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Tangent varieties and openings of map-germs

Goo Ishikawa
Department of Mathematics, Hokkaido University, Japan

Dedicated to the memory of Vladimir Zakalyukin

Abstract

By taking embedded tangent spaces to a submanifold in an affine space, we ob-
tain a ruled variety, which is called the tangent variety to the submanifold and
has non-isolated singularities in general. We explain a method of modifications
of map-germs, which we call openings of map-germs, and study the local clas-
sification problem of tangent varieties in terms of the opening construction. In
particular, we present the general stable classification result of tangent varieties
to generic submanifolds of sufficiently high codimension.

1 Introduction

Embedded tangent spaces to a submanifold in an affine space draw a variety, which
is called the tangent variety to the submanifold.

Let N be an n-dimensional C∞ manifold. We denote by TN the tangent bundle
of N . Let f : Nn → Rm be an immersion. Then the tangent mapping Tan(f) :
TN → Rm of f is defined by

Tan(f)(x, v) := f(x) + f∗(v), (x, v) ∈ TN,

using the affine structure of Rm.
Then we define the tangent variety of f as the parametrised variety which is

defined by the right equivalence class of Tan(f). If (x1, . . . , xn) be a system of local
coordinates of N , and (x1, . . . , xn, t1, . . . , tn) the induced system of local coordinated
of TN , then Tan(f) is given by

Tan(f)(t, x) = f(x) +
n∑

j=1

tj
∂f

∂xj
(x).
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Also note that we can define similarly the tangent varieties of mappings to a
projective space. Tangent varieties appear in various geometric problems and appli-
cations naturally ([8][25][19][30]). See [15], for the geometric exposition on the local
classification problem of tangent varieties.

It is known, in the three dimensional Euclidean space, that the tangent variety
(tangent developable) to a generic space curve has singularities each of which is
locally diffeomorphic, i.e. right-left equivalent, to the cuspidal edge or to the folded
umbrella, as is found by Cayley and Cleave [7].

Figure 1: cuspidal edge and folded umbrella.

The cuspidal edge is parametrised by the map-germ (R2, 0) → (R3, 0) defined
by

(w, x) 7→ (w, x2, x3).

Note that it is diffeomorphic to the germ

(t, s) 7→ (t + s, t2 + 2st, t3 + 3st2)

of a parametrisation of tangent variety.
The folded umbrella is parametrised by the germ (R2, 0) → (R3, 0) defined by

(t, s) 7→ (t + s, t2 + 2st, t4 + 4st3),

which is diffeomorphic to

(w, x) 7→ (w, x2 + ux,
1
2
x4 +

1
3
ux3).

The folded umbrella is often called the cuspidal cross cap.
Cuspidal edge singularities appear along ordinary points of a curve in R3, while

the folded umbrella appears at an isolated point of zero torsion([8][25]).
For more degenerate curves in R3, the singularities of tangent varieties were

classified by Mond [21][22] and Scherbak [28][4]. See also the survey [14].
Tangent varieties are defined also for higher codimensional curves. Then, it is

known that the tangent variety to a generic curve in Rm with m ≥ 4 has singularities
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each of which is locally diffeomorphic to the higher codimensional cuspidal edge in
Rm (Theorem 2.6 [15]).

The higher codimensional cuspidal edge is parametrised by the map-germ
(R2, 0) → (Rm, 0) defined by

(w, x) 7→ (w, x2, x3, 0, . . . , 0),

which is diffeomorphic to the germ

(t, s) 7→ (t + s, t2 + 2st, t3 + 3st2, . . . , tm + mstm−1),

and also to
(t, s) 7→ (t + s, t2 + 2st, t3 + 3st2, 0, . . . , 0).

Figure 2: The higher codimensional cuspidal edge

Thus we understand that the local diffeomorphism class of tangent varieties to
generic curves of sufficiently high codimension is determined uniquely. Moreover the
tangent variety to any immersed curve in Rm is obtained locally by a projection of
a higher codimensional cuspidal edge in Rm′

for some m′ ≥ m.
Tangent varieties are defined also for higher dimensional submanifolds. In [15],

we observe several results of tangent varieties to surfaces. For instance, let us con-
sider a surface in R5. Then the tangent variety to a generic surface becomes a
hypersurface in R5 and it has conical singularities along the original surface itself,
together with several self-intersection loci. The local classification problem for singu-
larities of tangent varieties of generic surfaces in R5 is still open, as far as the author
knows. Note that, in [15], it is treated the classification problem for singularities of
tangent varieties to Legendre surfaces in R5. In particular we show that the tangent
variety of an elliptic or a hyperbolic Legendre surface in R5 has D4-singularity along
the Legendre surface itself using the criterion in [26] (Theorem 9.5 of [15]).

Instead, in this paper, we show a simple observation that the local diffeomor-
phism class of tangent varieties to generic surface in Rm is unique if m is sufficiently
large:
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Theorem 1.1 Suppose m ≥ 11. Then the tangent map-germ Tan(f) : (TN, (p, 0)) →
Rm of a proper immersion f : N2 → Rm of a two dimensional manifold N , which
is generic in Whitney C∞-topology, has the unique right-left equivalence class for
any (p, 0) ∈ N × {0}. Moreover Tan(f) : TN \ N × {0} −→ Rm is an immersion.

