CONTACT GEOMETRY OF SECOND ORDER II
KEIZO YAMAGUCHI

Abstract. This is the continuation of our previous paper “Contact Geometry of Second Order I”, where we have formulated the contact equivalence problem of systems of second order partial differential equations for a scalar function as the geometry of PD manifolds of second order. In this paper, we will discuss the Two Step Reduction procedure in Contact Geometry of Second Order. In fact we establish the Second Reduction Theorem for PD manifolds (R; D1, D2) of second order admitting the first order covariant systems \(\tilde{N} \). Utilizing the covariant system \(\tilde{N} \), we construct the intermediate object \((W; \tilde{C}, N)\), called the IG manifold of corank \(r \), as a submanifold of the involutive Grassmann bundle \(I'(J) \) over the contact manifold \((J, C)\), where \(J = R/\text{Ch}(D^1) \). We will seek the condition when the equivalence of \((R; D^1, D^2)\) is reducible to that of \((W; \tilde{C}, N)\). Moreover, when \(\text{Ch}(N) \) is non-trivial, the equivalence of \((W; \tilde{C}, N)\) is further reducible to that of \((Y; D^2_N, D_N)\), where \(Y = W/\text{Ch}(N) \). This theorem gives a sufficient condition for the existence of higher dimensional characteristics of \((R; D^1, D^2)\). By analyzing the construction parts of the Two Step Reduction procedure, we will show several examples of Parabolic Geometries, which are, through the Second Reduction Theorem, associated with the geometry of PD manifolds of second order.

1. Introduction

This manuscript is the sequel to Contact Geometry of Second Order I [27], and will discuss the Second Reduction Theorem in Contact Geometry of Second Order. In [27], we have formulated the contact equivalence problem of systems of second order partial differential equations for a scalar function as the geometry of PD (partial differential) manifolds \((R; D^1, D^2)\) of second order, where \(R \) is a manifold equipped with a pair of differential systems \(D^1 \) and \(D^2 \) satisfying the appropriate conditions (see §4 [27]). We have also established the First Reduction Theorem for PD manifolds \((R; D^1, D^2)\) admitting non-trivial Cauchy characteristic systems \(\text{Ch}(D^2) \), which reduces the equivalence of \((R; D^1, D^2)\) to the geometry of \((X, D)\), where \(X = R/\text{Ch}(D^2) \) is the leaf space of the foliation \(\text{Ch}(D^2) \) on \(R \) and \(D \) is the differential system on \(X \) such that \(D^2 = \rho_*^{-1}(D) \) and \(\rho : R \to X \) is the projection. Moreover we have exhibited several examples of Parabolic Geometries which are, directly or through the First Reduction Theorem, associated with the geometry of PD manifolds of second order.

In this manuscript, we will establish the Second Reduction Theorem for PD manifolds \((R; D^1, D^2)\) admitting the first order covariant systems \(\tilde{N} \) such that \(D^1 \supset \tilde{N} \supset D^2 \). Here \(\tilde{N} \) is called covariant if each isomorphism \(\varphi \) of \((R; D^1, D^2)\) preserves \(\tilde{N} \), i.e., \(\varphi_*(\tilde{N}) = \tilde{N} \). At each point \(v \in R \), for every integral element \(V \) of \((R; D^1, D^2)\) at \(v \), i.e., \(V \) is an integral element of \((R, D^2)\) such that \(\mathfrak{s}_{-1}(v) = D^2(v) = V \oplus \text{Ch}(D^1)(v) \), \(\tilde{N}(v) \) defines the \(r \)-dimensional subspace \(E \) of \(V \) through the symbol algebra identification; \(\mathfrak{s}_{-3}(v) = T_v(R)/D^1(v) \cong \mathbb{R} \), \(\mathfrak{s}_{-2}(v) = D^1(v)/D^2(v) \cong V^* \), \(\text{Ch}(D^2)(v) \cong f \subset S^2(V^*) \) so that \(\tilde{N}(v)/D^2(v) \subset \mathfrak{s}_{-2}(v) \) corresponds to \(E^\perp \subset V^* \), where \(\mathfrak{s}(v) = \mathfrak{s}_{-3}(v) \oplus \mathfrak{s}_{-2}(v) \oplus \mathfrak{s}_{-1}(v) \) is the symbol algebra of \((R; D^1, D^2)\) at \(v \) and \(r \) is the codimension of \(\tilde{N} \) in \(D^1 \) (see §3.1 and §1 [27]). Moreover the first order covariant system

1991 Mathematics Subject Classification. 53C15; 58A15; 58A20; 58A30.

Key words and phrases. Contact transformations; Involutive systems of second order; PD manifolds; Reduction Theorems; Parabolic Geometries.
\(\hat{N} \) defines the map \(\eta : R \to \Gamma'(J) \) by
\[
\eta(v) = p_*(\hat{N}(v)) \in \Gamma'(J) \quad \text{for} \quad v \in R,
\]
where \(p : R \to J = R/\text{Ch}(D^1) \) is the projection onto the contact manifold \((J, C)\) of dimension \(2n + 1\) such that \(D^1 = p_*^{-1}(C) \). Here \(\Gamma'(J) \) is the **Involutive Grassmann Bundle** over \((J, C)\) consisting of involutive (coisotropic) subspaces \(w \) of codimension \(r \) in the symplectic vector space \((C(u), d\omega)\), i.e., \(w^\perp \subset w \), where \(\omega \) is a local contact form on \(J \) around \(u \in J \) and \(w^\perp = \{ X \in C(u) \mid d\omega(X, Y) = 0 \ \text{for} \ \forall Y \in w \} \) (see §2.1). We will consider the image \(W = \text{Im}(\eta) \) of this map \(\eta : R \to \Gamma'(J) \). Under a mild regularity condition, \(W \) is a submanifold of \(\Gamma'(J) \) such that \(\hat{W} \) carries two differential systems \(C^* \) and \(N \), where \(C^* \) is the lift of \(C \) and \(N \) is the restriction to \(W \) of the canonical differential system \(\hat{N} \) on \(\Gamma'(J) \) defined by the grassmannian construction (see §2.2). \((W; C^*, N)\) is called the \(IG \) (involutive grassmannian) manifold of corank \(r \) associated with \((R; D^1, D^2, \hat{N})\) (see §3.2). A submanifold \(W \) of \(\Gamma'(J) \) defines a subvariety \(\hat{R}(W) \) of the Lagrange Grassmann bundle \(L(J) \) over \((J, C)\) by
\[
\hat{R}(W) = \{ v \in L(J) \mid v \subset \exists w \in W \}.
\]
Technically we construct the Lagrange Grassmann bundle \(R(W) \) over \((W; C^*, N)\) by
\[
R(W) = \bigcup_{w \in W} R_w, \quad R_w = \{ \hat{v} \subset N(w) \mid d\hat{\omega}_w |_{\hat{v}} = 0, \ \hat{v} \text{ is maximal} \},
\]
where \(C^* = \{ \hat{\omega} = 0 \} \) around \(w \in W \). Then we have a map \(\zeta : R(W) \to L(J) \) defined by \(\zeta(\hat{v}) = q_*(\hat{v}) \), where \(q : W \to J \) is the projection and \(\hat{R}(W) = \zeta(R(W)) \). Here \(\zeta(R_w) \cong L(w/w^\perp) \) is the Lagrange Grassmann manifold of the symplectic vector space \(w/w^\perp \) of dimension \(2(n - r) \) (see §4.1). Moreover \(R(W) \) carries three differential systems \(D^1_W, D^2_W \) and \(N_W \), where \(D^1_W \) and \(N_W \) are lifts of \(C^* \) and \(N \) respectively and \(D^2_W \) is the canonical system defined by the grassmannian construction (see §4.2). Furthermore we have a map \(\kappa_1 : R \to R(W) \) defined by
\[
\kappa_1(v) = \eta_*(D^2(v)) \in R_w, \quad w = \eta(v).
\]
\(\kappa_1 \) is actually an immersion by the Realization Lemma and preserves \(D^1, D^2 \) and \(\hat{N} \), i.e., \((\kappa_1)^{-1}(D^1_W) = D^1, (\kappa_1)^{-1}(D^2_W) = D^2 \) and \((\kappa_1)^{-1}(N_W) = \hat{N} \) (see §5.1). We will seek the condition for \(\kappa_1 : (R; D^1, D^2) \to (R(W); D^1_W, D^2_W) \) to be a local isomorphism, which gives us the first part of the Second Reduction Theorem. For this purpose, we consider the following covariant systems \(f(E) \) and \(C(E) \) of \((R; D^1, D^2)\): As a regularity condition for \((R; D^1, D^2)\), we assume the constancy of symbol algebras, i.e., the symbol algebra \(s(v) \) of \((R; D^1, D^2) \) at each \(v \in R \) is isomorphic to a fixed subalgebra \(s \) of \(\mathcal{C}^2(n) \), where \(s = s_{-3} \oplus s_{-2} \oplus s_{-1} \) is defined by
\[
s_{-3} = \mathbb{R}, \quad s_{-2} = V^*, \quad s_{-1} = V \oplus \mathfrak{f}, \quad \mathfrak{f} \subset S^2(V^*).
\]
Under this regularity condition, \((R; D^1, D^2)\) is called regular of type \(\mathfrak{f} \). In this case, the first covariant system \(\hat{N} \) of \((R; D^1, D^2)\) corresponds to the \(G_0(s) \)-invariant subspace \(E \subset C \), where \(G_0(s) = \{ \sigma \in G(s) \mid \sigma(V) = V \} \) and \(G(s) \) is the group of graded Lie algebra automorphisms of \(s \) (see §3.1). We define subspaces \(f_{E} \) and \(c_E \) of \(\mathfrak{f} \) and \(s_{-1} \) by
\[
f_{E} = f \cap S^2(E^\perp) \subset f, \quad c_E = \hat{E} \oplus f_{E} \subset s_{-1} = V \oplus \mathfrak{f},
\]
where \(\hat{E} = \{ v \in E \mid \mathfrak{f} \cap E \subset f^\perp \} \) and \(f^\perp \) is the annihilator of \(f \) in \(S^2(V) \cong (S^2(V^*))^* \). Then, by the \(G_0(s) \)-invariance of \(E \), we can define covariant systems \(f(E) \) and \(C(E) \) by
\[
f(E)(v) = \phi^{-1}(f_{E}) \subset C(E)(v) = \phi^{-1}(c_E) \subset D^2(v) = s_{-1}(v) \quad \text{for} \quad v \in R,
\]
where \(\phi \) is a graded Lie algebra isomorphism of \(s(v) \) onto \(s \). By a symbol algebra calculation, we have \(\text{Ch}(\hat{N}) \subset C(E) \) (see §5.2). In fact we will obtain the **first part of Second Reduction**
Theorem for PD manifolds of second order admitting the first order covariant systems as follows.

Theorem 5.1. Let \((R; D^1, D^2)\) be a PD manifold of second order, which is regular of type 5. Assume that there exists \(G_0(\tilde{\phi})\)-invariant subspace \(E\) of \(V\) of dimension \(r\) such that \(\mathfrak{f} \subset E \otimes S V\).

1. In case \(r < n - 1\), if \(f(E)\) is completely integrable, then \(f(E) = Ch(D^1) \cap Ch(\tilde{N})\) and \(\kappa_1 : (R; D^1, D^2) \rightarrow (R(W); D_W^1, D_W^2)\) is a local isomorphism.

2. In case \(r < n - 1\), if \(C(E)\) is completely integrable, then \(C(E) = Ch(\tilde{N})\) and \(\kappa_1 : (R; D^1, D^2) \rightarrow (R(W); D_W^1, D_W^2)\) is a local isomorphism.

3. In case \(r = n - 1\), further assume that \(\text{rank } Ch(D^2) < \dim \tilde{E}\), if \(C(E)\) is completely integrable, then \(C(E) = Ch(\tilde{N})\) and \(\kappa_1 : (R; D^1, D^2) \rightarrow (R(W); D_W^1, D_W^2)\) is a local isomorphism.

When \(\kappa_1 : (R; D^1, D^2) \rightarrow (R(W); D_W^1, D_W^2)\) is a local isomorphism, the (local) integration problem of \((R; D^1, D^2)\) is reduced to that of \((W; C^*, N)\) (see §5.1). Moreover, for every integral element \(V\) of \((R; D^1, D^2)\) at \(v \in R, \tilde{N}(v)\) defines the \(r\)-dimensional subspace \(E\) of \(V\). Then the condition \(\mathfrak{f} \subset E \otimes S V\) implies that \(E\) is a Monge element (Definition 7.9 [20], see also Proposition 7.4, Lemmas 7.6 [20]). In this case, \(C(E)\) does not necessarily coincide with the Monge characteristic system corresponding to \(E\) in the sense of §7.3 [20] (see §6, Remark 6.2 (1)).

A little generally the submanifold theory of \(I'(J)\) will be formulated as the geometry of IG manifolds \((W; C^*, N)\) of corank \(r\) in §2.2. Moreover we will describe the condition, when \((R(W); D_W^1, D_W^2)\) becomes a PD manifold, in terms of covariant systems of \((W; C^*, N)\) in §4.2.

Furthermore, in the above Theorem, when \(\tilde{E} \neq \{0\}\), we have the second step reduction procedure for \((W; C^*, N)\), similarly as in the case of the First Reduction Theorem for \((R; D^1, D^2)\) admitting non-trivial Cauchy characteristic system \(Ch(D^2)\), as follows (see §5.3): Assume that \(C(E) = Ch(\tilde{N})\). When \(\tilde{E} \neq \{0\}\), since \(\tilde{N} = \eta^{-1}(N)\), \(N\) has non-trivial Cauchy characteristic system \(Ch(N)\) on \(W\) such that \(\text{rank } Ch(N) = \dim \tilde{E} = s > 0\). Here assume that \(W\) is regular with respect to \(Ch(N)\), i.e., the space \(Y = W/Ch(N)\) of leaves of this foliation is a manifold such that each fibre of the projection \(\beta : W \rightarrow Y\) is connected and \(\beta\) is a submersion. We further assume that \(C(E) \subset Ch(N^*)\), where \(N^*\) is the first order covariant system of \((R; D^1, D^2)\) corresponding to \(\tilde{E}\). Then \(Ch(N) \subset Ch(N^*) \subset N\) on \(W\), where \(N^*\) is a covariant system of \((W; C^*, N)\) such that \(\eta^{-1}(N^*) = N^*\) (see §2.3). Hence there exist differential systems \(D_N^1\) and \(D_N\) on \(Y\) of codimension \(s + 1\) and \(r + 1\) respectively such that \(N^* = \beta^{-1}D_N^1, N = \beta^{-1}D_N\), \(D_N \supset Ch(D_N^1)\) and \(Ch(D_N)\) is trivial. In this situation, from \((Y; D_N^1, D_N)\), we can reconstruct the IG manifold \((W; C^*, N)\), at least locally, as follows. First let us consider the collection \(\tilde{W}(Y)\) of hyperplanes \(w\) in each tangent space \(T_y(Y)\) at \(y \in Y\) which contains the fibre \(D_N^1(y)\) of \(D_N^1\).

\[
\tilde{W}(Y) = \bigcup_{y \in Y} \tilde{W}_y, \quad \tilde{W}_y = \{w \in Gr(T_y(Y), m - 1) \mid w \supset D_N^1(y)\} \cong P(T_y(Y)/D_N^1(y)) = \mathbb{P}^s,
\]

where \(m = \dim Y\) and \(s = \dim \tilde{E}\). Moreover \(C^*_Y\) is the canonical system obtained by the Grassmannian construction and \(N_Y^*, N_Y\) are the lifts of \(D_N^1, D_N\). Then we have a map \(\kappa_2\) of \(W\) into \(\tilde{W}(Y)\) given by

\[
\kappa_2(w) = \beta_* C^*(w) \subset T_y(Y),
\]

for each \(w \in W\) and \(y = \beta(w)\). In fact \(\kappa_2 : (W; C^*, N) \rightarrow (\tilde{W}(Y); C^*_Y, N_Y)\) is a local isomorphism (see §5.3). Thus \((W; C^*, N)\) is reconstructed from \((Y; D_N^1, D_N)\), at least locally, as a part of \((\tilde{W}(Y); C^*_Y, N_Y)\).
Now the main theorem of this manuscript (Two Step Reduction Theorem for PD manifolds of second order) can be stated as follows.

Theorem 5.2. Let \((R; D^1, D^2)\) and \((\hat{R}; \hat{D}^1, \hat{D}^2)\) be PD manifolds of second order, which are regular of type \(s\). Assume that there exists an \(G_0(s)\)-invariant subspace \(E\) of \(V\) of dimension \(r\) satisfying \(f^1 \subset E \otimes_S V\) and \(\dim \hat{E} = s > 0\). Moreover assume the following two conditions for the covariant systems of each PD manifold;

(i) \(C(E)\) and \(\hat{C}(E)\) are completely integrable (when \(r = n - 1\), assume further rank \(Ch(D^2) < s\) and rank \(Ch(\hat{D}^2) < s\).

(ii) \(C(E) \subset Ch(\hat{N}^*)\) and \(\hat{C}(E) \subset Ch(N^*)\).

Let \((W; C^*, N)\) and \((\hat{W}; \hat{C}^*, \hat{N})\) be the associated IG manifolds of corank \(r\) of \((R; D^1, D^2)\) and \((\hat{R}; \hat{D}^1, \hat{D}^2)\) respectively. Assume that \(W\) and \(\hat{W}\) are regular with respect to \(Ch(N)\) and \(Ch(\hat{N})\) respectively. Let \((Y; D^*_N, D_N)\) and \((\hat{Y}, D^*_\hat{N}, D_{\hat{N}})\) be the leaf spaces, where \(Y = W/Ch(N)\) and \(\hat{Y} = \hat{W}/Ch(\hat{N})\). Let us fix points \(v_o \in R\) and \(\tilde{v}_o \in \hat{R}\) and put \(w_o = \eta(v_o)\), \(\hat{w}_o = \beta(w_o)\) and \(\hat{w}_o = \hat{\eta}(\tilde{v}_o)\), \(\hat{w}_o = \hat{\beta}(-\tilde{v}_o)\). Then a local isomorphism \(\psi: (R; D^1, D^2) \to (\hat{R}; \hat{D}^1, \hat{D}^2)\) such that \(\psi(v_o) = \tilde{v}_o\) induces a local isomorphism \(\varphi: (W; C^*, N) \to (\hat{W}, \hat{C}^*, \hat{N})\) such that \(\varphi(w_o) = \hat{w}_o\) and \(\varphi_o(\eta(v_o)) = \hat{\beta}(w_o)\), and vice versa. Furthermore a local isomorphism \(\varphi: (W; C^*, N) \to (\hat{W}, \hat{C}^*, \hat{N})\) such that \(\varphi(w_o) = \hat{w}_o\) induces a local isomorphism \(\phi: (Y; D^*_N, D_N) \to (\hat{Y}; D^*_\hat{N}, D_{\hat{N}})\) such that \(\phi(\eta_o) = \hat{\eta}_o\) and \(\phi(\kappa_2(w_o)) = \hat{\kappa}_2(\hat{w}_o)\), and vice versa.

Here we remark that, when \(\hat{E}\) coincides with \(E\), i.e., when \(s = r\), we have \(N^* = N\) and \(D^{*_N} = D_N\). Hence, in this case, the condition \(ii\) is automatically satisfied under the condition \(i\) and the equivalence of \((R; D^1, D^2)\) is reducible to that of \((Y; D_N)\).

In Theorem 5.2, every (local) solution of \((W; C^*, N)\) is foliated by \(Ch(N)\) so that every (local) solution of \((R; D^1, D^2)\) is foliated by \(s\)-dimensional integral manifolds of \(C(E) = Ch(\hat{N})\). Thus \((R; D^1, D^2)\), satisfying the conditions in Theorem 5.2, admits \(s\)-dimensional characteristics. In fact, in [6], for involutive systems of second order partial differential equations for a scalar function with 3 independent variables, É. Cartan first classified involutive subspaces \(f \subset S^2(V^*)\) when \(\dim V = 3\), and immediately wrote the Structure Equation for each involutive system. Then he argued about the existence of 1 or 2-dimensional characteristics for such systems. As for the existence of characteristics, Theorem 5.2 covers many of his arguments (see §8.1).

In [23], we have exhibited typical examples of involutive symbols \(f = f^1(r), f^2(r)\) or \(f^3(r)\) in \(S^2(V^*)\), which are the only invariants of the involutive systems of second order of type \(s\), where \(s_{-1} = V \oplus f\). Namely we have exhibited that, for a PD manifold \((R; D^1, D^2)\) of second order, which is regular of type \(s\), where \(f\) is \(f^1(r), f^2(r)\) or \(f^3(r)\), \(R\) can be transformed to the model linear equation by a contact transformation, similarly as in the case of the system of first order partial differential equation for a scalar function (see Theorem in [23]). We will explain these phenomena for \(f^2(r)\) and \(f^1(r)\) in terms of the Second Reduction Theorem in §6 (the explanation for \(f^3(r)\) has been given in terms of the First Reduction Theorem in §6.1 [27]).

In §7, we will discuss the construction parts of the Two Step Reduction procedure of Theorem 5.2, depending on whether \(D^{*_N} = D_N\) or not. Finally in §8, as examples of Second Reduction Theorem, we first review the arguments in [6] and, in the rest of this section, we will show several examples of Parabolic Geometries, which are, by the Second Reduction Theorem, associated with the geometry of PD manifolds of second order.

Throughout this manuscript we always assume the differentiability of class \(C^\infty\), though the argument goes through in real or complex analytic category with suitable modifications.
2. Involutive Grassmann Bundle over a Contact Manifold \((J, C)\)

2.1. Involutive Grassmann Bundle \(I^r(J)\). Let \((J, C)\) be a contact manifold of dimension \(2n + 1\), i.e., \(J\) is a manifold of dimension \(2n + 1\) and \(C\) is a subbundle of the tangent bundle \(T(J)\) of \(J\) of corank 1 such that the Cauchy characteristic system \(\text{Ch}(C)\) of \(C\) is trivial. We will consider the **Involutive Grassmann Bundle** \(I^r(J)\) of \((J, C)\) of codimension \(r\) \((1 \leq r < n)\);

\[
I^r(J) = \bigcup_{u \in J} I_u \xrightarrow{\pi} J, \quad I_u = \{\text{involutive subspaces of } (C(u), d\varpi) \text{ of codimension } r\},
\]

i.e., \(w\) is a subspace of the symplectic vector space \((C(u), d\varpi)\) of codimension \(r\) such that \(w^\perp \subset w\), where \(C = \{\varpi = 0\}\) around \(u\) and \(w^\perp = \{X \in C(u) \mid d\varpi(X, Y) = 0 \text{ for } \forall Y \in w\}\). Let us fix a reference point \(w_o\) of \(I^r(J)\) and put \(u_o = \pi(w_o)\), where \(\pi : I^r(J) \to J\) is the projection. Take a canonical coordinate system \((x_1, \ldots, x_n, z, p_1, \ldots, p_n)\) of \((J, C)\) defined on a neighborhood \(U'\) with origin \(u_o\) such that \(w_o = \{X \in T_{u_o}(J) \mid \varpi(X) = dp_1(X) = \cdots = dp_r(X) = 0\}\), where \(\varpi = dz - \sum_{i=1}^n p_idx_i\). We can introduce coordinate system \((x_i, x_\alpha, z, p_i, p_\alpha, a_i^\alpha, b_i^\alpha, s_{ij})\) \((1 \leq i \leq j \leq r, r + 1 \leq \alpha \leq n)\) of \(I^r(J)\) on the following neighborhood \(\tilde{U}\) of \(w_o\);

\[
\tilde{U} = \{w \in \pi^{-1}(U') \mid dp_{r+1}, \ldots, dp_n, dx_1, \ldots, dx_n \text{ are linearly independent on } w\}.
\]
By expressing \(dp_i \mid w \) as a linear combination of \(dp_\alpha \mid w \), \(dx_i \mid w \) and \(dx_\alpha \mid w \), we see that \(w \) is defined by

\[
w = \{ X \in T_u(J) \mid \varpi(X) = \varpi_1^*(X) = \cdots = \varpi_r^*(X) = 0 \},
\]

where \(u = \pi(w) \) and

\[
\varpi = dz - \sum_{a=1}^n p_a dx_a, \quad \varpi_i^* = dp_i - \sum_{a=r+1}^n \alpha_i^a dp_a - \sum_{a=r+1}^n b_i^a dx_a - \sum_{j=1}^r (s_{ij} - \sum_{a=r+1}^n \alpha_i^a b_j^a) dx_j
\]

for \(1 \leq i \leq r \). We calculate

\[
d\varpi = \sum_{i=1}^r dx_i \wedge dp_i + \sum_{a=r+1}^n dx_\alpha \wedge dp_a
\]

\[
= \sum_{i=1}^r dx_i \wedge \varpi_i^* + \sum_{a=r+1}^n dx_\alpha \wedge dp_a + \sum_{i,a} a_i^a dx_i \wedge dp_a
\]

\[
+ \sum_{i,a} b_i^a dx_i \wedge dx_\alpha + \sum_{i,j} s_{ij} dx_i \wedge dx_j - \sum_{i,j,\alpha} a_i^\alpha b_j^\alpha dx_i \wedge dx_j,
\]

\[
= \sum_{i=1}^r dx_i \wedge \varpi_i^* + \sum_{a=r+1}^n \omega_\alpha \wedge \varpi_\alpha^* + \sum_{i,j=1}^r s_{ij} dx_i \wedge dx_j
\]

\[
\equiv \sum_{a=r+1}^n \omega_\alpha \wedge \varpi_\alpha^* + \sum_{i,j=1}^r s_{ij} dx_i \wedge dx_j \pmod{\varpi, \varpi_1^*, \ldots, \varpi_r^*}
\]

where we put

\[
\omega_\alpha = dx_\alpha + \sum_{i=1}^r a_i^\alpha dx_i, \quad \varpi_\alpha^* = dp_\alpha - \sum_{j=1}^r b_j^\alpha dx_j \quad (r + 1 \leq \alpha \leq n).
\]

Here \(w \) is involutive if and only if \(d\varpi \mid w \) is of rank \(2(n-r) \), which implies \(s_{ij} = s_{ji} \) (\(1 \leq i, j \leq r \)). Moreover we calculate

\[
d\varpi_i^* = \sum_{a=r+1}^n dp_\alpha \wedge da_i^\alpha + \sum_{a=r+1}^n dx_\alpha \wedge db_i^\alpha + \sum_{j=1}^r dx_j \wedge ds_{ij} - \sum_{j,\alpha} dx_j \wedge (a_i^\alpha b_j^\alpha + b_j^\alpha da_i^\alpha)
\]

\[
= \sum_{a=r+1}^n \varpi_\alpha \wedge da_i^\alpha + \sum_{a=r+1}^n \omega_\alpha \wedge db_i^\alpha + \sum_{j=1}^r dx_j \wedge \varpi_{ij}
\]
where $\varpi_{ij} = ds_{ij} - \sum_{\alpha=r+1}^{n}(a_i^\alpha db_j^\alpha + a_j^\alpha db_i^\alpha)$ \((1 \leq i, j \leq r)\). Hence, for these 1-forms, we have

\[
\begin{align*}
&d\varpi = \sum_{i=1}^{r} dx_i \wedge \varpi_i^* + \sum_{\alpha=r+1}^{n} \omega^\alpha \wedge \varpi^*_\alpha \\
&d\varpi_i^* = \sum_{\alpha=r+1}^{n} \varpi^*_\alpha \wedge da_i^\alpha + \sum_{\alpha=r+1}^{n} \omega^\alpha \wedge db_i^\alpha + \sum_{j=1}^{r} dx_j \wedge \varpi_{ij}
\end{align*}
\]

\[(2.1)\]

We have several differential systems naturally defined on $I^r(J)$ as follows: $\bar{C} = \pi_-^{-1}(C)$ is the lift of C and canonical systems \bar{N}, \bar{N}^1 are defined by

\[
\bar{N}^1(w) = \pi_-^{-1}(w^+) \subset \bar{N}(w) = \pi_-^{-1}(w) \subset T_w(I^r(J)) \xrightarrow{\pi_-} T_u(J) \text{ at each } w \in I^r(J).
\]

By the above calculation, we have, on a neighborhood \bar{U}, $\bar{C} = \{\varpi = 0\}$ and $\bar{N} = \{\varpi = \varpi_1^* = \cdots = \varpi_r^* = 0\}$, $\bar{N}^1 = \{\varpi = \varpi_1^* = \varpi_2^* = \omega^\alpha = 0 \ (1 \leq i \leq r, r+1 \leq \alpha \leq n)\}.$

For the Cauchy characteristic systems of these systems, we see $\text{Ch}(\bar{N}) = \text{Ch}(\bar{N}^1) = \{0\}$ and $\text{Ch}(\bar{C}) = \{\varpi = \varpi_1^* = \varpi_2^* = dx_i = \omega^\alpha = 0 \ (1 \leq i \leq r, r+1 \leq \alpha \leq n)\}.$

The dual frame of the coframe $\{\varpi, \varpi_1^*, \varpi_2^*, \omega^\alpha, dx_i, db_i^\alpha, da_i^\alpha, \varpi_{ij}(1 \leq i \leq j \leq r, r+1 \leq \alpha \leq n)\}$ on \bar{U} consists of the following vector fields;

\[
\begin{align*}
\frac{\partial}{\partial p_i} &+ \frac{d^*}{dp_q} \frac{\partial}{\partial p_q} = \frac{\partial}{\partial p_a} + \sum_{j=1}^{r} a_j^\alpha \frac{\partial}{\partial p_j} + \frac{d^*}{dx_a} = \frac{\partial}{\partial x_a} + p_a \frac{\partial}{\partial s} + \sum_{j=1}^{r} b_j^\alpha \frac{\partial}{\partial p_j}, \\
\frac{d^*}{dx_i} = \frac{\partial}{\partial x_i} + p_i \frac{\partial}{\partial s} + \sum_{j=1}^{r} (s_{ij} - \sum_{\alpha=r+1}^{n} a_j^\alpha b_j^\alpha) \frac{\partial}{\partial p_j} + \sum_{\alpha=r+1}^{n} b_i^\alpha \frac{d^*}{dp_a} - \sum_{\alpha=r+1}^{n} a_i^\alpha \frac{d^*}{dx_a}, \\
\frac{d^*}{db_i^\alpha} = \frac{\partial}{\partial b_i^\alpha} + \sum_{j=1}^{r} a_j^\alpha \frac{\partial}{\partial s_{ij}} + a_i^\alpha \frac{\partial}{\partial s_{ii}}, \\
\frac{\partial}{\partial a_i^\alpha} \frac{\partial}{\partial s_{ij}}.
\end{align*}
\]

Hence, by calculating brackets of the above vector fields, or by (2.1), we obtain

$$\partial \bar{N}^1 = \bar{C}, \quad \partial \bar{N} = T(I^r(J)),$$

where ∂D denotes the derived system of D. Moreover, putting

$$A(\bar{C}) = \{X \in \text{Ch}(\bar{C}) \mid \varpi_{ij}(X) = 0 \ (1 \leq i, j \leq r)\},$$

we have $\partial(A(\bar{C})) = \text{Ch}(\bar{C})$. Here we note that $A(\bar{C})$ corresponds to the standard differential system of each fibre (the involutive Grassmann manifold of codimension r) of the projection $\pi : I^r(J) \to J$, which is an R-space of type $(C_{n-1}, \{\alpha_r\})$ (cf. §4 in [24]).
2.2. IG manifold \((W; C^*, N)\) of corank \(r\). Let \(W\) be a submanifold of \(I^r(J)\) satisfying the following condition:

\((W.0)\) \(q : W \to J : \) submersion,

where \(q = \pi |_W\) and \(\pi : I^r(J) \to J\) is the projection. From the two differential systems \(\bar{C}\) and \(\bar{N}\) on \(I^r(J)\), we obtain the differential systems \(C^*\) and \(N\) on \(W\) by restricting \(\bar{C}\) and \(\bar{N}\) to \(W\).

At each point \(w \in W\), we define the bilinear map \(\gamma_w : N(w) \times N(w) \to \mathfrak{t}_-3(w) = T_w(W)/C^*(w)\) as follows; For vectors \(X\) and \(Y\) in \(N(w)\), let \(\bar{X} \in \Gamma(N)\) and \(\bar{Y} \in \Gamma(N)\) be vector fields such that \(X = \langle \bar{X} \rangle_w\) and \(Y = \langle \bar{Y} \rangle_w\), where \(\Gamma(N)\) denotes the space of sections of \(N\). Then \(\gamma_w\) is defined by

\[\gamma_w(X, Y) = \pi_{-3}([\bar{X}, \bar{Y}]_w),\]

where \(\pi_{-3}; T_w(W) \to \mathfrak{t}_-3(w) = T_w(W)/C^*(w)\) is the projection. Let \(w_0\) be an arbitrary point of \(W\). We will introduce a coordinate system \((x_i, x_\alpha, z, p_\alpha, a_i^\alpha, b_\alpha^j, s_{ij})\) \((1 \leq i \leq j \leq r, r + 1 \leq \alpha \leq n)\) of \(I^r(J)\) on a neighborhood \(\bar{U}\) of \(w_0\) as in \(\S 2.1\). Then, by the condition \((W.0)\), 1-forms \(\{\varpi, \varpi_\alpha^i, \varpi_\alpha^* = \omega^\alpha, dx_i(1 \leq i \leq r, r + 1 \leq \alpha \leq n)\}\) remain linearly independent at each point of \(W \cap \bar{U}\), when restricted to the submanifold \(W\). Hence we have

\[C^* = \{\varpi = 0\}, \quad N = \{\varpi = \varpi_\alpha^i = \cdots = \varpi_\alpha^* = 0\},\]

where we denote the restricted 1-forms on \(W\) by the same symbols as those on \(\bar{U}\). The contact form \(\varpi\) fixes the basis \(Z\) of \(\mathfrak{t}_-3(w)\) by \(Z = \pi_{-3}(\check{Z}), \check{Z} \in T_w(W)\) such that \(\varpi(\check{Z}) = 1\), Then we have

\[\gamma_w(X, Y) = \varpi([\check{X}, \check{Y}]_w) \cdot Z = -d\varpi(X, Y) \cdot Z,\]

which shows that \(\gamma_w(X, Y)\) is well-defined for \(X, Y \in N(w)\) (cf. \(\S 3.1 [27]\)). Moreover, from (2.1), we have

\[d\varpi = \sum_{i=1}^r dx_i \wedge \varpi_\alpha^i + \sum_{\alpha=r+1}^n \omega^\alpha \wedge \varpi_\alpha^* \equiv \sum_{\alpha=r+1}^n \omega^\alpha \wedge \varpi_\alpha^* \quad \text{(mod } \varpi, \varpi_\alpha^i, \ldots, \varpi_\alpha^*).\]

Hence we have

\[\text{Ch}(C^*) = \{\varpi = \varpi_\alpha^i = \varpi_\alpha^* = \omega^\alpha = dx_i = 0 \quad (1 \leq i \leq r, r + 1 \leq \alpha \leq n)\}\]
\[= \{dz = dp_1 = \cdots = dp_n = dx_1 = \cdots = dx_n = 0\} = \text{Ker } p_*\]

and

\[\text{Ker } \gamma_w = \{X \in N(w) \mid \gamma_w(X, Y) = 0 \quad \forall Y \in N(w)\}\]
\[= \{\varpi = \varpi_i = \varpi_\alpha^* = \omega^\alpha = 0 \quad (1 \leq i \leq r, r + 1 \leq \alpha \leq n)\}\]

Thus \(N^\perp = \text{Ker } \gamma = \bigcup_{w \in W} \text{Ker } \gamma_w\) is a subbundle of \(N\) which coincides with the restriction to \(W\) of \(\bar{N}^\perp\) on \(I^r(J)\). Summarizing, \((W; C^*, N)\) satisfies the following conditions:

\[(W.1)\] \(C^*\) and \(N\) are differential systems of codimension 1 and \(r + 1\) respectively such that \(N \subset C^*\).

\[(W.2)\] \(\text{Ch}(C^*)\) is a subbundle of \(N\) of codimension \(2n - r\).

\[(W.3)\] \(\text{rank } \gamma_w = 2(n - r)\) at each \(w \in W\).

\[(W.4)\] \(\text{Ch}(C^*)(w) \cap \text{Ch}(N)(w) = \{0\}\) at each \(w \in W\).

In fact the last condition \((W.4)\) follows from the Realization Lemma for \((W, N, q, J)\) (see \(\S 4.1 [27]\)). The condition \((W.3)\) is equivalent to the following condition:

\[(W.3')\] \(N^\perp = \text{Ker } \gamma\) is a subbundle of \(N\) of codimension \(2(n - r)\).

Conversely these four conditions, at least locally, characterize submanifolds in \(I^r(J)\) satisfying \((W.0)\) as in the following.
We call the triplet \((W; C^*, N)\) of a manifold and two differential systems on it an \(IG\) (Involutive Grassmann) manifold of corank \(r\) if these satisfy the above four conditions (W.1) to (W.4). We have the (local) Realization Theorem for IG manifolds as follows: From conditions (W.1) and (W.2), the codimension of the foliation defined by \(\text{Ch}(C^*)\) is \(2n + 1\). Assume that \(W\) is regular with respect to \(\text{Ch}(C^*)\), i.e., the space \(J = W/\text{Ch}(C^*)\) of leaves of this foliation is a manifold of dimension \(2n + 1\) such that each fibre of the projection \(q : W \to J = W/\text{Ch}(C^*)\) is connected and \(q\) is a submersion. Then \(C^*\) drops down to \(J\). Namely there exists a differential system \(C\) on \(J\) of codimension \(C\) such that \(C^* = q^{-1}(C)\). From \(\text{Ch}(C) = \{0\}\), \((J, C)\) becomes a contact manifold of dimension \(2n + 1\). Conditions (W.2) and (W.3) imply that the image of the following map \(\iota\) is an involutive subspace of codimension \(r\) in the symplectic vector space \((C(u), d\pi)\):

\[
\iota(w) = q_* (N(w)) \subset C(u), \quad u = q(w).
\]

Namely \(\iota\) is a map from \(W\) into \(I^r(J)\), which is an immersion by the Realization Lemma for \((W, N, q, J)\) and (W.4). Moreover, similarly as in Theorem 4.1 [27], we obtain

Theorem 2.1. Let \((W; C^*, N)\) and \((\tilde{W}; \tilde{C}^*, \tilde{N})\) be IG manifolds of corank \(r\). Assume that \(W\) and \(\tilde{W}\) are regular with respect to \(\text{Ch}(C^*)\) and \(\text{Ch}(\tilde{C}^*)\) respectively. Let \((J, C)\) and \((\tilde{J}, \tilde{C})\) be the associated contact manifolds. Then an isomorphism \(\Phi : (W; C^*, N) \to (\tilde{W}; \tilde{C}^*, \tilde{N})\) induces a contact diffeomorphism \(\varphi : (J, C) \to (\tilde{J}, \tilde{C})\) such that the following commutes:

\[
\begin{array}{ccc}
W & \xrightarrow{\iota} & I^r(J) \\
\Phi & & \downarrow \varphi^* \\
\tilde{W} & \xrightarrow{\tilde{\iota}} & I^r(\tilde{J}).
\end{array}
\]

By this theorem, the submanifold theory for \(I^r(J)\) is reformulated as the geometry of IG manifolds of corank \(r\).

2.3. Covariant systems of \((W; C^*, N)\)

Let \((W; C^*, N)\) be an IG manifold of corank \(r\). In this subsection, we will consider several covariant systems of \((W; C^*, N)\).

1. **Covariant system \(N^\perp\)**

 \(N^\perp\) is defined by \(N^\perp(w) = \text{Ker} \gamma_w\) at each \(w \in W\). Hence, by (W.3), \(N^\perp\) is a subbundle of \(N\) of codimension \(2(n - r)\) and contains \(\text{Ch}(C^*)\) as a subbundle of codimension \(r\). In fact, utilizing the local Realization Theorem for \((W; C^*, N)\) and canonical coordinate system as in §2.1, we have

 \[
 N = \{ \varpi = \varpi^*_1 = \cdots = \varpi^*_r = 0 \}, \quad N^\perp = \{ \varpi = \varpi^*_i = \varpi^*_n = \omega^a = 0 \quad (1 \leq i \leq r, r + 1 \leq a \leq n) \}.
 \]

 Hence we see, from (2.2), \(\text{Ch}(N)(w) \subset N^\perp(w)\) at each \(w \in W\). Moreover we see, from (2.1), \(\text{Ch}(C^*)(w) \cap \text{Ch}(N^\perp)(w) = \{0\}\) at each \(w \in W\).

2. **Covariant system \(N^*\)**

 \(N^*\) is defined by \(N^*(w) = \partial N^\perp(w) + N(w)\) at each \(w \in W\), where \(\partial N^\perp\) denotes the derived system of \(N^\perp\). From \(d\varpi \equiv 0\) (mod \(\varpi, \varpi^*_1, \ldots, \varpi^*_r\)), it follows that \(\partial N^\perp \subset C^*\). In the following, we will assume that \(N^*\) is a subbundle of \(T(W)\), hence of \(C^*\), which contains \(N\). Here \(N^\perp\) and \(C^*\) are subbundles of \(T(W)\) such that \(\partial N^\perp \subset C^*\). Hence subbundles \(N^\perp\), \(C^*\) and \(T(W)\) define a filtration on \(W\). Namely, putting \(T^{-1} = N^\perp\), \(T^{-2} = C^*\), \(T^p = T(W)\) for \(p \leq -3\), we have

\[
[T^p, T^q] \subset T^{p+q} \quad \text{for} \quad p, q < 0.
\]
Hence we have

$$H \E 2 \E X \pi$$

Then, from \((2.3)\), which can be checked as follows; Take a vector field \(\tilde{X}\) where \(\tilde{X}\) we can form the quotient Lie algebra

$$\text{π}(X, Y) = \pi_{p+q}(\tilde{X}, \tilde{Y}) \in t_{p+q}(w).$$

Now \(N\) defines a subspace \(t_N(w) = N(w)/N^\perp(w)\) of \(t_{-2}(w)\). Then \(\gamma_w\) induces the non-degenerate paring \(\tilde{\gamma}_w : t_N(w) \times t_N(w) \to t_{-3}(w)\). Moreover, in Lie brackets of \(t(w)\), we have

$$[t_{-1}(w), t_N(w)] = 0,$$

which is equivalent to \([\Gamma(N^\perp), \Gamma(N)] \subset \Gamma(C^*)\). Namely \(t_N(w)\) is an abelian ideal of \(t(w)\). Thus we can form the quotient Lie algebra

$$\tilde{t}(w) = t(w)/t_N(w) = t_{-3}(w) \oplus \tilde{t}_{-2}(w) \oplus t_{-1}(w),$$

where \(\tilde{t}_{-2}(w) = C^*(w)/N(w)\). Conversely, for \(Y \in t_{-2}(w)\), \([Y, t_{-1}(w)] = 0\) implies \(Y \in t_N(w)\), which can be checked as follows; Take a vector field \(\tilde{Y} \in \Gamma(C^*)\) such that \(\pi_{-2}(\tilde{Y}) = Y\). Then, from \((2.2)\), we see that \([\tilde{Y}, \Gamma(N^\perp)] \subset \Gamma(C^*)\) iff

$$\tilde{Y} \omega_i = -\sum_{i=1}^{r} \omega_i^*(\tilde{Y}) dx_i \equiv 0 \quad (\mod N^\perp) \iff \omega_i^*(\tilde{Y}) = 0 \quad \text{for} \quad i = 1, \ldots, r,$$

which implies \(\tilde{Y} \in \Gamma(N)\). Thus, in the Lie algebra \(\tilde{t}(w)\), we have

\[(a.1) \quad \text{If} \quad \tilde{Y} \in \tilde{t}_{-2}(w) \quad \text{and} \quad [\tilde{Y}, t_{-1}(w)] = 0, \quad \text{then} \quad \tilde{Y} = 0.
\]

\[(a.2) \quad \text{Ch}(C^*)(w) = \{X \in t_{-1}(w) \mid [X, \tilde{t}_{-2}(w)] = 0\}.
\]

Here \((a.2)\) can be checked as follows; Take a vector field \(\tilde{X} \in \Gamma(N^\perp)\) such that \(\tilde{X} = X \in t_{-1}(w) = N^\perp(w)\). Then \([X, \tilde{t}_{-2}(w)] = 0\) iff \([\tilde{X}, \Gamma(C^*)] \subset \Gamma(C^*)\), which is equivalent to \(\tilde{X} \in \Gamma(\text{Ch}(C^*))\). By \((a.1)\) and \((a.2)\), the Lie bracket in \(\tilde{t}(w)\) induces the non-degenerate paring

$$\tilde{\gamma}_w : E(w) \times \tilde{t}_{-2}(w) \to \tilde{t}_{-3}(w),$$

where \(E(w) = t_{-1}(w)/\text{Ch}(C^*)(w)\). Thus \(\tilde{t}_{-2}(w) \cong \tilde{t}_{-3}(w) \otimes E(w)^*\).

