\beta} |F| \cdot \log(1 + |F|) \chi_{\{|F| > L + 1\}} \chi_{\{v_k > 0\}} \\
& \leq (L + 1) \log(L + 2) C_{22} 2^{\frac{1+\delta}{2}} \left\{ \frac{2^\alpha - 1}{\alpha - 2} \|u\|_{L^\infty(L^{\alpha, \cdot})} \right\}^{\frac{3-\delta}{2}} U_k^{1+\delta} \\
& + C_{(\beta, A, L)} \int_{Q_{k-1}} |u|^{2\beta} \chi_{\{v_k > 0\}} \\
& \leq C_{(\beta, A, L)} \cdot 2^{\frac{1+\delta}{2}} \left\{ \frac{2^\alpha - 1}{\alpha - 2} \|u\|_{L^\infty(L^{\alpha, \cdot})} \right\}^{\frac{3-\delta}{2}} U_k^{1+\delta} \\
& \times \left(\frac{1}{R^{\frac{\alpha - 2\beta + (\alpha - 2)(\frac{3-\delta}{2})}} \right),
\end{align*}
\]
(4.22)
in which \(\beta > \frac{2}{3} \), and that \(\beta \) is sufficiently close to \(\frac{2}{3} \), and \(C_{(\beta, A, L)} \) is some constant depending only on \(\beta \), \(A \), and \(L \). Next, we also need to deal with \((\int_{T_{k-1}}^{1} \int_{B(r_0)} |u|^{2p\beta} |F| \chi_{\{v_k > 0\}})^{\frac{1}{2\beta}} \), and \(\int_{T_{k-1}}^{1} \int_{B(r_0)} |u|^{2\beta} |F| \chi_{\{v_k > 0\}} \), which appear in inequality (4.17). For this purpose, we will consider \(\lambda \) which satisfies \(\frac{2}{3} < \lambda < \frac{10}{9} \) (we will take \(\lambda \) to be \(2p\beta \) and \(\beta \) respectively in forthcoming inequality estimates 4.24 and 4.25), and let us carry out the following computation, in which \(\psi \) and \(\phi_k \) etc. are just the same as before.
\[
\begin{align*}
div \{ |u|^{\lambda - 1} u^2 \psi(F) \phi_k(|u|) \} &= -(\lambda - 1) |u|^\lambda F \psi(F) \phi_k(|u|) \\
& + |u|^{\lambda - 1} \frac{d}{dt} \left(F(u \cdot \nabla F) \phi_k(|u|) \right) \\
& - |u|^{\lambda + 1} F \psi(F) \chi_{\{C_k < |u| < C_k + 1\}}.
\end{align*}
\]
Since \(R > 2M_0 \) ensures that \(\phi_k(|u|) \) is compactly supported in \(B(r_0) \), we have, for each \(t \in [0, 1] \), that
\[
\int_{B(r_0)} \text{div} \{ |u|^{\lambda - 1} u^2 \psi(F) \phi_k(|u|) \} = 0.
\]
Hence, it follows from \(|\frac{d}{dt} (F)| \leq 2 \chi_{\{|L < |F| < L + 1\}} \) and the above equality that
\[
(\lambda - 1) \int_{T_{k-1}}^{1} \int_{B(r_0)} |u|^\lambda F \psi(F) \phi_k(|u|) + \int_{T_{k-1}}^{1} \int_{B(r_0)} |u|^{\lambda + 1} F \psi(F) \chi_{\{C_k < |u| < C_k + 1\}}
\]
\[
\leq \int_{T_{k-1}}^{1} \int_{B(r_0)} |u|^{\lambda - 1} \frac{d}{dt} (F) \cdot |u \cdot \nabla F| \phi_k(|u|)
\]
\[
\leq \int_{Q_{k-1}} |u|^{\lambda - 1} (2)(A(L + 1)|u|) \chi_{\{v_k > 0\}}
\]
\[
\leq 2A(L + 1) \int_{Q_{k-1}} |u|^{\lambda} \chi_{\{v_k > 0\}}.
\]