We have that the tangent variety to any surface in Rm is obtained by a projection
of the universal singularity in Rm′

for some m′ ≥ m. Further, we show this is true
for any dimension of submanifolds. (See Theorem 6.3, Corollaries 6.4).

The singularities of tangent varieties are obtained in general by so called the
opening construction. In general, given a C∞ map-germ g : (N, a) → (M, b) with
dimN ≤ dimM , we associate a sub-algebra Rg in the R-algebra of C∞ function-
germs on (N, a) such that, for any element h ∈ Rg, the map-germ (g, h) : (N, a) →
(M×R, (b, h(a))) has the same singular locus with g in (N, a) and the same kernels of
the differential (g, h)∗ : (TN, a×TaN) → T (M×R) with g∗ : (TN, a×TaN) → TM .
By adding a finite number of elements in Rg as components, we obtain an “opening”
of g.

The tangent variety to a curve in Rm,m ≥ 3 projects locally to the tangent
variety to a space curve in the osculating 3-space, and to a plane curve in the
osculating 2-plane. In [15] we observed that the tangent variety in Rm can be
regarded as an “opening” of a tangent variety to a space curve and to a plane curve.

Though name “opening” is firstly used in [15], the notion of opening is, for
instance, used in [11][13] intrinsically. In fact, openings of map-germs appear nat-
urally as typical singularities in several problems of geometry and its applications.
For example, the open swallowtail, which is an opening of the swallowtail as a sin-
gular Lagrangian variety [2], and as a singular solution to certain partial differential
equation [10]. The open folded umbrella appears as a‘ frontal-symplectic singular-
ity ’([16]). In this paper, we show one example of this fact that openings appear
naturally in geometry.

In §2, we introduce the notion of openings of map-germs and prepare necessary
results to show the classification results of tangent varieties in this paper. In §3, we
introduce the generalised notion of frontal mappings to connect the singularities of
tangent varieties and opening constructions. In §4, we recall the genericity results
of immersions into higher dimensional space. In §5, we give the proof of Theorem
1.1. In §6, we show the stable classification for singularities on tangent varieties of
generic submanifold of arbitrary dimension.

In this paper all manifolds and mappings are assumed of class C∞ unless other-
wise stated.
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2 Opening construction of differentiable map-germs

Let (N, a) be a germ of n-dimensional manifold at a point a ∈ N . Let g : (N, a) →
(Rm, b) be a map-germ with n ≤ m.

We define the Jacobi module Jg of g by

Jg = {
m∑

j=1

pj dgj | pj ∈ EN,a (1 ≤ j ≤ m) } ⊂ Ω1
N,a

in the space Ω1
N,a of 1-form-germs on (N, a). Then define the ramification module

Rg of g by
Rg = {h ∈ EN,a | dh ∈ Jg},

in the space EN,a of function-germs on (N, a). See [11][13]. The ramification module
is regarded as the set of generating function in symplectic geometry. Note that
a related notion was introduced firstly in [23]. See [31] for the related notion of
“generating ideal”.

For g : (N, a) → (Rm, b), g′ : (N, a) → (Rm′
, b′), easily we see that Jg′ ⊆ Jg if

and only if Rg′ ⊆ Rg, and therefore that Jg′ = Jg if and only if Rg′ = Rg.

Definition 2.1 Let g : (N, a) → (Rm, b), g = (g1, . . . , gm), n ≤ m be a map-germ.
A map-germ G : (N, a) → Rm × Rr = Rm+r defined by

G = (g1, . . . , gm, h1, . . . , hr)

is called an opening of g if h1, . . . , hr ∈ Rg. Then g is called a closing of G.

For any opening G of g, we have RG = Rg and JG = Jg.
Note that an opening of an opening of g is an opening of g.

Definition 2.2 An opening G = (g, h1, . . . , hr) of g is called a versal opening
(resp. a mini-versal opening) of g : (N, a) → (Rm, b), if 1, h1, . . . , hr form a
(minimal) system of generators of Rg as an ERm,b-module via g∗ : ERm,b → EN,a.

Note that a versal opening of an opening of g is a versal opening of g. An opening
of a versal opening of g is a versal opening of g.

Example 2.3 (1) Let h : (R, 0) → (R, 0), h(x) = x2. Then Rh =
〈
1, x3

〉
h∗(E1)

.
The map-germ H : (R, 0) → (R2, 0),H(x) := (x2, x3), the simple cusp map, is the
mini-versal opening of h.
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(2) Let g : (R2, 0) → (R2, 0), g(x, t) = (x, t2). Rg =
〈
1, t3

〉
g∗(E2)

. The map-germ
G : (R2, 0) → (R3, 0), G(x) := (x, t2, t3), the cuspidal edge, is the mini-versal
opening of g.
In this example, we set En = ERn,0.

As examples in a more degenerate case, the swallowtail is an opening of the
Whitney’s cusp. The open swallowtail is an opening of the swallowtail and of the
Whitney’s cusp ([15]).

In many case, versal openings do exist. For the general results on the existence
of versal openings, consult with [15].