(3) Covariant systems \(H(N)\) and \(S(N)\).

Here we define, at each \(w \in W\),

$$H(N)(w) = \{X \in N^\perp(w) \mid [X, t_{-1}(w)] = 0 \text{ in } \tilde{t}(w)\} = \{X \in N^\perp(w) \mid [X, \Gamma(N^\perp)] \subset \Gamma(N)\},$$

and

$$(2.3) \quad S(N)(w) = H(N)(w) \cap \text{Ch}(C^*)(w) = \{X \in \text{Ch}(C^*)(w) \mid [X, \Gamma(N^\perp)] \subset \Gamma(N)\}.$$

Utilizing the canonical coordinate system as in §2.2, we have, for \(X \in \text{Ch}(C^*)(w)\),

$$X \omega_i = 0, \quad X \omega_i^* \equiv -\sum_{j=1}^{r} \omega_{ij}(X) dx_j \quad (\mod N^\perp)$$

Hence we have

$$S(N)(w) = \{\omega = \omega_i = \omega_i^* = \omega^\alpha = dx_i \equiv 0 \quad (1 \leq i \leq j \leq r, r + 1 \leq \alpha \leq n)\}.$$
Now, for a vector f of $\text{Ch}(C^*)(w)$, we have a map $\kappa : \text{Ch}(C^*)(w) \to t_{-3}(w) \otimes S^2(E(w)^*)$ by taking brackets in $\mathfrak{t}(w)$

$$\kappa(f)(\tilde{X}, \tilde{Y}) = [[f, X], Y] = [[f, Y], X] \in t_{-3}(w),$$

for $X, Y \in t_{-1}(w)$ such that $\tilde{X} = \pi_{-1}(X), \tilde{Y} = \pi_{-1}(Y)$, where $[f, [X, Y]] = 0$ and $\pi_{-1} : t_{-1}(w) \to E(w)$ is the projection. Then κ induces the injective map

$$\hat{\kappa} : \text{Ch}(C^*)(w)/S(N)(w) \to t_{-3}(w) \otimes S^2(E(w)^*).$$

Moreover, when $S(N)$ forms a subbundle, we have an injective map

$$(2.4) \quad \gamma_c : S(N)(w) \to t_N(w) \otimes E(w)^*$$

as follows; For vectors $X \in S(N)(w)$ and $Y \in N^+(w)$, we take $\tilde{X} \in \Gamma(S(N))$ and $\tilde{Y} \in \Gamma(N^+)$ such that $X = \tilde{X}_w$ and $Y = \tilde{Y}_w$. Then $[\tilde{X}, \tilde{Y}] \in \Gamma(N)$ and $[\tilde{X}, \tilde{Y}] \in \Gamma(\text{Ch}(C^*))$ when $\tilde{Y} \in \Gamma(\text{Ch}(C^*))$. From $[f \tilde{X}, g \tilde{Y}] = fg[\tilde{X}, \tilde{Y}] + f(\tilde{X}(g))Y - g(\tilde{Y}(f))X$, we see

$$\gamma_c(X, Y) = \pi_N([\tilde{X}, \tilde{Y}]_w) \in t_N(w) = N(w)/N^+(w)$$

depends only on X and Y and $\gamma_c(X, Y) = 0$ if $Y \in \text{Ch}(C^*)(w)$, where $\pi_N : N(w) \to t_N(w)$ is the projection. Thus $\hat{\gamma}_c$ induces the map $\gamma_c : S(N)(w) \to t_N(w) \otimes E(w)^*$. Assume that $\gamma_c(X) = 0$. This implies that $\hat{\gamma}_c(X, Y) = \pi_N([\tilde{X}, \tilde{Y}]_w) = 0$ for any $Y \in N^+(w)$. Hence we have $[X, \gamma(N^+)] \subset \Gamma(N^+)$, i.e., $X \in \text{Ch}(N^+)(w)$. Thus $X = 0$ follows from $\text{Ch}(C^*)(w) \cap \text{Ch}(N^+)(w) = \{0\}$ at each $w \in W$, which shows that γ_c is injective.

Now we prepare the following proposition for the later use in §7.2. We assume the following compatibility condition for $(W; C^*, N);

$$(C^*) \quad \text{There exists, at each } w \in W, \text{ an } n \text{-dimensional integral element } E \text{ of } (W, N) \text{ such that } E \cap \text{Ch}(C^*)(w) = \{0\}. \text{ Then, } \pi_N(E) \text{ is an isotropic subspace of the symplectic vector space } (t_N(w), \gamma_w), \text{ where } \pi_N : N(w) \to t_N(w) = N(w)/N^+(w) \text{ is the projection. Hence } E' = E \cap N^+(w) \text{ is an } r \text{-dimensional subspace such that }$$

$$(2.5) \quad t_{-1}(w) = N^+(w) = E' \oplus \text{Ch}(C^*)(w) \quad \text{and} \quad [E', E'] = 0 \quad \text{in} \quad \mathfrak{t}(w).$$

We have (cf. [27] Proposition 4.1)

Proposition 2.1. Let $(W; C^*, N)$ be an IG manifold of corank r satisfying the condition (C^*) above. Then $\dim C^*(w)/N^*(w) = \dim H(N)(w)/S(N)(w)$ at each $w \in W$.

Proof. We utilize the above decomposition of $N^+(w) = E' \oplus \text{Ch}(C^*)(w)$. For $X \in H(w)$, we decompose $X = v_X + A_X$, where $v_X \in E'$ and $A_X \in \text{Ch}(C^*)(w)$. From $[X, t_{-1}(w)] = 0$, we have $[X, v] = [A_X, v] = 0$ for $v \in E'$ and $[X, A] = [v_X, A] = 0$ for $\forall A \in \text{Ch}(C^*)(w)$. Hence $A_X \in S(N)(w)$ and we get

$$H(N)(w) = E'' \oplus S(N)(w),$$

where $E'' = E' \cap H(N)(w) = \{v \in E' \mid [v, A] = 0 \forall A \in \text{Ch}(C^*)(w)\}$.

On the other hand, $\pi^*(w)$ defines the subspace $\pi^*(w) = \tilde{\pi}_{-2}(N^*(w)) \subset t_{-2}(w) = C^*(w)/N(w)$. In fact $\pi^*(w) = [t_{-1}(w), t_{-1}(w)]$ in $\mathfrak{t}(w)$. This subspace $\pi^*(w)$ defines the subspace F of $E(w)^*$ via the non-degenerate paring γ_w. Identifying E' with $E(w) = N^+(w)/\text{Ch}(C^*)(w)$, let $F^+ \subset E'$ be the annihilator of F. Then we get $[v, \pi^*(w)] = 0$ for $v \in F^+$ and we calculate

$$[v, [\hat{v}, A]] = [\hat{v}, [v, A]] = 0 \quad \text{for } \forall \hat{v} \in E', \forall A \in \text{Ch}(C^*)(w).$$

Hence, by (a.1) and (a.2), we obtain $[v, A] = 0$ for $\forall A \in \text{Ch}(C^*)(w)$, which shows $F^+ = E''$. This completes the proof of Proposition. \qed
3. \textbf{IG manifolds induced from PD manifolds of second order.} Let \((R; D^1, D^2)\) be a \textit{PD} manifold of second order. We will assume the regularity of \((R; D^1, D^2)\) in terms of the symbol algebras as follows; Let \(c^2(n) = c_{-3} \oplus c_{-2} \oplus c_{-1}\) be the symbol algebra of \((L(J), E)\) given by

\[c_{-3} = \mathbb{R}, \quad c_{-2} = V^*, \quad c_{-1} = V \oplus S^2(V^*), \]

where \(\dim V = n\) and \(\dim J = 2n + 1\) (cf. \$2.5 [27]). Let \(f\) be a fixed subspace of \(S^2(V^*)\) and \(s\) be a subalgebra of \(c^2(n)\), which is defined by

\[s_{-3} = \mathbb{R}, \quad s_{-2} = V^*, \quad s_{-1} = V \oplus f, \quad f \subset S^2(V^*), \]

\((R; D^1, D^2)\) is called regular of type \(s\) if the symbol algebra \(s(v)\) of \((R; D^1, D^2)\) at each \(v \in R\) is isomorphic to \(s\) (cf. [20],[23], \$1 [27]). We note here that \(R\) satisfies the compatibility condition \((C)\):

\[(C) \quad p^{(1)} : R^{(1)} \to R \text{ is onto.} \]

where \(R^{(1)}\) is the first prolongation of \((R; D^1, D^2)\) (cf. \$4.2 [27]).

Here we first recall, from \$3 in [20], the structure of the group \(G(c^2(n))\) of graded Lie algebra automorphisms of \(c^2(n)\). Let \(\kappa : c_{-1} \to V_c = c_{-1}/\mathfrak{F}, \quad \mathfrak{F} = S^2(V^*) \subset c_{-1},\) be the projection. Then \(\kappa_0 = \kappa |_{V}\) is a linear isomorphism of \(V\) onto \(V_c\). Since \(\mathfrak{F} = \{ X \in c_{-1} | [X, c_{-2}] = 0 \}\), it follows that \(\phi(\mathfrak{F}) = \mathfrak{F}\) for \(\phi \in G(c^2(n))\). Hence \(\phi\) induces the linear isomorphism \(\hat{\phi} : V_c \to V_c\) such that \(\hat{\phi} \cdot \kappa = \kappa \cdot \phi\). We define the closed normal subgroup \(N(c^2(n))\) of \(G(c^2(n))\) by setting

\[N(c^2(n)) = \{ \phi \in G(c^2(n)) | \phi |_{c_{-3}} = id_{c_{-3}} \text{ and } \hat{\phi} = id_{V_c} \}. \]

We define the homomorphism \(\chi : GL(V) \times GL(\mathbb{R}) \to G(c^2(n))\), for \(a \in GL(V)\) and \(b \in GL(\mathbb{R}) = \mathbb{R}^\times\), by putting

\[\chi(a, b) |_{V} = a, \quad \chi(a, b) |_{c_{-3}} = b \cdot id_{c_{-3}}, \quad \chi(a, b) |_{S^2(V^*)} = b \cdot (a^*)^{-1}, \]

where \(a^*\) is the adjoint linear map of \(a\). We put \(G_0(c^2(n)) = \chi(GL(V) \times GL(\mathbb{R}))\). Moreover, let \(S(c^2(n))\) be the set of abelian subalgebras \(\mathbb{V}\) of \(c^2(n)\) such that \(c_{-1} = \mathbb{V} \oplus \mathfrak{F}\) (direct sum). Then we have (Proposition 3.7 [20])

1. \(N(c^2(n))\) is canonically isomorphic to the vector group \(S^3(V^*)\). Furthermore \(N(c^2(n))\) acts simply transitively on \(S^2(V^*)\).

2. \(G_0(c^2(n)) = \{ \phi \in G(c^2(n)) | \phi(V) = V \}\) and \(G(c^2(n)) = G_0(c^2(n)) \cdot N(c^2(n))\) is the semi-direct product.

The action of \(N(c^2(n))\) can be explicitly described as follows: First we identify

\[S^3(V^*) \cong \{ \rho : V \to S^2(V^*) | v_1 \rho v_2 = v_2 \rho v_1 \}. \]

Then, for \(\rho \in S^3(V^*)\), we define the element \(A_\rho \in N(c^2(n))\) by

\[A_\rho |_{c_{-3}} = id_{c_{-3}}, \quad A_\rho |_{V} = id_{V} \rho, \quad A_\rho |_{\mathfrak{F}} = id_{\mathfrak{F}} \text{ and } A_\rho |_{V} = id_{V} + \rho. \]

Let \(G(s)\) be the group of graded Lie algebra automorphisms of \(s\). Then \(G(s)\) is a subgroup of \(G(c^2(n))\). In fact, we have (Corollary 5.8 [20])

\[G(s) = \{ \sigma \in G(c^2(n)) | \sigma(s) = s \} = \{ \sigma \in G(c^2(n)) | \sigma(s_{-1}) = s_{-1} \subset c_{-1} \}. \]

Thus \(G(s)\) is a semi-direct product \(G_0(s) \cdot N(s)\), where

\[G_0(s) = \{ \sigma \in G(s) | \sigma(V) = V \} = \{ \sigma \in G_0(c^2(n)) | \sigma(f) = f \subset \mathfrak{F} = S^2(V^*) \}, \]

\[N(s) = \{ \sigma \in N(c^2(n)) | \sigma(s_{-1}) = s_{-1} \} = \{ A_\rho \in N(c^2(n)) | \rho(V) \subset f \} \cong f^{(1)}. \]

Here \(f^{(1)}\) denotes the prolongation of \(f\) (see \$5 [20] for the detail).
Now, starting from an invariant subspace $E \subset V$ of $G_0(\mathfrak{s})$, we will construct the first order covariant system $\tilde{N} = \tilde{N}(E)$ of $(R; D^1, D^2)$ as in the following; Let $E^\perp \subset V^*$ be the annihilator subspace of E. Then E^\perp is an $G(\mathfrak{s})$-invariant subspace of $\mathfrak{s}_{-2} = V^*$. Let v be any point of R and let $\mathfrak{s}(v)$ be the symbol algebra at $v \in R$. Take a graded Lie algebra isomorphism ϕ of $\mathfrak{s}(v)$ onto \mathfrak{s}. Let $\mathfrak{n}(E)(v)$ denote the linear subspace of $\mathfrak{s}_{-2}(v)$ defined by

$$\mathfrak{n}(E)(v) = \phi^{-1}(E^\perp).$$

Then, since E^\perp is $G(\mathfrak{s})$-invariant, it follows that $\mathfrak{n}(E)(v)$ is well-defined. We define the linear subspace $\tilde{N}(E)(v)$ of $D^1(v)$ by setting

$$\tilde{N}(E)(v) = (\pi_{-2})^{-1}(\mathfrak{n}(E)(v)),$$

where $\pi_{-2} : D^1(v) \rightarrow \mathfrak{s}_{-2}(v) = D^1(v)/D^2(v)$ is the projection. Then it follows that the assignment $v \mapsto \tilde{N}(E)(v)$ defines a subbundle $\tilde{N} = \tilde{N}(E)$ of D^1, which contains D^2.

Moreover we will define the covariant systems $\tilde{N}^* = \tilde{N}^*(E)$ and $\tilde{N}^* = \tilde{N}^*(E)$ of $(R; D^1, D^2)$ as follows; Take a graded Lie algebra isomorphism ϕ of $\mathfrak{s}(v)$ onto \mathfrak{s}. Let $\tilde{N}^*(E)(v)$ denote the linear subspace of $D^2(v) = \mathfrak{s}_{-1}(v)$ defined by

$$\tilde{N}^*(E)(v) = \phi^{-1}(E \oplus \mathfrak{f}) \subset D^2(v),$$

Then, since $E \oplus \mathfrak{f}$ is $G(\mathfrak{s})$-invariant, it follows that $\tilde{N}^*(E)(v)$ is well-defined. Thus the assignment $v \mapsto \tilde{N}^+(E)(v)$ defines a subbundle $\tilde{N}^+ = \tilde{N}^+(E)$ of D^2.

Then $\tilde{N}^* = \tilde{N}^*(E)$ is defined by $\tilde{N}^*(E)(v) = \partial \tilde{N}^+(E)(v) + \tilde{N}(E)(v)$ at each $v \in R$, where $\partial \tilde{N}^+(E)$ denotes the derived system of $\tilde{N}^+(E)$. From $\tilde{N}^+(E) \subset D^2 \subset \tilde{N}(E)$ and $\partial D^2 \subset D^1$, it follows that $\partial \tilde{N}^+(E) \subset D^1$ and $D^2 \subset \tilde{N}^*(E) \subset D^1$. In terms of the symbol algebra, we calculate $[E \oplus \mathfrak{f}, E \oplus \mathfrak{f}] = E \mathfrak{f}$. Hence $\tilde{N}^*(E)$ corresponds to the subspace $E \mathfrak{f} + E^\perp$ of $\mathfrak{s}_{-2} = V^*$. We put

$$\hat{E} = E \cap (E \mathfrak{f})^\perp = \{v \in E \mid v \circ E \subset \mathfrak{f}^\perp\}.$$

Then $\tilde{N}^*(E)$ coincides with the first order covariant system corresponding to the $G_0(\mathfrak{s})$-invariant subspace \hat{E}. Namely take a graded Lie algebra isomorphism ϕ of $\mathfrak{s}(v)$ onto \mathfrak{s}. Let $\mathfrak{n}^*(E)(v)$ denote the linear subspace of $\mathfrak{s}_{-2}(v)$ defined by

$$\mathfrak{n}^*(E)(v) = \phi^{-1}(\hat{E}^\perp).$$

Then we have

$$\tilde{N}^*(E)(v) = (\pi_{-2})^{-1}(\mathfrak{n}^*(E)(v)).$$

In particular $\tilde{N}^* = \tilde{N}^*(E)$ is a subbundle under our regularity condition for $(R; D^1, D^2)$.

3.2. IG manifold $(W; C^*, N)$ associated with $(R; D^1, D^2, \tilde{N}(E))$. Let $(R; D^1, D^2)$ be a PD manifold of second order, which is regular of type \mathfrak{s}. Moreover we assume that R is regular with respect to $\text{Ch}(D^1)$, i.e., the space $J = R/\text{Ch}(D^1)$ of leaves of this foliation is a manifold of dimension $2n + 1$ such that each fibre of the projection $p : R \rightarrow J$ is connected and p is a submersion. Then we have a differential system C on J of codimension 1 such that $D^1 = p_*^{-1}(C)$ and (J, C) becomes a contact manifold.

Now assume that there exists a $G_0(\mathfrak{s})$-invariant subspace E of V of dimension r. Then we have the first order covariant system $\tilde{N} = \tilde{N}(E)$ of $(R; D^1, D^2)$. \tilde{N} contains D^2 and is a subbundle of D^1 of codimension r. For a point $v \in R$, we see that $p_*(D^1(v)) = C(u)$, $u = p(v)$ and $\iota(v) = p_*(D^2(v))$ is a legendrian subspace of (J, C), where $\iota : R \rightarrow L(J)$ is the canonical immersion (cf. §4.1 [27]). Thus $w = p_*(\tilde{N}(v)) \subset C(u)$ is an involutive subspace of $(C(u), d\varpi)$.
of codimension \(r \) such that \(\nu^+ \subset \nu(v) \subset \nu \). Let \(\Gamma^*(J) \) be the Involutive Grassmann bundle of \((J,C)\) of codimension \(r \). Utilizing \(\tilde{N} \), we will consider the map \(\eta : R \rightarrow \Gamma^*(J) \) defined by
\[
\eta(v) = p_* (\tilde{N}(v)) \in \Gamma^*(J) \quad \text{for} \quad v \in R.
\]

By Realization Lemma for \((R, \tilde{N}, p, J)\), we have \(\ker \eta_* = \text{Ch} (\hat{D^1}) \cap \text{Ch} (\tilde{N}) \). Thus, if \(\text{Ch}(D^1) \cap \text{Ch} (\tilde{N}) \) is a subbundle, \(\eta \) is a map of constant rank so that the image \(W = \text{Im}(\eta) \) of \(\eta \) is, at least locally, a submanifold of \(\Gamma^*(J) \) such that \(q : W \rightarrow J \) is a submersion, where \(q = \pi \mid_w \) and \(\pi : \Gamma^*(J) \rightarrow J \) is the projection.

In the rest of this subsection, we assume that \(\text{Ch}(D^1) \cap \text{Ch} (\tilde{N}) \) is a subbundle so that \(W = \text{Im}(\eta) \) is a submanifold of \(\Gamma^*(J) \) and will consider the relations of several covariant systems on \(R \) and \(W \). As a submanifold of \(\Gamma^*(J) \) satisfying the condition (W.0), \(W \) carries two differential systems \(C^* \) and \(N \) such that \(C^* = q_*^{-1}(C) \). \((W; C^*, N)\) is an IG manifold of corank \(r \). \((W; C^*, N)\) is called the IG manifold of corank \(r \) associated with \((R; D^1, D^2, \tilde{N}(E))\). Then, by the definition of the canonical systems \(\tilde{C}, \tilde{N} \) of \(\Gamma^*(J) \) and the map \(\eta \), we have
\[
\eta_*^{-1}(C^*) = D^1 \quad \text{and} \quad \eta_*^{-1}(N) = \tilde{N}.
\]

Moreover, putting \(\eta_*^{-1}(S(N)(w)) = S(\tilde{N})(v) \subset \text{Ch}(D^1)(v) \) for \(w = \eta(v) \), we have

Lemma 3.1.

1. \(\eta_*^{-1}(N^+) = \tilde{N}^+ \).
2. \(\eta_*^{-1}(N^*) = \tilde{N}^* \).
3. \(\text{Ch}(N)(v) \subset \tilde{N}^+(v) \subset D^2(v) \) for \(v \in R \).
4. For a graded Lie algebra isomorphism \(\phi \) of \(\mathfrak{s}(v) \) onto \(\mathfrak{s} \),
\[
\phi(S(\tilde{N})(v)) = f \cap (E^+ \otimes \mathfrak{s} V^*) \subset S^2(V^*).
\]

Proof.

(1) Put \(\tilde{N} = \eta_*^{-1}(N^+) \). For a point \(v \in R \), from \(p = q \cdot \eta \), we have \(p_* (\tilde{N}(v)) = q_* (N^+(w)) = w^+ \subset \nu(v) \), where \(w = \eta(v) \), which implies \(\tilde{N} \subset D^2 \). From \(\ker q_* = \text{Ch} (C^*) \subset N^+ \) and \(\ker p_* = \text{Ch}(D^1) = \eta_*^{-1}(\text{Ch}(C^*)) \), we have \(\text{Ch}(D^1) \subset \tilde{N} \subset D^2 \). On the other hand, we have \(\tilde{N}^+(v) = \{ X \in D^2(v) \mid [X, \mathfrak{n}(E)] = 0 \} \) in terms of the symbol algebra \(\mathfrak{s}(v) \). Moreover, from \([\Gamma(N^+), \Gamma(N)] \subset \Gamma(C^*) \), we have \([\Gamma(\tilde{N}), \Gamma(\tilde{N})] \subset \Gamma(D^1) \). This implies \(\tilde{N} \subset \tilde{N}^+ \).

Then, comparing the ranks of both sides, we obtain \(\tilde{N} = \tilde{N}^+ \).

(2) follows immediately from (1) and (3) follows from \(\text{Ch}(N)(w) \subset N^+(w) \) at each \(w \in W \) (see §2.3 (1)).

(4) From §2.3 (3), we have \(S(N)(w) = \{ X \in \text{Ch}(C^*)(w) \mid [X, \Gamma(N^+)] \subset \Gamma(N) \} \). Thus, in terms of the symbol algebra, we get
\[
\phi(S(\tilde{N})(v)) = \{ f \in \mathfrak{f} \mid [f, E] \subset E^+ \} = \{ f \in \mathfrak{f} \mid [[f,E],E] = 0 \} = \mathfrak{f} \cap (E^+ \otimes \mathfrak{s} V^*) \subset S^2(V^*).
\]

In particular, by Lemma 3.1 (4), \(S(N) \) becomes a subbundle of \text{Ch}(C^*) under our regularity condition for \((R; D^1, D^2, \tilde{N}(E))\).

4. Lagrange Grassmann Bundle \(R(W) \) over an IG manifold \((W; C^*, N)\)

4.1. Lagrange Grassmann Bundle \(R(W) \)

Let \((W; C^*, N)\) be an IG manifold of corank \(r \). We will construct the Lagrange Grassmann bundle \(R(W) \) over \((W; C^*, N)\) and will examine the conditions when \(R(W) \) becomes a PD manifold of second order.

We assume that \(W \) is regular with respect to \(\text{Ch}(C^*) \), i.e., the space \(J = W/\text{Ch}(C^*) \) of leaves of this foliation \(\text{Ch}(C^*) \) is a manifold of dimension \(2n + 1 \) such that \((J,C)\) is a contact manifold, where \(C^* = q_*^{-1}(C) \) and \(q : W \rightarrow J \) is a submersion. For a point \(w \in W \), we
will consider maximal isotropic subspaces of \((N(w), \gamma_w)\). Namely, we consider the Lagrange Grassmann bundle \(R(W)\) over \((W; C^*, N)\):

\[
R(W) = \bigcup_{w \in W} R_w, \quad R_w = \{ \hat{v} \subset N(w) \mid \gamma_w |_{\hat{v}} = 0, \ \hat{v} \text{ is maximal} \}.
\]

\(R(W)\) is a submanifold of the Grassmann bundle \(J(W, n + t)\) over \(W\), where \(t = \text{rank} \ \text{Ch}(C^*)\). Moreover \(v = q_\alpha(\hat{v})\) is a legendrian subspace of \((J, C)\) such that \(v \subset \iota(w) = q_\alpha(N(w))\), where \(\iota : W \to \Gamma(J)\) is the canonical immersion (see Theorem 2.1). Thus we define a map \(\zeta : R(W) \to L(J)\) by \(\zeta(\hat{v}) = q_\alpha(\hat{v})\). Then we have

\[
\zeta(R_w) = \{ v \in L(J) \mid v \subset \hat{w} \subset C(w) \} \cong L(\hat{w}/\hat{w}^\perp) \cong U(n-r)/O(n-r),
\]

where \(u = q(w), \ \hat{w} = \iota(w)\) and \(L(\hat{w}/\hat{w}^\perp)\) denotes the Lagrange Grassmann manifold of the symplectic vector space \(\hat{w}/\hat{w}^\perp\) of dimension \(2(n-r)\). Hence \(R(W)\) is a manifold of dimension \(k + \frac{1}{2}(n-r)(n-r+1)\), where \(k = \dim W\) and \(\zeta(R(W))\) is the collection of legendrian subspaces \(v\) such that \(v \subset \hat{w}\) for \(\hat{w} \in \iota(W) \subset \Gamma(J)\).

Now we will describe the map \(\zeta : R(W) \to L(J)\) in suitable coordinates. Let us fix a reference point \(\hat{v}_0 \in R(W)\) and put \(w_0 = \tau(\hat{v}_0), \ \tau : R(W) \to W\) is the projection. Moreover put \(u_o = q(w_o) \in J\). \(v_o = \zeta(\hat{v}_0)\) is a legendrian subspace of \((C(u_o), d\omega)\) such that \(v_o \subset \iota(w_o) = q_\alpha(N(w_o)) \in \Gamma(J)\). Take a canonical coordinate system \((x_1, \ldots, x_n, z, p_1, \ldots, p_n)\) of \((J, C)\) defined on a neighborhood \(U\) with origin \(u_o\) such that

\[
v_o = \{ X \in T_{w_0}(J) \mid \omega(X) = dp_1(X) = \cdots = dp_n(X) = 0 \} \subset \nabla(t(w_o)) = \{ X \in T_{w_0}(J) \mid \omega(X) = dp_1(X) = \cdots = dp_r(X) = 0 \},
\]

where \(\omega = dz - \sum_{i=1}^n p_idx_i\). Then we can introduce coordinate system \((x_i, x_\alpha, z, p_\alpha, a_\alpha^i, b_\alpha^i, s_{ij})\) \((1 \leq i \leq j \leq r, r+1 \leq \alpha \leq n)\) of \(\Gamma(J)\) around \(\iota(w_o)\) with origin \(\iota(w_o)\) as in §2.1. Since \(q : W \to J\) is a submersion, let us take a coordinate system \((x_1, \ldots, x_n, z, p_1, \ldots, p_n, \lambda_1, \ldots, \lambda_r)\) of \(W\) on a neighborhood \(U^* \subset q^{-1}(U)\) of \(w_o\). Here \((x_1, \ldots, x_n, z, p_1, \ldots, p_n)\) are pullbacks to \(U^*\) of coordinate functions on \(U\). Then, on \(U^*\), we have, from §2.2 and §2.3, \(C^* = \{ \omega = 0 \}, \ N = \{ \omega = \omega_1^* = \cdots = \omega_r^* = 0 \}, \ N^\perp = \{ \omega = \omega_i^* = \omega_\alpha^* = 0 \ (1 \leq i \leq r, r+1 \leq \alpha \leq n) \}, \)

where

\[
\omega_1^* = dp_i - \sum_{\alpha=r+1}^n a_\alpha^i dp_\alpha - \sum_{\alpha=r+1}^n b_\alpha^i dx_\alpha - \sum_{j=1}^r (s_{ij} - \sum_{\alpha=r+1}^n a_\alpha^i b_\alpha^j) dx_j \quad (1 \leq i \leq r),
\]

\[
\omega_\alpha^* = dp_\alpha - \sum_{j=1}^r b_\alpha^j dx_j \quad \text{and} \quad \omega_\alpha = dx_\alpha + \sum_{i=1}^r a_\alpha^i dx_i \quad (r+1 \leq \alpha \leq n).
\]

Here we note that \(a_\alpha^i = \iota^*(a_\alpha^i), \ b_\alpha^i = \iota^*(b_\alpha^i)\) and \(s_{ij} = \iota^*(s_{ij})\) are functions of \((x_1, \ldots, x_n, z, p_1, \ldots, p_n, \lambda_1, \ldots, \lambda_r)\) on \(U^*\). Moreover we have from §2.2 and §2.3,

\[
\text{Ch} (C^*) = \{ \omega = \omega_1^* = \omega_\alpha^* = \omega_\alpha = dx_i = 0 \ (1 \leq i \leq r, r+1 \leq \alpha \leq n) \},
\]

and

\[
(1.4) \quad S(N)(w) = \{ \omega = \omega_1^* = \omega_\alpha^* = \omega_\alpha = dx_i = \omega_{ij} = 0 \quad (1 \leq i \leq j \leq r, r+1 \leq \alpha \leq n) \},
\]

where \(\omega_{ij} = ds_{ij} - \sum_{\alpha=r+1}^n (a_\alpha^i db_\alpha^j + a_\alpha^j db_\alpha^i)\).

On \(U^*\), 1-forms \(\{ \omega, \omega_1^*, dp_\alpha, dx_i, dx_\alpha, dx_\alpha \ (1 \leq i \leq r, r+1 \leq \alpha \leq n, 1 \leq \alpha \leq t) \}\) form a coframe. By our choice of the coordinate system, we have

\[
\hat{v}_o = q_\alpha^{-1}(v_o) = \{ X \in T_{w_o}(W) \mid \omega(X) = \omega_i^*(X) = dp_\alpha(X) = 0 \quad (1 \leq i \leq r, r+1 \leq \alpha \leq n) \}.
\]
Hence we will work on the following neighborhood \hat{U} of \hat{v}_o in $J(W, n+t)$:

$$\hat{U} = \{ \hat{v} \in \hat{\tau}^{-1}(U^*) | dx_1, \ldots, dx_n, d\lambda_1, \ldots, d\lambda_t \text{ are linearly independent on } \hat{v} \},$$

where $\hat{\tau} : J(W, n+t) \to W$ is the projection. For a point $\hat{v} \in R(W) \cap \hat{U}$, from $\hat{v} \subset N(w)$, we have

$$\varpi \mid _{\hat{v}} = \varpi^*_o \mid _{\hat{v}} = 0 \quad (i = 1, \ldots, r).$$

Thus, by expressing $dp_\alpha \mid _{\hat{v}}$ as a linear combination of $dx_i \mid _{\hat{v}}, dx_\alpha \mid _{\hat{v}}$ and $d\lambda_\alpha \mid _{\hat{v}}$, we see that \hat{v} is defined by

$$\hat{v} = \{ X \in T_{\varpi}(W) | \varpi(X) = \varpi^*_o(X) = \pi^*_\alpha(\hat{v})(X) = 0 \},$$

where

$$\pi^*_\alpha(\hat{v}) = dp_\alpha - \sum_{i=1}^{r} p^*_{\alpha i}(\hat{v}) dx_i - \sum_{\beta=r+1}^{n} p^*_{\alpha \beta}(\hat{v}) dx_\beta - \sum_{a=1}^{t} p^*_a(\hat{v}) d\lambda_a.$$

Here $(x_1, x_2, \ldots, x_n, z, p_1, \ldots, p_n, \lambda_1, \ldots, \lambda_t, p^*_\alpha, p^*_{\alpha \beta}, \ldots, p^*_{\alpha \beta} ; 1 \leq i \leq r, r + 1 \leq \alpha, \beta \leq n, 1 \leq a \leq t)$ constitute a coordinate system on \hat{U} of the submanifold $J(W, n+t; N) = \{ \hat{v} \in J(W, n+t) | \hat{v} \subset N(w) \}$ of $J(W, n+t)$. On this coordinate system, $\gamma_{\varpi} \mid _{\hat{v}} = 0$ is equivalent to $d\varpi \mid _{\hat{v}} = 0$, i.e.,

$$d\varpi \equiv 0 \quad (\text{mod } \varpi, \varpi^*_1, \ldots, \varpi^*_n).$$

Hence, from $\pi^*_\alpha = \varpi^*_o = - \sum_{\beta=r+1}^{n} p^*_{\alpha \beta} \omega^\beta - \sum_{i=1}^{r} (p^*_{\alpha i} - b^\alpha_i - \sum_{\beta=r+1}^{n} p^*_{\alpha \beta} a^\beta_i) dx_i - \sum_{a=1}^{t} p^*_a d\lambda_a$, we calculate

$$d\varpi \equiv \sum_{\alpha=r+1}^{n} \omega^\alpha \wedge \varpi^*_\alpha \quad (\text{mod } \varpi, \varpi^*_1, \ldots, \varpi^*_n)$$

$$\equiv \sum_{\alpha=r+1}^{n} \sum_{\beta=r+1}^{n} p^*_{\alpha \beta} \omega^\alpha \wedge \omega^\beta + \sum_{i=1}^{r} (p^*_{\alpha i} - b^\alpha_i - \sum_{\beta=r+1}^{n} p^*_{\alpha \beta} a^\beta_i) \omega^\alpha \wedge dx_i + \sum_{a=1}^{t} p^*_a \omega^\alpha \wedge d\lambda_a \quad (\text{mod } \varpi, \varpi^*_1, \ldots, \varpi^*_n).$$

Thus we see that $R(W)$ is defined in this coordinate system by

$$p^*_{\alpha \beta} = p^*_{\beta \alpha}, \quad p^*_\alpha = b^\alpha_i + \sum_{\beta=r+1}^{n} p^*_{\alpha \beta} a^\beta_i, \quad p^*_a = 0 \quad (r + 1 \leq \alpha, \beta \leq n, 1 \leq i \leq r, 1 \leq a \leq t).$$

In this way, we obtain a coordinate system $(x_1, \ldots, x_n, z, p_1, \ldots, p_n, \lambda_1, \ldots, \lambda_t, p^*_{\alpha \beta} ; 1 \leq k \leq l \leq n, p_{kl} = p_{lk}$, of $(L(J), E)$, which is subordinate to $U'; (x_1, \ldots, x_n, z, p_1, \ldots, p_n)$, defined on a neighborhood U with origin $v_o = \zeta(\hat{v}_o)$ such that

$$E = \{ \varpi = \varpi_1 = \cdots = \varpi_n = 0 \},$$

where $\varpi_k = dp_k - \sum_{i=1}^{n} p_{ki} dx_i (1 \leq k \leq n), U = \{ v \in \pi^{-1}(U') \mid dx_1 \wedge \cdots \wedge dx_n \mid v \neq 0 \}$ and $\pi : L(J) \to J$ is the projection. By the definition of the canonical system E on $L(J)$, we have $E(v) = \pi^{-1}(v)$.

Hence, from $\pi \cdot \zeta = q \cdot \tau$ and $v = q(\hat{v})$, we have

$$\zeta^{-1}(E(v)) = (\pi \cdot \zeta)^{-1}(v) = (q \cdot \tau)^{-1}(v) = \tau^{-1}(v).$$

Thus, on $R(W) \cap \hat{U}$, we obtain

$$\{ \zeta^* \varpi = \zeta^* \varpi_1 = \cdots = \zeta^* \varpi_n = 0 \} = \{ \varpi = \varpi^*_1 = \cdots = \varpi^*_n = \pi^*_r = \cdots = \pi^*_n = 0 \}.$$

We have

$$\zeta^* \varpi = \varpi, \quad \zeta^* \varpi_k = dp_k - \sum_{i=1}^{n} \zeta^* p_{ki} dx_i \quad (1 \leq k \leq n).$$
and
\[\pi^*_\alpha = \varpi^*_\alpha - \sum_{\beta = r+1}^{n} p^*_\alpha{}^{\beta} \omega^\beta = dp_\alpha - \sum_{i=1}^{r} p^*_\alpha dx_i - \sum_{\beta = r+1}^{n} p^*_\alpha{}^{\beta} dx_\beta \quad (r+1 \leq \alpha \leq n). \]

Moreover we calculate
\[
\varpi^*_i = dp_i - \sum_{\alpha=r+1}^{n} a^0_i dx_\alpha - \sum_{\alpha=r+1}^{n} b^0_i dx_\alpha - \sum_{j=1}^{r} (s_{ij} - \sum_{\alpha=r+1}^{n} a^0_i b^0_j) dx_j
\]
\[\equiv dp_i - \sum_{\alpha=r+1}^{n} a^0_i (\sum_{j=1}^{r} p^*_\alpha dx_j + \sum_{\beta=r+1}^{n} p^*_\alpha{}^{\beta} dx_\beta) - \sum_{\alpha=r+1}^{n} b^0_i dx_\alpha - \sum_{j=1}^{r} (s_{ij} - \sum_{\alpha=r+1}^{n} a^0_i b^0_j) dx_j
\]
\[\equiv dp_i - \sum_{j=1}^{r} p^*_i dx_j - \sum_{\alpha=r+1}^{n} p^*_\alpha dx_\alpha \quad (\text{mod } \pi^*_r, \ldots, \pi^*_n).
\]

where \(p^*_{ij} = s_{ij} + \sum_{\alpha, \beta = r+1}^{n} p^*_{\alpha \beta} a^i_\alpha a^j_\beta \). Hence we obtain
\[\zeta^* p_{\alpha \beta} = p^*_{\alpha \beta}, \quad \zeta^* p_{\alpha i} = b^0_i + \sum_{\beta = r+1}^{n} p^*_{\alpha \beta} a^i_\beta, \quad \zeta^* p_{ij} = s_{ij} + \sum_{\alpha = r+1}^{n} \sum_{\beta = r+1}^{n} p^*_{\alpha \beta} a^i_\alpha a^j_\beta,
\]
which describe the map \(\zeta : R(W) \to L(J) \) in the above coordinate systems.

4.2. Differential Systems on \(R(W) \)
We have several differential systems naturally defined on \(R(W) \). First, \(D^2_W = \tau_{s^{-1}}(C^*) \), \(N_W = \tau_{s^{-1}}(N) \) and \(N^*_W = \tau_{s^{-1}}(N^1) \) are the lifts of \(C^* \), \(N \) and \(N^1 \) respectively and the canonical system \(D^2_W \) is defined by
\[
D^2_W(\tilde{v}) = \tau_{s^{-1}}(\tilde{v}) \subset T_{\tilde{v}}(R(W)) \xrightarrow{\tau} T_w(W) \quad \text{at each } \tilde{v} \in R(W).
\]

Then, on \(R(W) \cap \tilde{U} \), we have
\[
D^1_W = \{ \varpi = 0 \}, \quad \text{Ch}(D^1_W) = \{ \varpi = \varpi^*_1 = \varpi^*_2 = \varpi^*_3 = \omega^\alpha = dx_i = 0 \ (1 \leq i \leq r, r + 1 \leq \alpha \leq n) \},
\]
\[
N_W = \{ \varpi = \varpi^*_1 = 0 \ (1 \leq i \leq r) \}, \quad N^*_W = \{ \varpi = \varpi^*_1 = \varpi^*_2 = \omega^\alpha = 0 \ (1 \leq i \leq r, r + 1 \leq \alpha \leq n) \},
\]
\[
D^2_W = \{ \varpi = \varpi^*_1 = \varpi^*_2 - \sum_{\beta = r+1}^{n} p^*_\alpha{}^{\beta} \omega^\beta = 0 \ (1 \leq i \leq r, r + 1 \leq \alpha \leq n) \}.
\]

For these systems, we have

Lemma 4.1. (1) \(\zeta^{-1}(E) = D^2_W \) and \(\zeta^{-1}(\partial E) = D^1_W \).

(2) \(D^1_W \) and \(D^2_W \) are differential systems of codimension 1 and \(n+1 \) respectively.

(3) \(\partial D^2_W \subset D^1_W \).

(4) \(\text{Ch}(D^1_W) \) is a subbundle of \(D^2_W \) of codimension \(n \).

(5) \(N_W \) is a subbundle of \(D^1_W \) of codimension \(r \), which contains \(D^2_W \)

such that \(\text{Ch}(N_W)(\tilde{v}) \subset D^2_W(\tilde{v}) \) at each \(\tilde{v} \in R(W) \).

(6) \(\text{Ch}(D^1_W) \cap \text{Ch}(N_W) = \text{Ker} \tau_s \).

(7) \(\text{Ch}(D^1_W)(\tilde{v}) \cap \text{Ch}(D^2_W)(\tilde{v}) = \text{Ker} \zeta_s(\tilde{v}) \) at each \(\tilde{v} \in R(W) \).

(8) \(\text{Ker} \tau_s \cap \text{Ker} \zeta_s = \{0\} \).

