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Abstract: Referring to the optimization algorithm previously developed for atomic clusters, the present 

author develops an efficient method for geometry optimization of a coarse-grained protein model 

expressed with two kinds of beads (hydrophilic and hydrophobic ones).  In the method, two types of 

geometrical perturbations, center-directed bead move and one bead rotation, are used to explore new 

configurations and local optimizations are performed after the perturbations.  The center-directed bead 

move is used for hydrophobic beads and the one bead rotation is performed for both hydrophobic and 

hydrophilic beads.  The optimization method was applied to protein models consisting of 13, 20, 21, 

and 34 beads.  The present method produced the global minima of the 13-, 21-, and 34-bead models 

reported in the literature and updated the lowest energies of the protein models with 20 beads.  These 

results indicate that the present method is efficient for searching for optimal structures of proteins. 

 

Keywords: global optimization  protein model  potential energy 
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1 Introduction 

Since chemical and physical properties of proteins depend on the structures, the determination of them 

is important for elucidating their functions.  Proteins are of great interest and a lot of the structural 

investigations have been reported.  The experimental methods of X-ray diffraction and NMR 

spectroscopy are powerful tools.  However, the shortcomings of them (for example, limitations on 

crystallization and sizes of molecules treated by the spectroscopy) restrict molecules.  Theoretically 

structures of molecules of biological interest have been investigated employing molecular dynamics and 

Monte Carlo simulations.  These simulations have been used to examine time evolution and 

thermodynamic properties of the molecule under investigation.  The results of the simulation depend 

on the initial condition of the system because of the limitations on the time scale and acceptable moves.  

The calculation may fail to locate the lowest-energy and low-lying configurations if high barriers 

between local minima on the potential energy surface are present.  In the case, geometry optimization 

of the molecule would be useful to examine the reliability of the geometry obtained by the simulation.  

The geometry optimization is also necessary in structural investigations of proteins without sufficient 

structural information.  The present study is aimed at developing an efficient geometry optimization 

method for proteins.  The calculations of all-atom protein models are time-consuming and thereby one 

of the simplest protein models, the three-dimensional off-lattice model described with two kinds of 

beads (Figure 1),[126] is used in the present study. 

The model consists of hydrophobic and hydrophilic beads labeled by A and B.  This was first 

proposed by Stillinger et. al.[18] as a two-dimensional model and then extended to a three-dimensional 

one.[1-13,15,17,22,23]  Because of the simplification of the three-dimensional model, side chains and 

hydrogen bonds existing in proteins are not taken into account.  However, the potential energy surface 

of the model is still rugged and the search for the global minimum is difficult.[1-13,22,23]  It should be 

noted that the model captures an important feature of proteins, i.e., formation of a single hydrophobic 

core.[1-8,10,12]  For two dimensional off-lattice models with the same bead sequences as the three 

dimensional ones, [2-4,8,9,11,15,19,20,24,25] however, more than one hydrophobic cores are formed and 
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hydrophilic beads isolate the cores.  Hence the formation of the single hydrophobic core depends on 

the dimension of the model.  Efficient geometry optimization methods for the three-dimensional 

models are promising for realistic protein models. 

 

Figure 1.  An off-lattice protein model with hydrophobic (A) and hydrophilic (B) beads. 

 

The number of beads in the model is less than 90;[1-13,15,17,22,23] the bead sequences are described in the 

next section.  The models with 13, 21, and 34 beads were investigated with different methods[2-13,22,23] 

and the lowest energy of each of them was obtained with at least two methods.  Hence these models 

could be used as benchmark problems for geometry optimization.  The geometries of the 20-bead 

models with 6 different sequences[1,5,10] were also calculated with a few methods.  For the model with 

55 beads,[2-9,11,13,15] no consensus on the global minimum is found although several methods are applied 

to it.  Only the study of Zhang and Ma[13] reports the lowest energy of the 89-bead protein.  

Accordingly the global minima of the models with 55 and 89 beads are not clarified. 

There are a lot of issues treating geometry optimizations.  Structural predictions of clusters are 

included in them.  As known in the studies on clusters,[27,28] a lot of stable configurations are possible 

for a cluster.  Consequently it is difficult to search for its global minimum and the situation is similar to 

that for proteins.  The present author previously developed the efficient method to optimize geometries 

of Lennard-Jones (LJ) atomic clusters.[2931]  The algorithm is based on specific geometrical 
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perturbations and subsequent local optimizations.  The calculations[29] reproduced the global minima of 

LJ homoclusters with 10 – 561 atoms reported previously and located new minima for 6 clusters.  

