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Total lightcone curvatures of spacelike
submanifolds in Lorentz-Minkowski space

Shyuichi IZUMIYA ∗

March 3, 2012

Abstract

We introduce the totally absolute lightcone curvature for a spacelike submanifold with
general codimension and investigate global properties of this curvature. One of the con-
sequences is that the Chern-Lashof type inequality holds. Then the notion of lightlike
tightness is naturally induced. Moreover, the lightcone Willmore conjecture is proposed.

1 Introduction

In this paper we consider global properties of spacelike submanifolds in Lorentz-Minkowski
space. The study of the extrinsic differential geometry of submanifolds in Lorentz-Minkowski
space is of interest in the special relativity theory. Moreover, it is a natural generalization of the
extrinsic geometry of submanifolds in Euclidean space. In [11], it was considered the case for
codimension two spacelike submanifolds. The normalized lightcone Gauss map was introduced
which plays the similar role to the Gauss map of a hypersurface in the Euclidean space. For ex-
ample, the Gauss-Bonnet type theorem holds for the corresponding Gauss-Kronecker curvature
(cf., [11, Theorem 6.5]). Moreover, we recently discovered a new geometry on the hyperbolic
space which is different from the Gauss-Bolyai-Lobachevskii geometry (i.e., the hyperbolic ge-
ometry) [1, 2, 6, 9]. We call this new geometry the horospherical geometry. The horospherical
Gauss map (or, the hyperbolic Gauss map) is one of the key notions in the horospherical
geometry. We also showed that the Gauss-Bonnet type theorem holds for the horospherical
Gauss-Kronecker curvature[9]. The notion of the normalized lightcone Gauss map unifies the
both of the notion of Gauss maps in the Euclidean space and the notion of horospherical Gauss
maps in the hyperbolic space.

In this paper we generalize the normalized lightcone Gauss map and the corresponding
curvatures for general spacelike submanifolds in Lorentz-Minkowski space. If we try to develop
this theory as a direct analogy to the Euclidean case, there exist several problems. The main
problem is that the fiber of the unit normal bundle of a spacelike submanifold is a union of the

∗Work partially supported by
2010 Mathematics Subject classification:53C40, 53C42, 53C80
Key Words and Phrases: lightcone Gauss map, lightcone Killing-Lipschitz curvature, Chern-Lashof type

Theorem, lightlike tight spacelike immersion

1



pseudo-spheres which is not only non-compact but also non-connected. So, we can not integrate
the curvatures along the fiber at each point. Therefore, we cannot define the Lipschitz-Killing
curvature analogous to the Euclidean case directly [5]. In order to avoid this problem, we
arbitrary choose a future directed unit normal vector field along the submanifold and consider
the pseudo-orthonormal space of this timelike vector on each fiber of the normal bundle. Then
we obtain a spacelike codimension two unit normal sphere bundle in the normal bundle over
the submanifold whose fiber is the Euclidean sphere. As a consequence, we define the lightcone
Lipschitz-Killing curvature and the total absolute lightcone curvature at each point. We can
show that the total absolute lightcone curvature is independent of the choice of the unit future
directed timelike normal vector field (cf., Lemma 6.2). Then we show that the Chern-Lashof
type inequality holds for this curvature (cf, §7). In §8 we consider codimension two spacelike
submanifolds. In this case the situation is different from the higher codimensional case. We
have two different lightcone Gauss-Kronecker curvatures at each point. The corresponding total
absolute lightcone Gauss-Kronecker curvatures are also different (cf., the remark after Theorem
8.3). However, we also have the Chern-Lashof type inequality for each total absolute Gauss-
Kronecker curvature. Moreover, we consider the Willmore type integral (cf., [15, Theorem
7.2.2]) of the lightcone mean curvature for spacelike surface in Lorentz-Minkowski 4-space.
Then we propose the lightcone Willmore conjecture for spacelike embedded torus which is a
generalized version of the original Willmore conjecture (cf., Remark 8.7). Finally, we introduce
the notion of the lightlike tightness which characterize the minimal value of the total absolute
lightcone curvature. As a special case, we have the horo-spherical Chern-Lashof type inequality
and horo-tight immersions in the hyperbolic space [1, 2, 14]. Motivated by those arguments,
we can introduce the notion of several kinds of tightness and tautness depending on the causal
characters which will be one of the subjects of a future program of the research.

2 Basic concepts in Lorentz-Minkowski space

We introduce in this section some basic notions on Lorentz-Minkowski n + 1-space. For basic
concepts and properties, see [13].

Let Rn+1 = {(x0, x1, . . . , xn) | xi ∈ R (i = 0, 1, . . . , n) } be an n + 1-dimensional cartesian
space. For any x = (x0, x1, . . . , xn), y = (y0, y1, . . . , yn) ∈ Rn+1, the pseudo scalar product of
x and y is defined by

〈x, y〉 = −x0y0 +
n∑

i=1

xiyi.

We call (Rn+1, 〈, 〉) Lorentz-Minkowski n+1-space (or, simply Minkowski n+1-space. We write
Rn+1

1 instead of (Rn+1, 〈, 〉). We say that a non-zero vector x ∈ Rn+1
1 is spacelike, lightlike or

timelike if 〈x, x〉 > 0, 〈x, x〉 = 0 or 〈x, x〉 < 0 respectively. The norm of the vector x ∈ Rn+1
1

is defined to be ‖x‖ =
√
|〈x, x〉|. We have the canonical projection π : Rn+1

1 −→ Rn defined
by π(x0, x1, . . . , xn) = (x1, . . . , xn). Here we identify {0} × Rn with Rn and it is considered as
Euclidean n-space whose scalar product is induced from the pseudo scalar product 〈, 〉. For a
vector v ∈ Rn+1

1 and a real number c, we define a hyperplane with pseudo normal v by

HP (v, c) = {x ∈ Rn+1
1 | 〈x, v〉 = c }.

We call HP (v, c) a spacelike hyperplane, a timelike hyperplane or a lightlike hyperplane if v is
timelike, spacelike or lightlike respectively.
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We now define Hyperbolic n-space by

Hn(−1) = {x ∈ Rn+1
1 |〈x, x〉 = −1}

and de Sitter n-space by
Sn

1 = {x ∈ Rn+1
1 |〈x, x〉 = 1 }.

We define
LC∗ = {x = (x0, x1, . . . , xn) ∈ Rn+1

1 |x0 6= 0, 〈x, x〉 = 0}
and we call it the (open) lightcone at the origin.

If x = (x0, x1, . . . , x2) is a non-zero lightlike vector, then x0 6= 0. Therefore we have

x̃ =

(
1,

x1

x0

, . . . ,
xn

x0

)
∈ Sn−1

+ = {x = (x0, x1, . . . , xn) | 〈x, x〉 = 0, x0 = 1}.

We call Sn−1
+ the lightcone unit n− 1-sphere.

For any x1, x2, . . . , xn ∈ Rn+1
1 , we define a vector x1 ∧ x2 ∧ · · · ∧ xn by

x1 ∧ x2 ∧ · · · ∧ xn =

∣∣∣∣∣∣∣∣∣∣∣

−e0 e1 · · · en

x1
0 x1

1 · · · x1
n

x2
0 x2

1 · · · x2
n

...
... · · · ...

xn
0 xn

1 · · · xn
n

∣∣∣∣∣∣∣∣∣∣∣

,

where e0, e1, . . . , en is the canonical basis of Rn+1
1 and xi = (xi

0, x
i
1, . . . , x

i
n). We can easily check

that
〈x, x1 ∧ x2 ∧ · · · ∧ xn〉 = det(x, x1, . . . , xn),

so that x1 ∧ x2 ∧ · · · ∧ xn is pseudo orthogonal to any xi (i = 1, . . . , n).

3 Differential geometry on spacelike submanifolds

In this section we introduce the basic geometrical framework for the study of spacelike sub-
manifolds in Minkowski n+1-space analogous to the case of codimension two in [11]. Let Rn+1

1

be an oriented and time-oriented space. We choose e0 = (1, 0, . . . , 0) as the future timelike
vector field. Let X : U −→ Rn+1

1 be a spacelike embedding of codimension k, where U ⊂ Rs

(s+k = n+1) is an open subset. We also write M = X(U) and identify M and U through the
embedding X. We say that X is spacelike if the tangent space TpM of M at p is a spacelike sub-
space (i.e., consists of spacelike vectors) for any point p ∈ M . For any p = X(u) ∈ M ⊂ Rn+1

1 ,
we have

TpM = 〈Xu1(u), . . . , Xus(u)〉R.
Let Np(M) be the pseudo-normal space of M at p in Rn+1

1 . Since TpM is a spacelike subspace
of TpRn+1

1 , Np(M) is a k-dimensional Lorentzian subspace of TpRn+1
1 (cf.,[13]). On the pseudo-

normal space Np(M), we have two kinds of pseudo spheres:

Np(M ;−1) = {v ∈ Np(M) | 〈v, v〉 = −1 }
Np(M ; 1) = {v ∈ Np(M) | 〈v, v〉 = 1 },
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so that we have two unit spherical normal bundles over M :

N(M ;−1) =
⋃

p∈M

Np(M ;−1) and N(M ; 1) =
⋃

p∈M

Np(M ; 1).

Then we have the Whitney sum decomposition

TRn+1
1 |M = TM ⊕N(M).