23
By the same calculation as in inequality (4.20), we can see that

\[
\int_{T_{k-1}}^{1} \int_{B(r_0)} |u|^2 \lambda |F\psi(F)\chi\{v_k>0\} \leq \int_{T_{k-1}}^{1} \int_{B(r_0)} |u|^2 \lambda |F\psi(F)\chi\{|u|<c_k+1\} \\
+ \int_{T_{k-1}}^{1} \int_{B(r_0)} |u|^2 \lambda |F\psi(F)\chi\{|u|\geq c_k+1\} \\
\leq \frac{2}{\lambda} \int_{T_{k-1}}^{1} \int_{B(r_0)} |u|^2 \lambda |F\psi(F)\chi\{|u|<c_k+1\} \\
+ \int_{T_{k-1}}^{1} \int_{B(r_0)} |u|^2 \lambda |F\psi(F)\phi_k(|u|) \\
\leq (2 + \frac{1}{\lambda - 1}) \left\{ \int_{T_{k-1}}^{1} \int_{B(r_0)} |u|^2 \lambda |F\psi(F)\chi\{|u|<c_k+1\} \right\} \\
+ (\lambda - 1) \int_{T_{k-1}}^{1} \int_{B(r_0)} |u|^2 \lambda |F\psi(F)\phi_k(|u|) \\
\leq 2A(L + 1) \left(2 + \frac{1}{\lambda - 1} \right) \int_{Q_{k-1}} |u|^\lambda \chi\{v_k>0\},
\]

in which \(\lambda \) satisfies \(\frac{2}{3} < \lambda < \frac{10}{3} \). Now, put \(\lambda = 2p\beta \), with \(\beta > \frac{3}{2} \) to be sufficiently close to \(\frac{3}{2} \), and \(p > 1 \) to be sufficiently close to 1. Since \(|F|\chi\{|F|\geq L + 1\} \leq |F|\psi(F) = F\psi(F) \), it follows from our last inequality that

\[
\int_{T_{k-1}}^{1} \int_{B(r_0)} |u|^{2p\beta} |F\chi\{v_k>0\} = \int_{T_{k-1}}^{1} \int_{B(r_0)} |u|^{2p\beta} |F\chi\{|F|\leq L + 1\} \chi\{v_k>0\} \\
+ \int_{T_{k-1}}^{1} \int_{B(r_0)} |u|^{2p\beta} \chi\{|F|>L + 1\} \chi\{v_k>0\} |F| \\
\leq (L + 1) \int_{Q_{k-1}} |u|^{2p\beta} \chi\{v_k>0\} \\
+ 2A(L + 1) \left(2 + \frac{1}{2p\beta - 1} \right) \int_{Q_{k-1}} |u|^{2p\beta} \chi\{v_k>0\} \\
\leq \frac{C_{(\beta,A,L,p)}}{R^{\|v\|^{2p\beta+(\alpha-2)(\frac{3}{2} - 3)}}} 2^{2\alpha - 2} \left\{ \frac{2^{\alpha - 1}}{\alpha - 2} |u| L^{\|v\|^{2p\beta+(\alpha-2)(\frac{3}{2} - 3)}} - 2^{\delta} U_{k-1}^{1+\delta} \right\}.
\]

In exactly the same way, by setting \(\lambda \) to be \(\beta \), with \(\beta > \frac{2}{a} \) to be sufficiently close to \(\frac{2}{a} \), it also follows that

\[
\int_{T_{k-1}}^{1} \int_{B(r_0)} |F\chi\{v_k>0\} = \int_{T_{k-1}}^{1} \int_{B(r_0)} |u|^\beta |F\chi\{|F|\leq L + 1\} \chi\{v_k>0\} \\
+ \int_{T_{k-1}}^{1} \int_{B(r_0)} |u|^\beta |F\chi\{|F|>L + 1\} \chi\{v_k>0\} \\
\leq (L + 1) \int_{Q_{k-1}} |u|^\beta \chi\{v_k>0\} + 2A(L + 1) \left(2 + \frac{1}{\beta - 1} \right) \int_{Q_{k-1}} |u|^\beta \chi\{v_k>0\} \\
\leq \frac{C_{(\beta,A,L)}}{R^{\|v\|^\beta+(\alpha-2)(\frac{3}{2} - 3)}} 2^{2\alpha - 2} \left\{ \frac{2^{\alpha - 1}}{\alpha - 2} |u| L^{\|v\|^\beta+(\alpha-2)(\frac{3}{2} - 3)}} - 2^{\delta} U_{k-1}^{1+\delta} \right\}.
\]

