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Abstract  14	

Stable carbon (δ13C) and nitrogen (δ15N) isotope ratios were measured for total carbon 15	

(TC) and nitrogen (TN), respectively, in aerosol (TSP) samples collected at Cape Hedo, 16	

Okinawa, an outflow region of Asian pollutants, during 2009 to 2010.  The averaged δ13C and 17	

δ15N ratios are -22.2‰ and +12.5‰, respectively. The δ13C values are similar in both spring 18	

(-22.5‰) and winter (-22.5‰), suggesting the similar sources and/or source regions. We 19	

found that δ13C from Okinawa aerosols are ca. 2‰ higher than those reported from Chinese 20	

megacities probably due to photochemical aging of organic aerosols. A strong correlation 21	

(r=0.81) was found between nss-Ca and TSP, suggesting that springtime aerosols are 22	

influenced from Asian dusts. However, carbonates in the Asian dusts were titrated with acidic 23	

species such as sulfuric acid and oxalic acid during atmospheric transport although two 24	

samples suggested the presence of remaining carbonate. No correlations were found between 25	

δ13C and tracer compounds (levoglucosan, elemental carbon, oxalic acid, and Na+). During 26	

winter and spring, coal burning is significant source in China. Based on isotopic mass balance,  27	

contribution of coal burning origin particles to total carbon aerosol was estimated as ca. 97% 28	

in winter, which is probably associated with the high emissions in China. Contribution of 29	

NO3
- to TN was on average 45% whereas that of NH4

+ was 18%. These results suggest that 30	

vehicular exhaust is an important source of TN in Okinawa aerosols. Concentration of water-31	

soluble organic nitrogen (WSON) is higher in summer, suggesting that WSON is more 32	

emitted from the ocean in warmer season whereas inorganic nitrogen is more emitted in 33	

winter and spring from pollution sources in the Asian continent. 34	

 35	

Keywords: Isotope ratios, total carbon, total nitrogen, nitrate, water-soluble organic nitrogen 36	
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1. Introduction	37	

 Atmospheric aerosols are solid particles suspended in gaseous and liquid phase. They 38	

are emitted to the atmosphere from natural and anthropogenic sources. In East Asia, fossil 39	

fuel consumption, biomass burning, industrial and vehicular emissions have significantly 40	

increased due to the growing economies (Ohara et al., 2007). Primary organic aerosols are 41	

formed by the direct emissions of biogenic and anthropogenic particles to the atmosphere. 42	

Secondary organic aerosols (SOA) are formed by the atmospheric oxidation of biogenic and 43	

anthropogenic volatile organic compounds (VOC) during long-range atmospheric transport 44	

(Hallquist et al., 2009; Pokhrel et al., 2015a, b). In East Asia, atmospheric aerosols and their 45	

precursors are significantly emitted from the highly populated and rapidly developing 46	

industrial regions and are transported to the North Pacific. Okinawa Island is located in the 47	

western North Pacific Rim: an outflow region of Asian aerosols and their precursors.  48	

 Studies on aerosol isotopic composition have been conducted in East Asia. Stable 49	

carbon and nitrogen isotope ratios can be used to identify the sources and transformation 50	

processes of atmospheric particles (Cachier et al., 1986; Kawamura et al., 2004; Kawashima 51	

and Haneishi, 2012; Kundu et al., 2010, 2014; Cao et al., 2011). Recently, Miyazaki et al. 52	

(2012) discussed the source of water-soluble organic carbon (WSOC) in forest aerosols using 53	

δ13C ratios. Kinetic isotope effect (KIE) is defined as the ratio of rate constant for the species 54	

containing 12C and 13C atoms (k12/k13), which can be obtained from the slope of the regression 55	

line for the relation between the concentrations and stable carbon isotope ratio (δ13C).  δ13C 56	

values are largely dependend on the aging of polar compounds such as oxalic acid (Pavuluri 57	

et al., 2012). During oxidation processes, the isotopic fractionation occurs leaving the lighter 58	

isotopes in the product and heavier isotopes in the reactants due to the KIE (Fisseha et al., 59	

2009).  60	

 In addition, δ13C can be used to evaluate the source from coal combustion, biogenic 61	
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and vehicular emission (Gorka and Jedrysek, 2008; Gorka et al., 2009, 2014). Takahashi et al. 62	

(2008) measured δ13Celemental carbon (EC) in TSP samples in Beijing, China (annual average -63	

24.6±0.7‰) and in Tokyo (-25.1±0.1‰). They reported higher values (-23.4±1.2‰) in China 64	

during winter due to significant emissions from coal combustion. Lopez-Veneroni (2009) 65	

reported  δ13CTC in PM2.5 and in PM10 in Mexico, which was influenced from the dust, diesel 66	

and gasoline vehicles. Similarly, Kawashima et al. (2012) reported δ13CEC for the emissions 67	

from gasoline-powered vehicles (-24.4 to -20.6‰), diesel-powered vehicles (-24.2 to -24.9‰), 68	

coal burning (-23.3‰) and soils (-18.8‰). Based on the isotopic mass balance equation, 69	