Proof. (1) follows from (4.2) and \(\zeta^* \varpi = \varpi \). (2) and (4) are obvious from the above and
(3) follows from \(d \varpi = 0 \) (mod \(\varpi, \varpi^*_1, \ldots, \varpi^*_n, \pi^*_{r+1}, \ldots, \pi^*_n \)), where \(\pi^*_\alpha = \varpi^*_\alpha - \sum_{\beta = r+1}^{n} p^*_\alpha{}^{\beta} \omega^\beta \)
\((r+1 \leq \alpha \leq n) \). The first half of (5) is obvious from the above and \(\text{Ch}(N_W)(\tilde{v}) \subset D^2_W(\tilde{v}) \)
follows from \(N_W \subset D^2_W \) and \(\text{Ch}(N(w)) \subset N^1(w) \), where \(w = \tau(\tilde{v}) \). (6) follows from \(\text{Ch}(C^*) \cap \text{Ch}(N) = \{0\} \). By \(\text{Ker}(q \cdot \tau)_s = \tau_{s^{-1}}(\text{Ch}(C^*)) = \text{Ch}(D^1_W) \)
and \(\zeta(\tilde{v}) = q_s(\tilde{v}) = q_s(\tau_s(D^2_W(\tilde{v}))) \),
(7) follows from the Realization Lemma for \((R(W), D^2_W, q \cdot \tau, J)\). Finally (8) follows from Ker \(\zeta_s \subseteq \{dp_{\alpha \beta} = 0 \mid r + 1 \leq \alpha \leq \beta \leq n\}\) and

\[
\text{Ker} \tau_s = \{dz = dp_1 = \cdots = dp_n = dx_1 = \cdots = dx_n = d\lambda_1 = \cdots = d\lambda_l = 0\}.
\]

Thus, by (2),(3),(4) and (7) of Lemma 4.1, we see that \((R(W); D^1_W, D^2_W)\) is a PD manifold of second order iff \(\zeta : R(W) \to L(J)\) is an immersion. We will describe this condition in terms of invariants of \((W; C^*, N)\). For a point \(\hat{v} \in R(W)\), put

\[
A(\hat{v}) = \tau_s(Ch(D^1_W)(\hat{v}) \cap Ch(D^2_W)(\hat{v})) \subset Ch(C^*)(w) = \tau_s(Ch(D^1_W)(\hat{v})), \quad w = \tau(\hat{v}).
\]

By Lemma 4.1 (8), \(A(\hat{v}) = \{0\}\) iff Ker \(\zeta(\hat{v}) = \{0\}\), i.e., \(\zeta\) is an immersion around \(\hat{v}\). On the neighborhood \(R(W) \cap U\), we have

\[
d\pi^*_\alpha = d\omega^*_\alpha - \sum_{\beta = r+1}^n p_{\alpha \beta}^* d\omega^\beta + \sum_{\beta = r+1}^n \omega^\beta \wedge dp_{\alpha \beta}^*,
\]

\[
= \sum_{i=1}^r dx_i \wedge (db_i^* + \sum_{\beta = r+1}^n p_{\alpha \beta}^* da_i^\beta) + \sum_{\beta = r+1}^n \omega^\beta \wedge dp_{\alpha \beta}^*.
\]

Hence, from (2.1), we get

\[
\begin{cases}
\begin{aligned}
d\omega &\equiv 0, \\
d\omega_i^* &\equiv \sum_{j=1}^r dx_j \wedge \omega_{ij} + \sum_{\alpha = r+1}^n \omega^\alpha \wedge \pi_{\alpha i} \quad \text{(mod } \omega, \omega^1_i, \ldots, \omega^r_i, \pi_{r+1}, \ldots, \pi_n^*) \\
d\pi_{\alpha i} &\equiv \sum_{i=1}^r dx_i \wedge \pi_{\alpha i} + \sum_{\beta = r+1}^n \omega^\beta \wedge dp_{\alpha \beta}.
\end{aligned}
\end{cases}
\]

(4.4)

for \(1 \leq i \leq r, r + 1 \leq \alpha \leq n\), where \(\pi_{\alpha i} = db_i^\alpha + \sum_{\beta = r+1}^n p_{\alpha \beta}^* da_i^\beta\). From

\[
\text{Ch}(D^1_W) = \{\omega = \omega_i^* = \omega^* = \omega^\alpha = dx_i = 0 \mid 1 \leq i \leq r, r + 1 \leq \alpha \leq n\},
\]

we obtain

\[
\text{Ch}(D^1_W)(\hat{v}) \cap \text{Ch}(D^2_W)(\hat{v}) = \\
\{X \in \text{Ch}(D^1_W)(\hat{v}) \mid \omega_{ij}(X) = \pi_{\alpha i}(X) = dp_{\alpha \beta}(X) = 0 \mid 1 \leq i \leq j \leq r, r + 1 \leq \alpha \leq \beta \leq n\}.
\]

Thus, by (4.1), we get

\[
A(\hat{v}) = \{X \in S(N)(w) \mid (db_i^\alpha + \sum_{\beta = r+1}^n p_{\alpha \beta}^* da_i^\beta)(X) = 0 \mid 1 \leq i \leq r, r + 1 \leq \alpha \leq n\},
\]

(4.5)

on \(R(W) \cap U\) and \(\hat{v} = \{\omega = \omega_i^* = \omega^* - \sum_{\beta = r+1}^n p_{\alpha \beta}^* \omega^\beta = 0 \mid 1 \leq i \leq r, r + 1 \leq \alpha \leq n\}\). We will describe this subspace of \(S(N)(w)\) in terms of invariants of \((W; C^*, N)\).

For a point \(\hat{v} \in R(W)\), \(\hat{v}\) is a maximal isotropic subspace in \(N(w)\), \(w = \tau(\hat{v})\), which contains \(N^\perp(w)\). We put \(E^\perp(\hat{v}) = N(w) \hat{v}\) (\(\cong N_W(\hat{v})/D^2_W(\hat{v})\)). Then we get the projection \(\pi_{\hat{v}} : t_N(w) = N(w)/N^\perp(w) \to E^\perp(\hat{v}) = N(w)/\hat{v}\), which induces, from (2.3), the following map:

\[
\gamma_{\hat{v}} : S(N)(w) \to E^\perp(\hat{v}) \otimes E(w)^*.
\]

by \(\gamma_{\hat{v}} = (\pi_{\hat{v}} \otimes id_{E(w)^*}) \cdot \gamma_{\hat{c}}\). We can describe \(A(\hat{v})\) as follows;
Lemma 4.2. (1) \(\hat{A}(\hat{v}) = \text{Ker} \, \gamma_c(\hat{v}) \)

(2) \(\hat{A}(\hat{v}) = \{ X \in S(N)(w) \mid X | d\omega \equiv X | d\omega_1^* \equiv \cdots \equiv X | d\omega_r^* \equiv 0 \pmod{D(\hat{v})} \} \),
where \(N = \{ \omega = \omega_1^* = \cdots = \omega_r^* = 0 \} \).

Proof. By (4.4), for a vector \(X \in S(N)(w) \), we have
\[
\begin{align*}
X | d\omega &\equiv 0, \quad X | d\omega_1^* \equiv 0 \pmod{\omega, \omega_1^*, \omega_2^*, \omega_3^* (1 \leq r \leq r, r+1 \leq \alpha \leq n)} \\
X | d\pi_1^* &\equiv - \sum_{i=1}^r (d\beta_i^*) + \sum_{\beta=r+1}^n \pi_\beta^*(X) \omega_i^*.
\end{align*}
\]
Hence we have
\[
\hat{A}(\hat{v}) = \{ X \in S(N)(w) \mid [X, \Gamma(N^\perp)] \subset \hat{v} \}.
\]
On the other hand, for \(X \in S(N)(w) \) and \(Y \in N^\perp(w) \), we take \(\tilde{X} \in \Gamma(S(N)) \) and \(\tilde{Y} \in \Gamma(N^\perp) \) such that \(X = \tilde{X}_w \) and \(Y = \tilde{Y}_w \). Then, from (2.3), \(\gamma_c : S(N)(w) \rightarrow t_{N}(w) \otimes E^*(w) \) is defined by \(\hat{\gamma}_c(X, Y) = \pi_N([\tilde{X}, \tilde{Y}]_w) \in t_{N}(w) = N(w)/N^\perp(w) \). Thus \(\gamma_c(\hat{v}) \) is defined by \(\gamma_c(\hat{v})(X, Y) = \hat{\pi}_w([\tilde{X}, \tilde{Y}]_w) \in E^*(\hat{v}) = N(w)/\hat{v} \),

where \(\hat{\pi}_w : N(w) \rightarrow E^*(\hat{v}) \) is the projection. Hence \([\tilde{X}, \tilde{Y}]_w \in \hat{v} \) for \(\forall Y \in N^\perp(w) \) iff \(\hat{\gamma}_c(\hat{v})(X, Y) = 0 \) for \(\forall Y \in N^\perp(w) \), i.e., \(\gamma_c(\hat{v})(X) = 0 \), which implies \(\hat{A}(\hat{v}) = \text{Ker} \, \gamma_c(\hat{v}) \).

Moreover, by (4.4), for a vector \(X \in S(N)(w) \), we have
\[
\begin{align*}
X | d\omega &\equiv 0 \pmod{\omega, \omega_1^*, \ldots, \omega_r^*, \omega_{r+1}^*, \ldots, \omega_n^*} \\
X | d\omega_1^* &\equiv - \sum_{\alpha=r+1}^n \pi_\alpha(X) \omega_1^* \omega_\beta \omega_i^* \omega_\alpha \omega_i^* (1 \leq i \leq r)
\end{align*}
\]
Hence, from (4.5), we get
\[
\begin{align*}
\hat{A}(\hat{v}) &= \{ X \in S(N)(w) \mid X | d\omega \equiv X | d\omega_1^* \equiv \cdots \equiv X | d\omega_r^* \equiv 0 \pmod{D(\hat{v})} \} \\
&= \{ X \in S(N)(w) \mid [X, Y] \in N(w) \quad \text{for} \quad \forall Y \in \hat{v} \}.
\end{align*}
\]

Finally we will indicate the relation between the symbol algebra \(s(\hat{v}) \) of \((R(W); D_W^1, D_W^2) \) at \(\hat{v} \in R(W) \) and the invariants of \((W; C^*, N) \) at \(w = \tau(\hat{v}) \), when \(\ker \zeta \) is trivial. In the rest of this subsection, we assume that \(\zeta : R(W) \rightarrow L(J) \) is an immersion. Hence \((R(W); D_W^1, D_W^2) \) is a PD manifold of second order. Moreover we assume that \(R(W) \) satisfies the following condition (C):
\[
(C) \quad \hat{\beta}_1 : R(W)^{(1)} \rightarrow R(W) \text{ is onto.}
\]
where \(R(W)^{(1)} \) is the first prolongation of \(R(W); D_W^1, D_W^2 \), i.e., there exists an \(n \)-dimensional integral element \(V = V(\hat{v}) \) of \((R(W), D_W^1, D_W^2) \) at each \(\hat{v} \in R(W) \) such that \(D_W^1(\hat{v}) = V \oplus f(\hat{v}) \), where \(f(\hat{v}) = \ker(q \cdot \tau, \hat{v}) = CH(D_W^1(\hat{v}) = \tau^{-1}(CH(C^*(w))) \) and \(w = \tau(\hat{v}) \).

Let \(s(\hat{v}) = s_{-3}(\hat{v}) \oplus s_{-2}(\hat{v}) \oplus s_{-1}(\hat{v}) \) be the symbol algebra of \((R(W); D_W^1, D_W^2) \) at \(\hat{v} \in R(W) \), where \(s_{-3}(\hat{v}) = T_{\hat{v}}(R(W))/D_W^1(\hat{v}), s_{-2}(\hat{v}) = D_W^1(\hat{v})/D_W^2(\hat{v}) \) and \(s_{-1}(\hat{v}) = D_W^2(\hat{v}) \). Fixing a basis of \(s_{-3}(\hat{v}) \), we have (see §3.1 [27])
\[
s_{-3}(\hat{v}) \cong \mathbb{R}, \quad s_{-2}(\hat{v}) \cong V^*, \quad s_{-1}(\hat{v}) = V \oplus f(\hat{v}) \quad \text{and} \quad f(\hat{v}) \subset S^2(V^*).\]
From \(N_{-1}W(\hat{v}) \supset CH(D_W^1(\hat{v}) = f(\hat{v}) \), we obtain the subspace \(E(\hat{v}) \) of \(V(\hat{v}) \) of dimension \(r \) by \(E(\hat{v}) = V(\hat{v}) \cap N_{-1}W(\hat{v}) \). Then \(N_{W}(\hat{v})/D_W^2(\hat{v}) \subset s_{-2}(\hat{v}) = D_W^1(\hat{v})/D_W^2(\hat{v}) \) corresponds to
projection. describes the structure of where $\hat{\kappa} v^2$ where

In particular, $\tau_s : f(\hat{v}) \to \text{Ch}(C^*)(w)$ induces the identification:

$$f(\hat{v})/S(N_W)(\hat{v}) \cong \text{Ch}(C^*)(w)/S(N)(w),$$

where $S(N_W)(\hat{v}) = \tau_s^{-1}(S(N)(w))$. By Lemma 3.1 (4), we have

$$S(N_W)(\hat{v}) = f(\hat{v}) \cap (E(\hat{v})^\perp \otimes_S V(\hat{v})^*) \subset S^2(V(\hat{v})^*).$$

Let us take a complimentary subspace H of V such that $V = E \oplus H$. Then $V^* = E^\perp \oplus H^\perp$ and H^\perp is naturally identified with V^*/E^\perp, hence with E^*. Then we have

$$S^2(V^*) = E^\perp \otimes_S V^* \oplus S^2(H^\perp) \quad \text{and} \quad E^\perp \otimes_S V^* = S^2(E^\perp) \oplus E^\perp \otimes_S H^\perp.$$

Now the inclusion map $\iota : E \to V$ induces $\iota^* : V^* \to E^*$ and $\hat{\iota} : S^2(V^*) \to S^2(E^*)$ such that $\text{Ker} \hat{\iota}^* = E^\perp$ and $\text{Ker} \hat{\iota} = E^\perp \otimes_S V^*$.

Furthermore, under the identification: $s_3(\hat{v}) \cong t_3(w) \cong \mathbb{R}$ by fixing a basis of $s_3(\hat{v})$, we have the following commutative diagram:

$$\begin{array}{ccc}
E(\hat{v})^\perp & \cong & V(\hat{v})^* \\
\tau_s & & \downarrow \iota(\hat{v}) \\
\text{Ch}(C^*)(w) & \cong & S^2(E(\hat{v})^*).
\end{array}$$

where $\epsilon : f(\hat{v}) \to S^2(V(\hat{v})^*)$ is given by $\epsilon(f)(v_1, v_2) = ([f, v_1], v_2)$ in $s(\hat{v})$ for $f \in f(\hat{v})$ and $v_1, v_2 \in V(\hat{v})$, $\hat{\iota}(\hat{v}) = (\hat{\tau}^*)^{-1} \cdot \iota(\hat{v})$, $\hat{\iota}(\hat{v}) : S^2(V(\hat{v})^*) \to S^2(E(\hat{v})^*)$ and $\hat{\tau}^* : S^2(E(\hat{v})^* \to S^2(E(\hat{v})^*)$ is induced by the linear isomorphism $\hat{\tau} : E(\hat{v}) \to E(w)$. Hence $\kappa(\text{Ch}(C^*)(w)) = \hat{\kappa}(\text{Ch}(C^*)(w)/S(N)(w)) \subset S^2(E(\hat{v})^*)$ is sent, by $\hat{\tau}^*$, to the image $\hat{\iota}(\hat{v})(f(\hat{v})) \subset S^2(E(\hat{v})^*)$. Thus $\hat{\kappa}(\text{Ch}(C^*)(w)/S(N)(w))$ describes the image $\hat{\iota}(\hat{v})(f(\hat{v})) \cong f(\hat{v})/S(N_W)(\hat{v})$ of $f(\hat{v})$ by the projection $\hat{\iota} : S^2(V(\hat{v})^*) \to S^2(E(\hat{v})^*)$.

On the other hand, we have the following commutative diagram:

$$\begin{array}{ccc}
S(N_W)(\hat{v}) & \cong & E(\hat{v})^\perp \otimes E(\hat{v})^* \\
\tau_s & & \downarrow \iota(\hat{v}) \\
S(N)(w) & \cong & S^2(E(\hat{v})^*).\end{array}$$

where $\hat{\iota} : S(N_W)(\hat{v}) \to E(\hat{v})^\perp \otimes E(\hat{v})^*$ is given by $\hat{\iota}(f)(v) = [f, v] \in E(\hat{v})^\perp \subset V(\hat{v})^* = s_2(\hat{v})$ in $s(\hat{v})$ for $f \in S(N_W)(\hat{v}) = f(\hat{v}) \cap (E(\hat{v})^\perp \otimes_S V(\hat{v})^*) \subset S^2(V(\hat{v})^*)$ and $v \in E(\hat{v}) \subset s_1(\hat{v})$ (see the proof of Lemma 3.1 (4)). Here we note that $\text{Ker} \hat{\iota} = S^2(E(\hat{v})^*) = \text{Ker} \tau_s$. Thus $\gamma_{\hat{\iota}}(\hat{v})(S(N)(w))$ describes the structure of $S(N_W)(\hat{v}) = f(\hat{v}) \cap \text{Ker} \hat{\iota}(\hat{v})$.

5. Second Reduction Theorem

5.1. Equivalence of $(R; D^1, D^2)$ and $(W; C^*, N)$. As in §3.1, let $(R; D^1, D^2)$ be a PD manifold of second order, which is regular of type s, where $s = s_3 \oplus s_2 \oplus s_1$ is a subalgebra of $c^2(n)$, which is defined by

$$s_3 = \mathbb{R}, \quad s_2 = V^*, \quad s_1 = V \oplus f, \quad f \subset S^2(V^*).$$

We assume that R is regular with respect to $\text{Ch}(D^1)$ and let $p : R \to J = R/\text{Ch}(D^1)$ be the projection.
Now we assume that there exists a \(G_0(s) \)-invariant subspace \(E \) of \(V \) of dimension \(r \). Then, as in §3.1, we have the first order covariant system \(\tilde{N}(E) \) and covariant systems \(\tilde{N}^\perp(E) \) and \(\tilde{N}^\ast(E) \). Moreover, as in §3.2, let \((W; C^*, N)\) be the IG manifold of corank \(r \) associated with \((R; D^1, D^2, \tilde{N}(E))\). Namely we consider the map \(\eta : R \to \Gamma'(J) \) defined by
\[
\eta(v) = p_s(\tilde{N}(v)) \in \Gamma'(J) \quad \text{for} \quad v \in R,
\]
where \(\Gamma'(J) \) is the involutive Grassmann bundle of \((J, C)\) of codimension \(r \). We assume that \(\text{Ker} \eta_\gamma = \text{Ch}(D^1) \cap \text{Ch}(\tilde{N}) \) is a subbundle such that \(W = \text{Im}(\eta) \) is a submanifold of \(\Gamma'(J) \). Let \(R(W) \) be the Lagrange Grassmann bundle over \((W; C^*, N)\). Then we have the map \(\kappa_1 : R \to R(W) \) defined by
\[
\kappa_1(v) = \eta_s(D^2(v)) \in R_w, \quad w = \eta(v).
\]
In fact \(\tilde{v} = \eta_s(D^2(v)) \) is a subspace of \(N(w) \subset T_w(W) \) of dimension \(n + t \) such that \(\gamma |_{\partial D^2} = 0 \), which follows from \(D^2(v) \subset \tilde{N}(v) \), \(\text{Ch}(D^1) \) is a subbundle of \(D^2 \) of codimension \(n \) and \(\partial D^2 \subset D^1 \). Moreover, by Realization Lemma for \((R, D^2, \eta, W)\), we have \(\text{Ker}(\kappa_1)_s = \text{Ch}(D^2) \cap \text{Ker} \eta_s \subset \text{Ch}(D^1) \cap \text{Ch}(D^2) = \{0\} \), which implies \(\text{Ker}(\kappa_1)_s \) is trivial, i.e., \(\kappa_1 \) is an immersion such that \(\eta = \tau \cdot \kappa_1 \), where \(\tau : R(W) \to W \) is the projection. Thus, by the definitions of \(D^1_\tilde{W} \) and \(D^2_\tilde{W} \) on \(\tilde{R}(W) \), we obtain

Proposition 5.1. \(\kappa_1 : (R; D^1, D^2) \to (R(W); D^1_\tilde{W}, D^2_\tilde{W}) \) is a local isomorphism if and only if

\[
\text{rank} \text{Ch}(D^1) \cap \text{Ch}(\tilde{N}) = \frac{1}{2}(n - r)(n - r + 1).
\]

When \(\kappa_1 : (R; D^1, D^2) \to (R(W); D^1_\tilde{W}, D^2_\tilde{W}) \) is a local isomorphism, by the construction of \((R(W); D^1_\tilde{W}, D^2_\tilde{W}) \) from \((W; C^*, N)\), we see that the local equivalence of \((R; D^1, D^2)\) is reducible to that of \((W; C^*, N)\) as in the following: Let \((R; D^1, D^2)\) and \((\tilde{R}; \tilde{D}^1, \tilde{D}^2)\) be PD manifolds of second order, which are regular of type \(\mathbf{s} \), and let \((W; C^*, N)\) and \((\tilde{W}; \tilde{C}^*, \tilde{N})\) be the associated IG manifolds of \((R; D^1, D^2, \tilde{N}(E))\) and \((\tilde{R}; \tilde{D}^1, \tilde{D}^2, \tilde{N}(E))\) respectively. Moreover let \((R(W); D^1_\tilde{W}, D^2_\tilde{W})\) and \((R(\tilde{W}); D^1_{\tilde{W}}, D^2_{\tilde{W}})\) be the Lagrange Grassmann bundle over \((W; C^*, N)\) and \((\tilde{W}; \tilde{C}^*, \tilde{N})\) respectively. For points \(v_o \in R \) and \(\tilde{v}_o \in \tilde{R} \), put \(w_o = \eta(v_o) \) and \(\tilde{w}_o = \tilde{\eta}(\tilde{v}_o) \). We assume that \(\kappa_1 : (R; D^1, D^2) \to (R(W); D^1_\tilde{W}, D^2_\tilde{W}) \) and \(\kappa_1 ; (\tilde{R}; \tilde{D}^1, \tilde{D}^2) \to (R(\tilde{W}); D^1_{\tilde{W}}, D^2_{\tilde{W}}) \) are local isomorphisms around \(v_o \) and \(\tilde{v}_o \) respectively. Then a local isomorphism \(\psi : (R; D^1, D^2) \to (\tilde{R}; \tilde{D}^1, \tilde{D}^2) \) such that \(\psi(v_o) = \tilde{v}_o \) induces a local isomorphism \(\varphi : (W; C^*, N) \to (\tilde{W}; \tilde{C}^*, \tilde{N}) \) such that \(\varphi(w_o) = \tilde{w}_o \) and \(\varphi_s(\kappa_1(v_o)) = \tilde{\kappa}_s(\tilde{v}_o) \), and vice versa.

Moreover, when \(\kappa_1 : (R; D^1, D^2) \to (R(W); D^1_\tilde{W}, D^2_\tilde{W}) \) is a local isomorphism, we observe here the correspondence of local integral manifolds of \((R; D^1, D^2)\) and \((W; C^*, N)\) as in the following: First we observe, by the uniqueness of the map in the Realization Lemma for \((R, D^2, p, J)\), that the map \(\tilde{\kappa} = \zeta \cdot \kappa_1 : R \to L(J) \) coincides with the canonical immersion \(\iota : R \to L(J) \), from \(\pi \cdot \tilde{\kappa} = q \cdot \tau \cdot \kappa_1 = q \cdot \eta = p \) and \(\tilde{\kappa}^{-1}(E) = (\kappa_1)^{-1}(D^1_\tilde{W}) = D^2 \), where \(\pi : L(J) \to J \) is the projection.

Let \(\Lambda \) be an integral manifold of \((R; D^1, D^2)\) passing through \(v_o \), i.e., \(\Lambda \) is an \(n \)-dimensional integral manifold of \((R, D^2)\) such that \(T_v(\Lambda) \cap \text{Ch}(D^1)(v) = \{0\} \) for \(v \in \Lambda \). Then we have \(T_v(\Lambda) \cap \text{Ker} \eta_s(v) = \{0\} \). Hence, from \(N \supset D^2 \), \(N' = \eta(\Lambda) \) is, at least locally, an \(n \)-dimensional integral manifold of \((W; C^*, N)\) passing through \(w_o = \eta(v_o) \) such that \(\kappa_1(v) = T_w(\Lambda') \oplus \text{Ch}(C^*)(w) \) for \(v \in \Lambda \) and \(w = \eta(v) \). Conversely let \(N' \) be an \(n \)-dimensional integral manifold of \((W; C^*, N)\) passing through \(w_o = \eta(v_o) \) such that \(T_{w_o}(\Lambda') \oplus \text{Ch}(C^*)(w_o) = \kappa_1(v_o) \), i.e., \(N' \) is an \(n \)-dimensional integral manifold of \((W, N)\) such that \(T_{w_o}(\Lambda') \cap \text{Ch}(C^*)(w) = \{0\} \) for \(w \in N' \) and \(T_{w_o}(\Lambda') \oplus \text{Ch}(C^*)(w_o) = \kappa_1(v_o) \). Then, from \(N \subset C^* \), \(\Lambda^o = q(\Lambda') \) is, at least locally, a Legendrian submanifold of \((J, C)\). Hence we have the lift \(\sigma(\Lambda^o) \subset L(J) \) of \(\Lambda^o \).
by \(\sigma(u) = T_u(\Lambda^\circ) \in L(J) \) for \(u \in \Lambda^\circ \). Moreover, we have a map \(\lambda : \Lambda' \to \Lambda^\circ \) defined by \(\lambda(w) = T_w(\Lambda^\circ) + \text{Ch}(C^s)(w) \in R(W) \). Then, from \(\tau \cdot \lambda = id_{\Lambda'} \) and by the definition of \(\zeta : R(W) \to L(J) \), we see that \(\lambda \) is an immersion such that \(\lambda(w_o) = \kappa_1(v_o) \) and \(\zeta \cdot \lambda(w) = \sigma \cdot q(w) \) for \(w \in \Lambda' \). Hence \(\Lambda = (\kappa_1)^{-1}(\lambda(\Lambda')) \) is an integral manifold of \((R; D^1, D^2) \) passing through \(v_o \in R \) such that \(\eta(\Lambda) = \tau \cdot \kappa_1(\Lambda) = \Lambda' \) and \(\iota(\Lambda) = \zeta \cdot \kappa_1(\Lambda) = \zeta \cdot \lambda(\Lambda') = \sigma \cdot q(\Lambda') = \sigma(\Lambda^\circ) \) around \(v_o \in R \).

5.2. Covariant systems \(f(E) \) and \(C(E) \).

We will first consider the condition in Proposition 5.1 in terms of the symbol algebra \(s \) of \((R; D^1, D^2) \). Here \((R; D^1, D^2) \) is regular of type \(s \). Namely the symbol algebra \(s(v) = s_{-3}(v) \oplus s_{-2}(v) \oplus s_{-1}(v) \) at each \(v \in R \) is isomorphic to \(s = s_{-3} \oplus s_{-2} \oplus s_{-1} \). We define subspaces \(f_E \) and \(c_E \) of \(f \) and \(s_{-1} \) by

\[
 f_E = f \cap S^2(E^\perp) \subset f, \quad c_E = \hat{E} \oplus f_E \subset s_{-1} = V \oplus f,
\]

where \(\hat{E} = \{ v \in E \mid v \otimes E \subset f^\perp \} \). Then we have

Lemma 5.1. \(f_E \) and \(c_E \) are \(G(s) \)-invariant.

Proof. Since \(E \) is \(G_o(s) \)-invariant, \(\hat{E} \) and \(E^\perp \) are \(G_0(s) \)-invariant subspaces of \(V \) and \(V^* \) respectively, which also implies \(S^2(E^\perp) \) is a \(G_0(s) \)-invariant subspace of \(S^2(V^*) \). Hence \(f_E \) is a \(G(s) \)-invariant subspace of \(f \). Since \(\hat{E} \) is \(G_o(s) \)-invariant, to show that \(c_E \) is \(G(s) \)-invariant, it suffices to check that \(\rho(\hat{E}) \subset f_E \) for each \(\rho \in f^{(1)} \), where \(f^{(1)} = f \otimes V^* \cap S^3(V^*) \) is the first prolongation of \(f \) and \(\rho : V \to f \subset S^2(V^*) \) satisfies \(v_1 \rho(v_2) = v_2 \rho(v_1) \) (see §5.2 [20] for the detail). From \((S^2(E^\perp))^{\perp} = E \otimes_S V \subset S^2(V) \), we have \((f_E)^\perp = f^\perp + E \otimes_S V \). Hence, from \(\hat{E} \otimes_S E \subset f^\perp \), \(\rho(\hat{E}) \subset f_E \) follows from

\[
 f^\perp + E \otimes_S V \subset (\hat{E}|f^{(1)})^\perp = \{ a \in S^2(V) \mid \hat{E} \otimes a \subset (f^{(1)})^\perp \}.
\]

\[\square\]

Hence we can define the covariant systems \(f(E) \) and \(C(E) \) of \((R; D^1, D^2) \) as follows; Take a graded Lie algebra isomorphism \(\phi \) of \(s(v) \) onto \(s \). We put

\[
 f(E)(v) = \phi^{-1}(f_E) \subset C(E)(v) = \phi^{-1}(c_E) \subset D^2(v) = s_{-1}(v).
\]

Then, by the above lemma, it follows that \(f(E)(v) \) and \(C(E)(v) \) are well-defined and we obtain subbundles \(f(E) \) and \(C(E) \) of \(D^2 \).

Moreover, starting from the \(G(s) \)-invariant subspace \(\hat{E} \), we put

\[
 f_{\hat{E}} = f \cap S^2((\hat{E})^\perp) \subset f, \quad c_{\hat{E}} = \hat{E} \oplus f_{\hat{E}} \subset s_{-1} = V \oplus f.
\]

\(f_{\hat{E}} \) and \(c_{\hat{E}} \) are also \(G(s) \)-invariant and we can define the covariant systems \(f(\hat{E}) \) and \(C(\hat{E}) \) of \((R; D^1, D^2) \) as follows;

\[
 f(\hat{E})(v) = \phi^{-1}(f_{\hat{E}}) \subset C(\hat{E})(v) = \phi^{-1}(c_{\hat{E}}) \subset D^2(v) = s_{-1}(v),
\]

for a graded Lie algebra isomorphism \(\phi \) of \(s(v) \) onto \(s \). Here we note \(\hat{E} = \hat{E} \).

For these systems, we have

Lemma 5.2. (1) \(f(E) = \text{Ch}(D^1) \cap \text{Ch}(\tilde{N}), \) if \(C(E) = \text{Ch}(\tilde{N}). \)

(2) \(\text{Ch}(D^1)(v) \cap \text{Ch}(\tilde{N})(v) \subset f(E)(v) \) and \(\text{Ch}(\tilde{N})(v) \subset C(E)(v) \) at each \(v \in R \).

(3) \(\text{Ch}(D^1)(v) \cap \text{Ch}(\tilde{N}^*)(v) \subset f(\hat{E})(v) \) and \(\text{Ch}(\tilde{N}^*)(v) \subset C(\hat{E})(v) \) at each \(v \in R \).

(4) \(\text{rank} \text{Ch}(D^1) \cap \text{Ch}(\tilde{N}) = 1/2(n-r)(n-r+1) \) if \(f^\perp \subset E \otimes_S V \) and \(\text{Ch}(D^1) \cap \text{Ch}(\tilde{N}) = f(E). \)

(5) If \(f^\perp \subset E \otimes_S V \), then \(\text{Ch}(D^2)(v) \subset C(E)(v) \) at each \(v \in R \).
Proof. (1) By definition, $\mathfrak{f}(E) = C(E) \cap \text{Ch}(D^1)$.

(2) By Lemma 3.1, $\text{Ch}(\tilde{N})(v) \subset D^2(v) = \mathfrak{s}_{-1}(v)$. Let ϕ be a graded Lie algebra isomorphism of $\mathfrak{s}(v)$ onto \mathfrak{s}. For a vector $X \in \text{Ch}(\tilde{N})(v)$, we have $[X, \Gamma(\tilde{N})] \subset \Gamma(\tilde{N})$. Moreover $\tilde{N}(v)$ corresponds to the subspace $E^+ \oplus s_{-1}$ of \mathfrak{s} under ϕ (see §3.1). Thus $\phi(X) \in s_{-1}$ satisfies $[\phi(X), s_{-1}] \subset E^+$ and $[\phi(X), E^+] = 0$. Then, for $\phi(X) = v + a$, $v \in V$, $a \in \mathfrak{f}$, we have $v][f \subset E^+, V]a \subset E^+$ and $\langle v, E^+ \rangle = 0$. Hence we have $v \in E$, $v \oplus E \subset f^+$ and $X]a = 0$ for $\forall X \in E$, which implies $v \in \hat{E}$ and $a \in \mathfrak{f}_E$.

(3) can be shown similarly as in (2) by taking \hat{E} in place of E.

(4) By $f_E = f \cap S^2(E^+)$, $\dim f_E \leq \frac{1}{2}(n-r)(n-r+1)$ and the equality holds iff $f_E = S^2(E^+)$, i.e., iff $f \supset S^2(E^+)$. Thus (4) follows immediately from (2).

(5) For a vector $X \in \text{Ch}(D^2)(v)$, we have $[X, \Gamma(D^2)] \subset \Gamma(D^2)$. Hence we have $[\phi(X), s_{-1}] = 0$ for an isomorphism $\phi : \mathfrak{s}(v) \rightarrow \mathfrak{s}$. Thus, for $\phi(X) = v + a$, $v \in V$, $a \in \mathfrak{f}$, we have $v][f = 0$ and $V]a = 0$. Hence, from $f \supset S^2(E^+)$, we have $v \in E$, $v \oplus E \subset f^+$ and $a = 0$, which implies $\phi(X) \in \hat{E}$. This completes the proof of (5).

Now we assume that there exists $G_0(\mathfrak{s})$-invariant subspace E of V of dimension r such that $f^+ \subset E \otimes_S V$. Let s be the dimension of $\hat{E} = \{v \in E \mid v \oplus E \subset f^+\}$. First we describe the structure equation of the graded Lie algebra $\mathfrak{s} = \mathfrak{s}_{-3} \oplus \mathfrak{s}_{-2} \oplus \mathfrak{s}_{-1},$ where

$$\mathfrak{s}_{-3} = \mathbb{R}, \quad \mathfrak{s}_{-2} = V^*, \quad \mathfrak{s}_{-1} = V \oplus f, \quad f \subset S^2(V^*).$$

We have $\hat{E} \otimes_S E \subset f^+ \subset E \otimes_S V$. Thus we have a basis $\{e_1, \ldots, e_n\}$ of V such that

$$\hat{E} = \langle\{e_1, \ldots, e_s\}\rangle \subset E = \langle\{e_1, \ldots, e_r\}\rangle,$$

$$\langle\{e_a \otimes e_k(1 \leq a \leq s, 1 \leq k \leq r)\}\rangle \subset f^+ \subset \langle\{e_i \otimes e_l(1 \leq i \leq r, 1 \leq l \leq n)\}\rangle.$$

Namely we have

$$S^2(E^+) = \langle\{e_a^* \otimes e_b^*(r + 1 \leq \alpha \leq \beta \leq n)\}\rangle \subset f^+ \subset S^2(E^+) \cup \langle\{e_k^* \otimes e_l^*(1 \leq k \leq r, 1 \leq \alpha \leq \beta \leq n)\}\rangle \cup \langle\{e_i^* \otimes e_j^*(s + 1 \leq i \leq j \leq r)\}\rangle,$$

where $\{e_1^*, \ldots, e_n^*\}$ are the dual basis of $\{e_1, \ldots, e_n\}$ in V^*. Let us take the complimentary subspace H of V such that $V = E \oplus H$, where $H = \{e_{r+1}, \ldots, e_n\}$, and take a complimentary subspace T of $E \otimes_S V$ such that $E \otimes_S V = f^+ \oplus T$. Then, from $S^2(V) = E \otimes_S V \oplus S^2(H)$, $\dim T = \dim f - \dim S^2(E^+)(= t)$. Let $\tilde{\pi}_\lambda(1 \leq \lambda \leq t)$ be a basis of T and put $\tilde{\pi}_{kl} = e_k \otimes e_l(1 \leq k \leq r, 1 \leq l \leq n)$ and $\tilde{\omega}_{\alpha \beta} = e_\alpha \otimes e_\beta (1 \leq \alpha, \beta \leq n)$. Under the identification: $S^2(V) \cong (S^2(V^*))^*$, we restrict these covectors to the subspace $f \subset S^2(V^*)$ and put

$$\tilde{\pi}_\lambda = \tilde{\pi}_\lambda\mid_f, \quad \tilde{\pi}_{kl} = \tilde{\pi}_{kl}\mid_f \quad \text{and} \quad \tilde{\omega}_{\alpha \beta} = \tilde{\omega}_{\alpha \beta}\mid_f.$$

Then we have $\tilde{\pi}_{ak} = 0(1 \leq a \leq s, 1 \leq k \leq r)$ and $\tilde{\pi}_\lambda(1 \leq \lambda \leq t)$ forms a basis of $\langle\{\tilde{\pi}_{k,\lambda}(1 \leq k \leq r, r + 1 \leq \alpha \leq n), \tilde{\pi}_{ij}(s + 1 \leq i, j \leq r)\}\rangle$. Moreover $\tilde{\pi}_\lambda(1 \leq \lambda \leq t), \tilde{\omega}_{\alpha \beta}(1 \leq \alpha \leq \beta \leq n)$ forms a basis of f^*. Then, firstly fixing a basis of s_{-3}, we have a basis of $\mathfrak{s} = \mathfrak{s}_{-3} \oplus \mathfrak{s}_{-2} \oplus \mathfrak{s}_{-1}$, $\mathfrak{s}_{-3} \cong \mathbb{R}, \mathfrak{s}_{-2} \cong V^*$ and $\mathfrak{s}_{-1} = V \oplus f$, by fixing the basis $\{e_1, \ldots, e_n\}$ of V as above. Thus we have covectors

$$\{\tilde{\omega}, \tilde{\omega}_1, \ldots, \tilde{\omega}_n, \tilde{\omega}^1, \ldots, \tilde{\omega}^n, \tilde{\omega}_{\alpha \beta}(r + 1 \leq \alpha, \beta \leq n), \tilde{\pi}_{k,\alpha}(1 \leq k \leq r, r + 1 \leq \alpha \leq n), \tilde{\pi}_{ij}(s + 1 \leq i, j \leq r)\}.$$
in \mathfrak{s}^* such that $\hat{\omega}_{\alpha\beta} = \hat{\omega}_{\beta\alpha}$, $\hat{\pi}_{ij} = \hat{\pi}_{ji}$, and that
\[
\begin{aligned}
d\hat{\omega} &= \hat{\omega}^1 \wedge \hat{\omega}_1 + \cdots + \hat{\omega}^n \wedge \hat{\omega}_n, \\
d\hat{\omega}_a &= \sum_{a=r+1}^n \hat{\omega}^a \wedge \hat{\pi}_{aa} \quad (1 \leq a \leq s), \\
d\hat{\omega}_i &= \sum_{j=s+1}^r \hat{\omega}^j \wedge \hat{\pi}_{ij} + \sum_{a=r+1}^n \hat{\omega}^a \wedge \hat{\pi}_{ia} \quad (s + 1 \leq i \leq r), \\
d\hat{\omega}_\alpha &= \sum_{a=1}^s \hat{\omega}^a \wedge \hat{\pi}_{\alpha a} + \sum_{i=s+1}^r \hat{\omega}^i \wedge \hat{\pi}_{\alpha i} + \sum_{\beta=r+1}^n \hat{\omega}^\beta \wedge \hat{\omega}_{\alpha \beta} \quad (r + 1 \leq \alpha \leq n),
\end{aligned}
\]
where $\{\hat{\omega}, \hat{\omega}_1, \ldots, \hat{\omega}_n, \hat{\omega}^1, \ldots, \hat{\omega}^n, \hat{\omega}_{\alpha\beta} \ (r + 1 \leq \alpha \leq \beta \leq n), \hat{\pi}_{\lambda} \ (1 \leq \lambda \leq t)\}$ forms a basis of \mathfrak{s}^* such that $\{\hat{\pi}_{\lambda}(1 \leq \lambda \leq t)\}$ is a basis of $\langle \{\hat{\pi}_{k,a} \ (1 \leq k \leq r, r + 1 \leq \alpha \leq n), \hat{\pi}_{ij} \ (s + 1 \leq i, j \leq r)\} \rangle$. Moreover, putting $\hat{\Omega}_i = \sum_{j=s+1}^r \hat{\omega}^j \wedge \hat{\pi}_{ij}$, we see that $\{\hat{\Omega}_s+1, \ldots, \hat{\Omega}_r\}$ are linearly independent as follows: If $\sum_{i=s+1}^r a_i \hat{\Omega}_i = 0$, we have $\sum_{i=s+1}^r a_i \hat{\pi}_{ij} = 0$ for $s + 1 \leq j \leq r$. From $\hat{\pi}_{ia} = 0 \ (s + 1 \leq i \leq r, 1 \leq a \leq s)$, we have $\sum_{i=s+1}^r a_i \hat{\pi}_{ik} = 0$ for $1 \leq k \leq r$, which implies $(\sum_{i=s+1}^r a_i e_i) \otimes e_k \in \mathfrak{i}^1$ for $1 \leq k \leq r$. Then by the definition of \hat{E}, we get $\sum_{i=s+1}^r a_i e_i \in \hat{E}$, which shows $a_{s+1} = \cdots = a_r = 0$, by the choice of our basis.