Heteroclusters with 2, 3, and 4 kinds of atoms were also investigated.[30,31]  For the heteroclusters, the 

atomic compositions make the structure prediction complicated.  The complicated cases were 

successfully optimized with the method: a lot of new global minima of the heteroclusters with up to 50 

atoms were located.  Accordingly the method could be applied to other global optimization problems.  

As a target of great interest, the present author selected structure prediction of proteins. 

The purpose of the present study is to propose a new method for geometry optimization of 

three-dimensional off-lattice bead models.  For the purpose, specific geometrical perturbations are 

developed for the models referring to the method for atomic clusters.[29]  The proposed method is 

applied to the models with 13 to 55 beads.  The lowest energies of the models are compared with the 

data reported in the literature to examine the efficiency of the method.  The results are analyzed to 

elucidate structural features of the models and to examine the ability of the perturbations to lower the 

potential energies.  Improvements of the method are finally discussed. 

 

2 Method 

2.1 Protein Model 

The three-dimensional off-lattice model contains only two types of beads, A and B, which correspond to 

hydrophobic and hydrophilic residues, respectively.  Since the model has the unit length for all bonds, 

independent structural parameters of the N-bead protein are N – 2 bond angles  and N – 3 dihedral 

angles  as shown in Figure 2.  The present study adopts two kinds of potentials developed by Irbäck, 

Peterson, Potthast, and Sommelius[1] (abbreviated to the IPS potential) and by Stillinger, Head-Gordon, 

and Hirshfeld[18] (the SHH potential).  The IPS potential energy of the N-bead protein is given by 
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Here iju


 means a unit vector directed from the ith bead to the jth bead and ijr  represents the distance 

between beads i (type ) and j (type ).  The value of the coefficient  is 1 for A…A pairs and 0.5 

for A…B and B…B pairs.  When the first and second terms of the right-side of Eq. (1) are expressed 

by  and , Eq. (1) is presented as follows: 
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The potential energy of the 3-bead protein XXX (X = A or B) is presented as a function of r1,3: 
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The above equation shows that the bond angles of 66 and 67 take the potential energy minima for  = 

1 and 0.5, respectively; the corresponding minimum value Emin is 1.38 and 0.89, respectively.  

Similarly the 4-bead protein XXXX has the following potential energy if two bond angles take the same 

value : 
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where 3cos4cos2cossin2 222
4,1  r .  Assuming that  = 67 and  = 1, numerical 

evaluation of the equation shows that E4 takes the minimum values of 1.74 and 1.38 for the gauche 

and trans configurations ( = 75, 180).  The corresponding values are 1.24 and 1.33 for  = 0.5.  

Hence AXXA favors the gauche configuration and BXXB and AXXB slightly prefer the trans one. 

 

 

Figure 2.  Definition of bond angles i and torsional angles i in the off-lattice protein model. 
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The potential function of the SHH model[18] is represented by 
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The equation includes no torsional term, in contrast with the IPS expression.  The value of the 

coefficient C is 1 for A…A pairs, 0.5 for B…B pairs, and 0.5 for A…B pairs.  For the 3-bead 

model of AXA, the bond angle of the most stable geometry is 69 and the energy is 0.66.  The 

structures of AXB and BXB take the lowest potential energies at  = 180.  The model of AAAA with 

 = 69 takes one stable conformation with  = 70 and E = 0.31. 

The values of  and C in the IPS and SHH potentials indicate that in both models, the A…A van 

der Waals interaction has the lower energy at the equilibrium distance than the A…B and B…B 

interactions.  Hence the A beads tend to aggregate to form hydrophobic cores. 

The bead sequences of proteins used in the present study are listed in Table 1.  The methods and 

potentials used in the previous studies are summarized in Table 2.  The sequences of six 20-bead 

proteins are taken from the study of Irbäck et al.[1] and the sequences S13, S21, and S34 are generated 

according to the Fibonacci sequences.[29, 1113]  The lowest energies obtained in the literature are listed 

in Tables 3 and 4.  For the bead models expressed with the IPS and SHH potentials, the previous 

studies[4,5,8,10,12] report that the folding to the lowest-energy conformation occurs and that the folding 

behaviors of them are qualitatively comparable with those of real proteins.  Hence the development of 

the optimization method for the bead protein models would be useful for all-atom ones. 
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Table 1.  Bead sequences of proteins, the number of optimization cycles Nopt, and the number of 

successful cycles Ns for the potentials SHH and IPS. 

