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Abstract
The bed instability of stratified open channel flow and turbidity currents is investi-
gated in this study. The first setting is free surface flow in a channel with dominant
suspended sediment load, and the second is a turbidity current on the ocean floor
the movement of which is driven by suspended sediment.

A linear stability analysis is performed in order to investigate the bed insta-
bility of open channel flow. The bed is assumed to be covered with sediment.
The sediment is assumed to be so fine as to completely follow the flow except it
sinks at a settling velocity in the vertical direction. The governing equations are
the two-dimensional Reynolds-averaged Navier-Stokes equations (RANS) and the
dispersion/diffusion equation of suspended sediment. In addition, as a turbulent
closure model, we employ the standard k-ε model which includes the transport
equations of the turbulent kinetic energy and the dissipation rate.

The open channel flow is assumed to be in the upper flow regime, and dominated
by suspended sediment with bedload being negligible. As far as suspended load
is concerned, density stratification is an important factor as it affects internal
structures of turbulence, and changes the flow velocity and the suspended sediment
concentration. Therefore, density stratification is expected to affect the stability of
the bed under free surface flow with dominant suspended sediment load. The base
state is assumed to be in an equilibrium condition. Under this condition, all the
variables are uniform in the streamwise direction and the vertical component of
velocity vanishes. The equations in the base state are solved numerically by the
use of a finite control volume method.

It is found that the density stratification increases the flow velocity in the upper
depth region, and increases the suspended sediment concentration near the bottom.
The mixing capacity due to turbulence is reduced under the density stratification
as reflected in the decrease of the eddy viscosity. In the perturbation problem,
the asymptotic expansion of the variables are then introduced into the governing
equations to obtain the perturbation equations. Because the perturbation equations
cannot be solved analytically, they are solved by a numerical scheme. The spectral
collocation method incorporated with the Chebyshev polynomials are used to solve
the perturbation equations. Substituting the solutions into the Exner equation, the
growth rate of perturbation is obtained.

The results of the analysis are illustrated in instability diagrams. The antidunes
are found to form in the upper flow regime. The instability regions predicted by
the analysis are fairly reasonable as the experimental results fall almost all in the



instability regions. Under the density stratification effect, the instability region of
antidune is shifted to the range of smaller wavenumbers, which is corresponding to
the range of longer wavelengths, around the critical Froude number. In addition,
this analysis also shed light on the migration mechanism of the antidunes. The
model predicts that antidunes could migrate in both the upstream and downstream
directions. The mechanism of the migration is explained by the phase shift between
the bed elevation and the net erosion rate. For the upstream migrating antidunes,
the net erosion rate reaches maximum (minimum) slightly upstream of the trough
(crest) of the bed waves. This process implies that the wave amplitude increases and
the waves migrate in the upstream direction. In the case of downstream migrating
antidunes, increases in the amplitude of bed waves is governed by the same process
as that of the upstream migrating antidunes, however, the maximum (minimum)
of the erosion rate takes place slightly downstream of the trough (crest) of the bed
waves. Thus, the bed waves migrate in the downstream direction.

Instability generated under turbidity currents is studied. A turbidity current
is a density flow the driving force of which is a density increase due to suspended
sediment contained in water. In the case of saline or thermal density flows, salt
concentration or temperature as driving force is diluted due to diffusion as it flows
down, and therefore, it cannot move long distance. In the case of turbidity currents
however, it has been found that the lower layer with high sediment concentration
has an equilibrium state because the diffusion is balanced with the settling of
suspended sediment.

In the analysis of turbidity currents, the two-dimensional Reynolds-averaged
Navier-Stokes equations are used with the Boussinesq approximation. Because
the suspended sediment is the dominant driving force of turbidity currents, the
suspended sediment concentration appears in the momentum equations. In ad-
dition, the dispersion/diffusion equation of suspended sediment is employed. As
a turbulent closure, the mixing length hypothesis is used to evaluate the eddy
viscosity. In the base state condition, the flow velocity is affected by the suspended
sediment concentration. As the sediment settling velocity increases, the suspended
sediment concentration is reduced in the upper depth region, and emphasized in
the lower depth region, resulting in a decrease and an increase in the flow velocity
in the upper and lower depth regions, respectively. Meanwhile, as the sediment
settling velocity decreases, the suspended sediment concentration becomes relatively
uniform, resulting in the velocity profile similar to that in open channel flow.

As a result of the linear stability analysis of bed instability under turbidity
currents, it is found that the flat bed becomes unstable to evolve into a bed



covered with bed waves in the range of densimetric Froude number larger than
approximately 0.4. In the condition of small settling velocities, the instability region
in the case of turbidity currents resembles that in open channel flow. In addition,
the instability region is affected also by the settling velocity non-dimensionalized
by the friction velocity in the base state. For the non-dimensional settling velocity
larger than 0.08, the instability region shows a strange shape. It is suggested
that turbidity currents do not have normal flow conditions under the condition of
sufficiently coarse suspended sediment.
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Chapter 1

Introduction

Bed wave formation on the bed and on the floor of the river and ocean is one

of the most interesting subjects of morphology. In this study, we investigate the

bed instability of the two configurations, the stratified open channel flows and the

turbidity currents.

In an open channel flow, the bed and the flow are subject to instability. This

instability is due to the interaction between the flowing water and the bed mor-

phology. Under proper conditions, the bed evolves into a train of boundary waves

such as ripples, dunes, and antidunes. Ripples and dunes are bedforms typically

appearing in the lower flow regime, while antidunes are those observed in the upper

flow regime. These bed features are not only growing in magnitude, but are also

migrating either upstream or downstream. Dunes usually migrate in the down-

stream direction, whereas antidunes migrate in both upstream and downstream

directions, respectively.

Since the seminal work of Kennedy [1963], the theory of instability which

described and showed that the formation of dunes and antidunes in erodible bed
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is due to the instability mechanism, there are some important theoretical models,

based on linear stability analyses, which predict the temporal growth or decay of

the bed morphology.

Engelund [1970] used the vorticity transport equation to study the bed stability

of an alluvial channel. In the condition of high flow rate and relatively fine sediment,

the flow is dominated by suspended sediment, and the bedload is negligible. Thus,

in this condition, the total sediment transport rate is basically the suspended

sediment load, and as a result the dunes vanish while only antidunes are subject to

instability observed in the upper flow regime. Further analysis by including the

bedload to cover the low flow regime revealed that the dunes are found to form in

the range of subcritical flow.

Fredsoe [1974] continued and elaborated the formulation of Engelund [1970] to

include the effect of gravity on the sediment that resists the transport of sediment

particle at the stoss side and favors at the downsloping lee side of the bedwaves.

The result showed that the unstable region changes remarkably for dunes but not

in the antidunes region. According to Fredsoe [1974], it was suggested that the

formation of antidunes is closely related to the presence of suspended sediment.

In both analyses, Engelund [1970] and Fredsoe [1974] employed the eddy viscos-

ity concept; however, the constant value eddy viscosity was taken to be proportional

to friction velocity and flow depth. This assumption is considered to be crude in

the sense that it fails to describe the stratification effect due to the presence of

suspended sediment.

Richards [1980] used one equation turbulent closure to account for the non-
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constant eddy viscosity concept which is different from that of Engelund [1970]

and Fredsoe [1974]. This concept is advancing the previous study in the sense that

it is expected to provide a more realistic description of turbulence especially in the

bed region. Richards [1980] restricted the analysis to low flow regime that allows

only the bedload transport to be considered. However, the model does not cover

the effect of suspended sediment to the bedwave formation process.

Recently, Colombini [2004] studied the instability of the bed by including only

the bedload as sediment load. Mixing length hypothesis was used to evaluate the

eddy viscosity, and the flow velocity is the logarithmic profile of uniform flow over

flat bed. Linear stability analysis was performed to study instability of the bed. It

was found that antidunes are observed to form even in a no-suspended sediment

case. It was also found that the gravity has minor effects on the instability of the

antidunes.

As shown by Engelund [1970] and Fredsoe [1974], the bed becomes unstable in

the upper flow regime under the condition of active suspended load. Colombini’s

study, however, does not shed further light on bed instability under the condition

of active suspended load. In this regards, we perform linear stability analysis of

bed instability due to suspended sediment of an open channel flow.

In this study, we consider an open channel the flow of which is assumed to be

under the upper flow regime condition. Under this consideration the suspended

load is dominant and the bedload is negligible. The suspended sediment is assumed

to completely followed the velocity of the flow except the sediment settling velocity

in the vertical direction. As far as suspended sediment is concerned, the flow is

subject to density stratification induced by the presence of suspended sediment. In
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the case of suspended load being dominant, the effect of density stratification of

suspended sediment is important in the way it affects the flow velocity, suspended

sediment concentration, the turbulent kinetic energy, and the dissipation rate of

turbulent kinetic energy (Coleman [1986], Winterwerp [2001], Winterwerp [2006],

and Yeh and Parker [2013]). In addition, these changes influence the formation

of the bedwaves. Therefore, it is important to investigate the effect of the density

stratification to the formation of the bedwaves.

In order to investigate the effect of density stratification due to suspended

sediment, the sediment transport model is assumed to be solely suspended sediment

entrained by the flow. In the formulation, we employed four governing equations:

the equation of the stream function ψ derived from the Reynolds-averaged Navier–

Stokes equations and the dispersion/ diffusion equations of suspended sediment

concentration c. For turbulent closure, the simple mixing length model and the

two-equation turbulent closure (standard k-ε model) which includes the turbulent

kinetic energy k, and the dissipation rate of the turbulent kinetic energy ε are used.