Now let $(R; D^1, D^2)$ be a PD manifold of second order, which is regular of type \mathfrak{s}. Let us fix a point $v \in R$. Then, as in §1 of [23], there exists a coframe $\{\omega, \omega_1, \ldots, \omega_n, \omega^1, \ldots, \omega^n, \omega_{\alpha\beta} \ (r + 1 \leq \alpha \leq \beta \leq n), \pi_{\lambda} \ (1 \leq \lambda \leq t)\}$ $(t = \dim \mathfrak{f} = \dim S^2(E^1))$ and 1-forms $\{\pi_{k,a} \ (1 \leq k \leq r, r + 1 \leq \alpha \leq n), \pi_{ij} \ (s + 1 \leq i, j \leq r)\}$ defined around $v \in R$ such that
\[
\begin{array}{ll}
D^1 = \{\omega = 0\}, & \quad D^2 = \{\omega = \omega_1 = \cdots = \omega_n = 0\}, \\
\hat{N} = \hat{N}(E) = \{\omega = \omega_1 = \cdots = \omega_r = 0\}, & \quad \hat{N}^* = \hat{N}(\hat{E}) = \{\omega = \omega_1 = \cdots = \omega_s = 0\}, \\
\hat{N}^\perp = \{\omega = \omega_1 = \cdots = \omega_n = \omega^{r+1} = \cdots = \omega^n = 0\},
\end{array}
\]
and the following structure equations hold:

(A) \[d\omega = \omega_1 \wedge \omega_1 + \cdots + \omega^n \wedge \omega_n \quad (\text{mod } \omega), \]

(B.1) \[
\begin{aligned}
d\omega_a &= \sum_{a=r+1}^n \omega^a \wedge \pi_{aa} \quad (1 \leq a \leq s), \\
d\omega_i &= \sum_{j=s+1}^r \omega^j \wedge \pi_{ij} + \sum_{a=r+1}^n \omega^a \wedge \pi_{ia} \quad (s + 1 \leq i \leq r), \\
d\omega_\alpha &= \sum_{a=1}^s \omega^a \wedge \pi_{\alpha a} + \sum_{i=s+1}^r \omega^i \wedge \pi_{i\alpha} + \sum_{\beta=r+1}^n \omega^\beta \wedge \omega_{\alpha \beta} \quad (r + 1 \leq \alpha \leq n),
\end{aligned}
\]
(mod $\omega, \omega_1, \ldots, \omega_n$), where $\omega_{\alpha\beta} = \omega_{\beta\alpha}$, $\pi_{ij} = \pi_{ji}$, and $\{\pi_{\lambda}(1 \leq \lambda \leq t)\}$ is a basis of $\langle \{\pi_{k,a} \ (1 \leq k \leq r, r + 1 \leq \alpha \leq n), \pi_{ij} \ (s + 1 \leq i, j \leq r)\} \rangle$ (mod $\omega, \omega_1, \ldots, \omega_n$). Moreover $\{\Omega_{s+1}, \ldots, \Omega_r\}$ are linearly independent (mod $\omega, \omega_1, \ldots, \omega_n$), where $\Omega_i = \sum_{j=s+1}^r \omega^j \wedge \pi_{ij}$. Furthermore, we have
\[
C(E) = \{\omega = \omega_1 = \cdots = \omega_n = \omega^{s+1} = \cdots = \omega^n = \pi_1 = \cdots = \pi_t = 0\},
\]
and
\[
f(E) = \{\omega = \omega_1 = \cdots = \omega_n = \omega^1 = \cdots = \omega^n = \pi_1 = \cdots = \pi_t = 0\}.
\]

By utilizing the structure equations (A) and (B.1), we will investigate the properties of $C(E)$ and $f(E)$. In the rest of this section, we will adopt the Einstein’s convention for indices. The
Lemma 5.3.

\[d\omega \] (5.4)

Then, from (B.3), we get

From (A), we have

(\mod \omega, \omega_1, \ldots, \omega_r). From (A), we have \(d\omega \equiv 0 \mod \omega, \omega_1, \ldots, \omega_r, \omega^{r+1}, \ldots, \omega^n \). Hence we have

Then, from (B.2), we get

Putting \(\mathfrak{M}_1 = \{(\omega, \omega_1, \ldots, \omega_n, \pi_1, \ldots, \pi_t) \} = \{(\omega, \omega_1, \ldots, \omega_n, \pi_{k,\alpha} (1 \leq k \leq r, r + 1 \leq \alpha \leq n), \pi_{ij} (s + 1 \leq i, j \leq r) \} \), we have

Then, taking exterior derivatives of both sides of (B.2) and calculating \(\mod \mathfrak{M}_1 \), we get

and

Thus we obtain

Moreover, from (B.2), we have, for \(s + 1 \leq p, q \leq n \),

From (A), we have \(d\omega \equiv 0 \mod \omega, \omega_1, \ldots, \omega_n, \omega^{s+1}, \ldots, \omega^n \). Hence we have

Then, from (B.3), we get

Here we have

Lemma 5.3. (1) \(\hat{f}(E) = \text{Ch}(D^1) \cap \text{Ch}(\hat{N}) \iff C^{a\beta\gamma}_a = C^{a\beta\gamma}_a = 0 \).

(2) \(C(E) = \text{Ch}(\hat{N}) \iff C^{a\beta\gamma}_a = C^{a\beta\gamma}_a = D^{a} = D^{a} = 0 \).

(3) \(C(E) \subset \text{Ch}(\hat{N}^*) \iff C^{a\beta\gamma}_a = C^{a\beta\gamma}_a = D^{a} = D^{a} = 0 \).
Proof. (1) From $\text{Ch}(D^1) \cap \text{Ch}(\bar{N}) \subset \mathfrak{f}(E) \subset \text{Ch}(D^1)$, we see that $\mathfrak{f}(E) = \text{Ch}(D^1) \cap \text{Ch}(\bar{N})$ iff $\mathfrak{f}(E) \subset \text{Ch}(\bar{N})$. For a vector $X \in \mathfrak{f}(E)(v)$, $v \in R$, by (A) and (B.2), we have
\[
\begin{align*}
X|d\omega &\equiv 0 \pmod{\omega}, \\
X|d\alpha &\equiv -C^a_\alpha \beta \gamma \omega_\beta (X)\omega_\gamma \pmod{\omega, \omega_1, \ldots, \omega_r}, \\
X|d\omega &\equiv -C^a_\alpha \beta \gamma \omega_\beta (X)\omega_\gamma \pmod{\omega, \omega_1, \ldots, \omega_r}.
\end{align*}
\]
Thus $X \in \text{Ch}(\bar{N})(v)$ iff $C^a_\alpha \beta \gamma \omega_\beta (X) = 0$, which completes the proof of (1).

(2) From $\text{Ch}(\bar{N}) \subset \text{Ch}(E)$, $C(E) = \text{Ch}(\bar{N})$ iff $C(E) \subset \text{Ch}(\bar{N})$. For a vector $X \in C(E)(v)$, $v \in R$, by (A) and (B.2), we have
\[
\begin{align*}
X|d\omega &\equiv \omega^a(X)\omega_a \pmod{\omega} \equiv 0 \pmod{\omega, \omega_1, \ldots, \omega_r}, \\
X|d\omega &\equiv -(C^a_\alpha \beta \gamma \omega_\beta + D^a_{\alpha \beta} \omega_\gamma)(X)\omega_a \pmod{\omega, \omega_1, \ldots, \omega_r}, \\
X|d\omega &\equiv -(C^a_\alpha \beta \gamma \omega_\beta + D^a_{\alpha \beta} \omega_\gamma)(X)\omega_a \pmod{\omega, \omega_1, \ldots, \omega_r}.
\end{align*}
\]
Thus $X \in \text{Ch}(\bar{N})(v)$ iff $(C^a_\alpha \beta \gamma \omega_\beta + D^a_{\alpha \beta} \omega_\gamma)(X) = 0$, which completes the proof of (2).

(3) For a vector $X \in C(E)(v)$, $v \in R$, by (A) and (B.3), we have
\[
\begin{align*}
X|d\omega &\equiv \omega^a(X)\omega_a \pmod{\omega} \equiv 0 \pmod{\omega, \omega_1, \ldots, \omega_s}, \\
X|d\omega &\equiv -(C^a_\alpha \beta \gamma \omega_\beta + D^a_{\alpha \beta} \omega_\gamma)(X)\omega_a - (C^a_\alpha \beta \gamma \omega_\beta + D^a_{\alpha \beta} \omega_\gamma)(X)\omega_a \pmod{\omega, \omega_1, \ldots, \omega_s}
\end{align*}
\]
Thus $X \in \text{Ch}(\bar{N})(v)$ iff $(C^a_\alpha \beta \gamma \omega_\beta + D^a_{\alpha \beta} \omega_\gamma)(X) = 0$, which completes the proof of (3).

Thus we get

Lemma 5.4. (1) If $r < n - 1$ and $\mathfrak{f}(E)$ is completely integrable, then $\mathfrak{f}(E) = \text{Ch}(D^1) \cap \text{Ch}(\bar{N})$.

(2) If $C(E)$ is completely integrable, then $C^a_\alpha \beta \gamma = D^a_{\alpha \beta} = D^a_{\alpha b} = 0$ and $D^a_{\alpha b} = D^a_{\alpha b}$. Moreover $C^a_\alpha \beta \gamma = 0$, when $r < n - 1$. In particular, if $r < n - 1$ and $C(E)$ is completely integrable, then $C(E) = \text{Ch}(\bar{N})$.

Proof. (1) If $\mathfrak{f}(E)$ is completely integrable, we have
\[
d\omega^i \equiv d\omega^a \equiv d\pi \equiv 0 \pmod{\omega, \omega_1, \ldots, \omega_n, \omega^1, \ldots, \omega^n, \pi_1, \ldots, \pi_t}.
\]
Then, if $r < n - 1$, $C^a_\alpha \beta \gamma = 0$ follows from (5.2) and $C^a_\alpha \beta \gamma = 0$ follows from (5.3), which proves (1) by (1) in Lemma 5.3.

(2) If $C(E)$ is completely integrable, we have
\[
d\omega^i \equiv d\omega^a \equiv d\pi \equiv 0 \pmod{\omega, \omega_1, \ldots, \omega_n, \omega^1, \ldots, \omega^n, \pi_1, \ldots, \pi_t}.
\]
Then $C^a_\alpha \beta \gamma = 0$ follows from (5.1), $D^a_{\alpha b} = 0$ follows from (5.2), $D^a_{\alpha b} = 0$ follows from (5.3), $C^a_\alpha \beta \gamma = 0$ and $D^a_{\alpha b} = D^a_{\alpha b}$, follows from (5.4) respectively. Moreover, when $r < n - 1$, $C^a_\alpha \beta \gamma = 0$ follows from (5.3). Then the last assertion follows from (2) in Lemma 5.3.

Moreover we have

Lemma 5.5. In case $r = n - 1$, if $C(E)$ is completely integrable and rank $\text{Ch}(D^2) < \dim \hat{E}$, then $C(E) = \text{Ch}(\bar{N})$.

Proof. We assume that $r = n - 1$ and $C(E)$ is completely integrable. Then, by (2) in Lemma 5.4, we have $C^a_\alpha \beta \gamma = D^a_{\alpha b} = D^a_{\alpha b} = 0$ and $D^a_{\alpha b} = D^a_{\alpha b}$. Thus, by (2) in Lemma 5.3, it suffices to
show $C^m_{nn} = 0$ when rank Ch $(D^2) < \dim \hat{E}$. Putting $\mathfrak{M}_2 = \langle \{ \varpi, \varpi_1, \ldots, \varpi_n, \omega^1, \ldots, \omega^s, \omega^n \} \rangle$, we have
\[d\varpi \equiv d\varpi_a \equiv 0, \quad d\varpi_i \equiv \omega^j \wedge \pi_{ij}, \quad d\varpi_n \equiv \omega^i \wedge \pi_{in}, \quad (\mod \mathfrak{M}_2). \]
Then, taking exterior derivatives of both sides of (B.3) and calculating mod \mathfrak{M}_2, we get
\[d\omega^a \wedge \pi_{aan} + d\omega^j \wedge (B^a_{\lambda i} \pi_\lambda + E^i_{ak} \omega^k) + d\omega_n \wedge (B^a_{\lambda i} \pi_\lambda + E^i_{aj} \omega^j) \equiv 0 \quad (\mod \mathfrak{M}_2). \]
From (5.1), we have $d\omega^a \equiv (B^a_{\lambda i} \pi_\lambda + C^cn_{nn} \omega_{nn} + E^i_{aj} \omega^j) \wedge \omega^j \equiv 0 \quad (\mod \mathfrak{M}_2)$. Hence we get
\[(B^a_{\lambda i} \pi_\lambda + C^cn_{nn} \omega_{nn} + E^i_{aj} \omega^j) \wedge \omega^j \wedge \pi_{aan} + \omega^j \wedge \pi_{ijn} \wedge (B^a_{\lambda i} \pi_\lambda + E^i_{aj} \omega^j) \equiv 0 \quad (\mod \mathfrak{M}_2). \]
Then, since $\pi_{aan}, \pi_{ijn}, \pi_{ijn}$ are linear combinations of $\{ \pi_\alpha (1 \leq \lambda \leq t) \}$ (mod $\varpi, \varpi_1, \ldots, \varpi_n$), we obtain $C^cn_{nn} \omega_{nn} \wedge \omega^j \wedge \pi_{aan} = 0$. By the assumption rank Ch $(D^2) < \dim \hat{E}$, we have $\pi_{aan} \neq 0$ for some a. Hence we get $C^cn_{nn} \omega_{nn} \wedge \omega^j = 0$, which implies $C^cn_{nn} = 0$. This completes the proof.

Finally we add the following.

Lemma 5.6. If $C(E) = Ch (\hat{N})$ and
\[\langle \{ \pi_{ij} (s + 1 \leq i, j \leq r + 1) \} \rangle \cap \langle \{ \pi_{aa} (1 \leq a \leq s, r + 1 \leq \alpha \leq \eta) \} \rangle = \{ 0 \}, \quad then \quad C(E) \subset Ch (\hat{N}^*). \]

Proof. From $C(E) = Ch (\hat{N})$ and by (2) in Lemma 5.3, we have $C^\alpha_{\beta j} \equiv C^\alpha_{\beta j} = D^a_{\alpha b} = D^a_{\beta b} = 0$. Moreover, by (2) in Lemma 5.4, we have $C^\alpha_{\beta j} = 0$. Hence, by (3) in Lemma 5.3, it suffices to show $D^a_{\alpha b} = 0$, under the above condition. Putting $\mathfrak{M}_3 = \langle \{ \varpi, \varpi_1, \ldots, \varpi_n, \omega^s_{r+1}, \ldots, \omega^n \} \rangle$, we have
\[d\varpi \equiv d\varpi_a \equiv 0, \quad d\varpi_i \equiv \omega^j \wedge \pi_{ij}, \quad d\varpi_a \equiv \omega^b \wedge \pi_{ba} + \omega^j \wedge \pi_{ia}, \quad (\mod \mathfrak{M}_3). \]
Then, taking exterior derivatives of both sides of (B.3) and calculating mod \mathfrak{M}_3, we get
\[d\omega^a \wedge \pi_{aan} + d\omega^j \wedge (B^a_{\lambda i} \pi_\lambda + D^a_{\alpha b} \omega^b + E^a_{ak} \omega^k) + d\omega_n \wedge (B^a_{\lambda i} \pi_\lambda + E^a_{aj} \omega^j) \equiv 0 \quad (\mod \mathfrak{M}_3). \]
From (5.1), we have $d\omega^a \equiv (B^a_{\lambda i} \pi_\lambda + E^a_{ij} \omega^j) \wedge \omega^b + (B^a_{\lambda i} \pi_\lambda + E^a_{ij} \omega^j) \wedge \omega^j \equiv 0 \quad (\mod \mathfrak{M}_3)$. Hence we get
\[(B^a_{\lambda i} \pi_\lambda + E^a_{ij} \omega^j) \wedge \omega^b \wedge \pi_{aan} + (B^a_{\lambda i} \pi_\lambda + E^a_{ij} \omega^j) \wedge \omega^j \wedge \pi_{aan} + \omega^b \wedge \pi_{a \alpha} \wedge (B^a_{\lambda i} \pi_\lambda + D^a_{\alpha b} \omega^b + E^a_{aj} \omega^j) \equiv 0 \quad (\mod \mathfrak{M}_3). \]
Then, since $\pi_{aan}, \pi_{ijn}, \pi_{ina}$ are linear combinations of $\{ \pi_\lambda (1 \leq \lambda \leq t) \}$ (mod $\varpi, \varpi_1, \ldots, \varpi_n$), we have
\[\omega^b \wedge \omega^j \wedge (E^a_{ij} \pi_{aan} + E^a_{aj} \pi_{a\alpha} - D^a_{\alpha b} \pi_{ij}) \equiv 0 \quad (\mod \mathfrak{M}_3). \]
Then, by the assumption $\langle \{ \pi_{ij} (s + 1 \leq i, j \leq r + 1) \} \rangle \cap \langle \{ \pi_{aa} (1 \leq a \leq s, r + 1 \leq \alpha \leq \eta) \} \rangle = \{ 0 \}$, we get $D^a_{\alpha b} \omega^b \wedge \omega^j \wedge \pi_{ij} \equiv 0 \quad (\mod \mathfrak{M}_3)$. Thus we obtain
\[D^a_{\alpha b} \omega^b \wedge \pi_{ij} = 0 \quad (\mod \varpi, \varpi_1, \ldots, \varpi_n, \omega^a, \omega^b (1 \leq a \leq s, r + 1 \leq \alpha \leq \eta)). \]
Since $\{ \Omega_{s+1}, \ldots, \Omega_r \}$ are linearly independent (mod $\varpi, \varpi_1, \ldots, \varpi_n$), we obtain $D^a_{\alpha b} = 0$, which completes the proof. \[\square \]

Summarizing the discussion above, we obtain the first part of Second Reduction Theorem for PD manifolds of second order, which are regular of type s. 27
Thus (κκ)rank such that for each m where D IG of codimension Y Lemma 5.2 (3), Ch (We further assume that manifold such that each fibre of the projection is regular with respect to Ch (Let (κκ)rank such that is an immersion and, by a dimension count, in fact, a local diffeomorphism of regular of type (κκ)rank such that is a reducible to that of the associated IG manifolds of corank r (W; C∗, N), as in §5.1.

5.3. Two Step Reduction. Let (R; D1, D2) be a PD manifold of second order, which is regular of type s. We assume that there exists G0(s)-invariant subspace E of V of dimension r such that 1 ⊂ E ⊗s V. Thus in these cases, the equivalence of PD manifolds of second order (R; D1, D2), which are regular of type s, is reducible to that of the associated IG manifolds of corank r (W; C∗, N), as in §5.1.

Theorem 5.1. Let (R; D1, D2) be a PD manifold of second order, which is regular of type s. Assume that there exists G0(s)-invariant subspace E of V of dimension r such that 1 ⊂ E ⊗s V.

1. In case r < n − 1, if f(E) is completely integrable, then f(E) = Ch(D1) ∩ Ch(κκ)rank such that for each m where D IG of codimension Y Lemma 5.2 (3), Ch (We further assume that manifold such that each fibre of the projection is regular with respect to Ch (Let (κκ)rank such that is an immersion and, by a dimension count, in fact, a local diffeomorphism of regular of type (κκ)rank such that is a reducible to that of the associated IG manifolds of corank r (W; C∗, N), as in §5.1.

Theorem 5.1. Let (R; D1, D2) be a PD manifold of second order, which is regular of type s. Assume that there exists G0(s)-invariant subspace E of V of dimension r such that 1 ⊂ E ⊗s V. Thus in these cases, the equivalence of PD manifolds of second order (R; D1, D2), which are regular of type s, is reducible to that of the associated IG manifolds of corank r (W; C∗, N), as in §5.1.

5.3. Two Step Reduction. Let (R; D1, D2) be a PD manifold of second order, which is regular of type s. We assume that there exists G0(s)-invariant subspace E of V of dimension r such that 1 ⊂ E ⊗s V. When ̂E ≠ \{0\}, we can discuss the further reduction procedure as in the following.

We assume that C(E) = Ch(κκ)rank such that is an immersion and, by a dimension count, in fact, a local diffeomorphism of regular of type (κκ)rank such that is a reducible to that of the associated IG manifolds of corank r (W; C∗, N), as in §5.1.

Theorem 5.1. Let (R; D1, D2) be a PD manifold of second order, which is regular of type s. Assume that there exists G0(s)-invariant subspace E of V of dimension r such that 1 ⊂ E ⊗s V. Thus in these cases, the equivalence of PD manifolds of second order (R; D1, D2), which are regular of type s, is reducible to that of the associated IG manifolds of corank r (W; C∗, N), as in §5.1.

5.3. Two Step Reduction. Let (R; D1, D2) be a PD manifold of second order, which is regular of type s. We assume that there exists G0(s)-invariant subspace E of V of dimension r such that 1 ⊂ E ⊗s V. When ̂E ≠ \{0\}, we can discuss the further reduction procedure as in the following.
By the construction of \((\hat{W}(Y); C_Y, N_Y)\), an isomorphism of \((Y; D_Y^*, D_N)\) naturally lifts to an isomorphism of \((\hat{W}(Y); C_Y^*, N_Y)\).

Summarizing the above discussion, we obtain the following Second Reduction Theorem (Two Step Reduction Theorem) for \(PD\) manifolds of second order, which are regular of type \(s\) such that there exists a \(G_0(s)\)-invariant subspace \(E\) of \(V\) of dimension \(r\) satisfying \(\mathfrak{f}_+ \subset E \otimes_S V\) and \(\dim \hat{E} = s > 0\).

Theorem 5.2. Let \((R; D^1, D^2)\) and \((\hat{R}; \hat{D}^1, \hat{D}^2)\) be \(PD\) manifolds of second order, which are regular of type \(s\). Assume that there exists a \(G_0(s)\)-invariant subspace \(E\) of \(V\) of dimension \(r\) satisfying \(\mathfrak{f}_+ \subset E \otimes_S V\) and \(\dim \hat{E} = s > 0\). Moreover assume the following two conditions for the covariant systems of each \(PD\) manifold;

(i) \(C(E)\) and \(\hat{C}(E)\) are completely integrable (when \(r = n - 1\), assume further rank \(Ch(D^2) < s\) and rank \(Ch(D^2) < s\)).

(ii) \(C(E) \subset Ch(\hat{N}^*)\) and \(\hat{C}(E) \subset Ch(\hat{N}^*)\).

Let \((W; C^*, N)\) and \((W; \hat{C}^*, \hat{N})\) be the associated IG manifolds of corank \(r\) of \((R; D^1, D^2)\) and \((\hat{R}; \hat{D}^1, \hat{D}^2)\) respectively. Assume that \(W\) and \(\hat{W}\) are regular with respect to \(Ch(N)\) and \(Ch(\hat{N})\) respectively. Let \((Y; D_Y^*, D_N)\) and \((\hat{Y}; \hat{D}_Y^*, \hat{D}_N)\) be the leaf spaces, where \(Y = W/Ch(N)\) and \(\hat{Y} = \hat{W}/Ch(\hat{N})\). Let us fix points \(v_o \in R\) and \(\hat{v}_o \in \hat{R}\) and put \(w_o = \eta(v_o), y_o = \beta(w_o)\) and \(\hat{w}_o = \hat{\eta}(\hat{v}_o), \hat{y}_o = \hat{\beta}(\hat{w}_o)\). Then a local isomorphism \(\psi: (R; D^1, D^2) \to (\hat{R}; \hat{D}^1, \hat{D}^2)\) such that \(\psi(v_o) = \hat{v}_o\) induces a local isomorphism \(\varphi: (W; C^*, N) \to (\hat{W}, \hat{C}^*, \hat{N})\) such that \(\varphi(w_o) = \hat{w}_o\) and \(\varphi_o(v_o) = \hat{\kappa}_1(\hat{v}_o)\), and vice versa. Furthermore a local isomorphism \(\varphi: (W; C^*, N) \to (\hat{W}, \hat{C}^*, \hat{N})\) such that \(\varphi(w_o) = \hat{w}_o\) induces a local isomorphism \(\phi: (Y; D_Y^*, D_N) \to (\hat{Y}; \hat{D}_Y^*, \hat{D}_N)\) such that \(\phi(y_o) = \hat{y}_o\) and \(\phi_o(v_o) = \hat{\kappa}_2(\hat{v}_o)\), and vice versa.

Here we remark that, when \(\hat{E}\) coincides with \(E\), i.e., when \(s = r\), we have \(N^* = N\) and \(D_Y^* = D_N\). Hence, in this case, the condition (ii) is automatically satisfied under the condition (i) and the equivalence of \((R; D^1, D^2)\) is reducible to that of \((Y; D_N)\).

We will discuss conditions for the symbol algebra \(s\), where the condition (i) or (ii) in the above Theorem is automatically satisfied, in the next section.

6. Typical Classes and Their Generalizations

6.1. Minimum subspace \(F\) satisfying \(\mathfrak{f}^+ \subset S^2(F)\)

Let \((R; D^1, D^2)\) be a \(PD\) manifold of second order, which is regular of type \(s\). For the symbol algebra \(s = s_3 \oplus s_2 \oplus s_1\), where

\[
\begin{align*}
 s_3 &= \mathbb{R}, & s_2 &= \mathbb{V}^*, & s_1 &= \mathbb{V} \oplus \mathfrak{f}, & \mathfrak{f} \subset S^2(\mathbb{V}^*),
\end{align*}
\]

there exists a unique minimum subspace \(F\) of \(V\) such that \(\mathfrak{f}^+ \subset S^2(F) \subset S^2(V)\), under the identification: \(S^2(V) \cong (S^2(\mathbb{V}^*))^*\). This follows from

\[
S^2(F_1) \cap S^2(F_2) = S^2(F_1 \cap F_2),
\]

for \(F_1\) and \(F_2\) such that \(\mathfrak{f}^+ \subset S^2(F_i)\) \((i = 1, 2)\). \(F\) may coincide with \(V\). Moreover, it follows from \(S^2(a(F)) = a(S^2(F)) \supset a(\mathfrak{f}^+) = \mathfrak{f}^+\) for \(a \in G_0(s)\) that \(F\) is \(G_0(s)\)-invariant. We put

\[
\hat{F} = \{ v \in F \mid v \otimes F \subset \mathfrak{f}^+ \}.
\]

Let \(r\) and \(s\) be the dimensions of \(F\) and \(\hat{F}\) respectively. In the rest of this section, we assume that \(\{0\} \subsetneq F \subsetneq V\).

Now we will discuss the Second Reduction Procedure for \((R; D^1, D^2)\), utilizing the minimum subspace \(F\) satisfying \(\mathfrak{f}^+ \subset S^2(F) \subset F \otimes_S V\). Let us fix a point \(v \in R\). Then, as in §5.2, there exists a coframe \(\{ \varpi, \varpi_1, \ldots, \varpi_n, \omega_1, \ldots, \omega^r, \varpi_{k\beta} \mid 1 \leq k \leq r, r + 1 \leq \beta \leq n \}, \varpi_{\alpha\beta} \) \((r + 1 \leq \alpha \leq n, \beta \leq n)\),
\(\alpha \leq \beta \leq n\), \(\pi_\lambda (1 \leq \lambda \leq t_1)\) \((t_1 = \dim f - \dim F^\perp \otimes SV^*)\) and 1-forms \(\{\pi_{ij} (s + 1 \leq i, j \leq r)\}\) defined around \(v \in R\) such that

\[
\begin{align*}
D^1 &= \{\omega = 0\}, \quad D^2 = \{\omega = \omega_1 = \cdots = \omega_n = 0\}, \quad \tilde{N} = \tilde{N}(F) = \{\omega = \omega_1 = \cdots = \omega_r = 0\}, \\
\tilde{N}^* &= \tilde{N}(\tilde{F}) = \{\omega = \omega_1 = \cdots = \omega_s = 0\}, \quad \tilde{N}^\perp = \{\omega = \omega_1 = \cdots = \omega_n = \omega^{r+1} = \cdots = \omega^n = 0\},
\end{align*}
\]

and the following structure equations hold;

\[(A^*) \quad d\omega \equiv \omega^1 \wedge \omega_1 + \cdots + \omega^n \wedge \omega_n \pmod{\omega}, \]

\[
\begin{align*}
\{ \quad
\begin{align*}
d\omega_a &\equiv \sum_{a=r+1}^n \omega^a \wedge \omega_{aa} (1 \leq a \leq s), \\
d\omega_i &\equiv \sum_{j=s+1}^r \omega^j \wedge \pi_{ij} + \sum_{a=r+1}^n \omega^a \wedge \omega_{ia} (s + 1 \leq i \leq r), \\
d\omega_a &\equiv \sum_{a=1}^s \omega^a \wedge \omega_{aa} + \sum_{i=s+1}^r \omega^i \wedge \omega_{ia} + \sum_{\beta=r+1}^n \omega^\beta \wedge \omega_{a\beta} (r + 1 \leq \alpha \leq n),
\end{align*}
\end{align*}
\]

\((\mod \omega, \omega_1, \ldots, \omega_n)\), where \(\omega_{a\beta} = \omega_{\alpha\beta}, \pi_{ij} = \pi_{ji}\), and \(\{\pi_\lambda (1 \leq \lambda \leq t_1)\}\) is a basis of \(\{\pi_{ij} (s + 1 \leq i, j \leq r)\}\) \((\mod \omega, \omega_1, \ldots, \omega_n)\). Moreover \(\Omega_{s+1}, \ldots, \Omega_r\) are linearly independent \((\mod \omega, \omega_1, \ldots, \omega_n)\), where \(\Omega_i = \sum_{j=s+1}^r \omega^j \wedge \pi_{ij}\). Furthermore, we have

\[
C(F) = \{\omega = \omega_1 = \cdots = \omega_n = \omega^{s+1} = \cdots = \omega^n = \pi_\lambda = \omega_{ka} = 0 \quad (1 \leq \lambda \leq t_1, 1 \leq k \leq r, r + 1 \leq \alpha \leq n)\},
\]

and

\[
f(F) = \{\omega = \omega_1 = \cdots = \omega_n = \omega^1 = \cdots = \omega^n = \pi_\lambda = \omega_{ka} = 0 \quad (1 \leq \lambda \leq t_1, 1 \leq k \leq r, r + 1 \leq \alpha \leq n)\}.
\]

In the rest of this section, we will adopt the Einstein’s convention for indices. The index ranges are as follows; \(1 \leq a, b \leq s, s + 1 \leq i, j, k \leq r, r + 1 \leq \alpha, \beta \leq n\) and \(1 \leq \lambda \leq t_1\). From \((B^*1)\), we have

\[
\begin{align*}
\{ \quad
\begin{align*}
d\omega_a &\equiv \omega^a \wedge \omega_{aa} + A^{a}_{i\beta} \omega_a \wedge \omega_\beta + B^{a}_{i\lambda} \omega_a \wedge \pi_\lambda + B^{a}_{a\beta} \omega_a \wedge \omega_{b\beta} + B^{a}_{a\lambda} \omega_a \wedge \omega_{b\lambda} + B^{a}_{a\alpha} \omega_a \wedge \omega_{b\alpha} \\
&\quad + C^{a}_{b\gamma} \omega_a \wedge \omega_{b\gamma} + D_{ab} \omega_a \wedge \omega^b + E_{ab} \omega_a \wedge \omega^b + F^{a}_{a\beta} \omega_a \wedge \omega^a \wedge \omega^\beta, \\
d\omega_i &\equiv \omega^i \wedge \pi_{ij} + \omega^a \wedge \omega_{ia} + A^{i\beta} \omega_a \wedge \omega_\beta + B^{i\lambda} \omega_a \wedge \pi_\lambda + B^{a\beta} \omega_a \wedge \omega_{b\beta} + B^{a\lambda} \omega_a \wedge \omega_{b\lambda} + B^{a\alpha} \omega_a \wedge \omega_{b\alpha} + C^{i\beta} \omega_a \wedge \omega_{b\beta} + C^{i\lambda} \omega_a \wedge \omega_{b\lambda} + D^{i}_{a\beta} \omega_a \wedge \omega^b + E^{i}_{a\beta} \omega_a \wedge \omega^b + F^{i}_{a\beta} \omega_a \wedge \omega^a \wedge \omega^\beta,
\end{align*}
\end{align*}
\]

\((\mod \omega, \omega_1, \ldots, \omega_r)\). First, replacing \(\omega_{aa}\) and \(\omega_{ia}\) by \(F^{a}_{aa} \omega_a^2\) and \(F^{a}_{ia} \omega_\beta\) respectively, we may assume that \(F^{a}_{aa} = F^{a}_{ia} = 0\). From \((A^*)\), we have \(d\omega \equiv 0 (\mod \\mathfrak{N}_1)\), where \(\mathfrak{N}_1 = \{\omega, \omega_1, \ldots, \omega_r, \omega^{r+1}, \ldots, \omega^n\}\). Hence, from \((B^*2)\), we have

\[
\begin{align*}
d\omega^a \wedge \omega_a &\equiv \omega^b \wedge d\omega_b + \omega^i \wedge d\omega_i \\
&\equiv \omega^b \wedge (A^{a\beta} \omega_a \wedge \omega_\beta + B^{a\beta} \omega_a \wedge \omega_{c\beta} + B^{a\beta} \omega_a \wedge \omega_{c\beta} + B^{a\beta} \omega_a \wedge \omega_{c\beta} + + C^{a\beta}_b \omega_a \wedge \omega_{b\gamma} + D^{a}_{b\beta} \omega_a \wedge \omega^c + E^{a}_{b\alpha} \omega_a \wedge \omega^c \\
&\quad + \omega^i \wedge (A^{i\beta} \omega_a \wedge \omega_\beta + B^{i\beta} \omega_a \wedge \omega_{b\beta} + B^{i\beta} \omega_a \wedge \omega_{b\beta} + B^{i\beta} \omega_a \wedge \omega_{b\beta} + C^{i\beta} \omega_a \wedge \omega_{b\beta} + D^{i}_{b\beta} \omega_a \wedge \omega^b + E^{i}_{b\alpha} \omega_a \wedge \omega^b + F^{i}_{b\alpha} \omega_a \wedge \omega^a \wedge \omega^\beta)
\end{align*}
\]
(mod \mathcal{M}_2^n). Thus we get

$$d\omega^\alpha \equiv -\omega^b \wedge (B^b_{\lambda} \pi_\lambda + B^a_{\lambda} \omega_{\lambda} + B^a_{\alpha} \omega_{\alpha} + C^a_b \omega_{b} + D^a_{\alpha} \omega_{\alpha} + E^a_{\alpha} \omega_{\alpha})$$

$$\quad - \omega^j \wedge (B^a_{\alpha} \pi_\alpha + B^a_{\alpha} \omega_{\alpha} + B^a_{\alpha} \omega_{\alpha} + C^a_{\alpha} \omega_{\alpha} + D^a_{\alpha} \omega_{\alpha} + E^a_{\alpha} \omega_{\alpha})$$

(mod $\omega, \omega_1, \ldots, \omega_n, \omega^{r+1}, \ldots, \omega^n$). Putting $\mathcal{M}_2^n = \{\{\omega, \omega_1, \ldots, \omega_n, \omega^\alpha, \pi_\alpha | r + 1 \leq \alpha \leq n, 1 \leq \lambda \leq t_1\})$, we have

$$d\omega \equiv d\omega_a \equiv d\omega_i \equiv 0, \quad d\omega_a \equiv \omega^b \wedge \omega_{ba} + \omega^j \wedge \omega_{ja} \quad \text{(mod \mathcal{M}_2^n)}.$$

Then, taking exterior derivatives of both sides of the first equation of (B^a_{α}) and calculating mod \mathcal{M}_2^n, we get

$$d\omega^\alpha \wedge \omega_{aa} + d\omega_a \wedge (B^a_{\alpha} \omega_{\alpha} + B^a_{\alpha} \omega_{\alpha} + C^a_{\alpha} \omega_{\alpha} + D^a_{\alpha} \omega_{\alpha} + E^a_{\alpha} \omega_{\alpha}) \equiv 0 \quad \text{(mod \mathcal{M}_2^n)}.$$

Substituting (6.1) into the above equation, we get

$$\omega^b \wedge \omega_{aa} \wedge (B^b_{\alpha} \omega_{\alpha} + B^b_{\alpha} \omega_{\alpha} + C^b_{\alpha} \omega_{\alpha} + D^b_{\alpha} \omega_{\alpha} + E^b_{\alpha} \omega_{\alpha})$$

$$+ \omega^j \wedge \omega_{aa} \wedge (B^j_{\alpha} \omega_{\alpha} + B^j_{\alpha} \omega_{\alpha} + C^j_{\alpha} \omega_{\alpha} + D^j_{\alpha} \omega_{\alpha} + E^j_{\alpha} \omega_{\alpha})$$

$$+ \omega^b \wedge \omega_{ba} \wedge (B^b_{\alpha} \omega_{\alpha} + B^b_{\alpha} \omega_{\alpha} + C^b_{\alpha} \omega_{\alpha} + D^b_{\alpha} \omega_{\alpha} + E^b_{\alpha} \omega_{\alpha})$$

$$+ \omega^j \wedge \omega_{ja} \wedge (B^j_{\alpha} \omega_{\alpha} + B^j_{\alpha} \omega_{\alpha} + C^j_{\alpha} \omega_{\alpha} + D^j_{\alpha} \omega_{\alpha} + E^j_{\alpha} \omega_{\alpha}) \equiv 0 \quad \text{(mod \mathcal{M}_2^n)}.$$

Hence we obtain

$$(6.1.1) \quad \omega^b \wedge \omega_{aa} \wedge (B^b_{\alpha} \omega_{\alpha} + C^b_{\alpha} \omega_{\alpha} + E^b_{\alpha} \omega_{\alpha}) \equiv 0 \quad \text{(mod \mathcal{M}_2^n)}.$$

$$(6.1.2) \quad \omega^b \wedge \omega_{ba} \wedge (B^b_{\alpha} \omega_{\alpha} + C^b_{\alpha} \omega_{\alpha} + E^b_{\alpha} \omega_{\alpha}) \equiv 0 \quad \text{(mod \mathcal{M}_2^n)}.$$

From, (6.1.1), if $r - s > 0$, we get $B^a_{\alpha} = 0$ for $c \beta \neq a \alpha$, $C^a_{\alpha} = 0$ and $E^a_{\alpha} = 0$. In particular, when $r - s > 0$, $B^a_{\alpha} = 0$ if $s \geq 2$ and $B^a_{\alpha} = B^a_{\beta \alpha}$ if $s = 1$. Moreover, by replacing π_{ij} by $\pi_{ij} + E^a_{ij}$, we may assume $E^a_{ij} = 0$.

In case $s \geq 2$, first let us choose any $a (1 \leq a \leq r)$. Since $s \geq 2$, we can find b such that $a \neq b$. Then, from (6.2.a), we see that the coefficients of $\omega^b \wedge \omega_{ba} \wedge \omega_{\beta \gamma}$, $\omega^b \wedge \omega_{ba} \wedge \omega_{\beta \gamma}$, $\omega^b \wedge \omega_{ba} \wedge \omega_{\beta \gamma}$, and $\omega^b \wedge \omega_{ba} \wedge \omega_{\beta \gamma}$ are $B^a_{\beta \gamma}, C^a_{\beta \gamma}, E^a_{\beta \gamma}$, and $\omega^b \wedge \omega_{ba} \wedge \omega_{\beta \gamma}$ are $D^a_{\beta \gamma}$, and $2D^a_{\beta \gamma}$. Hence we get $B^a_{\beta \gamma} = 0$, $C^a_{\beta \gamma} = 0$, $E^a_{\beta \gamma} = 0$, $D^a_{\beta \gamma} = 0$, and $2D^a_{\beta \gamma} = 0$. Similarly, interchanging the role of a and b, from (6.2.b), we get $D^a_{\beta \gamma} = 0$ for $c \neq a$ and $2D^a_{\beta \gamma} = 0$. Thus we obtain $D^a_{\beta \gamma} = 0$ for any c. Moreover, from (6.2.a), we see that the coefficients of $\omega^b \wedge \omega_{ba} \wedge \omega_{\beta \gamma}$ are $B^a_{\beta \gamma}, C^a_{\beta \gamma}, E^a_{\beta \gamma}$, and $\omega^b \wedge \omega_{ba} \wedge \omega_{\beta \gamma}$ are $D^a_{\beta \gamma}$, and $2D^a_{\beta \gamma}$. Hence we get $B^a_{\beta \gamma} = 0$ for $c \beta \neq a \alpha$ nor $b \alpha$, $B^a_{\beta \gamma} = 0$, and $2D^a_{\beta \gamma} = 0$. Moreover, from (6.3.a), we get $B^a_{\beta \gamma} = 0$ for $i \neq j$, $B^a_{\beta \gamma} = 0$ for $a \neq b$, and $B^a_{\beta \gamma} = 0$. Moreover, from (6.4.a), we get $B^a_{\beta \gamma} = 0$ for $i \neq j$, $B^a_{\beta \gamma} = 0$ for $a \neq b$, and $B^a_{\beta \gamma} = 0$.
Hence we get $B_{1}^{a\beta} = B_{1}^{b\alpha}$, $B_{1}^{a\beta} = 0$, $C_{a\beta\gamma} = 0$ and $E_{i1} = \frac{1}{2} D_{i1}^{a}$. In case $r = 1$, by replacing ω^{a} by $\omega^{a} + B_{1}^{a\beta} \omega_{\beta}$, we may assume $B_{1}^{a\beta} = 0$. If $r \geq 2$, from (6.1.3), we get $B_{1}^{a\beta} = 0$ for $\alpha \neq \beta$, $B_{4}^{a\beta} = 0$ for $\alpha \neq \beta$ and $B_{4}^{a\alpha} = B_{4}^{a\alpha} = 0$. If we further assume $r \geq 3$, we have $r - s \geq 2$. Hence, from (6.1.4), we get $D_{i1}^{a} = 0$ and $E_{i1}^{a} = 0$, which also implies $D_{i1}^{a} = 0$.

Thus, in case $s \geq 2$ or $s = 1$ and $r \geq 3$, we see that, by replacing ω^{a} by $\omega^{a} + B_{1}^{a\alpha} \omega_{\alpha}$, $(B^{s}.2)$ reduces to

\[(B^{s}.2) \quad \left\{ \begin{array}{l}
d\omega_{a} = \omega^{a} \land \omega_{aa} + A^{a\beta} \omega_{a} \land \omega_{\beta} + B_{1}^{a\beta} \omega_{a} \land \pi_{\lambda} \\
d\omega_{i} = \omega^{j} \land \pi_{ij} + \omega^{a} \land \omega_{ia} + A^{a\beta} \omega_{a} \land \omega_{\beta} + B_{1}^{a\beta} \omega_{a} \land \pi_{\lambda} + B_{1}^{a\beta} \omega_{a} \land \omega_{1\beta}
\end{array} \right. (\bmod \omega, \omega_{1}, \ldots, \omega_{r}).\]

Here we may assume $A^{a\beta} = -A^{b\alpha}$ and $B_{1}^{a\beta} = 0$ when $s \geq 2$. We note that, in case $s = r = 1$, we have

\[d\omega_{1} = \omega^{a} \land \omega_{1a} + A^{a\beta} \omega_{a} \land \omega_{\beta} + D_{1}^{a} \omega_{a} \land \omega_{1} (\bmod \omega, \omega_{1}).\]

Moreover, putting $M_{3}^{3} = \{\omega, \omega_{1}, \ldots, \omega_{n}, \omega^{1}(s + 1 \leq i \leq r, r + 1 \leq \alpha \leq n)\}$, we have

\[d\omega \equiv d\omega_{a} \equiv d\omega_{i} \equiv 0, \quad d\omega_{a} \equiv \omega^{b} \land \omega_{ba} (\bmod M_{3}^{3}).\]

Then, taking exterior derivatives of both sides of the first equation of $(B^{s}.2)$ and calculating $\bmod M_{3}^{3}$, we get

\[d\omega^{a} \land \omega_{aa} + \omega^{b} \land \omega_{ba} \land (B_{1}^{a\beta} \pi_{\lambda}) \equiv 0 (\bmod M_{3}^{3}).\]

Hence, in case $s \geq 2$, looking at the coefficient of $\omega^{b} \land \omega_{ba} \land \pi_{\lambda}$ for $b \neq a$, we get $B_{1}^{a\beta} = 0$. In case $s = 1$, the above equation reduces to

\[(d\omega^{a} - B_{1}^{a\beta} \omega_{a} \land \pi_{\lambda}) \land \omega_{1a} \equiv 0 (\bmod M_{3}^{3}).\]

Then, substituting (6.1) into the above equation, we obtain $B_{1}^{a\beta} = 0$. Thus, if $s \geq 2$, $s = 1$ and $r \geq 3$ or $s = r = 1$ and $C(F)$ is completely integrable, the first equation of $(B^{s}.2)$ reduces to

\[(6.2) \quad d\omega_{a} \equiv \omega^{a} \land \omega_{aa} + A^{a\beta} \omega_{a} \land \omega_{\beta} (\bmod \omega, \omega_{1}, \ldots, \omega_{r}).\]

Now we will show that (6.2) further reduces to

\[d\omega_{a} \equiv \omega^{a} \land \omega_{aa} (\bmod \omega, \omega_{1}, \ldots, \omega_{r}),\]

dividing the proof in the following three cases: (1) $s \geq 2$, (2) $s = r = 1$ and $C(F)$ is completely integrable, (3) $s = 1$ and $r \geq 3$.