Gorka et al. (2014) estimated the contribution of biogenic and anthropogenic sources for 70	

PM10 samples.  71	

 Oxidation	products of VOC have lower vapour pressure than the precursor VOC and 72	

can partition into the particle phase, forming SOA (Hallquist et al., 2009). Organic 73	

compounds that are present in particulate matter can be scavenged from the atmosphere by 74	

dry and wet deposition. During deposition process of particles, isotope fractionation does not 75	

occur. However, reactions within the particles can change the isotope ratios. Although these 76	

reactions are not fully understood, it is known that if photochemical degradation of oxalic 77	

acid catalysed by iron species is significant, the isotope ratios of remaining oxalic acid 78	

become higher due to KIE effects (Pavuluri et al., 2012). If oxalic acid were the major 79	

component of organic aerossol, δ13C of aerossol TC should become higher during long range 80	

atmospheric transport. Organic compounds produced by the oxidation processes show smaller 81	

isotope ratios (Fisseha et al., 2009) while the remaining precursors are enriched with heavier 82	

isotopes (Anderson et al., 2004). δ13C of aerosols can also be used to distinguish the 83	

contribution of C3 versus C4 vegetation type (Martinelli et al., 2002).	84	

Nitrogen (N2) in the atmosphere can be converted into NO3
- and NH4

+ via nitrification 85	

or denitrification process (Hem, 1985; Raven et al., 1992). Volatile organic nitrogen is 86	
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released to the atmosphere during the plant and animal decay. Fossil fuel combustion and 87	

industrial emission contribute gaseous NOx and nitrate, which can travel long distances. The 88	

use of δ15N can decipher the origin, cycling of organic and inorganic nitrogen as well as 89	

atmospheric processing of nitrogen species (Cornell et al., 1995; Yeatman et al., 2001, Kelly 90	

et al., 2005). The importance of δ15N in the atmosphere is well documented in many 91	

literatures (e.g., Kundu et al., 2010). In the atmosphere there are naturally occurring two 92	

stable isotopes of 14N and 15N. 14N is most common and its abundance in N2 gas is 99.63% 93	

(Mariotti, 1983). With regard to reaction kinetics, two nitrogen isotopes show different 94	

behaviors. Thus, depending upon the nature of formation processes and their precursors, 95	

isotopic composition of particular nitrogen species will be different (Pavuluri et al., 2011).  96	

Here, we report one year observation of stable carbon and nitrogen isotope ratios of 97	

the ambient aerosols (TSP samples) collected at Cape Hedo, Okinawa Island in the western 98	

North Pacific Rim: an outflow region of Asian dusts and pollutants. The major goal of this 99	

study is to identify the specific sources of carbonaceous aerosols in the Asian outflow regions 100	

during winter, spring, summer and autumn. In winter and spring, anthropogenic activities are 101	

known to influence the study site, whereas in summer marine activities influence the site 102	

(Kunwar and Kawamura, 2014a). Here, we also discuss seasonal changes of the isotope ratios 103	

in terms of source and source regions, and the aging of organic aerosols during long-range 104	

atmospheric transport. 105	

2. Experimental  106	

2.1 Site Description and Aerosol Sampling 107	

Aerosol samples were collected from November 2009 for two years and half on the 108	

rooftop of the facility of Cape Hedo Atmosphere and Aerosol Measurement Station 109	

(CHAAMS, 26.87°N, 128.26°E). CHAAMS is located at the northwestern edge of Okinawa 110	

Island, Japan (see Figure 1), which is within the outflow region of East Asian dusts and 111	
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pollutants. Because of its location, CHAAMS has been used as a supersite of the Atmospheric 112	

Brown Clouds (ABC) project by the United Nations Environment Programme (UNEP) for the 113	

study of atmospheric aerosols (Takami et al., 2007). The surroundings of Cape Hedo are 114	

covered with subtropical rain forest and thus there are no major industries near the station and 115	

anthropogenic activities are insignificant (Yamamoto and Kawamura, 2011; Sato et al., 2009; 116	

Takami et al., 2007; Duncan et al., 2003; Verma et al., 2011).  It is influenced by the East 117	

Asian monsoon in winter to spring whereas the monsoon from the Pacific Ocean affects the 118	

region in summer to fall (Sato et al., 2009). Therefore, continental air masses arrive over the 119	

sampling site in winter to spring. This is supported by air mass trajectory analyses (Figure S1). 	120	

Aerosol (TSP) samples (n=50) were collected on a weekly basis using a pre-121	

combusted quartz fiber filter and high-volume air sampler (Kunwar and Kawamura, 2014a, 122	

b) at a flow rate of 60 m3 h-1 on a weekly basis. The average volume of the air collected is 123	