(4.25)
By combining inequalities (4.17), (4.22), and (4.24), and (4.25) we now conclude that
\[
\left\{ \frac{2\alpha - 1}{\alpha - 2} ||u||_{L^\infty} ||u||_{L^\infty} \right\}^{\varphi - \delta} + \left\{ \frac{2\alpha - 1}{\alpha - 2} ||u||_{L^\infty} \right\}^{(\varphi - \delta) \frac{1}{\varphi}} \\
\left\{ \frac{1}{R^{\frac{\alpha}{\alpha - 2\beta + (\alpha - 2)(\frac{4}{\alpha} - \delta) - p}} \right\}^{\frac{1}{\varphi}} + \left\{ \frac{1}{R^{\frac{\alpha}{\alpha - 2\beta + (\alpha - 2)(\frac{4}{\alpha} - \delta) - 1}} \right\}^{\frac{1}{\varphi}} 2^{\frac{10}{\varphi}} U_{k-1}^{1+\delta} \right\}
\]
\[(4.26)\]

Before we proceed to the last step and complete the proof of Theorem 1.2, let us briefly explain why the condition 1 + 2(\frac{3}{\alpha} - \frac{1}{\alpha}) > 0 imposed on 2 < \alpha < 3 is necessary. Notice that if \(p \to 1^+ \), and \(\beta \to \frac{3}{\alpha} \), and \(\delta \to 0^+ \), we have \((\frac{16}{9} - 2p\beta + (\alpha - 2)(\frac{4}{\alpha} - \delta) - p) \to 1 + 2(\frac{3}{\alpha} - \frac{2}{\alpha})\), and that \((\frac{16}{9} - 2\beta + (\alpha - 2)(\frac{4}{\alpha} - \delta) - 1) \to 1 + 2(\frac{3}{\alpha} - \frac{1}{\alpha})\). This explains that the condition 1 + 2(\frac{3}{\alpha} - \frac{2}{\alpha}) > 0 on \(\alpha \in (2, 3) \) is necessary if we insist that both \((\frac{16}{9} - 2p\beta + (\alpha - 2)(\frac{4}{\alpha} - \delta) - p)\) and \((\frac{16}{9} - 2\beta + (\alpha - 2)(\frac{4}{\alpha} - \delta) - 1)\) have to be positive.

Step Six: Final step of the proof

By combining inequalities (4.2), (4.6), (4.11), (4.13), and (4.26), we conclude that the following estimate is valid.
\[
U_k \leq \frac{2^{10\varphi}}{R^2} C_0 U_{k-1}^{\frac{\varphi}{2}} + C(\beta, A, L, p, \delta, ||u||_{L^\infty}, ||u||_{L^\infty}) \left\{ \frac{U_{k-1}^1}{R^{\frac{\alpha}{\alpha - 2\beta + (\alpha - 2)(\frac{4}{\alpha} - \delta) - p}}} + \frac{U_{k-1}^1}{R^{\frac{\alpha}{\alpha - 2\beta + (\alpha - 2)(\frac{4}{\alpha} - \delta) - 1}}} \right\}
\]
\[(4.27)\]

Here, in order to derive the conclusion \(||u|| \leq ||u||_{L^\infty} \times \mathbb{R}^3 \) by using inequality (4.27), we have to be very careful in the selection of the constants \(\beta, p, \delta \) etc. This is due to the following fact. On the one hand, we require all the powers of \(U_{k-1} \) such as \(\frac{1}{p} + \delta (\frac{16}{9} - 2p\beta + (\alpha - 2)(\frac{4}{\alpha} - \delta)), \frac{1}{p}(1 + \delta), \) and \(1 + \delta \) to be strictly positive, so that \(p \) has to be sufficiently close to 1 and that \(\delta \), however small, has to stay positive. On the other hand, the constant \(C(\beta, A, L, p, \delta, ||u||_{L^\infty}, ||u||_{L^\infty}) \) will blow up to \(\infty \) if \(p \to 1^+ \). So, to clarify the situation, we have to fix the choice of \(\beta \) first by using the condition \(1 + 2(\frac{3}{\alpha} - \frac{2}{\alpha}) > 0 \) on \(\alpha \in (2, 3) \). Once the choice of \(\beta \) is fixed, we will fix the parameters \(p > 1 \) and \(\delta > 0 \).