The effect of density stratification on the bed instability analysis is investigated

which, to the authors’ understanding, is not yet available.

Another setting of stratified flow is the turbidity currents which occur naturally

in the ocean, lake, reservoir, and dam, etc. Turbidity current is the current driven

by the gravitational force on the suspended sediment in the flow. The sediment is

considered to be suspended by the fluid turbulence (Lowe [1982], Middleton [1993]).

This kind of current is different from other density currents by the tendency to

settle down of the suspended particles in the depth direction. Normally, the current

dissipates when there is no more sediment in suspension.
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The turbidity current is an important agent that distributes and transports

much amount of sediment in the subaqueous environments. A single turbidity

current is capable of transporting hundreds of cubic kilometers of sediment into

the deep ocean. This amount of sediment is approximately equal to 10 times the

annual total sediment transported by all the rivers on Earth into the ocean (Talling

et al. [2007c]).

In the context of sedimentology and geophysics, the sediment which is rich in

organic matter and mineral is transported from the shallow region of the continental

shelf to the deep ocean environment by turbidity currents (Kneller and Buckee

[2000], Sequeiros et al. [2009]). Turbidity currents are generally generated by the

failure of the continental shelf due to any seismic events (Weaver et al. [1992],

Garcia and Hull [1994]) or storm surge, generating a surge-type currents, or ignited

by the direct sediment transport by the river (Wright et al. [1990]).

In the case of saline or thermal density flow, salt concentration or temperature

as a driving force is diluted due to diffusion as it flows down, and therefore, it

cannot travel to distance from its source of origin without any external forces acting

on it. Unlike other density currents, there are observational evidences which show

that turbidity current is able to travel hundreds of kilometers at the speed range of

tens of meters per second (Heezen and Ewing [1952]) before total dissipation and

deposition on the seabed.

The turbidity currents are not mass-conserved as the currents evolve down-

stream, at least as a whole (Kneller and Buckee [2000]). The flow loses and gains

the sediment to and from the sediment bed through deposition and entrainment

processes. The turbidity currents also entrain the ambient fluid from the upper
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boundary and reduce the driving force generated by the density difference of the

currents due to suspended sediment and the ambient fluid.

However, Bagnold [1962] provided a necessary condition for the turbidity cur-

rents to be able to sustain itself against the settling tendency of the sediment

and the drag force generated at the boundary. In this case, it is the power of the

tangential gravitational force exerted on the sediment that keeps the sediment in

suspension, and maintains the flow against the shear stress at the bottom. It is

found that this criterion is met as long as the slope is sufficiently high, at which the

turbidity currents are auto-suspending. Under this condition, the turbidity current

is capable of entraining more sediment into suspension and travel far distance

from the seashore. In addition, Parker [1982] emphasized the importance of the

entrainment and deposition mechanism. The term "ignition condition" is proposed

the implication of which is that there exists a set of threshold value of velocity and

concentration above which the currents grow temporally and spatially.

Under certain circumstances, the turbidity current is capable of self-accelerating

Parker et al. [1986]. It is believed that this self-accelerated mechanism of the

turbidity current is the mechanism that transports turbidite several kilometers

into the deep ocean (Parker [1982], Parker et al. [1986]). Due to this mechanism,

there is a strong implication that the turbidity current plays an important role in

sediment transport and morphodynamics process of the deep ocean bed, giving

rise to various topographical features in the submarine environments including

subaqueous abyssal fans and deltas, cyclic step, submarine canyons and gullies

(Izumi [2004]), etc.

These various subaqueous morphological structures have been examined and
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reported due to the advancing seafloor surveying technology. In addition to these

direct evidences of the capability of the turbidity current to shape the seafloor

and to travel long distance into the ocean, Luchi et al. [2015] performed a numer-

ical analysis by adopting the concept of turbidity current with a roof (Cantero

et al. [2009]) and found that the vertical structure of the turbidity currents can

be partitioned into two layers, namely the bottom "driving layer" and the upper

"driven layer". The upper driven layer is affected by the increase of the height of

the roof, whereas the bottom driving layer is independent of the driven layer and

reaches asymptotic behavior with relatively constant thickness, velocity profile, and

suspended sediment concentration profile.

Based on the above result, we assume that the turbidity currents possess

equilibrium condition at least at the relatively thin layer near the bottom. In

this study, we perform linear stability analysis to investigate the bed instability

generated by turbidity current.
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Chapter 2

Bed instability including the

effect of density stratification

2.1 Introduction

Suspended sediment particles in a channel flow stratify the flow by their tendency

to settle down. Under the effect of stratification, the flow characteristics (e.g. flow

velocity, flow depth, and flow resistance coefficient) and morphodynamics of the

channel bed may be affected accordingly. Therefore, it is necessary to study the

effect of density stratification on the instability of the bed in an open channel.

As a turbulent closure, the mixing length model and the standard k-ε model

are used. The standard k-ε is capable of capturing the density stratification effect.

Density stratification is physically induced by the buoyancy force of the density

gradient in the vertical direction. In this condition, the ability of the exchange

and mixing of the momentum between layers is limited. In addition, the turbulent

energy dissipates and is no longer able to sustain the sediment particles.
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In the following sections, the formulation of the model and concerning boundary

conditions are discussed. Then the flow velocity, the suspended sediment con-

centration, the turbulent kinetic energy, and the dissipation rate for the case of

equilibrium flow are discussed for both the cases with and without density strat-

ification effect by including and not including the effect of density stratification.

Finally, the linear stability analysis is performed to investigate the bed instability

by the effect of density stratification.

2.2 Formulation

2.2.1 Flow equations

The conceptual framework of the problem is an open channel with sufficiently large

width to ignore the effect of the bank (Fig. 2-1). The flow is considered to be

steady uniform and the bed with constant slope S containing suspended sediment

fine enough to assume to follow completely the flow velocity.

Under quasi-steady approximation, the open channel flow can be described by

the following two-dimensional Reynolds-averaged Navier-Stokes equations of the

form:

ũ
∂ũ

∂x̃
+ w̃

∂ũ

∂z̃
= 1
ρ

(
∂T̃xx
∂x̃

+ ∂T̃xz
∂z̃

)
+ gS (2.1)

ũ
∂w̃

∂x̃
+ w̃

∂w̃

∂z̃
= 1
ρ

(
∂T̃xz
∂x̃

+ ∂T̃zz
∂z̃

)
− g (2.2)

∂ũ

∂x̃
+ ∂w̃

∂z̃
= 0 (2.3)

In the above equations, x̃ and z̃ are the coordinates in the streamwise and

depth directions, respectively, ũ and w̃ are the x̃ and z̃ components of velocity,

respectively, T̃xx, T̃xz, and T̃zz are the stress tensors, ρ is the density of fresh water
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Figure 2-1: Base flow configuration
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(= 1000 kg/m3 ), g is the acceleration of gravity (= 9.8 m/s2), and (˜) denotes

dimensional variable that is removed to express non-dimensional variables.

The stress tensors are

T̃xx = −p̃− ũ′ũ′ (2.4)

T̃xz = −ũ′w̃′ (2.5)

T̃zz = −p̃− w̃′w̃′ (2.6)

where p̃ is the pressure, −ũ′ũ′, −ũ′w̃′, and −w̃′w̃′ are the Reynolds stresses.

The Reynolds stresses are expressed by the use of Boussinesq’s kinetmatic eddy

viscosity ν̃t such that

−ũ′ũ′ = 2ν̃t
∂ũ

∂x̃
, − ũ′w̃′ = ν̃t

(
∂ũ

∂z̃
+ ∂w̃

∂x̃

)
, − w̃′w̃′ = 2ν̃t

∂w̃

∂z̃
(2.7)

where ν̃t is obtained from the turbulent closure models explained later.

2.2.2 Suspended sediment model

The diffusion/dispersion equation of suspended sediment concentration c̃ is

ũ
∂c̃

∂x̃
+ (w̃ − ṽs)

∂c̃

∂z̃
= ∂

∂x̃

(
−ũ′c̃′

)
+ ∂

∂z̃

(
−w̃′c̃′

)
(2.8)
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where ṽs is the settling velocity of sediment. The turbulent diffusion flux of

suspended sediment −ũ′c̃′ and −w̃′c̃′ are expressed by

−ũ′c̃′ = ν̃t
σc

∂c̃

∂x̃
, − w̃′c̃′ = ν̃t

σc

∂c̃

∂z̃
(2.9)

where σc = 1.2 is the turbidity Schmidt number for suspended sediment concentra-

tion.

The total sediment transport load is assumed to be only the suspended sediment.

Therefore, the Exner equation for the sediment mass conservation equation is written

in the form

−(1− λp)
∂Z̃

∂t̃
= Ẽs − D̃p (2.10)

where λp is the porosity, Z̃ is the dimensional bed elevation, Ẽs and D̃p are the

dimensional entrainment rate of sediment into suspension and the settling rate,

respectively, which are written in the form

Ẽs = ṽsEs (2.11)

D̃p = ṽscb (2.12)

where Es and cb are the non-dimensional suspended sediment entrainment rate

into suspension and the suspended sediment concentration near the bed.

We employ Garcia and Parker [1991] formula to evaluate the suspended sediment

entrainment rate of the form

Es = γ
A0Z

5
u

1 + A0
0.3Z

5
u

(2.13)
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where A0 = 1.3 · 10−7 and γ is an adjustment factor to satisfy the equilibrium

condition of the bed in the base state. The non-dimensional parameter Zu is defined

by

Zu = Ũ∗
ṽs
Re0.6

p (2.14)

in which Ũ∗, ṽs, and Re =
√
Rsgd̃sd̃s/ν̃ are shear velocity, settling velocity of

sediment and particle Reynolds number, respectively.