9500 m3. Filter samples were placed in a preheated glass jar with a Teflon-lined screw cap, 124	

shipped from Cape Hedo to Sapporo and stored in a freezer room at -20°C until analysis. The 125	

sampling period for each sample is 7 days. Quartz fiber filter may adsorb organic vapor, 126	

causing positive artifacts on the measurements. However, due to relatively long sampling 127	

period (one week), we consider that artifacts were minimal.  128	

2.2. Measurements of TC and TN, and their Stable Isotopes 129	

 To measure total carbon (TC) and nitrogen (TN), we combusted a small filter disc 130	

(3.14 cm2) placed in a tin cup at 1400°C using elemental analyzer (EA) (Carlo Ebra, EA 131	

1500). All the nitrogen species are converted to NO and further reduced to N2 in a reduction 132	

column. Carbonaceous species are oxidized to carbon dioxide (CO2). N2 and CO2 are 133	

separated on a packed column of gas chromatograph installed in EA and measured with a 134	

thermal conductivity detector (Pavuluri et al 2010; Kawamura et al., 2004). Portions of CO2 135	

and N2 gases were transferred to EA/isotope ratio mass spectrometer (irMS) via an interface 136	
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(ConFlo II) for isotope ratio measurement. The δ13C values of TC and δ15N	of	TN	are 137	

calculated using the following equation: 138	

δ13C (‰) = [(13C/12C)sample/(13C/12C)standard – 1] x 1000   (1) 139	

δ15N (‰) = [(15N/14N)sample/(15N/14N)standard – 1] x 1000   (2) 140	

Organic nitrogen (ON) is calculated using following equation (Wang et al., 2010): 141	

ON = TN – 14 × ([NO3
-]/62 + [NH4

+]/18)    (3) 142	

NO3
- and NH4

+ are the major ions detected in our samples.  143	

2.3. Measurements of WSOC, WSTN, and Major Inorganic Ions  144	

Concentrations of water-soluble organic carbon (WSOC) and water-soluble total 145	

nitrogen (WSTN) were measured using a total carbon and nitrogen analyzer (Shimadzu TOC-146	

VCSH). Cation (NH4
+) and anion (NO3

-) was measured using ion chromatograph (IC) (761 147	

Compact IC, Metrohm, Switzerland), as reported in Kunwar and Kawamura (2014a).  The 148	

analytical errors in duplicate analysis of the authentic standards were within 5%. We also 149	

measured organic carbon (OC)/elemental carbon (EC) using a Sunset Laboratory carbon 150	

analyzer (Kunwar and Kawamura, 2014a). 151	

2.4. Backward Air Mass Trajectory Analysis 152	

 Five-day back trajectory analyses were performed to identify the source regions of air 153	

masses arriving over Cape Hedo, at 500 meters above ground level for selected samples using 154	

the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT4) model 155	

(http://www.arl.noaa.gov/ready/hysplit4.html), NOAA Air Resources Laboratory, Silver 156	

Spring, Maryland, United States (Draxler and Hess, 1997). Figure 2 shows the air mass 157	

trajectories calculated for selected weeks during winter (December, January and February), 158	

spring (March, April and May), summer (June, July and August) and autumn (September, 159	

October and November). In spring and winter, our sampling site was strongly influenced by 160	
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the outflows from East Asia whereas in summer the site was largely affected by oceanic air 161	

masses (Figure S1).  162	

 163	

3. Results and Discussion 164	

3.1. Seasonal variations of TC, TN  165	

Table 1 summarizes the data for TC, TN and their stable isotopes with averages and 166	

ranges. Concentrations of TC ranged from 1.0 to 5.2 µg m-3 (av. 2.3±1.0 µg m-3). Very high 167	

concentration was observed on March 16 (7.3 µg m-3) during dust event whereas very high 168	

concentration of TN was observed on June 8. Concentration data of TC on March 16 and of 169	

TN on June 8 are treated as outliers, which are not included in the calculation but explained 170	

separately. Weekly concentrations of TC are given in Figure 3a. The seasonal TC 171	

concentrations were 2.0±0.60 µg m−3 (range: 1.1-3.2 µg m−3) in winter, 2.3±1.0 µg m−3 (1.2-172	

5.2 µg m-3) in spring, 2.1±0.63 µg m-3 (1.1-3.7 µg m−3) in summer, and 1.7±0.63 µg m−3 (1.0-173	

2.6 µg m−3) in autumn. However, seasonal differences are not statistically significant between 174	

winter and spring season (t=-0.7, p=0.45), and spring and summer (t=1.6, p=0.13). Higher TC 175	

concentrations in spring and winter suggest that Cape Hedo is seriously influenced by 176	

polluted air masses from the Asian continent (Figure 2). Trajectory analyses show that air 177	

masses occasionally passed over the ocean. In addition, there is an influence of dust and soils, 178	

and biogenic emission during spring. Spring is a growing season in both continent and ocean 179	