In case (1), putting $M_{3}^{3} = \{\{\omega, \omega_{1}, \ldots, \omega_{n}, \omega^{\lambda}(1 \leq \lambda \leq t_{1}, r + 1 \leq \alpha \leq \beta \leq n)\}$, we have

\[d\omega \equiv d\omega_{a} \equiv d\omega_{i} \equiv 0, \quad d\omega_{a} \equiv \omega^{b} \land \omega_{ba} + \omega_{\beta} \land \eta_{a\beta} (\bmod M_{4}^{3}),\]

for some 1-forms $\eta_{a\beta}$. Then, taking exterior derivatives of both sides of (6.2) and calculating $\bmod M_{4}^{3}$, we get

\[d\omega^{a} \land \omega_{aa} + A^{a\beta} (d\omega_{a} \land \omega_{\beta} - \omega_{a} \land d\omega_{\beta}) \equiv 0 (\bmod M_{4}^{3}).\]

Hence we obtain

\[d\omega^{a} \land \omega_{aa} + 2A^{a\beta} \omega^{b} \land \omega_{ba} \land \omega_{\beta} \equiv 0 (\bmod M_{4}^{3}).\]

Thus, since $s \geq 2$, first choose any a $(1 \leq a \leq r)$, and find b such that $a \neq b$. Then, looking at the coefficient of $\omega^{b} \land \omega_{ba} \land \omega_{\beta}$, we obtain $A^{a\beta} = 0$.

In case (2), putting $M_{5}^{3} = \{\{\omega, \omega_{1}, \omega^{a}, \omega_{a} \land \omega_{\beta}(2 \leq \alpha \leq \beta \leq n)\}$, we have

\[d\omega \equiv d\omega_{1} \equiv 0, \quad d\omega_{a} \equiv \omega^{1} \land \omega_{1a} + \omega_{\beta} \land \eta_{a\beta} (\bmod M_{5}^{3}),\]
Two Step Reduction Theorem (Theorem 5.2) are automatically satisfied. For the case when $s < r$

Remark 6.1.

$s < r$

Let $\tilde{\omega}_s = (\tilde{\omega}, \tilde{\omega}_1, \ldots, \tilde{\omega}_n) = (\tilde{\omega}, \tilde{\omega}_1, \ldots, \tilde{\omega}_n) = (\tilde{\omega}, \tilde{\omega}_1, \ldots, \tilde{\omega}_n)$.

This implies $A^{a\beta}_1 = 0$.

Proposition 6.1. Let $(R; D^1, D^2)$ be a PD manifold of second order, which is regular of type s. Let F be the minimum subspace of V satisfying $f^+ \subset S^2(F) \subset F \otimes_S V$.

Assume that $\{0\} \not\subset F \subset F \not\subset V$. Let s and r be the dimensions of F and F respectively. Then, if $s \geq 2$, $s = 1$ and $r \geq 3$ or $s = r = 1$ and $C(F)$ is completely integrable, for the covariant system $\tilde{N}^* = \{\tilde{\omega} = \tilde{\omega}_1 = \cdots = \tilde{\omega}_s = 0\}$, the following structure equation holds

\[
\begin{align*}
d\tilde{\omega} &\equiv \omega^1 \wedge \tilde{\omega}_1 + \cdots + \omega^n \wedge \tilde{\omega}_n \pmod{\tilde{\omega}} \\
d\tilde{\omega}_1 &\equiv \omega^{r+1} \wedge \tilde{\omega}_{1r+1} + \cdots + \omega^n \wedge \tilde{\omega}_{1n} \\
\vdots &\pmod{\tilde{\omega}, \tilde{\omega}_1, \ldots, \tilde{\omega}_r} \\
d\tilde{\omega}_s &\equiv \omega^{r+1} \wedge \tilde{\omega}_{sr+1} + \cdots + \omega^n \wedge \tilde{\omega}_{sn}
\end{align*}
\]

where $\tilde{N} = \{\omega = \tilde{\omega}_1 = \cdots = \tilde{\omega}_s = 0\}$

We note here that, if $s = 1$ and $r \leq 2$, we have $f^+ = \langle \{e_1 \otimes e_1\} \rangle$. Furthermore we note that in case $s < r$, by Lemma 5.6, if $C(F) = \text{Ch}(\tilde{N})$, then $C(F) \subset \text{Ch}(\tilde{N}^*)$. Hence, by Proposition 6.1 and Lemma 5.3, we obtain

Proposition 6.2. Let $(R; D^1, D^2)$ be a PD manifold of second order, which is regular of type s. Let F be the minimum subspace of V satisfying $f^+ \subset S^2(F) \subset F \otimes_S V$.

Assume that $\{0\} \not\subset F \subset F \not\subset V$. Then, except for the cases $f^+ = \langle \{e_1 \otimes e_1\} \rangle$ or $\langle \{e_1 \otimes e_1, e_1 \otimes e_2\} \rangle$, $C(F)$ is completely integrable and $C(F) = \text{Ch}(\tilde{N})$. Moreover $C(F) \subset \text{Ch}(\tilde{N}^*)$ when $s < r$.

Remark 6.1. By Proposition 6.1, for the minimum subspace F of V such that $\tilde{F} \neq \{0\}$, except for the cases when $f^+ = \langle \{e_1 \otimes e_1\} \rangle$ or $\langle \{e_1 \otimes e_1, e_1 \otimes e_2\} \rangle$, the assumptions (i) and (ii) for the Two Step Reduction Theorem (Theorem 5.2) are automatically satisfied. For the case when $f^+ = \langle \{e_1 \otimes e_1\} \rangle$, see Theorem 6.1 in the next subsection.
6.2. Typical Class of Type $f^2(r)$ and its Generalization. Let $(R; D^1, D^2)$ be a PD manifold of second order satisfying the condition (C), which is regular of type $f^2(r)$. Namely $(R; D^1, D^2)$ is a PD manifold of second order such that symbol algebra $s(v)$ at each point $v \in R$ is isomorphic to $s = s_{-3} \oplus s_{-2} \oplus s_{-1}$, where

$$s_{-3} = \mathbb{R}, \quad s_{-2} = V^* \quad \text{and} \quad s_{-1} = V \oplus f^2(r).$$

Here $f^2(r)$ is given by $(f^2(r))^\perp = S^2(F) \subset S^2(V)$, for a subspace F of V of dimension r.

Then, by Proposition 6.1, as the case $s = r \geq 2$ and the case $s = r = 1$ and $C(F)$ is completely integrable, we obtain the structure equations for $\tilde{N} = \{\tilde{\omega} = \tilde{\omega}_1 = \cdots = \tilde{\omega}_r = 0\}$ as follows;

$$\begin{align*}
\{ \, d\tilde{\omega} &\equiv \omega^a \wedge \omega_a \\
\quad d\omega_a &\equiv \omega^a \wedge \omega_{aa} \quad (\text{mod } \omega, \tilde{\omega}_1, \ldots, \tilde{\omega}_r). \}
\end{align*}$$

Hence, by Theorem 5.2, the equivalence of $(R; D^1, D^2)$, which is regular of type $f^2(r)$, is reducible to that of (Y, D_N) such that (Y, D_N) is a regular differential system of type $c^1(n-r, r+1)$, where

$$c^1(n-r, r+1) = c_{-2} \oplus c_{-1} \quad c_{-2} = W, \quad c_{-1} = \tilde{V} \oplus W \otimes \tilde{V}^*$$

is the symbol algebra of the canonical system on the first order jet space of $n-r$ independent and $r+1$ dependent variables (see §2.5 [27]). Here W and \tilde{V} are vector spaces of dimension $r+1$ and $n-r$ respectively.

Summarizing the discussion above, by the Second Reduction Theorem (Theorem 5.2), we obtain (Proposition 5.1 and Theorem 5.3 in [25] and §3 in [23])

Theorem 6.1. Let $(R; D^1, D^2)$ be a PD manifold of second order, which is regular of type $f^2(r)$.

1. If $r = 1$, assume that $C(F)$ is completely integrable, then the equivalence of $(R; D^1, D^2)$ is reducible to the equivalence of a regular differential system (Y, D_N) of type $c^1(n-1, 2)$.

2. If $r \geq 2$, the equivalence of $(R; D^1, D^2)$ is reducible to the equivalence of a regular differential system (Y, D_N) of type $c^1(n-r, r+1)$, which is locally a space of 1-jets for $n-r$ independent and $r+1$ dependent variables.

Remark 6.2. (1) In case $r = 1$, $(R; D^1, D^2)$, which is of type $f^2(1)$, is called of (weak) parabolic type and $C(F)$ coincides with the Monge characteristic system. Hence under the assumption that $C(F)$ is completely integrable, $(R; D^1, D^2)$ is called an equation of Goursat type in [25]. Utilizing the above reduction theorem, we discussed the contact equivalences of classes of Goursat type equations $(G_2$-geometry of second order), which are related to Parabolic Geometries (geometry of (Y, D_N)) of each exceptional simple Lie Groups (see §6 in [25]).

2. In case $r \geq 2$, since a regular differential system (Y, D_N) of type $c^1(n-r, r+1)$ $(r+1 \geq 3)$ is isomorphic to $(J(M, n-r), C)$, where dim $M = n+1$ (cf. Theorem 1.6 [22]), $(R; D^1, D^2)$ can be transformed, by a contact transformation, to the linear (model) system $R = \{pab = 0 \ (1 \leq a, b \leq r)\}$ (see §3 in [23] for the detail).

Now, as the generalization of the Typical Class of Type $f^2(r)$, we will consider a PD manifold $(R; D^1, D^2)$ of second order, which is regular of type $f^2(r, s)$. Here $f^2(r, s)$ is given by $(f^2(r, s))^\perp = \tilde{F} \otimes \mathcal{S} F \subset S^2(F)$, where $\tilde{F} \subset F$ are subspaces of V of dimension s and r respectively. Namely let us fix a point $v \in R$. Then, as in §6.1, there exists a coframe $\{\omega, \omega_1, \ldots, \omega_n, \omega^1, \ldots, \omega^n, \omega_{a\beta} (1 \leq a \leq s, r+1 \leq \beta \leq n), \omega_{kl} (s+1 \leq k \leq l \leq n)\}$ defined around $v \in R$ such that

$$\begin{align*}
D^1 &= \{\omega = 0\}, \quad D^2 = \{\omega = \omega_1 = \cdots = \omega_n = 0\}, \quad \tilde{N} = \tilde{N}(F) = \{\tilde{\omega} = \tilde{\omega}_1 = \cdots = \tilde{\omega}_r = 0\}, \\
\tilde{N}^* = \tilde{N}(\tilde{F}) &= \{\omega = \omega_1 = \cdots = \omega_s = 0\}, \quad \tilde{N}^* = \tilde{N}(\tilde{F}) = \{\omega = \omega_1 = \cdots = \omega_n = 0\}, \quad \omega^{r+1} = \cdots = \omega^n = 0, \end{align*}$$

34
and the following structure equations hold;

\[(\tilde{A})\quad d\omega \equiv \omega^1 \land \omega_1 + \cdots + \omega^n \land \omega_n \quad (\text{mod } \omega),\]

\[
\begin{align*}
 d\omega_a & \equiv \sum_{a=r+1}^n \omega^a \land \omega_{aa} \\
 d\omega_i & \equiv \sum_{j=s+1}^r \omega^j \land \omega_{ij} + \sum_{a=r+1}^n \omega^a \land \omega_{ia} \\
 d\omega_a & \equiv \sum_{a=1}^n \omega^a \land \omega_{aa} + \sum_{i=s+1}^r \omega^i \land \omega_{ia} + \sum_{\beta=r+1}^n \omega^\beta \land \omega_{a\beta}
\end{align*}
\]

(mod \(\omega, \omega_1, \ldots, \omega_n\)), where \(\omega_{kl} = \omega_{lk}\). Furthermore, we have

\[
C(F) = \{\omega = \omega_1 = \cdots = \omega_n = \omega^{s+1} = \cdots = \omega^n = \omega_{ij} = \omega_{ka} = 0 \\
\text{ } \quad \text{s} + 1 \leq i \leq j \leq r, 1 \leq k \leq r, r + 1 \leq \alpha \leq n\},
\]

By the calculation in §6.1, in case \(s \geq 2\), we have

\[(\tilde{B}.2)\quad \begin{align*}
 d\omega_a & \equiv \omega^a \land \omega_{aa} \\
 d\omega_i & \equiv \omega^j \land \omega_{ij} + \omega^a \land \omega_{ia} + A_i^{a\beta} \omega_a \land \omega_{\beta} + B_i^{a\beta} \omega_a \land \omega_{\beta} \\
 d\omega_a & \equiv \sum_{a=1}^n \omega^a \land \omega_{aa} + \sum_{i=s+1}^r \omega^i \land \omega_{ia} + \sum_{\beta=r+1}^n \omega^\beta \land \omega_{a\beta}
\end{align*}
\]

(mod \(\omega, \omega_1, \ldots, \omega_r\)), where we may assume \(A_i^{a\beta} = -A_i^{\beta a}\). Putting \(\tilde{\mathfrak{M}}_1 = \langle\{\omega, \omega_1, \ldots, \omega_n, \omega^i, \\
\omega^a \text{ } \text{s} + 1 \leq i \leq r, r + 1 \leq \alpha \leq \beta \leq n\}\rangle\) and by (6.1), we have

\[
d\omega \equiv d\omega_a \equiv d\omega_i \equiv d\omega_a \equiv 0, \quad d\omega_a \equiv \omega^b \land \omega_{ba} \quad (\text{mod } \tilde{\mathfrak{M}}_1).
\]

Then, taking exterior derivatives of both sides of the second equation of (\(\tilde{B}.2\)) and calculating mod \(\tilde{\mathfrak{M}}_1\), we get

\[
d\omega^j \land \omega_{ij} + \omega^b \land \omega_{ba} \land (B_i^{a\beta} \omega_{a\beta}) \equiv 0 \quad (\text{mod } \tilde{\mathfrak{M}}_1).
\]

Hence we have \(B_i^{a\beta} = 0\) if \(i \notin \{j, k\}\) and \((d\omega^i + B_i^{a\beta} \omega^b \land \omega_{ba}) \land \omega_{ij} \equiv 0 \quad (\text{mod } \tilde{\mathfrak{M}}_1)\). Thus we obtain

\[
d\omega^j \equiv -B_i^{a\beta} \omega^b \land \omega_{ba} \quad (\text{mod } \tilde{\mathfrak{M}}_1) \quad \text{for } i = s + 1, \ldots, r.
\]

Then, putting \(B_i^{a\beta} = B_i^{a\beta} \text{ } (i = s + 1, \ldots, r)\), and replacing \(\omega^j\) by \(\omega^j + B_i^{a\beta} \omega_{a\beta}\) and \(\omega^a + B_i^{a\beta} \omega_{j}\) respectively, we may assume \(B_i^{a\beta} = 0\).

Moreover, putting \(\tilde{\mathfrak{M}}_2 = \langle\{\omega, \omega_1, \ldots, \omega_r, \omega^i, \omega^a, \omega_{ij}, \omega_{ia}, \omega_a \land \omega_{\beta} \text{ } (s + 1 \leq i \leq j \leq r, r + 1 \leq \alpha \leq \beta \leq n)\}\rangle\), we have

\[
d\omega \equiv d\omega_a \equiv d\omega_i \equiv 0, \quad d\omega_a \equiv \omega^b \land \omega_{ba} \land \eta_{a\beta} \quad (\text{mod } \tilde{\mathfrak{M}}_2),
\]

for some 1-forms \(\eta_{a\beta}\). Then, taking exterior derivatives of both sides of the second equation of (\(\tilde{B}.2\)) and calculating mod \(\tilde{\mathfrak{M}}_2\), we get

\[
A_i^{a\beta}(d\omega_a \land \omega_{\beta} - \omega_a \land d\omega_{\beta}) \equiv 2A_i^{a\beta} \omega^b \land \omega_{ba} \land \omega_{\beta} \equiv 0 \quad (\text{mod } \tilde{\mathfrak{M}}_2),
\]

which implies \(A_i^{a\beta} = 0\).

Thus, by the Second Reduction Theorem (Theorem 5.2), we obtain
Theorem 6.2. Let $(R; D^1, D^2)$ be a PD manifold of second order, which is regular of type $f^2(r, s)$.

Then, if $2 \leq s < r$, the equivalence of $(R; D^1, D^2)$ is reducible, by Theorem 5.2, to the equivalence of a regular differential system (Y, D_N), where $D_N = \{\omega = \omega_1 = \cdots = \omega_r = 0\}$ such that the following structure equation holds:

\[
\begin{align*}
d\omega & \equiv \sum_{\alpha = r+1}^{n} \omega^\alpha \wedge \omega_\alpha, \\
d\omega_a & \equiv \sum_{\alpha = r+1}^{n} \omega^\alpha \wedge \omega_a (1 \leq a \leq s), \\
d\omega_i & \equiv \sum_{j=1}^{r} \omega^j \wedge \omega_{ij} + \sum_{\alpha = r+1}^{n} \omega^\alpha \wedge \omega_{i\alpha} (s + 1 \leq i \leq r),
\end{align*}
\]

6.3. Typical Class of Type $f^1(r)$ and its Generalization. In this subsection, as the generalization of the Typical Class of Type $f^1(r)$, we will consider a PD manifold $(R; D^1, D^2)$ of second order, which is regular of type s such that $s = s_1 \oplus s_2 \oplus s_1$ satisfies the following condition: For $s_1, s_2 \in \mathbb{R}$, $s_1 = V^r$ and $s_2 = V \oplus f, f \subset S^2(V^s)$.

(F.1) There exist subspaces E and H of V of dimension r and $n - r$ respectively such that

\[V = E \oplus H, \quad E \otimes H \subset \mathfrak{f}^1 \subset E \otimes_S V.\]

Here $f^1(r)$ is given by $(f^1(r))^\perp = E \otimes H$. Namely let us fix a point $v \in R$. Then, as in §6.1, there exists a coframe \{\omega, \omega_1, \ldots, \omega_n, \omega^1, \ldots, \omega^n, \pi_\lambda, \omega_{\alpha\beta} (1 \leq \lambda \leq t, r + 1 \leq \alpha \leq \beta \leq n)\} \quad (t = \dim \mathfrak{f} - \dim S^2(E^\perp)) and 1-forms \{\pi_{ij} (1 \leq i, j \leq r)\} defined around $v \in R$ such that

\[D^1 = \{\omega = 0\}, \quad D^2 = \{\omega = \omega_1 = \cdots = \omega_n = 0\}, \quad \tilde{N} = \tilde{N}(E) = \{\omega = \omega_1 = \cdots = \omega_r = 0\}, \quad \tilde{N}^1 = \{\omega = \omega_1 = \cdots = \omega_n = \omega^{r+1} = \cdots = \omega^n = 0\},\]

and the following structure equations hold:

\[d\omega \equiv \omega^1 \wedge \omega_1 + \cdots + \omega^n \wedge \omega_n \quad \text{(mod } \omega),\]

\[
\begin{align*}
d\omega_i & \equiv \sum_{j=1}^{r} \omega^j \wedge \pi_{ij} (1 \leq i \leq r), \\
d\omega_\alpha & \equiv \sum_{\beta = r+1}^{n} \omega^\beta \wedge \omega_{\alpha\beta} (r + 1 \leq \alpha \leq n),
\end{align*}
\]

\[\text{(mod } \omega, \omega_1, \ldots, \omega_n), \quad \text{where } \omega_{\alpha\beta} = \omega_{\beta\alpha}, \quad \pi_{ij} = \pi_{ji}, \quad \text{and } \{\pi_\lambda (1 \leq \lambda \leq t)\} \text{ is a basis of } \{\{\pi_{ij} (1 \leq i, j \leq r)\}\} \text{ (mod } \omega, \omega_1, \ldots, \omega_n). \quad \text{Furthermore, we have } \]

\[j(E) = \{\omega = \omega_1 = \cdots = \omega_n = \omega^1 = \cdots = \omega^n = \pi_{ij} = 0 (1 \leq i \leq j \leq r)\}.\]

From (B.1), we have

\[d\omega_i \equiv \omega^j \wedge \pi_{ij} + A^j_\alpha \omega_\alpha \wedge \omega_\beta + B^j_\alpha \omega_\alpha \wedge \pi_\lambda + C^j_\alpha \omega_\alpha \wedge \omega_{\beta\gamma} + D^j_\alpha \omega_\alpha \wedge \omega^j + E^j_\alpha \omega_\alpha \wedge \omega^\beta \quad \text{(mod } \omega, \omega_1, \ldots, \omega_r).\]

First, replacing ω_i by $\omega - E^j_{i\beta+1} \omega$, we may assume $E^j_{i\beta+1} = 0$. Putting $\mathfrak{M}_1 = \{\omega, \omega_1, \ldots, \omega_n, \omega^j, \quad \pi_\lambda (1 \leq i \leq r, 1 \leq \lambda \leq t)\}$, we have

\[d\omega \equiv d\omega_i \equiv 0, \quad d\omega_\alpha \equiv \omega^\beta \wedge \omega_{\alpha\beta} \quad \text{(mod } \mathfrak{M}_1).\]
Then, taking exterior derivatives of both sides of (6.2) and calculating mod \mathfrak{M}_1, we get
$$\omega^\gamma \wedge \omega_{\alpha\beta} \wedge (C_i^{\alpha\beta\gamma} \omega_{\beta\gamma} + E_i^{\alpha\beta}) \equiv 0 \quad (\text{mod } \mathfrak{M}_1).$$
Under the assumption $r \leq n-2$, this implies $C_i^{\alpha\beta\gamma} = E_i^{\alpha\beta} = 0$ (see the proof of Lemma 2.1 in [23] for the detail). Hence, by Lemma 5.3. (1), we obtain $f(E) = \text{Ch}(D^1) \cap \text{Ch}(N)$. Let $(W; C^*, N)$ be the IG manifold of corank r associated with $(R; D^1, D^2, \hat{N}(E))$ and $(R_W; D_{W}^1, D_{W}^2)$ be the Lagrange Grassmann bundle over $(W; C^*, N)$. Then, by Theorem 5.1. (1), $\kappa_1 : (R; D^1, D^2) \rightarrow (R(W); D_{W}^1, D_{W}^2)$ is a local isomorphism. Thus the local equivalence of $(R; D^1, D^2)$ is reducible to the local equivalence of $(W; C^*, N)$. By the condition (F.1) of the symbol algebra, we have

$$S^2(E^\perp) \subset \mathfrak{f} \subset S^2(H^\perp) \oplus S^2(E^\perp).$$

Hence we get $\mathfrak{f} \cap (E^\perp \otimes_S V^*) = S^2(E^\perp) = \mathfrak{f}(E) = \text{Ker} \eta_\alpha$, which implies, by Lemma 3.1 (4), $S(N) = \{0\}$ on W.

Summarizing the discussion above, we obtain

Proposition 6.3. Let $(R; D^1, D^2)$ be a PD manifold of second order, which is regular of type s such that the symbol subspace $\mathfrak{f} \subset S^2(V^*)$ satisfies the condition (F.1). Let $(W; C^*, N)$ be the IG manifold of corank r associated with $(R; D^1, D^2, \hat{N}(E))$ and $(R_W; D_{W}^1, D_{W}^2)$ be the Lagrange Grassmann bundle over $(W; C^*, N)$. Then $\kappa_1 : (R; D^1, D^2) \rightarrow (R(W); D_{W}^1, D_{W}^2)$ is a local isomorphism and $S(N) = \{0\}$ on W.

Conversely we will now consider an IG manifold $(W; C^*, N)$ of corank r satisfying $S(N) = \{0\}$. We assume that W is regular with respect to $\text{Ch}(C^*)$ as in §4.1. Let $(R(W); D_{W}^1, D_{W}^2)$ be the Lagrange Grassmann bundle over $(W; C^*, N)$. Then, by Lemma 4.1 and 4.2, $(R(W); D_{W}^1, D_{W}^2)$ is, globally, a PD manifold of second order and $\zeta : R(W) \rightarrow L(J)$ is an immersion.

Moreover, by Lemma 3.1 (4) (see also the last paragraph of §4.2), the condition $S(N) = \{0\}$ implies that

$$S(N_W)(\hat{v}) = f(\hat{v}) \cap (E(\hat{v})^\perp \otimes_S V(\hat{v})^*) = \text{Ker} \tau_s = S^2(E(\hat{v})^\perp),$$

at each $\hat{v} \in R(W)$, where $E(\hat{v}) = V(\hat{v}) \cap N_W^1(\hat{v})$. Equivalently we have

$$f(\hat{v})^\perp + S^2(E(\hat{v})) = E(\hat{v}) \otimes_S V(\hat{v}) \quad \text{at each } \hat{v} \in R(W).$$

For a complimentary subspace $H(\hat{v}), V(\hat{v}) = E(\hat{v}) \oplus H(\hat{v})$, we have $E(\hat{v}) \otimes_S V(\hat{v}) = S^2(E(\hat{v}) \oplus E(\hat{v}) \otimes H(\hat{v})$. Thus the condition (F.1) in this case is the existence of a complimentary subspace $H(\hat{v})$ such that $f(\hat{v})^\perp \supset E(\hat{v}) \otimes H(\hat{v})$.

7. CONSTRUCTION OF $(W(Y); C^*_Y, N_Y)$ AND $(R(Y); D^*_Y, D^2_Y)$

7.1. **Case** $N^* = N$. Starting from a regular differential system (Y, D_N), we will construct an IG manifold $(W(Y); C^*_Y, N_Y)$ and the Lagrange Grassmann bundle $R(Y) = R(W(Y))$ over $(W(Y); C^*_Y, N_Y)$ and will examine the condition when $(R(Y); D^*_Y, D^2_Y)$ becomes a PD manifold of second order, where D^*_Y and D^2_Y are canonical systems on $R(Y)$.

Let (Y, D_N) be a differential system satisfying the following condition;

$$(Y.1) \quad D_N \text{ is a differential system of codimension } r+1 \text{ such that } \text{Ch}(D_N) \text{ is trivial.}$$

We assume that D_N is of constant Engel half-rank (see [4] II §4) and let t be the Engel half-rank of D_N. Let $\{\omega_0, \ldots, \omega_r\}$ be a local defining 1-forms of (Y, D_N) on a neighborhood U of $y_o \in Y$. Then, for a section $\omega \in \Gamma(D^*_N)$, we have

$$(d\omega)^{t+1} \equiv 0 \quad (\text{mod } \omega_0, \ldots, \omega_r),$$

on U and $(d\omega)^t \neq 0$ for some $\omega \in \Gamma(D^*_N)$. Here we may assume $(d\omega)^t \neq 0$ around $y_o \in Y$. 37
Moreover, half-rank of Let \(n \) be a differential system satisfying \(\nu : \hat{W}(Y) \to Y \). Denoting the pullback on \(\hat{W}(Y) \) of 1-forms on \(Y \) by the same symbol, we have
\[
\hat{C}_Y = \{ \nu = 0 \},
\]
and
\[
d\nu = d\nu_0 + \sum_{i=1}^r \lambda_i d\bar{w}_i + \sum_{i=1}^r d\lambda_i \wedge \bar{w}_i.
\]
on \(\nu^{-1}(U) \). By the Engel half-rank condition, we have, around \(y_0 \),
\[
d\nu = d\bar{w}_0 + \sum_{i=1}^r \lambda_i d\bar{w}_i \equiv \sum_{i=1}^t \tilde{\omega}^\alpha \wedge \tilde{\omega}^\alpha \pmod{\bar{w}_0, \ldots, \bar{w}_r},
\]
\[
\equiv \sum_{i=1}^t \bar{\omega}^\alpha \wedge \bar{\omega}^\alpha + \sum_{i=1}^r \gamma_i \wedge \bar{w}_i \pmod{\nu},
\]
where \(\bar{\omega}^\alpha, \tilde{\omega}^\alpha \) and \(\gamma_i \) are 1-forms on \(U \) defined around \(y_0 \) such that \(\{ \bar{w}_0, \ldots, \bar{w}_r, \tilde{\omega}^\alpha, \bar{\omega}^\alpha \} \) are linearly independent at each point. Then we have
\[
d\nu = \sum_{i=1}^t \bar{\omega}^\alpha \wedge \bar{\omega}^\alpha + \sum_{i=1}^r (d\lambda_i + \gamma_i) \wedge \bar{w}_i \pmod{\nu}.
\]
around \(w_0 = \{ \nu_0 = 0 \} \in \nu^{-1}(U) \). Hence we have
\[
(7.1) \quad \text{Ch}(C_Y^s)(w) = \{ \nu = \nu_0 = d\lambda_i + \gamma_i = \tilde{\omega}^\alpha = \bar{\omega}^\alpha = 0 \pmod{\nu} \} = 0 \quad (1 \leq i \leq r, 1 \leq \alpha \leq t).
\]
around \(w_0 \in \nu^{-1}(U) \). Thus the following subset \(W(Y) \) of \(\hat{W}(Y) \) is an open (dense) subset of \(\hat{W}(Y) \);
\[
W(Y) = \{ w \in \hat{W}(Y) \mid \text{corank Ch}(C_Y^s)(w) = 2n + 1 \}
\]
where \(n = r + t \).

Now we claim

Proposition 7.1. Let \((Y, D_N) \) be a differential system satisfying (Y.1) and let \(t \) be the Engel half-rank of \(D_N \). Then \((W(Y); C_Y^s, N_Y) \) is an IG manifold of corank \(r \), where \(n = r + t \). Moreover

1. \(N_Y^\perp = \text{Ch}(N_Y) \oplus \text{Ch}(C_Y^s) \) and \(S(N_Y^\perp) = \text{Ch}(C_Y^s) \).
2. \(\partial N_Y^\perp \subset N_Y \), hence \(N_Y^s = N_Y \), where \(N_Y^s = \partial N_Y^\perp + N_Y \).
Proof. Notations being as above, we have on a neighborhood of $w_0 \in \nu^{-1}(U)$
\[C_Y^* = \{ \bar{w} = 0 \}, \quad N_Y = \{ \bar{w} = w_1 = \cdots = w_r = 0 \}, \]
and
\[d\bar{w} \equiv \sum_{\alpha=1}^{t} \bar{\omega}^\alpha \wedge \bar{\omega}^\alpha + \sum_{i=1}^{r} (d\lambda_i + \gamma_i) \wedge \bar{w}_i \pmod{\bar{w}}. \]
Hence we get
\[\text{Ch} (C_Y^*) = \{ \bar{w} = w_i = \bar{\omega}^\alpha = \bar{\omega}^\alpha = d\lambda_i + \gamma_i = 0 \quad (1 \leq i \leq r, 1 \leq \alpha \leq t) \}, \]
and
\[N_Y^\perp = \{ \bar{w} = w_i = \bar{\omega}^\alpha = \bar{\omega}^\alpha = 0 \quad (1 \leq i \leq r, 1 \leq \alpha \leq t) \}. \]
Moreover, from \(\text{Ch} (D_N) = \{ 0 \} \), we have \(\text{Ch} (N_Y) = \text{Ker} \nu_r \), which implies \(\text{Ch} (C_Y^*) \cap \text{Ch} (N_Y) = \{ 0 \} \). Thus \((W(Y); C_Y^*, N_Y) \) is an IG manifold of corank r.

(1) From \(\text{Ch} (N_Y) \subset N_Y^\perp \) and the rank count, we have
\[N_Y^\perp = \text{Ch} (N_Y) \oplus \text{Ch} (C_Y^*). \]
Then it follows that
\[S(N_Y)(w) = \{ X \in \text{Ch} (C_Y^*)(w) \mid [X, \Gamma(N_Y)] \subset \Gamma(N_Y) \} \subset \text{Ch} (C_Y^*)(w). \]

(2) \(\partial N_Y^\perp \subset N_Y \) follows immediately from \(N_Y^\perp = \text{Ch} (N_Y) \oplus \text{Ch} (C_Y^*) \). This completes the proof of Proposition. \(\square \)

Here we observe that, when \((Y, D_N) \) is obtained from a PD manifold of second order such that \(E = \hat{E} \) as in Theorem 5.2, the Engel-half rank of \((Y, D_N) \) equals to \(t = n - r \). This can be checked as follows; Let \((W; C^*, N) \) be the associated IG manifold of corank r such that \(Y = W/\text{Ch} (N) \) is the leaf space. Then we have a map \(\kappa_2 : W \rightarrow \hat{W}(Y) \) as in §5.3, which is an immersion. Hence we see \(\kappa_2(W) \subset W(Y) \) and \(\kappa_2 : (W; C^*, N) \rightarrow (W(Y); C_Y^*, N_Y) \) is a local isomorphism of IG manifolds.

Now we consider the Lagrange Grassmann bundle \(R(Y) = R(W(Y)) \) over \((W(Y); C_Y^*, N_Y) \):
\[R(Y) = \bigcup_{w \in W(Y)} R_w, \quad R_w = \{ \hat{v} \subset N_Y(w) \mid \gamma_w |_{\hat{v}} = 0, \; \hat{v} \text{ is maximal} \}. \]

Let D_Y^2 be the canonical system on \(R(Y) \) and let D_Y^1 and \hat{N}_Y be the lifts of C_Y^* and N_Y respectively, i.e.,
\[D_Y^1(\hat{v}) = \tau_*^{-1}(C_Y^*(w)), \quad D_Y^2(\hat{v}) = \tau_*^{-1}(\hat{v}), \quad \hat{N}_Y(\hat{v}) = \tau_*^{-1}(N_Y(w)), \]
where $\tau : R(Y) \rightarrow W(Y)$ is the projection and $w = \tau(\hat{v})$.

In general, in order to see whether \((R(Y); D_Y^1, D_Y^2) \) is a PD manifold of second order, we must check the condition \(A(\hat{v}) = \{ 0 \} \) for each \(\hat{v} \in R(Y) \), utilizing, e.g., Lemma 4.2 together with the structure equation of D_N. Here we will discuss two extreme cases in the following.

First we impose the following condition for \((Y, D_N) \);

(Y.2) \(\text{rank } D_N = 2t \), where \(t \) is the Engel half-rank of \(D_N \).

This condition is equivalent to the condition that \(\{ \bar{w}_0, \ldots, \bar{w}_r, \bar{\omega}^1, \ldots, \bar{\omega}^t, \bar{\omega}^1, \ldots, \bar{\omega}^t \} \) forms a coframe on a neighborhood around $y_0 \in Y$ in the above notation. Then we have
Proposition 7.2. Let (Y, D_N) be a differential system satisfying (Y.1), and let t be the Engel half-rank of D_N. Then

1. $(W(Y), C^*_Y)$ is a contact manifold of dimension $2n+1$ if and only if (Y.2) holds.

2. If (Y.2) holds, $(W(Y); C^*_Y, N_Y)$ is an IG manifold of corank r, where $n = r + t$, such that $N^*_Y = \text{Ch}(N_Y)$ and that $(R(Y); D^*_Y, D_Y)$ is, globally, a PD manifold of second order satisfying $S(\bar{v}) \cong S^2(E^2)$ for some r-dimensional subspace E of V at each $\bar{v} \in R(Y)$.

Proof. (1) $(W(Y), C^*_Y)$ is a contact manifold of dimension $2n+1$ if and only if $\text{Ch}(C^*_Y) = \{0\}$. By (7.1), this is equivalent to the condition that $\{\varpi, \varpi_i, d\lambda_i + \gamma_i, \tilde{\omega}^\alpha, \tilde{\omega}^\alpha(1 \leq i \leq r, 1 \leq \alpha \leq t)\}$ is a coframe around $w_o \in \nu^{-1}(U)$, which is also equivalent to the condition that $\{\varpi_0, \ldots, \varpi_r, \tilde{\omega}^1, \ldots, \tilde{\omega}^t\}$ is a coframe on a neighborhood of $y_o \in Y$.

(2) If (Y.2) holds, $N^*_Y = \text{Ch}(N_Y)$ follows from Proposition 7.1 and the last assertion follows from $S(N_Y) = \text{Ch}(C^*_Y) = \{0\}$ and Lemma 4.2. \hfill \square

Unfortunately, in view of Case (3) of Theorem in [23] (see also §6.1 [27]), these $R(Y)$ are inevitably incompatible systems, i.e., $R(Y)$ does not satisfy the compatibility condition (C) in §3.1 (or §4.2). We will give some examples of this case in §8.3.

Secondly we assume the following condition for (Y, D_N) (see [4] II §4);

(Y.3) The Cartan rank of D_N coincides with the Engel half-rank of D_N.

Under this condition, we have a local defining 1-forms $\{\varpi_0, \ldots, \varpi_r\}$ of (Y, D_N) on a neighborhood U of $y_0 \in Y$ such that the structure equation of the following form holds:

$$d\varpi_i \equiv \omega^1 \wedge \pi_1 + \cdots + \omega^t \wedge \pi_t \quad (\text{mod } \varpi_0, \ldots, \varpi_r)$$

for $i = 0, \ldots, r$,

where $\omega^\alpha, \pi_\alpha(1 \leq i \leq r, 1 \leq \alpha \leq t)$ are 1-forms defined around $y_0 \in Y$ such that $\{\varpi_0, \ldots, \varpi_r, \omega^1, \ldots, \omega^t\}$ are linearly independent around U.

Moreover, from $d\varpi_i \equiv \sum_{\alpha=1}^{t} \omega^\alpha \wedge \pi_\alpha + \sum_{j=1}^{r} \gamma_j^\alpha \wedge \varpi_j$ (mod ϖ) for $i = 0, \ldots, r$, we calculate

$$d\varpi \equiv \sum_{\alpha=1}^{t} \omega^\alpha \wedge (\pi_0^\alpha + \sum_{i=1}^{r} \lambda_i \pi_\alpha) + \sum_{i=1}^{r} (d\lambda_i + \gamma_i^0 + \sum_{j=1}^{r} \lambda_j \gamma_j^i) \wedge \varpi_i \quad (\text{mod } \varpi).$$

By the Engel half-rank condition, we may assume $(d\varpi_i)^t \neq 0$ (mod $\varpi_0, \ldots, \varpi_r$) as before, i.e., $\{\varpi_0, \ldots, \varpi_r, \omega^1, \ldots, \omega^t, \pi_0, \ldots, \pi_t\}$ are linearly independent around $y_0 \in Y$. Then, putting $n = r + t$, $\omega^\alpha = \pi_0^\alpha + \sum_{i=1}^{r} \lambda_i \pi_\alpha$ and $\Omega_i = \gamma_i^0 + \sum_{j=1}^{r} \lambda_j \gamma_j^i$, we see that corank of $\text{Ch}(C^*_Y)(w)$ equals $2n+1$ if and only if $\{\omega^1, \ldots, \omega^t\}$ are linearly independent (mod $\varpi, \varpi_1, \ldots, \varpi_r, \omega^1, \ldots, \omega^t, \lambda_1 + \Omega_1, \ldots, d\lambda_1 + \Omega_1$) at each point w. Hence, on a neighborhood of w_0 in $W(Y)$, where $\{\varpi, \varpi_i, d\lambda_i, \omega^\alpha, \omega^\alpha(1 \leq i \leq r, 1 \leq \alpha \leq t)\}$ are linearly independent at each point, we have

$$C^*_Y = \{\varpi = 0\}, \quad N_Y = \{\varpi = \varpi_1 = \cdots = \varpi_r = 0\},$$

and

$$d\varpi \equiv \sum_{\alpha=1}^{t} \omega^\alpha \wedge \omega^\alpha + \sum_{i=1}^{r} (d\lambda_i + \Omega_i) \wedge \varpi_i \quad (\text{mod } \varpi).$$

Thus

$$\text{Ch}(C^*_Y) = \{\varpi = \varpi_i = \omega^\alpha = d\lambda_i + \Omega_i = 0 \quad (1 \leq i \leq r, 1 \leq \alpha \leq t)\},$$

and

$$N^*_Y = \{\varpi = \varpi_i = \omega^\alpha = 0 \quad (1 \leq i \leq r, 1 \leq \alpha \leq t)\}.$$
Then, from $N_Y\hat{v}(w) \subset \hat{v} \subset N_Y(w)$ and $d\varpi |_{\hat{v}} = 0$, if $\omega^1 \wedge \cdots \wedge \omega^t |_{\hat{v}} \neq 0$, it follows that
\[
\hat{v} = \{ X \in N_Y(w) \mid (\varpi^\alpha - \sum_{\beta=1}^t p_{\alpha\beta}^* \omega^\beta)(X) = 0 \quad (1 \leq \alpha \leq t) \},
\]
where $p_{\alpha\beta}^* = \hat{p}_{\alpha\beta}^*$ ($1 \leq \alpha, \beta \leq t$). For these $\hat{v} \in R_w$, we have

Lemma 7.1. $A(\hat{v}) = \{0\}$ for $\hat{v} = \{ \varpi_0 = \cdots = \varpi_r = \varpi^\alpha - \sum_{\beta=1}^t \hat{p}_{\alpha\beta}^* \omega^\beta = 0 \quad (1 \leq \alpha \leq t) \}$.

Proof. First we have
\[
d\varpi_i \equiv \omega^1 \wedge \pi_{i1} + \cdots + \omega^t \wedge \pi_{it} \pmod{\varpi_0, \ldots, \varpi_r} \quad \text{for} \quad i = 0, \ldots, r,
\]
Hence, for $X \in S(N_Y)(w) = \text{Ch}(C_Y^*(w))$, we have
\[
X | d\varpi_i \equiv - \sum_{\alpha=1}^t \pi_{i\alpha}(X) \omega^\alpha \pmod{\varpi^\alpha},
\]
for $i = 0, \ldots, r$. Then, from Lemma 4.2 (2), we get
\[
A(\hat{v}) = \{ X \in S(N_Y)(w) \mid \pi_{i\alpha}(X) = 0 \quad (0 \leq i \leq r, 1 \leq \alpha \leq t) \} = \text{Ch}(C_Y^*(w)) \cap \text{Ch}(N_Y)(w) = \{0\}.
\]

Thus we obtain

Proposition 7.3. Let (Y, D_N) be a differential system satisfying $(Y.1)$ and $(Y.3)$.

