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Chapter 1 Introduction 

1.1 Research Background 

1.1.1 Evolution of Agriculture 

As the rapidly changing world keeps gaining momentum in respect of almost every 

aspect of human life towards the direction of automation and intellectualization, agriculture, 

which has always been the cornerstone of economic and social development both regionally 

as well as globally in human civilizations, is also transforming itself into a high-level 

scientific industry. Farming originated and evolved independently in many regions all over 

the world, yet either the agricultural total output or the unit output stagnated for tens and 

hundreds of centuries. Meanwhile, farming-engaged population kept increasing due to the 

lack of efficient equipment, high-quality plant seeds, scientific agronomic methodologies, 

and etc. Along with the global growth of population and social developments in human 

civilization, agriculture industry has also experienced several major transformations: from 

subsistence agriculture to commercialized agriculture, intensive agriculture, industrial 

agriculture, and eventually the precision agriculture. 

Subsistence agriculture refers to farming systems that depend on manpower as well as 

animal power, by using hand tools and simple instruments to conduct agricultural production 

activities in ancient times. Mainly for self-sufficient and self-contained purpose under natural 

economic circumstances, subsistence farming enjoys the advantages of low energy 

consumption and non-pollution but also has to suffer from low-yield or worse: total crop 

failure in case of occurrence of natural disaster. Throughout the history of human civilization, 

famine, a widespread scarcity of food, was closely associated with each social change and 

reformation. The first famine in history was recorded 441 BC in ancient Rome, and in 

Somalia during 2011-2012 the death toll of famine was estimated up to 285,000, caused by 

2011 East Africa drought [1]. In order to combat famine in respect to both frequency and 

severity, implementation of improved farming techniques and farming models to increase 

crop yield has been witnessed all over the globe. 

Between the 16th and 17th century in western countries and at the beginning of the 20th 

century in oriental counties commercialization of agriculture emerged as feudal system fell 

apart, and farmers began to possess their own farmland as private property. Thereafter 
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prosperous farmers turned themselves into capitalist landowners and they strived to improve 

crop yields not merely for subsistence needs but for making a fortune by selling the surplus 

crops to areas that demanded that product. More and more farmlands were transferred and 

consolidated in the following years to certain distinguished individuals or corporations. As a 

result, surpluses of agricultural production were by and large guaranteed. The eagerness for 

profit was insatiable, and the power of capitals was infinite in promoting agricultural 

development. To furthermore increase crop yields, innumerable agricultural researches were 

initiated and experimental achievements on plants, soil, water, and all other crop related 

topics emerged on after another. By the year of 1642, Dr. Jan Baptist van Helmont conducted 

the famous 5-year willow experiment. Based on quantitative analysis, Dr. Helmont tested 

whether plants obtain their mass from soil and he concluded that the gain mass of wood, 

barks, and roots arose out of water only [2]. From then on, between the 17th and 18th 

centuries knowledge on the mineral nutrition of plants widely disseminated owing to several 

European naturalists. In 1727 Stephen Hales published experiment results on the nature of 

transpiration: the transport of water and solutes in plants [3]. By the 1840s, Professor Justus 

Freiherr Von Liebig, the pioneer of the agricultural chemistry and the “father of the fertilizer 

industry” investigated on indispensable mineral salts including nitrogen (N), phosphorus (P), 

and potassium (K) and concluded that N, P, and K, among other mineral elements are 

essential to plant growth. Besides, Professor Liebig put forward the “Law of the Minimum”, 

arguing that plant growth relies on the supply of the scarcest mineral nutrition that is 

available to the plants [4]. The impact of “Law of the Minimum” on the agriculture industry 

has been far reaching. Professor Liebig himself advocated the agricultural application of 

nitrogen fertilizer to solve the problem of food availability, which fundamentally enlarged 

agricultural activity into a capitalized industry on an unprecedented scale.  

The development of agricultural techniques has been through zigzagging process. It was 

not until the 1770s when the industrial revolution brought steam-powered machines into not 

only factories but also farmlands that intensive farming on large scale came into realization. 

However, as the old cliché goes that development of science and technology is always a 

double-edged sword: the advent of efficient agricultural machinery made it possible to 

produce adequate food for feeding more population, and global population boomed up to 

about 800 million for the first time by the end of 18th century after the securing of food 

production through massive agricultural mechanization [5], which in turn asked for more 

provision of food and biomass resources as industrial raw materials. Urgent food demand 
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further stimulated scientists and researchers to discover outstanding plant breeds suitable for 

intensive agriculture; to develop new plant varieties with specific capabilities such as drought 

tolerance, lodging-resistance, and high yields; to introduce new farming technology including 

man-made drainage systems, pesticides and herbicides, and synthetic fertilizers, etc. The 

invention of ammonia from nitrogen gas (N2) and hydrogen gas (H2) by Fritz Haber in 

collaboration with Carl Bosch in the 1910s fundamentally changed agriculture industry 

globally. The Haber–Bosch process of artificially synthesizing ammonia is still mainly used 

to produce nitrogen fertilizer today, accounting to 450 million tones anhydrous ammonia, 

ammonium nitrate, and urea per year [6]. In combination of pesticides application and 

adaptation of high-power agricultural machinery, massive use of synthetic fertilizers 

improved productivity of agricultural land dramatically through intensive farming techniques 

with higher levels of input and for higher levels of output per unit area of farmland.  

Nowadays agricultures in most areas across the globe are intensive in one or more 

respects: capital, labor, machinery, fertilizer, and agricultural chemicals. As investments in 

intensive agriculture rely on industrial methods heavily, it is also referred to as industrial 

agriculture. At the meantime gene-modified breeds as well as hybridization crops also 

obtained rapid popularization. Around the 2010s breeding scientist Longping Yuan 

announced the success of a new strain of hybrid rice that was reported to produce 13.9 tons of 

rice per hectare [7], when the world population exceeded 6.9 billion [8]. In order to feed such 

a large number of mouths and to swipe out starvation in a global context, updating 

methodologies and equipment are introducing into intensive agriculture to cope with such 

issues like the unbalance of agricultural ecology: the abuse of agricultural chemicals, 

decreasing underground water level, soil compaction and erosion, land degradation and 

dissertation, etc. [9]. Using automated agricultural machinery and variable-rate technology in 

precision agriculture or site-specific crop management (SSCM) emerged as the times 

required in recent years, which enables each farmer to be able to feed 265 people on average, 

comparing with each farmer feeding 26 people on average in the 1960s [10]. 

1.1.2 Precision Agriculture 

Precision agriculture improves upon the advantageous techniques used in intensive 

agriculture, whilst reduces the negative impacts on agricultural ecology for a low-input, high-

efficiency, and sustainable agriculture [11]. Precision agriculture could also be called as 

ecological agriculture or eco-agriculture to some extent, as its prime objective is to construct 
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a decision supporting system by acquiring site-specific field information and responding to 

the within-field spatial variability [12]. The ultimate goal of precision agriculture is to build a 

sustainable agriculture by protecting arable land from degradation and pollution, and utilize 

agricultural inputs in a more efficient way without compromising the high-productivity of the 

present intensive agriculture system. The demand of precision agriculture rose after the 

completion of agricultural mechanization in well developed countries in the early 1980s, 

when farmers intended to maximize profit by dividing vast farmlands into smaller 

management zones and varying treatments of fertilizers and/or agricultural chemicals in 

response to the variability of each specific management zone [13]. Meanwhile researchers as 

well as policy-makers became concerned about environmental issues like N leaching, water 

pollution, and etc. [14]-[16].  

The concept of precision agriculture was brought out by researchers at the University of 

Minnesota in 1985, designing variable-rate lime input experiments for improving soil’s pH 

(potential of hydrogen) value within a farmland [17]. Thereafter, the importance and 

profitability of precision agriculture got universally acknowledged, many researchers all 

around the world initiated precision agriculture related projects including sensors, automated 

agricultural machinery, variable-rate agricultural implements, and etc. In 1989 Wagner and 

Schrock installed a pivoted auger grain flow sensor on a commercial combine harvester to 

determine within-field yield variations of wheat, so that general information on field 

productivity could be obtained [18].  In 1999 Yule and et al. developed a differential global 

positioning system (DGPS) based data acquisition system equipped on a tractor to map 

within-field variability of topology and soil moisture content, so that areas that needs 

remedial operations could be identified [19]. In 1999 Tian and et al. developed an intelligent 

sensing and precision spraying system based on machine vision technology to estimate weed 

density and size, so that herbicide application could be reduced by realizing site-specific 

weed control [20]. In 2001 Hummel et al. developed a near infrared (NIR) soil sensor to 

measure organic matters in soil and surface as well as subsurface soil’s moisture contents for 

documenting the spatial variability of soil parameters [21]. In 2001 Noguchi et al. developed 

a robot tractor based on RTK-GPS (Real Time Kinematic Global Positioning System), 

gyroscope, and IMU (Inertial Measurement Unit) [22], which could conduct various kinds of 

field operations with acceptable accuracy. From then on vehicle and robotics laboratory in 

Hokkaido University developed a dual robot tractors system in master-slave fashion, and 

multi-robot tractors system operating in collaboration with each other to further improve 
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working efficiency. Ever since the beginning of 21st century, numerous sensors are being 

launched into agricultural market: handheld devices, equipment onboard ground vehicles, 

airborne instruments, and satellite sensors have greatly enriched the means of acquiring field 

information. In essence, the progress of precision agriculture has been closely linked to such 

technologies including agricultural mechanization and automation, GPS, GIS (Geographic 

Information System), IoT (Internet of Things) techniques, sensors, variable-rate applicators, 

remote sensing techniques, and etc., depicted in Fig.1. 1. 

    

Fig.1. 1 Diagram of precision agriculture 

 

As the massive production capability and reliability of integrated circuit products, or 

microchips, have been validated by market since the 1960s, numerous kinds of industrial 

sensors that are capable of collecting and processing instantaneous information were 

developed, which marked the advert of information era. GPS is deemed as one of the most 

successfully commercialized industrial technologies thanks largely to the extensive use of the 

miniaturized and economical integrated circuit products, which consists of three main 

segments:  the space segment, the ground control segment, and the user segment. In a sense it 

is like that each point on or nearby the planet has been virtually mapped and attached with a 

unique coordinate, and all what the user needs is a GPS receiver to “estimate” one’s location 

(coordinates) on the map based on trilateration method by measuring distance between GPS 

receiver and GPS satellites [23].  

The technical terminology of GNSS (Global Navigation Satellite System) is nowadays 

more preferable to GPS by researchers, which is a generic term including several satellite 
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navigation and positioning systems providing global services. GNSS mainly comprises the 

most widely used GPS of the United States of America, GLONASS (GLObalnaya 

NAvigatsionnaya Sputnikovaya Sistema) of Russia, Beidou of China, GALILEO of European 

Union, and each of them provides global positioning services at different levels of accuracy. 

It also includes QZSS (Quasi-Zenith Satellite System) of Japan as well as IRNSS (Indian 

Regional Navigation Satellite System) of India which provides regional positioning services 

to some extent. Theoretically it needs at least four GNSS satellites and each of them forms an 

unobstructed line of sight to a GNSS receiver in order to acquire a “fixed” 3D (three 

dimensional) coordinates. However, more than four GNSS satellites are usually included 

simultaneously into different navigation and positioning algorithms for higher accuracy, as 

the extra cost of superfluous access to GNSS satellites from multiple systems than to a single 

system is next to negligible.  Fig.1. 2 showed an easy access to multiple GNSS satellites 

using a smart phone in northern China on 3 October 2017, from which we can see that 24 

GNSS satellites in total were visible by that time: 9 GPS satellites, 6 GLONASS satellites, 

and 9 Beidou satellites, respectively. 

   

Fig.1. 2 Access to multiple GNSS satellites  

 

Yet the inevitable problem of low positioning accuracy (less than five meters 

horizontally) resides with GNSS standalone positioning mode, due to clock precision, 

ionospheric disturbance, and etc. Thus, different augmentation systems were created to 

enhance positioning accuracy, integrity, and availability. DGPS improves GNSS positioning 
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accuracy up to about one meter, using a network of ground reference stations which 

continuously broadcast the difference of distance between the known fixed positions and the 

estimated positions indicated by the GNSS positioning algorithm. Subsequently, GNSS rover 

rectifies each estimated pseudo-range between GNSS receiver and GNSS satellites according 

to the correction information from base station, shown as Fig.1. 3. Basically RTK-GPS works 

in the same manner as that of the DGPS, providing two to five centimeters accuracy; the only 

difference is that RTK-GPS rover receives correction signal of carrier phase information from 

base station instead of pseudo-range measurements. Centimeter-level accuracy as it is, RTK-

GPS requires a stable data link either via the radio signal or cellular network between the 

GNSS rover and the base station. On the other hand, PPK-GPS (Post Processing Kinematic 

Global Positioning System) processes the positioning information that is saved on board the 

GNSS receivers after each operation. Similar to RTK-GPS, one GNSS receiver remains 

stationary as a ground base station at a known position, whilst the other GNSS receiver that 

“observes” the same combination of GNSS satellites (usually within twenty kilometers from 

the ground base station) works as a rover receiver. However, when compared with RTK-GPS, 

PPK-GPS provides a more precise relative positioning result as it traces both backward and 

forward through the carrier phase data of these two GNSS receivers multiple times. 

Nonetheless, the absolute positioning accuracy of PPK-GPS relates to the accuracy of the 

“known” position of the ground base station, which is usually acquired by using a RTK-GPS 

module or estimated from hour-long measurements of standalone GNSS positioning. 

  

Fig.1. 3 Principle of DGPS 

The utilization of global positioning services based on GNSS technology has profound 

impact on the implementation of precision agriculture, which tagged each field sample’s 

attribute value (soil condition, water stress, crop growth status, yield variation, and etc.) with 
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an accurate spatial coordinates – a process called geo-referencing or geo-coding. The 

realization of processing these geo-referenced attribute values in GIS environment improved 

field sampling efficiency and spatial accuracy at an unprecedented level, as GIS applications 

are effective tools that enable researchers to visualize, edit, integrate, and analyze spatial-

temporal information in a digitalized fashion [24]. It is also worth mentioning that GIS 

applications are capable of relating spatial-temporal information from different sources that is 

geo-coded by using GNSS devices or geo-referenced by measuring GCPs’ (Ground 

Controlling Point) geographical coordinates afterwards. GNSS based autonomous navigation 

of agricultural machinery, i.e., tractors, transplanters, combine harvester, chemical spring 

airplanes and drone, and etc., have been breaking new grounds in precision agriculture 

domain. The mobile platform that not only knows where it is but also is aware of what it is 

about to do: changing advancing velocity, making a turn, controlling attached applicators 

according to a prescription map, and etc. Agricultural machinery equipped with GNSS 

receiver also greatly improves logistical efficiency, as the display of real-time feedback of 

vehicle’s position in GIS applications provides plentiful information for decision-making 

relating to operation scheduling, path planning, shuttle truck arrangement. With the aid of 

accurate GNSS navigation and positioning techniques and the powerful GIS data 

management capabilities, we have good reason to believe that provision of adequate food, 

preserving agricultural ecology, and guaranteeing industrial profit would be brought into 

equilibrium in the future precision agriculture. 

1.1.3 Agricultural Remote Sensing 

In precision agriculture industry, information is king. The abundancy, frequency, as well 

as accuracy of the acquired field information influence decision-makers greatly on 

determining the appropriacy of each SSCM operation. The means of obtaining field 

information are various. Primitively field survey by experienced farmers was used for the last 

thousand years, in which visual inspection of stalk density, leaf area and pigment, number of 

pests, and etc., acted as a sole information source. Not so long ago until mineral nutritious 

elements were distinguished inside plant tissues that precise laboratory experiments came 

into realization by taking samples from the field. Later on handheld devices are included into 

field sampling operation, which mainly take advantage of spectroscopic technologies. 

However, either it should be visual inspection or instrumental sampling in the field, data 

collection can be enormously time consuming for the current large-scale farming. Moreover, 
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it is sometimes reported that the collected field information can be very deceptive when 

samples are scare or partially focused in featured regions.  

Remote sensing is the science and art of obtaining information about an object, area, or 

phenomenon through the analysis of data acquired by a device without making physical 

contact with the object, area, or phenomenon under investigation [25], which has been 

successfully used as an effective and accurate means of collecting field information from the 

farmland-level, to the regional level and global level. On the basis of different types of 

remote sensing platforms carrying onboard sensors, agricultural remote sensing could 

generally be categorized into satellite remote sensing, aerial remote sensing and near-ground 

remote sensing. According to a survey conducted by Jacqueline and et al., at Purdue 

University of crop input dealers and their use of precision technology, up to 39.2% of the 

respondents used satellite or aerial remote sensing data for precision agriculture. The 

increasing trend of monitoring crop growth status from remote sensing imagery is now being 

accelerated by the easy access of civilian UAVs (Unmanned Aerial Vehicle). 

 

Fig.1. 4 Agricultural remote sensing in agriculture (based on a survey by Jacqueline K. and et al.) 

 

Traditionally, multi-spectral satellite imagery has been successfully used to detect 

vegetation coverage, monitor crop growth status, and estimate crop yield, etc., in large scale 

[26], [27]. Through quantitative analysis of digitalized numbers of different bands of satellite 

images, or more often, of various kinds of vegetation indices calculated from the reflectance 

or radiance of specific bands, regression models could be built between remote sensing data 
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and ground truths. However, low spatial resolution, long revisiting-period as well as 

atmospheric effects, or weather interference, are known as inherent flaws of such kind of 

multi-spectral satellite imagery used in precision agriculture domain. On the other hand, 

aerial remote sensing using airplanes has been introduced into medium-scale agricultural 

applications as a supplementary method and often carried out as one-time operations since 

the 1950s [28]. Whilst near-ground remote sensing is often referred to as frame or pillar 

based applications and sensing systems that are installed on agricultural vehicles in the past, 

and recently the cutting edge application of small fixed-and/or rotary-wing drones or UAVs 

used in small-scale and experimental fields, with various kinds of commercial RGB cameras, 

multi-spectral cameras, and laser scanners mounted upon, shown in Fig.1. 5. 

 

Fig.1. 5 Different platforms used in agricultural remote sensing 

 

According to the definition of Federal Aviation Administration and the United State Air 

Force (USAF), UAV refers to an aircraft that is operated without the direct human 

intervention from within or on the aircraft, can fly autonomously or be piloted remotely, uses 

aerodynamic forces to provide vehicle lift, can be expendable or recoverable, and can carry a 

lethal or nonlethal payload. UAVs have also been called drones, RPVs (Remotely Piloted 

Vehicles), RPAs (Remotely Piloted Aircrafts), PAs (Pilotless Aircrafts), and other terms over 

the years depending upon their specific working scenarios. Current developments in UAVs 

trace their beginnings to World War One, and the application of modern UAVs emerged in 
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late 1950s in such manners that the pilot has real-time remote monitoring and controlling of 

the aircraft through command link and telemetry systems, in the development of unmanned 

aerial reconnaissance projects initiated by the USAF. Meanwhile, applications of UAV for 

non-military purposes was long time in its infancy until 2010s, when the multi-copter UAVs 

related industries were promoted as new stimulus for booming economy by several countries 

including China, the USA, Germany, and other governments. By then, the most intense use of 

commercial UAVs took place in Japan, where vertical take-off and landing (VTOL) 

helicopter-style UAVs are extensively operated under the jurisdiction of the Ministry of 

Agriculture, Forestry and Fisheries for chemical spraying. Nowadays civilian UAVs come in 

various kinds of shapes and sizes with widespread applications extending from professional 

topographic surveying and recreational aerial photography, to monitoring disaster site, data 

collection for precision agriculture, logistics, etc., due to the advantages of low cost, 

versatility, good maneuverability and efficiency.  