(Tambunan et al., 2007; Kunwar and Kawamura, 2014a). Biogenic emission from local 180	

vegetation is also important in spring.   181	

We detected the highest concentration of TC (7.3 µg m−3) during dust event (March 182	

16). In this filter sample, we observed lots of dust particles, suggesting that high TC content is 183	

associated with dust loading. Fine dust particles can enrich organic carbon than coarse 184	

particles (Kawamura et al., 2004). Dust particles also contain carbonate carbon. In fact, soil 185	
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dust particles collected from Gunsu Province, China (CJ-1 and CJ-2 yellow sand standards) 186	

showed the presence of inorganic (carbonate) carbon, whose contents are equivalent to 187	

organic carbon (Kawamura et al., 2004). Wang et al. (2013) also found higher concentration 188	

of TC during dust event in China.  189	

OC/EC ratios are higher in summer (12.5) than winter (4.4), suggesting that major 190	

fraction of OC come from biogenic sources probably due to the enhanced activities of oceanic 191	

phytoplankton and other biota. However, no statistically significant correlation (r = 0.0) was 192	

found between OC and Na+ even in summer, although most of the air masses came from the 193	

ocean (Figure S1). Na+ is primarily emitted from the marine source. No correlation between 194	

OC and Na+ suggests the secondary source of OC. Concentrations of TC in Cape Hedo are 195	

several times lower than those reported from many Chinese cities including Beijing (Ho et al., 196	

2006; Wang et al., 2010), Gosan, Korea (Kawamura et al., 2004; Kundu et al., 2010), 197	

Chennai, India (Pavuluri et al., 2010) and Tokyo (Kawamura and Ikushima, 1993). But, they 198	

are ca. 5 times higher than those from the western North to Equatorial Pacific (Kawamura 199	

and Sakaguchi, 1999) during winter and are significantly higher than those from the High 200	

Arctic aerosols (Narukawa et al., 2008) and marine aerosols from the Arctic Ocean 201	

(Kawamura et al., 2012).  202	

Average concentration of TN in the Cape Hedo aerosols was 0.72±0.54 µg m−3 (range: 203	

0.15-2.4 µg m−3), which is 3 times lower than that (2.5 µg m−3) from Gosan (Kundu et al., 204	

2010) and 4 times lower than that (3.1 µg m−3) from the same Gosan site during spring 205	

(Kawamura et al., 2004). In contrast, average TN concentration of Cape Hedo is 6 times 206	

higher than those from the North to Equatorial Pacific (Kawamura and Sakaguchi, 1999). The 207	

seasonally averaged TN concentration was highest in winter (1.19±0.58 µg m−3), followed by 208	

spring (0.93±0.50 µg m−3), summer (0.50±0.64 µg m−3) and autumn (0.43±0.19 µg m−3). 209	

However, differences in the seasonal concentrations are not statistically significant between 210	
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winter and spring season (t = 1.1, p = 0.2), and spring and summer (t = 1.4, p = 0.1), except 211	

for winter and summer samples (t = 2.1, p = 0.04). The higher concentration of TN in winter 212	

and spring (Figure 3b) suggest that the source of TN is associated with polluted continental 213	

outflow from East Asia (see Figure 2).  214	

 We found sporadic peaks of TN on June 8 and April 27. On June 8, air masses arrived 215	

from coastal South China and northern Japan (Figure 2) whereas on April 27 all air masses 216	

arrived from Russia, Mongolia and north China (Figure 2), suggesting that the nitrogenous 217	

species were originated from continental sources in East Asia. The averaged C/N 218	

concentration ratio during whole campaign was 5.3±3.4. Because the highest C/N ratio was 219	

observed in summer (7.1), particulate carbon may be more emitted to the atmosphere due to 220	

the enhanced marine biological activity in warm season.  221	

3.2. Carbon and nitrogen isotopic signatures in aerosols collected from the Okinawa 222	

δ13C of TC range from -24.2 to -21.6‰ (av. -22.5±0.62‰) in winter, -23.5 to -21.6‰ 223	

(-22.5±0.7‰) in spring, -23.9 to -21.6 ‰ (-22.9±0.69‰) in summer and -22.9 to -19.5‰ (-224	

21.3.7±0.98‰) in autumn. Although δ13C values are similar in winter, spring and summer, 225	

back trajectories demonstrated the continental outflow in winter and spring (Figure 2). We got 226	

two higher δ13C values (Figure 3a) of -14.6‰ (November 3, 2009) and -18.2‰ (March 16, 227	

2010). We suspect that the high values may be due to the influence of carbonate carbon in 228	

dust. Hence, we exposed these two samples to HCl fumes overnight to remove potential 229	

carbonate carbon. We found that TC and δ13C after HCl treatment changed from 1.50 to 1.39 230	