In this paper we are concerned with only the uniqueness:

Proposition 2.4 (Proposition 6.9 of [15]) Let g : (Nn, a) → (Rm, b) be a C∞ map-
germ (n ≤ m). Then the mini-versal opening G : (N, a) → Rm+r of g is, if it
exists, unique up to left-equivalence and any versal opening G : (N, a) → Rm+s of
g is left-equivalent to a mini-versal opening composed with an immersion (Rn, a) →
Rm+r ↪→ Rm+s.

To make assure we give a proof of Proposition 2.4 briefly.

Lemma 2.5 Assume that there exists a versal opening of g. Then an opening G =
(g, h1, . . . , hr) of g is a mini-versal opening if and only if if and only if 1, h1, . . . , hr

form a basis of R-vector space Rg/g∗(mRm,b)Rg.

Proof : By the assumption, we have that Rg is a finite ERm,b-module via g∗. Thus by
Nakayama’s lemma (see for instance [5]), we have that 1, h1, . . . , hr generate Rg as
ERm,b-module via g∗ if and only if they form a generator of Rg/g∗(mRm,b)Rg over R.
Therefore 1, h1, . . . , hr form a minimal system of generators of Rg as ERm,b-module
via g∗ if and only if they a basis of Rg/g∗(mRm,b)Rg over R. 2

Proof of Proposition 2.4: Let G = (g, h1, . . . , hr) and G′ = (g, k1, . . . , ks) be mini-
versal openings of g. Then, by Lemma 2.5, we have r = s and (h1, . . . , hr) (resp.
(k1, . . . , kr)) form a basis of Rg/g∗(mRm,b)Rg. We may assume hi(a) = 0, kj(a) =
0, 1 ≤ i, j ≤ r. Since kj ∈ Rg, there exist c 0

j , c 1
j , . . . , c r

j ∈ ERm,b such that kj =
c 0
j ◦ g + (c 1

j ◦ g)h1 + · · · + (c r
j ◦ g)hr, (1 ≤ j ≤ r). Then we see the r × r-matrix

(c i
j (b)) is regular. We set Ψ(y, z) = (y, (c 0

j (y) + c 1
j (y)z1 + · · · + c r

j (y)zr)1≤j≤s).
Then Ψ : (Rm+r, (b, 0)) → (Rm+r, (b, 0)) is a diffeomorphism germ and G′ = Ψ ◦G.
Now let G′′ be a versal opening of g. Then similarly as above, G′′ = Ψ ◦ G and the
matrix (c i

j (b)) is of rank r. Then Ψ is an immersion-germ. 2
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Actually we need more general result to show the main Theorem 1.1.

Definition 2.6 Let g : (N, a) → (Rm, b), g′ : (N, a) → (Rm′
, b′) be map-germs. We

call g and g′ are called J -equivalent if their Jacobi modules coincide Jg = Jg′ .

If g and g′ are left equivalent, then Rg = Rg′ and therefore, they are J -
equivalent. However the converse does not hold.

Example 2.7 Define g, g′ : (R2, 0) → (R3, 0), by g(s, t) = (s2, st, t2), g′(s, t) =
(s2 + s3, st, t2). Then g, g′ are J -equivalent. However g, g′ are not left equivalent.
In fact g|R2\0 is 2 to 1, while g′|R2\0 is injective on R2 \ {t = 0}.

Definition 2.8 A map-germ g : (N, a) → (Rm, b) is called J -minimal if dg1, . . . , dgm

form a minimal system of generators of Jg as an EN,a-module.

Lemma 2.9 Suppose two map-germs g : (N, a) → (Rm, b) and g′ : (N, a) →
(Rm′

, b′) are J -equivalent and they are both J -minimal. Then m = m′.

In fact m = m′ = dimR Jg/mN,aJg.

The following generalisation of Proposition 2.4 is the key of the proof on our
main result.

Proposition 2.10 Suppose g : (N, a) → (Rm, b) and g′ : (N, a) → (Rm, b′) are
J -equivalent and they are both J -minimal. Moreover suppose G is a mini-versal
openings of both g and g′, and G′ is a mini-versal opening of both g and g′, Then G
and G′ are left equivalent.

Proof : Set G = (g, h) and G′ = (g′, h′). We set G′′ = (g, h′) and G′′′ = (g′, h). Then,
by Proposition 2.4, we have that G and G′′ are left equivalent and that G′ and G′′′

are left equivalent. Therefore it suffices to show that G and G′′′ are left equivalent.
In fact we have that g′ = Φ ◦ G for some Φ : (Rm+r, 0) → (Rm, 0), because G is a
versal opening of g and g′ is J -equivalent to g. Therefore G′′′ = (Φ, id) ◦ G. Since
g′ and g, we see that (Φ, id) is a diffeomorphism-germ. Thus we have that G and
G′′′ are left equivalent. 2

3 Generalised frontal mappings

In this paper we introduce a key notion that connects the study on tangent varieties
and opening procedures of map-germs.
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Let M be an m-dimensional manifold and 0 ≤ ` ≤ m. Let

Gr(`, TM) = {V | y ∈ M,V ⊂ TyM, dimV = `}

denote the Grassmannian bundle over M consisting of `-dimensional linear tan-
gential subspaces to M , and π : Gr(`, TM) → M the natural projection. The
canonical differential system C ⊂ TGr(`, TM) on Gr(`, TM) is defined by, for
(y, V ) ∈ Gr(`, TM),

C(y,V ) := {v ∈ T(y,V )Gr(`, TM) | π∗v ∈ V (⊂ TyM)}.

