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Abstract. A heat pump model utilizing the Dufour effect is proposed, and studied by numerical and
theoretical analysis. Numerically, we perform MD simulations of this system and measure the cooling power
and the coefficient of performance (COP) as figures of merit. Theoretically, we calculate the cooling power
and the COP from the phenomenological equations describing this system by using the linear irreversible
thermodynamics and compare the theoretical results with the MD results.
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1 Introduction

The Dufour effect [1] induces the temperature difference
from the mole fraction difference in the mixture fluid sys-
tem as the Peltier effect [2] does from the electric potential
difference. Although the Peltier effect is widely applied to
various heat pumps [3,4], it has not been studied whether
an application of the Dufour effect to heat pumps is pos-
sible or not. In this paper, we propose a heat pump model
utilizing the Dufour effect and study this model by nu-
merical and theoretical analysis.

The Dufour effect is well studied by the experiments
[1,5–11] and theoretical approaches such as the linear ir-
reversible thermodynamics [12,13], the Chapman-Enskog
theory [14,15], the phenomenology [16], and other meth-
ods [17,18]. In 1873, L. Dufour mixed the two gases of
different molecular-weights and discovered a temperature
fall in the higher-molecular-weight gas during the diffusive
mixing process [1]. The theory describing this effect was
first developed by Chapman and Enskog by applying the
kinetic theory to the microscopic analysis of the binary gas
mixture [14], in which the temperature T and the number-
densities of molecules nA and nB of the two components
A and B are non-uniform in space. They derived that the
heat current JQ can be written as

JQ = −κ∇T − nkBT
2D′′∇xA, (1)

where D′′ is the Dufour coefficient, κ is the thermal con-
duction coefficient, kB is the Boltzmann constant, n is
the total number-density of all the components, i.e. n =
nA + nB , and xA is the mole fraction of the component
A defined as xA ≡ nA/n. The result D′′ < 0 can also be
derived from their theory when the molecular mass of the
component A is lower than that of the component B (i.e.
mA < mB) in some special cases of the intermolecular po-
tential. This result implies that the heat current tends to

flow from A-rich part to B-rich part, which is consistent
with the above experiment by Dufour.

The organization of this paper is as follows. We con-
struct a heat pump model utilizing the Dufour effect in
Section 2, and the usefulness of this model as a heat
pump is confirmed numerically using the molecular dy-
namics (MD) simulation [19] in Section 3. Next, by using
the linear irreversible thermodynamics [12], we theoreti-
cally analyze this model in a simple case where the heat
pump is driven very slowly and attached to the two heat
baths whose temperature difference is zero or small, and
compare the theoretical results with the data obtained nu-
merically by the MD simulation in Section 4. Finally, we
summarize this study in Section 5.

2 Model

The main idea of our model is the following. Since the
Dufour effect occurs only during the transient diffusive
mixing process, as far as we know from the previous ex-
perimental studies [1,5–11], it is difficult to keep the Du-
four effect constant like the steady state of the Peltier
effect. For this reason, we need a process that separates
the components of the mixture, besides the diffusive mix-
ing process. In our model, an external electric field is used
for the separation of the mixture.

Consider a gas mixture of the two components A and
B, and assume that the molecular mass of the component
A is lower than that of B, so that mA < mB . To sepa-
rate the mixed components into A and B by an electric
field, electric charges qA and qB are given to each molecule
of A and B, respectively, and we assume qA = −q and
qB = q (q > 0) for simplicity. Though the molecules have
electric charge, Coulomb interaction between them is ig-
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Fig. 1. Schematic illustration of the system and the processes
of the heat pump model. (a) In the separating process, only
the heat bath with Th is attached and the electric field Ex is
applied. (b) In the mixing process, both of the heat baths with
Th and Tc are attached and the electric field is turned off.

nored throughout the paper 1. The particle numbers of
the components in the system are NA and NB , and other
properties of the components A and B such as the particle
interaction or the shape of the molecules are assumed to
be identical.

This gas mixture is contained in the system as schemat-
ically depicted in Figure 1. The system is a two-dimensional
rectangle with the size Lx×Ly. To pump a heat from the
heat bath with a low temperature Tc to the heat bath
with a high temperature Th, two procedures, (a) sepa-
rating process and (b) mixing process are alternately re-
peated. The details of these processes depicted in Figure 1
are described as follows.

(a) Separating process : during this process, the heat bath
with Th is attached to the boundary at x = 0, and the
insulated wall is placed on the boundary at x = Lx.
Furthermore, a static external electric field Ex = E(>
0) is applied in the x-direction. After continuing this
process for a duration ∆tsep, the system is switched to
the mixing process.

(b) Mixing process : during this process, the heat baths
with Th and Tc (Th > Tc) are attached to the boundary
at x = 0 and x = Lx, respectively, and the electric field
is turned off (Ex = 0). After continuing this process
for a duration ∆tmix, the system is switched to the
separating process.

In the separating process, the components of the gas mix-
ture are separated by the external field Ex so that a neg-
ative gradient of the mole fraction ∂xA/∂x < 0 is estab-
lished. The heat energy due to the work done by the exter-
nal field Ex leaks into the heat bath with the temperature
Th, and the system approaches the equilibrium state of
the total system at the temperature Th if the duration
∆tsep is taken sufficiently long. In the mixing process, a
diffusive mixing of the components A and B occurs. As
seen from equation (1) and mA < mB (therefore D′′ < 0),
a heat current flows in the negative x-direction due to the

1 We note that our purpose in this paper is to suggest the
possibility of the heat pump utilizing the Dufour effect. Though
we use the electric field and charged particles to separate the
components clearly, we consider that this method can be re-
placed with another such method as using gravity to realize
this heat pump. This is discussed as a remaining problem in
the last paragraph of Section 5.