Then $(R(Y); D_1^Y, D_2^Y)$ is a PD manifold of second order on an open subset of $R(Y)$.

Here we note that, for $v_1 = \{ \varpi_0 = \cdots = \varpi_r = \varpi^\alpha = 0 \quad (1 \leq \alpha \leq t) \} \in R(Y)$, we have $A(v_1) = \text{Ch}(C_Y^*)$, which follows from $d\varpi_i \equiv 0 \pmod{\varpi_0, \ldots, \varpi_r, \omega^\alpha(1 \leq \alpha \leq t)}$ for $i = 0, \ldots, r$. Hence $(R(Y); D_1^Y, D_2^Y)$ is not a PD manifold of second order globally in this case.

When $(R(Y); D_1^Y, D_2^Y)$ becomes a PD manifold of second order satisfying the compatibility condition (C), N_Y defines a subspace $\pi_{-2}(N_Y(\hat{v}))$ of $\mathfrak{s}_{-2}(\hat{v}) = D_Y^1(\hat{v})/D_Y^2(\hat{v})$ at each point $\hat{v} \in R(Y)$, where $\pi_{-2} : D_Y^1(\hat{v}) \rightarrow \mathfrak{s}_{-2}(\hat{v})$ is the projection. This subspace defines the subspace $E(\hat{v})$ of $V(\hat{v})$, through the symbol algebra identifications of $(R(Y); D_1^Y, D_2^Y)$ at $\hat{v} \in R(Y)$: $\mathfrak{s}_{-2}(\hat{v}) \cong V(\hat{v})^*\}, \mathfrak{s}_{-1}(\hat{v}) = V(\hat{v}) \oplus \mathfrak{f}(\hat{v})$ and $\mathfrak{f}(\hat{v}) \subset S^2(V(\hat{v})^*)$, where $V(\hat{v})$ is an integral element of $(R(Y), D_2^2)$ at \hat{v}. Then we obtain the subspace $E(\hat{v}) \subset V(\hat{v})$. Then, by the construction of $R(Y)$ in §6.1, we have $\mathfrak{f}(\hat{v}) \subset E(\hat{v}) \otimes_S V(\hat{v})$. Moreover we have $E(\hat{v}) = E(\hat{v})$, which follows from Proposition 7.1 (2). Thus $E(\hat{v})$ satisfies $S^2(E(\hat{v})) \subset \mathfrak{f}(\hat{v}) \subset E(\hat{v}) \otimes_S V(\hat{v})$. Hence $E(\hat{v})$ is $G_0(\mathfrak{s}(\hat{v}))$-invariant. Thus N_Y is a (first order) covariant system of $(R(Y); D_1^Y, D_2^Y)$.

7.2. General Case

Now, starting from a pair of differential systems $(Y; D_N^*, D_N)$, we will construct an IG manifold $(W(Y); C_Y^*, N_Y)$ over $(Y; D_N^*, D_N)$ such that $N_Y = \mu^{-1}(D_N^*)$ and $N_Y = \mu^{-1}(D_N^*)$ where $\mu : W(Y) \rightarrow Y$ is the projection, and the Lagrange Grassmann bundle $R(Y) = R(W(Y))$ over $(W(Y); C_Y^*, N_Y)$ and will examine the conditions for $N_Y = N_Y$ and when $(R(Y); D_1^Y, D_2^Y)$ becomes a PD manifold of second order.

Let $(Y; D_N^*, D_N)$ be a pair of differential systems on Y satisfying the following condition:

$(Y.1)$ D_N^* and D_N are differential systems of codimension $s + 1$ and $r + 1$ on Y such that
\[
D_N^* \supset D_N \supset \text{Ch}(D_N^*) \supset \text{Ch}(D_N) = \{0\}.
\]

We assume that D_N^* is of constant Engel half-rank and let t_1 be the Engel half-rank of D_N^*. Let
\{\varphi_0, \ldots, \varphi_s\} be a local defining 1-forms of \((Y, D_N^*)\) on a neighborhood \(U\) of \(y_0 \in Y\). Then, for a section \(\varphi \in \Gamma((D_N^*)^{-1})\), we have
\[(d\varphi)^{t_1+1} \equiv 0 \pmod{\varphi_0, \ldots, \varphi_s},\]
on \(U\) and \((d\varphi)^{t_1} \not\equiv 0\) for some \(\varphi \in \Gamma((D_N^*)^{-1})\). Here we may assume \((d\varphi_0)^{t_1} \not\equiv 0\) around \(y_0 \in Y\).

Now let us consider the collection \(\tilde{W}(Y)\) of hyperplanes \(w\) in each tangent space \(T_y(Y)\) at \(y \in Y\) which contains the fibre \(D_N^*(y)\) of \(D_N^*\);
\[\tilde{W}(Y) = \bigcup_{y \in Y} \tilde{W}_y \subset J(Y, m-1),\]
where \(m = \dim Y\). Moreover \(C_Y^*\) is the canonical system obtained by the Grassmannian construction, \(\tilde{N}_Y\) and \(N_Y\) are the lifts of \(D_N^*\) and \(D_N\) respectively. Precisely, \(C_Y^*, \tilde{N}_Y\) and \(N_Y\) are given by
\[C_Y^*(w) = \mu^{-1}_s(w) \supset \tilde{N}_Y(w) = \mu^{-1}_s(D_N^*(y)) \supset N_Y(w) = \mu^{-1}_s(D_N(y)),\]
for each \(w \in \tilde{W}(Y)\) and \(y = \mu(w)\), where \(\mu : \tilde{W}(Y) \to Y\) is the projection.

We will now examine the condition for \((\tilde{W}(Y); C_Y^*, N_Y)\) to be an \(IG\) manifold of corank \(r\). Let us consider
\[\varphi = \varphi_0 + \lambda_1 \varphi_1 + \cdots + \lambda_s \varphi_s\]
on \(U\). Namely we consider a point \(w \in \tilde{W}(Y)\) such that \(w = \{\varphi = 0\} \subset T_y(Y)\), where \(y = \mu(w) \in U\). Here \((\lambda_1, \ldots, \lambda_s)\) constitutes an inhomogeneous coordinate of the fibres of \(\mu : \tilde{W}(Y) \to Y\). Denoting the pullback on \(\tilde{W}(Y)\) of 1-forms on \(Y\) by the same symbol, we have
\[C_Y^* = \{\varphi = 0\},\]
and
\[d\varphi = d\varphi_0 + \sum_{i=1}^s \lambda_id\varphi_i + \sum_{i=1}^s d\lambda_i \wedge \varphi_i.\]
on \(\mu^{-1}(U)\). Then, as in §7.1, by the Engel half-rank condition, we see that the following subset \(W(Y)\) of \(\tilde{W}(Y)\) is an open (dense) subset of \(\tilde{W}(Y)\);
\[W(Y) = \{w \in \tilde{W}(Y) \mid \text{corank Ch } (C_Y^*)(w) = 2n + 1\}\]
where \(n = s + t_1\). Assume that \((W(Y); C_Y^*, N_Y)\) is an \(IG\) manifold of corank \(r\). Then, by the condition (W.3) in §2.2, we have \(\text{rank } d\varphi \mid_{N_Y(w)} = 2(n - r)\) at each \(w \in W(Y)\). Namely we have, at each point \(w = \{\varphi = \varphi_0 + \sum_{i=1}^s \lambda_i \varphi_i = 0\} \in W(Y),\)
\[d\varphi \equiv d\varphi_0 + \sum_{i=1}^s \lambda_id\varphi_i \equiv \sum_{\alpha=1}^{n-r} \tilde{\omega}^\alpha \wedge \tilde{\varphi}^\alpha \pmod{\varphi_0, \ldots, \varphi_r},\]
where \(D_N^* = \{\varphi_0 = \cdots = \varphi_s = 0\}\) and \(D_N = \{\varphi_0 = \cdots = \varphi_r = 0\}\). Thus \((Y; D_N^*, D_N)\) satisfies the following condition;

(\(Y.2\)) The Engel half-rank of \(D_N^*\) (mod \(D_N^\perp\)) equals to \(t_2 = t_1 - (r - s) = n - r\).

Conversely, under this condition, there exists a local defining 1-forms \(\{\varphi_0, \ldots, \varphi_r\}\) of \((Y, D_N)\) on a neighborhood \(U\) of \(y_0 \in Y\) such that
\[D_N^* = \{\varphi_0 = \cdots = \varphi_s = 0\}, \quad D_N = \{\varphi_0 = \cdots = \varphi_r = 0\},\]
and
\[d\omega_0 + \sum_{i=1}^{s} \lambda_i d\omega_i \equiv \sum_{\alpha=1}^{t_2} \tilde{\omega}^\alpha \wedge \tilde{\omega}^\alpha \pmod{\omega_0, \ldots, \omega_r}, \]
(7.2)
\[\equiv \sum_{j=s+1}^{r} \omega_j \wedge \omega_j + \sum_{\alpha=1}^{t_2} \tilde{\omega}^\alpha \wedge \tilde{\omega}^\alpha \pmod{\omega_0, \ldots, \omega_s}, \]
where \(\tilde{\omega}^\alpha, \tilde{\omega}^\alpha (1 \leq \alpha \leq t_2) \) and \(\omega_j (s + 1 \leq j \leq r) \) are 1-forms on \(U \) defined around \(y_0 \) such that \(\{\omega_0, \ldots, \omega_r, \tilde{\omega}^\alpha, \tilde{\omega}^\alpha (1 \leq \alpha \leq t_2)\} \) are linearly independent at each point. Moreover, by the Engel half-rank condition for \(D_N^* \), we see that \(\{\omega_0, \ldots, \omega_r, \omega_j (s + 1 \leq j \leq r), \tilde{\omega}^\alpha, \tilde{\omega}^\alpha (1 \leq \alpha \leq t_2)\} \) are linearly independent around \(y_0 \in Y \).

Now we claim

Proposition 7.4. Let \((Y; D_N^*, D_N) \) be a pair of differential systems satisfying \((\hat{Y}.1)\) and \((\hat{Y}.2)\) and let \(t_1 \) be the Engel half-rank of \(D_N^* \). Then \((W(Y); C_N^*, N_Y)\) is an IG manifold of corank \(r \), where \(n = r + t_2 = s + t_1 \). Moreover
\[\bar{N}_Y \supset N_Y^* = \partial N_Y^* + N_Y \quad \text{and} \quad N_Y \supset \partial \bar{N}_Y^*. \]

Proof. Notations being as above, putting
\[d\omega_0 + \sum_{i=1}^{s} \lambda_i d\omega_i \equiv \sum_{a=1}^{s} \gamma_a \wedge \omega_a + \sum_{j=s+1}^{r} \omega_j \wedge \omega_j + \sum_{\alpha=1}^{t_2} \tilde{\omega}^\alpha \wedge \tilde{\omega}^\alpha \pmod{\omega}, \]
we get
\[d\omega \equiv \sum_{a=1}^{s} (d\lambda_a + \gamma_a) \wedge \omega_a + \sum_{j=s+1}^{r} \omega_j \wedge \omega_j + \sum_{\alpha=1}^{t_2} \tilde{\omega}^\alpha \wedge \tilde{\omega}^\alpha \pmod{\omega}, \]
on a neiborhood of \(w_0 = \{\omega_0 = 0\} \in W(Y) \). Thus we have
\[C_N^* = \{\omega = 0\}, \quad \bar{N}_Y = \{\omega = \omega_1 = \cdots = \omega_s = 0\}, \quad N_Y = \{\omega = \omega_1 = \cdots = \omega_r = 0\}, \]
\[\text{Ch} (C_N^*) = \{\omega = \omega_a = \omega_j = \tilde{\omega}^\alpha = \tilde{\omega}^\alpha = \omega_j = d\lambda_a + \gamma_a = 0 \quad (1 \leq a \leq s, s+1 \leq j \leq r, 1 \leq \alpha \leq t_2)\}. \]
and
\[N_Y^* = \{\omega = \omega_1 = \cdots = \omega_r = \tilde{\omega}^\alpha = \tilde{\omega}^\alpha = 0 \quad (1 \leq \alpha \leq t_2)\}, \]
\[\bar{N}_Y^* = \{\omega = \omega_1 = \cdots = \omega_r = \tilde{\omega}^\alpha = \tilde{\omega}^\alpha = \omega_j = 0 \quad (1 \leq \alpha \leq t_2, s+1 \leq j \leq r)\}. \]
Moreover, from \(\text{Ch} (D_N) = \{0\} \), we have \(\text{Ch} (N_Y) = \text{Ker} \mu_r \), which implies \(\text{Ch} (C_N^*) \cap \text{Ch} (N_Y) = \{0\}. \) Thus \((W(Y); C_N^*, N_Y)\) is an IG manifold of corank \(r \).
\[\bar{N}_Y \supset \partial N_Y^* \] follows from
\[d\omega_a \equiv 0 \pmod{\omega_0, \ldots, \omega_r, \tilde{\omega}^\alpha, \tilde{\omega}^\alpha (1 \leq \alpha \leq t_2)}, \]
for \(a = 0, \ldots, s \), which follows from (7.2) and [4] II Proposition 4.1.

Moreover, from \(d\omega \equiv \sum_{j=s+1}^{r} \omega_j \wedge \omega_j + \sum_{\alpha=1}^{t_2} \tilde{\omega}^\alpha \wedge \tilde{\omega}^\alpha \pmod{\omega_0, \ldots, \omega_s} \), we have \(\bar{N}_Y \supset \text{Ch} (\bar{N}_Y) \supset \text{Ch} (N_Y) \). Hence, by rank comparison, we get \(\bar{N}_Y^* = \text{Ch} (N_Y) \oplus \text{Ch} (C_N^*) \), which implies that \(N_Y \supset \partial \bar{N}_Y^* \).

As for the criteria to the condition \(\bar{N}_Y = N_Y^* \), utilizing Proposition 2.1 in §2.3 (3), we add the following;

Proposition 7.5. Let \((Y; D_N^*, D_N) \) be a pair of differential systems satisfying \((\hat{Y}.1)\) and \((\hat{Y}.2)\). Assume that \((W(Y); C_N^*, N_Y)\) satisfies the compatibility condition \((C^*)\). Then \(\bar{N}_Y = N_Y^* \) holds if and only if \(H(N_Y) = \text{Ch} (N_Y) \oplus S(N_Y) \).
Proof. By Proposition 7.4, we have $\tilde{N}_Y \supset N_Y^s$. Hence $\tilde{N}_Y = N_Y^s$ if and only if $\dim C_Y^s(w)/N_Y^s(w) = s$ at each $w \in W(Y)$. By Proposition 2.1, we have $\dim C_Y^s(w)/N_Y^s(w) = \dim H_N(w)/S(Y,w)$. On the other hand, $H_N(w) \supset \text{Ch}(N_Y) \oplus S(N_Y)$ and rank $\text{Ch}(N_Y) = s$. Hence $\tilde{N}_Y = N_Y^s$ holds if and only if $H_N(w) = \text{Ch}(N_Y) \oplus S(N_Y)$. \qed

Now we consider the Lagrange Grassmann bundle $R(Y) = R(W(Y))$ over $(W(Y); C_Y^s, N_Y)$:

$$R(Y) = \bigcup_{w \in W(Y)} R_w, \quad R_w = \{ \hat{v} \in N_Y(w) \mid \gamma_w |_{\hat{v}} = 0, \ \hat{v} \text{ is maximal} \}.$$

Let D_Y^2 be the canonical system on $R(Y)$ and let D_Y^1 and \tilde{N}_Y be the lifts of C_Y^s and N_Y respectively, i.e.,

$$D_Y^1(\hat{v}) = \tau^{-1}(C_Y^s(w)), \quad D_Y^2(\hat{v}) = \tau^{-1}(\hat{v}), \quad \tilde{N}_Y(\hat{v}) = \tau^{-1}(N_Y(w)), $$

where $\tau : R(Y) \to W(Y)$ is the projection and $w = \tau(\hat{v})$.

In order to see whether $(R(Y); D_Y^1, D_Y^2)$ is a PD manifold of second order, we must check the condition $A(\hat{v}) = \{0\}$ for each $\hat{v} \in R(Y)$, utilizing, e.g., Lemma 4.2 together with the structure equation of D_N. Assuming the conditions $(Y, 1)$ and $(Y, 2)$, by Proposition 7.4, we see that the structure quation of N_Y takes the following form:

$$d\varpi = \sum_{\alpha=1}^{t_2} \hat{\omega}^\alpha \wedge \hat{\omega}_\alpha, $$

$$d\varpi_a = \sum_{\alpha=1}^{t_2} \hat{\omega}^\alpha \wedge \pi_{\alpha a} + \sum_{\alpha=1}^{t_2} \hat{\omega}^\alpha \wedge \hat{\pi}_{\alpha a} \quad (1 \leq a \leq s), \ (\text{mod } \varpi, \varpi_1, \ldots, \varpi_r)$$

$$d\varpi_i = \sum_{j=s+1}^{r} \omega^j \wedge \pi_{ij} + \sum_{\alpha=1}^{t_2} \hat{\omega}^\alpha \wedge \pi_{ia} + \sum_{\alpha=1}^{t_2} \hat{\omega}^\alpha \wedge \hat{\pi}_{ia} \quad (s+1 \leq i \leq r),$$

Here, by Lemma 4.2 (2), we note

$$S(N_Y)(w) = \{ X \in \text{Ch}(C_Y^s)(w) \mid \pi_{ij}(X) = 0 \ (s+1 \leq i, j \leq r) \},$$

$$A(\hat{v}_1) = \{ X \in S(N_Y)(w) \mid (\pi_{aa} + \sum_{\beta=1}^{t_2} p_{a\beta} \hat{\pi}_{a\beta})(X) = $$

$$(\pi_{ia} + \sum_{\beta=1}^{t_2} p_{a\beta} \hat{\pi}_{i\beta})(X) = 0 \ (1 \leq a \leq s, s+1 \leq i \leq r, 1 \leq \alpha \leq t_2) \}$$

for $\hat{v}_1 = \{ \varpi = \varpi_1 = \cdots = \varpi_r = \hat{\omega}^\alpha - \sum_{\beta=1}^{t_2} p_{a\beta} \hat{\omega}^\beta = 0 \ (1 \leq \alpha \leq t_2) \}$ \in $R(Y)$ and

$$A(\hat{v}_2) = \{ X \in S(N_Y)(w) \mid (\hat{\pi}_{aa} + \sum_{\beta=1}^{t_2} p_{a\beta} \pi_{a\beta})(X) = $$

$$(\hat{\pi}_{ia} + \sum_{\beta=1}^{t_2} p_{a\beta} \pi_{i\beta})(X) = 0 \ (1 \leq a \leq s, s+1 \leq i \leq r, 1 \leq \alpha \leq t_2) \}$$

for $\hat{v}_2 = \{ \varpi = \varpi_1 = \cdots = \varpi_r = \hat{\omega}^\alpha - \sum_{\beta=1}^{t_2} p_{a\beta} \omega^\beta = 0 \ (1 \leq \alpha \leq t_2) \}$ \in $R(Y)$. Thus we need some more information on the structure of D_Y to conclude $A(\hat{v}_1) = \{0\}$ or $A(\hat{v}_2) = \{0\}$. We will examine several examples of this case in §8.2.
8. Examples of Second Reduction Theorem

8.1. Case \(n = 3 \). In [6], for involutive systems of second order partial differential equations for a scalar function with 3 independent variables, E.Cartan first classified involutive subspaces \(\mathfrak{f} \) of \(S^2(V^*) \), over the complex number field \(\mathbb{C} \), when \(\dim V = 3 \). In this subsection, following his classification, we will here indicate \(G_0(\mathfrak{s}) \)-invariant subspaces \(E \) and \(\hat{E} \), satisfying \(\mathfrak{f}^\perp \subset E \otimes_S V \), for each involutive subspace \(\mathfrak{f} \subset S^2(V^*) \), when \(\dim V = 3 \), which shows the applicability of Theorem 5.1 or 5.2 in each case.

\[\text{(1) } \text{ codim } \mathfrak{f} = 1. \]

In this case \(\dim \mathfrak{f}^\perp = 1 \). Hence we can classify a generator \(f \) of \(\mathfrak{f}^\perp \) as a quadratic form and obtain the following classification by the rank of \(f \) into three cases over \(\mathbb{C} \), i.e., there exists a basis \(\{e_1, e_2, e_3\} \) of \(V \) such that

\[\mathfrak{f}^\perp = \langle \{e_1 \odot e_1 + e_2 \odot e_2 + e_3 \odot e_3\} \rangle, \quad \langle \{e_1 \odot e_2\} \rangle, \quad \text{or} \quad \langle \{e_1 \odot e_1\} \rangle. \]

In the first case, we have no \(G_0(\mathfrak{s}) \)-invariant subspace. In the second case, \(E = \langle \{e_1, e_2\} \rangle \), \(\langle \{e_1\} \rangle \) or \(\langle \{e_2\} \rangle \) and \(\hat{E} = \{0\} \) in either case. In the third case, \(E = \hat{E} = \langle \{e_1\} \rangle \). The third case corresponds to the Goursat type equation (see Theorem 6.1 (1)).

\[\text{(2) } \text{ codim } \mathfrak{f} = 2. \]

In this case, there exists a basis \(\{e_1, e_2, e_3\} \) of \(V \) such that (see Proposition 3.1 [27])

\[\mathfrak{f}^\perp = \langle \{e_1 \odot e_2, e_1 \odot e_3\} \rangle, \quad \langle \{e_1 \odot e_2, e_1 \odot e_3, e_2 \odot e_3\} \rangle, \quad \langle \{e_1 \odot e_1, e_1 \odot e_2, e_2 \odot e_2 - e_1 \odot e_3\} \rangle, \quad \langle \{e_1 \odot e_1, e_1 \odot e_2, e_2 \odot e_2\} \rangle, \quad \text{or} \quad \langle \{e_1 \odot e_1, e_1 \odot e_2, e_1 \odot e_3\} \rangle. \]

In the first case, \(E = \langle \{e_2, e_3\} \rangle \) or \(\langle \{e_1\} \rangle \) and \(\hat{E} = \{0\} \) in either case. In the second case, \(E_1 = \hat{E}_1 = \langle \{e_1\} \rangle \) or \(E_2 = \langle \{e_1, e_2\} \rangle \) and \(\hat{E}_2 = \langle \{e_1\} \rangle \) (see §8.3 for \(E_2 \)-case).

In fact, E.Cartan showed \(C(E) \) is completely integrable for \(E = \langle \{e_1\} \rangle \) in the first case so that Theorem 5.1 is applicable. In the second case, he showed \(C(E_2) \) is completely integrable in case of \((b_1) \) and \(C(E_1) \) is completely integrable in case of \((b_2) \) and \((b_3) \) so that Theorem 5.2 is applicable (cf. [21]).

\[\text{(3) } \text{ codim } \mathfrak{f} = 3. \]

In this case, there exists a basis \(\{e_1, e_2, e_3\} \) of \(V \) such that (see IV [6])

\[\mathfrak{f}^\perp = \langle \{e_1 \odot e_2, e_1 \odot e_3, e_2 \odot e_3\} \rangle, \quad \langle \{e_1 \odot e_1, e_1 \odot e_3, e_2 \odot e_3\} \rangle, \quad \langle \{e_1 \odot e_1, e_1 \odot e_2, e_2 \odot e_2 - e_1 \odot e_3\} \rangle, \quad \langle \{e_1 \odot e_1, e_1 \odot e_2, e_2 \odot e_2\} \rangle, \quad \text{or} \quad \langle \{e_1 \odot e_1, e_1 \odot e_2, e_1 \odot e_3\} \rangle. \]

In the first case, \(E = \langle \{e_1, e_2\} \rangle \), \(\langle \{e_1, e_3\} \rangle \) or \(\langle \{e_2, e_3\} \rangle \) and \(\hat{E} = \{0\} \) in either case. In the second case, \(E = \langle \{e_1, e_2\} \rangle \) or \(\langle \{e_1, e_3\} \rangle \) and \(\hat{E} = \langle \{e_1\} \rangle \) in either case. In the third case, \(E = \langle \{e_1, e_2\} \rangle \) and \(\hat{E} = \langle \{e_1\} \rangle \). In [6], the case when \(C(E) \) is completely integrable, has been discussed in detail. In the fourth case, \(E = \hat{E} = \langle \{e_1, e_2\} \rangle \) and \(\mathfrak{f} \cong \mathfrak{f}^2(2) \) (see Theorem 6.2 (2)).

In the fifth case, \(E = \hat{E} = \langle \{e_1\} \rangle \) corresponds to the Cauchy characteristics and \(\mathfrak{f} \cong \mathfrak{f}^3(1) \) (see §6.1 [27]).

\[\text{(4) } \text{ codim } \mathfrak{f} = 4. \]

In this case, there exists a basis \(\{e_1, e_2, e_3\} \) of \(V \) such that (see V [6])

\[\mathfrak{f}^\perp = \langle \{e_1 \odot e_1, e_1 \odot e_2, e_1 \odot e_3, e_2 \odot e_3\} \rangle, \quad \langle \{e_1 \odot e_1, e_1 \odot e_2, e_1 \odot e_3\} \rangle. \]

In the first case, \(E = \langle \{e_1, e_2\} \rangle \) or \(\langle \{e_1, e_3\} \rangle \) and \(\hat{E} = \langle \{e_1\} \rangle \) in either case. \(\hat{E} \) corresponds to the Cauchy characteristics. Hence Theorem 5.1 or 5.2 is not applicable to this case. In the second case, \(E = \hat{E} = \langle \{e_1, e_2\} \rangle \) and \(\langle \{e_1\} \rangle \) corresponds to the Cauchy characteristics (see §8.2).

\[\text{(5) } \text{ codim } \mathfrak{f} = 5. \]
In this case, there exists a basis \(\{e_1, e_2, e_3\} \) of \(V \) such that (see VI [6])
\[
\mathfrak{f}^\perp = \langle \{e_1 \otimes e_1, e_1 \otimes e_2, e_1 \otimes e_3, e_2 \otimes e_2, e_2 \otimes e_3\} \rangle.
\]
In this case, \(E = \tilde{E} = \langle \{e_1, e_2\} \rangle \), \(f \cong \mathfrak{f}^\perp(2) \) and \(\text{rank } D^2 = 4 \). \(E \) corresponds to the Cauchy characteristics. Hence, by the First Reduction Theorem, this case is reduced to the geometry of \((X, D)\), where \(\text{rank } D = 2 \) and \(\text{dim } X = 6 \).

8.2. **Case** \(N^* = N \). We exhibit here several examples of simple graded Lie algebras \(\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p \) of depth 2, such that we can construct a PD manifold \(R(Y) \) of second order from a regular differential system \((Y, D_N)\) of type \(\mathfrak{m} \), through the Second Reduction Theorem, where \(\mathfrak{m} = \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \) is the negative part of \(\mathfrak{g} = \bigoplus_{p=-2}^{2} \mathfrak{g}_p \).

The first example is of type \((B_3, \{\alpha_3\})\). The standard differential system \((M(\mathfrak{m}), D_m)\) of type \(\mathfrak{m} \) in this case is given as follows; \(M(\mathfrak{m}) = \mathbb{R}^6 \) is endowed with a coordinate \((x_1, x_2, x_3, y_1, y_2, y_3)\) such that \(D_m \) is given by
\[
D_m = \{\tilde{\theta}_1 = \tilde{\theta}_2 = \tilde{\theta}_3 = 0 \},
\]
where \(\tilde{\theta}_1 = dy_1 - x_2dx_3, \tilde{\theta}_2 = dy_2 - x_3dx_1 \) and \(\tilde{\theta}_3 = dy_3 - x_1dx_2 \). Thus the symbol algebra \(\mathfrak{m} = \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \) of type \((B_3, \{\alpha_3\})\) is described by
\[
\begin{align*}
d\theta_1 &\equiv \omega_3 \wedge \omega_2 \\
d\theta_2 &\equiv \omega_1 \wedge \omega_3 \pmod{\theta_1, \theta_2, \theta_3} \\
d\theta_3 &\equiv \omega_2 \wedge \omega_1
\end{align*}
\]
(8.1)
i.e., \(\mathfrak{g}_{-2} = \wedge^2 V \) for \(\mathfrak{g}_{-1} = V \), where \(\text{dim } V = 3 \). Namely \(\mathfrak{m} = \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \) is the free Lie algebra of the second kind (cf. §5.3 [15], p.245 [24]). Let \((Y, D_N)\) be a regular differential system of type \(\mathfrak{m} \) such that \(D_N \) is locally defined by
\[
D_N = \{\theta_1 = \theta_2 = \theta_3 = 0\}.
\]
Here \(\{\theta_1, \theta_2, \theta_3, \omega_1, \omega_2, \omega_3\} \) forms a coframe on \(Y \) satisfying (8.1). Then, putting \(\varpi = \theta_1 + \lambda_1 \theta_2 + \lambda_2 \theta_3 \), we calculate
\[
\begin{align*}
d\varpi &\equiv \omega_3 \wedge \omega_2 + \lambda_1 \omega_1 \wedge \omega_3 + \lambda_2 \omega_2 \wedge \omega_1 + (d\lambda_1 + \gamma_1) \wedge \theta_2 + (d\lambda_2 + \gamma_2) \wedge \theta_3 \\
&\equiv (\omega_3 - \lambda_2 \omega_1) \wedge (\omega_2 - \lambda_1 \omega_1) + (d\lambda_1 + \gamma_1) \wedge \theta_2 + (d\lambda_2 + \gamma_2) \wedge \theta_3 \\
&\equiv \omega_3 \wedge \tilde{\omega}_2 + (d\lambda_1 + \gamma_1) \wedge \theta_2 + (d\lambda_2 + \gamma_2) \wedge \theta_3 \pmod{\varpi}
\end{align*}
\]
for some 1-forms \(\gamma_1, \gamma_2 \) on \(Y \), where we put \(\tilde{\omega}_2 = \omega_2 - \lambda_1 \omega_1 \) and \(\tilde{\omega}_3 = \omega_3 - \lambda_2 \omega_1 \). Thus, by symmetry in the indices 1, 2, 3 in (8.1), we see
\[
W(Y) = \tilde{W}(Y) = \bigcup_{y \in Y} \tilde{W}_y, \quad \tilde{W}_y = \{w \in \text{Gr}(T_y(Y), 5) \mid w \supset D_N(y)\} \cong \mathbb{P}(T_y(Y)/D_N(y)) = \mathbb{P}^2
\]
and we have on \(W(Y) \),
\[
C^*_Y = \{\varpi = o\}, \quad N_Y = \{\varpi = \theta_2 = \theta_3 = o\}, \quad N^*_Y = \{\varpi = \theta_2 = \theta_3 = \tilde{\omega}_2 = \tilde{\omega}_3 = o\}.
\]
Here \(r = 2, t = 1, n = r + t = 3 \) and \(\text{dim } W(Y) = 8 \). Moreover, for the Lagrange Grassmann bundle;
\[
R(Y) = \bigcup_{w \in W(Y)} R_w, \quad R_w = \{\hat{v} \subset N_Y(w) \mid d\varpi \mid_{\hat{v}} = 0, \ \hat{v} \text{ is maximal}\}.
\]
we have
\[
\hat{v} = \{\varpi = \theta_2 = \theta_3 = \tilde{\omega}_3 - p\tilde{\omega}_2 = 0\} \text{ or } \{\varpi = \theta_2 = \theta_3 = \tilde{\omega}_2 - q\tilde{\omega}_3 = 0\}.
\]
Then, by Lemma 4.2 (2) and (8.1), we get $A(\nu) = \{0\}$ in any case. Hence $(R(Y); D^1_Y, D^2_Y)$ is globally a PD manifold of second order, when (Y, D_N) is a regular differential system of type m, where m is the negative part of the simple graded Lie algebra of type $(B_3, \{\alpha_3\})$.

Here we note: In case $Y = G/P_3$: R-space of type $(B_3, \{\alpha_3\}), W(Y)$ is identified with G/P_1 of type $(B_3, \{\alpha_2, \alpha_3\})$, where C^*_Y and N_Y correspond to $g_{-3} \oplus g_{-2} \oplus g_{-1}$ and $g_{-2} \oplus g_{-1}$ respectively for $m_1 = g_{-4} \oplus g_{-3} \oplus g_{-2} \oplus g_{-1}$. Here $J = G/P_2$ of type $(B_3, \{\alpha_2\})$ is the standard contact manifold of B_3 type. Moreover $R(Y)$ is identified with G/B of type $(B_3, \{\alpha_1, \alpha_2, \alpha_3\})$, where D^1_Y and D^2_Y correspond to $g_{-4} \oplus g_{-3} \oplus g_{-2} \oplus g_{-1}$ and $g_{-2} \oplus g_{-1}$ respectively for $m_0 = g_{-5} \oplus g_{-4} \oplus g_{-3} \oplus g_{-2} \oplus g_{-1}$.

To obtain an explicit description of the model equation in this case, we calculate

$$w = dy_1 - x_2 dx_3 + \lambda_1(dy_2 - x_3 dx_1) + \lambda_2(dy_3 - x_1 dx_2)$$

$$= d(y_1 + \lambda_1 y_2 + \lambda_2 y_3) - y_2 d\lambda_1 - y_3 d\lambda_2 - x_2 dx_3 - \lambda_1 x_3 dx_1 - \lambda_2 x_1 dx_2$$

$$= d(y_1 + \lambda_1 y_2 + \lambda_2 y_3) - (y_2 - x_1 y_3) d\lambda_1 - y_3 d\lambda_2 - \lambda_2 x_1 dx_2 - (x_2 - \lambda_1 x_1) dx_3$$

$$= d(y_1 + \lambda_1 y_2 + \lambda_2 y_3 - \lambda_1 x_1 x_3 - \lambda_2 x_1 x_2) - (y_2 - x_1 y_3) d\lambda_1 - (y_3 - x_1 x_2) d\lambda_2$$

$$- (x_2 - \lambda_1 x_1)(dx_3 - \lambda_2 dx_1) + \lambda_1 x_2 dx_1$$

$$= d(y_1 + \lambda_1 y_2 + \lambda_2 y_3 - \lambda_1 x_1 x_3 - \lambda_2 x_1 x_2) - (y_2 - x_1 y_3) d\lambda_1 - (y_3 - \lambda_1 x_1^2) d\lambda_2$$

$$- (x_2 - \lambda_1 x_1)(dx_3 - \lambda_2 dx_1) + \frac{1}{2}\lambda_1 x_2 dx_1$$

$$= dZ - P_1 dX_1 - P_2 dX_2 - P_3 dX_3$$

Thus, putting

$$\begin{cases}
Z = y_1 + \lambda_1 y_2 + \lambda_2 y_3 - \lambda_1 x_1 x_3 - \lambda_2 x_1 x_2 + \frac{1}{2}\lambda_1 x_2^2, X_1 = \lambda_1, X_2 = \lambda_2, X_3 = x_3 - \lambda_2 x_1, \\
P_1 = y_2 - x_1 x_3 + \frac{1}{2}\lambda_2 x_1^2, P_2 = y_3 - \frac{1}{2}\lambda_1 x_1^2, P_3 = x_2 - \lambda_1 x_1,
\end{cases}$$

we obtain a canonical coordinate $(X_1, X_2, X_3, P_1, P_2, P_3)$ of $J = W(Y)/Ch(C^*)$.

Conversely we calculate

$$\begin{cases}
x_1 = a, \lambda_1 = X_1, \lambda_2 = X_2, x_3 = X_3 + a X_2, x_2 = P_3 + a X_1, \\
y_3 = P_2 + \frac{1}{2}a^2 X_1, y_2 = P_1 + a X_3 + \frac{1}{2}a^2 X_2
\end{cases}$$

Hence we have

$$\begin{cases}
\theta_2 = dy_2 - x_3 dx_1 = dP_1 + adX_3 + \frac{1}{2}a^2 dX_2 \\
\bar{\theta}_3 = dy_3 - x_1 dx_2 = dP_2 - \frac{1}{2}a^2 dX_1 - adP_3
\end{cases}$$

Substituting $dP_i = P_1 dP_1 + P_2 dP_2 + P_3 dP_3$ for $i = 1, 2, 3$ into (8.2), we obtain the following description of the model equation of type $(B_3, \{\alpha_3\})$:

$$P_{11} = 0, P_{12} = -\frac{1}{2}P^2_{13}, P_{22} = P^2_{13}, P_{33} = -P_{13} \cdot P_{33}.$$

More generally, our second example is of type $(BD_\ell, \{\alpha_3\})$ for $\ell \geq 4$. Explicitly, put

$$S = \begin{pmatrix}
0 & 0 & K \\
0 & E_p & 0 \\
K & 0 & 0
\end{pmatrix}, \quad K = \begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix},$$

where $K = K_3$ is the anti-diagonal unit 3×3 matrix and E_p is the unit $p \times p$ matrix. On $\tilde{U} = \mathbb{R}^{p+6}$, we give an inner product $(,) \; by \; ((x, y) = ^t x S y \; for \; x, y \in \mathbb{R}^{p+6}$. Then the signature
of \((\bar{U}, (,))\) is \((p + 3, 3)\). Moreover, on \(U = \mathbb{R}^p\), we have an inner product \((,)\) by \((a, b) = \langle a b \rangle\) for \(a, b \in \mathbb{R}^p\).

We put
\[
\mathfrak{g} = \mathfrak{o}(\bar{U}) = \mathfrak{o}(p + 3, 3) = \{ X \in \mathfrak{gl}(p + 6, \mathbb{R}) \mid \langle XS + SX \rangle = 0 \}.
\]

We will introduce the gradation of \(\mathfrak{g} = \mathfrak{o}(\bar{U})\) by subdividing \(X \in \mathfrak{g}\) as follows:
\[
\begin{pmatrix}
3 & p & 3 \\
p & B & G \\
3 & C & -B & -A'
\end{pmatrix},
\]

where \(C = -C', \ D = -D', \ G \in \mathfrak{o}(p) \ B = K^t B\) and \(\hat{F} = K^t F\). Here we write \(Y' = K^t Y \ K \in M(3, 3)\) for \(Y \in M(3, 3)\). \(Y'\) is the “transposed” matrix of \(Y\) with respect to the anti-diagonal line. Then the Lie algebra \(\mathfrak{g}\) has the gradation
\[
\mathfrak{g} = \mathfrak{g}_{-2} + \mathfrak{g}_{-1} + \mathfrak{g}_0 + \mathfrak{g}_1 + \mathfrak{g}_2
\]
and \(\dim \mathfrak{g}_{-2} = \dim \mathfrak{g}_2 = 3\), \(\dim \mathfrak{g}_{-1} = \dim \mathfrak{g}_1 = 3p\). Precisely, this gradation is of type \((D_4, \{\alpha_3, \alpha_4\})\) when \(p = 2\), of type \((B_\ell, \{\alpha_3\})\) when \(p = 2\ell - 5 \geq 1\) and of type \((D_\ell, \{\alpha_3\})\) when \(p = 2\ell - 6 \geq 4\). The structure of \(\mathfrak{m} = \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}\) can be described as follows (see \S 4 [12]): Let \(V\) be a vector space of dimension 3 and \(U\) be a vector space with the inner product \((,)\) of dimension \(p\). Then \(\mathfrak{m}\) is isomorphic to \(\mathfrak{m}^1(U, V)\), where
\[
\mathfrak{m}^1(U, V) = \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}, \quad \mathfrak{g}_{-2} = \wedge^2 V, \mathfrak{g}_{-1} = U \otimes V.
\]
The bracket product is defined by
\[
[u_1 \otimes v_1, u_2 \otimes v_2] = (u_1, u_2)v_1 \wedge v_2 \quad \text{for} \quad u_1, u_2 \in U, v_1, v_2 \in V.
\]
Moreover the standard differential system \((M(\mathfrak{m}), D_\mathfrak{m})\) of type \(\mathfrak{m}\) in this case is given as follows; \(M(\mathfrak{m}) = \mathbb{R}^{3p+3}\) is endowed with a coordinate \((x_1^\alpha, x_2^\alpha, x_3^\alpha, y_1, y_2, y_3)\) \((1 \leq \alpha \leq p)\) such that \(D_\mathfrak{m}\) is given by
\[
D_\mathfrak{m} = \{ \bar{\theta}_1 = \bar{\theta}_2 = \bar{\theta}_3 = 0 \},
\]
where
\[
\bar{\theta}_1 = dy_1 - \sum_{\alpha=1}^{p} x_2^\alpha dx_3^\alpha, \quad \bar{\theta}_2 = dy_2 - \sum_{\alpha=1}^{p} x_3^\alpha dx_1^\alpha \quad \text{and} \quad \bar{\theta}_3 = dy_3 - \sum_{\alpha=1}^{p} x_1^\alpha dx_2^\alpha.
\]
Thus the symbol algebra \(\mathfrak{m} = \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \cong \mathfrak{m}_1(U, V)\) is described by
\[
\begin{align*}
d\theta_1 & \equiv \sum_{\alpha=1}^{p} \omega_3^\alpha \wedge \omega_2^\alpha \\
d\theta_2 & \equiv \sum_{\alpha=1}^{p} \omega_1^\alpha \wedge \omega_3^\alpha \quad \text{(mod} \ \theta_1, \theta_2, \theta_3) \\
d\theta_3 & \equiv \sum_{\alpha=1}^{p} \omega_2^\alpha \wedge \omega_1^\alpha
\end{align*}
\]
In fact, taking the dual basis \(\{ \frac{\partial}{\partial y_1}, \frac{\partial}{\partial y_2}, \frac{\partial}{\partial y_3}, X_1^\alpha, X_2^\alpha, X_3^\alpha \ (1 \leq \alpha \leq p) \} \) of the coframe \(\{ \theta_1, \theta_2, \theta_3, dx_1^\alpha, dx_2^\alpha, dx_3^\alpha \ (1 \leq \alpha \leq p) \} \) on \(M(\mathfrak{m}) \), we have

\[
X_1^\alpha = \frac{\partial}{\partial x_1^\alpha} + x_2^\alpha \frac{\partial}{\partial y_2}, \quad X_2^\alpha = \frac{\partial}{\partial x_2^\alpha} + x_1^\alpha \frac{\partial}{\partial y_3}, \quad \text{and} \quad X_3^\alpha = \frac{\partial}{\partial x_3^\alpha} + x_2^\alpha \frac{\partial}{\partial y_1}.
\]

Thus \(\{ X_1^\alpha, X_2^\alpha, X_3^\alpha \ (1 \leq \alpha \leq p) \} \) constitutes a free basis of the sections \(\Gamma(D_m) \) of \(D_m \), and we obtain

\[
[X_1^\alpha, X_2^\beta] = \delta_\beta^\alpha \frac{\partial}{\partial y_3}, \quad [X_2^\alpha, X_3^\beta] = \delta_\beta^\alpha \frac{\partial}{\partial y_1}, \quad [X_3^\alpha, X_1^\beta] = \delta_\beta^\alpha \frac{\partial}{\partial y_2}, \quad [X_i^\alpha, X_i^\beta] = 0 \quad (i = 1, 2, 3),
\]

for \(1 \leq \alpha, \beta \leq p \). Hence \(\mathfrak{m} \) is isomorphic to \(\mathfrak{m}^1(U,V) \).