Note that dimGr(`, TM) = m + `(m − `) and rank C = ` + `(m − `).
Let N be an n-dimensional manifold with n ≤ m. A C∞ mapping f : Nn → Mm

is called frontal if
(I) the locus of regular points Reg(f) = {x ∈ N | f : (N,x) → (M,f(x)) is immersive}
of f is dense in N , and
(II) there exists a C∞ mapping f̃ : N → Gr(n, TM) satisfying π ◦ f̃ = f and
f̃(x) = f∗(TxN) for any x ∈ Reg(f).

The mapping f̃ is uniquely determined if it exists, which we call the Grassmann
lifting of f .

The Grassmann lifting f̃ of a frontal mapping f : N → M is an integral mapping
to the canonical differential system C on Gr(n, TM).

If f is an immersion, then f is frontal. For example, the tangent mapping of a
curve of finite type is a non-immersive frontal mapping ([15]). The name “frontal”
was firstly introduced by Vladimir Zakalyukin.

If f is frontal and f̃ is an immersion, then f is called a front. Note that the
above notions of frontals and fronts are applied usually in the case m = n + 1.

The notion of frontal mappings is generalised naturally to the following: Let M
be a manifold of dimension m and ` a natural number with 0 ≤ ` ≤ m. Let N be a
manifold of dimension n with n ≤ `.

A mapping f : N → M is called `-frontal if
(I) the locus of regular points Reg(f) ⊂ N is dense in N and
(II) there exists a C-integral map f̃ : N → Gr(`, TM) such that π ◦ f̃ = f and
f̃(x) ⊃ f∗(TxN) for any x ∈ N .

Note that an n-frontal mapping f : Nn → M is frontal. Any mapping f : Nn →
Mm is m-frontal, because Gr(m,TMm) ∼= M .

A germ f : (N, p) → M is called `-frontal if some representative of f is `-frontal
in the above sense. For n ≤ ` ≤ `′ ≤ m, if a germ f is `-frontal, then it is `′-frontal.
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Remark 3.1 A mapping f : N → M is called sub-frontal if there exist a frontal
mapping g : L → M and an embedding i : N → L such that f = g ◦ i. Then f is
`-frontal with ` = dimL.

Remark 3.2 Let `, m be a natural number with 0 ≤ ` ≤ m. Consider the Grass-
mannian bundle Gr(`, TP (Rm+1)) over the m-dimensional projective space P (Rm+1).
Let V ⊂ TyP (Rm+1) be an `-dimensional linear subspace for a y ∈ P (Rm+1). Then
there exists uniquely an (` + 1)-dimensional linear subspace Ṽ ⊂ Rm+1 such that
the projective subspace P (Ṽ ) ⊂ P (Rm+1) has the tangent space V = TyP (Ṽ ) ⊂
TyP (Rm+1) at y. Then Gr(`, TP (Rm+1)) is identified with the flag manifold

F1,`+1(Rm+1) = {(V1, V`+1) | V1 ⊂ V`+1 ⊂ Rm+1, dim(V1) = 1,dim(V`+1) = ` + 1},

by mapping (y, V ) 7→ (y, Ṽ ) ([15]). The canonical differential system C = C1,`+1(Rm+1)
is defined by, for each (V1, V`+1) ∈ F1,`+1(Rm+1),

C(V1,V`+1) = {v ∈ T(V1,V`+1)F1,`+1(Rm+1) | π1∗(v) ∈ TP (V`+1)(⊂ TP (Rm+1))},

where π1 : F1,`+1(Rm+1) → P (Rm+1) is the natural projection.

The following lemma gives a description of the canonical system C in terms of
local coordinates:

Lemma 3.3 (Remark 3.7 of [15]) The canonical system C on F1,`+1(Rm+1) is locally
given by

dx 0
i+1 −

∑̀
j=1

x j
i+1dx0

j = 0, (` ≤ i ≤ m − 1),

for a system of local coordinates x 0
i+1, (0 ≤ i ≤ m− 1), x j

i+1, (1 ≤ j ≤ `, ` ≤ i ≤ m−
1). The projection π1 : F1,`+1(Rm+1) → P (Rm+1) is represented by (x 0

1 , . . . , x 0
m).

If we write yj = x 0
j (1 ≤ j ≤ `), zi = x 0

n+i (1 ≤ i ≤ m − `) and pij = x j
n+i (1 ≤ i ≤

m − `, 1 ≤ j ≤ `), then we have

dzi −
n∑

j=1

pijdyj = 0, 1 ≤ i ≤ m − `.

Therefore the condition that a map F : Nn → Gr(`, TP (Rm+1)) is C-integral is
expressed by

d(zi ◦ F ) −
∑̀
j=1

(pij ◦ F ) d(yj ◦ F ) = 0, 1 ≤ i ≤ m − `.
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The following lemma characterises `-frontal map-germs.

Lemma 3.4 Let 1 ≤ n ≤ ` ≤ m. A map-germ f : (Nn, p) → Mm is `-frontal if and
only if f is left equivalent to an opening of a map-germ g : (N, p) → R` with dense
Reg(g).