Since M = X(U) is spacelike, e0 is a transversal future directed timelike vector field along
M . For any v ∈ TpRn+1

1 |M, we have v = v1 + v2, where v1 ∈ TpM and v2 ∈ Np(M).
If v is timelike, then v2 is timelike. Let πN(M) : TRn+1

1 |M −→ N(M) be the canonical
projection. Then πN(M)(e0) is a future directed timelike normal vector field along M. So we
always have a future directed unit timelike normal vector field along M (even globally). We
now arbitrarily choose a future directed unit timelike normal vector field nT (u) ∈ Np(M ;−1),
where p = X(u). Therefore we have the pseudo-orthonormal compliment (〈nT (u)〉R)⊥ in Np(M)
which is a k − 1-dimensional subspace of Np(M). We can also choose a pseudo-normal section
nS(u) ∈ (〈nT (u)〉R)⊥ ∩N(M ; 1) at least locally, then we have 〈nS, nS〉 = 1 and 〈nS, nT 〉 = 0.
We define a k − 1-dimensional spacelike unit sphere in Np(M) by

N1(M)p[n
T ] = {ξ ∈ Np(M ; 1) | 〈ξ, n(p)〉 = 0 }.

Then we have a spacelike unit k − 1-spherical bundle over M with respect to nT defined by

N1(M)[nT ] =
⋃

p∈M

N1(M)p[n
T ].

Since we have T(p,ξ)N1(M)[nT ] = TpM × TξN1(M)p[n
T ], we have the canonical Riemannian

metric on N1(M)[nT ]. We denote the Riemannian metric on N1(M)[nT ] by (Gij(p, ξ))16i,j6n−1.

For any future directed unit normal nT along M, we arbitrary choose the unit spacelike
normal vector field nS with nS(u) ∈ N1(M)p[n

T ], where p = X(u). We call (nT , nS) a future
directed pair along M. Clearly, the vectors nT (u)±nS(u) are lightlike. Here we choose nT +nS

as a lightlike normal vector field along M. We define a mapping

LG(nT , nS) : U −→ LC∗

by LG(nT , nS)(u) = nT (u) + nS(u). We call it the lightcone Gauss image of M = X(U) with
respect to (nT , nS). We also define a mapping

L̃G(nT , nS) : U −→ Sn−1
+

by L̃G(nT , nS)(u) = ˜nT (u) + nS(u) which is called the lightcone Gauss map of M = X(U)
with respect to (nT , nS). Under the identification of M and U through X, we have the linear
mapping provided by the derivative of the lightcone Gauss image LG(nT , nS) at each point
p ∈ M ,

dpLG(nT , nS) : TpM −→ TpRn+1
1 = TpM ⊕Np(M).

Consider the orthogonal projections πt : TpM ⊕Np(M) → Tp(M) and πn : Tp(M)⊕Np(M) →
Np(M). We define

dpLG(nT , nS)t = πt ◦ dp(n
T + nS)
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and
dpLG(nT , nS)n = πn ◦ dp(n

T + nS).

We respectively call the linear transformations Sp(n
T , nS) = −dpLG(nT , nS)t and dpLG(nT , nS)n

of TpM , the (nT , nS)-shape operator of M = X(U) at p = X(u) and the normal connection
with respect to (nT , nS) of M = X(U) at p = X(u). The eigenvalues of Sp(n

T , nS), denoted
by {κi(n

T , nS)(p)}s
i=1, are called the lightcone principal curvatures with respect to (nT , nS) at

p = X(u). Then the lightcone Gauss-Kronecker curvature with respect to (nT , nS) at p = X(u)
is defined by

K`(n
T , nS)(p) = detSp(n

T , nS).

We say that a point p = X(u) is an (nT , nS)-umbilical point Sp(n
T , nS) = κ(nT , nS)(p)1TpM

for some function κ. We say that M = X(U) is totally (nT , nS)-umbilical if all points on M
are (nT , nS)-umbilical.

We deduce now the lightcone Weingarten formula. Since Xui
(i = 1, . . . s) are spacelike

vectors, we have a Riemannian metric (the lightcone first fundamental form ) on M = X(U)
defined by ds2 =

∑s
i=1 gijduiduj, where gij(u) = 〈Xui

(u), Xuj
(u)〉 for any u ∈ U. We also have

a lightcone second fundamental invariant with respect to the normal vector field (nT , nS) defined
by hij(n

T , nS)(u) = 〈−(nT + nS)ui
(u), Xuj

(u)〉 for any u ∈ U. By the similar arguments to
those in the proof of [11, Proposition 3.2], we have the following proposition.

Proposition 3.1 We choose a pseudo-orthonormal frame {nT , nS
1 , . . . , nS

k−1} of N(M) with
nS

k−1 = nS. Then we have the following lightcone Weingarten formula with respect to (nT , nS):

(a) LG(nT , nS)ui
= 〈nS

ui
, nT 〉(nT −nS)+

∑k−2
`=1 〈(nT +nS)ui

, nS
` 〉nS

` −
∑s

j=1 hj
i (n

T , nS)Xuj

(b) πt ◦ LG(nT , nS)ui
= −∑s

j=1 hj
i (n

T , nS)Xuj
.

Here
(
hj

i (n
T , nS)

)
=

(
hik(n

T , nS)
) (

gkj
)

and
(
gkj

)
= (gkj)

−1.

As a corollary of the above proposition, we have an explicit expression of the lightcone
curvature in terms of the Riemannian metric and the lightcone second fundamental invariant.

Corollary 3.2 Under the same notations as in the above proposition, the lightcone Gauss-
Kronecker curvature relative to (nT , nS) is given by

K`(n
T , nS) =

det
(
hij(n

T , nS)
)

det (gαβ)
.

Since 〈−(nT + nS)(u), Xuj
(u)〉 = 0, we have hij(n

T , nS)(u) = 〈nT (u) + nS(u), Xuiuj
(u)〉.

Therefore the lightcone second fundamental invariant at a point p0 = X(u0) depends only on the
values nT (u0)+nS(u0) and Xuiuj

(u0), respectively Thus, the lightcone curvatures also depend
only on nT (u0) + nS(u0), Xui

(u0) and Xuiuj
(u0), independent of the derivation of the vector

fields nT and nS. We write κi(n
T
0 , nS

0 )(p0) (i = 1, . . . , s) and K`(n
T
0 , nS

0 )(u0) as the lightcone
curvatures at p0 = X(u0) with respect to (nT

0 , nS
0 ) = (nT (u0), n

S(u0)). We might also say that a
point p0 = X(u0) is (nT

0 , nS
0 )-umbilical because the lightcone (nT , nS)-shape operator at p0 de-

pends only on the normal vectors (nT
0 , nS

0 ). So we denote that hij(n
T , ξ)(u0) = hij(n

T , nS)(u0)
and K`(n

T , ξ)(p0) = K`(n
T
0 , nS

0 )(p0), where ξ = nS(u0) for some local extension nT (u) of ξ.
Analogously, we say that a point p0 = X(u0) is an (nT

0 , nS
0 )-parabolic point of X : U −→ Rn+1

1

if K`(n
T
0 , nS

0 )(u0) = 0. And we say that a point p0 = X(u0) is a (nT
0 , nS

0 )-flat point if it is an
(nT

0 , nS
0 )-umbilical point and K`(n

T
0 , nS

0 )(u0) = 0.
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On the other hand, the lightcone Gauss map L̃G(nT , nS) with respect to (nT , nS) also

induces a linear mapping dpL̃G(nT , nS) : TpM −→ TpRn+1
1 under the identification of U and

M, where p = X(u). We have the following proposition.

Proposition 3.3 Under the above notations, we have the following normalized lightcone Wein-
garten formula with respect to (nT , nS):

πt ◦ L̃G(nT , nS)ui
= −

s∑
j=1

1

`0(u)
hj

i (n
T , nS)Xuj

,

where LG(nT , nS)(u) = (`0(u), `1(u), . . . , `n(u)).

Proof. By definition, we have `0L̃G(nT , nS) = LG(nT , nS). It follows that `0L̃G(nT , nS)ui
=

LG(nT , nS)ui
− `0ui

L̃G(nT , nS). Since L̃G(nT , nS)(u) ∈ Np(M), we have

πt ◦ L̃G(nT , nS)ui
=

1

`0

πt ◦ LG(nT , nS)ui
.

By the lightcone Weingarten formula with respect to (nT , nS) (Proposition 3.1), we have the
desired formula. 2

We call the linear transformation S̃(nT , nS)p = −πt◦dpL̃G(nT , nS) the normalized lightcone
shape operator of M at p with respect to (nT , nS). The eigenvalues {κ̃i(n

T , nS)(p)}s
i=1 of

S̃(nT , nS)p are called the normalized lightcone principal curvatures. By the above poposition,
we have κ̃i(n

T , nS)(p) = (1/`0(u))κi(n
T , nS)(p). The normalized Gauss-Kronecker curvature

of M with respect to (nT , nS) is defined to be K̃`(n
T , nS)(u) = det S̃(nT , nS)p. Then we have

the following relation between the normalized lightcone Gauss-Kronecker curvature and the
lightcone Gauss-Kronecker curvature:

K̃`(n
T , nS)(u) =

(
1

`0(u)

)s

K`(n
T , nS)(u).