Dufour effect so that an amount of heat is expected to be
pumped from the heat bath with Tc to the heat bath with
Th.

3 MD simulation of the model

3.1 The simulation model

In our simulation model, the time evolution of the system
is governed by a Hamiltonian

H =

N∑
i=1

p2
i

2mi
+
∑
i<j

U int(|ri − rj |)−
N∑
i=1

qiEx(t)x̃i,

(N ≡ NA +NB), (2)

where pi, ri,mi, qi, and x̃i denote the momentum, posi-
tion, mass, electric charge, and x-coordinate of the ith
particle, respectively. U int denoting the interaction poten-
tial for the center-to-center distance r of the particles is
taken to be a hard Herzian potential [20–22],

U int(r) =

{
Y |σ − r| 52 (r ≤ σ)

0 (σ < r)
, (3)

where σ is the diameter of the particle, and a constant Y
is taken to be Y = 105ϵσ− 5

2 with an energy unit ϵ. The
external electric field Ex(t) is defined as

Ex(t) =

{
E (in the separating process)

0 (in the mixing process),
(4)

where E is a positive constant. Note that the electric
charge of particles is used only to separate the components
and for simplicity Coulomb interaction between them is
ignored in our simulations.

The periodic boundary condition is imposed in the y-
direction. The boundary of the x-direction at x = Lx is
the elastically reflecting wall in the separating process,
and the thermalizing wall [23] with the temperature Tc in
the mixing process. The boundary at x = 0 is also the
thermalizing wall with the temperature Th in both of the
processes. If a particle with the mass m collides with the
thermalizing wall with the temperature T , its velocity is
stochastically changed to a value v = (vx, vy) according
to the distribution functions

Px(vx) =
m

kBT
|vx| exp

(
− mv2x

2kBT

)
,

where

{
vx > 0 at x = 0

vx < 0 at x = Lx,
(5)

Py(vy) =

√
m

2πkBT
exp

(
−

mv2y
2kBT

)
, (6)

which ensure that the temperature of the equilibrium sys-
tem becomes T .
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Fig. 2. Example of the snapshots of the system. (a)The be-
ginning of the separating process. (b)The end of the separating
process. (c)The beginning of the mixing process. (d)The end
of the mixing process. The white disks and the black disks
indicate the low-molecular-weight component A and the high-
molecular-weight component B, respectively.

In the following simulations, we use the scale units as
mA ≡ 1,σ ≡ 1,ϵ ≡ 1, q ≡ 1, and kB ≡ 1, which define the
units of mass, length, energy, electric charge, and tem-
perature, respectively. The time evolution of the system
is performed by the velocity-Verlet scheme [19] with the
time step δt = 0.0005.

3.2 Results of the simulation

Figure 2 shows an example of the snapshots of the system.
In the simulation, the system size is Lx × Ly = 40 × 25,
the numbers of the particles are NA = NB = 150, the
external field is E = 0.1, and the temperatures of the
heat baths are Th = 1.01 and Tc = 0.99. Each particle
of the components A and B has the mass mA = 1 and
mB = 10, and the electric charge qA = −1 and qB = 1,
respectively.

From these snapshots, we can confirm that the compo-
nents A and B are separated by applying the external field
E in the separating process and the components are dif-
fusively mixed when the external field is turned off in the
mixing process. This result can quantitatively be verified
in Figure 3 which shows an example of the time evolution
of the mole fraction profiles xA(x, t) in the mixing process
and the separating process, where we calculated xA by
dividing the system into 40 subsystems in the x-direciton.

Figure 4 depicts typical results of the time evolution of
the temperature profiles T (x, t) of the system, which is cal-

culated from the kinetic energy as T = 1
2Nx

∑Nx

j=1mjv
2
j ,

by using the same subsystems as in Figure 3 , where Nx

is the number of particles in the subsystem at position
x, and mj and vj are the mass and velocity of the jth
particle in that subsystem, respectively.
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Fig. 3. The mole fraction profile xA(x, t) in the separating
process (0 < t ≤ 5000), and in the mixing process (5000 < t ≤
10000), with ∆tsep = ∆tmix = 5000. A curve of t = [t1 : t2]
means a profile averaged over the time between t1 ≤ t ≤ t2.
Furthermore, the MD data were averaged over 2640 cycles.

In the separating process, after the sudden increase of
the temperature due to the heat produced from the work
done by the external field Ex, the heat in the system grad-
ually leaks into the heat bath with Th, and then the total
system reaches the equilibrium state at the temperature
Th. In contrast, in the mixing process, the system reaches
a nonequilibrium steady state of heat conduction with a
spatially linear temperature profile. We note that the tem-
perature profile of the data t=[5000,5500] in Figure 4b can
be explained as follows. At the early stage of the mixing
process, in the middle region of the system, the Dufour ef-
fect due to the large mole-fraction gradient (see the data
t=[4500,5000] in Fig. 3b) causes a large heat flow in the
negative x-direction, while in the regions of both ends, the
heat flow by the Dufour effect is small due to the small
mole-fraction gradient. Accordingly, the temperature pro-
file develops a maximum and a minimum near both ends,
as shown by the data t=[5000,5500] in Figure 4b. Once
the maximum and the minimum of the temperature pro-
file are formed, the heat pump becomes functional by the
heat flow in the negative x-direction due to the temper-
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Fig. 4. The temperature profiles T (x, t) in the separating
process (0 < t ≤ 5000), and in the mixing process (5000 <
t ≤ 10000). A curve of t = [t1 : t2] is drawn following the
same rule with Figure 3. The solid lines denote the heat bath
temperatures Th = 1.01 and Tc = 0.99.

ature gradient near both ends at this early stage of the
mixing process.