2.2.3 k-ε model

The standard k-ε model includes transport equations for the turbulent kinetic

energy k and the turbulent energy dissipation rate ε. The kinematic eddy viscosity

ν̃t is described by the turbulent energy k̃ and the dissipation rate ε̃ in the form

ν̃t = Cµ
k̃2

ε̃
(2.15)

where the coefficient Cµ is estimated to be 0.09.

The transport equation of turbulent kinetic energy k̃ is

ũ
∂k̃

∂x̃
+ w̃

∂k̃

∂z̃
= ∂

∂x̃

(
ν̃t
σk

∂k̃

∂x̃

)
+ ∂

∂z̃

(
ν̃t
σk

∂k̃

∂z̃

)
+ P̃ + G̃− ε̃ (2.16)

where σk = 1.0 is the turbulent Schmidt number for k̃, and P̃ and G̃ are the

production due to shear and the production due to buoyancy respectively, described
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by

P̃ = ν̃t

2
(
∂ũ

∂x̃

)2

+
(
∂ũ

∂z̃
+ ∂w̃

∂x̃

)2

+ 2
(
∂w̃

∂z̃

)2
 (2.17)

G̃ = Rsg
ν̃t
σc

∂c̃

∂z̃
(2.18)

where Rs is the submerged specific gravity (= 1.65).

The transport equation of the dissipation rate ε̃ is

ũ
∂ε̃

∂x̃
+ w̃

∂ε̃

∂z̃
= ∂

∂x̃

(
ν̃t
σε

∂ε̃

∂x̃

)
+ ∂

∂z̃

(
ν̃t
σε

∂ε̃

∂z̃

)
+ Cε1

ε̃

k̃
(P + Cε3G)− Cε2

ε̃2

k̃
(2.19)

where σε = 1.3 is the turbulent Schmidt number for ε̃, and the parameter Cε1 and

Cε2 are 1.44 and 1.92, respectively. The parameter Cε3 is equal to 1 and 0 for the

case with and without density stratification effect, respectively.

2.2.4 Mixing length model

With the use of the mixing length turbulent model, the eddy viscosity is expressed

by

νt = l2
∣∣∣∣∣∂u∂z

∣∣∣∣∣ (2.20)

l = κ(z − Z)
(
H +R− z

H

)1/2
(2.21)

where l is mixing length; κ is Karman constant (= 0.4); Z is bed elevation; H

is the flow depth; R is the reference level at which the velocity vanishes in the

logarithmic velocity distribution.
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2.2.5 Normalization

The above governing equation have been normalized by the following normalization:

t̃ = H̃(1− λp)
ṽs

t,

(x̃, z̃, Z̃, R̃, B̃) = H̃(x, z, Z,R,B),

(ũ, w̃) = Ũ∗(u,w), p̃ = ρŨ2
∗p,

ν̃t = Ũ∗H̃νt, c̃ = C̃c,

k̃ = Ũ2
∗k, ε̃ = Ũ3

∗

H̃
ε (2.22)

Here (̃ ) denotes the dimensional variables, C̃ is the depth averaged suspended

sediment concentration, H̃ is the flow depth, Z, R, and B are the bed elevation,

reference level at which the velocity vanishes in the logarithmic velocity distribution,

and elevation at which the bed shear stress is evaluated. Ũ∗ is the shear velocity

described by

Ũ∗ =
√
τ̃b
ρ

(2.23)

where τ̃b is the bed shear stress.

In addition, the depth-averaged suspended sediment concentration C̃ is defined

by

C̃ = 1
H̃

∫ H̃

0
c̃ dz̃ (2.24)
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The normalized equations are then take the form

u
∂u

∂x
+ w

∂u

∂z
= −∂p

∂x
+ ∂

∂x

(
2νt

∂u

∂x

)
+ ∂

∂z

[
νt

(
∂u

∂z
+ ∂w

∂x

)]
+ 1 (2.25)

u
∂w

∂x
+ w

∂w

∂z
= −∂p

∂z
+ ∂

∂x

[
νt

(
∂u

∂z
+ ∂w

∂x

)]
+ ∂

∂z

(
2νt

∂w

∂z

)
− 1
S

(2.26)

∂u

∂x
+ ∂w

∂z
= 0 (2.27)

u
∂c

∂x
+ (w − vs)

∂c

∂z
= ∂

∂x

(
νt
σc

∂c

∂x

)
+ ∂

∂z

(
νt
σc

∂c

∂z

)
(2.28)

∂Z

∂t
= Es − cb (2.29)

νt = Cµ
k2

ε
(2.30)

u
∂k

∂x
+ w

∂k

∂z
= ∂

∂x

(
νt
σk

∂k

∂x

)
+ ∂

∂z

(
νt
σk

∂k

∂z

)
+ P +B − ε (2.31)

u
∂ε

∂x
+ w

∂ε

∂z
= ∂

∂x

(
νt
σε

∂ε

∂x

)
+ ∂

∂z

(
νt
σε

∂ε

∂z

)
+ Cε1

ε

k
(P + Cε3B)− Cε2

ε2

k
(2.32)

P = νt

2
(
∂u

∂x

)2

+
(
∂u

∂z
+ ∂w

∂x

)2

+ 2
(
∂w

∂z

)2
 (2.33)

G = Riτ
νt
σc

∂c

∂z
(2.34)

where Riτ is the shear Richardson number defined with the use of the shear velocity,

such that

Riτ = RsC̃gH̃
Ũ2
∗

(2.35)

25



2.3 Base state solution

2.3.1 k-ε model

Under the equilibrium condition, the derivatives in the streamwise direction x and

the vertical component of velocity w can be dropped in the governing equations,

which reduce to

d
dz

(
νt
du
dz

)
+ 1 = 0 (2.36)

d
dz

(
νt
σc

dc
dz

)
+ vs

dc
dz = 0 or νt

σc

dc
dz + vsc = 0 (2.37)

νt = Cµ
k2

ε
(2.38)

d
dz

(
νt
σk

dk
dz

)
+ νt

(
du
dz

)2

+Riτ
νt
σc

dc
dz − ε = 0 (2.39)

d
dz

(
νt
σε

dε
dz

)
+ Cε1

ε

k

νt
(
du
dz

)2

+ Cε3Riτ
νt
σc

dc
dz

− Cε2 ε2

k
= 0 (2.40)

With the use of Eq. (3.35), Eqs (3.38) and (3.39) are written alternatively in the

form
d
dz

(
νt
σk

dk
dz

)
+ νt

(
du
dz

)2

−Riτvsc− ε = 0 (2.41)

d
dz

(
νt
σε

dε
dz

)
+ Cε1

ε

k

νt
(
du
dz

)2

− Cε3Riτvsc

− Cε2 ε2

k
= 0 (2.42)

Boundary conditions at the bottom

It is known that, in the thin layer near the bottom (referred to as the bottom

layer hereafter), the k-ε model cannot reproduce the realistic distributions of flow

velocity and suspended sediment concentration very well. We assume that the

turbulent structure can be described by the mixing length hypothesis in the bottom
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layer. In order to simplify and avoid the singularity due to high gradient at the

region near to the bottom, the bottom boundary condition is evaluated at z = B0

which is assumed to be equal to 5% from the bed.

Boundary condition for u

With the use of the mixing length hypothesis, the kinematic eddy viscosity below

the bottom layer (z ≤ B0) is written in the form

νt = κ2z2
∣∣∣∣∣dudz

∣∣∣∣∣ (2.43)

Substituting the above equation into Eq. (3.34), we obtain

d
dz

κ2z2
(
du
dz

)2
 = −1 (2.44)

Integration of the above equation from the bottom (z=0) to a certain location in

the bottom layer (z=z) yields

κ2z2
(
du
dz

)2

= 1− z (2.45)

where the relation [νtdu/dz]z=0 = 1 has been used. When z is sufficiently small to

be ignored, the above equation reduces to

du
dz = 1

κz
(2.46)

This is integrated to be

u = 1
κ

lnz + C0 (2.47)
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where C0 is an integral constant to be determined by experimental results. In the

case turbulent flow on sufficiently rough walls, it has been known that C0 = (1/κ)

ln(30/ks), so that Eq. (2.47) reduces to

u = 1
κ

ln30z
ks

(2.48)

The above equation is evaluated at the point where z = B0 to become

u(B0) = 1
κ

ln30B0

ks
(2.49)

This is the boundary condition for velocity where z = B0.

Boundary condition for ε

In the vicinity of the bed, we can assume that the production rate is balanced with

the dissipation rate, such that

νt

(
du
dz

)2

= ε (2.50)

Substituting Eq. (3.45) into Eq. (3.42) we obtain the relation

νt = κz (2.51)

with the use of the above equation and Eq. (3.45), Eq. (2.50) is reduced to

ε = 1
κz

(2.52)

This equation is evaluated at the outer bound of the bottom layer (z = B0) to be

ε(B0) = 1
κB0

(2.53)
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This is the boundary condition for ε where z = B0.

Boundary condition for k

Assuming the continuity of νt inside and outside of the bottom layer, we obtain

the following equation from Eqs. (3.28) and (2.51)

κz = Cµ
k2

ε
(2.54)

With the use of Eqs. (2.52) and (2.54), turbulent kinetic energy k is expressed in

the relation

k(B0) = 1√
Cµ

(2.55)

This is the boundary condition for k where z = B0.