Protein Sequence SHH  IPS 

  Nopt Ns  Nopt Ns 

S13 AB2AB2ABAB2AB 2000 1599  2000 625

S20.1 BA6BA4BA2BA2B2 10000 34  10000 51

S20.2 BA2BA4BABA2BA5B 10000 10  10000 46

S20.3 A4B2A4BA2BA3B2A 10000 12  10000 239

S20.4 A4BA2BABA2B2A3BA2 10000 94  10000 88

S20.5 BA2B2A3B3ABABA2BAB 10000 565  10000 87

S20.6 A3B2AB2ABAB2ABABABA 10000 101  10000 210

S21 BABAB2ABAB2AB2ABAB2AB 2000 70  2000 78

S34 AB2AB2ABAB2AB2ABAB2ABAB2AB2ABAB2AB 20000 4  100000 1

 
 
Table 2.  Previous investigations on simulations for the sequences listed in Table 1. 

Author(s) Method(s) Potential and sequence Ref. 
Irbäck, Peterson, 
Potthast, and 
Sommelius 

Monte Carlo (MC) + quenching IPS (S20.1 to 20.6) 1 

Hsu, Mehra, and 
Grassberger 

Pruned-enriched-Rosenbluth 
(PER) + energy minimization 

SHH (S13, 21, 34) 2 

Liang Annealing contour Monte Carlo 
(ACMC) 

IPS (S13, 21, 34) 3 

Kim, Lee, and Lee Conformational space annealing 
(CSA) 

SHH, IPS (S13, 21, 34) 4 

Bachmann, Arkin, 
and Janke 

Energy landscape paving (ELP) 
and multicanonical Monte Carlo 
(MMC) 

SHH, IPS (S13, 21, 34, 
20.1 to 20.6) 

5 

Huang and Liu Heuristic conjugate gradient 
(HCG) and 
pruned-enriched-Rosenbluth 
(PER) + energy minimization 

SHH (S13, 21, 34) 6 

Chen and Huang Heuristic algorithm (HA) SHH (S13, 21, 34) 7 
Kim, Straub, and 
Keyes 

Statistical temperature annealing 
(STA), statistical temperature 

SHH, IPS (S13, 21, 34) 8 
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molecular dynamics (STMD), and 
force-biased multicanonical 
molecular dynamics (FBMMD) 

Zhang and Ma Molecular dynamics with 
Wang-Landau sampling (MDWL)

SHH, IPS (S34) 9 

Schnabel, 
Bachmann, and 
Janke 

Multicanonical Monte Carlo 
(MMC) 

SHH (S20.1, 20.3 and 
20.4) 

10 

Lee, Joo, Kim, and 
Lee 

Conformational space annealing 
(CSA) 

SHH, IPS (S13, 21, 34) 11 

Arkin Energy landscape paving (ELP) IPS (S13, 21, 34) 12 
Zhang and Ma Temperature space random walk 

(TSRW) 
IPS (S34) 13 

Kalegari and 
Lopes 

Differential evolution (DE) IPS (S34) 22 

Parpinelli, Benítez, 
Cordeiro, and 
Lopes 

Particle swarm optimization 
(PSO) 

IPS(S13, 21, 34) 23 

 

Table 3.  The lowest potential energies obtained for the sequences S20.1 – S20.6. 

Method S20.1 S20.2 S20.3 S20.4 S20.5 S20.6 

 SHH 

MMC[10] 33.8236 33.5838 34.4892  

MMC[5] 33.766 33.920 33.582 34.496 19.647 19.322 

ELP[5] 33.810 33.926 33.578 34.498 19.653 19.326 

This work 33.8433 33.9449 33.6097 34.5263 19.6614 19.3468

 IPS 

MC[1] 58.3   57.2   

MMC[5] 58.306 58.880 59.293 59.068 51.525 53.359 

ELP[5] 58.317 58.914 59.338 59.079 51.566 53.417 

This work 58.3246 58.9202 59.3476 59.0913 51.5721 53.4226

 
 
Table 4.  The lowest potential energies obtained for the sequences, S13, S21, and S34. 