µg m-3 and from  -14.6‰ to -16.1‰ for the sample of November 3 and from 7.3 µg m-3 to 5.7 231	

µg m-3 and from -18.2‰ to -22.1‰ for the sample of March 16. These results demonstrate 232	

that moderate to significant amount of carbonate carbon was present in those samples, 233	

suggesting that atmospheric titration of carbonate was not completed in some dust samples 234	

(Kawamura et al., 2004). Carbonate in Asian dust could contribute to the higher δ13C values 235	
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(Kawamura et al., 2004). Lopez-Veneroni et al. (2009) also reported similar value of δ13C in 236	

TC, which is associated with dusts and soil.  237	

 We found no correlation between TC and δ13C but with increasing TC concentration, 238	

the δ13C value is more stable at ≈-22.7‰ during winter and spring which is most likely to the 239	

influenced from the coal combustions and biomass burning (Figure 4a). Mori et al. (1999) 240	

reported the δ13C of Chinese coal is -23.4±1.2‰. Similarly, Kawashima and Haneishi (2012) 241	

reported the δ13CEC (-23.3‰) for PM2.5 in Akita Prefecture of Japan, suggesting an influence 242	

from coal burning in China during winter. Widory et al. (2004) reported that δ13C value of 243	

coal in Paris ranged from -24.4 to -23.4‰. However, the petroleum fuel (-26.8 to -23.0‰, 244	

Okuda et al., 2002) is lighter than those of coal and crude oil (Kawashima and Haneishi, 2012 245	

and reference therein). In addition, Mkoma et al. (2014) reported δ13C value of biomass 246	

burning aerosols dominated by C4 plants during dry (-23.9 to -22.4‰) and wet season (-24.4 247	

to -23‰) for PM10 from South Africa. The δ13C value during winter and spring is higher than 248	

the biomass burning aerosols (-26.9 to -24.9‰) dominated by C3 plants (Martinelli et al., 249	

2002). Due to overlapping between the major pollution sources, it is not easy to specify the 250	

exact sources, for instance, biomass burning from C4 plants, coal combustion and 251	

gasoline/diesel shoot. In Japan, coal is not used for heating purpose in winter (Kawashima et 252	

al., 2012). Therefore, the higher δ13C during winter and spring can be explained by the long 253	

range atmospheric transport of organic aerosols from China, were coal burning is common in 254	

winter for space heating.   255	

Plotting of reciprocal of TC concentration versus δ13C data (binary mixing model –e.g., 256	

Gorka et al., 2014; Sohn, 2005) can decipher the identification of carbon sources. The 257	

potential δ13C end member of TC during winter is -23.4 ‰ (Figure in S2). The relative 258	

contribution of particles originated from coal burning (Ccoal) during winter can be estimated 259	

by equation 1 in supporting information (SI). Based on the isotopic mass balance equation, 260	
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the calculated contribution Ccoal in Okinawa aerosols is 97% during winter. This calculation 261	

suggests a significant contribution of coal combustion over Okinawa via long-range 262	

atmospheric transport. China has the highest rate of coal consumption in the world, generating 263	

more than 75% of its energy from coal (Chen et al., 2005). Moreover, black carbon emissions 264	

in China are 1499 Gg, of which 36% are consumed in industry and 55% are consumed for 265	

residential heating.  266	

As mentioned above, most of the air parcels come from China during winter and 267	

spring (see Figure S1). Thus, it is also important to compare our data with those from Chinese 268	

cities (Cao et al., 2011) and Gosan site (Jung et al., 2011; Kawamura et al., 2004; Kundu et 269	

al., 2010); especially Gosan is located on the pathway from China to Okinawa (see Figure 1). 270	

The average δ13C value in the northern part of China during winter is -24.4‰ (Cao et al., 271	

2011), which is slightly lower (by 1.0‰) than that (-23.4‰) of Gosan aerosols (Kawamura et 272	

al., 2004). The δ13C value of Gosan aerosols is also lower than wintertime Okinawa aerosols 273	

(-22.5‰), suggesting an enrichment of 13C by 1.9‰ than that of Chinese aerosols.  274	

To confirm the Asian dust contribution to the Okinawa aerosols, we performed 275	

correlation analyses between nss-Ca and TC in spring. We found a strong correlation (r2 = 276	

0.67) between nss-Ca and TC, suggesting a significant influence from Asian dust in which 277	

nss-Ca is enriched (Kawamura et al., 2004). However, we did not obtain any good correlation 278	

(r=0.06) between nss-Ca/TC and δ13C, suggesting that most carbonate is titrated by acidic 279	

species (such as H2SO4) in the aerosols during the long-range transport from China to 280	