Boundary condition for c

The restriction for c can be obtained from the definition of the depth-averaged

suspended sediment concentration Eq. (3.22). The normalized form of Eq. (3.22)

is

∫ 1

0
c dz = 1 (2.56)

In order to facilitate the problem and to avoid the need to specify the value

of suspended sediment concentration cb explicitly, a new dependent variable is

introduced and defined by

χ =
∫ z

0
c dz (2.57)
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The boundary condition for χ where z = B0 is written in the form

χ(B0) =
∫ B0

0
c dz (2.58)

It is assumed
∫ B0

0 c dz is negligibly small. Dropping the term
∫ B0

0 c dz, the following

boundary condition for χ is obtained:

χ(B0) = 0 (2.59)

Boundary conditions at the water surface

At the water surface, the velocity gradient should vanish such that

du
dz

∣∣∣∣∣
z=1

= 0 (2.60)

For the standard k-ε model, the turbulent kinetic energy k and the dissipation

rate ε are assumed to satisfy symmetry conditions. Therefore, the boundary

conditions at the free surface z = 1 are

dk
dz

∣∣∣∣∣
z=1

= 0 (2.61)

dε
dz

∣∣∣∣∣
z=1

= 0 (2.62)

In addition, the boundary condition of χ is

χ(z = 1) = 0 (2.63)
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Reformulation with the new variable χ

With the use of the new dependent variable χ, Eqs. (3.34), (3.35), (3.40) and (3.41)

are expressed by
d
dz

(
νt
du
dz

)
+ 1 = 0 (2.64)

νt
σc

d2χ

dz2 + vs
dχ
dz = 0 (2.65)

νt = Cµ
k2

ε
(2.66)

d
dz

(
νt
σk

dk
dz

)
+ νt

(
du
dz

)2

− Riτvs
dχ
dz − ε = 0 (2.67)

d
dz

(
νt
σε

dε
dz

)
+ Cε1

ε

k

νt
(
du
dz

)2

− Cε3Riτvs
dχ
dz

− Cε2 ε2

k
= 0 (2.68)

The differential system of Eqs. (2.64), (2.65), (2.67), and (2.68) constitute a

set of second order differential equations of u, χ, k, and ε. Therefore, 8 boundary

conditions (Eqs. (2.49), (2.53), (2.55), and (2.59)-(2.63))described in the previous

section are required to solve the system.

2.3.2 Mixing model

In mixing length model, we consider logarithmic velocity distribution as the base

state condition. To avoid the singularity at the bottom of the bed, variable

transformations are introduced in the form

ξ = x, η = z −R(x)
H(x) (2.69)

The logarithmic velocity profile in the base state is described by

u0,m(η) = 1
κ
ln
(
η +R0

R0

)
(2.70)
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where R0 is the elevation at which the logarithmic velocity is 0 and subscript m

refers to the mixing length model.

Here we introduce the concept of friction coefficient Cr which is the ratio

between the friction velocity U∗ and the depth average velocity Uavg of the uniform

flow. In addition, this relation also relates the slope S and the Froude number F

which is defined by

Cr = U∗
Uavg

= S1/2

F (2.71)

By this definition, integrating Eq. (2.52) from η = 0 to 1, we obtain

1
Cr

= Uavg
U∗

= 1
κ

[
ln
(1 +R0

R0

)
− 1

]
(2.72)

where the value 1/Cr = 20 is adopted [Guy et al., 1966] and the value of R0 could

be determined to be R0=0.0001234.

The suspended sediment concentration is obtained by solving Eq. (3.8) numeri-

cally. In order to compare the result of the mixing length model with that of k − ε

model, the boundary condition at the bottom of the suspended sediment is

cbo,m(B0) = cbo,k (2.73)

where cbo,m and cbo,k are the normal near bed concentration of mixing length model

and k − ε model respectively.

At the water surface, the suspended sediment concentration is zero such that

cbo,m(1) = 0 (2.74)
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2.3.3 Result in steady equilibrium state

It is apparent that the base state problem is not subject to any analytical solutions.

The above system of differential equation is solved numerically with the use of the

finite volume method.

The results of the numerical calculation are shown in Fig.2-2–2-4. These figures

correspond to the vertical distributions of the velocity, the suspended sediment

concentration, and the eddy viscosity, respectively. We obtain the results of the

case not including the effect of density stratification by solving Eqs. (2.64), (2.65),

(2.66), and (2.67) with all the buoyancy terms dropped.

It is found from Fig. 2-2 that the effect of density stratification generally in-

creases the velocity particularly in the upper part and deviates from the logarithmic

velocity profile predicted by the mixining length model. In the case of suspended

sediment concentration, Fig. 2-3 shows that the effect of density stratification is

rather small, and it increases slightly in the lower part and decreases slightly in the

upper part due to the effect of density stratification. The concentration is relatively

more uniform in the mixing length model. These results can be explained in terms

of the eddy viscosity.

The density stratification generally suppresses the turbulent mixing, and there-

fore, the diffusion of momentum and suspended sediment is reduced. This effect

is reflected in Fig. 2-4, which shows that the eddy viscosity decreases due to the

density stratification. Because of the reduction of turbulent mixing, relatively large

momentum and small suspended sediment concentration in the upper part are not

reduced by the effect of small momentum and large sediment concentration near

the bed.
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Figure 2-2: Base state flow velocity

2.4 Linear stability analysis

We introduce a coordinate transformation in the form

ξ = x (2.75)

η = z −R(x)
H(x) (2.76)
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Figure 2-3: Base state concentration

Figure 2-4: Base state eddy viscosity
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2.4.1 Perturbation expansion

In the perturbation problem, a small sinusoidal perturbation is imposed on the bed

(see Fig.2-5), such that

Z = AZ1ei(αξ−ωt) (2.77)

In response to the perturbation on the bed, all the variables are also perturbed.

Because the perturbation has the same wavenumber and complex angular frequency

of perturbation, all the variables can be expanded in the form

(ψ, c, p, k, ε, Z,R,B,H) = (ψ0, c0, p0, k0, ε0, 0, R0, B0, 1)

+A(ψ1, c1, p1, k1, ε1, Z1, Z1, Z1, H1)ei(αξ−ωt)
(2.78)

where A, α, and ω are the amplitude, wavenumber, and complex angular

frequency of perturbation, respectively. In the above equation, ψ is the stream

function defined by

u = ∂ψ

∂z
(2.79)

w = −∂ψ
∂x

(2.80)

2.4.2 General boundary conditions in perturbation prob-

lem

The boundary condition at the flat water surface and bed were derived, as discussed

in section 2.3. However, it is required to generalize the boundary condition for

more general cases such as the perturbed water surface and bed. These boundary

conditions are discussed hereafter.

36



Figure 2-5: Perturbation flow configuration
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k-ε model

Water surface boundary conditions

At the water surface η = 1, the stress normal to the water surface should vanish.

It is expressed as

~ens · T · ~ens = 0 (2.81)

where ~ens is the unit vector normal to the water surface and T is the stress tensor.

The kinematic boundary condition that th velocity component normal to the

water surface vanishes is expressed as

~u ·~ens = 0 (2.82)

In addition, the diffusion flux of the turbulent kinetic energy and dissipation

normal to the water surface also vanish, such that

~Fk ·~ens = 0 (2.83)

~Fε ·~ens = 0 (2.84)

where ~Fk and ~Fε are the diffusion flux of the turbulent kinetic k and the dissipation

rate ε, defined by
~Fk = (− νt

σk

∂k

ξ
,− νt

σk

∂k

∂η
) (2.85)

~Fε = (− νt
σε

∂ε

ξ
,− νt

σε

∂ε

∂η
) (2.86)

The suspended sediment flux across the water surface also vanish

(~Fc − vsc(ξ, 1)~k) ·~ens = 0 (2.87)
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where ~k = (0, 1) is normal unit vector, ~Fc is the suspended sediment flux, defined

as
~Fc = (− νt

σc

∂c

∂ξ
,− νt

σc

∂c

∂η
) (2.88)

Bottom boundary conditions

The bottom boundary condition is evaluated at ηb = 0.05 from the bed.

The boundary conditions of the normal and tangential velocity component are

~u ·~enb = 0 (2.89)

~u ·~etb −
1
κ
ln30ηb

ks
= 0 (2.90)

where ~enb and ~etb are the normal and tangential unit vector to the bottom layer.

The eddy viscosity should be continuous inside and outside of the bottom layer

ηb

κ2η2
b

∂u

∂η
= Cµ

k(ξ, ηb)2

ε(ξ, ηb)
(2.91)

In addition, we assume that the production rate due to shear is balanced with

the dissipation at the bottom

P = ε(ξ, ηb) (2.92)

Furthermore, the suspended sediment flux is equal to the entrainment rate of

suspended sediment into suspension from the bottom, such that

~Fc ·~enb = Es(U∗) (2.93)
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Mixing length model

In mixing length model, the boundary condition for the suspended sediment is the

same as those in the k-ε model. However, the vanishing bottom tangential and

normal velocity components are applied at the reference level R.

~u ·~enr = 0 (2.94)

~u ·~etr = 0 (2.95)

where ~enr and ~etr are the unit vector normal and tangential to R.

2.4.3 Solution of perturbation problem

In the scheme of linear stability analysis, the amplitude A is assumed to be infinites-

imally small and higher non-linear terms of A are negligible. The wavenumber α is

real number, and the angular frequency of perturbation (ω = ωr + iωi) is complex

number. The real and imaginary parts of ω are the real angular frequency and the

growth rate of perturbation, respectively.

Substituting Eq. (2.78) into the governing equations, we obtain the pertur-

bation equations. Since the amplitude of the perturbation A is considered to be

infinitesimally small, the terms associated with higher non-linear order of O(A2)

are negligible.