On the other hand, we consider a submanifold ∆ = {(v, w) | 〈v, w〉 = 0 } ⊂ Hn
+(−1)× Sn

1

and the canonical projection π̄ : ∆ −→ Hn
+(−1). It is well known that ∆ can be identified with

the unit tangent bundle S(THn
+(−1)) over Hn

+(−1). We define a function Nh : ∆ −→ R by
Nh(v, w) = 1/(v0 + w0), where v = (v0, v1, . . . , vn), w = (w0, w1, . . . , wn). Then we have

Nh(n
T (u), nS(u)) =

1

`0(u)
.

Therefore we can rewrite the above formula as follows:

K̃`(n
T , nS)(u) = Nh(n

T (u), nS(u))sK`(n
T , nS)(u).

By definition, p0 = X(u0) is the (nT
0 , nS

0 )-umbilicl point if and only if S̃(nT , nS)p0 =
κ̃i(n

T , nS)(p)1Tp0M . We have the following proposition.

Proposition 3.4 Let (nT , nS) be a future directed normal pair along M = X(U). Then the
following conditions are equivalent:
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(1) The normalized lgihtcone Gauss map L̃G(nT , nS) of M = X(U) with respect to (nT , nS)
is constant

(2) There exists v ∈ Sn−1
+ and a real number c such that M ⊂ HP (v, c).

Suppose that the above condition holds. Then

(3) M = X(U) is totally (nT , nS)-flat.

Proof. Suppose that the normalized lightcone Gauss Map L̃G(nT , nS)(u) = v is constant. We
consider a function F : U −→ R defined by F (u) = 〈X(u), v〉. By definition, we have

∂F

∂ui

(u) = 〈Xui
(u), v〉 = 〈Xui

(u), L̃G(nT , nS)(u)〉,

for any i = 1, . . . , s. Therefore, F (u) = 〈X(u), v〉 = c is constant. It follows that M ⊂ HP (v, c)
for v ∈ Sn−1

+ .

Suppose that M is a subset of alightlike hyperplane H(v, c) for v ∈ SN−1
+ . Since M ⊂

HP (v, c), we have TpM ⊂ H(v, 0). If 〈n(u), v〉 = 0, then nT (u) ∈ HP (v, 0). We remark that
HP (v, 0) does not include timelike vectors. This is a contradiction. So we have 〈nT (u), v〉 6= 0.
We now define a normal vector field along M = X(U) by

nS(u) =
−1

〈nT (u), v〉v − nT (u).

We can easily show that nS(u) ∈ N1(M)p[n
T ] for p = X(u). Therefore (nT , nS) is a future

directed normal pair such that L̃G(nT , nS)(u) = v.

On the other hand, by Proposition 3.3, if L̃G(nT , nS) is constant, then (hj
i (n

T , nS)(u)) = O,
so that M = X(U) is lightcone (nT , nS)-flat. 2

4 The lightcone Lipschitz-Killing cuvature

In this section we define the lightcone Gauss map of N1(M)[nT ] and investigate the geometric
properties. We define a map

L̃G(nT ) : N1(M)[nT ] −→ Sn−1
+

by L̃G(nT )(u, ξ) = ˜nT (u) + ξ, which we call the lightcone Gauss map of N1(M)[nT ]. The
lghtcone Gauss map leads us to a curvature similar to the codimension two case[11]. Let
T(p,ξ)N1(M)[nT ] be the tangent space of N1(M)[nT ] at (p, ξ). We have the canonical identifi-
cation

T(p,ξ)N1(M)[nT ] = TpM ⊕ TξS
k−2 ⊂ TpM ⊕Np(M) = TpRn+1

1 ,

where TξS
k−2 ⊂ TξNp(M) ≡ Np(M) and p = X(u). Let

Πt : L̃G(nT )∗TRn+1
1 = TN1(M)[nT ]⊕ Rk+1 −→ TN1(M)[nT ]

be the canonical projection. It follows that we have a linear transformation

Πt
^LG(nT )(p,ξ)

◦ d(p,ξ)L̃G(nT ) : T(p,ξ)N1(M)[nT ] −→ T(p,ξ)N1(M)[nT ].

7



The lightcone Lipschitz-Killing curvature of N1(M)[nT ] at (p, ξ) is defined to be

K̃`(n
T )(p, ξ) = det

(
−Πt

fLG(nT )(p,ξ)
◦ d(p,ξ)L̃G(nT )

)
.

In order to investigate the lightcone Gauss map L̃G(nT ) of N1(M)[nT ], we define a map

LG(nT ) : N1(M)[nT ] −→ LC∗

by LG(nT )(u, ξ) = nT (u) + ξ, which is called the lightcone Gauss image of N1(M)[nT ]. We
now write LG(nT )(p, ξ) = (`0(p, ξ), `1(p, ξ), . . . , `n(p, ξ)). For any future directed timelike unit
normal vector field nT along M, there exists a pseudo-orthonormal frame {nT , nS

1 , . . . , nS
k−1}

of N(M) with nS
k−1(u0) = ξ and p = X(u0), so that we have a frame field

{Xu1 , . . . , Xus , n
T , nS

1 , . . . , nS
k−1}

of Rn+1
1 along M. We define an Sk−1-family of spacelike unit normal vetor field

N (u, µ) =
k−1∑
j=1

µjn
S
j (u) ∈ N(M ; 1)

along M for µ = (µ1, . . . , µk−1) ∈ Sk−2 ⊂ Rk−1. We also define a map

Ψ : U × Sk−2 −→ N1(M)[nT ]

by Ψ(u, µ) = (X(u), NS(u, µ)), which gives a local parametrization of N1(M)[nT ]. Then we
have (p, ξ) = (X(u0), N

S(u0, µ0)), where µ0 = (0, . . . , 0, 1). It follows that LG(nT ) ◦Ψ(u, µ) =
nT (u)+NS(u, µ). We now write that LG(nT , NS)(u, µ) = LG(nT ) ◦Ψ(u, µ). We consider the
local coordinate neighbourhood of Sk−1:

U+
k−1 = {(µ1, . . . , µk−1) ∈ Sk−1 | µk−1 > 0 }.

Then we have µk−1 =
√

1−∑k−2
j=1 µ2

j . For i = 1, . . . , s, j = 1, . . . k − 2, we have the following

calculation:

∂LG(nT , NS)

∂ui

(u, µ) = nT
ui

(u) +
k−1∑

`=1

µ`n
S
`,ui

(u),

∂LG(nT , NS)

∂µj

(u, µ) = nS
j (u)− µj

µk−1

nS
k−1(u).

Therefore, we have

∂LG(nT , NS)

∂ui

(u0, µ0) = nT
ui

(u0) + nS
k−1,ui

(u0) = (nT + nS
k−1)ui

(u0),

∂LG(nT , NS)

∂µj

(u0, µ0) = nS
j (u0).

We now remark that {Xu1 , . . . , Xus , n
S
1 , . . . , nS

k−2} is a basis of T(p,ξ)N1(M)[nT ] at u = u0. By
Proposition 3.1, we have

(nT + nS
k−1)ui

(u0) = 〈nS
ui

, nT 〉(nT − nS
k−1)(u0)

+
k−2∑

`=1

〈(nT + nS
k−1)ui

, nS
` 〉nS

` (u0)−
s∑

j=1

hj
i (n

T , nS)Xuj
(u0).
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Since 〈nT − nS
k−1, Xui

〉 = 〈nT − nS
k−1, n

S
j 〉 = 〈nS

` , Xui
〉 = 0 and 〈nS

j , nS
` 〉 = δj`, we have

det
(
−Πt

LG(nT )(p,ξ) ◦ d(p,ξ)LG(nT )
)

= det






〈−(nT + nS

k−1)ui
, Xuj

〉 〈−(nT + nS
k−1)ui

, nS
j 〉

16i,j6s 16i6s;16j6k−2

0(k−2)×s −I(k−2)




(
gij 0
0 I(k−2)

)
 (u0).

Since `0L̃G(nT , NS) = LG(nT , NS), we have

(`0)ui
L̃G(nT , NS) + `0L̃G(nT , NS)ui

= LG(nT , NS)ui
,

(`0)µj
L̃G(nT , NS) + `0L̃G(nT , NS)µj

= LG(nT , NS)µj
.

Moreover, we have 〈L̃G(nT , NS)(u0, µ0), Xui
(u0)〉 = 〈L̃G(nT , NS)(u0, µ0), n

S
j (u0)〉 = 0. It

follows that

K̃`(n
T )(p, ξ) = det

(
−Πt

fLG(nT )(p,ξ)
◦ d(p,ξ)L̃G(nT )

)

= det







1
`0
〈−(nT + nS

k−1)ui
, Xuj

〉 1
`0
〈−(nT + nS

k−1)ui
, nS

j 〉
16i,j6s 16i6s;16j6k−2

0(k−2)×s − 1
`0

I(k−2)




(
gij 0
0 I(k−2)

)
 (u0).

On the other hand, Corollary 3.2 implies that

K`(n
T , ξ)(p) = K`(n

T , nS
k−1)(u0)

= det((〈−(nT + nS
k−1)ui

, Xuj
)(gij))(u0)

= det






〈−(nT + nS

k−1)ui
, Xuj

〉 〈−(nT + nS
k−1)ui

, nS
j 〉

16i,j6s 16i6s;16j6k−2

0(k−2)×s I(k−2)




(
gij 0
0 I(k−2)

)
 (u0).