Okinawa. This result is in contrast to that of Gosan site (Kawamura et al., 2004), where 281	

atmospheric titration of carbonate is less significant due to the short distance from the source 282	

regions in China. This may suggest that, during long-range atmospheric transport, organic 283	

aerosols are internally mixed with mineral dust when they pass over the continent, coast and 284	

ocean.  285	
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To identify the source regions of summer aerosols, we performed air mass back 286	

trajectory analyses for each sample and found that all the samples, except for 4 samples, have 287	

marine influence with some continental influence as seen in Figure 2. We found very narrow 288	

range of δ13C (-21.6 to -23.9‰) in summer. These values are comparable to those (-23.3 to -289	

20‰) reported for the marine aerosols by Ceburnis et al. (2011). Interestingly, we obtained 290	

lower δ13C value in summer samples, which may be due to potential influence from 291	

Philippines (Figure 2). Loh et al. (2004) showed that protein like materials, carbohydrates and 292	

dissolved organic carbon in ocean water ranged from -21.1 to -20.7‰. Fry and Parker (1987) 293	

showed larger δ13C values for the marine phytoplankton (-18 to -24‰) and marine macro 294	

algae (-8 to -27‰), suggesting that summertime aerosols are more influenced from 295	

phytoplankton and macro algae in the ocean. 296	

In addition, Xiao et al. (2010) reported C/N ratios in river phytoplankton with a range 297	

of 4 to 10. Interestingly, summer samples show the similar range (range: 4 to 11.6), which 298	

further supports that marine emission from phytoplankton is an important source of organic 299	

aerosols in summer.  300	

The δ15N in Okinawa aerosols ranged from 8.0 to 18.9 ‰ (12.2±2.2‰, excluding 301	

outlier), which are slightly smaller than those (6.8 to 26.2‰, av. 15.1±3.4‰) from Gosan 302	

aerosols (Kundu et al., 2010). The δ15N value ranged from 10.4 to 15.4‰ (13.6±1.7‰) in 303	

winter, 8.3 to 18.9‰ (13.3±0.5‰) in spring, 9.7 to 13.2‰ (11.1±1.2‰) in summer, and 8.0 304	

to 16.1‰ (11.9±2.2‰) in autumn. The average values are similar in winter and spring, 305	

suggesting a similar type of source is likely in winter and spring. Further, the δ15N are similar 306	

during autumn and summer. The average value δ15N of TN for biomass burning aerosols is 307	

23.5‰ (23.5 to 25.7‰) (Kundu et al., 2010) whereas it is 15 ‰ in the marine aerosols from 308	

Jeju Island in the East China Sea (Kundu et al., 2010). δ15N from Cape Hedo is similar to that 309	

(10.6‰) of aerosol samples from Piracicaba, Brazil (Martinelli et al., 2002).  310	
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δ15N derived from the combustion of natural gas and fuel oil ranged from 2.9 to 311	

15.4‰, -19 to 2.9‰, respectively (Widory, 2007). Those of diesel oil varied from 3.9 to 5.4‰ 312	

whereas that of unleaded gasoline was 4.6‰ (Widory, 2007). Heaton (1990) reported that 313	

δ15N of NOx derived from diesel engines range from -13 to -2‰ whereas those from coal-314	

fired power stations range from 6 to 13‰. In spite of an increase in the concentration of TN, 315	

δ15N value is stable around at ~12.4‰, which is most likely a dominant nitrogen source 316	

during winter and spring (Figure 4b). This value from Okinawa is similar to that reported 317	

from coal-fired power station and combustion of natural gases (Heaton et al., 1990).  In 318	

addition, δ15N value of our study is similar to those (5.0 to 13.7‰, av. 9.9±2.0‰) reported by 319	

Gorka et al. (2012) and those (5.3 to 16.1‰, 10.7±3.1‰) by Widory (2007) for PM10 aerosol 320	

samples. Yeatman et al. (2001) reported lesser δ15N value in coastal region (-20 to 22‰) for 321	

NH4
+. In the Okinawa aerosols, there is no correlation between δ15N and TN.  322	

Figure 5 shows the relation between δ13C and δ15N with signed level of sources 323	

reported in previous studies. No significant correlation was found between δ13C and δ15N, 324	

suggesting that different sources of aerosol C and N in Okinawa. During winter when δ13C 325	

ranged from -24.2 to -21.6‰, δ15N ranged from 10.4 to 15.4‰. During growing season 326	

(spring) when δ13C values ranged from -23.5 to -21.7‰, δ15N ranged from 8.3 to 18.3‰. The 327	

δ15N values are higher in spring. The overlapping of data during winter and spring may 328	

suggest emissions from the coal burning for space heating in China, industrial coal-power 329	

plant and biomass burning, which are major sources of nitrogenous species during winter and 330	

spring.  331	

As suggested by Pavuluri et al. (2010), the enrichment of 15N in aerosol is due to the 332	

following two reaction mechanisms between gas and aerosols, leaving larger δ15N values in 333	

the particles:  334	
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NH3 + H+  à  NH4
+                      (1) 335	