The perturbation equations cannot be solved analytically; therefore, some nu-

merical scheme has to be introduced.The spectral collocation method incorporated

with the Chebyshev polynomials are used to solved the perturbation equations.
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k-ε model

The variables ψ1, c1, k1, and ε1 are expanded in the form

ψ1 =
N∑
j=0

ajTj(ζ) (2.96)

c1 =
N∑
j=0

a(N+1)+jTj(ζ) (2.97)

k1 =
N∑
j=0

a(2N+2)+jTj(ζ) (2.98)

ε1 =
N∑
j=0

a(3N+3)+jTj(ζ) (2.99)

where aj(j = 0, 1, . . . , 4N + 3) are the coefficients of the Chebyshev polynomials,

and Tj(ζ) is the Chebyshev polynomials of degree j. The independent variable ζ

ranges from -1 to 1 and relates to the physical coordinate η(B0 < η < 1) by

ζ = 2
ln( η−R0

B0−R0
)

ln( 1−R0
B0−R0

)
(2.100)

The Eqs. (2.96), (2.97) , (2.98), and (2.99) are substituted into the perturbation

equations evaluated at the Gauss-Lobatto points ζn, described by

ζn = cos
(
nπ

N

)
(2.101)

where n = 0, 1, ..., N . In addition, the perturbation variable H1 is assigned as

a4N+4. We eventually obtain a system of 4N + 5 algebraic equations, ten of which

are replaced by the boundary conditions. Extracting all the unknow coefficient

aj(j = 0, 1, ..., 4N + 4), we obtain a system of algebraic equations, written in the
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matrix form

L · [a0 a1 a2 ... a4N+4]T = M · Z1 (2.102)

where L is a (4N + 5)× (4N + 5) matrix the elements of which are the coefficient

of the perturbed variables ψ1, c1, k1, ε1, and H1 of the perturbation equations and

of the boundary conditions, and M is a vector with (4N + 5) elements, which are

the coefficient of Z1. By solving Eq. (2.102), we obtain the solutions for perturbed

variables ψ1, c1, k1, ε1, and H1. Substituting these solutions into the Exner equation

(3.27), we obtain the complex angular frequency of perturbation ω.

Mixing length model

Similarly, the perturbed stream function ψ1,m, concentration c1,m, and depth H1,m

of the mixing length model also adopt a numerical scheme, spectral collocation

method. The variables are expanded as follow

ψ1,m =
N∑
j=0

aj,mTj,m(ζm), c1,m =
N∑
j=0

a(N+1)+j,mTj,m(ζm)

H1,m = a2N+2

(2.103)

where ζm is related to η(0 < η < 1) and defined by

ζm = 2η − 1 (2.104)

The similar procedures to the k − ε model are then proceeded. We eventually

obtain the system of algebraic equations for the mixing length model in the matrix

form

K · [a0,m a1,m ... a2N+2,m]T = N · Z1 (2.105)

where K is a (2N + 3)× (2N + 3) matrix the elements of which are the coefficient
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of the perturbed variables ψ1,m, c1,m, and H1,m of the perturbation equations and

of the boundary conditions, and N is the (2N + 3)× 1 matrix the elements of which

are the coefficient of perturbed variable R1 of the mixing length model.

2.5 Results and discussion

2.5.1 Characteristics of bed instability

One example of the results of stability analysis is shown in Fig.2-6. In the figure,

the solid line is the neutral curve where the growth rate of perturbation vanishes

(ωi = 0). The bed is unstable when the growth rate is positive (ωi > 0) and stable

when the growth rate is negative (ωi < 0). The dashed line is the neutral curve of

the real part of the angular frequency of perturbation (ωr = 0) which is associated

with the celerity of the bedwaves. The bedwaves migrate downstream and upstream

when ωr is are positive and negative, respectively.

According to Fig.2-6, an unstable region, bounded by solid line, is observed in

the upper flow regime Froude number F > 1). The unstable region corresponds to

the formation of the antidunes. The experimental results of Kennedy [1961] are

also plotted in the figure. It is found that the results predicted by the model agree

fairly well with the experimental results.

2.5.2 Migration direction of antidunes

In the unstable region, the dashed line divides the region into two parts. On the

left side of the dashed line, the celerity is negative (ωr < 0), indicating that the

antidunes are migrating in the upstream direction. On the other hand, on the right
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Figure 2-6: Stability diagram. Kennedy’s experiment: •, dm=0.549mm up-
stream migration antidune; N, dm=0.549mm downstream migration antidune;
◦, dm=0.233mm upstream migration antidune.
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Figure 2-7: Upstream migrating antidunes (F=1.5, α=0.4).Bed elevation(solid
line), net erosion(dashed line)

side of the dashed line, ωr is positive, indicating that the antidunes are migrating

in the downstream direction.

Among Kennedy’s experimental data, two downstream migrating antidunes are

observed. Compared with the other upstream migrating antidunes for the same

experimental condition, it is observed that the downstream migrating antidunes

are those with shorter wavelength. The current model is qualitatively consistent

with the experimental result on the migration direction of the antidunes.

In order to discuss the mechanism of instability and the migration direction

of antidunes, we focus on the bed elevation and the net erosion rate (Es − cb ) of

two typical cases: one is upstream-migrating antidunes shown in Fig.2-7, and the

other is downstream-migrating antidunes shown in Fig.2-8. In the figures, the solid

lines correspond to the bed elevation, while the dashed line corresponds to the net

erosion rate.

Fig.2-7 shows the bed elevation and the net erosion rate in the case that F = 1.5
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Figure 2-8: Downstream migrating antidue (F=1.5, α=0.6). Bed elevation (solid
line), net erosion(dashed line)

and α = 0.4, corresponding to upstream-migrating antidunes. According to Fig.2-7,

the net erosion rate is out of phase with the bed elevation. The net erosion rate is

largest near the trough of the bed wave, and smallest near the crest. This indicates

that the erosion occurs at the trough, while the deposition occurs at the crest. By

this process, the amplitude of the bed wave increases. In addition, there is a lag

between the maximum erosion (deposition) and the trough (crest) of the bed. The

maximum erosion and deposition occurs at the location slightly upstream of the

trough and the crest of the bed wave, respectively. This signifies that the bed wave

is moving in the upstream direction.

Fig.2-8 shows the case F = 1.5 and α = 0.6, corresponding to downstream-

migrating antidunes. The bed elevation and the net erosion rate are out of phase

again, and therefore, the flat bed is unstable. In this case, however, the maximum

erosion and deposition take place at the location slightly downstream of the trough

and the crest of the bed wave (see Fig.2-8). Therefore, the bed wave migrates in

the downstream direction.
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(a) (b)

Figure 2-9: Instability diagram: (a) k-ε model: solid line, with density stratification;
dashed line, without density stratification; (b): solid line, k-ε model; dot-dashed
line, mixing length model

Figure 2-10: Stability diagram of k-ε model vs = 0.2(solid line) and vs = 0.1(dashed
line)
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2.5.3 Density stratification effect

The effect of density stratification on the bed instability is studied by comparing

the results of linear stability analysis including and not including the effect of

density stratification by k-ε model (see Fig.2-9(a)). The condition without the

effect of density stratification is obtained by ignoring all the terms associated with

suspended sediment concentration gradient. In addition, the comparison of the

result of k-ε model and that of mixing length model is shown in Fig.2-9(b).

The neutral curves of the growth rate of perturbation ωi are shown in Fig.2-9.

The solid line is the neutral curve with the effect of density stratification while the

dashed line is that without the effect of density stratification, and the dot-dashed

line is the result of mixing length model. As seen in Fig.2-9(a), the unstable region

decreases to lower critical Froude number (minimum Froude number in the unstable

region) due to the effect of density stratification. In addition, the unstable region

in the range of large wavenumbers in the vicinity of the critical Froude number

disappears when the effect of density stratification is included. According to Fig.2-

9(b), the result by mixing length model not including the density stratification

effect is consistent with the case without density stratification effect by k-ε such

that the critical Froude number is higher and the instability expands towards the

range of bigger wavenumbers.

In addition, we investigate the effect of the parameter settling velocity vs to the

stability of the bed. The stability diagram of the analysis for the cases vs = 0.2

and vs = 0.1 are shown in Fig.2-10. In this figure, the solid line and dashed line

are the neutral curve of the growth rate of perturbation for the cases vs = 0.2 and

vs = 0.1, respectively. Smaller settling velocity corresponds to the less stratified

condition. According to the figure, the unstable region expands in the direction of
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larger wavenumbers in the vicinity of critical Froude number for the case of smaller

settling velocity vs = 0.1.

2.6 Conclusion

In this study, we performed linear stability analysis with the concept of varying

eddy viscosity by the mixing length model and the standard k-ε model. In the latter

model, the effect of density stratification due to suspended sediment is investigated.

The Reynolds-averaged Navier-Stokes equations and dispersion/diffusion equa-

tion of suspended sediment coupled with the turbulent closure of both the mixing

length model and k-ε are found to be capable of predicting the bed instability.

The unstable region predicted by the analysis is in fairly good agreement with

the experimental results. The formation of antidunes is observed in the upper

flow regime. The model explains physical process of instability and the migration

direction of the antidunes.

In k-ε model, the transport equations of turbulent kinetic energy and the dissi-

pation rate include the buoyancy term to study the effect of density stratification .

In the base state, the effect of density stratification increases the flow velocity, and

decreases the suspended sediment concentration in the upper part and increases

near the bed. These results are caused by the general decrease in the eddy viscosity

due to the suppression of turbulent mixing by the density stratification.