Thereofore we have the following theorem.

Theorem 4.1 Under the same notations as those of the above paragraph, we have

K̃`(n
T )(p0, ξ0) = (−1)k−2Nh(n

T (u0), ξ0)
n−1K`(n

T , nS)(u0)

= (−Nh(n
T (u0), ξ0))

k−2K̃`(n
T , nS)(u0),

where p0 = X(u0) and nS(u) is a local section of N1(M)[nT ] such that nS(u0) = ξ0.

We have the following corollary of the above theorem.

Corollary 4.2 The following conditions are equivalent:

(1) p0 = X(u0) is a (nT
0 , ξ0)-parabolic point ( K`(n

T , nS)(u0) = 0),

(2) K̃`(n
T )(p0, ξ0) = 0.

Here, nS(u) is a local section of N1(M)[nT ] such that nS(u0) = ξ0.
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5 Lightcone height functions

In order to ivetigate the geometric meanings of the lightcone Lipschitz-Killing curvature of
N1(M)[nT ], we introduce a family of functions on M = X(U). We define the family of lightcone
height functions

H : U × Sn−1
+ −→ R

on M = X(U) by H(u, v) = 〈X(u), v〉. We denote the Hessian matrix of the lightcone height-
function hv0(u) = H(u, v0) at u0 by Hess(hv0)(u0). The following proposition characterizes the
lightlike parabolic points and lightlike flat points in terms of the family of lightcone height
functions.

Proposition 5.1 Let H : U × Sn−1
+ −→ R be the family of lightcone height functions on M.

Then

(1) (∂H/∂ui)(u0, v0) = 0 (i = 1, . . . , s) if and only if there exists ξ0 ∈ N1(M)p0 [n
T ] such that

v0 = L̃G(nT )(p0, ξ0), where p0 = X(u0).

Suppose that p0 = X(u0), v0 = L̃G(nT )(p0, ξ0). Then

(2) p0 is a (nT
0 , ξ0)-parabolic point if and only if det Hess(hv0)(u0) = 0, where nT

0 = nT (u0),

(3) p0 is a flat (nT
0 , ξ)-umbilic point if and only if rank Hess(hv0)(u0) = 0,

(4) u0 is a non-degenerate critical point of hv0 if and only if (p0, ξ0) is a regular point of L̃G(nT ).

Proof. (1) Since (∂H/∂ui)(u0, v0) = 〈Xui
(u0), v0), (∂H/∂ui)(u0, v0) = 0 (i = 1, . . . , s) if

and only if v0 ∈ Np0(M) and v0 ∈ Sn−1
+ . If 〈v0, n

T (u0)〉 = 0, then nT (u0) ∈ HP (v0, 0). But
HP (v0, 0) is a lightlike hyperplane. This fact contradicts to the fact that nT (u0) is timelike.
Thus, 〈v0, n

T (u0)〉 6= 0. Then we can easily show that

ξ0 = − 1

〈nT (u0), v0〉v0 − nT (u0) ∈ N1(M)p0 [n
T ].

It follows that
v0 = ˜nT (u0) + ξ0 = L̃G(nT )(p0, ξ0).

The converse also holds.

For the proof of the assertions (2) and (3), as a consequence of Proposition 3.1, we have

Hess(hv0)(u0) =
(
〈Xuiuj

(u0), L̃G(nT )(p0, ξ0)〉
)

=

(
1

`0

〈Xuiuj
(u0), n

T (u0) + ξ0〉
)

=

(
1

`0

〈Xui
(u0), (n

T + nS)uj
(u0)〉

)

=

(
1

`0

〈Xui
(u0),−

s∑

k=1

hk
j (n

T , ξ0)(u0)Xuk
(u0)〉

)

=
(−Nh(n

T (u0), ξ0)hij(n
T , ξ0)(u0)

)
,

where nS(u) is a local section of N1(M)[nT ] such that nS(u0) = ξ0. By definition, K`(n
T , ξ)(p0) =

0 if and only if det (hij(n
T , ξ)(u0)) = 0. The assertion (2) holds. Moreover, p0 is a flat (nT

0 , ξ0)-
umbilical point if and only if (hij(n

T , ξ0)(u0)) = O. So we have the assertion (3).

By the above calculation u0 is a non-degenerate critical point of hv0 if and only if

K̃`(n
T , ξ0)(u0) =

det
(−Nh(n

T (u0), ξ0)hij(n
T , ξ0)(u0)

)

det(gij(u0))
6= 0.
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By Corollary 4.2, the last condition is equivalent to the condition K̃`(n
T )(p0, ξ0) 6= 0. By

the definition of K̃`(n
T )(p0, ξ0), the above condition means that (p0, ξ0) is a regular point of

L̃G(nT ). 2

6 The total absolute lightcone curvature

We have the following theorem.

Theorem 6.1 Let dvN1(M)[nT ] be the canonical volume form of N1(M)[nT ] and dvSn−1
+

the

canonical volume form of Sn−1
+ . Then we have

(L̃G(nT )∗dvSn−1
+

)(p,ξ) = |K̃`(n
T )(p, ξ)|dvN1(M)[nT ](p,ξ).

Proof. Without the loss of generality, we may assume that a point (p, ξ) is a non-singular

point of L̃G(nT , ξ), We consider the same frame {Xu1 , . . . , Xus , n
T , nS

1 , . . . , nS
k−1} as in the

previous sections such that nS
k−1(u0) = ξ and p = X(u0). We also consider the local coordinate

neighbourhood of Sk−1

U+
k−1 = {(µ1, . . . , µk−1) ∈ Sk−1 | µk−1 > 0 },

so that we have µk−1 =
√

1−∑k−2
j=1 µ2

j and

∂LG(nT , NS)

∂ui

(u0, µ0) = nT
ui

(u0) + nS
k−1,ui

(u0) = (nT + nS
k−1)ui

(u0),

∂LG(nT , NS)

∂µj

(u0, µ0) = nS
j (u0).

Then we have

LG(nT , ξ)ui
(u0) = (nT + nS

k−1)ui
(u0)

= 〈nS
ui

, nT 〉(nT − nS
k−1)(u0) +

k−2∑

`=1

〈(nT + nS
k−1)ui

, nS
` 〉nS

` (u0)

−
s∑

j=1

hj
i (n

T , nS)Xuj
(u0).

Therefore, we have

〈LG(nT , ξ)ui
(u0),LG(nT , ξ)uj

(u0)〉 = 〈πt ◦ (nT + nS
k−1)ui

(u0), π
t ◦ (nT + nS

k−1)uj
(u0)〉

+
k−2∑

`=1

〈(nT + nS
k−1)ui

(u0), n
S
` (u0)〉〈(nT + nS

k−1)uj
(u0), n

S
` (u0)〉.

Since we have

L̃G(nT , ξ)ui
(u0) = −(`0)ui

`0

L̃G(nT , ξ)(u0) +
1

`0

LG(nT , ξ)ui
(u0),

L̃G(nT , ξ)µj
(u0) = −(`0)µj

`0

L̃G(nT , ξ)(u0) +
1

`0

nS
j (u0),
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we can calculate that

〈L̃G(nT , ξ)ui
, L̃G(nT , ξ)uj

〉 =
1

`2
0

〈LG(nT , ξ)ui
,LG(nT , ξ)uj

〉,

〈L̃G(nT , ξ)ui
, L̃G(nT , ξ)µj

〉 =
1

`2
0

〈LG(nT , ξ)ui
, nS

j 〉,

〈L̃G(nT , ξ)µi
, L̃G(nT , ξ)µj

〉 =
1

`2
0

〈nS
i , nS

j 〉

at (u0, µ0) ∈ U × Sk−2. We consider the matrix A defined by

A =




〈L̃G(nT , ξ)ui
, L̃G(nT , ξ)uj

〉 〈L̃G(nT , ξ)ui
, L̃G(nT , ξ)µj

〉
16i,j6s 16i6s;16j6k−2

〈L̃G(nT , ξ)uj
, L̃G(nT , ξ)µi

〉 〈L̃G(nT , ξ)µi
, L̃G(nT , ξ)µj

〉
16i6k−1;16j6s 16i,j6k−2


 (u0).

By the previous calculation, we have

A =
1

(`0)2




αij 〈(nT + nS
k−1)ui

, nS
j 〉

16i,j6s 16i6s;16j6k−2

〈(nT + nS
k−1)uj

, nS
i 〉 〈nS

i , nS
j 〉

16i6k−1;16j6s 16i,j6k−2


 (u0)

=
1

(`0)2




αij 〈(nT + nS
k−1)ui

, nS
j 〉

16i,j6s 16i6s;16j6k−2

〈(nT + nS
k−1)uj

, nS
i 〉 Ik−1

16i6k−1;16j6s 16i,j6k−2


 (u0),

where

αij = 〈πt ◦ (nT + nS
k−1)ui

, πt ◦ (nT + nS
k−1)uj

〉

+
k−2∑

`=1

〈(nT + nS
k−1)ui

, nS
` 〉〈(nT + nS

k−1)uj
, nS

` 〉.

We consider a matrix

A0 =
1

(`0)2




〈πt ◦ (nT + nS
k−1)ui

, πt ◦ (nT + nS
k−1)uj

〉 〈(nT + nS
k−1)ui

, nS
j 〉

16i,j6s 16i6s;16j6k−2

0(k−1)×s Ik−1


 (u0).

