Geometry of $D_4$ conformal triality
and singularities of tangent surfaces

Goo ISHIKAWA*, Yoshinori MACHIDA† and Masatomo TAKAHASHI‡

Abstract

It is well known that the projective duality can be understood in the context of geometry of $A_n$-type. In this paper, as $D_4$-geometry, we construct explicitly a flag manifold, its triple-fibration and differential systems which have $D_4$-symmetry and conformal triality. Then we give the generic classification for singularities of the tangent surfaces to associated integral curves, which exhibits the triality. The classification is performed in terms of the classical theory on root systems combined with the singularity theory of mappings. The relations of $D_4$-geometry with $G_2$-geometry and $B_3$-geometry are mentioned. The motivation of the tangent surface construction in $D_4$-geometry is provided.

1 Introduction

The projective structure and the conformal structure are the most important ones among various kinds of geometric structures. For the projective structures, we do have an important notion, the projective duality. Then we can ask the existence of any counterpart to the projective duality for the conformal structures. Let us try to find it from the view point of Dynkin diagrams. The projective duality can be understood in the context of geometry of $A_n$-type. In fact, Dynkin diagrams of $A_n$-type, which lay under the projective structures, enjoy the obvious $\mathbb{Z}_2$-symmetry. It induces the projective duality after all. On the other hand, the base of the conformal structures is provided by diagrams of type $B_n$ and $D_n$. We observe that only the diagram of type $D_4$ possesses $S_3$-symmetry. In fact, among all simple Lie algebras, only $D_4$ has $S_3$ as the outer automorphism group.

The triality was first discussed by Cartan ([6], see also [17]). Then algebraic triality was studied via octonions by Chevelley, Freudenthal, Springer, Jacobson and so on ([19]). The real geometric triality was studied first by Study [20]. Porteous, in [18], gave a modern exposition on geometric triality. Note that in [18], the null Grassmannians in $B_n$- and $D_n$-geometry are called “quadric Grassmannians” and the $D_4$ triality is called “quadric triality”. For relations to representation theory of $SO(4,4)$ and to mathematical physics, also see [9][16].

The triality has close relations with singularity theory, in particular, theory of simple singularities (see [3]). The $D_4$-singularities of function-germs, wavefronts, caustics, etc. have

2010 Mathematics Subject Classification: Primary 58K40; Secondly 57R45, 53A20.

*This work was supported by KAKENHI No.22340030
†This work was supported by KAKENHI No.22540109
‡This work was supported by KAKENHI No.23740041.
the natural $S_3$-symmetry and also the relations of $D_4$-singularities and $G_2$-singularities are found([2][8][17]).

In general, for each complex semi-simple Lie algebra, to construct geometric homogeneous models in terms of Borel subalgebras and parabolic subalgebras is known, for instance, in the classical Tits geometry ([21][22][1]). However it is another non-trivial problem to construct the explicit real model from an appropriate real form of the complex Lie algebra, with the detailed analysis on associated canonical geometric structures. Moreover singularities naturally arising from the geometric model provide new problems. We do treat in this paper both the realization problem of geometric models and the classification problem of singularities for $D_4$.

We would like to call a “conformal triality” any phenomenon which arises from this $S_3$-symmetry of $D_4$. In this paper, we construct an explicit diagram of fibrations, which is called a tree of fibrations, or a cascade of fibrations or a quiver of fibrations, and associated geometric structures on it with $D_4$-symmetry. Moreover we show, as one of conformal trialities, the classification of singularities of surfaces arising from conformal geometry on the explicit tree of fibrations arising form the $D_4$-diagram. The appearance of singularities often depends on geometric structure behind. Thus the geometric triality becomes visible via the triality on the data of singularities.

We provide, as the real geometric model for $D_4$-diagram, the tree of fibrations on null flag manifolds on the 8-space with $(4,4)$-metric in §2. In §3, we recall the structure of $\mathfrak{so}(4,4) = \mathfrak{o}(4,4)$, the Lie algebra of the orthogonal group $O(4,4)$ on $\mathbb{R}^{4,4}$, as a basic structure of our constructions, and then we describe the canonical geometric structures. In §4, we give the statement of the main classification result (Theorem 4.3). We describe explicitly the tree of fibrations of $D_4$ in §5, and the canonical differential system on null flags in §6, where Theorem 4.3 is proved. In §7, we provide one of motivations for the tangent surface construction in $D_4$-geometry, introducing the notion of “null frontals”, and a relation to “bi-Monge-Ampère equations”.

2 Null flag manifolds associated to $D_4$-diagram

Let $V = \mathbb{R}^{4,4}$ and $(\cdot,\cdot)$ be the inner product of signature $(4,4)$. A linear subspace $W \subset V$ is called null if $(u|v) = 0$ for any $u, v \in W$. We set

$$Q_0 := \{ V_1 \mid V_1 \subset V, \dim(V_1) = 1, V_1 \text{ is null} \}.$$ 

Then $Q_0$ is a 6-dimensional quadric in the projective space $P^7 = P(V) = G_1(V)$. The set of 2-dimensional null subspaces,

$$M := \{ V_2 \mid V_2 \subset V, \dim(V_2) = 2, V_2 \text{ is null} \},$$

is a 9-dimensional submanifold of the Grassmannian $G_2(V)$. The set of 3-dimensional null subspaces,

$$R := \{ V_3 \mid V_3 \subset V, \dim(V_3) = 3, V_3 \text{ is null} \},$$

is a 9-dimensional submanifold of the Grassmannian $G_3(V)$.

The totality of maximal null subspaces, namely, 4-dimensional null subspaces, form disjoint two families $Q_+ = \{ V_4^+ \}$ and $Q_- = \{ V_4^- \}$, which are both 6-dimensional submanifolds of the Grassmannian $G_4(V)$.

**Remark 2.1** We have diffeomorphisms $Q_0 \cong Q_+ \cong Q_- \cong \text{SO}(4) \cong S^3 \times_{Z_2} S^3$, where $S^3 \times_{Z_2} S^3$ means the quotient by the diagonal action of the $Z_2$-action on $S^3$ by the antipodal map (see [18][16]).

2
For any $V^+_i \in Q_+$ and $V^-_i \in Q_-$ from the two families, we have that $\dim(V^+_i \cap V^-_i) = 1$ or 3. We call $V^+_i$ and $V^-_i$ incident if $\dim(V^+_i \cap V^-_i) = 3$. For $W, W' \in Q_+$ (resp. $W, W' \in Q_-$) from one family, we have $\dim(W \cap W') = 0, 2$ or 4. For any $V_3 \in R$, there exists unique incident pair $V^+_4 \in Q_+$, $V^-_4 \in Q_-$ with $V_3 = V^+_4 \cap V^-_4$. For null subspaces $V_i, V_j \subset V$ of dimensions $i, j$, respectively with $i < j$, we call them incident if $V_i \subset V_j$.

Now we consider flags of mutually incident null subspaces in $\mathbb{R}^{4,4}$. We define the 11-dimensional flag manifold

$$N := \{ (V_1, V_2, V^+_4, V^-_4) \in Q_0 \times Q_+ \times Q_- \mid V_1 \subset V^+_4 \cap V^-_4, \dim(V^+_4 \cap V^-_4) = 3 \},$$

which is diffeomorphic to

$$N' := \{ (V_1, V_3) \in Q_0 \times R \mid V_1 \subset V_3 \}.$$

In fact the map $\Phi : N \to N'$ defined by $\Phi(V_1, V^+_4, V^-_4) = (V_1, V^+_4 \cap V^-_4)$ is a diffeomorphism.

Moreover we define the 12-dimensional complete flag manifold

$$Z := \{ (V_1, V_2, V^+_4, V^-_4) \in Q_0 \times M \times Q_+ \times Q_- \mid V_1 \subset V_2 \subset V^+_4 \cap V^-_4, \dim(V^+_4 \cap V^-_4) = 3 \},$$

which is diffeomorphic to

$$Z' := \{ (V_1, V_2, V_3) \in Q_0 \times M \times R \mid V_1 \subset V_2 \subset V_3 \},$$

by the diffeomorphism $(V_1, V_2, V^+_4, V^-_4) \mapsto (V_1, V_2, V^+_4 \cap V^-_4)$.

Thus we get the tree of fibrations for the $D_4$-diagram:

$$\begin{array}{ccc}
P^1 & \rightarrow & Z^{12}(\subset N \times M) \\
\pi_N \downarrow & & \pi_M \\
N^{11} & \rightarrow & M^9 \\
\pi'_0 \downarrow & \pi'_+ \downarrow & \pi'_- \downarrow \\
Q^6_0 & Q^6_+ & Q^6_-
\end{array}$$

where $\pi_N, \pi_M, \pi'_0, \pi'_+$ and $\pi'_-$ are natural projections.

Let $O(4,4)$ be the orthogonal group of $V = \mathbb{R}^{4,4}$, and $\mathfrak{g} = \mathfrak{o}(4,4)$ its Lie algebra. Note that $O(4,4)$ has 4 connected component. Let $O(4,4)_e$ be the identity component of $O(4,4)$, and $G$ the universal covering of $O(4,4)_e$. Then $G$ is a simply connected Lie group having $\mathfrak{g}$ as its Lie algebra. Here we consider the Lie group $G$ in order to realize the triality not only in the level of Lie algebras but also in the level of Lie groups ([16]).

In the above diagram, each flag manifold is in fact $G$-homogeneous, as well as $O(4,4)$-homogeneous, and each projection is $G$-equivariant.

The lower left diagram indicates the conformal triality.

### 3 Gradations to $\mathfrak{o}(4,4)$ and geometric structures on null flag manifolds

We recall the structure of $\mathfrak{g} = \mathfrak{o}(4,4)$, the Lie algebra of the orthogonal group $O(4,4)$ on $\mathbb{R}^{4,4}$, that is the split real form of $\mathfrak{o}(8,\mathbb{C})$. See [10][5][23] for details and for other simple Lie algebras.
With respect to a basis $e_1, \ldots, e_8$ of $\mathbb{R}^{4,4}$ with inner products $(e_i|e_{9-j}) = \frac{1}{2}\delta_{ij}$, $1 \leq i, j \leq 8$, we have
\[ o(4, 4) = \{ A \in \mathfrak{gl}(8, \mathbb{R}) \mid \tau AK + KA = 0 \}, \]
\[ = \{ A = (a_{ij}) \in \mathfrak{gl}(8, \mathbb{R}) \mid a_{9-j,9-i} = -a_{ij}, 1 \leq i, j \leq 8 \}, \]
where $K = (k_{ij})$ is the $8 \times 8$-matrix defined by $k_{i,9-j} = \frac{1}{2}\delta_{ij}$. Let
\[ \mathfrak{h} := \mathfrak{g}_0 = \{ \varepsilon_i(E_{ii} - E_{9-i,9-i}) \mid \varepsilon_i \in \mathbb{R}, 1 \leq i \leq 4 \} \]
be a Cartan subalgebra of $\mathfrak{g}$. Then the root system is given by $\pm \varepsilon_i \pm \varepsilon_j, 1 \leq i < j \leq 4$, and $\mathfrak{g}$ is decomposed, over $\mathbb{R}$, into the direct sum of root spaces
\[ \mathfrak{g}_{\varepsilon_i - \varepsilon_j} = (E_{ii} - E_{9-i,9-i})\mathbb{R}, \quad \mathfrak{g}_{\varepsilon_i + \varepsilon_j} = (E_{ij} - E_{9-i,9-j})\mathbb{R}, \quad \mathfrak{g}_{-\varepsilon_i - \varepsilon_j} = (E_{9-j,i} - E_{9-i,j})\mathbb{R}, \]
$(1 \leq i < j \leq 4)$.

The simple roots are given by
\[ \alpha_1 := \varepsilon_1 - \varepsilon_2, \quad \alpha_2 := \varepsilon_2 - \varepsilon_3, \quad \alpha_3 := \varepsilon_3 - \varepsilon_4, \quad \alpha_4 := \varepsilon_3 + \varepsilon_4. \]
(The numbering of simple roots is the same as in [4] and is slightly different from [16].)