Figure 5 shows the time evolution of the number-density
profiles of the particles n(x, t). The peaks of n(x, t) near
the boundaries seem to be essentially the same phenomena
as the particle adsorption at a hard wall reported in refer-
ences [24,25]. We can find from Figure 5 that the profile
n(x, t) in the mixing process instantly reaches the steady
profile compared with the mole fraction xA(x, t) in Fig-
ure 3 and the temperature T (x, t) in Figure 4. This result
is assumed to hold in general for the theoretical analysis
in Section 4.

In Figure 6, we measured the heat currents Q̇h(t) flow-

ing from the system into the heat bath with Th and Q̇c(t)
flowing from the heat bath with Tc into the system. Here,
we calculated Q̇α by accumulating over the unit time the
kinetic energy change m

2 (v
2
0 − v2) at a particle collision

with the thermalizing wall with Tα (α = h, c), where m
is the mass of the particle and v0 and v are the velocities
of the particle before and after the collision, respectively.
We can see that Q̇h(t) has a peak corresponding to the
heat injection due to the external field in the separating
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Fig. 5. The number-density profiles of the particles n(x, t)
in the separating process (0 < t ≤ 5000), and in the mixing
process (5000 < t ≤ 10000). A curve of t = [t1 : t2] is drawn
following the same rule with Figure 3. The solid line denotes
the average number-density n = 0.3.

process, and the thermal equilibrium state of the total sys-
tem is realized at last. The peaks of Q̇h(t) and Q̇c(t) in the
mixing process which have a similar profile imply that the
heat flows from the cold heat bath with Tc toward the hot
heat bath with Th through the system. Therefore we can
see that a heat pump due to the Dufour effect is realized.

To confirm that our model is surely useful as a heat

pump, we measured the cooling power Q̇c and the coeffi-
cient of performance (COP) ϵ defined as

Q̇α ≡ 1

τ1 − τ0

∫ τ1

τ0

Q̇α(t) dt (α = h, c), (7)

ϵ ≡ Q̇c

Ẇ
, (8)

where τ0 is the relaxation time for the system to exhibit
a steady cyclic state, and τ1 is chosen so that τ1 − τ0 is

an integer multiple of the cycle period ∆tmix +∆tsep. Ẇ
in equation (8) denotes the average power done by the
external field Ex(t) per unit time, which is calculated us-

ing the relation Ẇ = Q̇h − Q̇c. The cooling power Q̇c



Minoru Hoshina and Koji Okuda: Theoretical and numerical analysis of a heat pump model utilizing Dufour effect 5

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  2000  4000  6000  8000  10000

H
ea

t 
C

ur
re

nt

time

into Hot Bath
from Cold Bath

Fig. 6. Time dependence of the heat currents Q̇c(t) flowing
from the heat bath with Tc, and Q̇h(t) flowing into the heat
bath with Th. The system is in separating process when 0 <
t ≤ 5000, and in the mixing process when 5000 < t ≤ 10000.
The MD data were averaged over 2640 cycles.

and the COP ϵ should be positive for a useful heat pump.

Figure 7 shows the δT -dependence of Q̇c and ϵ, where
δT ≡ Th − Tc. While the cooling power and the COP are
surely positive when δT is small, they become negative
when δT is large, because the heat pumping by the Du-
four effect cannot overcome the temperature gradient be-
tween the heat baths. Consequently, this numerical result
implies that our model is useful as a heat pump when the
temperature difference δT is sufficiently small and ∆tsep
and ∆tmix are suitably chosen.

4 Theoretical analysis

4.1 Expressions for the Cooling Power and the COP

First, we consider a simple case that the heat baths have
the same temperature T0(= Th = Tc), and assume that
a process is switched to another process after the equi-
librium state is realized, which means ∆tsep ≫ τsep and
∆tmix ≫ τmix where τsep and τmix are the relaxation times
of the system to the steady states in the separating pro-
cess and the mixing process, respectively. To obtain simple
expressions for the cooling power and the COP, we as-
sume that the mechanical equilibrium state (see Chap.V-
2 in Ref. [12]) is instantly realized in the mixing process.
This assumption means that the system satisfies ∇p =
nAFA + nBFB where p is the pressure and F k is the ex-
ternal force on each particle of component k. Therefore,
the pressure gradient ∇p vanishes as

∇p = 0, (9)

in the mixing process where the electric field is turned off.
Furthermore, we assume that the number-density profile
of the particles n(x, t) in the mixing process reaches the
steady profile instantly compared with the mole fraction
profile xA(x, t) and the temperature profile T (x, t), which
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Fig. 7. The temperature difference δT = Th −Tc dependence
of the cooling power and the COP, with the process durations
∆tsep = 3000,∆tmix = 1000, and the temperatures Th = 1 +
δT/2 and Tc = 1−δT/2. The MD data were averaged over 345
cycles.

is confirmed to hold in our system from the numerical
results in Figures 3-5. From this assumption n(x, t) is ap-
proximately regarded as

n(x, t) = n ≡ N/V, (10)

in the mixing process, where N is the total number of
particles in the system and V is the volume of the system.