We denote that Aj, Aj
0 the j-the columns of the aboe two matrices. Then we have the relation

that

Aj = Aj
0 +

k−1∑

`=1

〈(nT + nS
k−1)uj

, nS
` 〉As+`

0 ,

for j = 1, . . . , s. It follows that

det(A) = det(A0) =
1

(`0)2(n−1)
det

( 〈πt ◦ (nT + nS
k−1)ui

, πt ◦ (nT + nS
k−1)uj

〉
16i,j6s

)
(u0).
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By Proposition 3.1, we have πt ◦ (nT + nS
k−1)ui

(u0) = −∑s
j=1 hj

i (n
T , ξ)(u0)Xuj

(u0), so that

〈πt ◦ (nT + nS
k−1)ui

, πt ◦ (nT + nS
k−1)uj

〉(u0) =
∑

α,β

hα
i (nT , ξ)(u0)h

β
j (nT , ξ)(u0)gαβ(u0).

It follows from Corollary 3.2 and Theorem 4.1 that

det(A) =

(
(−1)k−1

(`0)(n−1)

)2

(K`(n
T , ξ)(u0))

2 det(gαβ) = (K̃`(n
T )(p, ξ))2 det(gαβ).

This completes the proof. 2

On the other hand, let nT be another timelike unit normal future directed vector field
along M = X(U). Since the canonical action of SO0(1, n) on Hn(−1) is transitive, there exists
g ∈ SO0(1, n) such that g.nT (u0) = nT (u0). Then we define a smooth mapping

Φg : N1(M)p[n
T ] −→ N1(M)p[n

T ]

by Φg(p, ξ) = (p, g.ξ), where p = X(u0). By the definition of the canonical Riemannian metrices
on N1(M)p[n

T ] and N1(M)p[n
T ], Φg is an isometry. Therefore, we have

Φ∗
gdv

N1(M)[nT
](p,g.ξ)

= dvN1(M)[nT ](p,ξ).

We define the k − 2-dimnsional lightcone unit sphere on the fibere as Sk−2
+ (N(M)p) = Sn−1

+ ∩
Np(M). Then we have L̃G(nT )(N1(M)p[n

T ]) ⊂ Sk−2
+ (N(M)p). Moreover, we can easily show

that
L̃G(nT )|N1(M)p[nT ] : N1(M)p[n

T ] −→ Sk−2
+ (N(M)p)

is a diffeomorphism.

There exists a differential form dσk−2(n
T ) of degree k − 2 on N1(M)[nT ] such that its

restriction to a fiber is the volume element of the k − 2-sphere. We remark that

dvN1(M)[nT ] = dvM ∧ dσk−2(n
T ).

Then we have the following key lemma:

Lemma 6.2 Let X : U −→ Rn+1
1 be a spacelike embedding with codimension k and nT , nT be

future directed unit timelike normal vector fields along M = X(U). For any (p, ξ) ∈ N1(M)[nT ]
with p = X(u0), g ∈ SO0(1, n) and Φg are given in the previous paragraphes. Then we have

|K̃`(n
T )(p, ξ)|dσk−2(n

T )‰ = |K̃`(n
T )(p, g.ξ)|dσk−2(n

T )g.‰

and ∫

N1(M)p[nT ]

|K̃`(n
T )(p, ξ)|dσk−2(n

T ) =

∫

N1(M)p[nT
]

|K̃`(n
T )(p, ξ)|dσk−2(n

T ).

Proof. Under the previous notations, we have

(
L̃G(nT )|N1(M)p[nT ]

)∗
dvSk−2

+ (N(M)p)

=
(
L̃G(nT )∗dvSn−2

+

)
|N1(M)p[nT ] = |K̃`(n

T )|dσk−2(n
T ).
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We remark that the canonical action of SO0(k − 1) on Sk−2
+ (N(M)p) is transitive. For

any h ∈ SO0(k − 1), we denote that ψ(h)(v) = h.v for v ∈ Sk−2
+ (N(M)p), so that we have

an isometry ψ(h) : Sk−2
+ (N(M)p) −→ Sk−2

+ (N(M)p). Thus, we have ψ(h)∗dvSk−2
+ (N(M)p)(v) =

dvSk−2
+ (N(M)p)(h.v).

On the other hand, we have

L̃G(nT )|
N1(M)p[nT

]
◦ Φg(p, ξ) = ˜nT (u) + g.ξ

= ˜g.(nT (u) + ξ) = ψ(h)( ˜(nT (u) + ξ)) = ψ(h) ◦ L̃G(nT )|N1(M)p[nT ](p, ξ),

for some h ∈ SO0(k − 1). We set v = ˜(nT (u) + ξ) = L̃G(nT )|N1(M)p[nT ](p, ξ) ∈ Sk−2
+ (N(M)p).

Then we have

(L̃G(nT )|
N1(M)p[nT

]
◦ Φg)

∗dvSk−2
+ (N(M)p)(v)

= (Φg)
∗
(
(L̃G(nT )|N1(M)p[nT ])

∗dvSk−2
+ (N(M)p)(v)

)

= (Φg)
∗
(
|K̃`(nT )|dσk−2(n

T )‰

)

= |K̃`(nT )(p, g.ξ)|dσk−2(n
T )g.‰.

Moreover, we have

(L̃G(nT )|N1(M)p[nT ])
∗ ◦ ψ(h)∗(dvSk−2

+ (N(M)p)(v))

= (L̃G(nT )|N1(M)p[nT ])
∗dvSk−2

+ (N(M)p)(h.v)

= |K̃`(n
T )(p, ξ)|dσk−2(n

T )‰.

Since L̃G(nT )|
N1(M)p[nT

]
◦ Φg(p, ξ) = ψ(h) ◦ L̃G(nT )|N1(M)p[nT ](p, ξ), we have

|K̃`(n
T )(p, g.ξ)|dσk−2(n

T )g.‰ = |K̃`(n
T )(p, ξ)|dσk−2(n

T )‰.

Moreover, we have
∫

N1(M)p[nT ]

|K̃`(n
T )(p, ξ)|dσk−2(n

T ) =

∫

Φg(N1(M)p[nT ])

|K̃`(n
T )(p, g.ξ)|dσk−2(g.nT )

=

∫

N1(M)p[nT
]

|K̃`(n
T )(p, ξ)|dσk−2(n

T ).

This completes the proof. 2

We call the integral

K∗
` (p) =

∫

N1(M)p[nT ]

|K̃`(n
T )(p, ξ)|dσk−2(n

T )

a total absolute lightcone curvature of M at p = X(u0). In the global situation, we consider
a closed orientable manifold M with dimension s and a spacelike immersion f : M −→ Rn+1

1 .
We define the total absolute lightcone curvature of M by the integral

τ`(M, f) =
1

γn−1

∫

M

K∗
` (p)dvM =

1

γn−1

∫

N1(M)[nT ]

|K̃`(n
T )(p, ξ)|dvN1(M)[nT ],

where γn−1 is the volume of the unit n− 1-sphere Sn−1.
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7 The Chern-Lashof type theorem

Let f : M −→ Rn+1
1 be a spacelike immersion from an s-dimensional closed orientable manifold

M. We have the family of lightcone height functions H : M ×Sn−1
+ −→ R defined by H(x, v) =

〈f(x), v〉. By Proposition 5.1, v ∈ Sn−1
+ is a critical value of L̃G(nT ) if and only if there exists

a point p ∈ M such that p is a degenerate critical point hv. Therefore, we have the following
proposition.

Proposition 7.1 The height function hv is a Morse function if and ony if v is a regular value
of L̃G(nT ).

Proof. By Proposition 5.1, x ∈ M is a non-degenerate critical point of hv if and only if there
exists ξ ∈ N1(M)f(p)[n

T ] such that v = L̃G(nT )(f(p), ξ) and (f(p), ξ) is a regular point of

L̃G(nT ). By definition, all critical points of a Morse function are non-degenerate, so that the
proof is completed. 2

Let D ⊂ Sn−1
+ be the set of regular values of L̃G(nT ). Since M is compact, D is open

and, by Sard’s theorem, the compliment of D in Sn−1
+ has null measure. We define an intergral

valued function η : D −→ N by

η(v) = the number of elemtns of L̃G(nT )−1(v),

which turns out to be continuous.

Proposition 7.2

τ`(M, f) =
1

γn−1

∫

D

η(v)dvSn−1
+

.

Proof. For any v ∈ D, there exists a neighborhood U of v in D such that L̃G(nT )−1(U) is the

disjoint union of connected open sets V1, . . . , Vk, k = η(v), on which L̃G(nT ) : Vi −→ U is a
diffeomorphism. By Theorem 4.1, we have

∫

Vi

|K̃`(n
T )|dvN1(M)[nT ] =

∫

Vi

L̃G(nT )∗dvSn−1
+

= deg (L̃G(nT )|Vi)

∫

U

dvSn−1
+

=

∫

U

dvSn−1
+

.

Since γn−1 =
∫

Sn−1
+

dvSn−1
+

and K̃`(n
T ) is zero at a singular point of L̃G(nT ), we have

1

γn−1

∫

N1(M)[nT ]

|K̃`(n
T )|dvN1(M)[nT ] =

1

γn−1

∫

D

η(v)dvSn−1
+

.