By labeling the root just on the left-upper-half part, we illustrate the structure of $\mathfrak{g}$:

<table>
<thead>
<tr>
<th>$\varepsilon_1$</th>
<th>$\alpha_1$</th>
<th>$\alpha_1 + \alpha_2$</th>
<th>$\alpha_1 + \alpha_2 + \alpha_3$</th>
<th>$\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$</th>
<th>$\alpha_1 + 2\alpha_2 + \alpha_3 + \alpha_4$</th>
<th>$0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-\alpha_1$</td>
<td>$\varepsilon_2$</td>
<td>$\alpha_2$</td>
<td>$\alpha_2 + \alpha_3$</td>
<td>$\alpha_2 + \alpha_3 + \alpha_4$</td>
<td>$\alpha_2 + \alpha_3 + \alpha_4$</td>
<td>$0$</td>
</tr>
<tr>
<td>$-\alpha_1 - \alpha_2$</td>
<td>$-\alpha_2$</td>
<td>$\varepsilon_3$</td>
<td>$\alpha_3$</td>
<td>$\alpha_4$</td>
<td>$0$</td>
<td></td>
</tr>
<tr>
<td>$-\alpha_1 - \alpha_2$</td>
<td>$-\alpha_2$</td>
<td>$-\alpha_3$</td>
<td>$-\varepsilon_4$</td>
<td>$0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$-\alpha_1 - \alpha_2$</td>
<td>$-\alpha_2 - \alpha_4$</td>
<td>$-\alpha_4$</td>
<td>$0$</td>
<td>$-\varepsilon_4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$-\alpha_1 - \alpha_2$</td>
<td>$-\alpha_2 - \alpha_4$</td>
<td>$-\alpha_3$</td>
<td>$0$</td>
<td>$-\varepsilon_3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$-\alpha_1 - 2\alpha_2$</td>
<td>$0$</td>
<td>$0$</td>
<td>$-\varepsilon_2$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$-\alpha_3 - \alpha_4$</td>
<td>$0$</td>
<td>$0$</td>
<td>$-\varepsilon_1$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$0$</td>
<td>$0$</td>
<td>$0$</td>
<td>$0$</td>
<td>$0$</td>
<td>$0$</td>
<td>$0$</td>
</tr>
</tbody>
</table>

The Borel subalgebra is given by $\mathfrak{g}_{\geq 0} = \mathfrak{g}_0 \oplus \sum_{\alpha > 0} \mathfrak{g}_\alpha$, the sum of Cartan subalgebra $\mathfrak{h} = \mathfrak{g}_0$ and positive root spaces $\mathfrak{g}_\alpha$ with respect to the simple root system $\{ \alpha_1, \alpha_2, \alpha_3, \alpha_4 \}$.

We take parabolic subalgebras $\mathfrak{g}^1, \mathfrak{g}^2, \mathfrak{g}^3, \mathfrak{g}^4$, where $\mathfrak{g}^1$ is the sum of $\mathfrak{g}_{\geq 0}$ and all $\mathfrak{g}_\alpha$ for a negative root $\alpha$ without $\alpha_1$-term. For instance,
\[ \mathfrak{g}^1 = (E_{ii} - E_{9-j,9-i} \mid 2 \leq j \leq 7, 1 \leq i \leq 8 - j )R + (E_{11} - E_{28})R. \]
Moreover we have a parabolic subalgebra
\[ \mathfrak{g}^{134} := \mathfrak{g}^1 \cap \mathfrak{g}^2 \cap \mathfrak{g}^3 = \mathfrak{g}_{\geq 0} \oplus \mathfrak{g}_{-\alpha_2}. \]

Let $\text{Ad} : G \to \text{GL}(\mathfrak{g})$ denote the adjoint representation, $B$ (resp. $G'$) the normalizer in $G$ under $\text{Ad}$ of the subalgebra $\mathfrak{g}_{\geq 0}$ (resp. the subalgebras $\mathfrak{g}^i, i = 1,2,3,4$). Then $B$ (resp. $G'$)
has $\mathfrak{g}_{\geq 0}$ (resp. $\mathfrak{g}^+$) as its Lie algebra. The subgroup $G^{134} := G^1 \cap G^3 \cap G^4$ has $\mathfrak{g}^{134}$ as its Lie algebra. Then the flag manifolds $Z, Q_0, M, Q_+, Q_-$ and $N$ are $G$-homogeneous spaces with isotropy groups $B, G^1, G^2, G^3, G^4$ and $G^{134}$ respectively. We have

$$Z = G/B, \quad Q_0 = G/G^1, \quad M = G/G^2, \quad Q_+ = G/G^3, \quad Q_- = G/G^4, \quad N = G/G^{134}.$$  

Define the linear isomorphisms $\sigma, \tau : h^* \to h^*$ on the dual space $h^*$ of the Cartan subalgebra $h$ by

$$\sigma(\alpha_1) = \alpha_3, \sigma(\alpha_2) = \alpha_2, \sigma(\alpha_3) = \alpha_4, \sigma(\alpha_4) = \alpha_1,$$

and

$$\tau(\alpha_1) = \alpha_1, \tau(\alpha_2) = \alpha_2, \tau(\alpha_3) = \alpha_4, \tau(\alpha_4) = \alpha_3,$$

which induce Lie algebra isomorphisms $\sigma, \tau : \mathfrak{g} \to \mathfrak{g}$, expressed by the same letters, satisfying

$$\sigma (\mathfrak{g}_{\pm 0}) = \mathfrak{g}_{\pm a_3}, \sigma (\mathfrak{g}_{\pm a_2}) = \mathfrak{g}_{\pm a_2}, \sigma (\mathfrak{g}_{\pm a_3}) = \mathfrak{g}_{\pm a_4}, \sigma (\mathfrak{g}_{\pm a_4}) = \mathfrak{g}_{\pm a_1},$$

and

$$\tau (\mathfrak{g}_{\pm 0}) = \mathfrak{g}_{\pm a_1}, \tau (\mathfrak{g}_{\pm a_2}) = \mathfrak{g}_{\pm a_2}, \tau (\mathfrak{g}_{\pm a_3}) = \mathfrak{g}_{\pm a_4}, \tau (\mathfrak{g}_{\pm a_4}) = \mathfrak{g}_{\pm a_3}.$$  

The isomorphisms $\sigma, \tau$ are of order 3, 2 respectively. Thus $\mathfrak{g}$ has $\mathfrak{S}_3$-symmetry. Since $G$, the universal covering of $O(4,4)$, is simply connected, the $\mathfrak{S}_3$-symmetry on $\mathfrak{g}$ lifts to the $\mathfrak{S}_3$-symmetry of $G$. In particular the associated isomorphism $\sigma : G \to G$ satisfies

$$\sigma (B) = B, \sigma (G^1) = G^3, \sigma (G^2) = G^2, \sigma (G^3) = G^4, \sigma (G_4) = G_1, \sigma (G^{134}) = G^{134}.$$  

Thus, in particular, we have induced diffeomorphisms $Q_0 \cong Q_+ \cong Q_-$. The null quadric $Q_0 \subset P(V) = P(\mathbb{R}^{4,4})$ has the canonical conformal structure of type $(3,3)$. In fact, for each $V_1 \in Q_0$, consider $V_1^\perp \subset V = \mathbb{R}^{4,4}$. Then the tangent space $T_{V_1}Q_0$ is isomorphic to $V_1^\perp / V_1$, up to similarity transformation. Therefore the metric on $V$ induces the canonical conformal structure on $Q_0$ of signature $(3,3)$. In other words, the conformal structure on $Q_0$ is defined by the quadric tangent cone $C_\times$ of the Schubert variety

$$S_x := \{ W_1 \in Q_0 \mid W_1 \subset V_1^\perp \} = P(V_1^\perp) \cap Q_0 \subset Q_0,$$

for each $x = V_1 \in Q_0$. Note that $S_x = \pi_0 \pi_1^{-1} \pi_M \pi_0^{-1}(x)$, in terms of the tree of fibrations.

Also $Q_+$ (resp. $Q_-$) has a conformal structure of type $(3,3)$. In fact, for each $y = V_4^\perp \in Q_\pm$, the Schubert variety

$$S_y^\pm := \{ W_4 \in Q_\pm \mid W_4 \cap V_4^\perp \neq \{0\} \} \subset Q_\pm$$

induces invariant quadratic cone field (conformal structure) $C_y^\pm$ on $Q_\pm$ defined by the Pfaffian, respectively. Note that $S_y^\pm = \pi_\pm \pi_M^{-1} \pi_M \pi_\pm^{-1}(y)$. The triality $Q_0 \cong Q_+ \cong Q_-$ preserves the conformal structures.

Now we turn to construct the invariant differential systems on null flag manifolds.

Let

$$\mathfrak{g}_{-1} := \mathfrak{g}_{-a_1} \oplus \mathfrak{g}_{-a_2} \oplus \mathfrak{g}_{-a_3} \oplus \mathfrak{g}_{-a_4}.$$  

The subspace

$$\mathfrak{g}_{\geq -1} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_{\geq 0} = \mathfrak{g}^{134} + \mathfrak{g}^2$$

in $\mathfrak{g}$ satisfies $\text{Ad}(G)(\mathfrak{g}_{\geq -1}) = \mathfrak{g}_{\geq -1}$ and defines a left invariant distribution $\tilde{\pi}$ on $G$, which induces the standard differential system $E \subset TZ$ with rank 4 and with growth $(4, 7, 10, 11, 12)$ (see [23]). In fact we can read the growth from the above table. We call $E$ the $D_4$ Engel distribution on $Z$.  


Remark 3.1 We would like to call the distribution $E$ “Engel”, simply because it lives on the top place (heaven) of our real spaces, referring the contributions of the mathematician Friedrich Engel on the theory of Lie algebras.

The flag manifold $M^9$ has the canonical contact structure $D_M$ with growth $(8, 9)$, which carries a structure of $2 \times 2 \times 2$-hyper-matrices. Moreover $D_M$ possesses a Lagrange cone field defined by a decomposable cubic.

In fact we define the subspace

$$
\mathfrak{d}_M := \langle g_{-e_1+e_3} \oplus g_{-e_2+e_3} \oplus g_{-e_1+e_4} \oplus g_{-e_2+e_4}
\oplus g_{-e_1-e_3} \oplus g_{-e_2-e_4} \oplus g_{-e_1-e_3} \oplus g_{-e_2-e_3} \rangle \oplus g^2
$$

$$
= \langle g_{-a_1-a_2} \oplus g_{-a_2} \oplus g_{-a_1-a_2-a_3} \oplus g_{-a_2-a_3}
\oplus g_{-a_1-a_2-a_4} \oplus g_{-a_2-a_4} \oplus g_{-a_1-a_2-a_3-a_4} \rangle \oplus g^2
$$

in $\mathfrak{g}$. Then we have that $\text{Ad}(G^2)\mathfrak{d}_M = \mathfrak{d}_M$ and therefore $\mathfrak{d}_M$ defines the invariant distribution $D_M \subset TM = T(G/G^2)$ with rank 8, which is a contact structure. We call $D_M$ the $D_4$ contact structure on $M$.

Define the subalgebra $\mathfrak{g}_M^0$ of $\mathfrak{g}$ by

$$
\mathfrak{g}_M^0 := \mathfrak{g}_0 \oplus \mathfrak{g}_{\pm a_1} \oplus \mathfrak{g}_{\pm a_2} \oplus \mathfrak{g}_{\pm a_3} \oplus \mathfrak{g}_{\pm a_4}.
$$

Then $\mathfrak{g}_M^0$ is isomorphic to $\mathfrak{sl}(2, \mathbb{R}) \oplus \mathfrak{sl}(2, \mathbb{R}) \oplus \mathfrak{sl}(2, \mathbb{R}) \oplus \mathbb{R}$ and it acts on $\mathfrak{d}_M$. Thus the group $SL(2, \mathbb{R}) \times SL(2, \mathbb{R}) \times SL(2, \mathbb{R}) \times \mathbb{R}^\times$ acts on the contact structure $D_M$. We see that $D_N$ has an invariant decomposition

$$
D_M = D_M^1 \otimes D_M^2 \otimes D_M^4
$$

by subbundles $D_M^1, D_M^3, D_M^4$ of rank 2, which means that the distribution $D_M$ has a structure of $2 \times 2 \times 2$-hyper-matrices. By the diagonal action of $SL(2, \mathbb{R})$ we have a Lagrange cone field in $D_M$, which we call the $D_4$ Monge cone structure on $M$.

The flag manifold $N^{11}$ has a distribution $D_N$ with growth $(6, 9, 11)$ with a direct sum decomposition into three subbundles of rank two. We define the subspace

$$
\mathfrak{d}_N := \langle g_{-e_1+e_2} \oplus g_{-e_1+e_3} \rangle \oplus \langle g_{-e_2+e_4} \oplus g_{-e_3+e_4} \rangle \oplus \langle g_{-e_1-e_3} \rangle \oplus \langle g_{-e_2-e_4} \rangle \oplus \langle g_{-e_1-e_3} \rangle \oplus \langle g_{-e_2-e_3} \rangle \oplus \langle g_{-e_1+e_4} \rangle \oplus \langle g_{-e_2+e_4} \rangle \rangle \oplus \mathfrak{sl}^{134}
$$

$$
= \langle g_{-a_1} \oplus g_{-a_1-a_2} \rangle \oplus \langle g_{-a_2-a_3} \rangle \oplus \langle g_{-a_1-a_2-a_3} \rangle \oplus \langle g_{-a_2-a_3-a_4} \rangle \oplus \langle g_{-a_2-a_4} \rangle \oplus \langle g_{-a_1-a_2-a_3-a_4} \rangle \oplus \langle g_{-a_1-a_2-a_4} \rangle \oplus \langle g_{-a_1-a_2-a_3-a_4} \rangle \rangle \oplus \mathfrak{sl}^{134}
$$

of $\mathfrak{g}$. Then we have that $\text{Ad}(G^{134})\mathfrak{d}_N = \mathfrak{d}_N$, and therefore $\mathfrak{d}_N$ defines the invariant distribution $D_N \subset TN = T(G/G^{134})$ with rank 6. Define the subalgebra $\mathfrak{g}_N^0 := \mathfrak{g}_0 \oplus \mathfrak{g}_{\pm a_2}$ of $\mathfrak{g}$. Then $\mathfrak{g}_N^0$ is isomorphic to $\mathfrak{sl}(2, \mathbb{R}) \oplus \mathfrak{sl}(2, \mathbb{R}) \oplus \mathbb{R}$ and it acts on $\mathfrak{d}_N$. Then we have an invariant decomposition

$$
D_N = D_N^1 \otimes D_N^2 \otimes D_N^4
$$

into subbundles $D_N^1, D_N^3, D_N^4$ of rank 2. We call $D_N$ the $D_4$ Cartan distribution.