From the linear irreversible thermodynamics (see Chap.
XI-7 in Ref. [12]), when the system is uniform in the y-
direction and the external field does not exist, the heat
current JQ and the diffusion current J̄m

A of the compo-
nent A, which is defined as J̄m

k ≡ nk(vk − vm) where
vm ≡

∑
k xkvk is the mean velocity and vk is the velocity

of the component k in the x-direction, are written as

JQ = −κ∂T
∂x

− nATD
′′µ̃x

AA

∂xA
∂x

, (11)

J̄m
A = −nxAxBD′ ∂T

∂x
− nD

∂xA
∂x

, (12)

where D′ and D denote the thermal diffusion coefficient
and the diffusion coefficient, respectively, µ̃A is the chemi-
cal potential per particle of the component A, and µ̃x

AA ≡
(∂µ̃A/∂xA)T,p. Equations (11) and (12) can be derived
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by taking the thermodynamic forces as −∇T/T 2 and
−µ̃x

AA(∇xA)/(xBT ). Then, the coefficients of the Onsager
relations

JQ = −Lqq
1

T 2

∂T

∂x
− LqA

µ̃x
AA

xBT

∂xA
∂x

, (13)

J̄m
A = −LAq

1

T 2

∂T

∂x
− LAA

µ̃x
AA

xBT

∂xA
∂x

, (14)

are written as Lqq = κT 2, LqA = nxAxBT
2D′′, LAq =

nxAxBT
2D′ and LAA = nxBTD/µ̃

x
AA, thus the Onsager

reciprocal relation leads toD′′ = D′. Additionally, if vm =
0 holds, the time evolution equations of T and xA written
as

cp
∂T

∂t
=

∂

∂x

{
κ
∂T

∂x
+ nATD

′′µ̃x
AA

∂xA
∂x

}
, (15)

n
∂xA
∂t

=
∂

∂x

{
nxAxBD

′ ∂T

∂x
+ nD

∂xA
∂x

}
, (16)

which can be derived from the conservation laws of energy
and mass (see Chap.XI-7 in Ref. [12]), respectively. Here,
cp is the specific heat at constant pressure per unit volume.

The time evolution equations of xA and T in the mix-
ing process can be derived from equations (15) and (16) by
using ∂p/∂x = ∂n/∂x = 0 (in Eqs. (9) and (10)), and then
can be simplified by neglecting the second-order terms of
∂T/∂x and ∂xA/∂x, as

cp
∂T

∂t
= l11(x, t)

∂2T

∂x2
+ l12(x, t)

∂2xA
∂x2

, (17)

n
∂xA
∂t

= l21(x, t)
∂2T

∂x2
+ l22(x, t)

∂2xA
∂x2

, (18)

where l11 ≡ κ, l12 ≡ nAµ̃
x
AATD

′′, l21 ≡ nxAxBD
′, and

l22 ≡ nD. We note that the coefficients lij depend on
the position x and the time t through p, T, xA and n.
These time evolution equations should be solved under
the boundary conditions

J̄m
A (0, t) = J̄m

A (Lx, t) = 0, (19)

T (0, t) = T (Lx, t) = T0, (20)

using equation (12). Since ∆tsep ≫ τsep, the initial condi-
tion of the mixing process is written as

T (x, 0) = T0, xA(x, 0) = xEA(x), (21)

where xEA(x) denotes the mole fraction profile of the equi-
librium state in the end of the separating process with the
external field E and we note that t = 0 is chosen as the
beginning of the mixing process unlike Figures 3-6. Sim-
ilarly, because of ∆tmix ≫ τmix, the profiles of the mole
fraction xA and the temperature T in the end of the mix-
ing process are written as

T (x,∆tmix) = T0, xA(x,∆tmix) = xA, (22)

where xA ≡ NA/N is the mean mole fraction in the sys-
tem.

The cooling power (7) is expressed as

Q̇c ≡
−1

∆tsep +∆tmix

∫ ∆tmix

0

LyJQ(Lx, t)dt, (23)

after the steady cyclic state is established. By using equa-
tions (11) and (12) with the coefficients lij and the bound-
ary condition (19), we can obtain

Q̇c =
Ly

∫∆tmix

0

(
l11 − l12

l21
l22

)
∂T
∂x (Lx, t)dt

∆tsep +∆tmix
. (24)

To obtain the expression for the COP, we write equa-
tion (8) as

ϵ =
Q̇c

WE/(∆tsep +∆tmix)
, (25)

using the relation Ẇ = WE/(∆tsep + ∆tmix), where WE

denotes the total work done by the external field Ex = E
in the separating process. The work WE is written as

WE = ψinitial
E − ψfinal

E , (26)

where ψinitial
E and ψfinal

E are the potential energies due to
the electric field Ex = E in the initial and final states,
respectively, of the separating process (see Appendix B).
Using the profiles xA(x) and n(x) of the system, the po-
tential ψE is given by

ψE [xA(x), n(x)] = qELy

∫ Lx

0

n(x)
(
2xA(x)− 1

)
x dx.