Proof : Suppose f is `-frontal. Let f̃ : (N, p) → Gr(`, TM) be an C-integral map
such that π ◦ f̃ = f and f̃(x) ⊃ f∗(TxN) for any x ∈ (N, p). We take a system of
local coordinates y1, . . . , y`, z1, . . . , zm−`; pij of Gr(`, TM) around f̃(p) such that the
`-dimensional subspace f̃(p) of TpM is given by dz1(p) = · · · = dzm−`(p) = 0, and
that

zi ◦ f =
∑̀
j=1

(pij ◦ f̃)d(yj ◦ f), (1 ≤ i ≤ m − `) (∗).

We set g = (y1, . . . , y`) ◦ f . Then Reg(g) is dense in (N, p) and zi ◦ f ∈ Rg by (*),
1 ≤ i ≤ m − `. Therefore f is left-equivalent to an opening of g.

Conversely let g : (N, p) → R` be a map-germ with dense Reg(g) and G =
(g, h1, . . . , hm−`) be an opening of g. Then Reg(G) = Reg(g) is dense in (N, p).
Since hi ∈ Rg, there exist aij on (N, p) satisfying

hi =
∑̀
j=1

aijdgj , (1 ≤ i ≤ m − `).

Now we define a map-germ H : (N, p) → Gr(`, TM) by H(x) = (G(x), aij(x)) =
(g(x), h(x), aij(x)). Then H is a C-integral map and satisfies π ◦ H = G. Moreover
H(x) ⊃ G∗(TxN) for any x ∈ N . Therefore G is `-frontal. 2

Corollary 3.5 Openings of an `-frontal map-germ are `-frontal.

Proof : Let f be `-frontal and F = (f, h) be an opening of f . By Lemma 3.4, f
is left-equivalent to an opening G = (g, k) of a map-germ g : (N, a) → R`. Then
f = Ψ ◦ G. Then Rf = RG = Rg. Therefore F is an opening of g. Hence we see
that F is `-frontal again by Lemma 3.4. 2

4 Higher order non-degenerate immersions

Let f : Nn → Rm be a mapping and f(x) = (f1(x), . . . , fm(x)) be a local expression
of f via an affine system of local coordinates on Rm. We define the matrix Wi(f)(x),
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for i = 1, 2, 3, . . . , by

Wi(f)(x) :=

(
∂|α|f

∂xα
(x)

∣∣∣∣∣ α ∈ Nn \ {0}, 1 ≤ |α| ≤ i

)
.

Here we regard each
∂|α|f

∂xα
(x) as a column vector. Let k be a positive integer. Then

f is called k-non-degenerate if rankWk(x) =
∑k

j=1 nCj , the number of columns,
(cf. [24][9]). Note that, in this case, we must have m ≥

∑k
j=1 nCj .

Lemma 4.1 Let N be an n-dimensional manifold and m ≥ n +
∑k

j=1 nCj. Then,
in the space of proper immersions Nn → Rm with Whitney C∞ topology, the set of
k-non-degenerate immersions form a residual set.

Proof : In the k-jet space Jk(N,Rm), the condition that the rank of Wk is less than∑k
j=1 nCj defines an algebraic subset of codimension m − (

∑k
j=1 nCj) + 1. Since

n < m − (
∑k

j=1 nCj) + 1, we see that the set of k-non-degenerate immersions is
residual in the space of proper immersions Nn → Rm, by the transversality theorem.
2

Corollary 4.2 Let N be an n-dimensional manifold and m ≥ 2n + 1
2n(n + 1).

Then, in the space of proper immersions Nn → Rm, the set of 2-non-degenerate
immersions form a residual set.

Corollary 4.3 Let N be an n-dimensional manifold and m ≥ 2n + 1
2n(n + 1) +

1
6n(n + 1)(n + 2). Then, in the space of proper immersions Nn → Rm, the set of
3-non-degenerate immersions form a residual set.

For to make clear the behaviour of tangent mapping outside of zero-section, we
need the following:

Lemma 4.4 Let f : N → Rm be a 2-non-degenerate immersion. Then Tan(f) :
TN \ N × {0} is an immersion.

Proof : Recall that F = Tan(f) is defined locally by

F (t, x) = Tan(f)(t, x) = f(x) +
n∑

j=1

tj
∂f

∂xj
(x).

11



Then we have
∂F

∂ti
=

∂f

∂xi
,

∂F

∂xi
=

∂f

∂xi
+

n∑
j=1

tj
∂2f

∂xi∂xj
.

Then, for the rank of Jacobi matrix of F , we have

rank
(

∂F

∂t
,
∂F

∂x

)
= rank

 ∂f

∂x1
, . . . ,

∂f

∂xn
,

n∑
j=1

tj
∂2f

∂x1∂xj
, . . . ,

n∑
j=1

tj
∂2f

∂xn∂xj

 .

Since f is 2-non-degenerate, we see that rank
(

∂F

∂t
,
∂F

∂x

)
= 2n, for any (t1, . . . , tn) 6=

(0, . . . , 0). In fact suppose

n∑
i=1

ai
∂f

∂xi
+

n∑
i=1

bi

 n∑
j=1

tj
∂2f

∂xn∂xj

 = 0,

for some ai, bi ∈ R. Then we have
n∑

i=1

ai
∂f

∂xi
+

∑
1≤i≤j≤n

(bitj + bjti)
∂2f

∂xi∂xj
= 0.