Remark 3.2 We can compare the above mentioned facts with $G_2$-diagram: We consider the purely imaginary split octonions $\text{Im}\mathcal{O}'$ with the inner product of type $(3, 4)$ and consider the null projective space $N^5$ (resp. the null Grassmannian $M^5$, the flag manifold $Z^6$) which consists of 1-dimensional null subalgebras (resp. 2-dimensional null subalgebras, the incident pairs of 1-dimensional null subalgebras and 2-dimensional null subalgebras) for the multiplication on the split octonions $\mathcal{O}'$. The flag manifold $Z$ has the Engel distribution with growth $(2, 3, 4, 5, 6)$, $N^5$ has a distribution with growth $(2, 3, 5)$, and the null projective space $M^5$ has a contact structure with growth $(4, 5)$ with a cubic Lagrange cone field ([14]).
4 $D_4$-triality and singularities of null tangent surfaces

We consider the canonical projections

$$
\pi_0 = \pi_0' \circ \pi_N : Z \longrightarrow Q_0, \quad \pi_+ = \pi_+ \circ \pi_N : Z \longrightarrow Q_+, \quad \pi_- = \pi_- \circ \pi_N : Z \longrightarrow Q_-,
$$

and the diagram

$$
\begin{array}{ccc}
Z^{12} & \xrightarrow{\pi_M} & M^9 \\
\pi_0 \searrow & \pi_+ \downarrow & \pi_- \swarrow \\
Q_0^6 & Q_+^6 & Q_-^6
\end{array}
$$

induced by $D_4$ Dynkin diagram.

The $D_4$ Engel distribution $E$ on $Z$ is described from the tree of fibrations, by

$$
E = (\ker \pi_0^* \cap \ker \pi_+^* \cap \ker \pi_-^*) \oplus \ker \pi_M^* \subset TZ,
$$

which is of rank 4. See the definition of $E$ as the standard differential system for $\mathfrak{o}(4,4)$ in §3.

A curve $f : I \rightarrow Z$ on $Z$ is called $E$-integral if it is tangent to $E$, namely, if $f_*(TI) \subset E(\subset TZ)$.

**Definition 4.1** For the given (indefinite) conformal structure $\{C_x\}_{x \in Q_0}$ on $Q_0$, we call a curve $\gamma : I \rightarrow Q_0$ a null curve if

$$
\gamma'(t) \in C_{\gamma(t)}, (t \in I).
$$

A geodesic on $Q_0$ is called a null geodesic if it is a null curve.

A surface $F : U \rightarrow Q_0$ is called a null surface if

$$
F_*(T_uU) \subset C_{F(u)}, (u \in U).
$$

The same definition is applied also to $Q_\pm$.

**Proposition 4.2** (Guillemin-Sternberg [9]) The null geodesics on $Q_0$ for the conformal structure on $Q_0$ are given by null lines, namely, projective lines on $Q_0 \subset P(V) = P(R^{4,4})$.

We will take null geodesics, namely, null lines as “tangent lines” for null curves in $Q_0$. Note that any null line in $Q_0$ is given by $\pi_0(\pi_0^* V_2)$ for some $V_2 \in M$. Then we are naturally led to consider tangent surfaces of null curves in $Q_0, Q_+$ and $Q_-$. For $Q_\pm$ we take, as the family of “lines” in $Q_\pm$,

$$
\pi_\pm(\pi_M^{-1}(V_2)) = \{W_4 \in Q_\pm \mid V_2 \subset W_4\}, \quad V_2 \in M.
$$

If we consider a special class of null curves which are projections of $E$-integral curves $f : I \rightarrow Z$ to $Q_0, Q_+$ or $Q_-$, then their tangent surfaces turn to be null surfaces in $Q_0, Q_+$ or $Q_-$ in the above sense. In fact we show later more strict results (Proposition 7.4).

For $M$, we regard

$$
\pi_M(\pi_0^{-1}(V_1) \cap \pi_+^{-1}(V_4^+) \cap \pi_-^{-1}(V_4^-)) = \{W_2 \mid V_1 \subset W_2 \subset V_4^+ \cap V_4^-\}, \quad (V_1, V_4^+, V_4^-) \in N,
$$
as lines in $M$.

We will give the explicit classification of singularities of “tangent surfaces” in the viewpoint of geometry of $D_4$-triality:
Theorem 4.3 (Triality of singularities.) For a generic $E$-integral curve $f : I \to Z$, the singularities of tangent surfaces, to the curves $\gamma_0 = \pi_0 \circ f, \gamma_+ = \pi_+ \circ f, \gamma_- = \pi_- \circ f, \gamma_M = \pi_M \circ f$ on $Q_0, Q_+, Q_-, M$, 

\[
\begin{align*}
\Tan(\gamma_0) &= \pi_0 \pi_M^{-1} \pi_M f(I) (\subset Q_0), \\
\Tan(\gamma_+) &= \pi_+ \pi_M^{-1} \pi_M f(I) (\subset Q_+), \\
\Tan(\gamma_-) &= \pi_- \pi_M^{-1} \pi_M f(I) (\subset Q_-), \\
\Tan(\gamma_M) &= \pi_M (\pi_0^{-1} \pi_0 f(I) \cap \pi_+^{-1} \pi_+ f(I) \cap \pi_-^{-1} \pi_- f(I)) (\subset M),
\end{align*}
\]

at any point $t \in I$ is classified, up to local diffeomorphisms, as follows:

<table>
<thead>
<tr>
<th>$\Tan(\gamma_0)$</th>
<th>$\Tan(\gamma_+)$</th>
<th>$\Tan(\gamma_-)$</th>
<th>$\Tan(\gamma_M)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE</td>
<td>CE</td>
<td>CE</td>
<td>CE</td>
</tr>
<tr>
<td>OSW</td>
<td>CE</td>
<td>CE</td>
<td>CE</td>
</tr>
<tr>
<td>CE</td>
<td>OSW</td>
<td>CE</td>
<td>CE</td>
</tr>
<tr>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OSW</td>
</tr>
</tbody>
</table>

Here CE (resp. OSW, OM) means the cuspidal edge (resp. open swallowtail, open Mond surface).

The cuspidal edge (resp. open swallowtail, open Mond surface) is defined as a diffeomorphism class of the tangent surface-germ to a curve of type $(1, 2, 3, \cdots)$ (resp. $(2, 3, 4, 5, \cdots)$, $(1, 3, 4, 5, \cdots)$) in an affine space. The type of a curve is the strictly increasing sequence of orders (degrees of initial terms) of components in an appropriate system of linear coordinates. Their normal forms are given as follows:

- **CE**: $(u, t) \mapsto (u, t^2 - 2ut, 2t^3 - 3ut^2, 0, 0, 0), (R^2, 0) \to (R^6, 0)$,
  $(u, t) \mapsto (u, t^2 - 2ut, 2t^3 - 3ut^2, 0, 0, 0, 0, 0, 0), (R^2, 0) \to (R^9, 0)$,

- **OSW**: $(u, t) \mapsto (u, t^3 - 3ut, t^4 - 2ut^2, 3t^5 - 5ut^3, 0, 0), (R^2, 0) \to (R^6, 0)$,
  $(u, t) \mapsto (u, t^3 - 3ut, t^4 - 2ut^2, 3t^5 - 5ut^3, 0, 0, 0, 0, 0), (R^2, 0) \to (R^9, 0)$,

- **OM**: $(u, t) \mapsto (u, 2t^3 - 3ut^2, 3t^4 - 4ut^3, 4t^5 - 5ut^4, 0, 0), (R^2, 0) \to (R^6, 0)$,

![](cuspidal_edge.png) ![](open_swallowtail.png) ![](open_Mond_surface.png)

The classification is performed in terms of the classical theory on root systems combined with the singularity theory of mappings. From the root system which defines the flag manifolds, we have the type of an appropriate projection of the $E$-integral curve and we can determine the normal forms of tangent surfaces.

We have the following sequence of diagrams from the $D_4$-diagram by “foldings” and “removings”:

\[
\begin{align*}
D_4 & \quad \searrow \quad \downarrow \\
A_3 = D_3 & \quad \leftarrow B_3 \\
& \quad \searrow \quad \swarrow \quad \downarrow \\
A_2 & \leftarrow C_2 \quad \leftarrow B_2 \leftarrow G_2.
\end{align*}
\]
In fact for each Dynkin diagram $P$ we can associate an explicit tree of fibrations $T_P$. A folding of Dynkin diagram $P \to Q$ corresponds to an embedding $T_Q \to T_P$ of tree of fibrations, and a removing $R \to S$ corresponds to a local projection from $T_R \to T_S$.

From this perspective on Dynkin diagrams, we can observe relations between geometry, singularity and differential equations arising from diagrams of fibrations.

For example, in $G_2$-diagram, the singularities of tangent surfaces to projections of a generic $E$-integral curve on $Z^6$ to $N^5, M^5$ respectively has the duality

$$
\begin{align*}
\text{CE} & \leftrightarrow \text{CE}, \\
\text{OM} & \leftrightarrow \text{OSW}, \\
\text{OGFP} & \leftrightarrow \text{OS}.
\end{align*}
$$

Here OGFP (resp. OS) means the open generic folded pleat (resp. open Shcherbak surface) which is the tangent surface to a generic curve of type $(1, 3, 5, 7, 8)$ (resp. a curve of type $(2, 3, 5, 7, 8)$) ([14]). For the cases $C_2 = B_2$ and $A_2$, see [13] and [14].

5 Fibrations via flag coordinates

Let $(V_1, V_2, V_3) \in Z' = Z'(D_4)$ or $(V_1, V_2, V_1^+, V_1^-) \in Z = Z(D_4)$ with $V_3 = V_4^+ \cap V_4^-$. Then the flag is completed into the multiple double flag:

$$V_1 \subset V_2 \subset V_3 \subset V_4^+ \subset V_4^- \subset V_2^\perp \subset V_1^\perp \subset V = \mathbb{R}^{4,4},$$

combined with the intermediate $V_4^+, V_4^-$, the unique pair of 4-null subspaces containing $V_3$, which are contained in $V_3^\perp$. Then there exists a basis $e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8$ of $V = \mathbb{R}^{4,4}$ such that

$$
\begin{align*}
V_1^0 &= \langle e_1 \rangle_\mathbb{R}, \\
V_2^0 &= \langle e_1, e_2 \rangle_\mathbb{R}, \\
V_3^0 &= \langle e_1, e_2, e_3 \rangle_\mathbb{R}, \\
V_4^{0+} &= \langle e_1, e_2, e_3, e_4 \rangle_\mathbb{R}, \\
V_4^{0-} &= \langle e_1, e_2, e_3, e_5 \rangle_\mathbb{R}, \\
V_3^{0\perp} &= \langle e_1, e_2, e_3, e_4, e_5 \rangle_\mathbb{R}, \\
V_2^{0\perp} &= \langle e_1, e_2, e_3, e_4, e_5, e_6 \rangle_\mathbb{R}, \\
V_1^{0\perp} &= \langle e_1, e_2, e_3, e_4, e_5, e_6, e_7 \rangle_\mathbb{R}
\end{align*}
$$

and with inner products

$$(e_1 | e_8) = \frac{1}{2}, (e_2 | e_7) = \frac{1}{2}, (e_3 | e_6) = \frac{1}{2}, (e_4 | e_5) = \frac{1}{2},$$

other pairings being null. Such a basis $e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8$ of $V = \mathbb{R}^{4,4}$ is called an adapted basis for $(V_1, V_2, V_3) \in Z' = Z'(D_4)$ or $(V_1, V_2, V_4^+, V_4^-) \in Z = Z(D_4)$. Then the metric on $V$ is expressed via the coordinates $x_1, \ldots, x_8$ associated to the above basis by $ds^2 = dx_1dx_8 + dx_2dx_7 + dx_3dx_6 + dx_4dx_5$.

For any curve $f : I \to Z$, we can take a moving frame $f : I \to O(4, 4)$ such that $f(t)$ is an adapted basis for $f(t)$, which is called an adapted frame for $f$.