2

We recall that the Morse number of a compact manifold M , γ(M), is defined to be the
minimum number of ciritical points for any Morse function φ : M −→ R.

Theorem 7.3 (The Chern-Lashof type theorem) Let f : M −→ Rn+1
1 be a spacelike im-

mersion of a compact s-dimensional manifold M. Then

(1) τ`(M, f) ≥ γ(M) ≥ 2,

(2) If τ`(M, f) < 3, then M s is homeomorphic to an s-sphere.
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Proof. Since each Morse function hv certainly satisfies η(v) ≥ γ(M), we have τ`(M, f) ≥ γ(M).
Since M is compact, there exist at least two critical points for any smooth function on M , so
that γ(M) ≥ 2. If τ`(M, f) < 3, there must be a set U of positive measure on which η(v) = 2.
So there is a non-degenerate hv with two cirtical points, and M is homeomorphic to Ss by
Reeb’s theorem (see, [12]). 2

If τ`(M, f) = γ(M), then every non-degenerate lightlike height function hv has the minimum
number of citical points allowed by the Morse inequalities. In this case we say that f is a
lightlike-tight spacelike immersion (or, simply, L-tight spacelike immersion). In §9, we consider
the problem to characterize the L-tightness for spacelike immersed spheres.

8 Codimension two spacelike submanifolds

In the case when s = n − 1, N1(M)[nT ] is a double covering of M. If M is orientable, we can
choose global section σ(p) = (p, nS(p)) of N1(M)[nT ]. Let π : Rn+1 −→ Rn

0 be the canonical
projection defined by π(x0, x1, . . . , xn) = (0, x1, . . . , xn), where Rn

0 is the Euclidean space given
by x0 = 0. Since Ker dπf(p) is a timelike one-dimensional subspace of Rn+1

1 and nS is spacelike,
dπf(p)(n

S(p)) is transverse to π ◦f(M) at p ∈ M. Therefore, if M is closed and f : M −→ Rn+1
1

is a spacelike embedding such that π ◦ f : M −→ Rn
0 is an embedding, then we can choose the

direction of nS such that dπ ◦ nS points the direction to the outward of π ◦ f(M).

In [11] it has been shown that ˜(nT (p)± nS(p)) is independent of the choice of nT . Therefore,
we have the global lightcone Gauss map

L̃G± : M −→ Sn−1
+

defined by L̃G±(p) = ˜(nT (p)± nS(p)). Moreover, we have defined the lightcone Gauss-Kronecker

curvature K̃±
` (p) = K̃`(n

T ,±nS)(p) of M in [11] . Since L̃G(nT )(p,±nS(p)) = L̃G±(p), we
have

K̃±
` (p) = K̃`(n

T ,±nS)(p) = K̃`(n
T )(p,±nS(p)).

In [11] we have shown the following Gauss-Bonnet type theorem:

Theorem 8.1 ([11]) Suppose that M is a closed orientable n− 1-dimensional manifold, n− 1
is even and f : M −→ Rn+1

1 is a spcelike embedding. Then

∫

M

K̃±
` dvMn−1 =

1

2
γn−1χ(M),

where χ(Mn−1) is the Euler characteristic of Mn−1.

In order to prove the above theorem, it has been shown in [11] that K̃±
` dvM = (L̃G±)∗dvSn−1

+
.

Let D± ⊂ Sn−1
+ denote the set of regular value of L̃G± and D = D+∩D−. We define a mapping

η± : D −→ N by
η±(v) = the number of elements of (L̃G±)−1(v).

We have the following proposition:
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Proposition 8.2 Suppose that M is a closed orientable n − 1-dimensional manifold and f :
M −→ Rn+1

1 is a spcelike embedding. Then
∫

M

|K̃±
` |dvM =

∫

D

η±(v)dvSn−1
+

.

Proof. Since K̃±
` dvM = (L̃G±)∗dvSn−1

+
, we can prove by exactly the same arguments as those

in the proof of Proposirion 7.2. 2

Theorem 8.3 Suppose that M is a closed orientable n−1-dimensional manifold and f : M −→
Rn+1

1 is a spcelike embedding such that π ◦ f is an embedding. Then
∫

M

|K̃±
` |dvM ≥ γn−1.

The equality holds if and only if L̃G± is bijective on the regular values.

Proof. Since π◦f is an embedding, we can choose the vector field nS along M such that dπ◦nS

is a transversal inward vector filed over π ◦ f(M) in Rn
0 . It is enough to show that both of L̃G±

are surjective onto D. By Proposition 3.3, p ∈ M is a critical point of the lightcone height
function hv if and only if v = L̃G(nT )(p, ξ) for some ξ ∈ N1(M)p[n

T ]. Since the codimension

of M is two, the last condition is equivalent to the condition v = L̃G(nT )(p, ξ) = L̃G+(p) or

v = L̃G(nT )(p,−ξ) = L̃G−(p). For any v ∈ Sn−1
+ , there exists the maximum point p0 and the

minimum point q0 of the lightcone height function hv on the compact manifold M. These points
are critical points of hv, so that v = L̃G+(p0) or v = L̃G−(p0) ( and v = L̃G+(q0) or v =

L̃G−(q0)). It is enought to show that L̃G+(p0) 6= L̃G+(q0). Suppose that L̃G+(p0) = L̃G+(q0).

We define a function h̃v : R4
1 −→ R by h̃v(x) = 〈v, x〉. It follows that h̃v ◦ f(p) = hv(p). We

distinguish two cases.

(i) If v = L̃G+(p0), then we have v = L̃G+(q0). We consider the line from f(q0) directed by
−nS(q0), parametrized by

γq0
(t) = f(q0)− tnS(q0).

Then we have

dh̃v ◦ γq0

dt
(t) = 〈−nS(q0), v〉 = 〈−nS(q0), L̃G+(q0)〉

=

〈
−nS(q0),

1

`+
0 (q0)

(nT (q0) + nS(q0)

〉
= − 1

`+
0 (q0)

< 0.

It follows that h̃v ◦ γq0
(t) is strictly decreasing. Since q0 is the minimum point of hv and

f(q0) = γq0
(0), γq0

(t) /∈ f(M) for any t > 0. Thus, we have π ◦γq0
(t) /∈ π ◦ f(M) for any t > 0.

Since π ◦ γq0
is a line in Rn

0 , there exists a positive real number τ such that π ◦ γq0
(τ) is in the

outside of π ◦f(M). On the other hand, since dπ ◦nS is an inward transversal vector field along
π ◦ f(M) in Rn

0 , there exists a sufficiently small ε > 0 such that π ◦ γq0
(ε) is in the inside of

π ◦ f(M). By the Jordan-Brouwer separation theorem, there exists a real number t0 > 0 such
that π ◦ γq0

(t0) ∈ π ◦ f(M). This is a contradiction.

(ii) If v = L̃G+(p0), then we also consider the line from f(p0) defined by

γp0
(t) = f(p0)− tnS(p0).
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Then we have

dh̃v ◦ γp0

dt
(t) = 〈−nS(p0), v〉 = 〈−nS(p0), L̃G−(p0)〉

=

〈
−nS(p0),

1

`+
0 (p0)

(nT (p0)− nS(p0)

〉
=

1

`+
0 (q0)

> 0,

so that h̃v◦γp0
(t) is strictly increasing. Since p0 is the maximum point of hv and f(p0) = γp0

(0),
γp0

(t) /∈ f(M) for any t > 0. By exactly thesame reason as in the case (i), there exists a real
number t0 > 0 such that γp0

(t0) ∈ π ◦ f(M). This is a contradiction. 2

We now define the total absolute lightcone curvature of a spacelike embedding f : M −→
Rn+1

1 from a closed orientable n− 1-dimnsional manifold by

τ±` (M, f) =
1

γn−1

∫

M

|K̃±
` |dvM .

We remark that we have the following weaker inequality from Theorem 7.3:

τ+
` (M, f) + τ−` (M, f) = τ`(M, f) ≥ 2.

There are examples such that
τ+
` (M, f) 6= τ−` (M, f)

(see Subsection 8.2).

For an even dimensional manifold M, we have the following theorem.

Theorem 8.4 Let f : M −→ Rn+1
1 be a spacelike embedding from a closed orientable n − 1-

dimensional manifold. Suppose n is an odd number. Then we have

∫

M

|K̃±
` |dvM ≥ 1

2
γn−1(4− χ(M)),

where χ(M) is the Euler characteristic of M.

Proof. Consider the lightcone Gauss map L̃Gσ : M −→ Sn−1
+ , where σ is + or −. We define

M+ = {p ∈ M | K̃σ
` > 0} and M− = {p ∈ M | K̃σ

` < 0}. Then we can write

∫

M

|K̃σ
` |dvM =

∫

M+

K̃σ
` dvM −

∫

M−
K̃σ

` dvM

and ∫

M

K̃σ
` dvM =

∫

M+

K̃σ
` dvM +

∫

M−
K̃σ

` dvM .

By Theorem 8.1 and the above equations, we have

∫

M

|K̃σ
` |dvM = 2

∫

M+

K̃σ
` dvM − 1

2
γn−1χ(M).