(27)

Since, in the separating process, the initial profiles of xA(x)
and n(x) are xA and n, respectively, and the final profiles
are xEA(x) and n

E(x), where nE(x) is defined similarly to
xEA(x) below equation (21), equation (26) becomes

WE = −qELy

∫ Lx

0

{
δnE(x)

(
2xA − 1

)
+ 2n δxEA(x) + 2δnE(x)δxEA(x)

}
x dx, (28)

where we defined δxEA(x) ≡ xEA(x) − xA and δnE(x) ≡
nE(x) − n. Therefore, by substituting equation (28) into
equation (25), the expression for the COP is written as

ϵ =

∫∆tmix

0

(
− l11 + l12

l21
l22

)
∂T
∂x (Lx, t)dt

qE
∫ Lx

0

{(
2xA − 1

)
δnE(x) + 2n δxEA(x) + 2δnE(x)δxEA(x)

}
x dx

. (29)
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4.2 Approximate calculation of the Cooling Power and
the COP

We make two assumptions to calculate Q̇c and ϵ approxi-
mately. The first assumption is that ∂T/∂x, ∂xA/∂x and
E are very small so that the coefficients lij , cp and n in
the time evolution equations (17) and (18) approximately
depend only on the average values over the system, not
on the time and the position. Under this assumption, we
write lij , cp and n as lij , cp and n, respectively, in the
following. Therefore, we can linearize equations (17) and
(18) with the constants lij , cp and n as

cp
∂T

∂t
(x, t) = l11

∂2T

∂x2
(x, t) + l12

∂2xA
∂x2

(x, t), (30)

n
∂xA
∂t

(x, t) = l21
∂2T

∂x2
(x, t) + l22

∂2xA
∂x2

(x, t). (31)

We can calculate the cooling power (24) by solving these
time evolution equations (30) and (31) of the mixing pro-
cess without using the similar equations of the separat-
ing process, because the heat does not flow from the cold
heat bath in the separating process. The second assump-
tion is that the mixture can be regarded as an ideal gas
when the system is in the equilibrium state. Using the sec-
ond assumption and the equilibrium statistical mechanics,
δnE(x) and δxEA(x) defined below equation (28) can be
calculated as

δnE(x) =
βEq

Ly

NAe
βEq(Lx

2 −x) +NBe
−βEq(Lx

2 −x)

eβEq Lx
2 − e−βEq Lx

2

− n

(32)

≃ (2nA − n)βEq
(Lx

2
− x

)
, (33)

δxEA(x) =
NAe

βEq(Lx
2 −x)

NAeβEq(Lx
2 −x) +NBe−βEq(Lx

2 −x)
− xA (34)

≃ 2xA(1− xA)βEq
(Lx

2
− x

)
, (35)

where β ≡ 1/kBT and T = T0, and we expanded the
equations up to the first order of E. From the assumption
of ideal gas, we can obtain µ̃x

AA = kBT/xA, therefore

l12 = kBT
2
nD′′. (36)

Similarly, we can obtain the relations

l21 = nxAxBD
′, (37)

l22 = nD. (38)

We next give the integral
∫∆tmix

0
(∂T/∂x)(Lx, t) dt in the

expression for the cooling power (24) By eliminating ∂2xA/∂x
2

from equations (30) and (31), we obtain

cp
∂T

∂t
= l

′
1

∂2T

∂x2
+ l

′
2

∂xA
∂t

, (39)

where

l
′
1 ≡ l11 − l12l21

/
l22, (40)

l
′
2 ≡ l12n

/
l22, (41)

are introduced for simplicity. By integrating equation (39)
with respect to the time t on [0,∆tmix], we obtain

0 = l
′
1

∂2

∂x2

∫ ∆tmix

0

T (x, t)dt+ l
′
2

(
− δxEA(x)

)
. (42)

The above equation can be integrated with respect to x
by substituting δxEA(x) of equation (35) into equation (42)
and using the boundary condition (20). Then, we obtain∫ ∆tmix

0

T (x, t)dt =
2l

′
2xA(1− xA)βEq

l
′
1

×
(
− x3

6
+
Lx

4
x2 − L2

x

12
x
)
+ T0∆tmix. (43)

Therefore, the cooling power is written as

Q̇c =
−kBT

2
nD′′xA(1− xA)βEqLyL

2
x

6D(∆tsep +∆tmix)
. (44)

By substituting equations (33) and (35) into equation (28),
and expanding up to the second order of E, the work WE

becomes

WE =
LyL

3
xβ(qE)2n

12
. (45)

Consequently, the COP in equation (25) is written as

ϵ =
−2kBT

2
D′′xA(1− xA)

LxqED
. (46)

4.3 Numerical confirmation

To compare the theoretical results (44) and (46) with the
MD results, the transport coefficients such as D and D′′

need to be determined. It is convenient to introduce the
thermal diffusion ratio kT defined as

kT ≡ TxAxB
D′

D
, (47)

because our main results (44) and (46) can be rewritten
with only kT instead of D and D′′(= D′) as

Q̇c =
−kTNEqLx

6(∆tsep +∆tmix)
, (48)

ϵ =
−2kBkTT

LxqE
, (49)

respectively.
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Fig. 8. Comparison between the theoretical result (45) and
the MD result of the work WE done by the external field E to
the system. The MD data were averaged over 2000-7500 cycles.

kT can approximately be calculated from the Chapman-
Enskog theory (see Appendix A). We numerically calcu-
lated the two-dimensional expression for kT in the first
order approximation as

kT ≃ −0.13657, (50)

using the parameters mA = 1,mB = 10, T = 1, xA =
xB = 0.5, and Y = 105 of the Herzian potential.