 

Fig.1. 6 Constitutional diagram of UAS (image courtesy: jDrones) 

Furthermore, the conception of UAS (Unmanned Aircraft System) was recently put 

forward, shown in Fig.1. 6, which refers to an integrated system usually compromised of the 

unmanned aircraft, onboard navigational and controlling unit, data link system, payload, 

peripheral equipment, and a GCS (Ground Control Station). The on-board navigational and 

controlling unit usually includes the micro-computer, battery managing system, GNSS unit, 

MEMS (Micro-Electronic Magnetic System) unit, gyroscope, barometer, and etc. The data 

link system connects the GCS with the unmanned aircraft through telemetry radio. And a 
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personal computer or a tablet would usually suffice as a GCS for most of the UAS 

applications to upload command to the aircraft and also receive flight data from the aircraft. 

UAS is generally categorized as VTOL or the rotary wing type, HTOLs (Horizontal Take-Off 

and Landing) or the fixed wing type, according to their shapes, and lift forces. Based on the 

flight duration and altitude, it could also be divided into High-Altitude Long-Endurance 

(HALE) UAV, Medium-Altitude Long-Endurance (MALE) UAV, and short range UAV. 

Based on the overall size and weight, it could be further categorized as small UAV and Micro 

Aerial Vehicle (MAV). The detailed description of the UAVs is shown in Table 1. 1.  

Table 1. 1 Categories of UAVs 

Type Shape Weight 

(kg) 

Altitude 

(m) 

Endurance 

(hour) 

Range 

(km) 

Power  

HALE UAV Fixed wing ＞1500 ＞14000 ＞24 ＞1000 Engine 

MALE UAV Fixed wing 150~250 3000 3~6 30~100 Engine 

Short range 

UAV  

Fixed/rotary 

wing 

25~150 3000 ＜3 10~30 Engine 

Small UAV Fix/rotary-wing ＜25 ＜1000 ＜1 ＜20 Engine/battery 

MAV  Rotary/flapping 

wing 

＜5 ＜250 ＜1 ＜10 Battery 

Low-altitude UAV remote sensing data may be acquired more cost-effectively, with 

excellent maneuverability as well as increasing spatial resolution, and with greater safety 

when compared with manned aircrafts [29]. Generally there are three kinds of low-altitude 

UAVs that are widely utilized in agriculture industry. Helicopter-style UAV is featured with 

two heavy propellers which indicate massive potential safety hazards in case of mechanical 

failure or accidental operation. The severe vibration is another issue when precision 

measuring instruments such a camera, a laser scanner, and a LiDAR (Light Detection and 

Ranging) are installed the helicopter-style UAV. As the helicopter-style UAV adopts a 

gasoline engine as its power source, the payload capability is considerably high and the flight 

duration is also satisfactory. As such, the application of helicopter-style UAVs is usually 

limited in agricultural chemical spraying. Fixed wing UAV is, on the contrary, very 

lightweight and capable of long-time flight. The aerodynamics design generates lift force 

which depends on pneumatic difference of air pressure between top surface and bottom 

surface of the wing, shown in Fig.1. 8. However, due to structural restrictions, fixed wing 

UAV’s payload capacity is rather low and cannot hover over a specific area of interest. Thus, 

fixed wing UAV is only suitable to capture aerial photographs to monitor crop’s growth 

status over medium-scale farmland from 10 hectares up to 100 hectares in one sole flight. As 

the development and breakthrough in industrial application of lithium-polymer (LiPo) battery, 
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together with the improvement of GPS performance, commercialized micro brushless motors’ 

reliability, and MEMS IMU measuring accuracy, the versatile multirotor UAV appeared into 

civilian market at the beginning of this 21st century, shown in Fig.1. 9. The number of 

propellers of multirotor UAV generally ranks from 4 to 12, and the payload capacity 

increases with the number as well as the size of the propeller. The overall weight of 

multirotor UAV used in agriculture industry varies from several hundred grams to tens of 

kilograms, and the overall size comes in various levels from palm-sized to two meters in 

diameter.  

 

Fig.1. 7 Helicopter-style low-altitude UAV of Yammar (YH300) 

 

Fig.1. 8 Fixed wing low-altitude UAV of Ag Eagle (RX60) 

 

Fig.1. 9 Low-altitude multirotor UAV of EnRoute (CH940)  
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1.2 Research Objectives & Organization of Dissertation 

In this study, we are going to develop and validate an agricultural remote sensing system 

based on the low-altitude UAV platform by integrating multiple sensors. The primary 

objectives are to acquire field information for the corresponding implementation of precision 

agriculture operations in an accurate and efficient manner. This dissertation would include 

three agricultural remote sensing projects such as conducting farmland topographic surveying, 

mapping the within-field spatial variations of wheat stalk density, and mapping the within-

field spatial variations of wheat yield.  

In Chapter 1, the evolution of agriculture and the crying needs for the precision 

agriculture have been overviewed. The increasingly important role of UAVs in the 

agriculture industry, especially in terms of agricultural remote sensing domain, was also 

discussed. 

In Chapter 2, the issue of the unevenness of farmland surface was put forward, which 

causes crop die-off due to stagnant waters and other problems of non-uniformity of crop 

growth. In response, a UAV-LiDAR system was developed for conducting topographic 

surveying, and the resulting topographic map would be further utilized by the precision land 

levelling machinery. Firstly, the working principal of LiDAR was explained, and the 

integration of LiDAR distance measurements, UAV platform’s attitude information, and the 

PPK-GPS coordinates was described in detail. Subsequently, the accuracy of the UAV-

LiDAR topographic surveying system was validated by conducting an experiment over a 

wheat field in Hokkaido University, Sapporo, Japan, and the topographic data was compared 

with the corresponding RTK-GPS altitude. Another experiment conducted in a sugarcane 

field in Mackey, Australia also verified the feasibility of using this UAV-LiDAR topographic 

surveying system to detect bugles and pits inside the experimental fields. 

In Chapter 3, different interpolation models were introduced to generate topographic 

maps by using the topographic data acquired from the UAV-LiDAR topographic surveying 

system. The accuracy of each resulting topographic map was validated by comparing the 

ground elevation data that were extracted from the topographic maps with the corresponding 

RTK-GPS altitude data. Furthermore, an aerial photogrammetric digital surface model (DSM) 

was generated and integrated with the topographic data of the UAV-LiDAR system, as the 

DSM has the advantage of large ground coverage whilst the topographic data of the UAV-

LiDAR system has the advantage high accuracy. 
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In Chapter 4, the importance of timely monitoring of wheat growth status and estimation 

of wheat stalk density during the early growth stages was firstly addressed. Then a 

multispectral camera was integrated upon the UAV platform for acquiring images of a wheat 

field. Through image processing a NDVI map of the field under study was generated, and 

accordingly different models of vegetation coverage indices were presented. The vegetation 

coverage indices were correlated with the field samples of wheat stalk density, and the map 

that demonstrates the within-field variations of stalk density was produced for variable-rate 

nitrogenous topdressing. 

In Chapter 5, the multi-temporal monitoring of wheat growth status was conducted by 

interpreting both multispectral satellite images and UAV Ortho-mosaic images acquired from 

a consumer digital camera. Wheat lodging could be spotted in the UAV Ortho-mosaic images 

clearly, and the vegetation index of the high-resolution UAV Ortho-mosaic images showed 

high correlation with the corresponding vegetation index of the satellite images. Finally, field 

sampled wheat yields were used to conduct stepwise regression with several vegetation 

indices extracted from the UAV Ortho-mosaic images. Based on results of the stepwise 

regression model, a map was generated that reflects the within-field spatial variations of 

wheat yield. 

Chapter 6 summarized the main research results by drawing an abstract for the whole 

thesis. 
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Chapter 2 Conducting Topographic Survey Using UAV-LiDAR System 

 

2.1 Introduction 

Topography is the study of earth surface shapes and features, and topographic map refers 

to a 2D (two-dimensional) graphic representation of a terrestrial or 3D (three-dimensional) 

land surface feature using contour lines, hypsometric tints, and relief shading [30],[31]. In 

precision agriculture, high accurate topographic maps are essential to such operations 

including soil preparation, drainage arrangement, land forming and levelling, and etc. Surface 

unevenness of farmlands has been pointed out as a major issue that affected agricultural 

drainage efficiency of the current irrigation systems, which have been under great pressure 

for producing more with lower water supplies around many regions of the world [32]. Hu and 

et al. reported in 2014 that over 20% of irrigation water could be wasted due to rough land 

surface of paddy fields [33]. Besides, most kinds of plants including wheat, corn, soybean, 

and etc., are vulnerable to stagnant water throughout germination period to early growth 

stages. Either it be man-made irrigation or natural rainfall, puddles are likely to ensue inside 

farmland over lower areas, which are usually considered as potential threat that leads to crop 

drowning and occurrence of infestation as well as plant diseases due to high humidity, shown 

in Fig.2. 1. Rickman concluded in 2002 that unleveled rice fields suffered about 24% yield 

loss in average when compared to the effectively leveled ones for the same rice variety and 

the same fertilizer input [34].  

 

Fig.2. 1 Crop failure due to stagnant waters  
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As precision land levelling facilitates surface drainage, improves crop establishment, 

reduces occurrence of infestation and plant diseases, and increases crop yield [35], many 

researchers both in academia and industry have proposed different methodologies on 

removing mounds and puddles inside farmland. Apart from conventional land preparation 

using ploughs and harrows after each crop season, generally two major proven techniques 

that have already been put into practice for precision land levelling could be enumerated: 

laser-assisted land levelling and GNSS based land levelling [36]. Nowadays not only in 

developed countries like the United States and Japan but also in developing countries such as 

China, India, and Brazil, laser-assisted land levelling techniques are gaining momentum 

rapidly, as it works in a simple fashion [37]: the laser transmitter continuously emits a laser 

plane, which is intercepted by the laser receiver in real time so that the height deviation to the 

target height plane could be calculated; the height deviation is sent to the control box, and the 

scraper automatically goes up and down according to commands from the control box aiming 

at minimizing the deviation between the laser receiver and the target height plane; as the 

scraper adapts the height, soil of higher ground is cut and hold in the bucket until it is carried 

to lower ground and got released. Furthermore, Li and et al. in 2012 developed an attitude 

measurement system for scraper of a laser-controlled land leveler by fusing data from a tri-

axial accelerometer and a digital gyroscope, which made the whole levelling system work 

more efficiently and reliably [38]. Although it is explicit in structure and easy to operate, 

laser-assisted land leveler has its inherent flaws: the selection of location and preset height of 

the laser transmitter determines the cutting depth of each location (cut/fill ratios) directly, and 

without an accurate topographic land survey it is next to impossible to optimized the volumes 

of relocated earth. It is not unusual that operators find out that most of the time the scraper 

hangs too high to cut any soil (idle operation), or worse, the tractor gets stuck and slips over 

one spot and cannot move forward due to insufficient power when the cutting depth becomes 

too large. 

On the other hand, GNSS based land leveler came into practical application since mid-

1990s, when RTK-GPS service finally entered the market with an acceptable price and 

centimeters-accuracy for measurements of 3D positions (latitude, longitude, and altitude). 

GNSS based land leveler uses a GNSS receiver to measure 3D coordinates of the scraper and 

adjusts the scraper’s height by comparing the current altitude with the desired one to 

complete the earth-moving operation [39]. But, it shares the same drawback with the laser-

assisted land leveler: the GNSS based land leveler also needs an extra land survey, usually by 
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driving the GNSS receiver equipped tractor throughout the farmland prior to levelling 

operation in order to acquire an farmland surface elevation map. According to the elevation 

map drivers could preset an optimal ground height of each field and calculate cut/fill ratios 

for each point by using GIS technology. Either way, whether it is a laser-assisted land leveler 

or a GNSS based one, topographic survey is usually prerequisite, and land levelling accuracy, 

efficiency, as well as energy consumption is in high accordance with the delicacy of each 

topographic map of the farmland. 

In order to generate topographic maps, new technologies including terrestrial laser 

scanning, airborne laser scanning, and aerial photogrammetry are recently utilized for 

different kinds of engineering applications like construction site, urban ecology modeling, 

forest monitoring, and etc. [40]-[44]. Whist theodolite, total station, and RTK-GPS module 

remain the conventional and primary methods that are used in common topographic 

surveying. Theodolite is a precise instrument for measurement of angles in both horizontal 

and vertical dimensions since sixteenth century; and total station is an all-electronic device 

developed from theodolite on the theory of electronic distance measurement [45]. Resop and 

et al. in 2010 compared different surveying techniques by using traditional total station and 

terrestrial laser scanner to monitor streambank retreat, and concluded that surveying error of 

total station would be significant when extrapolating to a certain reach, whist terrestrial laser 

scanner provides much more detailed spatial information [46]. Corsini and et al. in 2013 

monitored and mapped a slow moving compound rock slide by integration of airborne laser 

scanner, terrestrial laser scanner, and automated total station, which quantified slope 

movement in the order of centimeters to a few decimeters [47]. Pablo and et al. in 2017 

evaluated a mobile LiDAR system mounted on a car to develop an architectural analysis by 

generating 3D point cloud [48]. There are also plenty of research works and products 

providing digital surface model and digital elevation model based on airborne 

photogrammetry or satellite stereo-imagery [49]-[51], but the spatial resolution as well as 

vertical accuracy of such topographic maps generated from photogrammetric processing 

usually reaches several decimeters to tens of meters, which makes it unsuitable to be used in 

farmland for precision land leveling operation. 

Therefore, in this study, we introduced a low-altitude UAV equipped with a high 

precision one-dimensional LiDAR (Light Detection and Ranging) distance measuring device 

to conduct topographic survey in a simple and totally autonomous manner. The research 
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objective is to integrate data of multiple sensors including LiDAR, MEMS IMU, and PPK 

(Post Processing Kinematic) GPS receivers, to generate a topographic map at farmland level 

by using a low-altitude UAV-LiDAR system. The accuracy of the UAV-LiDAR system 

based topographic surveying was validated by acquiring the corresponding RTK-GPS 

coordinates and through visual inspection as well. 

2.2 Research Platform and Equipment 

In this research we developed a UAV-LiDAR topographic surveying system by installing 

a one-dimensional LiDAR distance measuring device, a mini-computer, an external GPS 

rover receiver for PPK-GPS positioning, and other peripheral devices such as battery banks 

and an external GPS antenna on a small UAV. Each battery bank is meant for powering the 

LiDAR, the mini-computer, and the external GPS module, respectively.  

2.2.1 UAV Platform and Built-in Sensors 

As described in Sector 1.1.4, a hexa-copter (ENROUTE CO., LTD., Fujimino, Japan) 

was used as the small UAV platform in this study, shown in Fig.2. 2. This is a high-powered 

industrial UAV, which is originally designed for agricultural chemical spraying with the 

payload capacity of 6.6 kg. We altered the bottom part of this UAV so that the LiDAR, mini-

computer, as well as battery banks could be fixed upon the UAV platform. The UAV itself 

uses two LiPo batteries and each of them is comprised of 6 battery chips (cells), which are 

separated and protected by aluminum plates. These LiPo batteries are capable of powering 

the no-load UAV for a 20-minute flight, however, as the payload increases the flight 

endurance become shorter. In the case of our developed UAV-LiDAR topographic surveying 

system, the maximum flight endurance reached up to about eight minutes when flying at the 

ground speed of 5 m/s and 30 meters above ground level. The specifications of the UAV are 

listed in Table 2. 1. 

Table 2. 1 Specifications of the UAV platform 

Overall size (with propellers uninstalled) Φ1397*450mm 

Propeller size 457.2mm 

Battery type LiPo 6 Cell 

Battery capacity* number 99 Wh *2 

Total number of Motor 6 

Motor type Zion5828-340KV 
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Weight  5.4 kg 

Payload capacity 6.6 kg 

Maximum climbing speed 5 m/s 

Maximum flight speed 20m/s 

Wind resistance  10 m/s 

 

 

Fig.2. 2 A small UAV used in this study 

 

This UAV utilizes an industrial standard PIXHAWK autopilot hardware as an onboard 

flight controller, which is designed by 3D Robotics Inc. in collaboration with ArduPilot 

Group. The PIXHAWK flight controller integrates several kinds of inertial MEMS sensors 

including a 3D accelerometer, a gyroscope, a magnetometer, and a barometer, which utilizes 

a high accurate and reliable algorithm for acquiring attitude information of the UAV and 

implementing self-balancing in real time. PIXHAWK flight controller could also records the 

spatial position as well as the orientation or attitude information of the UAV platform in real 

time when connecting with an external GPS module, which might be further analyzed for 

correcting LiDAR’s distance measurements in this study. It has various kinds of ports that are 

ready to be connected with multiple sensors for augmentation purpose, shown in Fig.2. 3. 

Interface 1 is reserved for the digital spectrum modulation system, which is a newly released 

radio technology offering an interference-immune and impenetrable radio link; Interface 2 is 

for remote monitoring on GCS; Interface 3 is for remote monitoring controller; Interface 4 is 

for universal serial bus communication; Interface 5 is a serial peripheral interface; Interface 6 

is for power unit; Interface 7 is for safety switch function; Interface 8 is for buzzer function; 

Interface 9 is for serial communicating; Interface 10 is for external GPS module; Interface 11 
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is for controller area network; Interface 12 is for inter-integrated circuit; Interface 13 is for 

analog-digital-converter to 6.6 voltage; Interface 14 is for analog-digital-converter to 3.3 

voltage; and interface 15 is for light-emitting diode display.   

 

Fig.2. 3 PIXHAWK flight controller 

 

2.2.2 LiDAR and Onboard Computer 

LiDAR is originally a portmanteau term of Light Detection and Ranging, Light Imaging 

Detection and Ranging, and Laser Imaging and Ranging, which is a surveying method of 

measuring distance to a target by emitting a pulsed laser light and calculating the time or the 

changes of phase of the returned laser light [52]. LiDAR has a wide range of applications 

from meteorology to terrestrial mapping, vegetation coverage, and etc., based on the data’s 

purpose and targeting objects. It could also be divided into terrestrial LiDAR applications and 

airborne LiDAR applications, according to different kinds of platforms. Within the category 

of airborne LiDAR applications it could further be divided into low-altitude airborne LiDAR 

applications and high-altitude airborne LiDAR applications, and both of them create 3D point 

cloud models. Low-altitude airborne LiDAR is currently the most efficient, detailed and 

accurate method of generating a digital surface model (DSM), while the high-altitude 

airborne LiDAR provides a bigger coverage with a reduction in distance measuring accuracy 

and spatial point density, shown in Fig.2. 4.  
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Fig.2. 4 Airborne LiDAR application 

 

However, as shown in Fig.2. 4, in order to obtain accurate distance measurements and 

geographical coordinates for each measurement, the commercial airborne LiDAR system 

incorporate expensive RTK-GPS module and IMU sensors onboard. For small UAVs, there is 

not enough room for these extra but necessary auxiliary devices both physically and 

economically. Thus, in this study we introduced a high precision one-dimensional LiDAR 

device (Jenoptik, Jena, Germany) and took advantage of the inherent MEMS IMU sensors of 

the UAV platform’s flight controller. The LiDAR distance measurement device is featured 

with time-of-flight measurement principle and has a measuring range up to 300 m on natural 

surfaces and 1 mm measuring resolution at the measuring frequency of 2000 Hz. Besides, the 

LiDAR distance measurement is equipped with two lasers, shown in Fig.2. 5: part 1 is 

transmitter optics and part 2 is pilot laser transmitter optics for collimation, whilst part 3 is 

receiver optics. The safety level of the laser for distance measurement is class 1, which means 

any case of injury of the unaided eyes of human can be excluded; whilst the safety level of 

the pilot laser is class 2, which means that human eye can be protected by the eyelid closure 

reflex against a short accidental look into the pilot laser beam without any additional 

protection appliances. Another advantage of this LiDAR distance measurement device is that 

the supply voltage has a wide range from 10 V to 30 V (direct current), which is basically 

immune to voltage instability and provides reliable continuous measurements. The power 

consumption of 5 W is also very low, which is suitable for the small UAV use as it cannot 

carry large volume battery bank onboard.   
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Fig.2. 5 Laser beam divergence and spatial resolution 

Laser beam divergence, measured in milliradians (mrad) or degrees, is another important 

parameter of LiDAR distance measuring device, which is an angular measure of the increase 

in beam size with the distance from the transmitter optics where the laser beam emerges to a 

target. For many distance measurement applications, the lower the divergence of the laser 

beam is, the more preferable and accurate of the measurement becomes. In this study the 

laser beam divergence of the LiDAR distance measurement device is 1.7 mrad, and the 

spatial resolution of each measurement is about 60 mm * 20 mm when measuring from a 

distance of about 30 m, shown in Fig.2. 5. 