In linear stability analysis, an unstable region appears at the upper flow regime

which corresponds to the formation of the antidunes when only suspended load

is considered. The model is in fair agreement with the experimental results. In
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addition, the model reveals the migration mechanism of the antidunes in both

upstream and downstream directions. The long wavelength antidunes usually

migrate in the upstream direction, whereas shorter wavelength antidunes migrate

in the downstream direction. Moreover, it is found that the effect of density

stratification decreases the critical Froude number. In addition, density stratification

stabilizes the bed in the range of large wavenumbers in the vicinity of the critical

Froude number.

Notation

The following symbols are used:

A = amplitude of perturbation (–)

A0 = constant 1.3 · 10−7 (–)

aj = Chebyshev polynomial coefficient (–)

B = elevation of top of bedload layer (–)

C = non-dimensional depth averaged concentration (–)

C0 = integral constant (–)

Cε1, Cε2, Cε3, Cµ = k-ε model constants (–)

c = non-dimensional suspended sediment concentration (–)

cb = non-dimensional near bed concentration(–)

c′ = turbulent concentration fluctuation (–)

ds = sediment diameter (mm)

Dg = gradient sediment diameter (mm)

Es = entrainment rate into suspension (–)

~ens, ~enb = unit vector normal to surface and bed (–)

~ets, ~etb = unit vector tangent to surface and bed (–)

F = Froude number (–)
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~Fc = suspended sediment flux (–)
~Fk = turbulent energy flux (–)
~Fε = dissipation rate diffusion flux (–)

G = production of turbulent energy by buoyancy

g = gravity acceleration (ms−2)

H = non-dimensional flow depth (–)

i = imaginary number (–)

k = non-dimensional turbulent kinetic energy (–)

ks = bed roughness (–)

l = mixing length (–)

K, L, M, N = matrix (–)

P = non-dimensional production of turbulent energy due to shear (–)

p = non-dimensional pressure (–)

R = elevation of reference level (–)

Rs = submerged specific gravitiy (–)

Rep = particle Reynold number (–)

S = slope (–)

Riτ = shear Richarson number (–)

T, Txx, Txz, Tzz = shear stress (–)

Tj = Chebyshev polynomial (–)

t = non-dimensional time (–)

Uavg = average velocity (–)

U∗ = non-dimensional shear velocity (–)

u = non-dimensional streamwise velocity (–)

u′ = turbulent streamwise velocity fluctuation (–)

~u = velocity vector (–)

vs = non-dimensional particle settling velocity (–)
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w = non-dimensional vertical velocity (–)

w′ = turbulent vertical velocity fluctuation (–)

x = streamwise coordinate (–)

Z = bed elevation (–)

Zu = entrainment rate relation parameter (–)

Z1 = perturbation function (–)

z = vertical coordinate (–)

α = wavenumber (–)

γ = adjusting coefficient (–)

ε = dissipation rate (–)

ζ = independent variables of Chebyshev polynomial(–)

κ = Karman constant (–)

λp = porosity (–)

νt = non-dimensional eddy viscosity (–)

ξ = transformed streamwise coordinate (–)

ρ = water density (kg.m−3)

σc, σk, σε = Schmidt number of suspended sediment, kinetic energy, and dissipation rate(–)

τb = bed shear stress(–)

χ = accumulated suspended sediment(–)

ψ = stream function (–)

ω, ωi, ωr = complex frequency, growthrate, and celerity of perturbation (–)

(˜) = dimensional quantity scaled by H̃ and Ũ∗ (–)
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Chapter 3

Bed instability generated by

turbidity current

3.1 Introduction

Turbidity current is generated once fine sediment is entrained into the flow on the

ocean floor and flows in the downslope direction. This kind of current is sustained

by the force exerting on the excess suspended sediment in the flow. Due to its

high capability to erode the bed and transport the sediment, it is considered as

one of the major mechanisms that shape and form submarine morphology, i.e.

subaqueous canyon and gullies. In addition, the turbidity currents transport not

only the sediment but also the turbidite with rich hydrocarbon matters which

are the most important source of petroleum and methane hydrate. However, the

turbidity currents also possess destructive power on the environments through

which they flow. Reaching the speeds of 20 m/s (Piper et al. [1999]), the turbidity

currents are capable of destroying and breaking submarine network cable.

In this study, we propose a linear stability analysis of bed waves formed due

to instability between the ocean floor and turbidity currents with the use of the
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density interface

turbidity
velocity

eddy viscosity

Figure 3-1: Conceptual flow of turbidity current in normal state condition

assumption of normal flow condition and a simple turbulent model, the mixing

length hypothesis. In the analysis, we employ the flow equations including the

concentration of suspended sediment as the driving force, the dispersion/diffusion

equation of suspended sediment, and the continuity equation describing the time

variation of the bed elevation. Normalizing those governing equations, we obtain

two important non-dimensional parameters: the densimetric Froude number and

the settling velocity.

3.2 Equilibrium condition of turbidity currents

Considering a saline or thermal density plume flows down an incline plane, the

high salt concentration or temperature plume will increase its thickness as it flows

downstream. During the increase of thickness, the plume reduces its concentration.

Without any external energy supplied to the plume, it cannot move travel distance.
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Luchi et al. [2015] adopted the concept similar to turbidity current with the roof

(Cantero et al. [2009]). However, a flux-free surface is imposed as upper boundary

instead of a rigid roof. They employed standard k-ε model to investigate the flow

velocity and suspended sediment concentration distribution of the turbidity current.

With the assumption of flux-free boundary, the turbidity current does not entrain

ambient fluid from the upper boundary. Thus, the turbidity current might possess

an equilibrium solution under this consideration. In order to investigate the effect

of the upper boundary, a numerical simulation is performed under the condition

of increasing the height of the upper flux-free boundary. It is found that an equi-

librium state exists at the vicinity of the bottom layer in which the suspended

concentration is very high. This equilibrium layer is found to be independent from

the increase of height of the upper layer.

Fig.3-1 shows a conceptual diagram of turbidity current. The flow velocity

becomes zero at the bottom and upper boundary. In line with this, there exists a

location at which the velocity gradient becomes zero. In this vicinity, the turbulence

intensity decreases while the eddy viscosity and turbulent diffusion flux also decrease.

At the density interface where the velocity gradient is zero, the turbulent diffu-

sion flux vanishes and the density gradient of suspended sediment goes to infinity.

In this context, the suspended sediment concentration decreases abruptly at the

density interface (Fig. 3-1). The region from the bed to the density interface is

called "driving layer" , and the region above the density interface is called "driven

layer" . It is found that the thickness of the driving layer at equilibrium condition

is invariant (Luchi et al. [2015]).

In the driven layer, the suspended sediment concentration does not necessarily
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become zero, however, the profile is subject to similarity solution. By using k-ε

turbulence model, Fukushima and Hayakawa [1990] found that the plume in the

inclined plane possesses similarity solution. The flow velocity near the bottom is

constant, while the concentration decreases as the plume flows downstream. In

addition, the thickness of the plume is also increasing. The similarity solution is

also applied to the turbidity currents. The concentration is discontinuous at the

density interface. At the lower part of the driven layer, the velocity is constant while

the concentration decreases. Comparing with the driving layer, the concentration

in the outer layer is negligibly small.

The shear stress vanishes at the interface between the high concentration driving

layer and driven layer. In other words, the forces that govern the flow of the driving

layer is, indeed, the gravity force within the layer and the shear stress generated at

the bottom. Therefore, the flow in the driving layer is independent from the driven

layer. Within the driving layer, the normal condition is satisfied when the gravity

force is balanced with the bed shear stress. This condition is equivalent to normal

flow condition in an open channel flow. Under this consideration, the turbidity

current is expected to be able to flow continuously as long as the suspended sediment

concentration is maintained.

3.3 Formulation

3.3.1 Flow equation

The turbidity currents (see Fig.3-2) are described by two-dimensional Reynolds-

averaged Navier-Stokes equation with the use of Boussinesq approximation as well
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Figure 3-2: Coordinate and conceptual diagram of the high concentration lower
layer

as the continuity equation, defined as

ũ
∂ũ

∂x̃
+ ṽ

∂ũ

∂ỹ
= 1
ρ

(
∂T̃xx
∂x̃

+ ∂T̃xy
∂ỹ

)
+ (1 +Rsc̃) gS (3.1)

ũ
∂ṽ

∂x̃
+ ṽ

∂ṽ

∂ỹ
= 1
ρ

(
∂T̃xy
∂x̃

+ ∂T̃yy
∂ỹ

)
− (1 +Rsc̃) g (3.2)

∂ũ

∂x̃
+ ∂ṽ

∂ỹ
= 0 (3.3)

where x̃ and ỹ are the streamwise and depth directions, ũ and ṽ are the velocity

component in x̃ and ỹ directions, respectively, T̃ij(i, j = x, y) is the stress tensor,

ρ is the density of seawater, g is the acceleration of gravity, Rs is the submerged

specific weight of the sediment, c̃ is the suspended sediment concentration, and S

is the slope of the ocean floor. The (̃ ) denotes the dimensional quantity which will

be non-dimensionalized later.
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The stress tensor is evaluated by the use of mixing length model, described by

T̃ij = −p̃δij + ρν̃t

(
∂ũj
∂x̃i

+ ∂ũi
∂x̃j

)
(3.4)

ν̃t = l̃2
∣∣∣∣∣∂ũ∂ỹ

∣∣∣∣∣ , l̃ = κ
(
ỹ − Z̃

)(H̃ + R̃− ỹ
H̃

)1/2

(3.5)

where p̃ is the pressure, ν̃t is the eddy viscosity, κ is the Karman constant (= 0.4),

H̃ is the thickness of the high density layer, Z is the bed elevation, and R is the

reference level at which logarithmic velocity distribution becomes zero.