Thus, it is enough to show that ∫

M+

K̃σ
` dvM ≥ γn−1.
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Let M0,M1,M2,M
+
2 be the subsets of M defined by M0 = (K̃σ

` )−1(0), M1 = {p ∈ M \M0 | ∃q ∈
M0 with L̃Gσ(q) = L̃Gσ(p) }, M2 = M\(M0∪M1) and M+

2 = M+∩M2. Since M0 is the singular

set of L̃Gσ, L̃Gσ(M0) hs measure zero by Sard’s Theorem and also L̃Gσ(M0) ∪ L̃Gσ(M1) is a

mesure zero set in S2
+. For any v ∈ S2

+ \ (L̃Gσ(M0) ∪ L̃Gσ(M1)), the lightcone height function
hv has at least two critical points: a maximum and a minimum. In [11], it was shown that

K̃σ
` (p) =

det Hess (hv(p))

det (gij(p))
,

where v = L̃Gσ(p). Since v is a regular value of L̃Gσ, hv has a Morse-type singular point with
index 0 or n−1 at the minimum point and the maximum point. The lightcone Gauss-Kronecker
curvarture K̃σ

` is positive at such points, so that L̃Gσ|M+ is surjective. This completes the
proof. 2

As a special case for n = 3, we have the following corollary.

Corollary 8.5 For a spacelike embedding f : M −→ R4
1 from a closed orientable surface M,

we have ∫

M

|K̃±
` |dvM ≥ 2π(4− χ(M)),

We define the lightcone mean curvature of M at p by

H̃±
` (p) =

1

2
Trace S̃±p =

1

2
(κ̃±1 (p) + κ̃±2 (p)),

where S̃±p = S̃(nT ,±nS)p. Then we have the following proposition.

Proposition 8.6 For a spacelike embedding f : M −→ R4
1 from a closed orientable surface M,

we have ∫

M

(H̃±
` )2dvM ≥ 4π.

The equality holds if and only if f : M −→ R4
1 is totally umbilical with a non-zero normalized

principal curvature.

Proof. Since H̃±
` (p) = (κ̃±1 (p) + κ̃±2 (p))/2 and K̃±

` = κ̃±1 (p)κ̃±2 (p), we have

(H̃±
` )2(p)− K̃±

` (p) = (κ̃±1 (p)− κ̃±2 (p))2 ≥ 0.

It follows that ∫

M

(H̃±
` )2dvM ≥

∫

M+

(H̃±
` )2dvM ≥

∫

M+

K̃±
` dvM .

By the assertion in the proof of Theorem 8.4, we have
∫

M+

K̃±
` dvM ≥ γ2 = 4π.

The equality holds if and only if
∫

M+

(
(H̃±

` )2 − K̃±
`

)
dvM = 0.

This means that κ̃±1 (p) = κ̃±2 (p) for any p ∈ M, so that M is totally umibilical. This completes
the proof. 2
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Remark 8.7 (1) In [8] it was shown that there exists a parallel timelike future directed unit
normal vector fieild nT along f : M −→ R4

1 and totally umbilical with a non-zero lightcone
principal curvature if and only if M is embedded in the lightcone. It is well konwn that if a
compact surface M is embedded in the lightcone, it is homeomorphic to a sphere. In this case
the normalized lgihtcone principal curvature is constant, but the lightcone principal curvature
is not constant. So, the suface f(M) is not necessarily a round sphere.

On the other hand, suppose that f(M) is in the Euclidean space or the hyperbolic space.
Since the intersection of the lightcone with Euclidean space or the hyperbolic space is a round
sphere, the equality of the above theorem holds if and only if f(M) is a round sphere.

(2) The above proposition induces the lgihtcone version of the Willmore conjecture:

Conjecture. Let M be a torus. Then for a spacelike immersion f : M −→ R4
1, we expect to

have ∫

M

(H̃±
` )2dvM ≥ 2π2.

If M is immersed into the Euclidean space R3
0, then we have the original Willmore conjecture

(cf.§10). Moreover, any Willmore surface M immersed in R3
0 satisfy the equality. Moreover, if M

is immersed into the hyperbolic space H3(−1), we have the horospherical Willmore conjecture
(cf., §10). Therefore we have the following problem.

Problem. Characterize a spacelike torus in R4
1 such that the equality holds.

9 Lightlike tight spacelike spheres

In this section we consider the characterizations of L-tightness for spacelike spheres. Let f :
M −→ Rn+1

1 be a spacelike immersion of a closed orientable manifold M. We remind the reader
that f is called an L-tight if every non-degenerate lightcone height function hv has the minimum
number of critical points required by the Morse inequalities. If M is homeomorphic to a sphere,
then the Morse number γ(M) is equal to 2. We have the following theorem.

Theorem 9.1 Let f : M −→ Rn+1
1 be a spacelike immersion of a closed orientable manifold

M . Then the following conditions are equivalent:

(1) M is homeomorphic to a sphere and f is L-tight,

(2) τ`(M, f) = 2.

Proof. We use the function η : D −→ N defined before Proposition 7.2 in §7. Here, D is the
regular value set of L̃G(nT ). Since M is compact, D is open and Sn−1

+ \D has null measure by
the Sard theorem. By Proposition 7.2, τ`(M, f) = 2 if and only if η(v) = 2. This condition is
equivalent to the following condition:

(∗) The lightcone Gauss map of N1(M)[nT ] takes every regular value exaxtly twice.

Suppose that the conditon (1) holds. Then γ(M) = 2. Since f is L-tight, the lightcone height
funtion hv for v ∈ D has exactly γ(M) = 2 non-degenerate critical points. This is equivalent
to the condition (∗). For the converse, suppose that the conditoin (∗) holds. Then hv for
v ∈ D has exactly 2 non-dgenerate critical points, so that f is L-tight. By the assertion (2) of
Theorem 7.3, M is homeomorphic to a sphere. This completes the proof. 2

By the above theorem, if M is a sphere, τ`(S
s, f) = 2 if and only if f is L-tight. In order to

give a further characteriztion, we introduce the following notion: Let V be a codimension two
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spacelike affine subspace of Rn+1
1 . We define V as a spacelike subspace parallel to V . Since V

⊥
is

a Lorentz plane, there exists a pseudo-orthonormal basis {vT , vS} of V
⊥

then we have lightlike
vectors v+ = vT + vS, v− = vT − vS. There exist p ∈ Rn+1

1 such that V = p + V . For any
w ∈ V , 〈p + w, v±〉 = 〈p, v±〉 = c± are constant numbers. We consider lightlike hyperplanes
HP (v±, c±). Then we have

V = HP (v+, c+) ∩HP (v−, c−).

For a point p ∈ M, we say that a codimnsion two spacelike affine subspace V is a codimension
two spacelike tangent space if TpM ⊂ V . Moreover, HP (v±, c±) are said to be tangent lightlike
hayperplanes of M at p. Let K be a subset of Rn+1

1 . A hyperplane HP through a point x ∈ K is
called a support plane of K if K lies entirely in one of the closed half-spaces determined by HP.
The half-space is called a support half-space. Let M be a compact orientable n− 1-dimensional
manifold. Then we have unique two lightlike tangent hyperplanes of f(M) at each point p ∈ M.
These hyprplanes are HP (v±, c±), where v± = nT (p)±nS(p) and c± = 〈f(p), nT (p)±nS(p)〉.
In this case, we say that f(M) is lightlike convex (or, L-convex in short) if for each p ∈ M, the
lightlike tangent hyperplanes of f(M) at f(p) are support planes of f(M).

We consider the case that M is a sphere. Let f : Ss −→ Rn+1
1 be a spacelike immersion. If

s = n− 1, we have the following theorem.

Theorem 9.2 Let f : Sn−1 −→ Rn+1
1 be a spacelike embedding. Then the following conditions

are equivalent:

(1) f is L-convex,

(2) τ`(S
n−1, f) = 2,

(3) f is L-tight.

Generally the following condition (4) implies the condition (2). If we assume that n is odd or
π ◦ f : M −→ Rn

0 is an embedding, then the condition (2) implies the condition (4).

(4) τ+
` (Sn−1, f) = τ−` (Sn−1, f) = 1.

Proof. By Theorem 9.1, the conditons (2) and (3) are equivalent. By Theorem 8.4, the
condition (2) implies (4) for the case when n is odd. If π ◦ f is an embedding, Theorem 8.3
asserts that the condition (2) implies (4) even for the case when n is even. It is trivial that the
condition (4) implies the condition (2).

We now give a proof that the conditions (1) and (3) are equivalent. Suppose that f is
L-tight. If f is not L-convex, then there exists p ∈ Sn−1 and v ∈ Sn−1

+ such that one of the

tangent lightlike hyperplanes at p separates f(Sn−1) into two parts. Then we have v = L̃σ(p)
for σ = ± (i.e., p is a critical point of hv). If p is a non-degenerate critical point, it contradicts to
the assumption that f is L-tight. If p is a degenerate critical point, under a small perturbation
of v ∈ Sn−1

+ , we have a non-degenerate critical point which is neither the maximum nor the
minimum point. This also contradicts to the assumption that f is L-tight. We now suppose
that f is not L-tight. Then there exists a non-degenerate lightcone height function hv which as
at least three critical points. If necessary, under a small perturbation of v ∈ Sn−1, all critical
values of hv are different. It follows that there exists a critical point p ∈ Sn−1 of hv such
that neither the maximum nor the minimum point of hv. This means that one of the tangent
lightlike hyperplanes of f(Sn−1) locally separates f(Sn−1) into at least two parts. Therefore, f
is not lightlike convex. 2

We now consider the case when n + 1 − s > 2. For any (p, ξ) ∈ N1(M)[nT ], we consider
the lightlike tangent hyperplanes HP (v±p , c±), where v±p = nT (p)± ξ and c± = 〈f(p), v±p 〉. We
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denote that TSM [nT , ξ]p = HP (v+
p , c+)∩HP (v−p , c−), which is called a spacelike tangent affine

space with codimension two of f(M) at p ∈ M. We also define

F`(n
T (p),±ξ) = {x ∈ Rn+1

1 | 〈x− f(p), v±p 〉 ≤ 0 }
P`(n

T (p),±ξ) = {x ∈ Rn+1
1 | 〈x− f(p), v±p 〉 ≥ 0 }.