The LiDAR distance measuring device provides various kinds of interfaces to be 

connected with a computer including RS232, RS422, and Profibus. A mini-computer is used 

to control as well as monitor the distance measuring operation, and at the same time to log 

and save each distance measurement onboard in real time. We adopted a light and compact 

mini-computer (GB-XMI1-3537, Gigabyte, Taiwan, China) in this study shown in Fig.2. 6, 

and utilized a USB 3.0 (Universal Serial Bus) port to connect with the LiDAR distance 

measuring device using a USB serial cable type A to D-sub 9 converter. The power supply of 

the mini-computer is 19 V DC, and the power consumption is about 65 W. The specifications 

of the LiDAR device and the mini-computer are listed in Table 2. 2. 

1 

2 

3 



 

24 
 

  

Fig.2. 6 On board mini-computer 

 

Table 2. 2 Specifications of LiDAR and onboard computer 

LiDAR device 

Dimensions 136 mm * 57 mm * 104mm 

Weight  800 g 

Measuring resolution 1 mm 

Beam divergence 1.7 mrad 

Measuring laser wavelength 905 nm 

Pilot laser wavelength  635 nm 

Supply voltage 10 V to 30 V DC 

Power consumption < 5 W 

Operating temperature -40°C to +60°C 

Operating humidity 15% to 90% 

Onboard computer 

Dimensions 30 * 108 * 115  mm 

Weight  400 g 

Operating system Windows 32/64 bit 

CPU Intel® Core™ i7-3537U 2GHz / 3.1GHz 

Memory 8 Gigabyte 

Interfaces  1 HDMI, 1 mini display port, 2 USB 3.0  

Power supply  DC 19 V 

Power consumption 65 W 

 

2.2.3 PPK-GPS modules and RTK-GPS modules 



 

25 
 

Table 2. 3 Specifications of PPK-GPS modules 

GNSS receivers U-blox NEO-M8T 

Processing unit Intel Edison 

Dimensions  45.5 * 27 * 9.2 mm 

Weight  14 g 

Antenna  Tallysman TW4721 

Antenna dimensions 38 * 38 *14.3 mm 

Antenna weight  50 g 

Supply voltage 4.75 V to 5.5 V DC 

Average power consumption 1 W 

Operating temperature -20°C to +65°C 

Antenna DC bias 3.3 V 

Internal storage 2 Gigabyte 

Signals  GPS/QZSS L1, GLONASS G1, BeiDou B1 

Galileo E1, SBAS Channels 72 

As mentioned in Sector 1.1.2, the positioning accuracy of standalone GPS mode, DGPS 

mode, and RTK-GPS mode is reported to be around 5 m, 1 m, and 2 cm, respectively. The 

RTK-GPS modules are usually used as a supplemental set outfit together with an IMU device 

when airborne LiDAR operations are under conduction. However, the commercial RTK-GPS 

module is too large in size and too heavy to be installed upon our small UAV platform. 

Besides, the cost of RTK-GPS service as well as the hardware is still a whopping price for 

individual users. Therefore, we introduced a small and lightweight PPK-GPS module in this 

study, which compromises of two identical GNSS receivers with the antenna and power 

supply module. One GNSS receiver remains stationary as a ground base station, whilst the 

other GNSS receiver is installed on the UAV-LiDAR topographic surveying system, shown 

in Fig.2.7, and works as a rover receiver within twenty kilometers away from the ground base 

station. The coordinates of the ground base station could be acquired by two ways. The most 

precise method is to measure the location’s 3D coordinates (longitude, latitude, and altitude) 

using a RTK-GPS module prior to or after the experiment, which provides an absolute and 

accurate reference for PPK algorithm. The other one is a cost-efficient and easy to implement 

approach, which only utilizes the raw GNSS data of ground base station and average the 

location measurements for over thirty minutes up to two hours using least square method for 

example. The averaged 3D coordinates of the ground base station usually reaches up to a 0.5 
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m accuracy, but it only deviates the rover GNSS module’s absolute location and the relative 

centimeter level accuracy is unaffected. This high precision GNSS positioning outfit utilizes 

an open source program package RTKLIB, which supports standard and precise positioning 

algorithm with GPS, GLONASS, Beidou, Galileo, and QZSS, using post processing analysis 

methods.  

Table 2. 4. Specifications of RTK-GPS module 

Receiver Topcon GB-3 

Dimensions  240 * 110 * 35 mm 

Weight  600 g 

Supply voltage 6 V to 28 V DC 

Average power consumption 3.5 W 

Operating temperature -40°C to +75°C 

Internal storage 2 Gigabyte 

Signals  GPS, GLONASS  

Channels 72 

RTK accuracy Horizontal: 10 mm  

Vertical: 15 mm  Antenna  PG-S1 

Antenna dimensions 141.6 * 141.6 *54.2 mm 

Antenna weight  615 g 

RTK-GPS module was also used to validate the accuracy of the topographic map 

generated from the UAV-LiDAR topographic surveying system. RTK-GPS receiver working 

in a virtual reference station fashion usually provides a reliable and high precision 3D 

coordinates (longitude, latitude, and altitude) up to 2 cm, which has a wide range of 

applications in surveying as well as in the domain of autonomous driving. In this study we 

used a Topcon RTK-GPS receiver with a PG-S1 antenna (TOPCON Cor., Tokyo, Japan) to 

record reference 3D coordinates, shown in Fig.2.7, where part 1 marked in green box is the 

PPK-GPS receiver installed on the UAV platform and part 2 marked in red box is the RTK-

GPS receiver for comparison. The specifications of the RTK-GPS receiver as well as antenna 

are listed in Table 2. 4. 
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Fig.2.7 RTK-GPS module and PPK-GPS module 

2.3 Methodology 

 

Fig.2. 8 Approach of generating topographic map 

The overall approach of farmland topographic surveying by using the UAV-LiDAR 

system consists of six major steps: acquisition of raw data from LiDAR, MEMS IMU, and 

GNSS base as well as GNSS rover receivers; acquisition of PPK-GPS coordinates; correcting 

LiDAR distance measurements with attitude information from MEMS IMU; synchronizing 

PPK-GPS data with corrected LiDAR distance measurements; generating topographic map 

and validating the topographic map generated from UAV-LiDAR system using combine 

○1  

                                                                 

 

 

 

 

 

                                                                                                               □2  
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harvester’s RTK-GPS data, shown in Fig.2. 8. This study adopted World Geodetic System 

1984, or WGS84, and map projection of UTM (Universal Transverse Mercator) Zone_54N 

with datum of WGS84, as the coordinate system in this paper, if not particularly indicated. 

2.3.1 Field Site and Experiment Description 

 

Fig.2. 9 A harvested wheat field under study 

UAV-LiDAR system based topographic surveying experiment was established over a 

harvested wheat field located in Sapporo, Hokkaido, Japan, which accounts for about 0.4 

hectare, shown in Fig.2. 9. High accuracy LiDAR device was fixed under the UAV platform 

pointing vertically downwards (shown in Fig.2. 2), and raw distance measurements data from 

the LiDAR device are ready to be corrected by using attitude data calculated from a tri-axial 

MEMS accelerometer, a tri-axial MEMS gyroscope, and a tri-axial MEMS magnetometer. 

Ground base station of the PPK-GPS module was measured and recorded by using the RTK-

GPS module that were described in Sec. 2.2.3, whilst the rover receiver was attached on the 

top of the UAV platform. Autonomous flight was conducted on 10 August 2017, using flight 

paths that were designed beforehand at the speed of about 5 m/s and about 30 meters above 

ground level. Trajectory (two round trips) of the flight in blue color with the cross track 

interval of about 6 meters is shown in Fig.2. 9. As the output frequency of LiDAR distance 
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measurements and PPK-GPS data was synchronized at 10Hz, along track interval of each 

surveying point can be calculated as about 0.5 meter. 

Besides, RTK-GPS data was also acquired by installing the Topcon GB-3 RTK-GPS 

receiver and the PG-S1 antenna on a combine harvester on 21 July 2017 when wheat 

harvesting was conducted in autonomous driving mode. The Topcon RTK-GPS module 

worked in a virtual reference station fashion, receiving correction information from GPS base 

station through network. The trajectory of the combine harvester based RTK-GPS was also 

shown in Fig.2. 9 in black color with the cross track interval of about 1.6 meters and along 

track interval of each surveying point of about 0.2 m. 

2.3.2 Acquisition of UAV-LiDAR System’s Attitude Information 

The small UAV platform used in this study consists of six brushless DC motors, with 

three pairs of counter-rotating propellers which are fixed-pitch blades. These three pairs of 

counter-rotating propellers not only act as a propulsion system but also control and stabilize 

the UAV platform’s attitude by changing the angular speed of each pair of motors, so that 

such movements like climbing, descending, turning direction, whirling, and even obstacle 

avoiding could be implemented. The rotational speed of each brushless motor is determined 

by the voltage imposed upon the motors, as Eq. (2.1). 






eC

IRU
n           (2.1) 

where:  

n is the rotational speed of each motor; 

U is the voltage imposed upon each motor; 

I is the DC current through each motor; 

R is the equivalent resistance of each motor’s coil;  

motor   theof ariableconstant v  theis eC ; 

and   is the magnetic flux of each motor’s coil.       
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In order to describe movements of the UAV platform, usually two reference systems are 

necessary. One is the earth fixed reference system using north, east, and down coordinates, 

which is tangent to the earth surface. The other one is a body fixed reference system, centered 

in the UAV platform’s center of gravity. The absolute position (x, y, z) of the UAV is defined 

as linear to the body fixed reference system’s origin, whilst the angular position of the UAV 

is usually described by means of the Euler angles defined as pitch (θ), roll (ϕ), and yaw (ψ). 

And thus, the transformation from the body reference system [ 𝜃 𝜙 𝜓]T to the earth reference 

system [x y z]T  can be realized by using the rotation matrix R [53]. 

𝑅 = [

𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜓 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 − 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃 + 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜓
𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜓 + 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 − 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜙

−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙
]  (2.2) 

Therefore, acquisition of attitude information (θ, ϕ, ψ) of the UAV body is essential to 

control and stabilize the UAV, and also necessary for further analysis using attitude 

information to correct LiDAR distance measurements. 3D MEMS gyroscope is an inertial 

sensor for measuring orientation based on angular momentum principles, and the tri-axial 

angles [𝜃𝑔𝑦𝑟𝑜 𝜙𝑔𝑦𝑟𝑜 𝜓𝑔𝑦𝑟𝑜]
T
 can be acquired by integral operation of angular speed of each 

axle, shown in Eq. (2.3). However, due to temperature variations of the MEMS gyroscope 

during operation, drift error of gyroscope and will accumulate along with time and accuracy 

as well as reliability of the attitude information calculated from a sole MEMS gyroscope 

would be compromised. On the other hand, 3D MEMS accelerometer can also be used to 

measure UAV’s orientation based on the trigonometric functions of the acceleration of 

gravity components in each axial, shown in Eq. (2.4) and Eq. (2.5). But, the accelerometer is 

incapable of distinguishing the acceleration of gravity from external vibration, which means 

it is not suitable for attitude estimation application in cases of severe agitation such as aerial 

vehicles.  

[ 𝜃𝑔𝑦𝑟𝑜 𝜙𝑔𝑦𝑟𝑜 𝜓𝑔𝑦𝑟𝑜]
𝑇

= ∫[𝜔𝑥 𝜔𝑦 𝜔𝑧]
𝑇

𝑑𝑡       (2.3) 

where 𝜃𝑔𝑦𝑟𝑜 , 𝜙𝑔𝑦𝑟𝑜,and  𝜓𝑔𝑦𝑟𝑜 is the calculated pitch, roll, and yaw of UAV platform from 

gyroscope, respectively; whilst ωx , ωy, and ωz is the raw rotation rates (degree/s) of each 

axial from the gyroscope, shown in  

Fig.2. 10, at the sampling frequency of 50 Hz. 
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𝜃𝑎𝑐𝑐𝑒 = −arcsin (
𝑔𝑥

√𝑔𝑥
2+𝑔𝑦

2+𝑔𝑧
2
)         (2.4) 

𝜙𝑎𝑐𝑐𝑒 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑔𝑦

𝑔𝑧
)           (2.5) 

where 𝜃𝑎𝑐𝑐𝑒  and 𝜙𝑎𝑐𝑐𝑒  is the calculated pitch and roll of the UAV from accelerometer, 

respectively; whilst gx, gy, and gz is the readings of acceleration components in each axial 

from the accelerometer, shown in Fig.2. 11, at the sampling frequency of 50 Hz. 
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Fig.2. 10 Rotation rates of gyroscope 
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Fig.2. 11 Raw accelerometer values 
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Fig.2. 12 Pitch, roll and yaw values of the UAV-LiDAR system 

Moreover, magnetometer was also used as a complementary sensor for calculating the 

change of heading (yaw) of the UAV, in combination with the above mentioned gyroscope 

and accelerometer, as neither of them can be used solely for satisfactory attitude estimation in 

long time operations. There are more than one well-proved method for data fusion of 

gyroscope, accelerometer, and magnetometer in the domain of UAV attitude control, such as 

the explicit complementary filtering method, self-adaptive complementary filtering method, 
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gradient descent filtering method, Kalman filtering method as well as extended Kalman 

filtering method, and etc. In this study the UAV’s flight controller utilizes an extended 

Kalman filter to fuse data from multiple sensors of accelerometer, gyroscope, and 

magnetometer for attitude estimation. The attitude estimation system is simplified as Fig.2. 

13, whilst mx, my, mz, and ψ
magn

 is the magnetic intensity components in each axial and 

estimated yaw from magnetometer, respectively. In this way, attitude data of pitch, roll, and 

yaw values of the UAV-LiDAR system were acquired after the flight at the sampling 

frequency of 10 Hz, shown in Fig.2. 12. Attitude data of pitch and roll were used to correct 

LiDAR distance measurements for further analysis. 

 

 

 

 

 

Fig.2. 13 Simplified attitude estimation system of the UAV 

 

2.3.3 Synchronizing LiDAR Distance Measurements with PPK-GPS Data 

Table 2. 5 PPK-GPS coordinates (in part) 

Sample 

Number 

Date UTC Latitude(degree) Longitude(degree) Altitude(m) 

1 8/10/2017 01:04.2 43.0735617 141.3354461 14.078 

2 8/10/2017 01:04.3 43.0735617 141.335446 14.078 

3 8/10/2017 01:04.4 43.0735617 141.3354461 14.077 

4 8/10/2017 01:04.5 43.0735617 141.3354461 14.077 

5 8/10/2017 01:04.6 43.0735617 141.335446 14.079 

… … … … … … 

4740 8/10/2017 08:58.1 43.0735336 141.3354268 14.263 

4741 8/10/2017 08:58.2 43.0735336 141.3354268 14.265 

4742 8/10/2017 08:58.3 43.0735336 141.3354268 14.261 

Accelerometer 

Gyroscope 

Magnetometer 

𝑤𝑥 , 𝑤𝑦,𝑤z 

𝑚𝑥 , 𝑚𝑦,𝑚𝑧 

𝜃𝑎𝑐𝑐𝑒, 𝜙𝑎𝑐𝑐𝑒 

𝜃𝑔𝑦𝑟𝑜 , 𝜙𝑔𝑦𝑟𝑜, 𝜓𝑔𝑦𝑟𝑜 

 𝜓𝑚𝑎𝑔𝑛 

 

 

Extended 

Kalman 

Filter 

Pitch (𝜃), 

Roll (𝜙), 

Yaw(𝜓) 
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PPK-GPS data were acquired by using an open source algorithm in RTKLIB software, 

after measuring absolute geo-spatial coordinates of ground base station as correction 

reference using a RTK-GPS module. The 3D coordinates was measured as (43.07355556 N, 

141.3354386 E, 11.236 m). Considering the RTK-GPS module in the topographic map’s 

validation experiment is installed on the top of the combine harvester’s cabin, which is about 

2.71 m above ground level, the altitude of the base station was rectified as 13.946 m by 

adding the RTK-GPS module’s height of 2.71 m to the measured altitude 11.236 m. Thus, the 

PPK-GPS coordinates of the GNSS rover, which is attached to the UAV-LiDAR system, 

were calculated and listed in Table 2. 5. The number of samples of PPK-GPS measuring 

reached up to 4742 in total at the frequency of 10 Hz. 

 

Fig.2. 14 Raw data of PPK-GPS altitudes and LiDAR distance measurements 

 

Fig.2. 15 Synchronized PPK-GPS altitudes and LiDAR distance measurements 
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As mentioned in Sec. 2.2.2, the LiDAR device used in this study measures distance at the 

frequency of 2000 Hz with the measuring resolution of 1 mm. Because the output frequency 

of PPK-GPS coordinates as well as the attitude data of the UAV-LiDAR system is fixed as 10 

Hz, the LiDAR distance measurements cannot be directly corrected by using the attitude 

information, nor can it be directly aligned with the PPK-GPS coordinates. Besides, as the 

LiDAR distance measurement’s output has no timestamp, it has to be synchronized with 

PPK-GPS data in the first place so that each LiDAR distance measurement could be tagged 

with timestamp, and then be aligned with the attitude data using timestamp and be further 

corrected by using the attitude data. In order to synchronize the 2000 Hz LiDAR distance 

measurements with the 10 Hz PPK-GPS coordinates as well as to improve measuring 

precision, a mean filter was applied to the LiDAR distance measurements so that the output 

was averaged from 2000 Hz to 10 Hz. The PPK-GPS altitude values and the averaged LiDAR 

distance measurements are shown in Fig.2. 14. Subsequently, taking LiDAR distance 

measurements and PPK-GPS altitude that are on the point of taking off as a benchmark, we 

synchronized two sets of height data so that each LiDAR distance measurement could be geo-

coded and timestamped. The synchronized result of corrected LiDAR distance measurements 

with PPK-GPS altitude was shown in Fig.2. 15. 

2.3.4 Correcting LiDAR Distance Measurements and Calculating Ground Elevation 

As shown in Fig.2. 12, the attitude of the UAV-LiDAR system is apt to be changing all 

the time during each flight, due to inherent aerodynamic characteristics. The changing 

attitude of the UAV-LiDAR system impairs the accuracy of each LiDAR distance 

measurement, as the LiDAR device is rigidly fixed upon the UAV platform pointing 

downwards. Because each LiDAR distance measurement has already been geo-coded and 

timestamped by synchronizing with PPK-GPS data, we sued the timestamp information on 

the LiDAR distance measurements and attitude data of the UAV-LiDAR system to 

synchronize them together. Therefore, in order to eliminate such effects of continuously 

changing attitudes of the UAV-LiDAR system during the flight on the LiDAR distance 

measurements, synchronized attitude data of pitch and roll were utilized to correct the LiDAR 

distance measurements using the model expressed as Eq. (2.6). The corrected LiDAR 

distance measurements were shown in Fig.2. 16.  

 coscos  ddcorr                  (2.6) 
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where corrd , d , 𝜃 , and 𝜙  indicates the corrected LiDAR distance measurements above 

ground level, the raw LiDAR distance measurement, and the attitude data of pitch and roll, 

respectively. 