In the MD simulations in this section, the numbers
of particles are changed to NA = NB = 50 so that the
number-density of the particles in the system becomes ad-
equately dilute, which is assumed in the Chapman-Enskog
theory. The calculation of equation (50) is also valid for
these new parameters. ∆tsep and ∆tmix are fixed to 10000
and 5000, respectively, so that the assumption of ∆tsep ≫
τsep and ∆tmix ≫ τmix is satisfied. All other parameters
such as the system size are identical with Section 2.

Figure 8 shows the numerical result of the work WE

done by the external field Ex = E as varying E, together
with the theoretical result (45). From Figure 8, we can
see that the MD data deviate from the theoretical curve
when 0.07 ≲ E. This result implies that the assumption of
small E in our theory is not satisfied when 0.07 ≲ E and
the consequent results of the theory may not be accurate.
This is because the number-density in some parts of the
mixture becomes high and the mixture deviates from ideal
gas when the external field E is large.

The theoretical results of the cooling power Q̇c and the
COP ϵ in equations (48) and (49) using the value of equa-
tion (50) are compared with the MD data in Figure 9. We
can confirm a good agreement between the theory and the
MD data in the region E ≲ 0.05, but a small discrepancy
in the region 0.07 ≲ E where the assumption of small E
may not be satisfied. Therefore, we conclude that the va-
lidity of our theoretical analysis of the heat pump model
is verified in the case of Th = Tc.

4.4 The case of Th ̸= Tc

Finally, we show that the theoretical analysis in Sections
4.1 and 4.2 can be generalized to the case of Th ̸= Tc.
We consider the case that the temperature difference of
the heat baths δT ≡ Th − Tc is very small, and ∆tsep ≫
τsep and ∆tmix ≫ τmix are satisfied. The time evolution
equations (17) and (18) in the mixing process hold even
in this case, and we assume that the linear approximation
in equations (30) and (31) is also valid. The boundary
condition (19) is unchanged, but equation (20) should be
changed to

T (0, t) = Th, T (Lx, t) = Tc. (51)

The initial conditions of T (x, t) and xA(x, t) in the mixing
process are

T (x, 0) = Th, xA(x, 0) = xEA(x), (52)

respectively.
The profiles T (x, t) and xA(x, t) in the end of the mix-

ing process in equation (22) become

T (x,∆tmix) = T δT (x), xA(x,∆tmix) = xδTA (x), (53)
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ϵ, respectively. The MD data were averaged over 2000-7500
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where T δT (x) and xδTA (x) denote the temperature and
the mole fraction profiles, respectively, of the steady heat-
conduction state in the mixing process when the temper-
ature difference between the heat baths δT exists. In the
steady state of the mixing process, the temperature profile
T δT (x) is written as

T δT (x) = −δT
Lx

x+ Th, (54)

which can be derived from the time evolution equations
(30) and (31) and the boundary condition (51). To deter-
mine the mole fraction profile xδTA (x), we need an addi-
tional assumption, besides the assumptions in Sections 4.1
and 4.2, that each local subsystems of the mixture can be
regarded as equilibrium ideal gas in that subsystem when
the system is in the steady state of the mixing process.
Using the equation of state of ideal gas, we can write

nδT (x) =
p(x)

kBT δT (x)
≃ p(x)

kBTh

(
1 +

δT

ThLx
x

)
, (55)

where p(x) is the pressure profile, nδT (x) denotes the
number-density profile of the steady state in the mixing
process, and we neglected the terms O(δT 2). Using the as-
sumption of the mechanical equilibrium state ∇p = 0 in

Section 4.1 and the relation N =
∫ Lx

0
Lyn

δT (x)dx, equa-
tion (55) can be rewritten as

nδT (x) = n+
nδT

TLx

(
x− Lx

2

)
, (56)

where T ≡ (Th +Tc)/2. When the system is in the steady
state, the linear relation (12) becomes

0 = −l21
∂T δT

∂x
(x)− l22

∂xδTA
∂x

(x). (57)

Thus, from equation (54) and the relation

NA =

∫ Lx

0

Lyn
δT (x)xδTA (x)dx, (58)

the mole fraction profile xδTA (x) is written as

xδTA (x) =
xAxBD

′δT

DLx

(
x− Lx

2

)
+ xA, (59)

where we use equations (37) and (38).

The cooling power Q̇c can be calculated in the same
way as in Sections 4.1 and 4.2, but the condition δT ̸= 0
changes equation (42) to

cp
(
T δT (x)− Th

)
= l

′
1

∂2

∂x2

∫ ∆tmix

0

T (x, t)dt

+ l
′
2

(
δxδTA (x)− δxEA(x)

)
, (60)

where δxδTA (x) ≡ xδTA (x) − xA. Since the expression (24)
is valid even in the present case, the cooling power is ob-
tained as

Q̇c =
−Ly

6(∆tsep +∆tmix)

{
2cpδTLx +

l
′
2xAxBD

′′δTLx

2D
+ l

′
2xAxBβ

(
1− δT

2T

)
EqL2

x +
6l

′
1δT∆tmix

Lx

}
, (61)

by solving the differential equation (60) for∫∆tmix

0
T (x, t)dt. We note that l

′
1 in equation (40) is posi-

tive since L2
qA < LqqLAA [26].