Therefore ai = 0, (1 ≤ i ≤ n) and bitj + bjti = 0, (1 ≤ i ≤ j ≤ n). Suppose
t1 6= 0. Then, since 2b1t1 = 0, we have b1 = 0. Then, since b1tj + bjt1 = 0, we have
bj = 0, 2 ≤ j ≤ n. Suppose, in general, ti 6= 0 for some i. Then bi = 0. For j < i, we
have bjti + bitj = 0, hence bj = 0. For j > i, we have bitj + bjti = 0, hence bj = 0.
Thus bj = 0, 1 ≤ j ≤ n. 2

Remark 4.5 A mapping f : Nn → Rm, n ≤ m is called of finite type at p ∈ N
if the m ×∞-matrix

W∞(f)(x) =

(
∂|α|f

∂xα
(x)

∣∣∣∣∣ α ∈ Nn \ {0}

)
is of rank m. Moreover, f is called of finite type if it is if finite type at every point
in N .

Using the transversality theorem, we can show easily:

Lemma 4.5 Let N be an n-dimensional manifold and n ≤ m. Then mappings
of non-finite type N → Rm form an infinite codimensional subset of C∞(N,Rm).
Namely, for any `, any `-dimensional family of mapping F : N × R` → Rm is
approximated by F̃ in C∞-topology such that any F̃λ, (λ ∈ R`) is of finite type.

12



5 Tangent varieties of surfaces with large codimension

First we consider the classification problem of tangent varieties of generic immersions
N2 → Rm for a sufficiently large m and prove Theorem 1.1.

Lemma 5.1 Let g : (R4, 0) → (R5, 0) be the map-germ defined by

g(u, v, s, t) = (u, v, s2, st, t2).

Then we have

Rg = {h ∈ Eu,v,s,t | hs(u, v, 0, 0) = 0, ht(u, v, 0.0) = 0}

= R + m2
s,tEu,v,s,t

Moreover Rg is minimally generated by 1, s3, s2t, st2, t3 as a g∗E5-module.

Proof : Set A = {h ∈ Eu,v,s,t | hs(u, v, 0, 0) = 0, ht(u, v, 0, 0) = 0}, B = R+m2
s,tEu,v,s,t

and C = 〈1, s3, s2t, st2, t3〉g∗E5 . It is clear that Rg ⊆ A. By Haramard’s lemma we
see A ⊆ B. Let h ∈ B. Using the preparation theorem, we write h = g∗K +g∗L ·s+
g∗M ·t, for some K,L,M ∈ E5. Then L(u, v, 0, 0, 0) = M(u, v, 0, 0, 0) = 0. Therefore
g∗L = (g∗L1)s2 + (g∗L2)st + (g∗L2)t2, g∗M = (g∗M1)s2 + (g∗M2)st + (g∗M3)t2 for
some L1, L2, L3,M1,M2,M3 ∈ E5. Thus we see h ∈ C. Hence we have B ⊆ C.
Since s3, s2t, st2, t3 ∈ Rg, we have C ⊆ Rg. Thus we have Rg = A = B = C. The
minimality is clear. 2

Corollary 5.2 The mini-versal opening of g : (R4, 0) → (R5, 0) in Lemma 5.1 is
given by G : (R4, 0) → (R5 × R4, 0) = (R9, 0),

F (u, v, s, t) = (u, v, s2, st, t2, s3, s2t, st2, t3).

A map-germ from a 4-dimensional manifold to a 9-dimensional manifold is called
the 4-dimensional cuspidal conical edge if it is diffeomorphic to the above map-
germ F .

Proposition 5.3 Let f : N2 → Rm be an immersion with m ≥ 9. Suppose f
is 3-non-degenerate at a point p ∈ N . Then the germ Tan(f) : (TN, (p, 0)) →
Rm is diffeomorphic to the 4-dimensional cuspidal-conical edge composed with an
immersion.

13



X R2

Figure 3: Four-dimensional cuspidal-conical edge

Proof : Let f is 3-non-degenerate at p ∈ N . Then, for a system of affine local
coordinates of Rm and a system of local coordinates of N centred at p, we have a
local representation f : (R2, 0) → (Rm, 0) in the form

f(x1, x2) =
(
x1, x2, x2

1 + ϕ1(x), x1x2 + ϕ2(x), x2
2 + ϕ3(x),

x3
1 + ψ1(x), x2

1x2 + ψ2(x), x1x
2
2 + ψ3(x), x3

2 + ψ4(x),

ρ1(x), . . . , ρm−9(x)) ,

with ϕi ∈ m3
2, ψj ∈ m4

2, ρk ∈ m4
2, i = 1, 2, 3, j = 1, 2, 3, 4, k = 1, . . . ,m − 9, where

m = mR2,0.
Then the tangent mapping F = Tan(f) : (R4, 0) → Rm of f is given by

F (x1, x2, s, t) = f(x1, x2) + s
∂f

∂x1
(x1, x2) + t

∂f

∂x2
(x1, x2),

namely by 

F1 = x1 + s
F2 = x2 + t2

F3 = x2
1 + ϕ1 + s(2x1 +

∂ϕ1

∂x1
) + t

∂ϕ1

∂x2

F4 = x1x2 + ϕ2 + s(x2 +
∂ϕ2

∂x1
) + t(x1 +

∂ϕ2

∂x2
)