 

Fig.2. 16 Corrected LiDAR distance measurements 

Based on the synchronized results of corrected LiDAR distance measurements with 

PPK-GPS 3D coordinates, ground elevation of each surveying point could be calculated 

using the model expressed as Eq. (2.7). We removed superfluous data during the process of 

taking off, turning round, and landing by visual inspection. And the total number of 

surveying points within the field under study amounted to 1135 in total, shown in Fig.2. 17. 

corrfixppkgps dhhe            (2.7) 

where e, hppkgps, hfix, and dcorr indicates the ground elevation of each surveying point, the PPK-

GPS altitude, the height difference between PPK-GPS rover receiver’s antenna and LiDAR’s 

laser lens (0.36 m), and the corrected LiDAR distance measurement, respectively. 

 

Fig.2. 17 Ground elevation of each surveying point 
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2.4 Result and Discussion 

2.4.1 Accuracies of PPK-GPS Altitude and LiDAR Distance Measurements 

 

Fig.2. 18 Accuracy of PPK-GPS coordiantes 

 

Fig.2. 19 Accuracy of LiDAR distance measurements 

To validate the accuracies of PPK-GPS coordinates, we extracted 6000 sets of PPK-GPS 

data consecutively ten minutes before the UAV-LiDAR system took off when the PPK-GPS 

rover’s antenna was hold stationary. The horizontal and vertical accuracy of PPK-GPS 

coordinates was shown in Fig.2. 18, from which we may conclude that the horizontal 

accuracy is as good as about 0.01 m (1cm), as most of the 6000 set of easting and northing 

coordinates fall within the range of about 0.01m. On the other hand, from Figure 8 we may 

understand that altitude measurements of PPK-GPS changed along with time, mainly due to 

adoption of different combinations of satellites over time. The altitude measurements varied 

from about 115.735 m to 115.755 m with vertical accuracy of about 0.02 m (2 cm). Besides, 

another 6000 sets of static LiDAR distance measurements were also acquired by pointing the 

LiDAR device at a wall about 25 m far away and holding it still for ten minutes, shown in 

Fig.2. 19. From Figure 9 we could conclude that LiDAR distance measurements remained 
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substantially constant over time, mostly ranging from 25.872 m - 25.882 m, and the 

measuring accuracy could be confirmed as within 0.01 m (1 cm). Thus, we may declare that 

the accuracy of this high accurate topographic surveying outfit surpasses the dominant 

handheld RTK-GPS based topographic surveying device. 

2.4.2 Validating UAV-LiDAR Based Topographic Surveying Accuracy  

Based on the calculated ground elevation of each surveying point, a map indicating 

spatial variations of within-field ground elevation was generated by using GIS (Geographic 

Information System) software ArcMap (ESRI Inc., Redlands, AB, Canada), shown in Fig.2. 

20. From the graduated symbols representing different levels of ground elevation, we can 

visually understand the general high-north-low-south terrain of the field under study, with the 

ground elevations varying from 13.237 m to 14.594 m. From Fig.2. 20 we may also conclude 

that the area that is marked in green box has relatively low ground elevation, and the influx of 

irrigation water as well as snowmelt water or heavy rainfall is very likely to form puddles, 

which pose potential threaten to the crop growth and yield. In order to achieve uniform 

growth status of crops and improved yield, an east-west direction’s land leveling operation 

could be suggested to effectively fill the puddles and remove the mounds. 

 

Fig.2. 20 Ground elevation of each surveying point showed in graduated symbols 
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 A RTK-GPS module was installed on an autonomous combine harvester to acquire 

accurate 3D coordinates (easting, northing, and altitude) for validating the UAV-LiDAR 

system based topographic surveying method, as RTK-GPS positioning is a well-proved 

method of conducting field survey with reliable centimeter-level accuracy,. The combine 

harvester’s working speed was set as 1 m/s, and as the RTK-GPS positioning frequency was 

set as 5 Hz, the along track interval of each surveying point could be calculated as about 0.2 

m. Besides, as the cross track interval was set as about 1.6 m, the spatial resolution of RTK-

GPS surveying points could be determined as about 1.6 m* 0.2 m. The amount of RTK-GPS 

surveying points were 7330 in total, with several missing points due to GPS failure, shown in 

Fig.2. 21 as black dots. Totally 35 pairs of validating samples that were distributed all over 

the field under study were collected according to the overlapping trajectories of the UAV-

LiDAR system and the combine harvester, shown in Fig.2. 21. The red dots, the black dots, 

and the green dots represent each surveying point’s location acquired by using UAV-LiDAR 

topographic surveying system, combine harvester based RTK-GPS module, and validating 

samples, respectively.  

 

Fig.2. 21 Distribution of validating samples  

 

These 35 pairs of validating samples consist of 35 RTK-GPS surveying points and their 

counterparts of UAV-LiDAR system’s surveying points that overlapped (or fell within the 

very near neighborhood) each other. The ground elevation values’ differences among each 
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pair of validating samples were shown in Fig.2. 22, from which we can conclude that the 

ground elevation values of UAV-LiDAR system based topographic surveying points correlate 

well with the ones of RTK-GPS’s altitude values. We can also see that the ground elevation 

values of RTK-GPS are smoother than the ones of the UAV-LIDAR system, as the combine 

harvester that carries the RTK-GPS module follows the field terrain closely and all residual 

straws or standing plants would be crushed below the chassis due to heavy dead weight of the 

vehicle. On the other hand, as explained in Sec. 2.2.2 the UAV-LiDAR system measures the 

field terrain in an area-scanning fashion (about 6 cm * 2 cm when flying at the height of 30 m 

above ground level) rather than a point-measuring fashion like the RTK-GPS module 

installed on the combine harvester due to laser beam divergence. Within the scanning area 

there might be the existence of residual straws or standing plants over the harvested wheat 

field, which poses as a potential outlier in the ground elevation survey. 

 

Fig.2. 22 Differences among validating samples’ ground elevation  

 

Finally, according to Eq. (2. 8) the Root Mean Square Error (RMSE) between these 35 

pairs of ground elevation data of RTK-GPS and UAV-LiDAR system was calculated as 0.035 

m (3.5 cm). Considering that the ground elevation of the field under study varies from 13.237 

m to 14.594 m according to the topographic survey using the UAV-LiDAR system, the value 

of the RMSE is acceptable in comparison with the elevation difference of 1.357 m, which 

indicates that the UAV-LiDAR topographic surveying system is very precise. 

𝑅𝑀𝑆𝐸𝑈𝐴𝑉−𝑅𝑇𝐾 = √∑ (𝑒𝑈𝐴𝑉𝑖−𝑒𝑅𝑇𝐾𝑖)35
𝑖=1

2

35
        (2.8) 
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where 𝑒𝑈𝐴𝑉𝑖 and 𝑒𝑅𝑇𝐾𝑖 indicates the ground elevation data of the UAV-LiDAR system and 

the RTK-GPS data, respectively. 

2.4.3 Visual Validation of UAV-LiDAR System Based Topographic Survey  

An experiment was also established over a harvested sugarcane farmland located in 

Mackay, Queensland, Australia (around 21.259794°S–21.263142°S and 149.091325°E–

149.094109°E), shown in Fig.2. 23, which accounts for about 3 hectares. Autonomous flight 

using the same UAV-LiDAR topographic surveying outfit was conducted in December 7 

2016 at the ground speed of 5 m/s and altitude about 30 meters above ground level. 

Trajectory of the flight also was shown in Fig.2. 23 as red dots, and the track intervals were 

set every 20 m. In order to confirm the UAV-LiDAR system’s working capability, several 

bumps and hollows (about 30 cm in depth and 1.5 m in length) were artificially built inside 

the field by using a plough attached to a tractor, shown in Fig.2. 24. From Fig.2. 25 we can 

clearly see that two hollows under the flight trajectory of the UAV-LiDAR system were 

precisely spotted, showed in black circle and rectangle, respectively. And we can come to the 

conclusion that the UAV-LiDAR topographic surveying system has good capability of 

conducting a farmland topographic survey for precision land leveling. 

 

Fig.2. 23 Field site of experiment for visual validation 
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Fig.2. 24 Building bumps and hollows using a plough 

 

 

Fig.2. 25 Visual validation of spatial variations of within-field ground elevation 

 

2.5 Conclusions 

Evenness of ground surface of a farmland is paramount, as optimal crop production 

requires adequate soil moisture during the growing season; however, too much stagnant water 

can lead to yield losses from disease and root problems. Precision land levelling deals with 

this kind of issue by cutting soils from where the ground elevation is relatively high and 

releasing soils over where the ground elevation is relatively low, in order to form a uniformly 

flat ground surface. However, topographic survey is usually indispensable to either the laser-

assisted land leveling or the GNSS based land leveling operation. And topographic survey 

using conventional equipment is proven to be extremely time-consuming to take enough 
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samples manually, not even to say that the conduction itself is highly dependent on 

professionals. In this study, we developed an innovative topographic surveying method by 

integrating LiDAR distance measurements with PPK-GPS coordinates, using a low-altitude 

UAV as a platform.  

The accuracy of PPK-GPS altitude as well as the LiDAR distance measurements was 

validated as 2 cm and 1 cm, respectively, which showed good capability of conducting 

topographic surveying operations. We conducted a topographic surveying experiment in a 

harvested wheat field using the UAV-LiDAR system, and the total number of surveying 

points within the wheat field under study amounted to 1135 in total, when superfluous data 

were removed during the process of taking off, turning round, and landing by visual 

inspection. Ground elevation values of these topographic surveying points were calculated by 

using the synchronized results of corrected LiDAR distance measurements with PPK-GPS 

3D coordinates. Based on the calculated ground elevation of each surveying point, a map 

indicating spatial variations of within-field ground elevation was generated by using GIS 

software ArcMap. From the graduated symbols representing different levels of ground 

elevation, we can understand the general high-north-low-south terrain of the field under study. 

We may also visualize several puddles inside the wheat field, and accordingly an east-west 

direction’s land leveling operation was suggested to effectively fill the puddles and remove 

the mounds of the field. 

Furthermore, in order to validate the accuracy of the ground elevation data of the UAV-

LiDAR topographic surveying system, a RTK-GPS module was utilized to acquire 

topographic surveying data on the same field, as RTK-GPS positioning is a well-proved 

method with reliable centimeter-level accuracy. Totally 35 pairs of validating samples that 

were randomly distributed all over the field under study were collected according to the 

overlapping trajectories of the UAV-LiDAR system and the RTK-GPS module. The RMSE 

between ground elevation data of RTK-GPS and UAV-LiDAR system was calculated as 

0.035 m. In consideration that the ground elevation of the field under study varies in the 

range of 1.357 m according to the topographic survey data of the UAV-LiDAR system, the 

RMSE of 0.035 m is considered as highly accurate and acceptable. Besides, an experiment in 

a harvested sugarcane field was also conducted for visual validation of the working capacity 

of the developed UAV-LiDAR topographic surveying system. Bumps and hollows in the 

middle of the field artificially made by using a plough could be clearly spotted by visual 
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interpretation, which practically proved the applicability of this UAV-LiDAR system for 

topographic mapping operations.  

In short, the proposed UAV-LiDAR system based approach of conducting topographic 

survey could practically provide ground elevation reference for laser-assisted land leveler to 

preset the height of the laser transmitter, and also could be used to produce cut/fill ratio map 

for GNSS based land leveler. And the topographic surveying system is of high precision, 

efficient in time and cost, and simple in structure, which is also highly flexible in designing 

and executing autonomous flight for each specific farmland. 
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Chapter 3 Integrating Aerial Photogrammetric DSM with UAV-LiDAR 

System’s Topographic Surveying Data 

 

3.1 Introduction 

Precision land levelling deals with the issues of unevenness of the farmland ground 

surface, and neither the laser-assisted land leveler nor the RTK-GPS guided land leveler can 

deliver the optimal performance unless an accurate topographic map of the field is available 

prior to land leveling operation. Generally, a topographic map is generated by interpolating 

individual surveying points that are uniformly distributed around the area of interest. Total 

station and portable RTK-GPS module are often used in common topographic surveying as 

the conventional and primary tools, whilst terrestrial laser scanner, airborne laser scanner, 

and aerial photogrammetry devices are recently utilized for different kinds of topographic 

applications like construction site, urban ecology modeling, forest monitoring, and etc. 

However, the time-consuming conventional topographic surveying methods as well as the 

low vertical accuracy of the new fashioned topographic surveying techniques are not suitable 

to generate precise topographic maps for farmland’s precision land leveling operation. 

Besides, the overall accuracy of topographic maps not only depends on the accuracy of 

each surveying measurements, but is also influenced by the spatial resolution as well as the 

spatial distribution of the surveying points to a great extent. As it is well known that the 

interpolating results are apt to be less reliable as the surveying points’ spatial resolution 

increases. Basically, there are no other alternatives to improve the overall accuracy of an 

interpolated topographic map but to increase the total number as well as the sampling spatial 

resolution of the measured points, which is usually time-consuming or impossible to perform 

in practice. On the other hand, aerial photogrammetric DSM is featured with great spatial 

resolution, however, needs a large number of GCPs uniformly spreading around the area of 

interest for guaranteeing the accuracy of the resulting surface elevation values. 

Aerial photogrammetric DSM possesses the advantages of good spatial resolution and 

large coverage, which has been utilized for many years in urban ecological study, forest 

monitoring, and etc. But the processing of aerial images for generating photogrammetric 

DSM usually needs strict camera calibration and well distributed ground control points 

(GCPs). GCP in photogrammetry or computer vision domain refers to such features that are 
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easily recognizable and distinguishable in both the reality world and in the images during 

post-processing, such like crossroads, bridges, field corners, and etc. The geospatial accuracy 

as well as the ground elevation accuracy of the photogrammetric DSM is in high accordance 

with the GCPs’ condition.  

Furthermore, in recent years many commercial photogrammetric processing software 

products emerged that are capable of generating point clouds, 3D models, and DSMs from 

digital images based on computer vision techniques, which could find a wide range of 

applications in 3D reconstruction and visualization, urban ecological surveying and mapping, 

agricultural remote sensing and mapping, and etc. Agisoft PhotoScan (Agisoft LLC, St. 

Petersburg, Russia) is one of the most advanced photogrammetric processing software 

suitable for low-altitude UAV remote sensing. The Agisoft PhotoScan software utilizes the 

latest multi-view 3D reconstruction theory for extracting key-points from each individual 

aerial image, matching the identical key-points from multiple images, automatically 

estimating camera parameters according to the image matching result, and finally stitching 

multiple images into an ortho-mosaicked one. 

Therefore, we came up with a solution of integrating the UAV-LiDAR system based 

topographic surveying data, as described in Chapter 2, with the low-altitude UAV based 

photogrammetric DSM for generating a precise topographic map. Because the topographic 

surveying data using the UAV-LiDAR system is highly accurate but lacks adequate spatial 

resolution when interpolated for generating topographic maps, whist the aerial 

photogrammetric DSM is featured with great spatial resolution and rich details but cannot 

guarantee the absolute accuracy of the pixels values (surface elevation values) that are away 

from GCPs. In this chapter, we are to discuss the methodology of integrating these two 

different sources of topographic data for generating a topographic map in an efficient and 

accurate manner. This new topographic surveying method does not require the arrangement 

of plentiful artificial GCPs for constraining the accuracy of each pixel’s ground elevation 

value of the resulting aerial photogrammetric DSM, and does not need extra UAV-LiDAR 

flights for acquiring a great deal of samples by shortening the cross-track intervals.   

3.2 Methodology 

In geo-statistics, interpolation is a method of approximating and assigning new data for 

locations where no samples have been taken within the range of a discrete set of known data 
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points, as it is in practice always impossible to take samples at every location in an area of 

interest due to restrictions of equipment or limited sampling time. Besides, interpolation is 

commonly used to create continuous surface from data of discrete points in GIS domain for 

better understanding of the overall trend and spatial variations, because real world 

phenomenon are always continuous in nature such as ground elevation, depths of river, 

temperatures, precipitations, and so on.  

Interpolation results can vary significantly depending on different interpolating models, 

since intermediate values for locations where no measurements are available are inferred by a 

process based on different mathematical calculations. Piecewise constant interpolation is the 

simplest interpolation model, which assigns the nearest known data value for the non-given 

points. Nearest-neighbor algorithm is one of the most commonly used piecewise constant 

interpolation method, which does not consider the values of neighboring points and only 

selects the value of the nearest point for each interpolating location. This algorithm is very 

easy to implement, and is usually used in digital imaging applications to select color values 

for a textured surface. Besides, there are other interpolating models such as linear 

interpolation, polynomial interpolation, spline interpolation, and Gaussian process regression 

which is also known as Kriging, and etc. Each of the interpolating model suits specific needs 

when used for building continuous maps. For example, Kriging interpolation originates from 

geological mineral concentration analysis, whilst inverse distance weighting (IDW) 

interpolation is best suitable for demographical surveys. 

There are various interpolation methods available nowadays, which could be divided into 

two categories in regard of forms of digital representation. One is based on regular rectangle 

grids, using such interpolating algorithms like IDW, Kriging, natural neighbor, and etc., to 

calculate and assign values for non-sampled grids according to the neighboring grid values. 

The topographic map generated from the regular rectangle grid method is often referred to as 

a raster map. The other one is based on triangulation method, and triangulated irregular 

network (TIN) is a most popular representation of a continuous surface consisting entirely of 

triangular facets by linking triplets of nodes and maintaining pointers from each triangle to its 

three neighbors [54], shown in Fig.3. 1.  
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Fig.3. 1 (a) grid and (b) TIN based topographic modeling (Yih-ping Huang) 

 

Hence, in this study we took advantage of 1135 ground elevation data, which were 

sampled at the spatial interval of about 6 m * 0.5 m using the UAV-LiDAR system we 

developed and mentioned in Chapter 2, for generating and assessing continuous topographic 

maps out of different interpolation methods in ArcMap software. Another 3889 ground 

elevation data were also acquired over a different farmland using the same outfit at the spatial 

resolution of about 20 m * 0.5 m for experimental validation. 

3.2.1 Interpolating Topographic Surveying Data 

TIN interpolation method is suitable for modeling natural complicated terrains due to the 

efficiency in data storage and capability to accommodate irregularly distributed elevation 

points according to actual terrain features in GIS applications, as the roughness of the terrain 

is always neither constant nor periodic but continuously changes from one place to another. 

TIN is a vector-based model by triangulating a set of points, which are featured with 3D 

attributes, to form a network of triangles of irregular size and shape. Among a number of 

ways for the construction of a TIN model from a given set of irregularly distributed spatial 

data, Delaunay triangulation is most widely used due to non-overlapping advantages and 

local equiangularity [55]. Most of TIN models use indirect interpolation principles to 

estimate z-values for non-measured locations after completing construction of triangles 

network based on triangular linear interpolating algorithm. TIN’s triangular linear 

interpolation process begins with determining the triangular to which the interpolation point 
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belongs; then calculating the parameters of a, b, and c for plane equations of each triangular 

using 3D coordinates of three vertices (points), expressed as Eq. (3.1); and finally the 

elevation data of every interpolation points within the triangular could be acquired according 

to Eq. (3.2). 

[

𝑧1

𝑧2

𝑧3

] = [

1, 𝑥1, 𝑦1

1, 𝑥2, 𝑦2

1, 𝑥3, 𝑦3

] [
𝑎
𝑏
𝑐

]          (3.1) 

z = 𝑎 + 𝑏𝑥 + 𝑐𝑦          (3.2) 

where a, b, and c is the parameter for determining plane equation, respectively; whilst xi, yi, 

and zi (i=1, 2, and 3) is the 3D coordinate (easting, northing, and elevation) of each vertice of 

the triangular, respectively; and x, y, and z is the 3D coordinates of each interpolation point, 

respectively. 

 

Fig.3. 2 TIN model of the field under study 

 

In this study, we constructed a topographic map to represent the ground elevation 

features of the field under study in ArcMap software using TIN model, shown in Fig.3. 2. 