Remark 5.1 If we set

$$
\tilde{Z} := \{(V_1, V_2, V_3, V_4) \mid V_1 \subset V_2 \subset V_3 \subset V_4 \subset \mathbb{R}^{4,4}, \, \dim(V_i) = i, \, V_i \text{ is null, } i = 1, 2, 3, 4\},
$$

then the projection $\pi : \tilde{Z} \to Z'$, $\pi(V_1, V_2, V_3, V_4) = (V_1, V_2, V_3)$ is a trivial double covering. In fact, if we set

$$
Z_\pm := \left\{(V_1, V_2, V_3, V_4) \in \tilde{Z} \mid V_4 \in Q_\pm\right\},
$$

then $\tilde{Z} = Z_+ \cup Z_-$, disjoint union, and $\pi|_{Z_\pm} : Z_\pm \to Z'$ is a diffeomorphism. As is seen as above, we have an embedding $\tilde{Z}$ into the complete flag manifold $\mathcal{F}_{1,2,3,4,5,6,7}(\mathbb{R}^{4,4})$. 

9
Let us give local charts on $Z'$, $Z$ and $Q_0$. Take another flag defined by

$$W_1^0 = \langle e_8 \rangle_R, \quad W_2^0 = \langle e_8, e_7 \rangle_R, \quad W_3^0 = \langle e_8, e_7, e_6, e_5 \rangle_R,$$

$$W_4^{0+} = \langle e_8, e_7, e_6, e_5 \rangle_R, \quad W_4^{0-} = \langle e_8, e_7, e_6, e_4 \rangle_R, \quad W_3^{0\perp} = \langle e_8, e_7, e_6, e_5, e_4 \rangle_R,$$

$$W_2^{0\perp} = \langle e_8, e_7, e_6, e_5, e_4, e_3 \rangle_R, \quad W_1^{0\perp} = \langle e_8, e_7, e_6, e_5, e_4, e_3, e_2 \rangle_R,$$

and take the open neighborhood

$$U' = \{(V_1, V_2, V_3) \in Z' \mid V_1 \cap W_1^{0\perp} = \{0\}, V_2 \cap W_2^{0\perp} = \{0\}, V_3 \cap W_3^{0\perp} = \{0\}\}$$

of $(V_1^0, V_2^0, V_3^0)$ in $Z'$. Then, for any $(V_1, V_2, V_3) \in U'$, there exist unique $f_1, f_2, f_3 \in V_3$ such that $f_1$ forms a basis of $V_1$, $f_1, f_2$ form a basis of $V_2$ and $f_1, f_2, f_3$ form a basis of $V_3$ respectively and they are of form

$$\begin{cases}
    f_1 &= e_1 + x_{21} e_2 + x_{31} e_3 + x_{41} e_4 + x_{51} e_5 + x_{61} e_6 + x_{71} e_7 + x_{81} e_8 \\
    f_2 &= e_2 + x_{32} e_3 + x_{42} e_4 + x_{52} e_5 + x_{62} e_6 + x_{72} e_7 + x_{82} e_8 \\
    f_3 &= e_3 + x_{43} e_4 + x_{53} e_5 + x_{63} e_6 + x_{73} e_7 + x_{83} e_8
\end{cases}$$

for some $x_{ij} \in R$. Then we have

$$\begin{align*}
(f_1 | f_1) &= x_{81} + x_{21} x_{71} + x_{31} x_{61} + x_{41} x_{51} = 0, \\
2(f_1 | f_2) &= x_{82} + x_{21} x_{72} + x_{31} x_{62} + x_{41} x_{52} + x_{51} x_{21} + x_{61} x_{32} + x_{71} = 0, \\
2(f_1 | f_3) &= x_{83} + x_{21} x_{73} + x_{31} x_{63} + x_{41} x_{53} + x_{51} x_{43} + x_{61} = 0, \\
(f_2 | f_2) &= x_{72} + x_{32} x_{62} + x_{42} x_{52} = 0, \\
2(f_2 | f_3) &= x_{73} + x_{32} x_{63} + x_{42} x_{53} + x_{52} x_{43} + x_{62} = 0, \\
(f_3 | f_3) &= x_{63} + x_{43} x_{53} = 0.
\end{align*}$$

Therefore we see that

$$(x_{21}, x_{31}, x_{41}, x_{51}, x_{61}, x_{71}, x_{32}, x_{52}, x_{52}, x_{62}, x_{43}, x_{53})$$

is a chart on $U' \subset Z'$.

Moreover we take

$$f_4 = e_4 + x_{54} e_5 + x_{64} e_6 + x_{74} e_7 + x_{84} e_8,$$

from $V_4^+$ so that $f_1, f_2, f_3, f_4$ form a basis of $V_4^+$, and take

$$f_5 = x_{45} e_4 + e_5 + x_{65} e_6 + x_{75} e_7 + x_{85} e_8,$$

from $V_4^-$ so that $f_1, f_2, f_3, f_5$ form a basis of $V_4^-$. We have

$$\begin{align*}
2(f_1 | f_4) &= x_{84} + x_{21} x_{74} + x_{31} x_{64} + x_{41} x_{54} + x_{51} = 0, \\
2(f_2 | f_4) &= x_{74} + x_{32} x_{64} + x_{42} x_{54} + x_{52} = 0, \\
2(f_3 | f_4) &= x_{64} + x_{43} x_{54} + x_{53} = 0, \\
(f_4 | f_4) &= x_{54} = 0, \\
2(f_1 | f_5) &= x_{85} + x_{21} x_{75} + x_{31} x_{65} + x_{41} + x_{51} x_{45} = 0, \\
2(f_2 | f_5) &= x_{75} + x_{32} x_{65} + x_{42} + x_{52} x_{45} = 0, \\
2(f_3 | f_5) &= x_{65} + x_{43} + x_{53} x_{45} = 0, \\
(f_4 | f_5) &= x_{45} = 0.
\end{align*}$$

We set

$$U := \{(V_1, V_2, V_4^+, V_4^-) \in Z \mid V_1 \cap W_1^{0\perp} = \{0\}, V_2 \cap W_2^{0\perp} = \{0\}, V_4^\pm \cap W_4^{0\pm} = \{0\}\}.$$
Consider the diffeomorphism $\Phi : Z \to Z'$ defined by $\Phi(V_1, V_2, V_4^+) = (V_1, V_2, V_4^+ \cap V_4^-)$. Then $\Phi(U) = U'$. After replacing $x_{43}, x_{53}$ by $x_{64}, x_{65}$, we have a chart

$$(x_{21}, x_{31}, x_{41}, x_{51}, x_{61}, x_{71}, x_{32}, x_{52}, x_{62}, x_{64}, x_{65})$$
on $U = \Phi^{-1}(U') \subset Z$ and the mapping $\Phi$ is locally given by just $x_{53} = -x_{64}, x_{43} = -x_{65}$. In fact other components are calculated as follows:

$$\begin{align*}
x_{81} &= -x_{71}x_{21} - x_{61}x_{31} - x_{51}x_{41}, \\
x_{72} &= -x_{62}x_{32} - x_{52}x_{42}, \\
x_{82} &= x_{62}(x_{32}x_{21} - x_{31}) + x_{52}(x_{42}x_{21} - x_{41}) - x_{51}x_{42} - x_{61}x_{32} - x_{71}, \\
x_{43} &= -x_{65}, \\
x_{53} &= -x_{64}, \\
x_{63} &= -x_{65}x_{64}, \\
x_{73} &= x_{65}x_{64}x_{32} + x_{64}x_{42} + x_{65}x_{52} - x_{62}, \\
x_{83} &= x_{65}x_{64}(x_{31} - x_{32}x_{21}) + x_{64}(x_{41} - x_{42}x_{21}) + x_{65}(x_{51} - x_{52}x_{21}) - x_{61} + x_{62}x_{21}, \\
x_{74} &= -x_{64}x_{32} - x_{52}, \\
x_{84} &= x_{64}(x_{32}x_{21} - x_{31}) + x_{52}x_{21} - x_{51}, \\
x_{75} &= -x_{65}x_{32} - x_{42}, \\
x_{85} &= x_{65}(x_{32}x_{21} - x_{31}) + x_{42}x_{21} - x_{41}.
\end{align*}$$

Now we will explicitly describe $\pi_0, \pi_+, \pi_-$ and $\pi_M$ locally on $U \subset Z$.

It is easy to describe $\pi_0$ in terms of our charts: Consider the open neighborhood of $V_1^0 \subset Q_0$:

$$U_0 := \{ V_1 \in Q_0 \mid V_1 \cap W_1^{0\perp} = \{0\} \}.$$ 

Then, using the above notations, $(x_{21}, x_{31}, x_{41}, x_{51}, x_{61}, x_{71})$ provides a chart on $U_0 \subset Q_0$. Moreover $\pi_0 : U \to U_0$ is given by

$$(x_{21}, x_{31}, x_{41}, x_{51}, x_{61}, x_{71}, x_{32}, x_{52}, x_{62}, x_{64}, x_{65}) \mapsto (x_{21}, x_{31}, x_{41}, x_{51}, x_{61}, x_{71}).$$

**Remark 5.2** We have the description of the conformal structure on $Q_0$ using the local coordinates: The Schubert variety $S_x = P(V_1^+) \cap Q_0, x = V_1 \in Q_0$ (see §3) is given in $U_0$ by

$$\{ X \in U_0 \mid (X_{21} - x_{21})(X_{71} - x_{71}) + (X_{31} - x_{31})(X_{61} - x_{61}) + (X_{41} - x_{41})(X_{51} - x_{51}) = 0 \}.$$

Then the null cone filed $C \subset TQ_0$ of the conformal structure on $Q_0$ is given, in our local coordinates, by

$$dx_{21}dx_{71} + dx_{31}dx_{61} + dx_{41}dx_{51} = 0,$$

in terms of the symmetric two tensor.

Next we describe $\pi_M$. Set

$$U_M := \{ V_2 \in M \mid V_2 \cap W_2^{0\perp} = \{0\} \},$$

and take a basis of $V_2 \in M$ of form

$$\begin{align*}
h_1 &= e_1 + z_{31}e_3 + z_{41}e_4 + z_{51}e_5 + z_{61}e_6 + z_{71}e_7 + z_{81}e_8, \\
h_2 &= e_2 + z_{32}e_3 + z_{42}e_4 + z_{52}e_5 + z_{62}e_6 + z_{72}e_7 + z_{82}e_8.
\end{align*}$$

Then we have a chart on $U_M \subset M$ by

$$(z_{31}, z_{41}, z_{51}, z_{61}, z_{71}, z_{32}, z_{42}, z_{52}, z_{62}).$$
Using the modification $h_1 = f_1 - x_{21}f_2, h_2 = f_2$, we have that the projection $\pi_M : U \to U_M$ is given by
\[
\begin{align*}
    z_{31} &= x_{31} - x_{32}x_{21}, \\
    z_{41} &= x_{41} - x_{42}x_{21}, \\
    z_{51} &= x_{51} - x_{52}x_{21}, \\
    z_{61} &= x_{61} - x_{62}x_{21}, \\
    z_{71} &= x_{71} + x_{62}x_{32}x_{21} + x_{52}x_{42}x_{21}, \\
    z_{32} &= x_{32}, \\
    z_{42} &= x_{42}, \\
    z_{52} &= x_{52}, \\
    z_{62} &= x_{62}.
\end{align*}
\]