Method SHH IPS 

 S13 S21 S34 S13 S21 S34 

PER[2] 4.9616 11.5238 21.5678  

ACMC[3]   26.5066 51.7175 94.0431 
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CSA[4] 4.9746 12.3266 25.5113 26.4714 52.7865 97.7321 

MMC[5] 4.967 12.296 25.321 26.496 52.915 97.273 

ELP[5] 4.967 12.316 25.476 26.498 52.917 97.261 

PER[6] 4.9717 11.9834 24.0224  

HCG[6] 4.9744 12.2553 24.8149  

HA[7] 4.9746 12.0617 23.0441  

STA[8] 4.9746 12.3266 25.5113 26.5066 52.9339 97.6171 

STMD[8] 4.9667 12.3176 25.4932 26.5052 52.9100 97.5570 

FBMMD[8]   26.4354 52.7040 97.3281 

MDWL[9]   98.3571 

CSA[11] 4.9746 12.3266 25.5113 26.5066 52.9339 98.3571 

ELP[12]   26.39 52.67 97.32 

TSRW[13]   98.3571 

DE[22]   26.507 50.3613 92.0962 

PSO[23]   24.888 46.611 80.409 

This work 4.9746 12.3266 25.5113 26.5066 52.9339 98.3571 

 

 
2.2 Geometry Optimization 

2.2.1 Algorithm 

The present optimization method was developed from the algorithm for atomic LJ clusters.[29]  In the 

algorithm, cluster geometries are optimized with two geometrical perturbations followed by local 

optimizations.  These perturbations are made by interior and surface operators (see Figure 3).  The 



 10

interior operator moves the highest-energy atom or group to the interior of the geometry and the surface 

one moves it to the most stable positions on the surface.  Similar geometrical perturbations are carried 

out for geometries of proteins; as shown in Figure 3, the highest-energy bead is moved to the interior of 

the protein (center-directed bead move) and to a position in the vicinity of it keeping the two rigid bonds 

(one bead rotation).  These moves are exactly extension of the interior and surface operators and no 

information on the global minima previously obtained for the protein models is used for the 

development.  The details of the geometrical perturbations are described in the next subsection.  The 

local optimization is essential to enhance efficiency of optimization methods as shown by Wales et 

al.[32] in the study using the basin-hopping algorithm. 

The flowchart for the developed method is shown in Figure 4.  The optimization method adopts a 

monotonic descent algorithm (energy lowering is acceptable) and a lot of initial geometries are used for 

exploration of the potential energy surface.  The values of the bond angles and dihedral angles of initial 

geometries are randomly generated.  These values are locally optimized with a limited memory 

Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) quasi-Newton method.[33]  The local optimization 

terminates when the following condition is satisfied for the IPS potential: 

3
52

1

2 10)52( 




   Ng
N

i
i

 (6) 

Here gi means the gradient of E with respect to the ith independent structural parameter.  For the SHH 

potential, the condition is modified by changing the right-side value from 103 to 102 because of the 

differences between the values of gi for the SHH and IPS potential functions.  The optimal potential 

energies of the proteins used in the present study take the accuracy of the order of 1  105 for both the 

potentials.  In the L-BFGS method, the approximations of inverse Hessian matrix are derived from 

successive corrections.[34]  Koslover and Wales[35] show that the number of the successive corrections 

significantly affects convergence speed.  According to the preliminary calculations on the S21 protein, 

the number of the successive corrections was set to be 200 and 300 for the IPS and SHH potentials, 

respectively. 
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Figure 3.  Geometrical perturbations for a cluster and a protein model.  New geometries of a cluster 

are generated by moving the highest-energy atom to the interior (I) and surface (S).  For a protein, 

center-directed bead move (C) and one bead rotation (O) operators perturb the geometry. 

 

After the local optimization of the initial geometry, it is modified with center-directed bead move 

operator for the highest-energy A bead; the calculation of the energy of each bead is described later.  

The geometry perturbed with the operator is optimized with the quasi-Newton method.  If the potential 

energy of the model is improved with the local optimization, the geometry is updated.  When the 

potential energy of the model is not improved during the last twenty perturbations, the one bead rotation 
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operator is carried out.  Twenty perturbations gave the best efficiency compared with five, ten, forty, 

sixty, and eighty perturbations. 

The center-directed bead move is not carried out for B beads.  As mentioned in the subsection 2.1, A 

beads tend to aggregate in the interior of the model.  Consequently B beads prefer exterior positions of 

the protein.  This tendency is contrary to the center-directed bead move operator. 