From the map we can see clearly that the field has a high-north-low-south trend in elevation 

varying from 13.237 m to 14.552 m; besides, we can also visualize a distinguishing ridge 

(shown in green and yellow color in the map in south-north direction) as well as a line of 

ditch (shown in red color in south-north direction) within the field. According to field survey 
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we confirmed that the ditch in south-north direction is around the border of two adjacent 

fields with relatively low ground elevation. 

IDW model is referred to as a deterministic method for multivariate interpolation, which 

assigns a weighted average value of serval neighboring measured points (marked in red color 

in Fig.3. 3) to the unknown points (marked in yellow color in Fig.3. 3) using an inverse 

distance weighted technique. This method assumes that the influence of the measured point’s 

z–value decreases on the interpolation point’s z–value over the increasing distance from the 

measured points to the interpolation point, which finds good application in, for example, 

retail site analysis on the consumer purchasing power [56],[57].  

 

Fig.3. 3 Illustration of IDW method (by Esri) 

 

There are several means of including neighboring measured points for calculating the z–

value of each interpolation point by directly specifying the number of measured points to use, 

by specifying a certain radius and measured points within the radius will all be included, or 

by using a polyline dataset as barriers. Furthermore, the influence of each included measured 

point would also be controlled by changing the power parameter of the mathematical model 

expressed as Eq. (3.3), Eq. (3.4), and Eq. (3.5). The default power value is 2, and by defining 

a higher power value the nearby points will have more influence on the z–value of the 

interpolation point, resulting in a less smooth but more detailed surface; whilst by defining a 

lower power value, on the other hand, more influence will be given to surrounding points far 

away from the interpolation point, resulting in a smoother but less detailed surface. In this 

study, we adopted the default power value and specified the number of measured points as 12 

in the variable search radius fashion using ArcMap software. The interpolation result was 

shown in Fig.3. 4, from which we can also see a high-north-low-south ground elevation trend 
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of this field under study; besides, we can see more clearly that a ditch (in red color) of south-

north direction is very distinguishing when compared with the TIN model. 

𝑤𝑖 =
𝑑𝑖

−𝑝

∑ 𝑑𝑖
−𝑝𝑛𝑖𝑑𝑤

𝑖=1

           (3.3) 

𝑑𝑖 = √(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2          (3.4) 

𝑧̂(𝑥, 𝑦) = ∑ 𝑤𝑖𝑧(𝑥𝑖, 𝑦𝑖)
𝑛𝑖𝑑𝑤
𝑖=1          (3.5) 

where 𝑤𝑖, 𝑑𝑖, 𝑝, and 𝑛𝑖𝑑𝑤, is the weighting factor of each measured points, distance of each 

measured point to the interpolation point, power parameter (using default value of 2 in this 

study), and the number of measured points included in the IDW model (setting as 12 in this 

study), respectively; whilst (𝑥, 𝑦) and (𝑥𝑖, 𝑦𝑖) is the coordinate of easting and northing of the 

interpolation point and each measured point, respectively; 𝑧̂(𝑥, 𝑦) and 𝑧(𝑥𝑖, 𝑦𝑖)  is the 

estimated ground elevation of the interpolation point and each measured point’s ground 

elevation, respectively. 

 

Fig.3. 4 Interpolation result using IDW method 

 

Spline model interpolates the measured points for a smooth raster surface using a 

mathematical 2D minimum curvature spline technique that minimizes the total curvature of 

the surface. In the simple mathematical form, spline is continuous and has a continuous first 

derivative as well as a continuous second derivative. When spline model is used for 
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interpolation, the resulting smooth surface passes exactly through all of the measured points 

by fitting a mathematical function to a specified number of nearest measured points [58],[59], 

according to Eq. (3.6). The spline interpolating model is best for representing gradually 

changing surfaces including pollution concentrations, ground elevations, and etc. In this study 

we created a topographic map out of the 1135 UAV-LiDAR topographic surveying data 

described in Chapter 2, using the spline interpolating model in ArcMap software, shown in 

Fig.3. 5. From the resulting map we can see the general high-ends-low-middle trend of the 

field under study with the variation of ground elevation from 10.933 m to 16.489 m. Several 

locations with high elevation (in green color) were also easily spotted inside the field from 

this spline method based topographic map, which were not visible in the TIN model or the 

IDW method based map, as the smooth surface passes exactly through the measured points 

instead of estimating z – values for all of the points in the map. 

𝑧̂(𝑥, 𝑦) = 𝑇(𝑥, 𝑦) + ∑ 𝑐𝑖𝑅(𝑑𝑖)
𝑛𝑠𝑝𝑙

𝑖=1
         (3.6) 

𝑇(𝑥, 𝑦) =  𝑠1 + 𝑠2𝑥 + 𝑠3𝑦          (3.7) 

𝑅(𝑑𝑖) =
1

2𝜋
{

𝑑𝑖
2

4
[𝑙𝑛 (

𝑑𝑖

2𝜏
) + 𝑐 − 1] + 𝜏2 [𝐾𝑜 (

𝑑𝑖

𝜏
) + 𝑐 + 𝑙𝑛 (

𝑑𝑖

2𝜋
)]}     (3.8) 

where 𝑧̂(𝑥, 𝑦)  is the estimated ground elevation of the interpolation point; 𝑇(𝑥, 𝑦)  is 

regularized algorithm’s coefficient determined by Eq. (3.7); 𝑅(𝑑𝑖)  is the regularized 

algorithm’s coefficient determined by Eq. (3.8); 𝑛𝑠𝑝𝑙 is number of measured points that are 

included in the spline interpolation model (using the default value of 12 in this study); 𝑐𝑖 is 

the coefficient determined by the solution of a set of linear equations for each measured 

points; 𝑑𝑖 is the distance from each measured point to the interpolation point; 𝑠1, 𝑠2, and 𝑠3 is 

also the coefficient determined by the solution of a set of linear equations for each measured 

points;  𝜏 is the weight parameter (using the default value of 0.1 in this study); 𝑐 is a constant 

of 0.577215; 𝐾𝑜  is the modified Bessel function; and (x, y) is the easting and northing 

coordinate of each interpolation points, respectively. 
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Fig.3. 5 Interpolation result using spline method 

 

Natural neighbor interpolation model is very similar to the IDW model, except that it 

determines weight parameter based on proportionate areas instead of the inversed distances, 

shown in Fig.3. 6, where the red star mark represents the interpolation point and the black 

dots represent the surrounding measured points. The weight parameter for each surrounding 

measured point is calculated according to the proportion of overlapped areas between each 

measured point’s polygon and the interpolation point’s polygon, and the polygons are 

generated using Voronoi diagram [60]. The natural neighbor model only uses the closest 

subset of the measured points that surround the interpolation point. Same with the spline 

interpolation model, the resulting surface passes exactly through each measured point [61]. 

We created a topographic map using the natural neighbor interpolation model in ArcMap 

software, shown in Fig.3. 7. From the resulting map we can also understand the general high-

north-low-south terrain of the field under study, with the variation of ground elevation from 

13.253 m to 14.560 m. The ditch over the border of two adjacent fields was clearly 

distinguished and shown in red color, whilst a short ridge inside the field was shown in 

yellow color.  
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Fig.3. 6 Illustration of natural neighbor method (by Esri) 

 

 

Fig.3. 7 Interpolation result using natural neighbor method 

 

Kriging model, which is an advanced geostatistical procedure, interpolates scattered 

points with z–values to create a raster surface. Whilst the above mentioned interpolation 

methods including IDW, spline, or natural neighbor are solely based on the surrounding 

measured points’ z–values for estimating the z–value for each interpolation point, Kriging 

model is essentially different from them because it is based the geostatistical relationships 

among the measured points by assuming that the spatial correlation between measured points 

can be used to explain variations in the surface. Thus, in contrast with the IDW model, the 

weight parameter for each surrounding measured point in the Kriging model is not only based 



 

57 
 

on the distance to the interpolation point but also influenced by the overall spatial 

autocorrelation of the measured points, expressed as Eq. (3.9). Kriging interpolation is 

originated from mineral exploration, and is very popular in geological analysis. In this study 

we used the ordinary Kriging method with the spherical semivariogram model in ArcMap 

software to generate a topographic map from the 1135 UAV-LiDAR system based 

topographic surveying data described in Chapter 2, shown in Fig.3. 8. From the resulting 

surface map we may conclude that the Kriging method based topographic map is very similar 

to the IDW method based one: the general high-north-low-south trend of the ground elevation 

of the field under study can be clearly observed, and a ditch (in red color) in south-north 

direction could also be visualized. 

𝑧̂(𝑥, 𝑦) = ∑ 𝑤𝑖𝑧(𝑥𝑖 , 𝑦𝑖)
𝑛𝑘𝑟𝑖
𝑖=1           (3.9) 

where 𝑧̂(𝑥, 𝑦), 𝑛𝑘𝑟𝑖 , 𝑤𝑖, and, 𝑧(𝑥𝑖, 𝑦𝑖) is the estimated z-value of the interpolation point, the 

number of measured points included in the Kriging model (using the default value of 12 in 

this study), weighting factor of each measured points, and each measured point’s z -value, 

respectively. 

 

Fig.3. 8 Interpolation result using Kriging method 

 

3.2.2 Generating Low-altitude Aerial Photogrammetric DSM 
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Aerial photogrammetric DSM is suitable for large-scale areas or mountainous areas 

where it is not easy to directly measure the ground elevations. Aerial photogrammetric DSM 

is also featured with good spatial resolution, and it has been reported that about 85% of 

topographic maps are generated using aerial photogrammetric techniques [62]. However, 

generating photogrammetric DSM from aerial photographs usually needs high-quality 

arrangement of GCPs spreading uniformly around the whole area of interest. Unfortunately, it 

is always impossible in practice to find enough distinguishable features both in real world as 

well as aerial images to be used as GCPs in farmlands, and artificially setting up enough 

markers as GCPs seems not only time-consuming but also not feasible during crop growing 

season for crop height estimation. Thus, in this study we investigated the accuracy of ground 

elevation values extracted from the aerial photographic DSM by comparing them with the 

corresponding RTK-GPS data explained in Chapter 2.  

Table 3. 1 Flight plan and camera specifications 

Flight Plan Camera Specification 

Altitude (above ground level, m) 80 Weight (gram) 180 

Endurance (min) 2 Dimensions (cm) 12.1 * 6.6 * 4.6  

Flight Range (m) 400 Camera resolution 1280 × 960 pixels 

Speed (m/s) 6 Focal length (mm) 5.5 

Captures 121  Sensor size(mm) 4.8 × 3.6 

Tracks 2 Horizontal Field of 

View (degree) 

47.2   

 

The aerial photogrammetric DSM is acquired by stitching 121 individual images based 

on multi-view 3D reconstruction image processing technique in Agisoft PhotoScan software. 

The RedEdge camera (MicaSense Inc., Seattle, WA, USA) was used to take these images, 

which is installed on the UAV platform described in Chapter 2. The UAV-camera system 

flew at about 80 m above ground level with the ground speed of about 8 m/s and the flight 

track interval of 15 m. The camera captured one image per second with the spatial resolution 

of about 0.05 m (5 cm). Accordingly, the forward overlap rate and the side overlap rate could 

be calculated as 83% and 77%. According to the specifications for office operation of low-

altitude digital aero-photogrammetry, the minimum forward overlap rate and side overlap rate 

is claimed no less than 53% and 8%, respectively, and our flight satisfies the operation 
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requirements. Four field corners were selected as GCPs in this experiment, and the geospatial 

coordinates were measured by using RTK-GPS module to geo-reference the resulting 

photogrammetric DSM.  

The process of generating photogrammetric DSM from low-altitude aerial images was 

shown in Fig.3. 9, and the resulting photogrammetric DSM is shown in Fig.3. 10. In the DSM 

map four GCPs’ locations were indicated using star marks in black color, and the field of 

interest was distinguished using black polylines (RTK-GPS’s trajectory). From the DSM map 

we can see that the surface elevation varies from 3.86 m to 18.724 m and it does not comply 

with the real world situation. We may conclude that the absolute accuracy of the field’s 

surface elevation is not reliable, due to the poor capability of interpolation when the elevation 

values of the features that are outside the rein of GCPs are determined. However, we may 

also conclude that the low-altitude aerial photogrammetric DSM has good relative accuracy: 

in the north-most area we can see the growing maize stalks (about 2 m in height) were 

distinctively depicted in green color (the highest surface elevation); in the middle part of the 

west-most area we can see the growing soybean stalks (about 0.8 m in height) were depicted 

in yellow color (medium-high surface elevation); the harvested wheat field’s bare soil part 

was shown in red color (low surface elevation); whilst the ditch (about 2 m in depth) over the 

northern headland of the wheat field was shown in dark red color (the lowest surface 

elevation). 

 

 Fig.3. 9 Workflow of generating photogrammetric DSM  
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Fig.3. 10 The resulting photogrammetric DSM from aerial images 

 

3.2.3 Integrating Aerial Photogrammetric DSM with UAV-LiDAR Data 

 

Fig.3. 11 Variations of RTK-GPS’s altitude and the corresponding DSM’s surface elevation data 

 

A set of RTK-GPS data were used in order to evaluate the ground surface elevation 

values of the resulting aerial photogrammetric DSM. The spatial distribution of RTK-GPS 

samples for validation was also shown in Fig.3. 10 in bright green color. Subsequently, 
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surface elevation data which shares the same coordinates with these RTK-GPS samples were 

extracted from the aerial photogrammetric DSM in ENVI software (Exelis VIS, Inc., Boulder, 

CO, USA). The variations of RTK-GPS’s altitude as well as the corresponding aerial 

photogrammetric DSM’s surface elevation data were shown in Fig.3. 11. From Fig.3. 11 we 

may conclude that surface elevation values of the DSM samples that are near to the GCPs 

have good absolute accuracy when compared with the corresponding RTK-GPS samples’ 

altitude, and the accuracy of DSM samples’ surface elevation values decreases as samples 

deviate from the GCPs. Nonetheless, from the highly coincident tendencies of these two sets 

of elevation data we may come to a conclusion that the relative accuracy between the 

neighboring pixels of the aerial photogrammetric DSM is considerably good. Therefore, we 

came up with a solution which utilizes the relative difference of the surface ground elevations 

among the neighboring pixels of the aerial photographic DSM for integration with the UAV-

LiDAR system based topographic surveying data, described in Chapter 2, for an improved 

topographic map.  

This method utilizes the simple and autonomous flight of the UAV-LiDAR system and 

requires only a few boundary corners to be measured as GCPs for the generation of aerial 

photogrammetric DSM (usually measuring the coordinates of 4 corners of the field under 

study is the minimum requirement for geo-referencing purpose). Firstly, all of the 1135 

UAV-LiDAR system based topographic surveying points (shown in Fig.3. 12 as larger dots) 

were defined as standard data set, denoting ( xUAVi, yUAVi, zUAVi ). Furthermore, the 

georeferenced aerial photogrammetric DSM was processed using a median filter (with the 

kernel size of 11) in ENVI software for such reasons: a). Adverse impact of the potential 

misplaced geo-registration between each UAV-LiDAR system based topographic surveying 

data and the corresponding pixel of the geo-referenced aerial photogrammetric DSM could be 

compensated; b). The abnormal values of the ground surface elevations of the aerial 

photogrammetric DSM could be screened out, which tend to occur during multi-view 3D 

image reconstruction process due to feature mismatching, camera intrinsic malfunction,  and 

etc. Secondly, ground surface elevation values of the points that share the same geospatial 

coordinates with the standard data set were acquired out of the median-filtered aerial 

photogrammetric DSM and defined as reference data set, denoting (xUAVi, yUAVi, zDSMi ). 

Thirdly, surface elevation values of the surrounding points (shown in Fig.3. 12 as smaller 

dots amounting to as many as 6810 points) within the neighboring areas of the standard data 

set were also acquired from the same median filtered aerial photogrammetric DSM, denoting 



 

62 
 

(xneighbori, yneighbori, zneighbori). Subsequently, the differences of ground surface elevation 

values between each point of reference data set and its corresponding neighboring point were 

calculated according to Eq. (3.15). Finally, the aerial photogrammetric DSM based surface 

elevation of each surrounding point could be rectified using the corresponding UAV-LiDAR 

system based topographic surveying data according to Eq. (3.16), denoting 

(𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖, 𝑦𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖, 𝑧𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖
′ ).  

∆𝑧𝑖 =  𝑧𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖 −  𝑧𝐷𝑆𝑀𝑖                (3.15) 

𝑧𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖
′ =  𝑧𝑈𝐴𝑉𝑖 +  ∆𝑧𝑖                   (3.16) 

where 𝑧𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖 , 𝑧𝐷𝑆𝑀𝑖 , and  ∆𝑧𝑖  is the aerial photogrammetric DSM’s surface elevation 

values of the surrounding points within the neighboring areas of the reference data set, the 

aerial photogrammetric DSM’s surface elevation values of the reference data set, and the 

difference of ground surface elevation between each point of reference data set and its 

corresponding neighboring point, respectively; whilst 𝑧𝑈𝐴𝑉𝑖  and 𝑧𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖
′  is the ground 

elevation value of the UAV-LiDAR system based topographic surveying points and the 

rectified ground elevation values of each surrounding point. 

        

Fig.3. 12 Improved spatial resolution of topographic surveying points 

 

3.3 Results and Discussion 
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3.3.1 Evaluating Topographic Maps Based on Different Interpolating Methods 

The accuracy of the interpolated topographic map is depending on two systems of error: 

one is the measuring accuracy of each sampled points, i.e. the primitive error. As mentioned 

in Chapter 2, the RSME between ground elevation value of each RTK-GPS surveying point 

and the corresponding ground elevation value of the UAV-LiDAR system based topographic 

surveying point was calculated as 0.035 m. Considering that the ground elevation of the field 

under study varies from 13.237 m to 14.594 m according to the topographic survey data using 

the UAV-LiDAR system, the RMSE is acceptable when compared with the elevation 

difference of 1.357 m, which demonstrated that the primitive error of the UAV-LiDAR 

topographic surveying system is minimal. The other system of error adheres to the 

mathematical model of each specific interpolation method, i.e. the interpolation error. 

Interpolation error is the main source that contributes to the accuracy of the resulting 

topographic surface map, as the z–value of each interpolation point is not only determined by 

the surrounding measured points’ z–values but also influenced by the neighboring measured 

points’ spatial distribution, density, and etc. 

Table 3. 2 Samples for evaluating accuracy of each interpolation method (in part) 

Sample 

Numbe

r 

Geo-spatial coordinates Ground elevation (m) 

 Easting Northing 
RTK-

GPS 

TIN IDW Kriging  Spline 
Natural 

Neighbo

r 1 527314.13

0 

4769057.87

0 

13.689 13.643 13.731 13.723 15.285 13.642 

2 527315.63

0 

4769062.87

0 

13.645 13.598 13.570 13.573 14.683 13.597 

3 527313.14

2 

4769066.34

3 

13.613 13.606 13.595 13.594 14.675 13.603 

4 527308.13

0 

4769066.87

0 

13.558 13.581 13.676 13.669 13.335 13.655 

5 527316.98

2 

4769067.10

6 

13.653 13.658 13.595 13.582 13.737 13.583 

… … … … … … … … … 

48 527252.63

0 

4769166.87

0 

13.875 13.921 13.917 13.916 13.924 13.994 

49 527251.29

4 

4769168.51

8 

13.889 13.942 13.940 13.944 13.943 13.946 

50 527244.13

0 

4769176.37

0 

13.852 14.142 13.982 14.030 14.224 14.142 
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Fig.3. 13 Distribution of RTK-GPS samples for evaluating interpolation models’ accuracy 

 

In this study, 50 RTK-GPS samples with 3D coordinates (easting, northing, and altitude) 

were collected randomly around the whole field under study, shown in Fig.3. 13, in order to 

evaluate five different interpolation models’ applicability in representing the within-field 

variations of ground elevation for farmlands that are going to be precisely leveled. These 

RTK-GPS data were explained in Chapter 2. According to the 50 RTK-GPS samples’ easting 

and northing coordinates, another 50 samples’ z –values were extracted out of the TIN, IDW, 

spline, natural neighbor, and Kriging model based topographic map, respectively, which 

share the same coordinates with the RTK-GPS samples, listed in Table 3. 2. 