HNO3  à  H+ + NO3
-                    (2) 336	

In equation (1), the conversion of gaseous NH3 to particle NH4
+ occurs under the lower pH 337	

conditions of aerosols. It is meaningful to describe that the measured pH of the water extracts 338	

from Okinawa aerosol samples is on average 5.3, which is lower than that of spring samples 339	

(5.6). Sulfuric acid probably contributed to lower the pH of the atmospheric aerosols. 340	

However, the N budget and possible isotopic reactions/exchanges in the atmosphere are very 341	

complicated (Widory, 2007; Ciezka et al., 2015). 342	

3.3. Sources of WSOC and ON 343	

We found a strong correlation (r=0.88) between TC and TN in spring (Figure 6). We 344	

also found a fairly good correlation (r=0.74) between TC and TN in winter. The high OC/EC 345	

ratios throughout four seasons in Okinawa suggest that organic aerosols are secondarily 346	

formed by the oxidation of organic precursors (Kunwar and Kawamura, 2014a). To better 347	

understand the variation of δ13C (primary or secondary), we conducted correlation analysis 348	

for WSOC vs δ13C because WSOC is mainly formed by the atmospheric oxidation of 349	

precursor organics. However, we did not find any significant correlation (r=0.14) in four 350	

seasons. Levoglucosan, which is an excellent tracer of biomass burning (Simoneit, 2002; Fu 351	

et al., 2011), did not present any significant correlation with δ13C in all seasons (Table 2). EC 352	

that is a tracer of primary source of incomplete combustion, showed no correlation (r=0.01) 353	

with δ13C in all seasons. Oxalic acid (C2), a tracer of SOA, showed no correlation with δ13C, 354	

suggesting the different sources and formation processes. Further, Na+, a tracer of primary 355	

marine source, showed no correlation with δ13C in all seasons (Table 2); even in summer 356	

when most of the air masses come from the Pacific Ocean.   357	

Organic nitrogen (ON) is an important component, but its source and formation 358	

mechanisms are poorly understood although the sources of organic nitrogen are possibly 359	
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derived from algal blooms and marine bacteria (Facchini et al., 2008; Muller et al., 2009), 360	

degraded protein (Kuznetsova et al., 2005), livestock/animal husbandry, and biomass burning 361	

(Mace et al., 2003b). Iinuma et al. (2007) and Nojima et al. (1983) reported that nitrophenols 362	

are originated from biomass burning and vehicular exhaust. Organic nitrogen (ON) showed 363	

higher concentration in winter (0.38±0.24 µg m-3) followed by summer (0.35±0.72) µg m-3) 364	

and spring (0.28±0.24 µg m-3) whereas the lowest concentration was obtained in autumn 365	

(0.12±0.05 µg m-3), although the seasonal averages are not statistically significant for winter 366	

and spring (t = 1.09, p = 0.29), spring and summer (t = -0.32, p = 0.75), and summer and 367	

autumn (t = -1.0, p = 0.31). The winter maximum of ON may be associated with influences 368	

from polluted air masses from the Asian continent. We found that concentration of WSON is 369	

lower in winter and higher in summer (Kunwar and Kawamura, 2014a).  370	

To better understand the sources of ON and WSON in summer, we performed 371	

correlation analysis between ON and Na+; the latter is a tracer of primary oceanic emission. 372	

However, we did not find any correlation, suggesting that ON and also WSON are not 373	

primarily derived from the ocean, but derived secondarily by the oxidation of organic 374	

precursors emitted from marine biogenic sources. Wang et al. (2010) reported that the 375	

concentration of WSON is 4 times higher in winter (22 µg m-3) than in spring (5.2 µg m-3) in 376	

Chinese aerosols. However, in our sampling site winter and springtime WSON levels are 377	

almost same, suggesting that there are additional biogenic sources of WSON in spring.  378	

3.4. Contribution of NO3
- and NH4

+ to TN 379	

Table 1 shows the seasonal average and concentration range for Okinawa aerosols. 380	

Higher concentrations of NO3
--N were observed during spring and winter and lower 381	

concentration was observed during summer. Similarly, highest NH4
+-N was observed during 382	

winter. Higher concentrations of NO3
--N during winter and spring suggest an influence from 383	
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the vehicular emission. Similarly, higher concentration of NH4
+-N during winter suggests that 384	

biomass burning in East Asia has an impact on the study area.  385	

Relations of NO3
--N and NH4

+-N against to TN are shown in Figure 7. The strong 386	

correlations of TN with NO3
--N (r=0.84) and NH4

+-N (0.80) suggest that nitrate and 387	

ammonium are formed from the similar sources and/or source regions. The main nitrogen 388	

species is NO3
-, which contributes about 45% of TN. In contrast, NH4

+ contributes only 18% 389	

of TN. Meanwhile, ON accounts for 37% of TN (Figure 8). The higher contribution of NO3
- 390	

to TN than NH4
+ supports that our sampling site is significantly influenced by vehicular 391	