3.3.2 Sediment transport equation

The suspended sediment is considered to be sufficiently small that follows completely

the flow except its settling velocity ṽs in the vertical direction. The settling velocity

is the parameter which induces the self-stratification in the turbidity current. In

addition, the hindered settling effect is also neglected. The dispersion/diffusion

equation of the suspended sediment concentration is

∂ũc̃

∂x̃
+ ∂ (ṽ − ṽs) c̃

∂ỹ
= ∂

∂x̃

(
ν̃t
∂c̃

∂x̃

)
+ ∂

∂ỹ

(
ν̃t
∂c̃

∂ỹ

)
(3.6)

It is the settling velocity ṽs, an important parameter, that limit the thickening

of the equilibrium layer and induce the self stratification of the turbidity current.

3.3.3 Normalization

The above governing equations have been normalized as follows

(
x̃, ỹ, H̃, Z̃, R̃

)
= H̃0 (x, y,H, Z,R)
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(ũ, ṽ, ṽs) = Ũf0 (u, v, vs)(
p̃∗, T̃ij

)
= ρŨ2

f0 (p, Tij)

c̃ = C̃c (3.7)

where Ũf is the friction velocity, the subscribe 0 denotes the quantity in the base

state condition, p̃∗ is the piezometric pressure, C̃ is the depth-averaged suspended

sediment concentration. The piezometric pressure p̃∗ and the depth-averaged

suspended sediment concentration C̃ are defined by

p̃∗ = p̃+ ρg (Sx̃− ỹ) (3.8)

C̃ = 1
H̃0

∫ H̃0

0
c̃dz̃ (3.9)

Therefore, the governing equations (3.1)-(3.6) become

u
∂u

∂x
+ v

∂u

∂y
=
(
∂Txx
∂x

+ ∂Txy
∂y

)
+ c (3.10)

u
∂v

∂x
+ v

∂v

∂y
=
(
∂Txy
∂x

+ ∂Tyy
∂y

)
−Riτc (3.11)

∂u

∂x
+ ∂v

∂y
= 0 (3.12)

Tij = −pδij + ρνt

(
∂uj
∂xi

+ ∂ui
∂xj

)
(3.13)

νt = l2
∣∣∣∣∣∂u∂y

∣∣∣∣∣ , l = κ (y − Z)
(
H +R− y

H

)1/2
(3.14)

∂uc

∂x
+ ∂ (v − vs) c

∂y
= ∂

∂x

(
νt
∂c

∂x

)
+ ∂

∂y

(
νt
∂c

∂y

)
(3.15)
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where Riτ is the shear Richardson number, defined by

Riτ = gSC̃H̃0

Ũ2
f0

(3.16)

3.4 Base state solution

In order to facilitate the application of the boundary conditions at the bottom and

upper boundary, we introduce the coordinate transformation

(ξ, η) =
(
x,
y −R(x)
H(x)

)
(3.17)

where R is the reference level at which the velocity is 0 in the logarithmic velocity

distribution. The mixing length l then becomes

l = κH
(
η + R− Z

H

)
(1− η)1/2 (3.18)

In the above equation, the term (R− Z)/H � 1 is negligibly small.

In the base state condition, the streamwise derivative and the vertical component

of velocity are 0 and can be dropped from the governing equations. Thus, Eqs

(3.10) and (3.15) are simplified to

d
dη

κ2η2(1− η)
(

du0

dη

)2
+ c0 = 0 (3.19)

κ2η2(1− η)du0

dη
dc0

dη + vsc0 = 0 (3.20)

where the subscribe 0 denotes the solution in the base state condition.
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The boundary conditions of the flow are vanishing velocity at the bottom and

zero gradient at the upper boundary

u(η = 0) = 0, du
dη

∣∣∣∣∣
η=1

= 0 (3.21)

The new dependent variable χ =
∫ z

0 c is introduced in order to facilitate the

application of the boundary conditions. We obtain the boundary conditions of χ

defined as

χ(η = 0) = 0, χ(η = 1) = 1 (3.22)

In order to solve Eqs (3.19) and(3.20), a numerical method is required. Here,

we employ finite volume method to solve for the solutions of the base state condition.

In the governing equations of the base state solution, we have a dimensionless

settling velocity parameter vs(= ṽs/Ũf0). The effects of the settling velocity on the

flow velocity and the suspended sediment concentration of the turbidity currents

are then discussed herein. The flow velocity and suspended sediment concentration

profile for various values of vs are shown in Fig.3-3 and Fig. 3-4, respectively.

For the same friction velocity Ũf0, smaller settling velocity represents a smaller

sediment size.

According to Fig. 3-4, the suspended sediment is almost uniform in the depth

direction when the settling velocity is very small (vs = 0.01), and the flow velocity

becomes larger particularly in the upper part (Fig. 3-3). Due to the tendency of

the sediment particles to settle down, the suspended sediment concentration profile

deviates from the uniform profile under the condition of increasing settling velocity,

and it is found that the suspended sediment concentration increases in the region

near to the bottom and decreases in the upper part.
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Figure 3-3: Flow velocity profile in the base state condition
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Figure 3-4: Suspended sediment concentration profile in the base state condition
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In addition, when the settling velocity vs is bigger than 0.08, the suspended

sediment concentration at the density interface becomes 0. This implies that the

assumption that there exists a density interface no longer holds when vs > 0.08.

Therefore, it is suggested that the turbidity current does not possess equilibrium

conditions for the case when vs is larger than 0.08.

3.5 Linear stability analysis

3.5.1 Perturbation expansion

In the perturbation problem, we impose a small disturbance to the base state

condition in the form

(ψ, c, p,H, Z,R) = (ψ0, c0, P0, 1, 0, R0)

+ A (ψ1, c1, P1, H1, R1, R1) exp [i (kξ − ωt)] (3.23)

where A, k, and ω are the amplitude of perturbation, wavenumber, and angular fre-

quency of perturbation, respectively. In linear theory, the amplitude A is assumed

to be infinitesimally small. The wavenumber k is real number, whereas angular

frequency of perturbation ω = ωr + iωi is complex number. In addition, ψ is the

stream function.

Substituting the perturbation variables into the governing equation Eqs.(3.10)-

(3.15), we obtain the perturbation equations at the order of A, defined as

L(η)cc1(η) + Lψ(η)ψ1(η) + LH(η)H1 = 0 (3.24)
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Rψ(1) ψ1(η) +RH(1) H1 = 0 (3.25)

Mc(η)c1(η) +Mψ(η)ψ1(η) +MH(η)H1 = 0 (3.26)

ψ1(1) = ψ1(0) = Dψ1(0) = 0 (3.27)

where Lφ,Rφ, and Mφ (φ = c, ψ,H) are the linear differential operators of the

perturbation variables, the detail expressions of which are too complicated and

long to include here. The operator D = d/dη is the derivative with respect to the

depth direction.

3.5.2 Boundary conditions of the perturbation problem

At the density interface, the normal velocity component, the normal stress, and

normal sediment flux are zero, defined by

u · ens = 0 at η = 1 (3.28)

ens · T · ens = 0 at η = 1 (3.29)

F s · ens − vsck · ens = 0 at η = 1 (3.30)

where u is the velocity vector (= (u, v)), F s is the suspended sediment flux vector

(= (−νt∂c/∂x,−νt∂c/∂y)), k is normal unit vector (= (0, 1)), ens is the unit vector

normal to the density interface, and T is the stress tensor defined by

T =

 Txx Txy

Txy Tyy

 (3.31)

At the bottom, the normal and tangential velocity component are zero

u · enb = 0 at η = 0 (3.32)
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u · etb = 0 at η = 0 (3.33)

where enb and etb are the unit vector normal and tangential to the bed.

The sediment flux at the bottom is equal to the entrainment rate of suspended

sediment into suspension Es.

F s · enb − Es = 0 at η = 0.05 (3.34)

3.5.3 Solution of perturbation problem

A numerical method is used to solve the perturbation problem as it is not subject to

any analytical solutions. In this study, we employ the spectral collocation method

with the Chebyshev polynomials. The perturbation variable ψ1 and c1 are expanded

in the form

ψ1 =
N∑
n=0

anTn(ζ) (3.35)

c1 =
2N+1∑
n=N+1

anTn(ζ) (3.36)

where Tn is the Chebyshev polynomials of degree n, ζ[−1, 1] is an independent

variable, defined by

ζ = 2
{

ln[(η +R0)/R0]
ln[(1 +R0)/R0]

}
− 1 (3.37)

Substituting Eqs (3.34) and (3.35) into the perturbation equations evaluated at

Gauss-Lobatto point

ζj = cos(jπ/N), (j = 1, · · · , N − 2) (3.38)

We obtain a system of (2N + 3)× (2N + 3) algebraic equations, six of which are

the boundary conditions. Extracting all the unknown coefficient an, the equations
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can be written in matrix form

La = bR1 (3.39)

where L is a (2N +3)× (2N +3) matrix the elements of which are the coefficients of

the perturbed variables ψ1, c1, and H1 of the perturbation equations and boundary

conditions, a[a0, a1, ..., a2N+2, H1]T , and b is a vector with (2N + 3) elements. The

solution vector a is

a = L−1bR1 (3.40)

From the above result, we can determine the solution of the perturbation variables

ψ1, c1, and H1.