The one bead rotation operator selects the A bead with the highest potential energy (the number of the 

moved beads m is initially set to be 1) and moves it as shown in Figure 3.  The local optimization is 

carried out for the perturbed geometry.  If the energy of the protein is not improved by moving the 

highest-energy bead, the second highest-energy bead and the third highest-energy bead are separately 

moved to perturb the geometry of the protein.  Then the number of the moved beads increases up to 4 

one by one if no energy lowering occurs after the local optimization.  When energy lowering is 

observed, the geometry is updated and the number of the moved beads is initialized.  If the operator 

performed for m = 4 does not improve the energy, the optimization algorithm proceeds to the one bead 

rotation operator for B beads.  The above mentioned process is repeated for them. 

The termination condition is that the lowest energy obtained before the center-directed bead move 

operator is equal to that obtained after the one bead rotation operator.  This means that the update of 

the geometry is not performed with both the center-directed bead moves and one bead rotations. 

Local optimization is necessary as explained by the two following factors.  First, the center-directed 

bead move generates a high-energy configuration with high probability because of short distances 

between the moved bead and its surrounding beads.  Consequently the move rarely lowers the energy 

of the protein.  However, the local optimization significantly improves it, leading to a probability for 

energy lowering compared with the original energy.  This is also the case for one bead rotation.  

Second, local optimization transforms the potential energy surface to less rugged one, indicating that it 

makes the search for the global minimum easier.[32,36]  The combined use of local optimization and 

efficient sampling on potential energy surface is performed in the previous studies.[1,6-8,11,20] 
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Figure 4.  Flowchart of a cycle of the optimization algorithm for the off-lattice bead model. 

 

 
2.2.2 Geometrical Perturbations 

The geometrical perturbation operators move a bead or a few beads with the highest potential energy 

to different positions.  For the IPS model, the potential energy of the ith bead E(i) is defined by 
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For i = 1, 2, 3, N  2, N  1, N, one or two terms in Eq. (7) are omitted since subscripts are not positive 

or exceed N.  Eq. (7) satisfies the following equation: 


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iEE
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 (8) 

Hence the potential energy of each of the beads equivalently contributes (with the same weight) to the 

total energy of the protein.  The bead with the highest potential energy is selected referring to Eq. (7).  

On the other hand, m beads (m  1) with the highest potential energy are selected as follows: (i) For all 

combinations of m beads (numbering of m beads is represented by k1, k2,…, km), calculate the 

contribution E(k1, k2,…, km) of m beads to the potential energy of the protein.  For example, 2 beads i 

and j have the potential energy: 
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The third and fourth terms of the right side are necessary since the terms of opposite sign (e.g. 

2,11,),(   jjjj rrjiV


 for eq. (9a)) are duplicately included in the sum of the first and second terms.  

The energy of m beads can be evaluated following the above manners.  (ii) Select the m beads with the 

highest potential energy from all the combinations.  The number m is a predetermined integer as 

described before.  Eqs. (7) and (9) are modified for the SHH potential since the potential function is 

different from the IPS one. 

The center-directed bead move operator changes the position of the highest-energy A bead (kth bead) 

to the surface of a sphere.  It takes the radius of 0.5 and the center coincident with the center of mass of 

the protein (see Figure 3).  The center of mass of the protein is calculated assuming the unit mass for 

all beads.  A few beads may be moved together with the moved bead to keep the unit bond length 

(Figure 5).  For the jth bead (j = k + 1), the new position is given according to the position of the ith 

bead (i = k + 2) by the following equation: 



 15















 b)0(1otherwise

4
1

2

1

a)0(1 2if/

,

2

,

,

,,,

,

                                                                                          u
r

r

                                                                  r                                           rr

r

ik

ik

ik

ikjkjk

new
jk 







 

Here jkr ,


 is the vector directed from the position of the moved A bead to the original positions of the 

jth bead and 
iku ,


 is an arbitrary unit vector perpendicular to ikr ,


.  The above equation is repeatedly 

used until all bonds take the unit length. 

The one bead rotation is shown in the middle drawing in Figure 5b.  The moved bead corresponds to 

the jth bead in the drawing and the moved position is calculated according to Eq. (10b).  This operator 

is performed for both A and B beads as shown in the algorithm in Figure 4. 