Observe that the condition \(1 + 2(\frac{3}{\alpha} - \frac{2}{\alpha}) > 0 \) on \(\alpha \in (2, 3) \) is equivalent to \(\frac{1}{p} + \delta (\frac{16}{9} - 2p\beta + (\alpha - 2)(\frac{4}{\alpha} - \delta)) \leq \frac{1}{p} \), and this allows us to select some \(\beta \) to be in the interval \((\frac{3}{\alpha}, \frac{1}{p} + \delta)\). Now, let \(\beta \) be a fixed choice of positive number which satisfies \(\frac{3}{\alpha} < \beta < \frac{1}{p} + \delta \). Next, recall that we have the following limiting relations.

- \(\lim_{\beta \to 1^+, \delta \to 0^+, \alpha \to \alpha} \beta (\frac{10}{\alpha} + \frac{2p\beta}{\alpha} + (\alpha - 2)(\frac{4}{\alpha} - \delta)) - (\frac{2p\beta}{\alpha}) = \beta (\frac{3}{\alpha}) - 1. \)
- \(\lim_{\beta \to 1^+, \delta \to 0^+, \alpha \to \alpha} \left\{ \frac{10}{\alpha} - 2p\beta + (\alpha - 2)(\frac{4}{\alpha} - \delta) - p \right\} = 2\left\{ \frac{1}{p} + \frac{3}{\alpha} - \beta \right\}. \)
- \(\lim_{\beta \to 0^+, \delta \to 0^+, \alpha \to \alpha} \left\{ \frac{10}{\alpha} - 2\beta + (\alpha - 2)(\frac{4}{\alpha} - \delta) - 1 \right\} = 2\left\{ \frac{1}{p} + \frac{3}{\alpha} - \beta \right\}. \)

Notice that the fixed choice of \(\beta \) with \(\frac{3}{\alpha} < \beta < \frac{1}{p} + \delta \) ensures that the limiting constants \(\beta (\frac{3}{\alpha}) - 1 \) and \(2\left\{ \frac{1}{p} + \frac{3}{\alpha} - \beta \right\} \) are both positive simultaneously. As a result, the above three limiting
relations imply that for some fixed choice of $p > 1$ sufficiently close to 1, and some fixed choice of $\delta > 0$ sufficiently close to 0 (both depending on the choice of β), it follows that the following three constants are positive.

- $\beta^{10 - \frac{8p}{3p} + \frac{2 - p}{2p} (\alpha - 2)(\frac{3}{4} - \delta)} - (\frac{2 - p}{p}) > 0$.
- $\{10 \frac{\alpha}{3} - 2p\beta + (\alpha - 2)(\frac{3}{4} - \delta) - p\} > 0$.
- $10 \frac{\alpha}{3} - 2\beta + (\alpha - 2)(\frac{3}{4} - \delta) - 1 > 0$.

This observation allows us to use nonlinear recurrence relation (4.27) to deduce that as long as $R > M_0 + 1$ is chosen to be sufficiently large, U_1 will become smaller than the universal constant C_0^* as required by Lemma 3.2. According to Lemma 3.2, this smallness of U_1 will lead to the decay of U_k to 0 as $k \to \infty$, and this in turn will lead to the conclusion that $|u| \leq R$ is valid over $[\frac{1}{4}, 1) \times \mathbb{R}^3$, for some sufficiently large constant R. Hence, it follows that the smoothness of u can be extended beyond the possible blow up time 1.

Acknowledgments: Both authors are grateful to Professor Vladimir Šverák for his encouragement and guidance. This paper was developed during a stay of the second author at the Institute for Mathematics and Its Applications, University of Minnesota.

References

[3] Chi Hin Chan. Smoothness criteria for Navier-Stokes equations in terms of regularity along the steam lines. *Accepted for publication in Methods and Applications of Analysis*, November 2007.