Subsequently, the ground elevation values of each sampled points, which are extracted 

from different topographic maps based on each specific interpolation methods, were 

compared with the corresponding ground elevation values of the RTK-GPS data. Fig.3. 14 

indicates the variations of ground elevation values of sampled points both from RTK-GPS 

data and each resulting topographic map based on different interpolation methods. From the 

figure we can easily understand that the spline model is most unsuitable to be used for 

interpolating ground elevation data for generating a topographic map, when compared with 

other interpolation models. Besides, samples of all of these interpolation models at different 

locations indicate varied accuracy when compared with the reference values of RTK-GPS 

data. For example, the ground elevation data with the sample sequence number of 5, 11, 19, 
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20, 21, 26, 27, 38, 42, 44, and 49 of all these five interpolation models have quite good 

accuracy when compared with the reference values of RTK-GPS data; however, ground 

elevation data with other sequence numbers deviate badly from the corresponding RTK-GPS 

data in one interpolation model or another. 

 

Fig.3. 14 Variations of sampled ground elevation of RTK-GPS data and topographic maps  

 

Finally, the accuracy of each topographic surface map based on different interpolation 

models is quantitatively analyzed by calculating the RMSEs between the reference ground 

elevation values of RTK-GPS data and the interpolated ground elevation values of each 

resulting topographic maps by using TIN model, IDW model, spline model, natural neighbor 

model, and Kriging model, respectively, according to Eq. (3.10) ~ Eq. (3.14). And the results 

are as follows: RMSETIN = 0.137m, RMSEIDW = 0.158 m, RMSEspl = 0.388m, RMSEnat =

0.139 m, and RMSEKri = 0.160 m, respectively. We may conclude that the TIN model is the 

most suitable interpolation model for the study of representing within-field variations of 

ground elevation by using UAV-LiDAR topographic surveying data, whilst the other four 

interpolation models have relatively poor capability of interpolating UAV-LiDAR data for 

generating a topographic map of a farmland.  
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𝑅𝑀𝑆𝐸𝑇𝐼𝑁 = √∑ (𝑒𝑅𝑇𝑘𝑖−𝑒𝑇𝐼𝑁𝑖)50
𝑖=1

2

50
                  (3.10) 

𝑅𝑀𝑆𝐸𝐼𝐷𝑊 = √∑ (𝑒𝑅𝑇𝑘𝑖−𝑒𝐼𝐷𝑊𝑖)50
𝑖=1

2

50
                (3.11) 

𝑅𝑀𝑆𝐸𝑠𝑝𝑙 = √∑ (𝑒𝑅𝑇𝑘𝑖−𝑒𝑠𝑝𝑙𝑖)50
𝑖=1

2

50
                (3.12) 

𝑅𝑀𝑆𝐸𝑛𝑎𝑡 = √∑ (𝑒𝑅𝑇𝑘𝑖−𝑒𝑛𝑎𝑡𝑖)50
𝑖=1

2

50
                 (3.13) 

𝑅𝑀𝑆𝐸𝐾𝑟𝑖 = √∑ (𝑒𝑅𝑇𝑘𝑖−𝑒𝐾𝑟𝑖𝑖)50
𝑖=1

2

50
                 (3.14) 

where 𝑅𝑀𝑆𝐸𝑇𝐼𝑁, 𝑅𝑀𝑆𝐸𝐼𝐷𝑊, 𝑅𝑀𝑆𝐸𝑠𝑝𝑙, 𝑅𝑀𝑆𝐸𝑛𝑎𝑡, and 𝑅𝑀𝑆𝐸𝐾𝑟𝑖 is the root mean square error 

between the reference ground elevation values of RTK-GPS data and interpolated ground 

elevation values by using TIN model, IDW model, spline model, natural neighbor model, and 

Kriging model, respectively; whilst 𝑒𝑅𝑇𝑘𝑖,  𝑒𝑇𝐼𝑁𝑖, 𝑒𝐼𝐷𝑊𝑖, 𝑒𝑠𝑝𝑙𝑖, 𝑒𝑛𝑎𝑡𝑖, and 𝑒𝐾𝑟𝑖𝑖 is the ground 

elevation value of each sample of the RTK-GPS data, the ground elevation value of each 

sample from topographic maps by using TIN, IDW, spline, natural neighbor, and Kriging 

interpolation model, respectively. 

3.3.2 Evaluating Accuracy of the Improved Topographic Map 

1135 original UAV-LiDAR system based topographic surveying data as well as the 3D 

coordinates of 6810 surrounding points were acquired, and the ground elevation values of the 

surrounding points were rectified by integrating the aerial photogrammetric DSM data with 

the corresponding UAV-LiDAR system based topographic data. Out of these 7945 points’ 

ground elevation values, improved topographic maps based on TIN, IDW, Kriging, Spline, 

and natural neighbor interpolation models were generated, respectively. Subsequently, the 

ground elevation’s accuracy were also validated by comparing 50 randomly distributed RTK-

GPS samples’ altitude with the corresponding samples’ ground elevation values that were 

extracted from the improved topographic maps based on different interpolation models as 

well as the aerial photogrammetric DSM, shown in Fig.3. 15. These 50 groups validating 

samples share the same geospatial coordinates with the ones for validating each topographic 

map generated from the original UAV-LiDAR system based topographic surveying data, also 

shown in Fig.3. 13.  
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From Fig.3. 15 we may conclude that the sampled ground elevation values of the aerial 

photogrammetric DSM have the smoothest tendency; however, it also expressed the most 

deviated situation from the corresponding reference RTK-GPS data; and same with situation 

in Fig.3. 14 spline interpolation model is still most unsuitable to be used for interpolating 

ground elevation data for generating a topographic map of a farmland due to a wide range of 

fluctuation. Besides, samples of all of these interpolation models for the improved 

topographic maps at different locations indicate varied accuracy when compared with the 

corresponding altitude values of RTK-GPS data. The ground elevation data with the sample 

sequence number of 5, 8, 11, 19, 20, 21, 26, 27, 28, 29, 34, 35, 36, 38, 41, 42, 44, 47, 48, and 

49 of all these five interpolation models have very good accuracy when compared with the 

corresponding altitude values of RTK-GPS data; and the overall accuracy of ground elevation 

values of most samples of these different improved topographic maps was improved by a 

large extent. The ground elevation’s accuracy of the resulting aerial photogrammetric DSM, 

as explained in Sec.3.2.3, is good when the sample is near to the location of GCPs and 

deteriorates as the distance from the sample to the location of GCPs increases. 

 

Fig.3. 15 Variations of sampled ground elevation of RTK-GPS data and improved topographic maps 

as well as the aerial photographic DSM 
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Table 3. 3 Samples for evaluating accuracies of the aerial photogrammetric DSM and the 

improved topographic maps (in part) 

Sample 

Numbe

r 

Ground elevation (m) 

 
RTK-

GPS 

Improved 

TIN 

Improved 

IDW 

Improved 

Kriging  

Improved 

Spline 

Improved Natural 

Neighbor 

Aerial 

DSM 

1 13.689 13.685 13.694 13.691 13.586 13.677 13.527 

2 13.645 13.603 13.670 13.665 12.218 13.605 13.466 

3 13.613 13.658 13.598 13.600 12.823 13.621 13.398 

4 13.558 13.657 13.678 13.672 13.681 13.674 13.345 

5 13.653 13.602 13.589 13.588 13.599 13.587 13.394 

… … … … … … … … 

48 13.875 13.914 13.919 13.932 13.921 13.914 13.863 

49 13.889 13.927 13.939 13.919 13.937 13.937 13.892 

50 13.852 13.930 14.071 14.177 13.847 13.976 13.927 

 

The ground elevation values extracted from the improved topographic maps based on 

different interpolation models as well as the aerial photogrammetric DSM and the 

corresponding RTK-GPS altitude data were, in part, listed in Table 3. 3. And accordingly the 

RMSEs between each sample’s RTK-GPS altitude and the corresponding samples’ ground 

elevation value extracted from the improved topographic maps as well as the aerial 

photogrammetric DSM were calculated, respectively, according to Eq. (3.15)~ Eq. (3.20).  

𝑅𝑀𝑆𝐸𝑖𝑚𝑝𝑇𝐼𝑁 = √∑ (𝑒𝑅𝑇𝑘𝑖−𝑒𝑖𝑚𝑝𝑇𝐼𝑁𝑖)50
𝑖=1

2

50
       (3.15) 

𝑅𝑀𝑆𝐸𝑖𝑚𝑝𝐼𝐷𝑊 = √∑ (𝑒𝑅𝑇𝑘𝑖−𝑒𝑖𝑚𝑝𝐼𝐷𝑊𝑖)50
𝑖=1

2

50
       (3.16) 

𝑅𝑀𝑆𝐸𝑖𝑚𝑝𝑠𝑝𝑙 = √∑ (𝑒𝑅𝑇𝑘𝑖−𝑒𝑖𝑚𝑝𝑠𝑝𝑙𝑖)50
𝑖=1

2

50
        (3.17) 

𝑅𝑀𝑆𝐸𝑖𝑚𝑝𝑛𝑎𝑡 = √∑ (𝑒𝑅𝑇𝑘𝑖−𝑒𝑖𝑚𝑝𝑛𝑎𝑡𝑖)50
𝑖=1

2

50
       (3.18) 
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𝑅𝑀𝑆𝐸𝑖𝑚𝑝𝐾𝑟𝑖 = √∑ (𝑒𝑅𝑇𝑘𝑖−𝑒𝑖𝑚𝑝𝐾𝑟𝑖𝑖)50
𝑖=1

2

50
       (3.19) 

𝑅𝑀𝑆𝐸𝐷𝑆𝑀 = √∑ (𝑒𝑅𝑇𝑘𝑖−𝑒𝐷𝑆𝑀𝑖)50
𝑖=1

2

50
        (3.20) 

where 𝑅𝑀𝑆𝐸𝑖𝑚𝑝𝑇𝐼𝑁, 𝑅𝑀𝑆𝐸𝑖𝑚𝑝𝐼𝐷𝑊, 𝑅𝑀𝑆𝐸𝑖𝑚𝑝𝑠𝑝𝑙 , 𝑅𝑀𝑆𝐸𝑖𝑚𝑝𝑛𝑎𝑡 , 𝑅𝑀𝑆𝐸𝑖𝑚𝑝𝐾𝑟𝑖 , and 𝑅𝑀𝑆𝐸𝐷𝑆𝑀      

is the root mean square error between each sample’s RTK-GPS altitude and the 

corresponding ground elevation value extracted from the improved topographic maps by 

using TIN, IDW, spline, natural neighbor, and Kriging interpolation model, respectively, as 

well as the aerial photogrammetric DSM; whilst 𝑒𝑅𝑇𝑘𝑖,  𝑒𝑖𝑚𝑝𝑇𝐼𝑁𝑖, 𝑒𝑖𝑚𝑝𝐼𝐷𝑊𝑖, 𝑒𝑖𝑚𝑝𝑠𝑝𝑙𝑖, 𝑒𝑖𝑚𝑝𝑛𝑎𝑡𝑖, 

𝑒𝑖𝑚𝑝𝐾𝑟𝑖𝑖, and 𝑒𝐷𝑆𝑀𝑖  is the ground elevation value of each sample of the RTK-GPS data, the 

ground elevation values of each sample from improved topographic maps by using TIN, IDW, 

spline, natural neighbor, and Kriging interpolation model, respectively, as well as the aerial 

photogrammetric DSM. 

As a result, RMSEimpTIN , RMSEimpIDW , RMSEimpspl , RMSEimpnat , RMSEimpKri , and 

RMSEDSM  was calculated as 0.059 m, 0.118 m, 0.258 m, 0.107 m, 0.127 m, and 0.197, 

respectively. In comparison, the RSMEs between the same sets of RTK-GPS data with the 

corresponding ground elevation values that are extracted from the resulting topographic maps 

generated from the original 1135 sets of topographic surveying data of the UAV-LiDAR 

system based on different interpolation models have already been calculated in Sec. 3.3.1 as 

follows: RMSETIN = 0.137 m , RMSEIDW = 0.158 m , RMSEspl = 0.388 m , RMSEnat =

0.139 m , and RMSEKri = 0.160 m , respectively. Hereby we may conclude that the 

integration of aerial photogrammetric DSM data with the topographic surveying data based 

on the UAV-LiDAR system has distinctive benefits on improving the accuracy of each 

interpolated topographic map, and the improved topographic map based on TIN interpolation 

model has the best accuracy with the RSME of 0.059 m (5.9 cm). 

The resulting topographic map generated from the integrated surveying data and based 

on the TIN interpolation model was shown in Fig.3. 16, from which we can clearly recognize 

the general high-north-low-south terrain of the field under study, and a long ditch over the 

west border of two adjacent fields in south-north direction could also be observed. 

Furthermore, the detailed fluctuation of ground elevation inside the field was much more 

obvious in this improved topographic map due to high spatially intensive measured points 
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(with the spatial resolution of about 1 m * 0.5 m), in comparison with the topographic map 

generated from the original UAV-LiDAR surveying points (with the resolution of about 6 m 

* 0.5 m). We may also see two deep puddles marked in black circle and rectangle in both 

Fig.3. 16 (the dark red areas) and Fig.3. 17 (the vegetative green area). Due to the relatively 

low ground elevation of these two puddles, wheat plants were drown (crop failure) during the 

growing season when precipitation is concentrative in October and snowmelt water 

converges in April. As the wheat plants die, weed ensues in the following days to cause 

further yield loss, shown in Fig.3. 17. 

  

Fig.3. 16 Improved topographic maps using TIN interpolation method 

 

 

Fig.3. 17 Actual field condition of wheat (two days prior to harvesting) 
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3.4 Validating Experiment on Large-scale Farmland 

A supplementary experiment was conducted on 7 September 2017 in a large-scale 

harvested wheat field (about 6 hectares) located in Memuro, Hokkaido, Japan, shown in Fig.3. 

18, to validate the applicability of this topographic mapping methodology in large-scale 

farmlands by integrating low-altitude aerial photogrammetric DSM with the UAV-LiDAR 

system based topographic surveying data.  

 

Fig.3. 18 Large-scale farmland used in the validating experiment 

 

Totally about 400 individual images acquired by using the same UAV-camera system 

that were described in Sec.3.2.2 were stitched as an ortho-mosaic image, and a 

photogrammetric DSM was generated based on the 3D reconstruction image processing 

technique in Agisoft PhotoScan software. The photographic flight was also conducted at 

about 80 m above ground level with the ground speed of about 8 m/s and the flight track 

interval of 15 m. The camera captures one image per second with the spatial resolution of 

about 0.05 m (5 cm). According to the camera specification described in Sec.3.2.2, the 

ground coverage of each individual image reached up to about 48 m * 64 m, and the forward 

overlapping rate as well as the side overlapping rate could be calculated as about 83% and 

77%, respectively. Eight points spreading around the farmland under study were selected as 

GCPs for geo-referencing the photogrammetric DSM, shown in Fig.3. 18, which are field 

corners, power transmission poles, and other distinguishable and clearly recognizable features 
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in both the real-world and each individual image. 3D coordinates of these GCPs were also 

measured by using the same RTK-GPS module with the centimeter-level accuracy, described 

in Sec.3.2.2. The resulting aerial photogrammetric DSM was shown in Fig.3. 19, from which 

we can see the general high-east-low-west terrain of the farmland under study. Besides, we 

can also conclude that the aerial photogrammetric DSM reveals good relative accuracy of the 

neighboring pixels, as the about 10-meter high trees, the about 5-meter high warehouse, the 

about 2-meter high corn plants, and the about 1-meter high wheat plants were depicted in 

deep green color, light green color, brown color, and brown-red color, respectively. However, 

the surface elevation around the farmland varies from 112.441 m to 137.625 m, denying the 

compliance with the real world, which obviously needs further processing for quantitative 

applications such as precision land levelling.  

 

Fig.3. 19 The resulting aerial photogrammetric DSM 

 

The UAV-LiDAR system based topographic surveying experiment was conducted over 

the same farmland after the aerial photogrammetric flights. The trajectories of were also 

shown in Fig.3. 18 as black lines, with the flight altitude of about 30 meter above ground 

level and at the ground speed of 5 m/s. The track intervals between each flight was set as 20 
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meters for large coverage, and the UAV-LiDAR system based topographic surveying points’ 

spatial resolution could be accordingly calculated as 20 m * 0.5 m, described in Sec.2.3.1.  

We removed the samples during the process of taking off, turning around, and landing of 

the UAV-LiDAR topographic surveying system, and totally 3889 sets of effective sample 

data were acquired. Using TIN interpolation method, a topographic map was generated based 

on these 3889 original UAV-LiDAR system’s topographic surveying data, shown in Fig.3. 20. 

From Fig.3. 20 we may also conclude that the farmland under study has the same general 

high-east-low-west terrain feature with the one of the aerial photogrammetric DSM, and the 

ground surface elevation varies from 112.944 m to 118.818 m. With a heavy change in 

elevation of about 6 meters, this farmland desperately needs land forming operation in order 

to achieve optimal crop growth status and yield. For example, dividing this large-scale 

farmland into several terraced sub-zones and then implementing precision land leveling 

operation would be advisable, so that the fertile top soils over the high ground elevation area 

could be preserved to the maximum extent.  

 

Fig.3. 20 The resulting topographic map based on TIN interpolation method using UAV-LiDAR 

system based topographic surveying data 

 

We have already discussed in Chapter 2 that the poor spatial resolution of topographic 

surveying points influences the overall accuracy as well as the capability of demonstrating 
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the detailed features in an interpolated topographic map. In this section we are to evaluate the 

applicability of generating a topographic map by integrating ground elevation values of an 

aerial photogrammetric DSM with the topographic surveying data based on the UAV-LiDAR 

system for large-scale farmland.  

Firstly, the spatial resolution of topographic surveying points was improved to about 1 m 

* 0.5 m from about 20 m* 0.5 m using the same methodology explained in Sec.3.2.3, shown 

in Fig.3. 21: the larger dots are the original topographic surveying data based on UAV-

LiDAR system, whilst the smaller ones are neighboring samples whose ground elevation 

values are rectified using the same methodology explained in Sec.3.2.3. Subsequently, all of 

these original topographic surveying data based on the UAV-LiDAR system and the rectified 

neighboring samples were included to generate an improved topographic map using TIN 

interpolation model, and the resulting map was shown Fig.3. 22.  

 

Fig.3. 21 Spatial distribution of topographic surveying data in large-scale farmland 

 

From Fig.3. 22 we can conclude that the improved topographic map demonstrates much 

more detailed terrain information of the farmland under study than the former one that was 

merely based on the UAV-LiDAR system’s topographic data, shown in Fig.3. 20, with the 

general high-east-low-west terrain and ground elevation’s variation from 112.806 m to 

119.098 m. Two large and several small puddles could also be spotted at the west most part 
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and in the middle part of the field, shown in red and dark yellow color, which poses potential 

threat to the healthy growth as well as yield of crops due to stagnant water and high humidity.  