 

Figure 5.  New positions of the bead (jth bead) next to the moved bead (kth bead).  Two types of 

moves are shown: (a) Case with 2, ikr


. The ith bead is also moved; (b) case with 2, ikr


. 

 

3 Results and Discussion 

For each protein, a lot of optimization cycles were performed with different initial geometries.  The 

number of initial geometries Nopt is listed in Table 1 together with the number of the optimization cycles 

which locate the lowest-energy configuration (Ns).  The lowest energies obtained in the present study 
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are compared with the results of the previous studies as shown in Tables 3 and 4.  Since the article of 

Irbäck et al.[1] did not give numerical data for the lowest energy, approximate values for S20.1 and 

S20.4 were obtained from the figures in the article. 

The successful rate t (= Ns/Nopt) is a useful parameter to evaluate the efficancy of the optimization 

algorithm.  The rates for the SHH potential do not significantly differ from those for the IPS one.  The 

effect of the number of beads on the rates is found as follows: t(S34) < t(S20) < t(S21) < t(S13).  This 

is reasonable since an increasing number of the beads mainly extend the searching space on the potential 

energy surface. 

For the S34 model with the IPS and SHH potentials, the number of geometries calculated in a cycle 

of the algorithm shown in Figure 4 (the number of calculated configurations per initial geometry, Nconf) 

is 150 and 170, respectively (CPU time is 1  2 min.).  This is reduced to 100 for the S13 model.  

These geometries are optimized with the quasi-Newton method.  The most difficult case in the present 

study (the S34 model with the IPS potential) required 1.5  107 local optimizations to search for the 

global minimum once. 

The comparison of the parameters to evaluate the efficiency, t and Nconf, with the corresponding 

values of the previous studies is impossible since the information is not available from the literature.  

Hence only the lowest energies of the models are discussed below. 

 

3.1 The Lowest Energies of the Model Proteins 

For the S13, S21, and S34 models, the lowest energies are reproduced at least twice in the previous 

studies as shown in Table 4.  Hence these values would correspond to the true global minima.  The 

results for the S34 proteins indicate that the molecular dynamics with Wang-Landau sampling,[9] the 

conformational space annealing,[11] and the temperature space random walk algorithm[13] are the most 

efficient. 

The lowest energies of S13, S21, and S34 for the IPS potential, 26.5066, 52.9339, and 98.3571, 
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were reproduced by the present method.  The best results of S13, S21, and S34 previously obtained for 

the SHH potential are also in good agreement with the present ones.  These results indicate that the 

present method is useful for calculating optimal geometries of the proteins. 

The present method improves the lowest energies of the 20-bead models.  Other efficient methods 

such as the conformational space annealing[11] are necessary to examine if the energies obtained in the 

present study correspond to the global minima. 

The differences between the previous and present potential energies are considered to be partially due 

to artifact in the literature.  For example, in the present study, the global-minimum energy of the S20.1 

SHH protein is 33.8433 whereas the second lowest one is 33.8131.  Hence the energy reported by 

Schnabel et al., [10] 33.8236, does not correspond to a local minimum on the potential energy surface. 

Similar situations are found for many previous results.  In the present study, the second lowest 

energies of the SHH models of S13, S20.1 to S20.6, S21, and S34 are 4.9627, 33.8131, 33.9364, 

33.6058, 34.3658, 19.6182, 19.3441, 12.2912, and 25.4884, respectively.  The corresponding 

values for the IPS potential are 25.9806, 58.1840, 58.7503, 58.7606, 58.6221, 51.5232, 

53.3735, 52.4744, and 98.0757, respectively.  If the energy in the previous study is lower than the 

above value and is not equal to the lowest energy listed in Tables 3 and 4, it must be artifact. 

The energies of the S13, S21, and S34 IPS models reported in the literature[37] are not listed in Table 

4 since the present author could not reproduce them using the geometries given in the supplementary 

material.  This is because there are discrepancies in the implementation of the IPS potential. 

 

3.2 Structures 

Although the structures of the IPS and SHH models are clarified, the features of them are not discussed 

in detail.  It is important to examine the features since the information may make optimization methods 

faster. 