emissions and biomass burnings in East Asia through a long-range atmospheric transport (Zhu 392	

et al., 2015). The highest contribution of NO3
- to TN was found to be 51.3% in spring 393	

followed by winter (37%) and the lowest value was observed in summer (34%). In contrast, 394	

the highest contribution of NH4
+ to TN was found in winter (29%) followed by spring (23%) 395	

whereas the lowest value was found in summer (3%). Both NO3
--N and NH4

+-N show good 396	

correlations with TN (r=0.91 and 0.89, respectively), suggesting that they are originated from 397	

similar sources. However, the lowest contribution of NO3
- and NH4

+ to TN in summer may 398	

suggest that organic nitrogen contributes more to TN in summer probably from marine 399	

sources. 400	

 401	

4. Summary and Conclusions 402	

Stable carbon and nitrogen isotope ratios were determined for aerosol (TSP) samples 403	

from Okinawa, an outflow region of East Asian aerosols. We found similar δ13C values in 404	

winter (-22.5±0.62‰) and spring (-22.5‰±0.71‰), suggesting that winter- and springtime 405	

aerosols are influenced by continental sources such as coal combustions. During winter, 406	

contribution of coal combustion to aerosol TC is 97%. Very high δ13C (-14.6 to -18.2‰) was 407	

obtained on March 16 and November 3. We found that significant amount of mineral dust 408	
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(carbonates) is responsible for such a high δ13C for the sample of March 16. In contrast, minor 409	

dust contribution was found for the sample of November 3. δ13C values obtained in the 410	

Okinawa aerosols are higher by ca. 2‰ than those reported from Chinese megacities during 411	

wintertime, suggesting that the photochemical aging of organic aerosols during the long-range 412	

transport. No correlation between nss-Ca/TC and δ13C suggest that carbonates were mostly 413	

disappeared due to the atmospheric titration by acidic species during long-range transport.  414	

δ15N in winter (13.6±1.7‰) and spring (13.3±2.7‰) showed almost similar values, 415	

suggesting the presence of similar source of nitrogen. The possible dominant source of δ15N 416	

(~12.4) in winter and spring suggest the mixed biomass and coal burning in home heating and 417	

coal burning in industries (eg. coal fired-power plants) origin. In contrast, δ15N during 418	

summer (11.1±1.1‰) is lower than winter and spring, suggesting that the air quality over 419	

Cape Hedo is influenced by clean oceanic air masses during summer. Contribution of NO3
- to 420	

TN is higher (45%) than that of NH4
+ (18%), suggesting that vehicular emission in East Asia 421	

is the most important source of TN in Cape Hedo, Okinawa. Higher concentration of ON in 422	

wintertime is due to the enhanced emission of water insoluble organic nitrogen in cold season 423	

from East Asia. 424	
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Figure Captions 646	

Figure 1. Map of Cape Hedo, Okinawa, Japan where one year sampling was performed. 647	

Figure 2. Five-day backward trajectories for selected weeks during winter, spring, summer 648	

and autumn. Backward trajectories at 500 m above ground level were drawn with the 649	

NOAA HYSPLIT model. 650	

Figure 3. Weekly variations of (a) TC, (b) TN, (c) δ13C and (d) δ15N in ambient aerosols from 651	

Cape Hedo, Okinawa during October 2009 to October 2010. The date in the figure 652	

represents the starting date for each sample. 653	

Figure 4a. Relation between TC concentrations and δ13C in TSP samples collected from Cape 654	

Hedo, Okinawa 655	

Figure 4b. Relation between TN concentrations and δ15N in TSP samples collected from Cape 656	

Hedo, Okinawa 657	

Figure 5. Relation between δ13C versus δ15N with signed level of potential sources in TSP 658	

samples collected from Cape Hedo, Okinawa. Data of δ13C and δ15N adopted	from (a)	Fry 659	

and Parker (1987), (b) Gleason and Kyser (1984), (c) Chesselet et al. (1981), (d) Peng et 660	

al. (2006), (e) Kundu et al. (2010), (f) Heaton (1990), (g) Widory (2007), (h) Mkoma et al. 661	

(2013). 662	

Figure 6. Correlation analysis between total nitrogen (TN) and total carbon (TC) in aerosol 663	

samples collected from Cape Hedo, Okinawa. 664	

Figure 7. Scatter plots between NO3
--N or NH4

+-N versus TN in aerosols collected in Cape 665	

Hedo, Okinawa. The points in the bracket represent the outliers. The original data of 666	

nitrate and ammonium are from Kunwar and Kawamura (2014a). 667	

Figure 8. Scatter plot between NO3
--N and NH4

+-N versus TN in ambient aerosols collected 668	

in Cape Hedo, Okinawa. The point in the bracket represents the outliers. The original data 669	

of nitrate and ammonium are from Kunwar and Kawamura (2014a). 670	
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