Let \((Y, D_N) \) be a regular differential system of type \(\mathfrak{m} \) such that \(D_N \) is locally defined by

\[
D_N = \{ \theta_1 = \theta_2 = \theta_3 = 0 \}.
\]

Here \(\{ \theta_1, \theta_2, \theta_3, \omega_1^\alpha, \omega_2^\alpha, \omega_3^\alpha (1 \leq \alpha \leq p) \} \) forms a coframe on \(Y \) satisfying (8.3). Then, putting \(\varpi = \theta_1 + \lambda_1 \theta_2 + \lambda_2 \theta_3 \), we calculate

\[
d\varpi \equiv \sum_{\alpha=1}^{p} \omega_3^\alpha \wedge \omega_2^\alpha + \lambda_1 \sum_{\alpha=1}^{p} \omega_1^\alpha \wedge \omega_3^\alpha + \lambda_2 \sum_{\alpha=1}^{p} \omega_2^\alpha \wedge \omega_1^\alpha + (d\lambda_1 + \gamma_1) \wedge \theta_2 + (d\lambda_2 + \gamma_2) \wedge \theta_3
\]

\[
\equiv \sum_{\alpha=1}^{p} (\omega_3^\alpha - \lambda_2 \omega_1^\alpha) \wedge (\omega_2^\alpha - \lambda_1 \omega_1^\alpha) + (d\lambda_1 + \gamma_1) \wedge \theta_2 + (d\lambda_2 + \gamma_2) \wedge \theta_3
\]

\[
\equiv \sum_{\alpha=1}^{p} \tilde{\omega}_3^\alpha \wedge \tilde{\omega}_2^\alpha + (d\lambda_1 + \gamma_1) \wedge \theta_2 + (d\lambda_2 + \gamma_2) \wedge \theta_3 \pmod{\varpi}
\]

for some 1-forms \(\gamma_1, \gamma_2 \) on \(Y \), where we put \(\tilde{\omega}_3^\alpha = \omega_3^\alpha - \lambda_1 \omega_1^\alpha \) and \(\tilde{\omega}_2^\alpha = \omega_3^\alpha - \lambda_2 \omega_1^\alpha \) for \(\alpha = 1, \ldots, p \).

Thus, by symmetry in the indices 1, 2, 3 in (8.8), we see

\[
W(\mathbb{P}) = \mathbb{P}(\mathbb{P}^2) \supseteq W(\mathbb{P}) \supseteq \mathbb{P}(\mathbb{P}^2)/D_N(\mathbb{P}) \supseteq \mathbb{P}(\mathbb{P}^2)/D_N(\mathbb{P}) = \mathbb{P}^2
\]

and we have on \(W(\mathbb{P}) \),

\[
C_Y^* = \{ \varpi = o \}, \quad N_Y = \{ \varpi = \theta_2 = \theta_3 = o \}, \quad N_Y^\perp = \{ \varpi = \theta_2 = \theta_3 = \tilde{\omega}_3^\alpha = \tilde{\omega}_2^\alpha = o \ (1 \leq \alpha \leq p) \}.
\]

Here \(r = 2, t = p, n = r + t = p + 2 \) and \(\dim W(\mathbb{P}) = 3p + 5 \). Moreover we have

\[
\text{Ch}(C_Y^*) = \{ \varpi = \theta_2 = \theta_3 = d\lambda_1 + \gamma_1 = d\lambda_2 + \gamma_2 = \tilde{\omega}_2^\alpha = \tilde{\omega}_3^\alpha = o \ (1 \leq \alpha \leq p) \}.
\]

Now consider the Lagrange Grassmann bundle \(R(\mathbb{P}) = R(W(\mathbb{P})) \) over \((W(\mathbb{P}); C_Y^*, N_Y) \):

\[
R(\mathbb{P}) = \bigcup_{w \in W(\mathbb{P})} R_w, \quad R_w = \{ \hat{v} \subset N_Y(w) \mid d\varpi \mid_{\hat{v}} = 0, \hat{v} \text{ is maximal} \}.
\]

From \(N_Y^\perp(\mathbb{P}) \subset \hat{v} \subset N_Y(w) \) and \(d\varpi \mid_{\hat{v}} = 0 \), if \(\tilde{\omega}_3^\alpha \wedge \cdots \wedge \tilde{\omega}_2^\alpha \mid_{\hat{v}} \neq 0 \), it follows that

\[
\hat{v} = \{ X \in N_Y(w) \mid \varpi_\alpha(X) = 0 \ (1 \leq \alpha \leq p) \},
\]

where \(\varpi_\alpha = \tilde{\omega}_3^\alpha - \sum_{\beta=1}^{p} p^*_\alpha \beta \tilde{\omega}_2^\beta \) for \(1 \leq \alpha \leq p \) and \(p^*_\alpha \beta = p^*_\beta \alpha \) (\(1 \leq \alpha, \beta \leq p \)). For these \(\hat{v} \in R_w \), we claim

\[
A(\hat{v}) = \{ 0 \} \quad \text{for} \quad \hat{v} = \{ \varpi = \theta_2 = \theta_3 = \varpi_\alpha = 0 \ (1 \leq \alpha \leq p) \}.
\]

In fact, first we have

\[
d\theta_2 \equiv \sum_{\alpha=1}^{p} \omega_1^\alpha \wedge \tilde{\omega}_3^\alpha, \quad d\theta_3 \equiv \sum_{\alpha=1}^{p} \tilde{\omega}_2^\alpha \wedge \omega_1^\alpha \pmod{\varpi, \theta_2, \theta_3}.
\]
Thus we get

\[d\omega = 0, \quad d\theta_2 = \sum_{a,b=1}^{p} p^*_{a,b} \omega^i_1 \wedge \hat{\omega}^j_2, \quad d\theta_3 = \sum_{a=1}^{p} \hat{\omega}^a_2 \wedge \omega^i_1 \quad \text{(mod } \alpha), \]

Hence, for \(X \in S(N_Y)(w) = \text{Ch}(C^*_Y)(w) \), we have

\[X | d\theta_3 = - \sum_{a=1}^{p} \omega^a_1(X) \hat{\omega}^a_2 \quad \text{(mod } \alpha), \]

Then, from Lemma 4.2 (2), we obtain

\[A(\alpha) = \{ X \in \text{Ch}(C^*_Y)(w) | \omega^a_1(X) = 0 \quad (1 \leq \alpha \leq p) \} \]

\[= \text{Ch}(C^*_Y)(w) \cap \text{Ch}(N_Y)(w) = \{ 0 \}. \]

Hence \((R(Y); D^1_Y, D^2_Y)\) is a PD manifold of second order on an open subset of \(R(Y) \), when \((Y, D_N)\) is a regular differential system of type \(\mathfrak{m} \), where \(\mathfrak{m} \) is the negative part of the simple graded Lie algebra of type \((B \mathcal{D}, \{ \alpha_3 \}) \).

To obtain an explicit description of the model equation in this case, we calculate

\[
\omega = dy_1 - \sum_{a=1}^{p} x^a_2 dx^a_3 + \lambda_1(dy_2 - \sum_{a=1}^{p} x^a_3 dx^a_1) + \lambda_2(dy_3 - \sum_{a=1}^{p} x^a_1 dx^a_2)
\]

\[
= d(y_1 + \lambda_1 y_2 + \lambda_2 y_3) - y_2 d\lambda_1 - y_3 d\lambda_2 - \sum_{a=1}^{p} x^a_2 dx^a_3 - \lambda_1 \sum_{a=1}^{p} x^a_3 dx^a_1 - \lambda_2 \sum_{a=1}^{p} x^a_1 dx^a_2
\]

\[
= d(y_1 + \lambda_1 y_2 + \lambda_2 y_3 - \lambda_1 \sum_{a=1}^{p} x^a_1 x^a_3 - \lambda_2 \sum_{a=1}^{p} x^a_3 x^a_1) - (y_2 - \sum_{a=1}^{p} x^a_3 x^a_1) d\lambda_1 - y_3 d\lambda_2 - \lambda_2 \sum_{a=1}^{p} x^a_1 dx^a_2
\]

\[
- \sum_{a=1}^{p} (x^a_2 - \lambda_1 x^a_1) dx^a_3 d\lambda_1
\]

\[
= d(y_1 + \lambda_1 y_2 + \lambda_2 y_3 - \lambda_1 \sum_{a=1}^{p} x^a_1 x^a_3 - \lambda_2 \sum_{a=1}^{p} x^a_3 x^a_1) - (y_2 - \sum_{a=1}^{p} x^a_3 x^a_1) d\lambda_1
\]

\[
- (y_3 - \sum_{a=1}^{p} x^a_2 x^a_3) d\lambda_2 - \sum_{a=1}^{p} (x^a_2 - \lambda_1 x^a_1)(dx^a_3 - \lambda_2 dx^a_1) + \lambda_1 \lambda_2 \sum_{a=1}^{p} x^a_1 dx^a_1
\]

\[
= d(y_1 + \lambda_1 y_2 + \lambda_2 y_3 - \lambda_1 \sum_{a=1}^{p} x^a_1 x^a_3 - \lambda_2 \sum_{a=1}^{p} x^a_3 x^a_1) - (y_2 - \sum_{a=1}^{p} x^a_3 x^a_1) d\lambda_1
\]

\[
- (y_3 - \lambda_1 \sum_{a=1}^{p} (x^a_1)^2) d\lambda_2 - \sum_{a=1}^{p} (x^a_2 - \lambda_1 x^a_1)(dx^a_3 - \lambda_2 dx^a_1) + \frac{1}{2} \lambda_1 \lambda_2 \sum_{a=1}^{p} d(x^a_1)^2
\]

\[
= dZ - P_1 dX_1 - P_2 dX_2 - \sum_{a=1}^{p} P_{a+2} dX_{a+2}
\]

50
Thus, putting
\[
\begin{align*}
Z &= y_1 + \lambda_1 y_2 + \lambda_2 y_3 - \lambda_1 \sum_{a=1}^{p} x_1^a x_3^a - \lambda_2 \sum_{a=1}^{p} x_1^a x_2^a + \frac{1}{2} \lambda_1 \lambda_2 \sum_{a=1}^{p} (x_1^a)^2, \\
X_1 &= \lambda_1, \quad X_2 = \lambda_2, \quad X_{a+2} = x_3^a - \lambda_2 x_1^a,
\end{align*}
\]

we obtain a canonical coordinate \((X_1, \ldots, X_{p+2}, Z, P_1, \ldots, P_{p+2})\) of \(J = W(Y)/\text{Ch}(C_Y^s)\).

Conversely we calculate
\[
\begin{align*}
x_1^a &= a, \quad \lambda_1 = X_1, \quad \lambda_2 = X_2, \quad X_{a+2} = P_{a+2} + a_a X_1, \\
y_3 &= P_2 + \frac{1}{2} \sum_{a=1}^{p} (a_a)^2 X_1, \quad y_2 = P_1 + \sum_{a=1}^{p} a_a X_{a+2} + \frac{1}{2} \sum_{a=1}^{p} (a_a)^2 X_2
\end{align*}
\]

Hence we have
\[
\begin{align*}
\tilde{\theta}_2 &= dy_2 - \sum_{a=1}^{p} x_3^a dx_1^a = dP_1 + \sum_{a=1}^{p} a_a dX_{a+2} + \frac{1}{2} \sum_{a=1}^{p} (a_a)^2 dX_2, \\
\tilde{\theta}_3 &= dy_3 - \sum_{a=1}^{p} x_1^a dx_2^a = dP_2 - \frac{1}{2} \sum_{a=1}^{p} (a_a)^2 dX_1 - \sum_{a=1}^{p} a_a dP_{a+2}
\end{align*}
\]

Substituting \(dP_i = \sum_{j=1}^{p+2} P_{ij} dX_j\) for \(i = 1, \ldots, p + 2\) into (8.4), we obtain the following description of the model equation of type \((BD_{\ell}, \{\alpha_3\});\)

\[
P_{11} = 0, \quad P_{12} = -\frac{1}{2} \sum_{a=1}^{p} (P_{1 a+2})^2, \quad P_{2i} = -\sum_{a=1}^{p} P_{1 a+2} \cdot P_{1 a+2} \quad (i = 2, \ldots, p + 2).
\]

8.3. General Case. In this subsection, we will first consider the third reduction step in Theorem 5.2 in general and will discuss the reconstruction procedure of this third step. As in Theorem 5.2, let \((R; D^1, D^2)\) be a PD manifold of second order, which is regular of type \(\mathfrak{g}\). Assume that there exists a \(G_0(\mathfrak{g})\)-invariant subspace \(E\) of \(V\) of dimension \(r\) satisfying \(f^1 \subset E \otimes s V\) and \(\dim \tilde{E} = s > 0\), where \(\tilde{E} = \{v \in E \mid v \otimes E \subset f^1\}\). Moreover assume the following two conditions:

(i) \(C(E)\) is completely integrable (when \(r = n - 1\), assume further rank \(\text{Ch}(D^2) < s\).

(ii) \(C(E) \subset \text{Ch}(\tilde{N}^s)\).

Let \((W; C^*, N)\) be the associated \(IG\) manifolds of corank \(r\) of \((R; D^1, D^2)\). Assume that \(W\) is regular with respect to \(\text{Ch}(N)\) and let \((Y; D^*_N, D_N)\) be the leaf space, where \(\beta : W \to Y = W/\text{Ch}(N)\) is the projection, \(\beta^{-1}(D_N^*) = N^*\) and \(\beta^{-1}(D_N) = N\). Then, as in §5.3, we have \(\text{Ch}(D_N^*) \subset D_N\) and \(\text{Ch}(D_N) = \{0\}\). Now we further assume that \(\text{Ch}(D_N^*)\) is a non-trivial subbundle of \(D_N\) such that \(Y\) is regular with respect to \(\text{Ch}(D_N^*)\), i.e., the space \(Z = Y/\text{Ch}(D_N^*)\) of leaves of this foliation is a manifold and that each fibre of the projection \(\gamma : Y \to Z\) is connected and \(\gamma\) is a submersion. Then there exists a differential system \(F\) on \(Z\) of codimension \(s + 1\) such that \(\gamma^{-1}(F) = D_N^*\) and \(\text{Ch}(F)\) is trivial. We consider here a Grassmann bundle \(\tilde{Y}(Z)\) over \(Z\) consisting of subspaces of codimension \(r - s\) in each fibre \(F(z)\) of \((Z, F)\).

\[
\tilde{Y}(Z) = \bigcup_{z \in Z} \tilde{Y}_z, \quad \tilde{Y}_z = \text{Gr}(F(z), t_0),
\]

51
where \(t_0 + r - s = \text{rank } F \). Then we have two differential systems \(F^*_{N}, F_N \) on \(\hat{Y}(Z) \) given by

\[
F^*_{N}(\hat{y}) = \xi^{-1}_*(F(z)) \supset F_N(\hat{y}) = \xi^{-1}_*(\hat{y}),
\]

for each \(\hat{y} \in \hat{Y}(Z) \) and \(z = \xi(\hat{y}) \), where \(\xi : \hat{Y}(Z) \rightarrow Z \) is the projection. Hence \(F^*_{N} \) and \(F_N \) are differential systems on \(\hat{Y}(Z) \) of codimension \(s + 1 \) and \(r + 1 \) respectively. In this situation, we have a map \(\kappa_3 \) of \(Y \) into \(\hat{Y}(Z) \) given by

\[
\kappa_3(y) = \gamma_*(D_N(y)) \subset F(z) = \gamma_*(D^*_N(y)),
\]

for each \(y \in Y \) and \(z = \gamma(y) \). By the Realization Lemma for \((Y, D_N, \gamma, Z) \), \(\kappa_3 \) is a map of constant rank such that

\[
\text{Ker}(\kappa_3)_* = \text{Ch}(D_N) \cap \text{Ker} \gamma_* = \{0\}.
\]

Thus \(\kappa_3 \) is an immersion. Moreover we have

\[
(\kappa_3)_*^{-1}(F^*_N) = D^*_N \quad \text{and} \quad (\kappa_3)_*^{-1}(F_N) = D_N.
\]

Namely \(\kappa_3 \) is an immersion of \((Y; D_N, D_N) \) into \((\hat{Y}(Z); F^*_N, F_N) \). Hence \((Y; D_N, D_N) \) can be constructed from \((Z, F) \), at least locally, as a submanifold of \((\hat{Y}(Z); F^*_N, F_N) \).

Furthermore, starting from \(\gamma : Y \rightarrow Z \), we have the following general picture: Starting from \((Z, F) \), by the construction in §7.1, we have an \(IG \) manifold \((W(Z); C^*_Z, N_Z) \) of corank \(s \) and the Lagrange Grassmann bundle \(R(Z) = R(W(Z)) \) over \((W(Z); C^*_Z, N_Z) \) as follows. Put

\[
\hat{W}(Z) = \bigcup_{z \in Z} \hat{W}_z, \quad \hat{W}_z = \{ w \in \text{Gr}(T_z(Z), \hat{m} - 1) \mid w \supset F(z) \} \cong \mathbb{P}(T_z(Z)/F(z)) = \mathbb{P}^s,
\]

where \(\hat{m} = \text{dim } Z \), \(C^*_Z \) is the canonical system obtained by the Grassmannian construction and \(N_Z \) is the lift of \(F \). Moreover we put

\[
W(Z) = \{ w \in \hat{W}(Z) \mid \text{corank } \text{Ch}(C^*_Z)(w) = 2n + 1 \},
\]

where \(n = s + t \) and \(t \) is the Engel half-rank of \(F \). Here we note that \(t \) is also the Engel half-rank of \(D^*_Z \). Then, by Proposition 7.1, \((W(Z); C^*_Z, N_Z) \) is an \(IG \) manifold of corank \(s \). Let \((R(Z); D^1_Z, D^2_Z) \) be the Lagrange Grassmann bundle over \((W(Z); C^*_Z, N_Z) \), i.e.,

\[
R(Z) = \bigcup_{w \in W(Z)} R_w, \quad R_w = \{ \hat{v} \subset N_Z(w) \mid \gamma_w|_{\hat{v}} = 0, \hat{v} \text{ is maximal} \},
\]

where \(D^2_Z \) is the canonical system on \(R(Z) \) and \(D^1_Z \) and \(\hat{N}_Z \) are the lifts of \(C^*_Z \) and \(N_Z \) respectively. Assume that \(W(Z) \) is regular with respect to \(\text{Ch}(C^*_Z) \). Then we have a contact manifold \((J, C) \) such that \(J = W(Z)/\text{Ch}(C^*_Z) \) and \(C^*_Z = q^{-1}(C) \), where \(q : W(Z) \rightarrow J \) is the projection. Here we have a map \(\zeta : R(Z) \rightarrow L(J) \) given by \(\zeta(\hat{v}) = q_*(\hat{v}) \). \(\zeta \) is an immersion when \((R(Z); D^1_Z, D^2_Z) \) is a \(PD \) manifold of second order.

On the other hand, starting from \((Y; D^*_N, D_N) \), by the construction in §7.2, we have an \(IG \) manifold \((W(Y); C^*_Y, N_Y) \) of corank \(r \) and the Lagrange Grassmann bundle \(R(Y) = R(W(Y)) \) over \((W(Y); C^*_Y, N_Y) \). In case \(Y = D^*_N, D_N \) is obtained from a \(PD \) manifold \((R; D^1, D^2) \) of second order of type \(s \) as above, we have local isomorphisms \(\kappa_2 : (W; C^*_N, N) \rightarrow (W(Y); C^*_Y, N_Y) \) and \(\kappa_1 : (R; D^1, D^2) \rightarrow (R(W); D^1_W, D^2_W) \) given by \(\kappa_2(w) = \beta_*(C^*_w) \) and \(\kappa_1(v) = \eta_*(D^2(v)) \), respectively (see §5.1 and §5.3), so that we have a local isomorphism \(\tilde{\kappa}_2 = \kappa_2 \cdot \kappa_1 : (R; D^1, D^2) \rightarrow (R(Y); D^1_Y, D^2_Y) \), where the local isomorphism \(\tilde{\kappa}_2 : (R(W); D^1_W, D^2_W) \rightarrow (R(Y); D^1_Y, D^2_Y) \) is
induced by κ_2. In this situation, $\gamma : Y \to Z$ induces the following commutative diagram:

$$
\begin{array}{c}
R(Y) \xrightarrow{\gamma_2} R(Z) \\
\downarrow \tau_1 \quad \quad \quad \downarrow \tau_2 \\
W(Y) \xrightarrow{\gamma_1} W(Z) \\
\downarrow \mu \quad \quad \quad \downarrow \nu \\
Y \xrightarrow{\gamma} Z
\end{array}
$$

In fact, for $w \in W(Y)$, w is a hyperplane in $T_y(Y)$ containing $D_N^*(y)$, where $y = \mu(w)$. Then, since $D_N^*(y) \supset \text{Ch}(D_N^*(y)) = \text{Ker} \gamma_s(y)$ and $\gamma_s(D_N^*(y)) = F(z)$, $\gamma_s(w)$ is a hyperplane in $T_z(Z)$ containing $F(z)$, where $z = \gamma(y)$. Hence $\gamma_1 : W(Y) \to W(Z)$ is defined by $\gamma_1(w) = \gamma_s(w) \in W(Z)$ for $w \in W(Y)$. Actually $\gamma_1 : \tilde{W}(Y) \to \tilde{W}(Z)$ is a \mathbb{P}^s-bundle homomorphism. Passing to the tangent map, since $\mu_s^{-1}(w) = C_Y^*(w)$ and $\nu_s^{-1}(\gamma_1(w)) = C_Y^*(\gamma_1(w))$, we have $(\gamma_1)_*(C_Y^*(w)) = C_Y^*(\gamma_1(w))$ and $(\gamma_1)_*(\text{Ch}(C_Y^*(w))) = \text{Ch}(C_Y^*(\gamma_1(w)))$ for $w \in W(Y)$. Moreover, since $\mu_s^{-1}(D_N^*(y)) = N_Y^*(w)$ and $\nu_s^{-1}(F(y))) = N_Z(\gamma_1(w))$, we have $(\gamma_1)_*(N_Y^*(w)) = N_Z(\gamma_1(w))$. Hence γ_1 naturally induces the map $\gamma_2 : R(Y) \to R(Z)$ by $\gamma_2(\tilde{v}) = (\gamma_1)_*(\tilde{v})$ for $\tilde{v} \in R(Y)$. In fact, since $C_Y^* = \nu^{-1}(C)$ for the projection $q : W(Z) \to J$, we have $C_Y^* = (q \cdot \gamma_1)_s^{-1}(C)$ and $\text{Ker}(q \cdot \gamma_1)_s = \text{Ch}(C_Y^*)$, which implies that $J = W(Y)/\text{Ch}(C_Y^*)$ at least locally. Thus we see that, for a subspace \tilde{v} of $T_w(W(Y))$, $\tilde{v} \in R(Y)$ if and only if $\text{Ch}(C_Y^*)(w) \subset \tilde{v} \subset N_Y^*(w)$ and $(q \cdot \gamma_1)_*(\tilde{v})$ is a legendrian subspace of (J, C). Similarly, for a subspace \tilde{v} of $T_w(W(Z))$, $\tilde{v} \in R(Z)$ if and only if $\text{Ch}(C_Y^*)(\tilde{v}) \subset \tilde{v} \subset N_Z^*(w)$ and $q_s(\tilde{v})$ is a legendrian subspace of (J, C). Hence, from $(\gamma_1)_*(N_Y^*(w)) \subset (\gamma_1)_*(N_Y^*(w)) = N_Z(\gamma_1(w))$, we have $\gamma_2(\tilde{v}) = (\gamma_1)_*(\tilde{v}) \in R(Z)$. Here we observe that both $(q \cdot \gamma_1)_*(N_Y^*(w))$ and $q_s(N_Z(\gamma_1(w)))$ are involutive subspaces of $C(q \cdot \gamma_1(w))$ of codimension r and s respectively such that $(q \cdot \gamma_1)_*(N_Y^*(w)) \subset q_s(N_Z(\gamma_1(w)))$.

Now we will give examples of constructions in §7.2. Our starting point here is a regular differential system (Z, D) of type m_3, where $m_3 = g_{-3} \oplus g_{-2} \oplus g_{-1}$ is the negative part of the simple graded Lie algebra of type $(BD_\ell, \{\alpha_1, \alpha_3\})$, which is discussed in §6.2 [27] related with the First Reduction Theorem. We will show that, starting from (Z, F), where $F = \partial D$ is the derived system of D, we can construct an involutive system $(R(Y); D_Y^*, D_Y^2)$ of second order of codimension 2 in the above picture, by suitably constructing $(Y; D_Y^*, D_N)$ over (Z, F).

For this purpose, let us first describe the structure of the symbol algebra m_3. Explicitly, as in §8.1, put

$$S = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & K & 0 \\ 0 & 0 & E_p & 0 & 0 \\ 0 & K & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}, \quad K = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

where $K = K_2$ is the anti-diagonal unit 2×2 matrix and E_p is the unit $p \times p$ matrix. We put $\mathfrak{g} = \mathfrak{sl}(p + 3, 3) = \{ X \in \mathfrak{gl}(p + 6, \mathbb{R}) \mid XS + SX = 0 \}$. We will introduce the gradation of \mathfrak{g} by subdividing $X \in \mathfrak{g}$ as follows:

\[
\begin{pmatrix} 1 & 2 & 2 & 1 \\ a & -\eta_4' & -\xi_2 & -\eta_3' & 0 \\ 2 & \eta_1 & A & -B_2 & C_2 & \eta_3 \\ p & \xi_1 & B_1 & G & B_2 & \xi_2 \\ 2 & \eta_2 & C_1 & -B_1 & -A' & \eta_4 \\ 1 & 0 & -\eta_2' & -\xi_1 & -\eta_1' & -a \end{pmatrix}.
\]

53
where \(a \in \mathbb{R} \), \(\xi_j \in \mathbb{R}^p \) \((i = 1, 2)\), \(\eta_k \in \mathbb{R}^2 \) \((i = 1, 2, 3, 4)\), \(\eta'_k = (a_2, a_1) \) for \(\eta_k = \langle a_1, a_2 \rangle \), \(C_i = -C_i' \) \((i = 1, 2)\), \(G \in \mathfrak{o}(p) \) and \(B_i = \langle b_2, b_1 \rangle \) for \(B_i = \langle b_1, b_2 \rangle \) \((i = 1, 2)\), where \(b_1, b_2 \in \mathbb{R}^p \). Here we write \(Y' = K \cdot Y \) \(K \in M(2, 2) \) for \(Y \in M(2, 2) \). \(Y' \) is the “transposed” matrix of \(Y \) with respect to the anti-diagonal line. Thus \(C_i = \begin{pmatrix} c_i & 0 \\ 0 & -c_i \end{pmatrix} \) for \(c_i \in \mathbb{R} \). Then the Lie algebra \(\mathfrak{g} \) has the gradation

\[
\mathfrak{g} = \mathfrak{g}_{-3} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_2 \oplus \mathfrak{g}_3
\]

where

\[
\mathfrak{g}_{-3} = \langle \eta_2 \rangle, \quad \mathfrak{g}_{-2} = \langle \xi_1 \rangle \oplus \langle C_1 \rangle, \quad \mathfrak{g}_{-1} = \langle \eta_1 \rangle \oplus \langle B_1 \rangle, \quad \mathfrak{g}_0 = \langle a \rangle \oplus \langle A \rangle \oplus \langle G \rangle, \\
\mathfrak{g}_{-3} = \langle \eta_3 \rangle, \quad \mathfrak{g}_{-2} = \langle \xi_2 \rangle \oplus \langle C_2 \rangle, \quad \mathfrak{g}_{-1} = \langle \eta_4 \rangle \oplus \langle B_2 \rangle,
\]

and \(\dim \mathfrak{g}_{-3} = \dim \mathfrak{g}_3 = 2 \), \(\dim \mathfrak{g}_{-2} = \dim \mathfrak{g}_2 = p + 1 \), \(\dim \mathfrak{g}_{-1} = \dim \mathfrak{g}_1 = 2(\text{p} + 1) \). Precisely, this gradation is of type \((D_4, \{\alpha_1, \alpha_3, \alpha_4\}) \) when \(p = 2 \), or of type \((B_{2\ell}, \{\alpha_1, \alpha_3\}) \) when \(p = 2\ell - 6 \geq 4 \). Compared with the gradation of \((BD_{\ell}, \{\alpha_1, \alpha_2, \alpha_3\}) \) or \((D_4, \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}) \):

\[
\mathfrak{g} = \mathfrak{g}_{-5} \oplus \mathfrak{g}_{-4} \oplus \mathfrak{g}_{-3} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_2 \oplus \mathfrak{g}_3 \oplus \mathfrak{g}_4 \oplus \mathfrak{g}_5
\]

which is obtained by further subdividing above matrix \(X \in \mathfrak{g} \) by 2nd and \((p + 4) \)-th intermediate lines (see §6.2 [27]), we have

\[
\mathfrak{g}_{-3} = \hat{\mathfrak{g}}_{-5} \oplus \hat{\mathfrak{g}}_{-4}, \quad \mathfrak{g}_{-2} = \hat{\mathfrak{g}}_{-3} \quad \text{and} \quad \mathfrak{g}_{-1} = V_2 \oplus V_1 \subset \mathfrak{g}_{-2} \oplus \hat{\mathfrak{g}}_{-1},
\]

where \(V_2 = \hat{\mathfrak{g}}_{-2} \) and \(V_1 = \mathfrak{g}_{-1} \cap \mathfrak{g}_{-1} \). Explicitly we have

\[
\hat{\mathfrak{g}}_{-5} = \langle \ell'(0, a_2) \rangle, \quad \hat{\mathfrak{g}}_{-4} = \langle \ell'(a_1, 0) \rangle, \quad V_2 = \langle \ell'(0, a_2) \rangle \oplus \langle (b_1, 0) \rangle, \quad V_1 = \langle \ell'(a_1, 0) \rangle \oplus \langle (0, b_2) \rangle.
\]

Hence we get

\[
[V_i, V_j] = 0 \ (i = 1, 2), \quad [V_1, V_2] \subset \mathfrak{g}_{-2}, \quad [\mathfrak{g}_{-2}, V_2] = \hat{\mathfrak{g}}_{-5}, \quad [\mathfrak{g}_{-2}, V_1] = \hat{\mathfrak{g}}_{-4}.
\]

Actually, by matrices calculation, we obtain

\[
[v_2, v_1] = (a_1 b_1 - a_2 b_2) \oplus \begin{pmatrix} 0 \\ -t b_1 b_2 \end{pmatrix} \in \mathfrak{g}_{-2}, \quad [\xi \oplus C, \eta \oplus B] = \begin{pmatrix} a_1 c + t b_2 \xi \\ -c a_2 + b_1 \xi \end{pmatrix} \in \mathfrak{g}_{-3},
\]

for \(v_2 = \ell'(0, a_2) \oplus (b_1, 0) \in V_2, \ v_1 = \ell'(a_1, 0) \oplus (0, b_2) \in V_1 \) and for \(\xi \oplus C \in \mathfrak{g}_{-2}, \ \eta \oplus B \in \mathfrak{g}_{-1} \), where \(C = \begin{pmatrix} c & 0 \\ 0 & -c \end{pmatrix}, \ \eta = \ell'(a_1, a_2) \) and \(B = (b_1, b_2) \). Thus, putting

\[
Z_1 = \ell'(1, 0) \in \hat{\mathfrak{g}}_{-4} \subset \mathfrak{g}_{-3}, \quad Z_2 = \ell'(0, 1) \in \hat{\mathfrak{g}}_{-5} \subset \mathfrak{g}_{-3}, \quad Y_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in \mathfrak{g}_{-2},
\]

\[
Y_{i+1} = e_i \in \mathfrak{g}_{-2}, \quad X_1^i = \ell'(1, 0), \quad X_1^{i+1} = (0, e_i) \in V_1, \quad X_2^i = \ell'(0, -1), \quad X_2^{i+1} = (e_i, 0) \in V_2,
\]

for \(i = 1, \ldots, p \), where \(e_i \) is the vector in \(\mathbb{R}^p \), whose \(i \)-th component is 1 and other components are 0. We obtain a basis \(\{Z_1, Z_2\} \) of \(\mathfrak{g}_{-3} \), a basis \(\{Y_1, \ldots, Y_{p+1}\} \) of \(\mathfrak{g}_{-2} \), a basis \(\{X_1^1, \ldots, X_1^{p+1}\} \) of \(V_1 \) and a basis \(\{X_2^1, \ldots, X_2^{p+1}\} \) of \(V_2 \). Moreover we have the bracket relation among these vectors;

\[
Z_1 = \delta^j_{j_1}, \quad [Y_1, X_1^{j_2}] = \delta^j_{j_2}, \quad [Y_2, X_2^{j_2}] = \delta^j_{j_2}, \quad Y_1 = \delta^k_{k_1}, \quad X_1^{k_1} = \delta^k_{k_2}, \quad X_2^{k_1} = \delta^k_{k_2}, \quad X_2^{k_1} = \delta^k_{k_2} = 0,
\]

for \(j, j_2 = 1, 2, \ldots, p+1, k_1, k_2, k = 2, \ldots, p+1 \). Hence, taking the dual basis \(\{\hat{\omega}_1, \hat{\omega}_2, \hat{\omega}_3, \ldots, \hat{\omega}_{p+1}, \hat{\omega}_{1}^1, \hat{\omega}_{2}^1, \ldots, \hat{\omega}_{2}^{p+1}\} \) in \(\mathfrak{m}_3 \) of the above basis \(\{Z_1, Z_2, Y_1, \ldots, Y_{p+1}, X_1^1, \ldots, X_1^{p+1}, X_2, \ldots, X_2^{p+1}\} \),
X_p^{p+1} in $m_3 = g_{-3} \oplus g_{-2} \oplus g_{-1}$, we have the following structure equation of the Lie algebra m_3:

\[
\begin{align*}
\{\delta\omega_1 &= \delta\omega_1 \land \omega_1 + \cdots + \delta\omega_1 \land \omega_{p+1}, \\
\delta\omega_2 &= \delta\omega_2 \land \omega_1 + \cdots + \delta\omega_2 \land \omega_{p+1}, \\
\delta\omega_1 &= \delta\omega_1 \land \omega_2 + \cdots + \delta\omega_1 \land \omega_{p+1}, \\
\delta\omega_k &= \delta\omega_k \land \delta\omega_k + \delta\omega_1 \land \omega_2, \quad (k = 2, \ldots, p+1), \\
\delta\omega_1 &= \delta\omega_1 = 0 \quad (j = 1, 2, \ldots, p+1).
\end{align*}
\]

These being prepared, let (Z, D) be a regular differential system of type m_3. Let us fix a point $z \in Z$. Then there exists a coframe $\{\omega_0, \omega_1, \omega_2, \ldots, \omega_p, \omega_0 = 0, \omega_1 = \cdots = \omega_{p+1} = 0\}$ defined on a neighborhood U of $z \in Z$ such that

\[F = \partial D = \{\omega_0 = \omega_1 = 0\}, \quad D = \{\omega_0 = \omega_1 = \omega_2 = \cdots = \omega_{p+1} = 0\},\]

and that the following holds:

\[(\delta\omega_1 \equiv \delta\omega_1 \land \omega_1 + \cdots + \delta\omega_1 \land \omega_{p+1}, \quad \delta\omega_2 \equiv \delta\omega_2 \land \omega_1 + \cdots + \delta\omega_2 \land \omega_{p+1} \mod \omega_0, \omega_1, \omega_2 \land \omega_{j_2} (1 \leq j_1 < j_2 \leq p + 1)),
\]

\[(\delta\omega_1 \equiv \delta\omega_1 \land \omega_2 + \cdots + \delta\omega_1 \land \omega_{p+1}, \quad \delta\omega_2 \equiv \delta\omega_2 \land \omega_1 + \cdots + \delta\omega_2 \land \omega_{p+1} \mod \omega_0, \omega_1, \omega_1, \omega_2 \land \omega_{p+1}).
\]

Adjusting ω_0, ω_1 (mod ω_1, ω_{p+1}), we actually have

\[(\delta\omega_1 \equiv \delta\omega_1 \land \omega_1 + \cdots + \delta\omega_1 \land \omega_{p+1}, \quad \delta\omega_1 \equiv \delta\omega_1 \land \omega_1 + \cdots + \delta\omega_1 \land \omega_{p+1} \mod \omega_0, \omega_1).
\]

This equation describes the structure equation of (Z, F), where $F = \partial D$. Namely (Z, F) is a regular differential system of type $e^1(p + 1, 2)$. Hence D is a covariant system of (Z, F) (see Theorem 1.4 [22]). Moreover, by Theorem 6.1, $(R(Z); D^1_Z, D^2_Z)$ is a PD manifold of second order and, in fact, $\zeta(R(Z))$ is an equation of Goursat type [25].

Now we will consider the following submanifold $\tilde{Y} = \tilde{Y}(Z)$ of $(\tilde{Y}(Z); F^*_N, F_N)$:

\[\tilde{Y} = \tilde{Y}(Z) = \bigcup_{z \in Z} \tilde{Y}_z, \quad \tilde{Y}_z = \{y \in Gr (F(z), 3p + 2) \mid y \supset D(z)\} \cong \mathbb{P}(F(z)/D(z)) \cong \mathbb{P}^p.
\]

On \tilde{Y}, we have a pair of differential systems D^*_N and D_N defined by

\[D^*_N(y) = \gamma^{-1}_s(F(z)) \supset D_N(y) = \gamma^{-1}_s(y),\]

where $\gamma : \tilde{Y} \to Z$ is the projection and $z = \gamma(y)$. D^*_N is a lift of F and D_N is the canonical system by this Grassmannian construction and is a subbundle of D_N^* of codimension 1. D_N^* is a differential system of codimension 2 and its Engel-half rank is $p + 1$. Since D is a covariant system of (Z, F), an isomorphism $\varphi : (Z, F) \to (Z, F)$ induces the isomorphism $\varphi_1 : (\tilde{Y}; D^*_N, D_N) \to (\tilde{Y}; D^*_N, D_N)$ by $\varphi_1(y) = \varphi_1(y) \in Gr (F(\varphi(z)), 3p + 2)$ for $z = \gamma(y)$. Conversely, since D_N is the canonical system by the Grassmannian construction and Ker $\gamma_s = Ch(D^*_N)$, an isomorphism $\Phi : (\tilde{Y}; D^*_N, D_N) \to (\tilde{Y}; D^*_N, D_N)$ induces the isomorphism $\varphi : (Z, F) \to (Z, F)$ such that $\Phi = \varphi_1$ (cf. the proof of Theorem 4.1 [27]).

We will show that $(\tilde{Y}; D^*_N, D_N)$ satisfies the conditions $(\tilde{Y}.1)$ and $(\tilde{Y}.2)$ in §7.2 with $s = 1, r = 2$ and $t_1 = p + 1$ on an open dense subset Y of \tilde{Y}. For this purpose, let us introduce a fibre coordinate (μ_1, \ldots, μ_p) of $\gamma : \tilde{Y} \to Z$ by putting

\[\omega_2 = \omega_1 + \mu_1 \omega_2 + \cdots + \mu_p \omega_{p+1},\]
where
\[D_N = \{ \omega_0 = \omega_1 = 0 \}, \quad \text{and} \quad D_N = \{ \omega_0 = \omega_1 = \omega_2 = 0 \} \text{ on } \gamma^{-1}(U). \]

Here we denote the pullback on \(\bar{Y} \) of 1-forms on \(Z \) by the same symbol. Then, by (8.6), we calculate

\[
d\omega_2 = d\omega_1 + \sum_{\alpha=1}^{p} (\mu_\alpha d\omega_{\alpha+1} + d\mu_\alpha \wedge \omega_{\alpha+1}),
\]

(8.8)

\[
\equiv \sum_{\alpha=1}^{p}\{\omega_0^{\alpha+1} \wedge \omega_1^{\alpha+1} + \mu_\alpha (\omega_0^\alpha \wedge \omega_1^{\alpha+1} + \omega_0^{\alpha+1} \wedge \omega_1^\alpha) + (d\mu_\alpha + \beta_\alpha) \wedge \omega_{\alpha+1}\},
\]

\[
\equiv \sum_{\alpha=1}^{p}\{(\omega_0^{\alpha+1} + \mu_\alpha \omega_0^\alpha) \wedge (\omega_1^{\alpha+1} + \mu_\alpha \omega_1^\alpha) + (d\mu_\alpha + \beta_\alpha) \wedge \omega_{\alpha+1}\} - \left(\sum_{\alpha=1}^{p} \mu_\alpha^2 \right) \omega_1 \wedge \omega_1,
\]

(mod \(\omega_0, \omega_1, \omega_2 \))

where \(\beta_1, \ldots, \beta_p \) are 1-forms on \(\gamma^{-1}(U) \). Moreover, from (8.7), we have

\[
\begin{align*}
d\omega_0 &\equiv (\omega_0^2 - \mu_1 \omega_0^1) \wedge \omega_2 + \cdots + (\omega_0^{p+1} - \mu_p \omega_0^1) \wedge \omega_{p+1}, \\
d\omega_1 &\equiv (\omega_1^2 - \mu_1 \omega_1^1) \wedge \omega_2 + \cdots + (\omega_1^{p+1} - \mu_p \omega_1^1) \wedge \omega_{p+1}. \quad \text{(mod} \omega_0, \omega_1, \omega_2)\end{align*}
\]

These three equations describes the structure equation of \((\bar{Y}, D_N) \). In particular, we obtain \(\text{Ch} (D_N) = \{0\} \) on an open dense subset satisfying \(\sum_{\alpha=1}^{p} \mu_\alpha^2 \neq 0 \). We put

\[Y = \{ y \in \bar{Y} \mid \text{Ch} (D_N)(y) = \{0\} \}. \]

Then, by (8.9), \((Y; D_N, D_N^*) \) satisfies the conditions (\(\bar{Y}, 1 \)) and (\(\bar{Y}, 2 \)) in §7.2 with \(s = 1, r = 2 \) and \(t_1 = p + 1 \).