In the case of δT ̸= 0, the expression for WE in equa-
tion (28) becomes

WE = ψE [xA + δxδTA (x), n+ δnδT (x)]

− ψE [xA + δxEA(x), n+ δnE(x)]
(62)

= qELy

∫ Lx

0

{(
δnδT (x)− δnE(x)

)(
2xA − 1

)
+ 2n

(
δxδTA (x)− δxEA(x)

)
+O(δT 2) +O(E2)

}
x dx,

(63)

where δnδT (x) ≡ nδT (x)−n. By substituting equations (33),
(35), (56) and (59) into equation (63), we can obtain

WE ≃ nqELyL
2
x

12

{
(2xA − 1 + 2xAxBTD

′/D)δT

T

+ β
(
1− δT

2T

)
EqLx

}
. (64)

Substituting equations (61) and (64) into equation (25),
we finally obtain the COP as

ϵ =
−2

nqEL2
x

2cpδTLx +
l
′
2xAxBD′′δTLx

2D + l
′
2xAxBβ

(
1− δT

2T

)
EqL2

x +
6l

′
1δT∆tmix

Lx

(2xA−1+2xAxBTD′/D)δT

T
+ β

(
1− δT

2T

)
EqLx

. (65)
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Since l
′
1 > 0, equation (65) means that the longer ∆tmix

is, the lower ϵ becomes because the heat begins to flow
in the reverse direction after a temperature gradient is
established due to the temperature difference of the heat
baths.

Finally, we compare the theoretical results in this sec-
tion with the MD results. By using equations (40) and
(41), equations (61) and (65) can be rewritten as

Q̇c =
−Ly

6(∆tsep +∆tmix)

[{
2cpLx +

kBnk
2
TLx

2xAxB
− nkTEqL

2
x

2T
+

6λ∆tmix

Lx

}
δT + nkTEqL

2
x

]
, (66)

ϵ =
−2

nqEL2
x

{
2cpLx +

kBnk2
TLx

2xAxB
− nkTEqL2

x

2T
+ 6λ∆tmix

Lx

}
δT + nkTEqL

2
x{

2xA − 1 + 2kT − βEqLx

2

}
δT
T

+ βEqLx

, (67)

respectively, where we introduced the coefficient λ de-
fined as

λ = κ− nkBT
2
xAxB

D′2

D
, (68)

which can be calculated in the first order approximation
as

λ ≃ 0.419877, (69)

by using its microscopic expression (A.13) with the same
parameters as used in equation (50). Figure 10 shows
the MD results of the cooling power and the COP as
varying the temperature difference δT , together with the
theoretical results (66) and (67) using equation (69) and
cp = 2kBn, which is the two-dimensional ideal-gas value.
In the MD simulation in Figure 10, the external field E
was changed to E = 0.035 from E = 0.1 of Figure 7 be-
cause our theory is valid when E is sufficiently small. From
this figure, we can see that the theory agrees with the MD
data in the region of small δT , which shows that our the-
ory is valid not only in the case of δT = 0 in Figure 9, but
also in the case of δT ̸= 0.

5 Summary

We proposed a heat pump model utilizing the Dufour ef-
fect and studied it by using the MD simulation and the
linear irreversible thermodynamics. This model consists of
the separating process in which the mixture is separated
by the external electric field, and the mixing process in
which the Dufour effect occurs. Using the MD simulation,
we calculated the cooling power and the COP of the model
as in Figure 7, and numerically confirmed its usefulness as
a heat pump. Next, we theoretically calculated the cooling
power and the COP as equations (48) and (49), especially
in the simplest case of Th = Tc,∆tsep ≫ τsep and∆tmix ≫
τmix, and we confirmed a good agreement between the the-
oretical and MD results. Furthermore, we showed that our
theory is generalized to the case of Th ̸= Tc and is valid
also in that case.
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Fig. 10. The temperature difference δT = Th−Tc dependence
of the cooling power and the COP, with the process durations
∆tsep = 5000,∆tmix = 3000, and the temperatures Th = 1 +
δT/2 and Tc = 1 − δT/2. The MD data were averaged over
6000 cycles.

Finally, we discuss some remaining problems. First, we
can find that the COP is only about 0.2% of the Carnot
COP at most from Figure 7, but we have not yet found the
conditions to obtain a heat pump model with much higher
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COP. To know the best performance of our model, we will
need more thorough search on the parameter space of our
model, though our search in the present study was limited
to where our theoretical assumptions are probable. Sec-
ond, it is difficult to realize our model experimentally since
the Coulomb interaction between particles is ignored. To
overcome this problems, our model should be generalized
to consider the Coulomb interaction, for example by using
MHD [27–30]. We consider that experiments of our model
become more realizable by removing the electric charges
of particles and replacing the electric force with the grav-
ity or inertial force such as centrifugal force [31–33]. In
this replacement, the components of a gas mixture can be
separated by the pressure gradient created by the gravity
or the centrifugal force 2. If a centrifuge is used, the sep-
arating process and the mixing process can be caused by
accelerating and decelerating the angular velocity of the
centrifuge, respectively, when different masses are given to
the components of the gas mixture. Though our model in
this paper may be merely a toy model, we expect that our
work will trigger more realistic applications of the Dufour
effect.