To describe $\pi_+$, we set
\[
U_+ := \{ V_4^+ \in Q_+ \mid V_4^+ \cap W_4^{0+} = \{0\}\},
\]
and take a basis of $V_4^+ \subseteq U_+$ of form
\[
\begin{align*}
    g_1 &= e_1 + y_{51}e_5 + y_{61}e_6 + y_{71}e_7, \\
    g_2 &= e_2 + y_{52}e_5 + y_{62}e_6 - y_{71}e_7, \\
    g_3 &= e_3 - y_{64}e_5 - y_{62}e_7 - y_{51}e_8, \\
    g_4 &= e_4 + y_{64}e_6 - y_{52}e_7 - y_{51}e_8.
\end{align*}
\]
Then we have a chart on $U_+$ by
\[
(y_{51}, y_{61}, y_{71}, y_{52}, y_{62}, y_{64}).
\]
We use the modifications
\[
\begin{align*}
    g_1 &= f_1 - x_{21}f_2 - (x_{31} - x_{32}x_{21})f_3 - (x_{41} - x_{42}x_{21} - x_{43}(x_{31} - x_{32}x_{21}))f_4, \\
    g_2 &= f_2 - x_{32}f_3 - (x_{42} - x_{43}x_{32})f_4, \\
    g_3 &= f_3 - x_{43}f_4.
\end{align*}
\]
Then the projection $\pi_+ : U \to U_+$ is described in terms of our charts, by
\[
\begin{align*}
    y_{51} &= x_{51} - x_{52}x_{21} + x_{64}(x_{31} - x_{32}x_{21}), \\
    y_{61} &= x_{61} - x_{62}x_{21} - x_{64}(x_{41} - x_{42}x_{21}), \\
    y_{71} &= x_{71} + x_{62}x_{31} + x_{52}x_{41} - x_{64}(x_{42}x_{31} - x_{41}x_{32}), \\
    y_{52} &= x_{52} + x_{64}x_{32}, \\
    y_{62} &= x_{62} - x_{64}x_{42}, \\
    y_{64} &= x_{64}.
\end{align*}
\]
To describe $\pi_-$, similarly we set
\[
U_- := \{ V_4^- \in Q_- \mid V_4^- \cap W_4^{0-} = \{0\}\},
\]
and take a basis of $V_4^- \subseteq U_-$:
\[
\begin{align*}
    g_1 &= e_1 + y_{41}e_4 + y_{61}e_6 + y_{71}e_7, \\
    g_2 &= e_2 + y_{42}e_4 + y_{62}e_6 - y_{71}e_7, \\
    g_3 &= e_3 - y_{65}e_4 - y_{62}e_7 - y_{41}e_8, \\
    g_5 &= e_5 + y_{65}e_6 - y_{42}e_7 - y_{41}e_8.
\end{align*}
\]
Then a chart on $U_-$ is given by
\[
(y_{41}, y_{61}, y_{71}, y_{42}, y_{62}, y_{65}).
\]
Use the modifications
\[
\begin{align*}
    g_1 &= f_1 - x_{21}f_2 - (x_{31} - x_{32}x_{21})f_3 - (x_{51} - x_{52}x_{21} - x_{53}(x_{31} - x_{32}x_{21}))f_5, \\
    g_2 &= f_2 - x_{32}f_3 - (x_{52} - x_{53}x_{32})f_5, \\
    g_3 &= f_3 - x_{53}f_5.
\end{align*}
\]
Then the projection $\pi_- : U \to U_-$ is given by

\[
\begin{align*}
    y_{41} &= x_{41} - x_{42}x_{21} + x_{65}(x_{31} - x_{32}x_{21}), \\
y_{61} &= x_{61} - x_{62}x_{21} - x_{65}(x_{31} - x_{32}x_{21}), \\
y_{71} &= x_{71} + x_{62}x_{31} + x_{51}x_{42} - x_{65}(x_{31}x_{32} - x_{32}x_{31}), \\
y_{42} &= x_{42} + x_{65}x_{32}, \\
y_{62} &= x_{62} - x_{65}x_{52}, \\
y_{65} &= x_{65}.
\end{align*}
\]

**Remark 5.3** We have also the description of the conformal structure on $Q^\pm$, using the local coordinates: The Schubert variety $S_y = \{ W \in Q^\pm \mid W \cap V^\pm_4 \neq \{0\} \}, y = V^\pm_4 \subset Q^\pm$ (see §3), is given in $U_+$ (resp. in $U_-$) by

\[ \{ Y \in U_+ \mid (Y_{51} - y_{51})(Y_{62} - y_{62}) - (Y_{61} - y_{61})(Y_{52} - y_{52}) - (Y_{71} - y_{71})(Y_{64} - y_{64}) = 0, \] (resp. $\{ Y \in U_- \mid (Y_{41} - y_{41})(Y_{62} - y_{62}) - (Y_{61} - y_{61})(Y_{42} - y_{42}) - (Y_{71} - y_{71})(Y_{65} - y_{65}) = 0 \} ) \].

Then the null cone field $C \subset TQ_+ \ (\text{resp. } TQ_-)$ of the conformal structure on $Q_+$ (resp. $Q_-$) is given locally by

\[ dy_{51}dy_{62} - dy_{61}dy_{52} - dy_{71}dy_{64} = 0, \] (resp. $dy_{41}dy_{62} - dy_{61}dy_{42} - dy_{71}dy_{65} = 0$ ),

in terms of two tensors.

### 6 The Engel system via flag coordinates

Recall that

\[ E = (\ker \pi_{0*} \cap \ker \pi_{+*} \cap \ker \pi_{-*}) \oplus \ker \pi_{M*} \subset TZ. \]

First we show

**Lemma 6.1** Let $f = (V_1, V_2, V_4^+, V_4^-) \in Z$ and $e = (e_1, e_2, e_3, e_4, e_5, e_6, e_7)$ be an adapted basis for $f$ (see §5). For each tangent vector $v \in T_f Z$, the following conditions are equivalent to each other:

1. The tangent vector $v$ belongs to $E_f$.
2. There exists a representative $c : (\mathbb{R}, 0) \to (Z, f)$, $c(t) = (V_1(t), V_2(t), V_4^+(t), V_4^-(t))$ of the tangent vector $v$, with a framing

\begin{align*}
    V_1(t) &= (f_1(t))_R, \quad V_2(t) = (f_1(t), f_2(t))_R, \\
    V_4^+(t) &= (f_3(t), f_4(t), f_5(t), f_6(t))_R, \quad V_4^-(t) = (f_1(t), f_2(t), f_3(t), f_4(t))_R,
\end{align*}

by a curve-germ $f : (\mathbb{R}, 0) \to \text{GL}(\mathbb{R}^{4,4})$,

\[ f(t) = (f_1(t), f_2(t), f_3(t), f_4(t), f_5(t), f_6(t), f_7(t), f_8(t)), \]

with $f(0) = e$, which satisfies that $f_1'(0) \in V_2, f_2'(0) \in V_4^+ \cap V_4^-.$

3. The tangent vector $v$ satisfies that

\[ \pi_{0*}v \in TV_1(G_1(V_2)) \text{ and } \pi_{M*}v \in TV_2(G_2(V_4^+ \cap V_4^-)). \]
Proof. (1) ⇒ (2): Let \( v = w + u, w \in \ker \pi_0 \cap \ker \pi_+ \cap \ker \pi_-, u \in \ker \pi_M \). Take a frame

\[
g(t) = (g_1(t), g_2(t), g_3(t), g_4(t), g_5(t), g_6(t), g_7(t), g_8(t))
\]

of \( V \) such that \( g(t) \) defines the tangent vector \( u \) at \( t = 0 \) and that \( \langle g_1(t), g_2(t) \rangle_R = V_2 \). Take a frame

\[
h(t) = (h_1(t), h_2(t), h_3(t), h_4(t), h_5(t), h_6(t), h_7(t), h_8(t))
\]
such that \( h(t) \) defines the tangent vector \( w \) at \( t = 0 \) and that

\[
\langle h_1(t) \rangle_R = V_1, \langle h_1(t), h_2(t), h_3(t), h_4(t) \rangle_R = V_4^+, \langle h_1(t), h_2(t), h_3(t), h_5(t) \rangle_R = V_4^-
\]

with \( g(0) = h(0) = e \). Then the curve \( f(t) := g(t) + h(t) - g(0) \) represents \( v \). Moreover \( f_1'(0) = g_1'(0) + h_1'(0) \in V_2, f_2'(0) = g_2'(0) + h_2'(0) \in V_4^+ \cap V_4^- \).

The assertion (2) ⇒ (3) is clear.

(3) ⇒ (1): We take a frame \( f(t) = (f_1(t), f_2(t), f_3(t), f_4(t), f_5(t)) \) for \( v \) such that \( f_1(t) \in V_2, f_2(t) \in V_3 = V_4^+ \cap V_4^- \). Write

\[
\begin{aligned}
f_1 &= e_1 + x_{21}e_2, \\
f_2 &= e_2 + x_{32}e_3, \\
f_3 &= e_3 - x_{55}e_4 - x_{64}e_5 + x_{36}e_6 + x_{73}e_7 + x_{85}e_8, \\
f_4 &= e_4 + x_{64}e_6 + x_{74}e_7 + x_{84}e_8, \\
f_5 &= e_5 + x_{65}e_6 + x_{75}e_7 + x_{85}e_8,
\end{aligned}
\]

with functions \( x_{ij} = x_{ij}(t) \) with \( x_{ij}(0) = 0 \). Then we have \( x_{83} = -x_{21}x_{73}, x_{84} = -x_{21}x_{74}, x_{85} = -x_{21}x_{75}, x_{73} = -x_{32}x_{63}, x_{74} = -x_{32}x_{64}, x_{75} = -x_{32}x_{65} \). Therefore \( x_{83}'(0) = 0, x_{84}'(0) = 0, x_{85}'(0) = 0, x_{73}'(0) = 0, x_{74}'(0) = 0, x_{75}'(0) = 0 \). We define \( g(t) \) and \( h(t) \) by

\[
\begin{aligned}
g_1 &= e_1, \\
g_2 &= e_2 + x_{32}e_3, \\
g_3 &= e_3, \\
g_4 &= e_4, \\
g_5 &= e_5,
\end{aligned}
\]

and

\[
\begin{aligned}
h_1 &= e_1 + x_{21}e_2, \\
h_2 &= e_2, \\
h_3 &= e_3 - x_{55}e_4 - x_{64}e_5 + x_{36}e_6, \\
h_4 &= e_4 + x_{64}e_6, \\
h_5 &= e_5 + x_{65}e_6.
\end{aligned}
\]

Let \( w \in T_fZ \) (resp. \( u \in T_fZ \)) be tangent vectors defined by the curve \( g(t) \) (resp. \( h(t) \)) at \( t = 0 \). Then \( w \) (resp. \( u \)) belongs to \( \ker \pi_0 \cap \ker \pi_+ \cap \ker \pi_- \) (resp. to \( \ker \pi_M \)). Set \( k(t) = g(t) + h(t) - g(0) \). Then we see that \( f'(0) = k'(0) = g'(0) + h'(0) \). Thus we have that \( v = w + u \in (\ker \pi_0 \cap \ker \pi_+ \cap \ker \pi_-) \oplus \ker \pi_M \). \( \square \)

Regarding Lemma 6.1, the differential system \( E \subset TZ \) is given by the condition \( f_1' \in \langle f_1, f_2 \rangle_R, f_2' \in \langle f_1, f_2, f_3 \rangle_R \). In terms of component functions \( x_{ij} \), the condition is given by

\[
(x'_{21}, x'_{31}, x'_{41}, x'_{51}, x'_{61}, x'_{71}, x'_{81}) = p(1, x_{32}, x_{42}, x_{52}, x_{62}, x_{72}, x_{82})
\]

and

\[
(x'_{32}, x'_{42}, x'_{52}, x'_{62}, x'_{72}, x'_{82}) = q(1, x_{43}, x_{53}, x_{63}, x_{73}, x_{83}),
\]

14
for some \( p, q \in \mathbb{R} \). Then \( p = x_1', q = x_2' \). Therefore we have that the differential system \( E \subset TZ \) on our coordinate neighborhood \( U \) is given by

\[
dx_{i1} = x_{i2}dx_{21}(3 \leq i \leq 8), \quad dx_{j2} = x_{j3}dx_{32}(4 \leq j \leq 8).
\]

We introduce a weight \( w_{ij} \in \mathbb{R} \) on each component \( x_{ij} \). From the above equations for \( E \), we impose the relations

\[
w_{i1} = w_{i2} + w_{21}(3 \leq i \leq 8), \quad w_{j2} = w_{j3} + w_{32}(4 \leq j \leq 8).
\]

Then the weights of all components \( x_{ij} \) are well-defined and they are explicitly expressed by \( w_{21}, w_{32}, w_{65} \) and \( w_{64} \). Moreover we have

**Lemma 6.2** (Triality of weights.) The projection \( \pi_0, \pi_+, \pi_- \) and \( \pi_M \) are weighted homogeneous mappings respectively. The weights of components of the projections \( \pi_0, \pi_+, \pi_- \) to \( Q_0, Q_+, Q_- \) are given by the following table:

<table>
<thead>
<tr>
<th>( Q_0 )</th>
<th>( Q_+ )</th>
<th>( Q_- )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( w_{21} )</td>
<td>( w_{65} )</td>
<td>( w_{64} )</td>
</tr>
<tr>
<td>( w_{32} + w_{21} )</td>
<td>( w_{65} + w_{32} )</td>
<td>( w_{64} + w_{32} )</td>
</tr>
<tr>
<td>( w_{64} + w_{32} + w_{21} )</td>
<td>( w_{65} + w_{32} + w_{21} )</td>
<td>( w_{64} + w_{32} + w_{21} )</td>
</tr>
<tr>
<td>( w_{65} + w_{32} + w_{21} )</td>
<td>( w_{65} + w_{64} + w_{32} )</td>
<td>( w_{65} + w_{64} + w_{32} )</td>
</tr>
<tr>
<td>( w_{65} + w_{64} + w_{32} + w_{21} )</td>
<td>( w_{65} + w_{64} + 2w_{32} + w_{21} )</td>
<td>( w_{65} + w_{64} + 2w_{32} + w_{21} )</td>
</tr>
</tbody>
</table>

The weights of components of the projection \( \pi_M \) to \( M \) are given by

\[
w_{32}, \ w_{32} + w_{21}, \ w_{65} + w_{32}, \ w_{64} + w_{32}, \ w_{65} + w_{32} + w_{21}, \ w_{64} + w_{32} + w_{21}, \ w_{65} + w_{64} + w_{32} + w_{21}, \ w_{65} + w_{64} + 2w_{32} + w_{21}.
\]