As far as the turbidity current is concerned, the suspended sediment is assumed

to be dominant, whereas the bedload is negligible. The temporal variation of the

bed elevation can be described by the Exner equation in the form

∂Z

∂t
= Ds − Es (3.41)

where Ds and Es are the settling flux and the entrainment rate of suspended

sediment into suspension, respectively. We can determine the settling flux and the

entrainment rate by

Ds = βca, E = uγf (3.42)

where β = ṽsC̃/Ẽ0, ca is the suspended sediment concentration evaluated at η = 0.05

from the bed, the entrainment rate is proportional to the friction velocity uf to

the power γ = 5 in this formulation.

The Exner equation (3.41) is expanded and manipulated to obtain the equation
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at order A

−ωR1 = c1 − Eψψ1 (3.43)

The complex angular frequency of perturbation are then obtained in the form

ω = −(c1 − Eψψ1)/R1 = f (k,Riτ , vs) (3.44)

The imaginary part ωi is the growth rate of the perturbation. The bed is stable

when ωi < 0, whereas the bed is unstable when ωi > 0.

3.6 Results and discussion

We now proceed to the discussion of the results of the analysis. Fig.3-5 shows

the neutral curve of ωi obtain from the analysis. Fig. 3-5 (a), (b), (c), and (d)

correspond to the result of the cases which settling velocity vs = 0.01, 0.02, 0.04,

and 0.08, respectively. The horizontal axis is the wavenumber k, and the vertical

axis is the densimetric Froude number F . The density Froude number F relates to

the shear Richardson number by

F 2 = Cf/Riτ (3.45)

where Cf is the friction coefficient and it is assumed to be Cf = 1/400 in this

analysis.

According to Fig.3-5 , the instability of the flat bed occurs at the value of

densimetric Froude number approximately bigger than 0.4. At the vicinity of the

critical Froude number region, the instability wavenumber is in the range of (1-1.5).

As the F increases, the range of instability wavenumber reduces approximately to

the range of (0.1-1.0).
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Figure 3-5: Bed instability diagram generated by turbidity current (a) vs = 0.01,
(b) vs = 0.02, (c) vs = 0.04, (d) vs = 0.08.
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In addition, as mentioned before, turbidity currents do not seem to possess any

normal flow condition if the settling velocity vs is greater than 0.08. According

to Fig.3-5(d), it is found that the shape of the instability region is strange and

without any physical implications.

Fig.3-6 shows the instability diagram in open channel flow condition. We obtain

the results by removing the term c from the momentum equations (3.10) and (3.11).

Fig.3-6(a) and (b) corresponds to the cases which vs=0.01 and 0.04, respectively.

According to Fig.3-6(a), we can see that the result of the unstable region resembles

that of the turbidity current when the settling velocity vs = 0.01. As we can

see from the normal flow condition, the driving force generated by the suspended

sediment is almost uniform in the depth direction. However, in the case of settling

velocity vs = 0.04, the instability region of open channel is different from that of

turbidity current because of the decrease of suspended sediment at the density

interface.

3.7 Conclusion

The turbidity currents possesses equilibrium condition at least at the layer near to

the bottom which is independent from the upper diluted layer. In this context, we

perform linear stability analysis to investigate the instability of the bed generated

by the turbidity current.

In the base state condition, the decrease of the settling velocity increases the

suspended sediment concentration at the density interface. As the driving force is

generated by the suspended sediment increases, the flow velocity at the density

interface also increases.
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Figure 3-6: Instability diagram in open channel. (a) vs = 0.01, (b) vs = 0.04
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However, in the equilibrium state, the suspended sediment decrease to zero at

the density interface as the settling velocity is greater than 0.08. This result is

physically impossible. In line with this, it is suggested that equilibrium state of

the turbidity currents does not exist in the case of large sediment particle.

According to the results of the stability analysis, the plane bed becomes unsta-

ble when the densimetric Froude number is greater than 0.4. In addition, at the

vicinity of the critical Froude number, the wavenumber of the unstable bed is in

the range of 1.0-1.5, whereas when Froude number increases, the range of unstable

wavenumber reduces to the range of 0.1-1.0.

Comparing the instability diagrams of the turbidity current and open channel

flow when in the range of small settling velocity (vs = 0.01), it is found that

the unstable region of the two cases are very similar. It is convenient to explain

the similarity of these results from the perspective of the driving force of the

flow. Gravity force is acting on the water in open channel flow, and acting on

suspended sediment in the turbidity current. While the driving force is almost

uniform in the depth direction when the suspended sediment is small for the two

flow configurations, it is therefore reasonable to obtain the similar results.

Notation

The following symbols are used:

A = amplitude of perturbation (–)

an = Chebyshev polynomial coefficient (–)

a, b = vector
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C = non-dimensional depth averaged concentration (–)

C0 = integral constant (–)

c = non-dimensional suspended sediment concentration (–)

ca = non-dimensional near bed concentration(–)

D = derivative operator(–)

Ds = deposition rate (–)

Es = entrainment rate into suspension (–)

ens,enr, enb = unit vector normal to surface, reference level, and bed (–)

ets,etr, etb = unit vector tangent to surface, reference level, and bed (–)

F = Froude number (–)

F s = suspended sediment flux (–)

g = gravity acceleration (ms−2)

H0 = flow depth at base state condition (–)

i = imaginary number (–)

k = wavenumber (–)

l = mixing length (–)

L, M, R = linear operator of perturbation variables (–)

L = matrix (–)

p = non-dimensional pressure (–)

R = elevation of reference level (–)

Rs = submerged specific gravitiy (–)

Riτ = shear Richarson number (–)

S = slope (–)

T, Txx, Txy, Tyy = shear stress (–)

Tn = Chebyshev polynomials (–)

t = non-dimensional time (–)

Uf0 = shear velocity at base state condition (–)
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u = non-dimensional streamwise velocity (–)

u = velocity vector (–)

v = non-dimensional vertical velocity (–)

vs = non-dimensional particle settling velocity (–)

x = streamwise coordinate (–)

y = vertical coordinate (–)

Z = bed elevation (–)

γ = constant (–)

ζ = independent variables of Chebyshev polynomial(–)

κ = Karman constant (–)

νt = non-dimensional eddy viscosity (–)

ξ = transformed streamwise coordinate (–)

ρ = water density (kg.m−3)

χ = accumulated suspended sediment(–)

ψ = stream function (–)

ω, ωi, ωr = complex frequency, growthrate, and celerity of perturbation (–)

(˜) = dimensional quantity scaled by H̃0 and Ũf0 (–)

subscript ( )0 = denote the base state(–)

subscript ( )1 = denote the base state(–)
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Chapter 4

Conclusions

In this study, we perform linear stability analysis in two configurations (open

channel flow and turbidity current) of suspended sediment dominated environments.

As long as the suspended sediment is concerned, density stratification affects the

flow velocity distribution, suspended sediment concentration, the turbulent kinetic

energy, and its dissipation rate. In addition, density stratification is expected to

have influence on the formation of the bedwaves of the open channel and turbidity

current.

In open channel flow, the sediment transport is assumed to be solely suspended

sediment. This condition corresponds to the upper regime flow and relatively fine

sediment. In order to investigate the effect of density stratification on the vertical

flow structures, we employ the standard k-ε model as the turbulent closure. The

turbulent model includes the production due to buoyancy term in the transport

equations of turbulent kinetic energy and its dissipation rate. The buoyancy term

involves with the gradient of suspended sediment concentration which represents

the effect of density stratification By removing the terms associated with buoyancy,

we obtain the case without density stratification.
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The results from Chapter 2 shows that density stratification increases the flow

velocity at the upper part of the flow. It is also found that the suspended sediment

concentration slightly increases at the bottom and decreases at the upper part.

These results can be explained in terms of the turbulent mixing capacity. The

density stratification generated by the gradient of the suspended sediment generally

suppresses the turbulent mixing. As the result, the diffusion of momentum and

suspended sediment is restrained. This is reflected by the reduce of the eddy

viscosity in the case with density stratification effect included.

It is also found that the standard k-ε model is capable of predicting the insta-

bility of the bedwaves of the open channel. The unstable condition predicted by

the model agrees fairly well with the existing experimental results. The analysis

also physically explained the migration directions of the bedwaves. The instability

and migrating mechanism is explained by the phase shift of the bed elevation and

the net erosion rate.

Under the effect of density stratification, the unstable region disappears in

the range of large wavenumber in the vicinity of the critical Froude number. It

is suggested that the decrease of the eddy viscosity produces a change in phase

difference, resulting in the stabilization of the short wavelength bedwaves.

In Chapter 3, the bed instability generated by the turbidity currents is investi-

gated. In this analysis, the mixing length model is used to account for the turbulent

closure. We assume turbidity currents possesses an equilibrium state at the lower

layer near to the bottom in which the suspended sediment concentration is very high.
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In turbidity currents, the dimensionless settling velocity is a very important

parameters which causes stratification and affects the flow structures. In the base

state solution, the suspended sediment concentration in the depth direction is al-

most uniform when the settling velocity is small. As the settling velocity increases,

the profile deviates from the uniform distribution. The concentration increases at

the bottom and decreases at the upper part. It is also found that the flow velocity

at the upper part decreases when the settling velocity increases.

As pointed out earlier, the settling velocity is a very sensitive parameter in

the case of turbidity current. In the case of settling velocity is greater than 0.08,

the normal flow condition of the turbidity current is expected to no longer exist.

In this condition, the suspended sediment concentration turns to be zero at the

density interface.

The results of the linear stability analysis shows that the bed becomes unstable

when the densimetric Froude number is approximately 0.4. In the vicinity of the

critical Froude number, the predicted bedwaves are in the range of wavenumber 1.0

to 1.5, and reduce to smaller range of 0.1 to 1.0 at high value of Froude number.

In addition, the shape of the unstable region when the settling velocity is equal to

0.08 is strange which does not possess of any physical implications.
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