We call F`(n
T (p), ξ) (respectively, P`(n

T (p),±ξ)) the future regions (respectively, the past
regions) with respect to (nT (p),±ξ). We have a closed subset

S(nT (p), ξ) = Rn+1
1 \ Int

(
(F`(n

T (p), +ξ) ∩ F`(n
T (p),−ξ)) ∪ (P`(n

T (p), +ξ) ∩ P`(n
T (p),−ξ)

)
,

which is called the spacelike region with respect to (nT (p), ξ). Here, IntX is the interior of X.
We also consider the following subsets of S(nT (p), ξ):

S+(nT (p), ξ) = {x|〈x− f(p), v+
p 〉 ≥ 0, 〈x− f(p), v−p 〉 ≤ 0 and 〈x− f(p), ξ〉 ≥ 0}.

We remark that ξ ∈ S+(nT (p), ξ). Then we have the following lemma.

Lemma 9.3 Let f : M −→ Rn+1
1 be a spacelike embedding of a closed orientable manifold with

dim M < n − 1. If f is L-tight, then there exists a spacelike affine subspace V ⊂ Rn+1
1 with

dim V = n− 1 such that f(M) ⊂ V.

Proof. Since f is L-tight, the lightlike tangent hyperplanes at any point p ∈ M are the support
plane of f(M).

Suppose that there exists p ∈ M such that

f(M) ⊂ F`(n
T (p), +ξ) ∩ F`(n

T (p),−ξ),

for any ξ ∈ N1(M)p[n
T ]. We arbitrary choose ξ ∈ N1(M)p[n

T ]. Since HP (v±p , c±) are the
tangent lightlike hyperplanes at p ∈ M, we have Tf(p)f(M) ⊂ TSM [nT , ξ]p. By the fact
dim TSM [nT , ξ]p = n−1 and the assumption dim M < n−1, there exists ξ′ ∈ N(M)p[n

T ] such
that ξ 6= ξ′ and

f(M) ⊂ (F`(n
T (p), +ξ′) ∩ F`(n

T (p),−ξ′))
⋂

(F`(n
T (p), +ξ) ∩ F`(n

T (p),−ξ)).

Therefore, we have Tf(p)f(M) ⊂ TSM [nT , ξ]p ∩ TSM [nT , ξ′]p. We can inductively proceed this
process, so that we have

f(p) + Tf(p)f(M) ⊂
⋂̀
i=1

TSM [nT , ξ]p.

However, there exists ` such that dim
⋂`

i=1 TSM [nT , ξ]p < dim M. This is a contradiction.
Therefore, f(M) ⊂ S(nT (p), ξ) at any point p ∈ M.

Suppose that f(M) ⊂ S+(nT (p), ξ) at a point p ∈ M. Since dim M < n − 1, there exists
a closed loop γ : [0, 1] −→ N1(M)[nT ]p such that γ(0) = γ(1) = ξ and γ(1/2) = −ξ. By the
assumption that f is L-tight, there exists ξ̄ ∈ N1(M)[nT ]p such that

f(M) ⊂ S+(nT (p), ξ̄) ∩ S+(nT (p),−ξ̄) = TSM [nT , ξ]p.

Here TSM [nT , ξ]p is a spacelike affine subspace in Rn+1
1 . 2

Then we have the following theorem.
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Theorem 9.4 Let f : Ss −→ Rn+1
1 be a spacelike embedding with n−1 > s. Then the following

conditions are equivalent:

(1) τ`(S
s, f) = 2,

(2) f is L-tight,

(3) There exists a spacelike affine subspace V ⊂ Rn+1
1 with dim V = s + 1 such that f(Ss)

is a convex hypersurface in V.

Proof. By Theorem 9.2, the conditions (1) and (2) are equivalent. It is trivial that the codition
(3) implies the condition (2). We now assume that f is L-tight. By Lemma 9.3, there exists a
spalike affine subspace V in Rn+1

1 with dim V = n− 1 such that f(Ss) ⊂ V. For any p ∈ Ss and
ξ ∈ N1(S

s)[nT (p)], HP (v±, c±)∩V = V or HP (v±, c±)∩V is a hyperplane in V. Since f is L-
tight, every tangent hyperplane in V is a support plane of f(Ss) in V. Therefore, f(Ss) is tight
in V in the Euclidean sense. Then we can apply the result of submanifolds in the Euclidean
space [5], so that there exists a a spacelike affine subspace V ⊂ Rn+1

1 with dim V = s + 1 such
that f(Ss) is a convex hypersurface in V . This completes the proof. 2

10 Special cases

In this section we consider submanifolds in Euclidean space and Hyperbolic space as special
cases as the previous results.

10.1 Submanifolds in Euclidean space

Let Rn
0 be the Euclidean space which is given by the equation x0 = 0 for x = (x0, x1, . . . , xn) ∈

Rn+1
1 . Consider an immersion f : M −→ Rn

0 , where M is a closed orientable manifold. In this
case we can adopt nT = e0 = (1, 0, . . . , 0) as a future directed timelike unit normal vector field
along f(M) in Rn+1

1 . In this case N1(M)[nT ] = N1(M)[e0] is the unit normal bundle N e
1 (M)

of f(M) in Rn
0 in the Euclidean sense. Therefore, the lightcone Gauss map L̃G(nT ) is given

by L̃G(nT )(p, ξ) = e0 + ξ = e0 +G(p, ξ), where G : N e
1 (M) −→ Sn−1 is the Gauss map of the

unit normal bundle N e
1 (M)[5]. Since e0 is a constant vector, we have

K∗
` (p) = K∗(p),

where K∗(p) is the total absolute curvature of M at p (cf., [5]) in the Euclidean sense. Therefore,

Theorem 7.3 is the original Chern-Lashof theorem in [5]. If dimM = n− 1, then the K̃±
` (p) =

(±1)n−1K(p) where K is the Gauss-Kronecker curvature of M. Thus, if n is odd, then K̃±
` (p) =

K(p). Moreover, |K̃±
` |(p) = |K|(p) for any n. Therefore, Theorems 8.1, 8.3 and 8.4 are the

original integral formulae in the Euclidean sense[5]. Furthermore, if n = 3, then the Proposition
8.6 is the original Willmore inequality in Eulclidean space [15, Theorem 7.2.2]. For the torus,
we have the original Willmore conjecture in this case.

On the other hand, the intersection of a lightlike hyperplane with Rn
0 is a hyperplane in Rn

0 ,
so that the notion of lightlike tightness is equivalent to the original notion of the tightness[4].

We remark that if nT = v is a constant timelike unit vector, the spacelike submanifold
f(M) is a submanifold in the spacelike hyperplane HP (v, c). Since HP (v, c) is isometric to
the Euclidean space Rn

0 , all results for the case n = e0 hold in this case.
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10.2 Submanifolds in Hyperbolic space

Let f : M −→ Hn(−1) be an immersion into the hyperbolic space. Then we adopt nT (p) =
f(p). In this case N1(M)[nT ] = N1(M)[f ] is the unit normal bundle Nh

1 (M) of f(M) in

Hn(−1). Therefore, the lightcone Gauss map L̃G(nT ) is given by L̃G(nT )(p, ξ) = ˜f(p) + ξ =

L̃(p, ξ), where L̃ : Nh
1 (M) −→ Sn−1

+ is the horospherical Gauss map of the unit normal bundle
Nh

1 (M)(cf., [1]). Thus, we have

K∗
` (p) =

∫

Nh
1 (M)p

|K̃h(p, ξ)|dσk−2,

which is the total absolute horospherical curvature of M at p (cf., [1]) in Hn(−1). Therefore,
τ`(M, f) = τh(f).

On the other hand, let f : M −→ Hn(−1) be an embedding such that M is a closed
orientable manifold with dim M = n − 1. In this case, f(M) is a spacelike submanifold of
codimension two in Rn+1

1 , then we have τ±` (M, f) = τ±h (f ; M) (cf., [2]). In [2] we gave an
example of a curve in H2(−1) such that τ+

h (f ; M) 6= τ−h (f ; M). This example can be easily
generalized into any higher dimensional case.

On the other hand, the notion of the lightlike tightness is equivalent to the notion of the
horo-tightness in Hn(−1)[2, 3, 4, 14]. Since the intersection of Hn(−1) with a spacelike affine
subspace V is a round hypersphere in V, the condition (3) in Theorem 9.4 can be changed into
the following condition:

(3′) f(Ss) is a metric (round) sphere in Hn(−1).

Therefore, Theorems 9.2 and 9.4 are characterizations of the horo-tight spheres in Hn(−1) [2].
Further results on horo-tight immersions into Hn(−1) are presented in [14].
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