**Remark 6.3** We observe that the formula of weights coincides with the formula of negative (or positive) roots of \( D_4 \) (see [4] for example). In fact, given a simple root system \( \alpha_1, \alpha_2, \alpha_3, \alpha_4 \), we identify \( -\alpha_1, -\alpha_2, -\alpha_3, -\alpha_4 \) with \( w_{21}, w_{32}, w_{65}, w_{64} \). Then the weight \( w \) of a component for a negative root \( \alpha \) is given by \( w = m_1w_{21} + m_2w_{32} + m_3w_{65} + m_4w_{64} \) if \( \alpha = -m_1\alpha_1 - m_2\alpha_2 - m_3\alpha_3 - m_4\alpha_4 \). See the following \( D_4 \) diagram with weights \( w_{21}, w_{32}, w_{65}, w_{64} \) at appropriate positions:

```
  \( w_{65} \)
  /    \
\( w_{21} \) —— \( w_{32} \) —— \( w_{64} \)
```

Then we have the orders of flag coordinates for generic \( E \)-integral curves, and normal forms of singularities appeared in tangent surfaces.
Lemma 6.4 Let \( f : I \to Z \) be a generic \( E \)-integral curve. Then, for any \( t_0 \in I \) and for any flag chart \( (x_{ij}) \) on \( Z \) centered at \( f(t_0) \), the sets of orders on components for the projections \( \pi_0 f, \pi_+ f, \pi_- f, \pi_M f \) are given as in the following table:

<table>
<thead>
<tr>
<th>((w_{21}, w_{65}, w_{64}, w_{32}))</th>
<th>(\pi_0 f)</th>
<th>(\pi_+ f)</th>
<th>(\pi_- f)</th>
<th>(\pi_M f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1, 1, 1, 1))</td>
<td>1, 2, 3, 3, 4, 5*</td>
<td>1, 2, 3, 3, 4, 5*</td>
<td>1, 2, 3, 3, 4, 5*</td>
<td>1, 2, 2, 2, 3, 3, 3, 4, 5*</td>
</tr>
<tr>
<td>((2, 1, 1, 1))</td>
<td>2, 3, 4, 4, 5, 6</td>
<td>1, 2, 4, 3, 5, 6</td>
<td>1, 2, 4, 3, 5, 6</td>
<td>1, 3, 2, 2, 4, 4, 3, 5, 6</td>
</tr>
<tr>
<td>((1, 2, 1, 1))</td>
<td>1, 2, 3, 4, 5, 6</td>
<td>2, 3, 4, 4, 5, 6</td>
<td>1, 2, 3, 4, 5, 6</td>
<td>1, 2, 3, 2, 4, 3, 4, 5, 6</td>
</tr>
<tr>
<td>((1, 1, 2, 1))</td>
<td>1, 2, 4, 3, 5, 6</td>
<td>1, 2, 3, 4, 5, 6</td>
<td>2, 3, 4, 4, 5, 6</td>
<td>1, 2, 3, 3, 3, 4, 4, 5, 6</td>
</tr>
<tr>
<td>((1, 1, 1, 2))</td>
<td>1, 3, 4, 4, 5, 7</td>
<td>1, 3, 4, 4, 5, 7</td>
<td>1, 3, 4, 4, 5, 7</td>
<td>2, 3, 3, 3, 4, 4, 5, 7</td>
</tr>
</tbody>
</table>

where 5* means 5 or 6 on an isolated points.

Remark 6.5 From the formula on weights of components, we can estimate the orders of component functions of \( E \)-integral curves. However it is possible that the orders of some components become higher than expected by accidental cancelations of leading terms. Therefore, in order to determine the exact order of each component of generic curves, we need the explicit local expressions of the projections \( \pi_0, \pi_+, \pi_-, \pi_M \) and the differential system \( E \subset TZ \).

Proof of Lemma 6.4. As we have seen in the above arguments, all components of \( \pi_0 \circ f \) (resp. \( \pi_+ \circ f, \pi_- \circ f, \pi_M \circ f \)) are obtained just from the four components \( x_{21} \circ f, x_{65} \circ f, x_{64} \circ f, x_{32} \circ f \) by differentiations, multiplications, summations and integrations. We can spell out, from the explicit expression of components obtained in §5, which component may have higher order than expected. For example, since \((x_{52} \circ f)' = (x_{33} \circ f)(x_{32} \circ f)'\), we see \(x_{52} \circ f = \int (x_{33} \circ f)(x_{32} \circ f)' dt\). Therefore \(\text{ord}(x_{52} \circ f) = \text{ord}(x_{33} \circ f) + \text{ord}(x_{32} \circ f)\). As another example, for the component \( x_{31} \circ f = (x_{31} - x_{32}x_{21}) \circ f \) of \( \pi_M \), we have \((z_{31} \circ f)' = ((z_{31} - x_{32}x_{21}) \circ f)' = -(x_{32} \circ f)'(x_{21} \circ f)\). Therefore \(z_{31} \circ f = -\int (x_{32} \circ f)'(x_{21} \circ f) dt\) and \(\text{ord}(z_{31} \circ f) = \text{ord}((x_{32} \circ f) + \text{ord}(x_{21} \circ f)).\)

By the ordinary transversality theorem, we have, generically, just four cases where \((\text{ord}(x_{21} \circ f), \text{ord}(x_{65} \circ f), \text{ord}(x_{64} \circ f), \text{ord}(x_{32} \circ f))\) is equal to

\[(1, 1, 1, 1), (2, 1, 1, 1), (1, 2, 1, 1), (1, 1, 2, 1), (1, 1, 1, 2),\]

respectively. The last four cases occur just on isolated points, where the orders of all components are equal to the weights of components. In the first case, the order of one component may increase by one from the weight of the component accidentally on an isolated points. Thus we have the above table. \(\Box\)

Proof of Theorem 4.3: We use several results proved in [11]. If the set of orders contains 1, 2, 3 (resp. 2, 3, 4, 5, 1, 3, 4, 5), then the tangent surface to the projection of the Engel integral curve is locally diffeomorphic to the cuspidal edge (resp. the open swallowtail, the open Mond surface) in \((R^6, 0)\) or \((R^9, 0)\). This is proved essentially by the versality of the cuspidal edge (resp. the open swallowtail, the open Mond surface) as an “opening” of the fold map (resp. the Whitney’s cusp, the beak-to beak map) \((R^2, 0) \to (R^2, 0)\). For example, we show one case where the set of orders of components is given by \(\{1, 2, 3, 3, 4, 5\}\). Then the projection of the Engel integral curve is locally expressed by \(c : (R, 0) \to (R^6, 0)\) with components

\[
\begin{align*}
    x_1(t) &= a_1 t + \cdots, \\
    x_2(t) &= a_2 t^2 + \cdots, \\
    x_3(t) &= a_3 t^3 + \cdots, \\
    x_4(t) &= a_4 t^4 + \cdots, \\
    x_5(t) &= a_5 t^5 + \cdots, \\
    x_6(t) &= a_6 t^6 + \cdots.
\end{align*}
\]
where $a_i \neq 0, 1 \leq i \leq 6$ and $\cdots$ means higher order terms. Then, by a local diffeomorphism on $(\mathbb{R}, 0)$ and a linear transformation on $(\mathbb{R}^6, 0)$ the curve is transformed into a curve $\tilde{c} : (\mathbb{R}, 0) \to (\mathbb{R}^6, 0)$ with components

$$
x_1(t) = t, \quad x_2(t) = t^2 + \varphi_2(t), \quad x_3(t) = t^3 + \varphi_3(t), \quad x_4(t) = t^3 + \varphi_4(t), \quad x_5(t) = t^4 + \varphi_5(t), \quad x_6(t) = t^5 + \varphi_6(t),
$$

where $\text{ord}(\varphi_2) \geq 3, \text{ord}(\varphi_3) \geq 4, \text{ord}(\varphi_4) \geq 4, \text{ord}(\varphi_5) \geq 5, \text{ord}(\varphi_6) \geq 6$. The tangent surface of $\tilde{c}$ is parametrized by $F(t,s) = \tilde{c}(t) + se'(t)$, namely,

$$
x_1(t,s) = t + s, \quad x_2(t,s) = t^2 + 2st + \varphi_2(t) + s\varphi'_2(t), \quad x_3(t,s) = t^3 + 3st^2 + \varphi_3(t) + s\varphi'_3(t), \quad x_4(t,s) = t^3 + 3st^2 + \varphi_4(t) + s\varphi'_4(t), \quad x_5(t,s) = t^4 + 4st^3 + \varphi_5(t) + s\varphi'_5(t), \quad x_6(t,s) = t^5 + 5st^4 + \varphi_6(t) + s\varphi'_6(t).
$$

If we put $u = t + s$, then we have that $F$ is diffeomorphic to a map-germ $G : (\mathbb{R}^2, 0) \to (\mathbb{R}^6, 0)$ with components

$$
x_1(t,u) = u, \quad x_2(t,u) = -t^2 + 2ut + \psi_2(t,u), \quad x_3(t,u) = -2t^3 + 3ut^2 + \psi_3(t,u), \quad x_4(t,u) = -2t^3 + 3ut^2 + \psi_4(t,u), \quad x_5(t,u) = -3t^4 + 4ut^3 + \psi_5(t,u), \quad x_6(t,u) = -4t^5 + 5ut^4 + \psi_6(t,u),
$$

where $\psi_1(t,u) = \varphi_1(t) + (u-t)\varphi'_1(t)$. Now consider the set $\mathcal{R}$ of functions $h(t,u)$ such that $\frac{\partial h}{\partial t}$ is a functional multiple of $u-t$. All components of $G$ belong to $\mathcal{R}$. We define $g, \tilde{g} : (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$, by $g(t,u) = (u, -t^2 + 2ut + \psi_2(t,u))$ and $\tilde{g}(t,u) = (u, -t^2 + 2ut)$, both of which are diffeomorphic to the fold map. Then $\mathcal{R}$ coincides with $\mathcal{R}_g$, the totality of $h : (\mathbb{R}^2, 0) \to \mathbb{R}$ such that $dh$ is a functional linear combination of $du$ and $d(-t^2 + 2ut + \psi_2(t,u))$, and with $\mathcal{R}_\tilde{g}$ which is similarly defined. In this situation, we say that $G$ is an opening of $g$. We can show that any $h \in \mathcal{R}$ is a function on

$$
\tilde{G} = (u, -t^2 + 2ut, -t^2 + 3ut^2),
$$

which is a versal opening of $\tilde{g}$. Thus we see, in fact, that there exist functions $\Phi_2, \Phi_3, \Phi_4, \Phi_5, \Phi_6 : (\mathbb{R}^3, 0) \to (\mathbb{R}, 0)$ on $(\mathbb{R}^3, 0)$ with coordinates $y_1, y_2, y_3$ such that

$$
x_1(t,u) = y_1, \quad x_2(t,u) = -t^2 + 2ut + \Phi_2 \circ \tilde{G}, \quad x_3(t,u) = -2t^3 + 3ut^2 + \Phi_3 \circ \tilde{G}, \quad x_4(t,u) = -2t^3 + 3ut^2 + \Phi_4 \circ \tilde{G}, \quad x_5(t,u) = \Phi_5 \circ \tilde{G}, \quad x_6(t,u) = \Phi_6 \circ \tilde{G}.
$$

Then we see necessarily that $\frac{\partial \Phi_2}{\partial y_2}(0) = 0, \frac{\partial \Phi_4}{\partial y_6}(0) = 0$. Define a map-germ $\tau : (\mathbb{R}^6, 0) \to (\mathbb{R}^6, 0)$ by

$$
\tau(y_1, y_2, y_3, y_4, y_5, y_6) = (y_1, y_2 + \Phi_2(y_1, y_2, y_3), y_3 + \Phi_3(y_1, y_2, y_3), y_4 + \Phi_4(y_1, y_2, y_3), y_5 + \Phi_5(y_1, y_2, y_3), y_6 + \Phi_6(y_1, y_2, y_3)).
$$

Then we have that $\tau$ is a diffeomorphism-germ of $(\mathbb{R}^6, 0)$ and $G = \tau \circ (\tilde{G}, 0, 0, 0)$. Thus $F$ is diffeomorphic to $(\tilde{G}, 0, 0, 0)$, which is diffeomorphic to

$$(u,v) \mapsto (u,v^2, v^3, 0, 0, 0),$$

the cuspidal edge in $\mathbb{R}^6$. Note that $(\tilde{G}, 0, 0, 0)$ provides a normal form among tangent mappings.

On the notions of openings and versal openings, and related results, see [11]. We can treat other cases similarly using Lemma 6.4. Thus we have Theorem 4.3.
7 $D_4$ Cartan distributions and null frontals

We have defined in §3 the distribution $D_N \subset TN$ on the flag manifold $N$.