F5 = x2
2 + ϕ3 + s

∂ϕ3

∂x1
+ t(2x2 +

∂ϕ3

∂x2
)

F6 = x3
1 + ψ1 + s(3x2

1 +
∂ψ1

∂x1
) + t

∂ψ1

∂x2

F7 = x2
1x2 + ψ2 + s(2x1x2 +

∂ψ2

∂x1
) + t(x2

1 +
∂ψ2

∂x2
)

F8 = x1x
2
2 + ψ3 + s(x2

2 +
∂ψ3

∂x1
) + t(2x1x2 +

∂ψ3

∂x2
)

F9 = x3
2 + ψ4 + s

∂ψ4

∂x1
+ t(3x2

2 +
∂ψ4

∂x2
)

F9+k = ρk + s
∂ρk

∂x1
+ t

∂ρk

∂x2
, (1 ≤ k ≤ m − 9)
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We set u = x1 + s, v = x2 + t. Then, in terms of coordinates u, v, s, t of (R4, 0), we
have 

F1 = u
F2 = v
F3 = −s2 + u2 + Φ1

F4 = −st + uv + Φ2

F5 = −t2 + v2 + Φ3

F6 = 2s3 − 3us2 + u3 + Ψ1

F7 = 2s2t − 2ust − vs2 + u2v + Ψ2

F8 = 2st2 − ut2 − 2vst + uv2 + Ψ3

F9 = 2t3 − 3vt2 + v3 + Ψ4

F9+k = Rk

with Φi ∈ m3
2, Ψj ∈ m4

2, Rk ∈ m4
2, i = 1, 2, 3, j = 1, 2, 3, 4, k = 1, . . . ,m − 9, where

m = mR4,0.
We set g, g′ : (R4, 0) → (R5, 0) by

g(u, v, s, t) = (u, v, s2, st, t2), g′(u, v, s, t) = (F1, F2, F3, F4, F5).

Then we see Rg′ = Rg by Lemma 5.1. Therefore we have Jg′ = Jg and that g, g′

are J -equivalent. Moreover both g and g′ are J -minimal.
We set G,G′ : (R4, 0) → (R9, 0) by

G(u, v, s, t) = (g′; s3, s2t, st2, t3), G′(u, v, s, t) = (g; F6, F7, F8, F9).

Then G is a mini-versal opening of both g and g′, Moreover G′ is a mini-versal
opening of both g and g′. Therefore by Proposition 2.10, G and G′ are left equivalent.
By Lemma 5.1, F is an opening of G′. Thus we have, by Proposition 2.4, F is left
equivalent to (G′, 0), which is left equivalent to (G, 0), namely to the 4-dimensional
cuspidal-conical edge composed with an immersion. 2

Now to show Theorem 1.1, it is enough to prove the following:

Theorem 5.4 Let m ≥ 11. Then for a generic proper immersion f : N2 → Rm,
in Whitney C∞ topology, from a 2-dimensional manifold N , we have, at any point
p ∈ N , Tan(f) : (TN, (p, 0)) → Rm is diffeomorphic to the 4-dimensional cuspidal-
conical edge composed with an immersion. In particular Tan(f) is 5-frontal. More-
over Tan(f) is an immersion on TN \ N × {0}.

Proof : By Corollary 4.3 (n = 2), we may suppose f is 3-non-degenerate at p. Then
by Proposition 5.3, we have the first-half. The second-half follows from Lemma 4.4
(n = 2). 2
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6 Stable classification of tangential singularities

Let vn : (Rn, 0) → (R
1
2
n(n+1), 0) be the Veronese map defined by

vn(t1, t2, . . . , tn) :=
(
t21, t1t2, . . . , t1tn, . . . , t2n

)
.

all monomials of second order appearing. Then consider the trivial `-parameter
unfolding v`,n : (R`+n, 0) → (R`+ 1

2
n(n+1), 0) of vn, v`,n(u1, . . . , u`, t1, t2, . . . , tn) =

(u1, . . . , u`, vn(t1, t2, . . . , tn)).

Lemma 6.1 Let m = `+ 1
2n(n+1) and g = v`,n : (R`+n, 0) → (Rm, 0) be the trivial

unfolding of Veronese map-germ. Then

Rg = {h ∈ ER`+n,0 | ∂h

∂ti
|R`×0 = 0, 1 ≤ i ≤ n}

= R + m2
Rn,0ER`+n,0

Moreover Rg is generated by 1 and all cubic monomials on t1, . . . , tn as a g∗ERm,0-
module.

Proof : Set A = {h ∈ ER`+n,0 | ∂h

∂ti
|R`×0 = 0, 1 ≤ i ≤ n}, B = R + m2

Rn,0ER`+n,0

and denote by C the g∗ERn,0-module generated by 1 and all cubic monomials on
t1, . . . , tn. It is clear that Rg ⊆ A. By Haramard’s lemma we see A ⊆ B. Let
h ∈ B. Using the preparation theorem, we write h = g∗K +

∑n
i=1(g

∗Li)ti, for some
K,L1, . . . , Ln ∈ ERm,0. Then Li(u, 0) = 0, 1 ≤ i ≤ n. Therefore h ∈ C. Hence we
have B ⊆ C. Since any cubic monomial belongs to Rg, we have C ⊆ Rg. Thus we
have Rg = A = B = C. 2

The versal opening of v1,1 is the cuspidal edge. The versal opening of v2,2 is the
cuspidal-conical edge.