The results in the present study show that the single hydrophobic core is formed in each of the 
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lowest-energy configurations of the proteins (Figures S1 and S2, and Table S1 in Supporting 

Information), in agreement with the results reported by Kim et al.,[4] Kim et al.,[8] and Lee et al.[11]  To 

compare geometries of 200 low-lying configurations of each protein, the principle moments of inertia of 

them were calculated.  Figure 6 shows the principle moments of inertia of the configurations of the S21 

protein.  The configurations take asymmetric shapes because of IA  IB  IC.  The values of the 

principle moments of inertia for the IPS potential are smaller than the corresponding values for the SHH 

one.  Hence the structures for the IPS potential are more compact than those for the SHH one.  This is 

the case for the other proteins (Figure S3 in Supporting Information).  As a feature of the SHH 

potential, the AXB and BXB bond angles tend to take 180 whereas the corresponding value for the IPS 

one is 67.  This feature affects the bond angles of 200 low-lying configurations (see Figure 7); the 

bond angles of the SHH protein are usually larger than those of the IPS one.  This results in the 

compact structures of the IPS protein. 

Figure 8 shows the torsional angles of 200 low-lying configurations of S21.  The IPS potential 

restricts possible configurations compared with the SHH one.  This is due to the lack of torsional terms 

in the SHH potential.  The lack may lead to the broad torsional distribution.  The above discussion on 

the bond and torsional angles is valid for the other proteins (Figures S4 and S5 in Supporting 

Information). 

The broad distribution for the SHH model (Figure 8) indicates that the barrier to the internal rotation 

is low in energy.  Hence the potential energy surface of the SHH model is less rugged than that of the 

IPS model, in agreement with the suggestion in the previous study.[11]  This may result in the high 

successful rates for the SHH model compared with the corresponding rates for the IPS one.  However, 

this is the case for only the S13, S20.5 and S34 models as shown in Table 1.  For the other models, the 

successful rates would be considerably affected by separation of the deepest basin from the other 

basins[4] and the width of the deepest basin.[11] 
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Figure 6.  The principle moments of inertia of 200 low-lying configurations of the S21 protein: (a) 

SHH potential and (b) IPS potential.  The values of IA, IB and IC are plotted with symbols of closed 

circles, open circles, and pluses, respectively. 
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Figure 7.  The bond angles of 200 low-lying configurations of the S21 protein: (a) SHH potential and 

(b) IPS potential. 
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Figure 8.  The torsional angles of 200 low-lying configurations of the S21 protein: (a) SHH potential 

and (b) IPS potential. 

 

3.3 Efficiency of the Geometrical Perturbations 

The efficiency of the optimization method is determined by the ability of the center-directed bead 

move and one bead rotation operators to lower potential energies.  Table 5 lists the potential energies 

lowered by the operators; the data were obtained from the results of all calculations.  The 

center-directed bead move operator considerably reduces the energies of the proteins with the IPS and 

SHH potentials.  It is shown using the correlation between compactness of structures and energies that 

the collapse of the model proceeds with decreasing energy.[8]  Hence the center-directed bead move 

operator exclusively induces the collapsed structure with the hydrophobic core.  The resulting structure 

is locally modified with the one bead rotation operator.  These optimization steps are similar to the 
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folding process of the collapse model. [38] 

 

Table 5.  Energy lowering of the SHH and IPS models induced by the center-directed bead move (C) 

and one bead rotation (O) perturbations.  The values averaged over all optimization calculations are 

listed. 

 S13 S20.1 S20.2 S20.3 S20.4 S20.5 S20.6 S21 S34 

 SHH 

C 2.95 4.80 5.41 10.24 9.37 9.47 10.02 7.23 12.93

O 0.04 0.18 0.17 0.16 0.16 0.20 0.16 0.09 0.56

 IPS 

C 4.20 7.39 7.58 8.18 7.98 7.21 7.72 7.60 13.52

O 0.21 0.90 0.78 0.72 0.62 0.66 0.60 0.60 1.30

 

As discussed above, the center-directed bead move perturbation is an efficient strategy for geometry 

optimization.  The efficiency originates from the following factors: (1) As described before, the A 

beads prefer to occupy the core of the protein.  The core formation of the hydrophobic beads is 

enhanced with the operator; (2) The energy of the hydrophobic beads near the center of the protein 

contributes to the total energy more significantly than that of the hydrophilic beads in the surface.  This 

suggests that perturbations of the interior part of the geometry give possibilities for considerably 

lowering the potential energy; (3) The perturbation induced by the move of an A bead diffuses to its 

near beads through the structural change shown in Figure 5a and the local optimization.  This would 

lead to improvement of the whole geometry of the protein. 