**Definition 7.1** A mapping $F : U \to Q_0$ (resp. $F : U \to Q_+$, $F : U \to Q_-$) from a 2-dimensional manifold $U$ is called a null frontal if there exists a $D_N$-integral lift $\tilde{F} : U \to N$ of $F$, i.e. which satisfies $\tilde{F}_\ast(T_u U) \subset \langle D_N \rangle_{\tilde{F}(x)}$ and $\pi_0(\tilde{F}(x)) = F(x)$ (resp. $\pi_1(\tilde{F}(x)) = F(x)$, $\pi_2(\tilde{F}(x)) = F(x)$), for any $x \in U$.

**Remark 7.2** In the above definition, if we can take $\tilde{F}$ an immersion, then we call $F$ a null frontal.

Recall that $Q_0, Q_1, Q_2$ are endowed with conformal structures of type $(3, 3)$ and we have defined the notion of null surfaces (Definition 4.1).

**Proposition 7.3**
(1) If $F : U \to Q_0$ (resp. $F : U \to Q_+$, $F : U \to Q_-$) is a regular (immersive) null surface, then $F$ is a null frontal.
(2) If $F : U \to Q_0$ (resp. $F : U \to Q_+$, $F : U \to Q_-$) is a null frontal, then $F$ is a null surface.

As is mentioned in §4, we have the following:

**Proposition 7.4** Let $f : I \to Z$ be an $E$-integral curve. Consider the projections $\gamma_0 = \pi_0 \circ f : I \to Q_0, \gamma_+ = \pi_+ \circ f : I \to Q_+$ and $\gamma_- = \pi_- \circ f : I \to Q_-$. Then the tangent surfaces $F_0 = \Tan(\gamma_0), F_+ = \Tan(\gamma_+)$ and $F_- = \Tan(\gamma_-)$ are null frontals. In fact, there exists a $D_N$-integral lifting $\tilde{F}_0$ of $F_0$ (resp. $\tilde{F}_+$ of $F_+$, $\tilde{F}_-$ of $F_-$) such that $\pi_+ \circ \tilde{F}_0$ and $\pi_- \circ \tilde{F}_0$ (resp. $\pi_- \circ \tilde{F}_+$ and $\pi_0 \circ \tilde{F}_+$, $\pi_0 \circ \tilde{F}_-$ and $\pi_+ \circ \tilde{F}_-$) are constant along tangent lines.

Note that $D_N$ is described, in terms of tree of fibrations, by

$$(\ker \pi_{0+} \cap \ker \pi_{1-}) \oplus (\ker \pi_{0+} \cap \ker \pi_{1+}) \oplus (\ker \pi_{0+} \cap \ker \pi_{1+}) \subset TN.$$  

To show Propositions 7.3 and 7.4, we need the following Lemma 7.5 which gives the equivalent descriptions of $D_N$ in different forms.

**Lemma 7.5** Let $f = (V_1, V_4^+, V_4^-) \in N$. For each tangent vector $v \in T_fN$, the following conditions are equivalent to each other:
(1) The tangent vector $v$ belongs to $(D_N)_f$.
(2) There exists a representative $c : (\R, 0) \to (N, f), c(t) = (V_1(t), V_4^+(t), V_4^-(t))$ of the tangent vector $v$, with a framing

\[
V_1(t) = \langle f_1(t) \rangle_{\R}, \ V_4^+(t) \cap V_4^-(t) = \langle f_2(t), f_3(t), f_4(t) \rangle_{\R}, \ V_4^+(t) = \langle f_2(t), f_3(t), f_4(t) \rangle_{\R}, \ V_4^-(t) = \langle f_2(t), f_3(t), f_4(t) \rangle_{\R},
\]

by a curve-germ $f : (\R, 0) \to \GL(\R^{4,4})$,
\[
f(t) = (f_1(t), f_2(t), f_3(t), f_4(t), f_5(t), f_6(t), f_7(t), f_8(t)),
\]

which satisfies that $f(0)$ is an adapted basis for some flag in $\pi_N^1(f) \subset Z$, and that $f_1(0) \in V_4^+ \cap V_4^-, f_2(0), f_3(0) \in (V_4^+ \cap V_4^-)^\perp$.
To show Lemma 7.5, we give local coordinates of \( N' \) and of \( N \). First fix a complete flag as before
\[
W_1^0 \subset W_2^0 \subset W_3^0 \subset W_4^0+ \subset W_4^0- \subset W_3^0 \subset W_2^0 \subset W_1^0 \subset V = \mathbb{R}^{14},
\]
and take the open neighborhood
\[
\Omega' = \{ (V_1, V_3) \in N' \mid V_1 \cap W_1^0 = \{0\}, V_3 \cap W_3^0 = \{0\} \}
\]
of \( (V_1^0, V_3^0) \) in \( N' \). Then, for any \( (V_1, V_3) \in \Omega' \), there exist unique \( f_1, f_2, f_3 \in V \) such that \( f_1 \) forms a basis of \( V_1 \), and \( f_1, f_2, f_3 \) form a basis of \( V_3 \) respectively and they are of form
\[
\begin{align*}
(f_1 | f_1) &= x_{81} + x_{21}x_{71} + x_{31}x_{61} + x_{41}x_{51} = 0, \\
2(f_1 | f_2) &= x_{82} + x_{32}x_{72} + x_{31}x_{62} + x_{41}x_{52} + x_{51}x_{42} + x_{71} = 0, \\
2(f_1 | f_3) &= x_{83} + x_{21}x_{73} + x_{31}x_{63} + x_{41}x_{53} + x_{51}x_{43} + x_{61} = 0, \\
(f_2 | f_2) &= x_{72} + x_{42}x_{52} = 0, \\
2(f_2 | f_3) &= x_{73} + x_{32}x_{63} + x_{42}x_{53} + x_{52}x_{43} + x_{62} = 0, \\
(f_3 | f_3) &= x_{63} + x_{43}x_{53} = 0.
\end{align*}
\]
Therefore we see that
\[
(x_{21}, x_{31}, x_{41}, x_{51}, x_{61}, x_{71}, x_{42}, x_{52}, x_{62}, x_{43}, x_{53})
\]
is a chart on \( \Omega' \subset N' \). We take
\[
f_4 = e_4 + x_{54}e_5 + x_{64}e_6 + x_{74}e_7 + x_{84}e_8,
\]
from \( V_4^+ \) so that \( f_1, f_2, f_3, f_4 \) form a basis of \( V_4^+ \), and take
\[
f_5 = x_{45}e_4 + e_5 + x_{65}e_6 + x_{75}e_7 + x_{85}e_8,
\]
from \( V_4^- \) so that \( f_1, f_2, f_3, f_5 \) form a basis of \( V_4^- \). Then we have a local chart for \( N' \):
\[
(x_{21}, x_{31}, x_{41}, x_{51}, x_{61}, x_{71}, x_{42}, x_{52}, x_{62}, x_{64}, x_{65}).
\]
Note that the calculations of coordinates for \( N' \) and \( N \) go similarly to that for \( Z' \) and \( Z \), and we obtain the local forms of \( \pi'_0, \pi'_+, \pi'_- \) from those for \( \pi_0, \pi_+, \pi_- \) in §5, by just putting \( x_{32} = 0 \). In fact, we have the coordinate expressions for the projection \( \pi'_0 : N \to Q_0 \),
\[
(x_{21}, x_{31}, x_{41}, x_{51}, x_{61}, x_{71}, x_{42}, x_{52}, x_{62}, x_{64}, x_{65}) \mapsto (x_{21}, x_{31}, x_{41}, x_{51}, x_{61}, x_{71}),
\]
for \( \pi'_+ : N \to Q_+ \),
\[
\begin{align*}
y_{51} &= x_{51} - x_{52}x_{21} + x_{64}x_{31}, \\
y_{61} &= x_{61} - x_{62}x_{21} - x_{64}(x_{41} - x_{42}x_{21}), \\
y_{71} &= x_{71} + x_{62}x_{31} + x_{52}x_{41} - x_{64}x_{42}x_{31}, \\
y_{52} &= x_{52}, \\
y_{62} &= x_{62} - x_{64}x_{42}, \\
y_{64} &= x_{64}.
\end{align*}
\]
Proof of Lemma 7.5:
(1) $\Rightarrow$ (2) : Let $v\in (D_N)_f$. Decompose $v=v_1+v_3+v_4$ into $v_1\in \ker\pi_+\cap \ker\pi^\prime_-, v_3\in \ker\pi'_0\cap \ker\pi^-_-, v_4\in \ker\pi'_0\cap \ker\pi^+_-$. We take representatives $g(t), h(t), k(t)$ of $v_1, v_3, v_4$ at 0 respectively, such that $g(0)=h(0)=k(0)$ is an adapted frame for $f$, and
\[
\langle g(t), g_2(t), g_3(t), g_4(t) \rangle_R = V_4^+, \langle g_1(t), g_2(t), g_3(t), g_4(t) \rangle_R = V_4^-,
\]
\[
\langle h_1(t), h_2(t), h_3(t), h_4(t) \rangle_R = V_4^+,
\]
for any $t$ near 0. Set $f(t) = g(t) + h(t) + k(t) - 2g(0)$. Then we have
\[
f'_1(0) = g'_1(0) + h'_1(0) + k'_1(0) = g'_1(0)\in V_4^+\cap V_4^-,
\]
and
\[
f'_2(0) = g'_2(0) + h'_2(0) + k'_2(0)\in V_4^+ + V_4^- = (V_4^+ \cap V_4^-)^\perp.
\]
(2) $\Rightarrow$ (1) : Write down the first five components of $f(t)$ as
\[
\begin{align*}
\{ f_1 &= e_1 + x_{21} e_2 + x_{31} e_3 + x_{41} e_4 + x_{51} e_5 + x_{61} e_6 + x_{71} e_7 + x_{81} e_8, \\
n_2 &= e_2 + x_{42} e_4 + x_{52} e_5 + x_{62} e_6 + x_{72} e_7 + x_{82} e_8, \\
n_3 &= e_3 - x_{65} e_6 - x_{64} e_5 + x_{63} e_6 + x_{73} e_7 + x_{83} e_8, \\
n_4 &= e_4 + x_{64} e_6 + x_{74} e_7 + x_{84} e_8, \\
n_5 &= e_5 + x_{65} e_6 + x_{75} e_7 + x_{85} e_8,
\end{align*}
\]
where $x_{ij} = x_{ij}(t)$ with $x_{ij}(0)=0$. Then, by the condition (2), we have $x'_{ij}(0)=0$, except for the components $x_{21}, x_{31}, x_{42}, x_{52}, x_{64}, x_{65}, x_{74}, x_{75}$, and $x'_{74}(0)=-x'_{52}(0), x'_{75}(0)=-x'_{42}(0)$. Then we take curves $g(t), h(t), k(t)$ satisfying
\[
\begin{align*}
g_1 &= e_1 + x_{21} e_2 + x_{31} e_3, \\
g_2 &= e_2, \\
g_3 &= e_3, \\
g_4 &= e_4, \\
g_5 &= e_5, \\
h_1 &= e_1, \\
h_2 &= e_2 + x_{42} e_4, \\
h_3 &= e_3 - x_{65} e_6, \\
h_4 &= e_4, \\
h_5 &= e_5 + x_{65} e_6 - x_{42} e_7, \\
k_1 &= e_1, \\
k_2 &= e_2 + x_{52} e_5, \\
k_3 &= e_3 - x_{64} e_5, \\
k_4 &= e_4 + x_{64} e_6 - x_{52} e_7, \\
k_5 &= e_5.
\end{align*}
\]
Let $g : I \to N, h : I \to N, k : I \to N$ be curves with the frame $g(t), h(t), k(t)$ respectively. Let $v_1, v_2, v_3, v_4 \in T_f N$ be tangent vectors defined by $g, h, k$ respectively. Then $v = v_1 + v_2 + v_3$. Since $\pi_+ \circ g$ and $\pi_- \circ g$ are constant (resp. $\pi_0 \circ h$ and $\pi_- \circ h$ are constant, $\pi_0 \circ k$ and $\pi_- \circ k$ are constant), we have $v_1 \in v_1 \in \ker \pi_+ \cap \ker \pi_-, v_3 \in \ker \pi_+ \cap \ker \pi_-, v_4 \in \ker \pi_0 \cap \ker \pi_+. \hfill \square$

**Proof of Proposition 7.3:**

(1) Regarding $F(u, v)$ as a 1-dimensional subspace in $V$, we take a frame $f(u, v)$ of $F(u, v)$. Since $F$ is regular,

$$f(u, v), \frac{\partial f}{\partial u}(u, v), \frac{\partial f}{\partial v}(u, v)$$

are linearly independent and

$$V_3(u, v) := \langle f, \frac{\partial f}{\partial u}, \frac{\partial f}{\partial v} \rangle \mathbb{R}$$

is a null 3 space in $V = \mathbb{R}^{4,4}$, for any $(u, v) \in U$. Then by the partial differentiations with respect to $u, v$ of the equalities

$$(f|_u \frac{\partial f}{\partial u}) = 0, (f|_v \frac{\partial f}{\partial v}) = 0, (\frac{\partial f}{\partial u} | \frac{\partial f}{\partial u}) = 0, (\frac{\partial f}{\partial v} | \frac{\partial f}{\partial v}) = 0,$$

we have that

$$\frac{\partial^2 f}{\partial u \partial v} \frac{\partial^2 f}{\partial u \partial v} \frac{\partial^2 f}{\partial u \partial v} \in V_3(u, v)^\perp.$$

We set $V_1(u, v) = \langle f(u, v) \rangle \mathbb{R} \subset V$, and take the unique null 4-spaces $V_4^+(u, v), V_4^-(u, v)$ such that $V_3(u, v) = V_4^+(u, v) \cap V_4^-(u, v)$. Then we have that $\tilde{F} : U \to N$ defined by

$$\tilde{F}(u, v) = (V_1(u, v), V_4^+(u, v), V_4^-(u, v))$$

is $D_N$-integral by Lemma 7.4, and that $\pi_0 \circ \tilde{F} = F$. Therefore $F$ is a null frontal. By triality we have the same result also for regular null surfaces in $Q_{\pm}$.