Similarly we get the mini-versal opening of vn,n by just putting all monomials
of degree 3 of t1, . . . , tn to vn,n. We define wn : (Rn, 0) → (R

1
6
n(n+1)(n+2), 0) by all

cubic monomials on t1, . . . , tn.
A map-germ is called 2n-dimensional cuspidal-conical edge if it is diffeo-

morphic to the map-germ (R2n, 0) → (Rm, 0) defined by

(u, t) = (u1, . . . , un, t1, . . . , tn) 7→ (u, vn(t), wn(t), 0) =

(u1, . . . , un, t21, t1t2, . . . , t1tn, . . . , t2n,

t31, t21t2, . . . , t
2
1tn, t1t

2
2, t1t2t3, . . . . . . , t

3
n, 0, . . . , 0).
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Proposition 6.2 Let f : Nn → Rm be an immersion with m ≥ 2n +
1
2
n(n +

1). Suppose f is 3-non-degenerate at a point p ∈ N . Then the germ Tan(f) :
(TN, (p, 0)) → Rm is diffeomorphic to the 2n-dimensional cuspidal-conical edge
cpmposed with an immersion.

Recall that f is 3-non-degenerate at p ∈ N if

rank
(

∂αf

∂xα
(p)

∣∣∣∣ |α| = 1, 2, 3
)

= n +
1
2
n(n + 1) +

1
6
n(n + 1)(n + 2).

Proof : The proof of Proposition 6.2 is similar to that of Proposition 5.3 in the
previous section. In fact f is affine equivalent to the form

f(x) = (x, vn(x) + ϕ(x), wn(x) + ψ(x), ρ(x)),

such that each component of ϕ (resp. ψ, ρ) belongs to m3, (resp. m4), where
m = mRn,0. Then F = Tan(f) is given by

F (t, x) = f(x) +
∑n

i=1 ti
∂f

∂xi
(x)

=



x + t

vn(x) +
∑n

i=1 ti
∂vn(x)

∂xi
(x) + ϕ(x) +

∑n
i=1 ti

∂ϕ

∂xi
(x)

wn(x) +
∑n

i=1 ti
∂wn(x)

∂xi
(x) + ψ(x) +

∑n
i=1 ti

∂ψ

∂xi
(x)

ρ(x) +
∑n

i=1 ti
∂ρ

∂xi
(x)


We set u = x + t. Then x = u − t. Put g(u, t) = (u, vn(t)) and

g′(u, t) = (u, vn(u − t) +
n∑

i=1

ti
∂vn(x)

∂xi
(u − t) + ϕ(u − t) +

n∑
i=1

ti
∂ϕ

∂xi
(u − t)).

Then g and g′ are J -equivalent and both g and g′ are J -minimal. Moreover, we set
G(u, t) = (u, vn(t), wn(t)) and

G′(u, t) = (g′(u, t), wn(u − t) +
n∑

i=1

ti
∂wn(x)

∂xi
(u − t) + ψ(u − t) +

n∑
i=1

ti
∂ψ

∂xi
(u − t)).

Then G is a mini-versal opening of g and G′ is a mini-versal opening of g′. Thus we
see G and G′ are left equivalent by Proposition 2.10. Then F is left equivalent to
(G′, 0) and therefor to (G, 0). 2
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The normal form for singularity of tangent variety of a generic n-dimensional
submanifold in Rm for sufficiently large m is given by 2n-dimensional cuspidal-
conical edge:

Theorem 6.3 For a generic immersion f : Nn → Rm with m ≥ 2n + 1
2n(n + 1) +

1
6n(n+1)(n+2), the germ of tangent variety Tan(f) : (TN, (p, 0)) → Rm has unique
local diffeomorphism class for any p ∈ N , that is the 2n-dimensional cuspidal-conical
dege composed with an immersion. In particular Tan(f) is

{
n + 1

2n(n + 1)
}
-frontal.

Moreover Tan(f) is an immersion on TN \ N × {0}.

The genericity condition of Theorem 6.3 is given by that f is 3-non-degenerate.
Also we have

Corollary 6.4 Any tangent variety Tan(f) : (TN, (p, 0)) → Rm of any immersion
Nn → Rm is obtained locally by some projection of the 2n-dimensional cuspidal-
conical edge, for any p ∈ N .

Proof : Let f : N → Rm be any immersion and p ∈ N . Then by a right equivalence
and a linear coordinate change of the target we have

f = (x1, . . . , xn, ϕ1, . . . , ϕm−n),

with ϕi ∈ m2
n, 1 ≤ i ≤ m − n. Consider the map

f ′ = (x1, . . . , xn, ϕ1, . . . , ϕm−n, vn, wn),

where vn (resp. wn) is the mapping with components consist of all quadratic (resp.
cubic) monomials in x1, . . . , xn as above. Then Tan(f ′) is 2n-dimensional cuspidal-
conical edge by Theorem 6.3 and Tan(f) = Π ◦ Tan(f ′) by the projection Π to the
first m-components. 2
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