 

Fig.3. 22 The resulting topographic map by integrating aerial photogrammetric DSM and UAV-

LiDAR system based topographic surveying data 

 

Table 3. 4 Samples for evaluating accuracy of each interpolation method (in part) 

Sample 

Number 

Geo-spatial coordinates Ground elevation (m) 

Easting Northing 
PPK-

GPS 

Aerial    

DSM 

Topographic 

Map 

Improved 

Topographic 

Map 1 527314.13

0 

4769057.87

0 

114.165 114.264 113.908 113.939 

2 527315.63

0 

4769062.87

0 

114.643 113.727 114.515 114.679 

3 527313.14

2 

4769066.34

3 

114.213 113.839 114.360 114.439 

4 527308.13

0 

4769066.87

0 

114.205 113.895 114.000 114.051 

5 527316.98

2 

4769067.10

6 

114.134 113.978 114.085 114.032 

… … … … … … … 

18 662654.36

9 

4750021.11

8 

117.688 116.480 117.676 117.652 

19 662665.97

6 

4750049.94

9 

117.838 116.648 117.900 117.864 

20 662677.91

7 

4750077.74

5 

117.436 116.625 117.623 117.557 
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Fig.3. 23 PPK-GPS samples’ spatial distribution 

 

Finally, 20 samples’ 3D coordinates were measured by using the handheld PPK-GPS 

module with the centimeter-level accuracy, explained in Sec.2.4.1. The coordinates of these 

samples were listed in Table 3. 4, and the spatial distributions were shown in Fig.3. 23. 

Accordingly, ground elevation values of the aerial photogrammetric DSM, the topographic 

map based on TIN interpolation model using the original UAV-LiDAR system’s topographic 

surveying data, and the improved topographic map based on TIN interpolation model by 

integrating the UAV-LiDAR system’s topographic surveying data and the aerial 

photogrammetric DSM data of these samples were extracted, respectively. The ground 

elevation values of different models were also listed in Table 3. 4, and RMSEs of sampled 

ground elevation data between the improved topographic map based on the UAV-LiDAR 

system’s topographic surveying data and the aerial photogrammetric DSM, the topographic 

map based on the original UAV-LiDAR system’s topographic surveying data, the aerial 

photogrammetric DSM, and the corresponding PPK-GPS’s altitude was calculated according 

to Eq. (3.21) to Eq. (3.23). As the result, RMSEDSMlar, RMSETINlar, and RMSEImpTINlar was 

calculated as 1.040 m, 0.468 m, and 0.132 m, respectively. And we may conclude that the 

methodology of integrating UAV-LiDAR system based topographic surveying data with the 
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aerial photogrammetric DSM significantly improves the accuracy of the resulting topographic 

map by a large margin. 

𝑅𝑀𝑆𝐸𝐷𝑆𝑀𝑙𝑎𝑟 = √∑ (𝑒𝑃𝑃𝐾𝑖−𝑒𝐷𝑆𝑀𝑙𝑎𝑟𝑖)20
𝑖=1

2

20
       (3.21) 

𝑅𝑀𝑆𝐸𝑇𝐼𝑁𝑙𝑎𝑟 = √∑ (𝑒𝑃𝑃𝐾𝑖−𝑒𝑇𝐼𝑁𝑙𝑎𝑟𝑖)20
𝑖=1

2

20
        (3.22) 

𝑅𝑀𝑆𝐸𝐼𝑚𝑝𝑇𝐼𝑁𝑙𝑎𝑟 = √∑ (𝑒𝑃𝑃𝐾𝑖−𝑒𝐼𝑚𝑝𝑇𝐼𝑁𝑙𝑎𝑟𝑖)20
𝑖=1

2

20
       (3.23) 

where 𝑅𝑀𝑆𝐸𝐷𝑆𝑀𝑙𝑎𝑟, 𝑅𝑀𝑆𝐸𝑇𝐼𝑁𝑙𝑎𝑟, and 𝑅𝑀𝑆𝐸𝐼𝑚𝑝𝑇𝐼𝑁𝑙𝑎𝑟 is the root mean square error between 

the reference ground elevation values of PPK-GPS data and ground elevation values of the 

aerial photogrammetric DSM, the topographic map based on TIN interpolation model using 

the original UAV-LiDAR system’s topographic surveying data, and the improved 

topographic map based on TIN interpolation model by integrating the UAV-LiDAR system’s 

topographic surveying data and the aerial photogrammetric DSM, respectively; whilst 𝑒𝑃𝑃𝐾𝑖,  

𝑒𝐷𝑆𝑀𝑙𝑎𝑟𝑖, 𝑒𝑇𝐼𝑁𝑙𝑎𝑟𝑖, and 𝑒𝐼𝑚𝑝𝑇𝐼𝑁𝑙𝑎𝑟𝑖 is the ground elevation value of each sample of the PPK-

GPS data, the aerial photogrammetric DSM, the topographic map based on TIN interpolation 

model using the original UAV-LiDAR system’s topographic surveying data, and the 

improved topographic map based on TIN interpolation model integrating the UAV-LiDAR 

system’s topographic surveying data and the aerial photogrammetric DSM, respectively. 

3.5 Conclusions 

In this study we evaluated the accuracy of the ground elevation values and the capability 

of describing peaks and pits of the topographic maps based on different interpolation methods 

using the UAV-LiDAR topographic surveying system, so that scientific reference could be 

provided for precision land leveling conducted under the aid of each resulting topographic 

map. We firstly investigated the applicability of different interpolation methods for 

generating topographic maps using the 1135 sets of topographic surveying data of the UAV-

LiDAR system, so that the most suitable model for interpolating field topographic surveying 

data into a topographic map could be determined. 50 RTK-GPS samples with 3D coordinates 

(easting, northing, and altitude) were collected randomly around the field under study. 

According to the RTK-GPS samples’ geospatial coordinates, ground elevation values were 

extracted out of the topographic maps based on TIN, IDW, spline, natural neighbor, and 
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Kriging model, respectively. And we can understand that the spline interpolation model is 

most unsuitable to be used for interpolating ground elevation data for generating a 

topographic map, whilst the topographic map based on the TIN interpolation model is the 

most accurate one.  

From the resulting topographic map based on the TIN interpolation model, we can see 

clearly that the field has a high-north-low-south trend in elevation varying from 13.237 m to 

14.552 m; besides, we can also visualize a distinguishing ridge in south-north direction as 

well as a line of ditch in south-north direction within the field. According to field survey we 

confirmed that the ditch in south-north direction coincides with the border of two adjacent 

fields with relatively low ground elevation, where large area of wheat plants were drown to 

death and weeds spring up during the ripening growth stage of wheat. RMSE between the 

sampled reference altitude values of RTK-GPS data and the corresponding ground elevation 

values of the resulting topographic map based on TIN interpolation model was calculated as 

0.137 m, which is not ideal but acceptable in consideration of the field’s elevation change of 

about 1.4 m.  

Then an aerial photogrammetric DSM model of the same field was created based on 

multi-view image processing techniques after acquiring digital images from a UAV-camera 

system. Ground elevation values were extracted out of the aerial photogrammetric DSM, 

which share the same geospatial coordinates with the original UAV-LiDAR system based 

topographic surveying data as well as the corresponding neighboring pixels. In this way, the 

spatial resolution of the surveying points was improved from about 6 m * 0.5 m to about 1 m 

* 0.5 m, as the spatial density of the surveying points also plays a paramount role in 

generating an accurate topographic map by using interpolation methods. Afterwards, the 

samples’ ground elevation values of the aerial photogrammetric DSM were rectified and 

improved topographic maps were generated based on the totally 7945 sets of samples’ ground 

elevation values using TIN, IDW, Kriging, Spline, and natural neighbor interpolation models, 

respectively. Accuracies of the improved topographic maps were also validated by 

calculating RMSEs between RTK-GPS samples’ altitude and the corresponding samples’ 

ground elevation values that were extracted from the improved topographic maps based on 

different interpolation models. We may conclude that the overall accuracy of each improved 

topographic map was improved by a large extent when compared with the accuracy of the 

corresponding topographic map generated by only using the original UAV-LiDAR system’s 
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topographic surveying data. And still, TIN interpolation model expressed best performance 

when used to generate an improved topographic map based on the integrated data of aerial 

photogrammetric DSM and the original UAV-LiDAR system’s topographic surveying data. 

The RSME between the RTK-GPS altitude and the corresponding ground elevation values of 

the improved topographic map based on TIN interpolation model was calculated as 0.059 m 

(5.9 cm), due to high spatially intensive interpolated points with the spatial resolution of 

about 1 m * 0.5 m. The accurate improved topographic map confirmed the feasibility of 

conducting topographic survey for farmlands by using the simple and efficient UAV-LiDAR 

system in combination with the low-altitude aerial photogrammetric flights. 

Finally, we also experimentally validated the accuracy as well as feasibility of using such 

a topographic surveying outfit in a large-scale farmland, by changing the cross-track interval 

of the UAV-LiDAR topographic surveying flights from about 6 meters to about 20 meters for 

large coverage. We improved the spatial resolution of the interpolation points from about 20 

m * 0.5 m to about 1 m * 0.5 m by integrating the original UAV-LiDAR system’s 

topographic surveying data and the aerial photogrammetric DSM data, and an improved 

topographic map was generated using TIN interpolation model. We may conclude that the 

methodology of integrating UAV-LiDAR system based topographic surveying data with the 

aerial photogrammetric DSM significantly improves the accuracy of the resulting topographic 

map in large-scale farmland as well, when compared with the accuracies of the resulting 

topographic map solely using the UAV-LiDAR system’s topographic surveying data and the 

photogrammetric DSM. The RMSE between the ground elevations of the improved 

topographic map, the original topographic map, as well as the aerial photogrammetric DSM, 

and the corresponding PPK-GPS’s altitude was calculated as 0.132 m, 0.468 m, and 1.040 m, 

respectively. In consideration that the field is featured with a ground elevation change of 

about 6 m, we may conclude that the proposed methodology of generating topographic maps 

for precision land leveling by integrating UAV-LiDAR system based topographic surveying 

data with the low-altitude aerial photogrammetric DSM is of high practical values. 
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Chapter 4 Mapping within-Field Variations of Wheat Stalk Density  

 

4.1 Introduction 

Wheat (Triticum Spp., or Triticum Aestivum L.), a self-pollinate staple crop, has been 

amongst the first domesticated food crops and the most produced cereal grains for over 8000 

years in human civilization. In 2009 the global wheat production reached about 680 million 

tons and in 2016 global production of wheat increased up to 749 million tons, which made it 

the second most-produced cereal grain after maize [63]. The demand of wheat from global 

market is still expending [64], as wheat is the leading source of vegetal protein due to its 

unique major component of gluten and also a rich source of multiple kinds of essential 

mineral nutrients. Wheat flour contains rather high protein content (about 13% and the value 

varies among different strains and varieties) when compared with other major cereal crops 

such as maize and rice, and world trade in wheat alone is greater than for all other crops 

combined [65].  

In general it is divided into spring wheat and winter wheat even though the cultivation of 

wheat widespread over a vast geographical area all over the globe, according to flowering 

responses to cold temperatures. Spring wheat is normally sowed at early spring, which needs 

110 to 130 days to complete vegetative growth and reproductive growth from sowing to 

harvesting, varying upon seed strain, climate, and soil conditions. On the other hand, winter 

wheat is usually sowed in the autumn to germinate and grow into a young plant which stays 

in a state of dormancy during winter time when temperature falls below 0 – 5 Celsius degree 

and resumes vegetative growth in early spring. The growth cycle of wheat includes 

germination, seedling establishment, tillering, stem elongation, heading, flowering, grain 

filling, ripening, and maturity. Detailed understanding of wheat growth status during each 

development stage is vital for optimal wheat field management operations. Several existing 

systems to identify wheat development stages are available, with Zadoks scale being the most 

widely used. Zadoks scale is a standard system which describes successive development 

stages reached by the crop during each agricultural season [66]. According to Zadoks scale, 

wheat development stages are generally divided into 10 distinct growth stages and of each 

specific growth stage, three to dozens of sub-stages are further identified with two-digits from 

00 to 99 [67], shown in Fig.4. 1. 
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Fig.4. 1 Wheat development stages (illustration of Nick Poole, FAR) 

Necessary operations such as herbicides and insecticides spraying as well as nitrogenous 

topdressing (for example urea solution) should be implemented timely, as different rate of 

nitrogenous topdressings, herbicides, and fungicides are typically applied only at specific 

stages during the wheat growth cycle. In order to optimize wheat yield and grain quality, 

especially in terms of protein content that varies significantly depending on different 

agricultural practices, field management in accordance with the specific growth situation of 

each wheat development stage is critical. For instance, the nitrogenous topdressings are 

advisable at the rate of 40~60 kg/ha during tillering stage (GS 20~29) so that the process of 

tillering could be stimulated and adequacy of stalks (or stalk density) could be guaranteed for 

enough wheat ears and thus the high yield. On the other hand, the nitrogenous topdressing 

rate of 20~30 kg/ha during the booting stage (GS 40~49) could boost grain weight and also 

grain protein content. Furthermore, recent studies on canopy management showed that not 

only spring fertilizer rate but timing of fertilization also should be tailored to achieve desired 
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canopy sizes at specific development phases, which means if the wheat stalk density is too 

low around the beginning of tillering stage, nitrogenous topdressing timing should be brought 

forward with a higher rate in order to boost the total number of stalks. Therefore, real time 

monitoring of actual wheat growth status throughout these several specific stages is of vital 

importance in helping wheat growers with field management decision making.  

 For many years, stalk counting has been used around the world as an empirical method 

of roughly estimating wheat stalk densities and understanding wheat growth status at early 

growth stages. Randy Weisz et al. developed a model for decision making related to wheat 

stalk densities before growth stage 30 [68], which was described as Eq. (3.1). According to 

the calculation, suggestions on different rates of nitrogenous topdressing could be proposed. 

Although it is feasible in case of small-scale wheat fields, this method is not suitable for large 

farmlands due to the time-consuming manual sampling operation. Besides, point-source 

information acquired through manually calculated stalk densities usually cannot accurately 

reflect the actual spatial-variated growth status even within small-scaled farmlands. On the 

other hand, remote sensing has been successfully used as an effective alternative for data 

collection in applications of precision agriculture through analysis of digitalized numbers of 

different bands of image data, or more often, of various kinds of vegetation indices calculated 

from the reflectance or radiance of specific bands [69]. Multi-spectral satellite imagery of 

visible and near infrared portions of the spectrum has been applied into detecting vegetation 

areas, monitoring crop growth status, and estimating crop yield, et al., in large scale. Whilst 

airborne remote sensing has been introduced into medium-scale agricultural application as a 

supplementary method and often carried out as one-time operations, which employs airplane 

or balloon as the carrier flying at the height of from less than 5,000m to 20,000m, and uses 

digital photography with sub-meter spatial resolution. Near-ground remote sensing is often 

referred to frame-based or pillar-based applications in the past, and recently the cutting edge 

application of small fixed-and/or rotary-wing UAVs used in small-scale and experimental 

field for spatial sampling or mapping for variable-rate operations has soared in the field of 

precision agriculture.  

d = (t×4) / w                (4.1) 

where d denotes the number of stalks per square meter, t denotes stalks per meter of row, and 

w denotes row width in meter.  
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Aerial photography has been used to monitor crop growth status since 1950s by using 

color or color-infrared cameras, but it is not until the start of the 21st century that widespread 

applications of UAVs occurred in agricultural precision management when aerial imagery 

using UAVs can be acquired more cost-effectively, with increasing spatial resolution due to 

low-altitude flight capacity, and with greater safety than manned aircraft [70]-[74]. Wang [75] 

et al. successfully differentiated vegetation areas from non-vegetation areas by analyzing 

color images acquired from a UAV; Rasmussen [76] et al investigated four different 

vegetation indices acquired from a color camera and a color-infrared camera by using both a 

fixed-wing UAV and a rotary-wing UAV, and concluded that vegetation indices based on 

UAV imagery have the same ability to quantify crop responses with ground-based recordings. 

In this study, we are to acquire aerial digital photographs by using an agricultural digital 

camera (ADC) mounted on the low-altitude UAV platform; and subsequently estimate the 

within-field spatial variations of wheat stalk density from the aerial images in a less time-

consuming and accurate manner, so that suggestions on variable-rate nitrogenous topdressing 

could be accordingly recommended.  

4.2 Methodology 

 

Fig.4. 2 Proposed approach of using UAV-camera system to estimate wheat stalk density 
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The overall approach of monitoring wheat canopy development and estimating stalk 

densities of wheat field from aerial photographs consists of three key steps: acquiring and 

post-processing aerial photographs with high spatial resolution using the low-altitude UAV-

camera system; calculating Fractional Green Vegetation (FGV) and Vertical Canopy 

Coverage (VCC) out of the post-processed aerial image; and building regression models 

between samples of stalk density and the corresponding FGV and VCC values for the 

selection and validation of the most accurate estimation model, as shown in Fig.4. 2. This 

study adopted World Geodetic System 1984, or WGS84, as the coordinate system for geo-

referenced images, maps, or any coordinates used in this paper if not particularly indicated. 

4.2.1 Field Site and Experiment Description 

  

Fig.4. 3 Field site under study of estimating wheat stalk density 

In this experiment, the same hexa-copter ZION CH940, described in Sec. 2.2.1, was used 

as the UAV-camera platform. A laptop installed with the GCS software was used to monitor 

and control the UAV’s flight through telemetry radio. The experiment was established on 17 

May 2016 on a winter wheat farmland of Hokkaido Univ., Sapporo, Japan over the vicinity of 

43.075499°N and 141.334546°E, shown in Fig.4. 3 marked with red lines. The test field was 

approximately 0.25 ha, and a Japanese wheat variety of Kitahonami was planted on 24 

September 2015, with the seeding rate of 60 kg/ha and uniform basal dressing of 500 kg/ha 

(BB082CR, a slow-release fertilizer). On 7 June, 15 June, and 21 June 2% foliar fertilizing of 
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urea solution was carried out since fertilization during these growth stages increases protein 

concentration in grain and further increases number of stalks on a single stem to maximize 

the yield. The regional annual precipitation is around 1100 mm, with average annual 

temperature of 8.9°C [77]. 

Digital camera uses either silicon-based charge-coupled detectors or complementary 

metal-oxide-semiconductors (CMOS) as the image sensors, both of which have high spectral 

sensitivity of visible and NIR portions of the spectrum ranging from about 350 nm to about 

1100 nm wavelength [78]. By using a Bayer-pattern array of filters, most digital cameras 

obtain visible lights of red, green and blue bands for a digital image; however, since Bayer-

pattern filters transmit significant amounts of NIR light through either blue, green or red 

channels, almost all commercial digital cameras have an internal filter blocking NIR light 

[79]. After removing NIR-blocking filter and conducting extensive post-calibration, it allows 

the raw digital camera image to be converted into a NIR false-color image to detect reflected 

NIR reflectance from vegetation.  

 

Fig.4. 4 ADC’s spectral response 

In this UAV-camera system, a Tetracam Inc. (Chatsworth, Canada) agricultural digital 

camera with an 8.5 mm lens was used for taking aerial pictures, which was set as continuous 

mode of every two seconds with fixed exposure. The ADC contains a single 3.2 megapixel 

CMOS image sensor (sensor dimensions: 6.55 * 4.92 mm) and is optimized for capturing 

visible light wavelengths longer than 520 nm and NIR light wavelengths up to 920 nm. By 

using a blue absorbing filter to eliminate the blue sensibility in a checkerboard pattern, the 
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ADC captures a separated red, green and NIR band of wavelengths, shown in Fig.4. 4. The 

ADC weighs about 640 g and was installed on a two-axis gimbal fixed downwards below the 

UAV platform to compensate for the vibration during the flight. When the picture was taken 

at the altitude of about 50 m above ground level in the vertical photographing fashion, each 

image covers 35 m horizontally and 25 m along the path with high spatial resolution of about 

2 cm, shown in Fig.4. 5. From the image shown in false color manner we can clearly 

distinguish the vegetation (shown in red color) from the background of soil. The flight path 

was shown in Fig.4. 3 and totally 45 images were obtained covering the whole farmland. In 

consideration of the flight speed of 5 m/s, overlap rate among each image could be calculated 

as about 80%, which allows for conducting high precision image stitching in order to 

generate an ortho-mosaic image. 