(2) Let $v \in T_u U$. Suppose $F_*(v) \neq 0$. Then we have $F_*(v) \in (D_N)F(x)$. Take a curve $(V_1(t), V_4^+(t), V_4^-(t))$ on $N$ which represents, at $t = 0$, the tangent vector $F_*(v)$ at $\tilde{F}(x)$. Then $f_1(0) \in V^+_4(0) \cap V^-_4(0)$. The vector $f_1(0)$ corresponds to $F_*(v)$. Therefore

$$F_*(v) \in T_{F(x)}(P(V^+_4(0) \cap V^-_4(0))) \subset T_{F(x)}(P(V_1(0))^{\perp} \cap Q_0) = C_{F(x)},$$

and $F$ is a null surface. By triality we have the same result also null frontals in $Q_{\pm}. \hfill \square$

**Proof of Proposition 7.4:**

Let $f : I \to Z, f(t) = (V_1(t), V_4^+(t), V_4^-(t))$ be an $E$-integral curve. Take a frame $f_1(t)$ of $V_1(t), f_1(t), f_2(t) \subset V_4^+(t), f_1(t), f_2(t), f_3(t), f_4(t)$ of $V_4^+(t)$ and $f_1(t), f_2(t), f_3(t), f_4(t)$ of $V_4^-(t)$. Then the curve $\gamma_0(t)$ is defined by the family $V_1(t)$. Consider, for each $t \in I, V_1(t, s) = f_1(t) + sf_2(t)$, which can be regarded as a projective line. By the condition $f_1(t) \in V_2(t), V_1(t, s)$ gives the tangent line to $\gamma$ at $t$, even when $f_1(t), f_1'(t)$ are linearly dependent. Then $F_0 = \text{Tan}(\gamma_0(t))$ is given by $F_0(t, s) = V_1(t, s)$ and $s$ is the parameter of tangent lines. We define the lift $\tilde{F}_0$ of $F_0$ to $N$ by

$$\tilde{F}_0(t, s) := (V_1(t, s), V_4^+(t), V_4^-(t)).$$

We have that

$$\frac{\partial}{\partial t}(f_1(t) + sf_2(t)) = f'_1(t) + sf'_2(t) \in V_4^+(t) \cap V_4^-(t),$$

$$\frac{\partial}{\partial s}(f_1(t) + sf_2(t)) = f_2(t) \in V_2(t) \subset V_4^+(t) \cap V_4^-(t),$$

21
and that $\frac{\partial}{\partial t} f_3(t) \in (V_4^+ (t) \cap V_4^- (t))^\perp$, $\frac{\partial}{\partial s} f_3(t) = 0$. Thus we have that $\widetilde{F}_0$ is $D_N$-integral by Lemma 7.5. Therefore we have that $F_0$ is a null frontal. Moreover $(\pi_+ \circ \widetilde{F}_0)(t,s) = V_4^+(t)$ and $(\pi_- \circ \widetilde{F}_0)(t,s) = V_4^-(t)$ do not depend on $s$.

By the triality, we have the results also for $F_+ = \text{Tan}(\gamma_+(t))$ and $F_- = \text{Tan}(\gamma_-(t))$.

In fact, under the diffeomorphism $\Phi : N \rightarrow N'$, $\Phi(V_1, \gamma_+(t), \gamma_-(t)) = (V_1, V_4^+ \cap V_4^-)$, $\Phi \circ \widetilde{F}_+ : I \rightarrow N'$ is given by

$$\Phi \circ \widetilde{F}_+ (t,s) = (V_1(t), V_3(t,s), \gamma_3(t,s)) = (f_1(t), f_2(t), f_3(t) + sf_5(t))$$

and $\Phi \circ \widetilde{F}_- : I \rightarrow N'$ is given by

$$\Phi \circ \widetilde{F}_- (t,s) = (V_1(t), V_3(t,s), \gamma_3(t,s)) = (f_1(t), f_2(t), f_3(t) + sf_4(t))$$

for any $(t,s) \in I \times \mathbb{R}$. Therefore $F_+$ (resp. $F_-$) has a $D_N$-integral lift $\widetilde{F}_+$ (resp. $\widetilde{F}_-$) such that $\pi_- \circ \widetilde{F}_+$ and $\pi_0 \circ \widetilde{F}_+$ (resp. $\pi_0 \circ \widetilde{F}_-$ and $\pi_+ \circ \widetilde{F}_-$) do not depend on $s$. 

Let us describe $D_N$ in coordinates. By Lemma 7.5, we pose the condition on a frame $f(t) = (f_1(t), f_2(t), f_3(t), f_4(t), f_5(t), f_6(t), f_7(t), f_8(t))$ such that

\[
\begin{align*}
\phi_1'(0) &= \langle f_1(0), f_2(0), f_3(0) \rangle, \\
\phi_2'(0) &= \langle f_1(0), f_2(0), f_3(0), f_4(0), f_5(0) \rangle, \\
\phi_3'(0) &= \langle f_1(0), f_2(0), f_3(0), f_4(0), f_5(0) \rangle.
\end{align*}
\]

Then there exist $p_i, q_i \in \mathbb{R}, i = 1, 2, 3$ such that

\[
\begin{align*}
f_1'(0) &= p_1 f_2(0) + q_1 f_3(0), \\
f_2'(0) &= p_2 f_4(0) + q_2 f_5(0), \\
f_3'(0) &= p_3 f_4(0) + q_3 f_5(0).
\end{align*}
\]

Then we have the differential system $D_N'$ on $N'$ of rank 6:

\[
\begin{align*}
dx_{41} - x_{42} dx_{21} - x_{43} dx_{31} &= 0, \\
dx_{51} - x_{52} dx_{21} - x_{53} dx_{31} &= 0, \\
dx_{61} - x_{62} dx_{21} + x_{63} dx_{31} &= 0, \\
dx_{71} + x_{42} x_{52} dx_{21} + (x_{43} x_{53} + x_{43} x_{52} + x_{62}) dx_{31} &= 0, \\
dx_{62} + x_{53} dx_{42} + x_{43} dx_{52} &= 0.
\end{align*}
\]

The integrability condition is given by

\[
\begin{align*}
dx_{42} \wedge dx_{21} + dx_{43} \wedge dx_{31} &= 0, \\
dx_{52} \wedge dx_{21} + dx_{53} \wedge dx_{31} &= 0, \\
dx_{53} \wedge dx_{42} + dx_{43} \wedge dx_{52} &= 0.
\end{align*}
\]
By replacing $x_{43}, x_{53}$ by $-x_{65}, -x_{64}$, we have the integrability condition for $D_N$:

\[
\begin{align*}
&dx_{42} \wedge dx_{21} - dx_{65} \wedge dx_{31} = 0, \\
&dx_{52} \wedge dx_{21} - dx_{64} \wedge dx_{31} = 0, \\
&dx_{64} \wedge dx_{42} + dx_{65} \wedge dx_{52} = 0.
\end{align*}
\]

Thus we observe that the problem on the local construction of $D_N$-integral surfaces and null frontals is reduced to the construction of isotropic surface-germs for a kind of “trisymplectic” structure on $\mathbb{R}^6$ as above.

Moreover we observe that, by Proposition 7.4, the tangent surfaces of $\pi_0$-projections of $E$-integral curves satisfy, in addition to the above system,

\[
dx_{42} \wedge dx_{65} = 0, 
\]

\[
dx_{52} \wedge dx_{64} = 0.
\]

To make the situation clear, we consider $\mathbb{R}^6$ with coordinates $x_1, x_2, x_3, x_4, x_5, x_6$ with three 2-forms:

\[
\begin{align*}
\omega_1 &= dx_3 \wedge dx_1 + dx_4 \wedge dx_2, \\
\omega_2 &= dx_5 \wedge dx_1 + dx_6 \wedge dx_2, \\
\omega_3 &= dx_6 \wedge dx_3 + dx_4 \wedge dx_5.
\end{align*}
\]

Let us consider an integral surface of the differential system $\omega_1 = \omega_2 = \omega_3 = 0$ which projects to $(x_1, x_2)$ regularly. Then, from $\omega_1 = \omega_2 = 0$, it is written locally

\[
x_3 = \frac{\partial f}{\partial x_1}, \ x_4 = \frac{\partial f}{\partial x_2}, \ x_5 = \frac{\partial g}{\partial x_1}, \ x_6 = \frac{\partial g}{\partial x_2}
\]

for some functions $f = f(x_1, x_2), g = g(x_1, x_2)$. Then from $\omega_3 = 0$, we have the second order bilinear partial differential equation on $f = f(x_1, x_2), g = g(x_1, x_2)$,

\[
\frac{\partial^2 f}{\partial x_1^2} \frac{\partial^2 g}{\partial x_2^2} + \frac{\partial^2 f}{\partial x_2^2} \frac{\partial^2 g}{\partial x_1^2} - 2 \frac{\partial^2 f}{\partial x_1 \partial x_2} \frac{\partial^2 g}{\partial x_1 \partial x_2} = 0.
\]

This equation is regarded as an orthogonality condition of Lagrange-Gauss mapping of two Lagrange immersions defined by $f$ and $g$.

**Remark 7.6** Similarly to above, the calculations in $B_3$ geometry, namely geometry of $O(3, 4)$, lead us to the differential system

\[
\omega_1 = dx_3 \wedge dx_1 + dx_4 \wedge dx_2 = 0, \ \omega_2 = dx_3 \wedge dx_4 = 0,
\]

on $\mathbb{R}^4$ with coordinates $x_1, x_2, x_3, x_4$, which is expressed as the Monge-Ampère equation

\[
\frac{\partial^2 f}{\partial x_1^2} \frac{\partial^2 f}{\partial x_2^2} - \left( \frac{\partial^2 f}{\partial x_1 \partial x_2} \right)^2 = 0
\]

on “developable surfaces” (see [15][12]). We observe that the Monge-Ampère equation is obtained by the reduction $g = f$ or $x_5 = x_3, x_6 = x_4$ from the $D_4$ case to the $B_3$ case.

Returning to $D_4$ case, consider the differential system on $\mathbb{R}^6$,

\[
\omega_1 = 0, \ \omega_2 = 0, \ \omega_3 = 0, \ \Omega_1 := dx_3 \wedge dx_4 = 0, \ \Omega_2 := dx_5 \wedge dx_6 = 0,
\]

23
which we call a “bi-Monge-Ampère system”. Then the differential system is expressed by the system of equations

\[
\begin{align*}
\frac{\partial^2 f}{\partial x_1^2} \frac{\partial^2 g}{\partial x_2^2} + \frac{\partial^2 f}{\partial x_2^2} \frac{\partial^2 g}{\partial x_1^2} - 2 \frac{\partial^2 f}{\partial x_1 \partial x_2} \frac{\partial^2 g}{\partial x_1 \partial x_2} &= 0, \\
\frac{\partial^2 f}{\partial x_1^2} \frac{\partial^2 g}{\partial x_2^2} - \left( \frac{\partial^2 f}{\partial x_1 \partial x_2} \right)^2 &= 0, \\
\frac{\partial^2 g}{\partial x_1^2} \frac{\partial^2 g}{\partial x_2^2} - \left( \frac{\partial^2 g}{\partial x_1 \partial x_2} \right)^2 &= 0.
\end{align*}
\]

We conclude that the tangent surface construction in \( D_4 \)-geometry offers geometric solutions with singularities of the above bi-Monge-Ampère system of equations.

References


Goo ISHIKAWA,
Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan.
e-mail: ishikawa@math.sci.hokudai.ac.jp

Yoshinori MACHIDA,
Numazu College of Technology, Shizuoka 410-8501, Japan.
e-mail: machida@numazu-ct.ac.jp

Masatomo TAKAHASHI,
Muroran Institute of Technology, Muroran 050-8585, Japan.
e-mail: masatomo@mmm.muroran-it.ac.jp