We will consider now the IG manifold \((W(Y); C_Y^*, N_Y) \) of corank 2 given in Proposition 7.4. Let us consider

\[\omega = \omega_0 + \lambda \omega_1 \]
on \(\bar{U} = \gamma^{-1}(U) \). Namely we consider a point \(w \in \bar{W}(Y) \) such that \(w = \{ \omega = 0 \} \subset T_y(Y) \), where \(y = \mu(w) \in \bar{U} \). Here \(\lambda \) constitutes an inhomogeneous coordinate of the fibres of \(\mu : \bar{W}(Y) \rightarrow Y \). By (8.7) and substituting \(\omega_1 = \omega_2 - \sum_{\alpha=1}^{p} \mu_\alpha \omega_{\alpha+1} \), we calculate

\[
d\omega = d\omega_0 + \lambda d\omega_1 + d\lambda \wedge \omega_1,
\]

\[
\equiv \sum_{\alpha=1}^{p+1} (\omega_0^{\alpha} + \lambda \omega_1^{\alpha}) \wedge \omega_\alpha + (d\lambda + \beta) \wedge \omega_1, \quad \text{(mod} \omega)\]

(8.10)

\[
\equiv \omega_1^* \wedge (-\sum_{\alpha=1}^{p} \mu_\alpha \omega_\alpha) + \sum_{\alpha=2}^{p+1} (\omega_0^{\alpha} + \lambda \omega_1^{\alpha}) \wedge \omega_\alpha + \omega_1^* \wedge \omega_2 + (d\lambda + \beta) \wedge \omega_1,
\]

\[
\equiv \sum_{\alpha=1}^{p} \{\omega_0^{\alpha+1} + \lambda \omega_1^{\alpha+1} - \mu_\alpha \omega_1^{\alpha}\} \wedge \omega_{\alpha+1} + \omega_1^* \wedge \omega_2 + (d\lambda + \beta) \wedge \omega_1,
\]

\[
\equiv \sum_{\alpha=1}^{p} \omega_1^{\alpha+1} \wedge \omega_{\alpha+1} + \omega_1^* \wedge \omega_2 + (d\lambda + \beta) \wedge \omega_1, \quad \text{(mod} \omega)\]

for some 1-form \(\beta \) on \(\mu^{-1}(\bar{U}) \), where we put \(\omega_1^* = \omega_0^1 + \lambda \omega_1^1 \) and \(\omega_{\alpha+1}^* = \omega_0^\alpha + \lambda \omega_1^\alpha - \mu_{\alpha-1} \omega_1^\alpha \) for \(\alpha = 2, \ldots, p + 1 \). Hence we see \(W(Y) = \bar{W}(Y) \). Here, again, we denote the pullback on
$W(Y)$ of 1-forms on Y by the same symbol. By (8.10), we have
\[C^*_Y = \{ \omega = 0 \}, \quad \text{Ch} (C^*_Y) = \{ \omega = \omega_1 = \omega_2 = \omega_{a+2} = d\lambda + \beta = \omega_1^* = \omega_{a+1} = 0 \ (1 \leq \alpha \leq p) \}. \]
Moreover, by (8.9), we have
\[d\omega_1 \equiv (\omega_1^2 - \mu_1 \omega_1^1) \wedge \omega_2 + \cdots + (\omega_{p+1}^1 - \mu_p \omega_1^1) \wedge \omega_{p+1} \pmod{\omega, \omega_1, \omega_2}. \]
Also, by (8.8), we have
\[
\begin{align*}
 d\omega_2 & \equiv \sum_{a=1}^p \left\{ (\omega_{a+2}^* - \lambda \omega_1^1 + \mu_\alpha \omega_1^1 + \mu_{\omega_1^1}^1) \wedge (\omega_1^{a+1} + \mu_\alpha \omega_1^1) + (d\mu_\alpha + \beta_\alpha) \wedge \omega_{a+1} \right\} \\
 & \equiv \sum_{a=1}^p \left\{ \omega_{a+2}^* \wedge (\omega_1^{a+1} + \mu_\alpha \omega_1^1) + (d\mu_\alpha + \beta_\alpha) \wedge \omega_{a+1} \right\} + \omega_1^2 \wedge \left\{ \sum_{a=1}^p \mu_\alpha^2 \omega_1^1 + \sum_{a=1}^p 2\mu_\alpha \omega_1^{a+1} \right\} \\
 & \equiv \omega_1^2 \wedge \left\{ \sum_{a=1}^p \mu_\alpha^2 \omega_1^1 + \sum_{a=1}^p 2\mu_\alpha \omega_1^{a+1} \right\}
\end{align*}
\]
Thus we obtain the following structure equation for \((W(Y), N_Y)\):
\[
N_Y = \{ \omega = \omega_1 = \omega_2 = 0 \}, \quad N_Y^\perp = \{ \omega = \omega_1 = \omega_2 = \omega_{a+2} = \omega_{a+1} = 0 \ (1 \leq \alpha \leq p) \},
\]
\[
\begin{align*}
 d\omega & \equiv \sum_{a=1}^p \omega_{a+2}^* \wedge \omega_{a+1}, \\
 d\omega_1 & \equiv \sum_{a=1}^p (\omega_1^{a+1} - \mu_\alpha \omega_1^1) \wedge \omega_{a+1}, \quad \pmod{\omega, \omega_1, \omega_2} \\
 d\omega_2 & \equiv \sum_{a=1}^p \left\{ \omega_{a+2}^* \wedge (\omega_1^{a+1} + \mu_\alpha \omega_1^1) + (d\mu_\alpha + \beta_\alpha) \wedge \omega_{a+1} \right\} \\
 & \quad + \omega_1^2 \wedge \left\{ \sum_{a=1}^p \mu_\alpha^2 \omega_1^1 + \sum_{a=1}^p 2\mu_\alpha \omega_1^{a+1} \right\}
\end{align*}
\]
Utilizing this structure equation, we first calculate, for \(X \in \text{Ch} (C^*_Y)(w), \ w \in W(Y)\),
\[
X \cdot d\omega \equiv 0, \quad X \cdot d\omega_1 \equiv 0, \quad X \cdot d\omega_2 \equiv -\hat{\omega}_1(X) \omega_1^* \pmod{N_Y^\perp},
\]
where we put \(\hat{\omega}_1 = (\sum_{a=1}^p \mu_\alpha^2) \omega_1^1 + \sum_{a=1}^p 2\mu_\alpha \omega_1^{a+1}\). Hence, by (2.3), we get
\[
S(N_Y)(w) = \{ X \in \text{Ch} (C^*_Y)(w) \mid \hat{\omega}_1(X) = 0 \}.
\]
Now we consider the Lagrange Grassmann bundle \(R(Y) = R(W(Y))\) over \((W(Y); C^*_Y, N_Y)\):
\[
R(Y) = \bigcup_{w \in W(Y)} R_w, \quad R_w = \{ \hat{v} \subset N_Y(w) \mid d\omega |_{\hat{v}} = 0, \ \hat{v} \text{ is maximal} \}.
\]
From \(N_Y^\perp(w) \subset \hat{v} \subset N_Y(w)\) and \(d\omega |_{\hat{v}} = 0\), if \((d\lambda + \beta) \wedge \omega_1^* \wedge \omega_2 \wedge \cdots \wedge \omega_{p+1} |_{\hat{v}} \neq 0\), it follows that
\[
\hat{v} = \{ X \in N_Y(w) \mid \omega_{a+2}(X) = 0 \ (1 \leq \alpha \leq p) \},
\]
where \(\omega_{a+2} = \omega_{a+2}^* - \sum_{\beta=1}^p p_{\alpha\beta} \omega_{\beta+1} \) for \(1 \leq \alpha \leq p\) and \(p_{\alpha\beta} = p_{\beta\alpha} \ (1 \leq \alpha, \beta \leq p)\). For these \(\hat{v} \in R_w\), we claim
\[
A(\hat{v}) = \{ 0 \} \quad \text{for} \ \hat{v} = \{ \omega = \omega_1 = \omega_2 = \omega_{a+2} = 0 \ (1 \leq \alpha \leq p) \}.
\]
In fact, by the structure equation (8.11), we get

\[
 \begin{align*}
 d\varpi &\equiv 0, \quad d\varpi_1 \equiv \sum_{\alpha=1}^{p} (\varpi_1^{\alpha} - \mu_\alpha \varpi_1) \land \omega_{\alpha+1}, \\
 d\varpi_2 &\equiv \sum_{\alpha=1}^{p} (d\mu_\alpha + \beta_\alpha - \sum_{\beta=1}^{p} p_{\alpha\beta}^* (\varpi_1^{\beta+1} + \mu_\beta \varpi_1)) \land \omega_{\alpha+1} + \omega_1^* \land \varpi_1. \quad (\text{mod } (\hat{v})^\perp)
 \end{align*}
\]

Hence, for \(X \in S(N_Y)(w) \), we have

\[
 X^0 d\varpi \equiv 0, \quad X^0 d\varpi_1 \equiv \sum_{\alpha=1}^{p} (\varpi_1^{\alpha} - \mu_\alpha \varpi_1)(X) \land \omega_{\alpha+1} \quad (\text{mod } (\hat{v})^\perp),
\]

and

\[
 X^0 d\varpi_2 \equiv \sum_{\alpha=1}^{p} (d\mu_\alpha + \beta_\alpha - \sum_{\beta=1}^{p} p_{\alpha\beta}^* (\varpi_1^{\beta+1} + \mu_\beta \varpi_1))(X) \land \omega_{\alpha+1} \quad (\text{mod } (\hat{v})^\perp).
\]

Then, from Lemma 4.2 (2), we obtain

\[
 A(\hat{v}) = \{ X \in S(N_Y)(w) \mid (\varpi_1^{\alpha} - \mu_\alpha \varpi_1)(X) = 0 \quad (1 \leq \alpha \leq p) \} = \text{Ch}(C^*_{\hat{v}})(w) \cap \text{Ch}(N_Y)(w) = \{0\}.
\]

Hence \((R(Y); D^1_Y, D^2_Y)\) is a PD manifold of second order on an open subset of \(R(Y)\). Moreover, by (8.10) and (8.12), we have the structure equation for \((R(Y); D^1_Y, D^2_Y)\) as follows;

\[
 D^1_Y = \{ \varpi = 0 \}, \quad D^2_Y = \{ \varpi = \varpi_1 = \cdots = \varpi_{p+2} = 0 \},
\]

\[
 d\varpi \equiv \omega_0^* \land \varpi_1 + \omega_1^* \land \varpi_2 + \sum_{\alpha=1}^{p} \omega_{\alpha+2} \land \omega_{\alpha+1}, \quad (\text{mod } (\varpi, \varpi_1, \ldots, \varpi_{p+2}^{}))
\]

\[
 \begin{align*}
 d\varpi_1 &\equiv \sum_{\alpha=1}^{p} \pi_1^{\alpha+2} \land \omega_{\alpha+1}, \\
 d\varpi_2 &\equiv \pi_2^\perp \land \omega_1^* + \sum_{\alpha=1}^{p} \pi_2^{\alpha+2} \land \omega_{\alpha+1}, \quad (\text{mod } (\varpi, \varpi_1, \ldots, \varpi_{p+2}^{}))
 \end{align*}
\]

where we put \(\omega_0^* = d\lambda + \beta, \pi_1^{\alpha+2} = \varpi_1^{\alpha+1} - \mu_\alpha \varpi_1, \pi_2^{\alpha+2} = \omega_1^* + \sum_{\beta=1}^{p} p_{\alpha\beta}^* (\varpi_1^{\beta+1} + \mu_\beta \varpi_1)\) for \(\alpha = 1, \ldots, p\). This shows that \((R(Y); D^1_Y, D^2_Y)\) is a PD manifold of second order, which is of type \(s\), where \(s\) is given by

\[
 s = s_{-3} \oplus s_{-2} \oplus s_{-1}, \quad s_{-3} = \mathbb{R}, \quad s_{-2} = V^*, \quad s_{-1} = V \oplus f, \quad f \subset S^2(V^*),
\]

such that

\[
 (f)^\perp = \langle \{ e_1 \otimes e_1, e_1 \otimes e_2 \} \rangle.
\]

for a base \(\{e_1, \ldots, e_{p+2}\}\) of \(V\). Thus \(\zeta(R(Y))\) is an involutive system of second order of codimension 2 (see Proposition 3.3 [27]).

To obtain an explicit description of the model equation in this case, we will first construct the standard differential system \((M(m_3), D_{m_3})\) of type \(m_3\), where \(m_3 = g_{-3} \oplus g_{-2} \oplus g_{-1}\) is the negative part of the simple graded Lie algebra of type \((BD_\ell, \{\alpha_1, \alpha_3\})\) by virtue of the formula given by N.Tanaka in §2.3 [16]. Let us take the basis \(\{Z_1, Z_2, Y_j, X_1^j, X_2^j(1 \leq j \leq p+1)\}\) of
m_3 as above. We introduce a coordinate system $(z^1, z^2, y^1, \ldots, y^{p+1}, x_1^1, \ldots, x_{p+1}^1, x_1^2, \ldots, x_{p+1}^2)$ of m_3 by putting
\[u^{-3} = z^1 Z_1 + z^2 Z_2, \quad u^{-2} = y^1 Y_1 + \cdots + y^{p+1} Y_{p+1}, \]
and
\[u^{-1} = x_1^1 X_1^1 + \cdots + x_{p+1}^1 X_{p+1}^1 + x_1^2 X_2^1 + \cdots + x_{p+1}^2 X_{p+1}^2, \]
where $u^p : m_3 = g_{-3} \oplus g_{-2} \oplus g_{-1} \to g_p$ is the projection for $p = -1, -2, -3$. Then, by the formula in §2.3 [16], we calculate
\[
\frac{1}{2} [u^{-1}, du^{-1}] = \sum_{k=1}^{p+1} d \bar{y}^k Y_k - \frac{1}{2} \left[\sum_{k=1}^{p+1} (x_k^1 X_1^k + x_k^2 X_2^k), \sum_{k=1}^{p+1} (dx_k^1 X_1^k + dx_k^2 X_2^k) \right],
\]
where
\[
(8.13) \quad \bar{\omega}_1 = dy^1 + \frac{1}{2} \sum_{k=2}^{p+1} (x_k^1 dx_k^2 - x_k^2 dx_k^1), \quad \bar{\omega}_k = dy^k + \frac{1}{2} (x_k^1 dx_k^2 - x_k^2 dx_k^1) + \frac{1}{2} (x_k^1 dx_k^2 - x_k^2 dx_k^1),
\]
for $k = 2, \ldots, p + 1$, so that
\[
d\bar{\omega}_1 = dx_1^1 \land dx_2^1 + \cdots + dx_{p+1}^1 \land dx_{p+1}^2, \quad d\bar{\omega}_k = dx_1^1 \land dx_k^2 + dx_1^1 \land dx_k^2 \quad (k = 2, \ldots, p + 1).
\]
Moreover, we calculate
\[
du^{-3} = \frac{1}{3} [u^{-2}, du^{-1}] - \frac{2}{3} [u^{-1}, du^{-2}] + \frac{1}{6} [u^{-1}, [u^{-1}, du^{-1}]]
\]
\[
= dz^1 Z_1 + dz^2 Z_2
\]
\[
- \frac{1}{3} \left[\sum_{k=1}^{p+1} y^k Y_k, \sum_{k=1}^{p+1} (dx_k^1 X_1^k + dx_k^2 X_2^k) \right] - \frac{2}{3} \left[\sum_{k=1}^{p+1} (x_k^1 X_1^k + x_k^2 X_2^k), \sum_{k=1}^{p+1} dy^k Y_k \right]
\]
\[
+ \frac{1}{6} \left[\sum_{k=1}^{p+1} (x_k^1 X_1^k + x_k^2 X_2^k), \sum_{k=1}^{p+1} (x_k^1 X_1^k + x_k^2 X_2^k), \sum_{k=1}^{p+1} (dx_k^1 X_1^k + dx_k^2 X_2^k) \right]
\]
where
\[
(8.14) \quad \left\{ \begin{aligned}
\tilde{\omega}_1 &= dz^1 - (y^1 + \frac{1}{2} \sum_{k=2}^{p+1} x_k^1 x_k^2) dx_1^1 - \sum_{k=2}^{p+1} \{ y^k + \frac{1}{2} (x_k^1 x_k^2 + x_k^2 x_k^1) \} dx_1^k, \\
\tilde{\omega}_2 &= dz^2 - (y^1 - \frac{1}{2} \sum_{k=2}^{p+1} x_k^1 x_k^2) dx_1^2 - \sum_{k=2}^{p+1} \{ y^k - \frac{1}{2} (x_k^1 x_k^2 + x_k^2 x_k^1) \} dx_1^k,
\end{aligned} \right.
\]
and
\[
\left\{ \begin{aligned}
z^1 &= z^1 + \frac{2}{3} \sum_{k=1}^{p+1} x_k^1 y^k + \frac{1}{3} \sum_{k=2}^{p+1} x_k^1 x_k^1 x_k^2 + \frac{1}{6} \sum_{k=2}^{p+1} (x_k^1)^2 x_1^1, \\
z^2 &= z^2 + \frac{2}{3} \sum_{k=1}^{p+1} x_k^2 y^k - \frac{1}{3} \sum_{k=2}^{p+1} x_k^1 x_k^1 x_k^2 - \frac{1}{6} \sum_{k=2}^{p+1} x_1^1 (x_k^2)^2,
\end{aligned} \right.
\]
so that
\[
d\tilde{\omega}_1 = dx_1^1 \land \tilde{\omega}_1 + \cdots + dx_{p+1}^1 \land \tilde{\omega}_{p+1}, \quad d\tilde{\omega}_2 = dx_1^2 \land \tilde{\omega}_1 + \cdots + dx_{p+1}^2 \land \tilde{\omega}_{p+1}.
\]
Thus, $M(m_3) \cong m_3$ is endowed with a coordinate $(\hat{z}^1, \hat{z}^2, y^1, \ldots, y^{p+1}, x^1, \ldots, x^{p+1}, x_1^2, \ldots, x_{p+1}^2)$ such that D_{m_3} and ∂D_{m_3} are given by

$$D_{m_3} = \{ \bar{w}_1 = \bar{w}_2 = \bar{w}_1 = \cdots = \bar{w}_{p+1} = 0 \}, \quad \text{and} \quad \partial D_{m_3} = \{ \bar{w}_1 = \bar{w}_2 = 0 \}.$$

Now put $(Z, D) = (M(m_3), D_{m_3})$ and $F = \partial D_{m_3}$.

$$F = \{ \bar{w}_0 = \bar{w}_1 = 0 \}, \quad D = \{ \bar{w}_0 = \bar{w}_1 = \bar{w}_2 = \cdots = \bar{w}_{p+1} \},$$

where $\bar{w}_0 = \bar{w}_1$, $\bar{w}_1 = \bar{w}_2$ and $\omega_j = \bar{w}_j (j = 1, \ldots, p + 1)$. Let $\bar{Y} = \bar{Y}(Z)$ be the projective bundle over Z and $\gamma : \bar{Y} \to Z$ be the projection. We introduce a fibre coordinate (μ_1, \ldots, μ_p) of $\gamma : \bar{Y} \to Z$ by putting

$$\bar{w}_2 = \omega_1 + \mu_1 \omega_2 + \cdots + \mu_p \omega_{p+1}.$$

Then we have

$$D_N^* = \{ \bar{w}_0 = \bar{w}_1 = 0 \} \quad \text{and} \quad D_N = \{ \bar{w}_0 = \bar{w}_1 = \bar{w}_2 = 0 \}.$$

Here we denote the pullback on \bar{Y} of 1-forms on Z by the same symbol. We put

$$Y = \{ y \in \bar{Y} \mid \text{Ch}(D_N)(y) = \{ 0 \} \}.$$

Starting from $(Y; D_N^*, D_N)$, we construct the IG manifold $(W(Y); C^*_Y, N_Y)$ of corank 2 and the Lagrange Grassmann bundle $(R(Y); D^*_Y, D^*_Y)$. We introduce a fibre coordinate (λ) of $\mu : W(Y) \to Y$ and calculate

$$\bar{w} = \bar{w}_0 + \lambda \bar{w}_1$$

$$= dz^1 - (y^1 + \frac{1}{2} \sum_{k=2}^{p+1} x_k^1 x_k^2) dx^1 - \sum_{k=2}^{p+1} \{ y^k + \frac{1}{2} (x_k^1 x_k^2 + x_k^1 x_k^2) \} dx_k$$

$$+ \lambda(\bar{z}^2 - (y^1 - \frac{1}{2} \sum_{k=2}^{p+1} x_k^1 x_k^2) dx^1 - \sum_{k=2}^{p+1} \{ y^k - \frac{1}{2} (x_k^1 x_k^2 + x_k^1 x_k^2) \} dx_k)$$

$$= dz^1 + \lambda d\bar{z}^2 - (y^1 + 2 \sum_{k=2}^{p+1} x_k^1 x_k^2) (dx^1 + \lambda dx^1) - \sum_{k=2}^{p+1} \{ y^k + \frac{1}{2} (x_k^1 x_k^2 + x_k^1 x_k^2) \} (dx_k + \lambda dx_k)$$

$$+ \lambda \left(\sum_{k=2}^{p+1} x_k^1 x_k^2 dx_k + \sum_{k=2}^{p+1} (x_k^1 x_k^2 + x_k^1 x_k^2) dx_k \right)$$

$$= d(\bar{z}^1 + \lambda \bar{z}^2) - (y^1 + \frac{1}{2} \sum_{k=2}^{p+1} x_k^1 x_k^2) d(x_k^1 + \lambda x_k^1) - \sum_{k=2}^{p+1} \{ y^k + \frac{1}{2} (x_k^1 x_k^2 + x_k^1 x_k^2) \} d(x_k^1 + \lambda x_k^1)$$

$$- [\bar{z}^2 - (y^1 + \frac{1}{2} \sum_{k=2}^{p+1} x_k^1 x_k^2) x_k^2 - \sum_{k=2}^{p+1} \{ y^k + \frac{1}{2} (x_k^1 x_k^2 + x_k^1 x_k^2) \} x_k^2] d\lambda$$

$$+ \lambda \left(\sum_{k=2}^{p+1} x_k^1 x_k^2 dx_k - \sum_{k=2}^{p+1} x_k^1 x_k^2 dx_k + \sum_{k=2}^{p+1} x_k^1 x_k^2 dx_k \right)$$

$$= d\tilde{Z} - \sum_{k=1}^{p+1} y^k d(x_k^1 + \lambda x_k^1) - P_1 d\lambda = d\tilde{Z} - \sum_{k=1}^{p+2} P_1 dX_k,$$
where

\[
\begin{aligned}
\dot{Z} &= z^1 + \lambda z^2 + \sum_{k=2}^{p+1} x_1^2 x_k^2 + \frac{1}{2}(x_1^1 + \lambda x_1^2) \sum_{k=2}^{p+1} (x_k^2)^2, \\
Y^k &= y^k + \frac{1}{2} (x_1^1 + \lambda x_1^2) x_k^2 + (x_k^1 + \lambda x_k^2) x_1^2, \\
P_1 &= \dot{z}^2 - \sum_{k=1}^{p+1} y^k x_k^2 - \frac{1}{2} \lambda x_1^2 \sum_{k=2}^{p+1} (x_k^2)^2,
\end{aligned}
\]

for \(k = 2, \ldots, p + 1 \). Thus, putting

\[
\begin{aligned}
Z &= \dot{Z} - \sum_{k=2}^{p+1} Y^k (x_k^1 + \lambda x_k^2), \\
X_k &= X_k = x_k^1 + \lambda x_k^2, \\
P_{k+1} &= - (x_k^1 + \lambda x_k^2) \quad (k = 2, \ldots, p + 1),
\end{aligned}
\]

we obtain a canonical coordinate \((X_1, \ldots, X_{p+2}, Z, P_1, \ldots, P_{p+2})\) of \(J = W(Y)/\text{Ch}(C_y^*) = W(Z)/\text{Ch}(C_z^*) \).

Conversely we calculate

\[
\begin{aligned}
x_1^2 &= c_1, \quad x_k^2 = c_k, \quad \lambda = X_1, \\
y^1 &= P_2 + \frac{1}{2} \sum_{k=2}^{p+1} c_k P_{k+1}, \\
\dot{z}^2 &= P_1 + c_1 P_2 + \sum_{k=2}^{p+1} (X_{k+1} + c_1 P_{k+1}) c_k + \frac{1}{2} (c_1 X_1 - X_2) \left(\sum_{k=2}^{p+1} c_k^2 \right).
\end{aligned}
\]

Hence, by (8.13), (8.14) and (8.15), we have

\[
\begin{aligned}
\varpi_1 &= dP_1 + c_1 \{dP_2 + \sum_{k=2}^{p+1} c_k dP_{k+1} + \frac{1}{2} \sum_{k=2}^{p+1} c_k^2 dX_k \} - \frac{1}{2} c_1^2 dX_2 + \sum_{k=2}^{p+1} c_k dX_{k+1}, \\
\varpi_2 &= dP_2 + \sum_{k=2}^{p+1} (c_k + c_1 \mu_{k-1}) dP_{k+1} + \frac{1}{2} \sum_{k=2}^{p+1} (c_k + 2c_1 \mu_{k-1}) dX_k \\
&\quad - \frac{1}{2} c_1^2 c_k dX_k - \sum_{k=2}^{p+1} c_k \mu_{k-1} dX_{k+1}.
\end{aligned}
\]

Here \((X_1, \ldots, X_{p+2}, Z, P_1, \ldots, P_{p+2}, c_1, \ldots, c_{p+1}, \mu_1, \ldots, \mu_p)\) constitute a coordinate of \(W(Y) \) and \((X_1, \ldots, X_{p+2}, Z, P_1, \ldots, P_{p+2}, c_1, \ldots, c_{p+1})\) constitutes a coordinate of \(W(Z) \). Now, from the canonical coordinate \((X_1, \ldots, X_{p+2}, Z, P_1, \ldots, P_{p+2})\) of \(J \), we introduce the coordinate \((X_i, X_{\alpha}, Z, P_i, P_\alpha, A^\alpha, B^\alpha, S_{ij})\) \((1 \leq i \leq j \leq 2, 3 \leq \alpha \leq p + 2)\) of \(I^2(J) \) as in §2.1. First we calculate

\[
\begin{aligned}
\varpi_1^* &= \varpi_1 - c_1 \varpi_2 = dP_1 - \sum_{k=2}^{p+1} c_k^2 \mu_{k-1} dP_{k+1} + \sum_{k=2}^{p+1} (c_k - c_1 \mu_{k-1}) dX_{k+1} \\
&\quad - \frac{1}{2} \sum_{k=2}^{p+1} c_k^2 c_k \mu_{k-1} dX_k - \frac{1}{2} \sum_{k=2}^{p+1} (c_k - 2c_1 \mu_{k-1}) c_k dX_k.
\end{aligned}
\]

Then, since \(N_Y = \{ \varpi = \varpi_1^* = \varpi_2 = 0 \} \), the canonical inclusion \(\iota : W(Y) \to I^2(J) \) is given by

\[
A^\alpha_i = c_1^2 \mu_{\alpha-2}, B^\alpha_i = - (c_{\alpha-1} - c_1 \mu_{\alpha-2}), A^\alpha_2 = -(c_{\alpha-1} + c_1 \mu_{\alpha-2}), B^\alpha_2 = - \mu_{\alpha-2},
\]
\[S_{11} = c_1^2 \sum_{k=1}^{p+1} \mu_k^2, \quad S_{12} = \frac{1}{2} \left(\sum_{k=1}^{p+1} c_k^2 - \sum_{k=2}^{p+1} c_k \mu_{k-1} \right) - c_1^2 \sum_{k=1}^{p+1} \mu_k^2, \quad S_{22} = c_1 \sum_{k=1}^{p} \mu_k^2 + 2 \sum_{k=2}^{p+1} c_k \mu_{k-1}. \]

Thus, by (4.3), introducing a coordinate \((X_1, \ldots, X_{p+2}, Z, P_1, \ldots, P_{p+2}, c_1, \ldots, c_{p+1}, \mu_1, \ldots, \mu_p, P_{a,\beta})\) \((3 \leq \alpha \leq \beta \leq p + 2)\) of \(R(Y)\) as in §4.1, the immersion \(\zeta : R(Y) \rightarrow L(J)\) is expressed by

\[
\begin{cases}
\zeta^* P_{a\beta} = P_{a\beta}^*, & \zeta^* P_{a1} = -(c_{a-1} - c_1 \mu_{a-2}) + c_1^2 \sum_{\beta=3}^{p+2} P_{a\beta}^*(c_{\beta-1} + c_1 \mu_{\beta-2}), \quad (3 \leq \alpha \leq \beta \leq p + 2) \\
\zeta^* P_{a2} = -\mu_{a-2} - \sum_{\beta=3}^{p+2} P_{a\beta}^*(c_{\beta-1} + c_1 \mu_{\beta-2}), & \zeta^* P_{11} = c_1^2 \sum_{k=1}^{p} \mu_k^2 + c_1^2 \sum_{\alpha,\beta=3}^{p+2} P_{a\beta}^*(c_{\beta-1} + c_1 \mu_{\beta-2}), \\
\zeta^* P_{12} = \frac{1}{2} \left(\sum_{k=1}^{p+1} c_k^2 - \sum_{k=2}^{p+1} c_k \mu_{k-1} - c_1 \sum_{k=1}^{p} \mu_k^2 - c_1^2 \sum_{\alpha,\beta=3}^{p+2} P_{a\beta}^*(c_{\beta-1} + c_1 \mu_{\beta-2}), \\
\zeta^* P_{22} = c_1 \sum_{k=1}^{p} \mu_k^2 + 2 \sum_{k=2}^{p+1} c_k \mu_{k-1} + \sum_{\alpha,\beta=3}^{p+2} P_{a\beta}^*(c_{a-1} + c_1 \mu_{a-2} - c_{\beta-1} + c_1 \mu_{\beta-2}).
\end{cases}
\]

This is the description of the model involutive system of codimension 2 of type \((BD, \{\alpha_1, \alpha_3\})\).

Moreover, from the canonical coordinate \((X_1, \ldots, X_{p+2}, Z, P_1, \ldots, P_{p+2})\) of \(J\), we introduce the coordinate \((X_1, X_a, Z, P_1, \ldots, P_{p+2}, A_1, \hat{A}_1, \hat{B}_1, \hat{S}_{11})\) \((2 \leq a \leq p+2)\) of \(I^1(J)\) as in §2.1. Then, from the first equation of (8.16), since \(\mathcal{N}Z = \{\varpi = \varpi_1 = 0\}\), the canonical inclusion \(i : W(Z) \rightarrow I^1(J)\) is given by

\[
\hat{A}_1 = -c_1, \quad \hat{A}_a = -c_1 c_{a-1}, \quad \hat{B}_1 = \frac{1}{2} \left(\sum_{k=2}^{p+1} c_k^2 \right), \quad \hat{B}_1 = -c_{a-1}, \quad \hat{S}_{11} = 0.
\]

Thus, by (4.3), introducing a coordinate \((X_1, \ldots, X_{p+2}, Z, P_1, \ldots, P_{p+2}, c_1, \ldots, c_{p+1}, P_{ab}^*)\) \((2 \leq a \leq b \leq p + 2)\) of \(R(Z)\) as in §4.1, the immersion \(\zeta : R(Z) \rightarrow L(J)\) is expressed by

\[
\begin{cases}
\zeta^* P_{ab} = P_{ab}^*(2 \leq a \leq b \leq p + 2), & \zeta^* P_{a1} = -c_{a-1} - c_1 (P_{a2}^* + \sum_{b=3}^{p+2} P_{ab}^* c_{b-1}), \quad (3 \leq a \leq p + 2), \\
\zeta^* P_{11} = \frac{1}{2} \left(\sum_{k=2}^{p+1} c_k^2 \right) - c_1 (P_{22}^* + \sum_{b=3}^{p+2} P_{2b}^* c_{b-1}), & \zeta^* P_{11} = c_1^2 (P_{22}^* + \sum_{a=3}^{p+2} P_{2a}^* c_{a-1} + \sum_{a,b=3}^{p+2} P_{ab}^* c_{a-1} c_{b-1}).
\end{cases}
\]

This is the description of the model Goursat type equation of type \((BD, \{\alpha_1, \alpha_3\})\) (see Remark 6.2 (1)).

8.4. Other Examples. In this subsection, we will treat the case of Proposition 7.2. For this purpose, we will here exhibit an example of type \((C_3, \{\alpha_2\})\).

From §5 [12], the structure of the symbol algebra \(m = g_{-2} \oplus g_{-1}\) of type \((C_3, \{\alpha_2\})\) can be described as follows; Let \(V\) be a vector space of dimension 2 and \((U, \langle \cdot, \cdot \rangle)\) be a symplectic vector space of dimension 2. Then \(m\) is isomorphic to \(m^2(U, V)\),

\[
m^2(U, V) = g_{-2} \oplus g_{-1}, \quad g_{-2} = S^2(V), g_{-1} = U \otimes V.
\]

The bracket product is defined by

\[
[u_1 \otimes v_1, u_2 \otimes v_2] = \langle u_1, u_2 \rangle v_1 \otimes v_2 \quad \text{for} \quad u_1, u_2 \in U, v_1, v_2 \in V.
\]
Moreover the standard differential system \((M(\mathfrak{m}), D_m)\) of type \(\mathfrak{m}\) in this case is given as follows; \(M(\mathfrak{m}) = \mathbb{R}^7\) is endowed with a coordinate \((x_1, x_2, x_3, x_4, y_1, y_2, y_3)\) such that \(D_m\) is given by

\[D_m = \{ \bar{\theta}_1 = \bar{\theta}_2 = \bar{\theta}_3 = 0 \},\]

where

\[
\bar{\theta}_1 = dy_1 + x_4 dx_1 + x_3 dx_2, \quad \bar{\theta}_2 = dy_2 + x_3 dx_1 \quad \text{and} \quad \bar{\theta}_3 = dy_3 + x_4 dx_2.
\]

Thus the symbol algebra \(\mathfrak{m} = \mathfrak{g}_- \oplus \mathfrak{g}_- \cong \mathfrak{m}^2(U, V)\) is described by

\[
\begin{cases}
 d\theta_1 \equiv \omega_4 \wedge \omega_1 + \omega_3 \wedge \omega_2, \\
 d\theta_2 \equiv \omega_3 \wedge \omega_1 \quad \text{(mod \(\theta_1, \theta_2, \theta_3\)),} \\
 d\theta_3 \equiv \omega_4 \wedge \omega_2.
\end{cases}
\]

(8.17)

In fact, taking the dual basis \(\{ \frac{\partial}{\partial y_1}, \frac{\partial}{\partial y_2}, \frac{\partial}{\partial y_3}, X_1, X_2, X_3, X_4 \}\) of the coframe \(\{ \bar{\theta}_1, \bar{\theta}_2, \bar{\theta}_3, dx_1, dx_2, dx_3, dx_4 \}\) on \(M(\mathfrak{m})\), we have

\[X_1 = \frac{\partial}{\partial x_1} - x_4 \frac{\partial}{\partial y_1} - x_3 \frac{\partial}{\partial y_2} - x_2 \frac{\partial}{\partial y_3}, \quad X_2 = \frac{\partial}{\partial x_2} - x_3 \frac{\partial}{\partial y_1} - x_4 \frac{\partial}{\partial y_3}, \quad \text{and} \quad X_3 = \frac{\partial}{\partial x_3}, X_4 = \frac{\partial}{\partial x_4}.
\]

Thus \(\{X_1, X_2, X_3, X_4\}\) constitutes a free basis of the sections \(\Gamma(D_m)\) of \(D_m\), and we obtain

\[[X_2, X_3] = [X_1, X_4] = \frac{\partial}{\partial y_1}, \quad [X_1, X_3] = \frac{\partial}{\partial y_2}, \quad [X_2, X_4] = \frac{\partial}{\partial y_3}, \quad [X_1, X_2] = [X_3, X_4] = 0.\]

Here, for a basis \(\{v_1, v_2\}\) of \(V\) and a symplectic basis \(\{u_1, u_2\}\) of \(U, X_1, X_2, X_3\) and \(X_4\) correspond to \(u_1 \otimes v_1, u_1 \otimes v_2, u_2 \otimes v_1\) and \(u_2 \otimes v_2\) respectively. Moreover \(\frac{\partial}{\partial y_1}, \frac{\partial}{\partial y_2}\) and \(\frac{\partial}{\partial y_3}\) correspond to \(v_1 \otimes v_2, v_1 \otimes v_1\) and \(v_2 \otimes v_2\) respectively. Thus \(\mathfrak{m}\) is isomorphic to \(\mathfrak{m}^2(U, V)\).

Let \((Y, D_N)\) be a regular differential system of type \(\mathfrak{m}\) such that \(D_N\) is locally defined by

\[D_N = \{ \theta_1 = \theta_2 = \theta_3 = 0 \},\]

Here \(\{\theta_1, \theta_2, \theta_3, \omega_1, \omega_2, \omega_3, \omega_4\}\) forms a coframe on \(Y\) satisfying (8.17).

Then, putting \(\varpi = \theta_1 + \lambda_1 \theta_2 + \lambda_2 \theta_3\), we calculate

\[d\varpi \equiv \omega_4 \wedge \omega_1 + \omega_3 \wedge \omega_2 + \lambda_1 \omega_3 \wedge \omega_1 + \lambda_2 \omega_4 \wedge \omega_2 + (d\lambda_1 + \gamma_1) \wedge \theta_2 + (d\lambda_2 + \gamma_2) \wedge \theta_3 \equiv \omega_4 \wedge \omega_1 + \omega_3 \wedge \omega_2 + (d\lambda_1 + \gamma_1) \wedge \theta_2 + (d\lambda_2 + \gamma_2) \wedge \theta_3 \equiv \omega_4 \wedge \omega_1 + \omega_3 \wedge \omega_2 + (d\lambda_1 + \gamma_1) \wedge \theta_2 + (d\lambda_2 + \gamma_2) \wedge \theta_3 \quad \text{(mod \(\varpi\))}
\]

for some 1-forms \(\gamma_1, \gamma_2\) on \(Y\), where we put \(\tilde{\omega}_4 = \omega_4 + \lambda_1 \omega_3\) and \(\tilde{\omega}_3 = \omega_3 + \lambda_2 \omega_4\). Thus we see

\[W(Y) = \{ w \in W(Y) \mid \lambda_1 \lambda_2 - 1 \neq 0 \}\]

and we have on \(W(Y)\),

\[C_Y^* = \{ \varpi = \theta \}, \quad N_Y = \{ \varpi = \theta_2 = \theta_3 = 0 \}, \quad N_Y^1 = \{ \varpi = \theta_2 = \theta_3 = \omega_1 = \omega_2 = \tilde{\omega}_3 = \omega_4 = 0 \}.
\]

Here \(r = 2, t = 2, n = r + t = 4\) and \(\dim W(Y) = 9\). We see that \((Y, D_N)\) satisfies the condition (Y.2) in §7.1 and \((W(Y), C_Y^*)\) is a contact manifold of dimension 9. Let \((R(Y); D_Y^1, D_Y^2)\) be the Lagrange Grassmann bundle over \((W(Y); C_Y, N_Y)\). Then, by Proposition 7.2, \((R(Y); D_Y^1, D_Y^2)\) is a PD manifold of second order, globally over \(W(Y)\). Put

\[\hat{v} = \{ X \in N_Y\{w\} \mid \varpi_3(X) = \varpi_4(X) = 0 \} \subset R_w(Y),\]

where \(\varpi_3 = \tilde{\omega}_3 - r\omega_2 - s\omega_1\) and \(\varpi_4 = \tilde{\omega}_4 - s\omega_2 - t\omega_1\). Here \((r, s, t)\) is a fibre coordinate of \(R_w(Y)\). Hence, around \(\hat{v} \in R(Y)\), we have

\[D_Y^2 = \{ \varpi = \theta_2 = \theta_3 = \varpi_3 = \varpi_4 = 0 \}.
\]

63
Then, from
\[
\begin{align*}
\varpi_3 - \lambda_2 \varpi_4 &= (1 - \lambda_1 \lambda_2)\omega_3 - (r \omega_2 + s \omega_1) - \lambda_2(s \omega_2 + t \omega_1), \\
\varpi_4 - \lambda_2 \varpi_3 &= (1 - \lambda_1 \lambda_2)\omega_4 - (s \omega_2 + t \omega_1) - \lambda_1(r \omega_2 + s \omega_1),
\end{align*}
\]
and by (8.17), we have
\[
\begin{align*}
d\varpi &\equiv 0 \\
d\theta_2 &\equiv (1 - \lambda_1 \lambda_2)^{-1}(r + \lambda_2 s)\omega_2 \wedge \omega_1 \pmod{\varpi, \theta_2, \theta_3, \varpi_3, \varpi_4} \\
d\theta_3 &\equiv (1 - \lambda_1 \lambda_2)^{-1}(t + \lambda_1 s)\omega_1 \wedge \omega_2
\end{align*}
\]
This shows that \((R(Y); D_Y^1, D_Y^2)\) does not satisfy the compatibility condition \((C)\) in §3.1 on an open subset.

To obtain an explicit description of the model equation in this case, we calculate
\[
\varpi = dy_1 + x_1 dx_1 + x_3 dx_2 + \lambda_1(dy_2 + x_3 dx_1) + \lambda_2(dy_3 + x_4 dx_2)
\]
\[
= d(y_1 + \lambda_1 y_2 + \lambda_2 y_3) - y_2 d\lambda_1 - y_3 d\lambda_2 + (x_4 + \lambda_1 x_3) dx_1 + (x_3 + \lambda_2 x_4) dx_2
\]
\[
= dZ - P_1 dX_1 - P_2 dX_2 - P_3 dX_3 - P_4 dX_4.
\]
Thus, putting
\[
\begin{align*}
Z &= y_1 + \lambda_1 y_2 + \lambda_2 y_3, X_1 = \lambda_1, X_2 = \lambda_2, X_3 = x_1, X_4 = x_2 \\
P_1 &= y_2, P_2 = y_3, P_3 = -(x_4 + \lambda_1 x_3), P_4 = -(x_3 + \lambda_2 x_4)
\end{align*}
\]
we obtain a canonical coordinate \((X_1, X_2, X_3, X_4, Z, P_1, P_2, P_3, P_4)\) of \((W(Y), C_Y^r)\). Conversely we calculate
\[
\begin{align*}
\lambda_1 &= X_1, \lambda_2 = X_2, x_1 = X_3, x_2 = X_4, x_3 = (X_1 X_2 - 1)^{-1}(P_4 - X_2 P_3), \\
x_4 &= (X_1 X_2 - 1)^{-1}(P_3 - X_1 P_4), y_3 = P_2, y_2 = P_1.
\end{align*}
\]
Hence we have
\[
\begin{align*}
\bar{\theta}_2 &= dy_2 + x_3 dx_1 = dP_1 + (X_1 X_2 - 1)^{-1}(P_4 - X_2 P_3)dX_3 \\
\bar{\theta}_3 &= dy_3 + x_4 dx_2 = dP_2 + (X_1 X_2 - 1)^{-1}(P_3 - X_1 P_4)dX_4.
\end{align*}
\]
Thus we obtain the following description of the model equation of type \((C_3, \{\alpha_2\})\);
\[
\begin{align*}
P_{11} &= P_{12} = P_{14} = P_{22} = P_{23} = 0, \\
P_{13} &= (X_1 X_2 - 1)^{-1}(X_2 P_3 - P_4), P_{24} = (X_1 X_2 - 1)^{-1}(X_1 P_4 - P_3).
\end{align*}
\]
Other than \((C_3, \{\alpha_2\})\), we note here that regular differential systems of type \(\mathfrak{m}\) satisify the condition \((Y.2)\) in §7.1, when \(\mathfrak{m} = \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}\) is the negative part of the simple graded Lie algebra of type \((C_\ell, \{\alpha_2\})\), \((C_\ell, \{\alpha_{\ell-1}\})\) \((\ell \geq 3)\), \((B_{2m}, \{\alpha_{2m}\})\) \((p \geq 2)\) or \((F_4, \{\alpha_4\})\) (cf. §6 [12], §5.3 [24]).

References

K.Yamaguchi, DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, HOKKAIDO UNIVERSITY, SAPPORO 060-0810, JAPAN, E-MAIL yamaguch@math.sci.hokudai.ac.jp