The authors would like to thank K. Nemoto, T. Nogawa, Y.
Tami, and Y. Izumida for fruitful discussions.
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A Two dimensional expressions for the
thermal-diffusion ratio kT and the coefficient
λ

The three-dimensional microscopic expression for kT of a
binary mixture is obtained in reference [14] by approx-
imately solving the subdivided Boltzmann equations by
the Enskog method (see Sect. 8 in Ref. [14]). From the
similar derivation to the three-dimensional expression, the
two-dimensional expression in the first-order approxima-
tion denoted by [kT ]1 is proved to be written as

[kT ]1 = 2
{
xAM

− 1
2

A (a−1−1a01 − a0−1a1−1)

+ xBM
− 1

2

B (a0−1a11 − a01a1−1)
}

/
(a−1−1a11 − a21−1), (A.1)

where MA ≡ mA/(mA + mB), MB ≡ mB/(mA + mB),
and the matrix elements a11, a1−1, a−1−1, a01 and a0−1

2 This mechanism of the separation is sometimes called the
barodiffusion effect[34,35].

in equation (A.1) are given by

a11 = x2AΩ̂
(2)
1 (2) + 2xAxB

{
(6M2

AMB + 4M3
B)Ω̂

(1)
12 (1)

− 4M3
BΩ̂

(1)
12 (2) +M3

BΩ̂
(1)
12 (3)

+ 2MAM
2
BΩ̂

(2)
12 (2)

}
, (A.2)

a−1−1 = 2xAxB

{
(6M2

BMA + 4M3
A)Ω̂

(1)
12 (1)

− 4M3
AΩ̂

(1)
12 (2) +M3

AΩ̂
(1)
12 (3)

+ 2MBM
2
AΩ̂

(2)
12 (2)

}
+ x2BΩ̂

(2)
2 (2), (A.3)

a1−1 = 2xAxBM
3
2

AM
3
2

B

{
− Ω̂

(1)
12 (3) + 4Ω̂

(1)
12 (2)

− 10Ω̂
(1)
12 (1) + 2Ω̂

(2)
12 (2)

}
, (A.4)

a01 = 2xAxBM
1
2

A

(
2M2

BΩ̂
(1)
12 (1)−M2

BΩ̂
(1)
12 (2)

)
, (A.5)

a0−1 = −xAxB2M
1
2

B

(
2M2

AΩ̂
(1)
12 (1)−M2

AΩ̂
(1)
12 (2)

)
, (A.6)

respectively. Here, Ω̂
(l)
12 (r), Ω̂

(l)
1 (r) and Ω̂

(l)
2 (r) (l, r = 1, 2, · · · )

are defined as

Ω̂
(l)
12 (r) =

1

2
σ

(
2kBT

m0MAMB

) 1
2

Ŵ(l)(r), (A.7)

Ω̂
(l)
1 (r) =

1

2
σ

(
kBT

mA

) 1
2

Ŵ(l)(r), (A.8)

Ω̂
(l)
2 (r) =

1

2
σ

(
kBT

mB

) 1
2

Ŵ(l)(r), (A.9)

respectively, where m0 ≡ mA +mB , σ is the diameter of
the particles, and Ŵ(l)(r) are the non-dimensional values
defined as

Ŵ(l)(r) ≡ 2

∫ ∞

0

{∫ 1

0

e−g2

g2r+1(1− cosl χ) d
( b
σ

)}
d(g2).

(A.10)

The parameter χ in equation (A.10) is the scattering angle
between the particles with interaction potential U int(r)
and is a function of the scattering parameters g and b
written as

χ(g, b) = π − 2

∫ ∞

R

{
r4

b2

(
1− U int(r)

kBTg2

)
− r2

}− 1
2

dr,

(A.11)

where R is the solution to

1− U int(R)

kBTg2
− b2

R2
= 0. (A.12)

Using the Herzian potential in equation (3) as U int(r)
above, we can finally obtain equation (50) as the first order
approximation of kT .
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In the same way, the two-dimensional expression for
λ in the first-order approximation denoted by [λ]1 can be
obtained as

[λ]1 = 4k2BT
{
x2Am

−1
A a−1−1 − 2xAxB(mAmB)

− 1
2 a1−1

+ x2Bm
−1
B a11

}/
(a−1−1a11 − a21−1),

(A.13)

using the similar derivation to the three-dimensional ex-
pression in reference [14].

B Derivation of equation (26)

To derive equation (26), we calculate the work W done to
the system during one cycle consisting of the separating
and mixing processes, which is written as

W =

N∑
i=1

∫
dri ·

{
qiE +

N∑
j( ̸=i)=1

(
−∇iU

int
ij

)
+ F bath

i

}
,

(B.1)

where U int
ij ≡ U int(|ri − rj |) is the interaction potential

(specifically Eq. (3)) between the ith and jth particles,

F bath
i is the force on the ith particle from the heat baths,

and the integral
∫
dri is evaluated along the trajectory of

the ith particle for one cycle of the system. From the first
term of equation (B.1), we obtain∑

i

∫
dri · qiE = ψinitial

E − ψfinal
E , (B.2)

where ψE is defined below equation (26) and we note that
the mixing process does not contribute the above equation
because the electric field vanishes. The second term of
equation (B.1) can be written as

∑
i

∫
dri ·

N∑
j(̸=i)=1

(
−∇iU

int
ij

)
= −

∫
dU int, (B.3)

where we defined U int as

U int ≡ 1

2

N∑
i=1

N∑
j(̸=i)=1

U int
ij (B.4)

Since the integral is evaluated for one cycle, equation (B.3)
represents a change of the total interparticle potential be-
tween the beginning and the ending of a cycle. Therefore
the second term of equation (B.1) should macroscopically
be zero as long as the system is cyclic. Finally, the third
term of equation (B.1) can be written as∑

i

∫
dri · F bath

i = −Qh +Qc, (B.5)

from the definitions of Qh and Qc.

Using equations (B.2), (B.3) and (B.5), we obtain

W = ψinitial
E − ψfinal

E −Qh +Qc. (B.6)

Because the denominator of the COP should be the work
done by the external field except for the heat baths, WE

in equation (25) can be written as equation (26).
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