Since the one bead rotation operator generates geometries which cannot be produced by the 

center-directed bead move one, it works as a supplementary perturbation for the center-directed bead 

move one.  Hence the combined use of the two perturbations enhances the efficiency of the present 

optimization method. 
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The results of the LJ clusters[29] show that the interior operator as shown in Figure 3 significantly 

improves the potential energies.  The study on the ternary and quaternary LJ clusters[31] suggests that 

the atom-type conversion for interior atoms is efficient for improving the energies and structures.  

According to these results as well as the present results, it is considered that perturbations of the interior 

combined with local optimizations are an excellent optimization algorithm commonly used for 

aggregations of atoms independently of the existence of bonds. 

 

3.4 Application to Larger Protein Models 

Some studies[2-9,11,13,15] treat larger proteins of 55 and 89 beads with Fibonacci sequences as described 

below.  Global optimizations of these models are so difficult that no consensus on the global minimum 

of each protein can be obtained. 

The present method was used for geometry optimization of the 55-bead protein.  The sequence is 

expressed by the S21 sequence combined with the S34 one.  The lowest energy of the IPS protein was 

obtained to be 174.9241 from 200000 optimization cycles.  The energy of the protein is lower than 

those given in the literature (154.505,[3] 173.9803,[4] 172.696,[5] 174.5681[8], 157.112[22], and 

115.758[23]) but is higher than the values of 176.6913[11] and 178.1339.[9,13]  For the SHH potential, 

100000 optimization cycles located the configuration with the lowest energy of 43.3658.  The value 

is lower than the values reported previously, 32.8843[2], 42.3418[4], 42.428[5], 42.5195[6], 

38.1977[7], 42.5781,[8] and 42.5781.[15]   However, the literature[9, 11] gives the energies of 

44.8765 and 44.7983.  Since the calculation of the 55-bead protein was time-consuming (it took a 

few months in this work), no more geometry optimization could be carried out.  Execution of more 

calculations might yield energies comparable to the putative lowest energies in the literature.[9,11,13]  

The global minimum energy for the 89-bead protein is reported to be 311.6134.[13]  It is one of the 

most challenging problems which must be solved with geometry optimization methods. 

To obtain the global minimum of the 55-bead protein, a powerful multi-core computer would be 
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useful.  Different approaches can be derived by modifying initial geometry generator and geometrical 

perturbations.  Since a lot of initial configurations are randomly generated, many optimization steps are 

needed for energy lowering of them.  The present method aided with the strategy to generate promising 

initial configurations[7] is a candidate of modifications.  The geometrical perturbations are unique 

compared with geometrical changes in the other optimization methods.[1-26]  The combined use of the 

perturbations and other algorithms may increase the efficiency of the optimization method.  For 

example, a hybrid algorithm of the geometrical perturbations and the crossover operator which is used 

in one of the most efficient methods, the conformational space annealing,[11] could perform geometry 

optimization better than the single algorithm. 

Optimization methods are divided into two groups, unbiased and biased ones.  The above 

modifications are based on unbiased algorithms.  Biased algorithms usually search for global minima 

quicker than unbiased ones since the former restricts search space on the potential energy surfaces.  

The incorporation of the geometrical features obtained in the section 3.2 (constraints for bond and 

torsional angles) into the method may generate promising geometries at initial and perturbation steps in 

the algorithm. 

The present method would be applicable to small proteins with realistic potentials.  If the above 

mentioned improvements are performed, the application would be extended to larger protein models.  

In the future studies, more realistic models[39-42] will be useful for evaluating the improved method.  

For the models, a new optimization method could be developed using the secondary structures predicted 

with accuracy of approximately 80%.[43,44] 

 

4 Conclusions 

The present study is aimed at developing an efficient optimization algorithm for proteins.  The 

off-lattice model described with two kinds of beads was used to examine the efficiency of the 

optimization method.  Two types of geometrical perturbations were developed referring to the 

algorithm proposed for atomic clusters.  The center-directed hydrophobic bead move operator 
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proposed in the present study is crucial for the geometry optimization of the protein model since it 

significantly lowers the potential energy.  Efficiency of the interior geometrical perturbations is found 

for the Lennard-Jones clusters.  Hence the center-directed particle move followed by local optimization 

would be efficient for any systems.  Incorporation of the secondary structure prediction and/or other 

optimization strategies into the present algorithm would be a future direction of the optimization 

algorithm for proteins with realistic potentials. 
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