 

Fig.4. 5 Green-red-NIR false-color image of the field under study 

4.2.2 Sampling of Stalk Density and Image Post-Processing 

Table 4. 1 Sampled stalk density and the corresponding FGV and VCC 

Sample 

ID 
Latitude Longitude Stalk Density FGV 

VCC 

(Thresholding) 

VCC 

(SVM) 

1 43.07396

5 

141.336014 690 0.52 0.99 0.74 

2 43.07404

4 

141.336031 400 0.43 0.97 0.46 

3 43.07408

3 

141.335921 660 0.52 0.99 0.74 

4 43.07413

0 

141.335869 620 0.52 1.00 0.67 

5 43.07417

4 

141.335898 490 0.47 0.98 0.53 

6 43.07428

8 

141.335735 850 0.58 1.00 0.80 

7 43.07438

0 

141.335647 800 0.54 1.00 0.78 
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8 43.07439

3 

141.335719 560 0.49 1.00 0.56 

9 43.07450

0 

141.335636 290 0.45 0.96 0.39 

10 43.07454

5 

141.335496 710 0.53 0.97 0.69 

11 43.07475

7 

141.335321 570 0.53 0.99 0.66 

12 43.07475

8 

141.335407 680 0.52 1.00 0.78 

13 43.07484

4 

141.335250 660 0.53 0.99 0.74 

14 43.07497

6 

141.335123 720 0.51 1.00 0.79 

15 43.07509

6 

141.335155 200 0.39 0.91 0.32 

In this study, experiment of calculating stalk density by manual sampling was conducted, 

so that the correlation of conventionally sampled stalk density values with the UAV remote 

sensing data could be studied and the actual spatial-varying information of wheat growth 

status could be obtained in a less time-consuming manner. Since row width in the 

experimental farmland was 50 cm, each stalk was counted within 80 cm along the row on 

which more than 3 leaves has already sprouted. By multiplying the number of counted stalks 

by 10 times and according to Eq. (4.1), each sample’s stalk density per square meter can be 

calculated. Totally 15 samples distributed around the wheat field were taken as training data 

on 18 May 2016. These samples were selected after detailed visual inspection during field 

survey on the sampling day, in order to representatively choose 5 samples from most 

greenery areas and another 5 samples from sparse vegetated areas, whilst the rest 5 samples 

from normal developed areas. And the spatial distribution of these samples was shown in 

Fig.4. 7 as green dots. These samples’ geo-spatial coordinates of latitude and longitude were 

measured by using the same RTK-GPS module described in Sec.3.2.2. The sampled stalk 

densities as well as the geo-spatial coordinates were listed in Table 4. 1. 

There are generally two main image processing techniques for combining two or more 

individual images that are featured with a certain overlapping rate into a larger one: image 

stitching and ortho-mosaicking. Image stitching glues a small set of images together only 

under the circumstances of perfectly flat terrain by extracting a small number of key-points 

(feature points) out of the overlapped part of each individual image; whilst ortho-mosaicking 

is capable for all types of terrains and can handle a large set of overlapping images by ortho-

rectifying the perspective distortions using an intermediary DSM, which needs a very large 

number of key-points. Recent advancements in aerial photogrammetry produced several 

image processing algorithms and software packages that are capable of generating ortho-

mosaic images in a highly automated fashion. Structure from Motion (SfM) is one of the 

most widely used algorithms for ortho-mosaic image generation, which accurately estimates 

camera orientation as well internal parameters by tracking the locations of the detected key-
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points from image to image. SfM typically utilizes scale invariant feature transform to detect 

and locate distinctive features as key-points using a difference-of-Gaussian function; and then 

it matches the key-points from different images based on the minimization of Euclidian 

distance, shown in Fig.4. 6; finally it produces a dense point cloud for the construction of a 

3D representation of the scene. 

      

Fig.4. 6 Matching keypoins for generating an Ortho-mosaic image  

45 individual aerial photographs were stitched together as one ortho-mosaic image by 

using Agisoft Photoscan software based on SfM algorithm and multi-view image processing 

techniques, which was shown in Fig.4. 7 in false-color manner. The ortho-mosaic image had 

2387 * 8953 pixels in size, and the ground resolution reached up to 2 cm. Then geo-

referencing was conducted, which is the process of assigning geographic coordinates to the 

dataset (usually an image file) that is spatial in nature but has no explicit geographic 

coordinates, for example aerial photographs. It is necessary to geo-reference such images and 

thereafter could be further studied in GIS applications. The geo-referencing process of the 

ortho-mosaic image was accomplished in ArcMap software, by using the 1st order 

polynomial transformation method and taking four wheat field corners as GCPs, listed in 

Table 4. 2. The transformation creates two least-square-fit equations by comparing the image 

space coordinates of the GCPs with the geographic coordinates and translates the image 
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coordinates of each pixel into geographic coordinates, which were measured by using 

Trimble SPS855 GNSS modular receiver in RTK-GPS mode, described in Sec.3.2.2. 

Table 4. 2 GCPs’ image space coordinates and geographic coordinates 

GCP No. Image space coordinates Geographic coordinates 

x y Latitude Longitude 

1 0.504395 11.925819 43.07517494 141.33511796 

2 -1.081309 12.077644 43.07510077 141.33496042 

3 -0.321990 -3.931718 43.07394452 141.33618863 

4 -1.945205 -3.890796 43.07386295 141.33603152 

 

 

Fig.4. 7 Ortho-mosaic image of the wheat field shown in green-red-NIR false-color 

Vegetation index map refers to as a scalar image, in which each pixel has only one single 

brightness value, and the pixel values are often calculated from reflectance or radiance of 

specific bands of remote sensing images. Normalized Difference Vegetation Index, known as 

NDVI, is one of the most popular indicators to quantitatively identify vegetated areas, 

estimate crop yields, and even to quantify the photosynthetic capacity of plant canopies since 

1970s [80], [81]. NDVI is defined as the difference ratio between the spectral reflectance 

intensity of NIR waveband and red waveband acquired from various kinds of remote sensing 

data [82], described in Eq. (4.2). From the mathematical definition we may understand that 

the value of NDVI varies between negative 1.0 to positive 1.0. In general the NDVI of an 

area dominated by a dense vegetative canopy usually turns out to be positive values due to 
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plants’ high-reflective and high-absorptive characteristics in NIR waveband and red 

waveband, respectively; whilst the NDVI of other targets such like standing water or clouds 

tends to be negative values, and cultivated soil is likely to display a low positive NDVI value. 

In this study, NDVI map was generated by using ENVI software (Exelis VIS, Inc., Colorado, 

US), in which the value of each pixel was determined from its existing multi-band pixel 

values of the geo-referenced ortho-mosaic image according to Eq. (4.2) by using band math 

functions, shown in Fig.4. 8.  

𝑁𝐷𝑉𝐼 = (𝜌𝑁𝐼𝑅 − 𝜌𝑟𝑒𝑑)/(𝜌𝑁𝐼𝑅 + 𝜌𝑟𝑒𝑑)        (4.2) 

where 𝜌𝑁𝐼𝑅  and 𝜌𝑟𝑒𝑑   denotes the spectral reflectance of NIR and red wavebands of the 

remote sensing data, respectively.  

4.2.3 Calculating FGV and VCC 

 

Fig.4. 8 NDVI map 

In order to obtain accurate and comprehensive stalk density estimation of a wheat field 

by using UAV remote sensing images, it is necessary to correlate the post-processed aerial 

images with the manually sampled stalk densities. NDVI value is very sensitive to soil 

condition (moisture, organic contents, and etc.), shading effects caused by solar illumination 

and camera geometry; besides, NDVI is reported to be liable to saturate and is not suitable for 

distinguishing between different levels of vegetation coverage rate over high vegetation 

coverage areas. Thus, NDVI could not be directly related to the vegetation density by using 
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quantitative analysis model. In this study, we introduced two intermediate variables that are 

calculated out of the NDVI map shown in Fig.4. 8, for building correlation analysis models 

with the sampled wheat stalk density values.  

One is the FGV, which represents the spatial density of live vegetation and calculated 

from the NDVI value of each pixel of interest, taking the NDVI values of bare soil and full 

vegetation as reference according to Eq. (4.3) [84]. In this study, NDVIs is determined by 

averaging the NDVI pixel values of ten bare soil samples that distributed along the field 

boundary, shown as bright green dots in Fig.4. 8. The sampled NDVI values of bare soil were 

listed in Table 4. 3, and NDVIs was accordingly calculated as 0.17. On the other hand, NDVIv 

is determined by extracting the maximum value of the NDVI map as 0.56. Subsequently, the 

FGV map was generated in ENVI software according to Eq. (4.3) by using band math 

functions. Finally a mean filter with the kernel size of 49 * 49 was created and applied to the 

FGV map, so that the averaged FGV value of the pixels within an area of about 1 square 

meter could be extracted according to the corresponding geographical coordinates of the 

manually sampled stalk densities, listed in Table 4. 1. 

𝐹𝐺𝑉 = (𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑠)/(𝑁𝐷𝑉𝐼𝑣 − 𝑁𝐷𝑉𝐼𝑠)       (4.3) 

where 𝑁𝐷𝑉𝐼, 𝑁𝐷𝑉𝐼𝑠, and 𝑁𝐷𝑉𝐼𝑣 is the NDVI value of each pixel of interest, the NDVI value 

of bare soil, and the NDVI value of full vegetation, respectively. 

Table 4. 3 NDVI values of bare soil 

Sample ID Latitude Longitude NDVI Value 

1 43.075005 141.334998 0.18 

2 43.075052 141.335270 0.24 

3 43.074785 141. 335512 0.16 

4 43.074784 141.335512 0.18 

5 43.074671 141.335612 0.16 

6 43.074570 141.335709 0.12 

7 43.074469 141.335790 0.16 

8 43.074362 141.335887 0.15 

9 43.074258 141.336005 0.22 

10 43.074144 141.336099 0.17 

The other one is the VCC, which is commonly acknowledged as an important indicator 

of crop vitality and expressed as the proportion of ground areas that are covered by vertical 

projection of crop canopies against total areas of interest, shown in Eq. (3.4) [85], [86]. In 
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order to calculate VCC out of a remote sensing image, image segmentation has to be 

conducted in the first place so that the vegetation pixels could be separated from the soil, or 

the background pixels. Image thresholding is the most straightforward and efficient method 

of segmenting bimodal grayscale images. If the pixel value is larger than the thresholding 

value, it would be assigned with one value (usually as 1); whilst if the pixel value is smaller 

than the thresholding value, it could be assigned with another value (usually as 0). However, 

if the bimodal characteristic of the grayscale image is not so obvious that a clear thresholding 

value could not be easily determined, the binarizing result could be very unsatisfactory.  

The histogram of the NDVI map of the wheat field under study was shown in Fig.4. 9, 

and we may conclude that the first peak value of the NDVI map comes around 0.2, 

representing the pixel values of bare soil; whilst the second peak value is around 0.38, 

representing pixel values of vegetation. The thresholding pixel value between the soil class 

and the vegetation class seems to be extending from 0.26 to 0.3, and we assign the 

thresholding value as 0.28 for the image segmentation process from the interpretation of the 

NDVI map’s histogram. The image segmentation result was shown in Fig.4. 10, from which 

we can visualize the differentiation between the bright white pixels (vegetation) and the black 

pixels (background), and thus calculate the proportion of vegetation pixels according to Eq. 

(4.4). A 1 m * 1 m grid was overlapped upon the resulting image segmentation map and the 

number of vegetation pixels was acquired through statistics of each grid of interest. The VCC 

values that share the same geographical coordinates with the corresponding manual stalk 

density samples were accordingly calculated and also listed in Table 4. 1. 

𝑉𝐶𝐶 = 𝑁𝑣/𝑁𝑡                                                                                                                        (4.4) 

where Nv denotes the number of pixels that are classified as vegetation, whilst Nt denotes the 

total number of pixels within a unit area (Nt=2500 in this study). 
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Fig.4. 9 Histogram of NDVI map 

 

 

Fig.4. 10 Image segmentation result using thresholding method 

In consideration that the spatial resolution of the aerial image reaches up to 2 cm and 

there might be plentiful vegetation-background fixed pixels among the pixels of vegetation 

and the pixels of soil, an indirect image segmentation method was also utilized to 

differentiate vegetation pixels from non-vegetation pixels. Support Vector Machine (SVM) 

classification is a supervised machine learning method among many others such as minimum 

distance, maximum likelihood, spectral angle mapper, and neural network, which is derived 

from statistical learning theory and used for building model of classification, regression, and 
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outlier detection by separating the classes with a decision surface that maximizes the margin 

between the classes [87].  

 

Fig.4. 11 Training dataset of SVM classification (in part) 

The supervised classification based on SVM technique was conducted by using region of 

interest function in ENVI software, which was shown in Fig.4. 11. Training datasets of 200 

pixels of vegetation (or highly vegetated pixels, marked with green color in Fig.4. 11) and 

200 pixels of background (marked with black color in Fig.4. 11) were manually specified 

from the NDVI map, respectively. The training dataset spread all around the wheat field 

under study, and the pixels with values larger than 0.4 were assigned as vegetation class 

whilst the pixels with values smaller than 0.15 were assigned as non-vegetation class. Thus, 

each pixel of the NDVI map was classified either to the class of vegetation or to the class of 

non-vegetation according to the SVM classifier, as SVM algorithm separates the classes with 

a flexible decision surface from a local neighborhood point of view. The classification result 

was shown in Fig.4. 12, in which green pixel represents vegetation whilst the black pixel 

represent the background. Confusion matrix was used in ENVI software to validate accuracy 

of the classification result by comparing with ground truth of 100 vegetation pixels manually 

selected by visual inspection, and the accuracy of the classification result was up to 97.9%. 

Subsequently, a 1 m * 1 m grid was also overlapped upon the resulting classification map and 

the number of vegetation pixels was acquired through statistics of each grid of interest the 

same as how we have dealt with the classification map of thresholding method. The VCC 

values that share the same geographical coordinates with the corresponding manual stalk 

density samples were accordingly calculated and also listed in Table 4. 1. 
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Fig.4. 12 Classification result using SVM method 

4.3 Results and Discussion 

4.3.1 Correlation Analysis between Sampled Stalk Density with FGV and VCC 

From Table 4. 1 we may understand that VCC values based on the thresholding method 

vary from 0.91 to 1.00, which showed severe saturation due to high level of canopy coverage 

and is not suitable for building stalk density prediction model in this study. Thus, correlation 

analysis between 15 stalk densities sampled by manual counting with the corresponding FGV 

and VCC based on SVM method was performed, respectively, by building regression models 

in Excel 2010 software (Microsoft Corporation, USA). Fig.4. 13 and Fig.4. 14 showed 

different regression models (linear, second-order polynomial, exponential, and power 

regression model) between FGV as well as VCC and the sampled stalk densities.  

From the figures we may conclude that the regression models between the sampled stalk 

densities and FGV values have good accuracy with the coefficient of determination around 

0.88; however, the independent variable of FGV has a very limited data range from about 0.4 

to about 0.6, indicating that the capacity of FGV of distinguishing different levels of canopy 

coverage is rather weak. On the other hand, the regression models between the sampled stalk 

densities and VCC values have better accuracy with the coefficient of determination around 

0.93. Besides, the independent variable of VCC has a long data range from about 0.3 to about 

0.9, indicating that the capacity of VCC of distinguishing different levels of canopy coverage 

is stronger when compared to the variable of FGV. And we may conclude that VCC values 
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based on the supervised classification method using the SVM classifier is the most suitable 

variable for building regression models to estimate wheat stalk densities from the UAV 

remote sensing images. 

   

  

Fig.4. 13 Regression models between sampled stalk densities with FGV 
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Fig.4. 14 Regression models between sampled stalk densities with VCC 

By analyzing the coefficient of determination of four different kinds of regression 

models between VCC values and the sampled stalk densities, we may come to the conclusion 

that the response variable of stalk density related to the predicator variable of VCC with the 

highest coefficient of determination of 0.95 for power regression model, when compared with 

that of linear regression model, second-order polynomial regression model, and exponential 

regression model as 0.93, 0.94, and 0.91, respectively. And all of these four regression 

models have the same RMSE of 24, whilst the mean value of sampled stalk density was 

calculated as 593 from the 15 sampled stalk densities. Also, we concluded that around the 

VCC value of 0.8, stalk densities showed greater variation and more responsive to changes in 

VCC value. 

Subsequently, leave-one-out cross-validation (LOOCV) [88] was also conducted by 

building 15 linear regression models, second-order polynomial regression models, 

exponential regression models, and power regression models, respectively, by using 14 set 

variables of sampled stalk densities and VCC as training data, whilst leaving one set of 

variables as test data for each regression model. Finally, root-mean-square error of prediction 

(RMSEP) [89] for linear regression model, second-order polynomial regression model, 

exponential regression model, and power regression model was calculated as 51, 54, 67, and 

54, respectively. Taking both coefficient of determination of regression models and RMSEP 

of LOOCV models into consideration, power regression model was selected for estimating 

and mapping within-field spatial variations of stalk densities by using VCC values based on 

vegetation classification result of the UAV ortho-mosaic image. 
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4.3.2 Mapping within-Field Spatial Variations of Stalk Density 

In order to obtain comprehensive information on overall wheat growth status and within-

field spatial variations of stalk density for site-specific nitrogenous fertilizing, stalk density 

map of winter wheat was generating before nitrogenous topdressing operation at early growth 

stage. We originally validated a new approach of generating stalk density map by using 

green-red-NIR digital photographs from a low altitude UAV-camera system to extract VCC 

values and build regression models with sampled stalk densities, instead of conducting 

massive stalk counting manually, which is both time-consuming and apt to be affected by 

manual sampling error. In this study, 125 VCC values were randomly extracted out of the 

resulting vegetation classification map based on SVM classifier described in Sec.4.2.4, which 

spread all around the test field, shown in Fig.4. 15. According to the power regression model, 

estimated stalk densities for the 125 VCC samples were subsequently calculated. 

 

Fig.4. 15 VCC samples’ spatial distribution used for generating stalk density map 

Different stalk density maps for the wheat field under study were generated based on 

these calculated wheat stalk density samples by using TIN, IDW, Kriging, spline, and natural 

neighbor interpolation model, respectively. The interpolation models were explained in 

Sec.3.2.1, and the resulting stalk density maps were shown in Fig.4. 16. From the stalk 

density maps based on different interpolation methods we may conclude that stalk density 

maps based on the TIN, IDW, and natural neighbor interpolation method share the similar 
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general trend with the stalk density varying from about 40 to about 900 stalks per square 

meter, whilst stalk density maps based on the Kriging and spline interpolation model 

indicated unsuitable and inaccurate estimation of the within-field varying wheat stalk 

densities.  

 

 

Fig.4. 16 Resulting stalk density maps based on TIN, IDW, Kriging (upper images from left to right), 

spline, and natural neighbor (bottom images from left to right) interpolation method 

 

Table 4.4 Sampled stalk densities and estimated stalk densities based on different interpolation 

models 

Sample 

ID 
Latitude Longitude 

Sampled 

Stalk Density 

Estimated Stalk Densities Based on 

Different Interpolation Models 

TIN IDW Kriging Spline Natural 

Neighbor 

1 43.07396

5 

141.336014 690 693 711 416 686 693 

2 43.07404

4 

141.336031 400 377 369 463 364 370 

3 43.07408

3 

141.335921 660 702 696 524 679 660 

4 43.07413

0 

141.335869 620 605 616 567 618 605 

5 43.07417

4 

141.335898 490 439 451 539 439 454 
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6 43.07428

8 

141.335735 850 735 780 655 777 754 

7 43.07438

0 

141.335647 800 573 729 652 721 652 

8 43.07439

3 

141.335719 560 504 486 652 476 496 

9 43.07450

0 

141.335636 290 318 303 539 282 295 

10 43.07454

5 

141.335496 710 634 636 538 637 617 

11 43.07475

7 

141.335321 570 592 604 584 592 595 

12 43.07475

8 

141.335407 680 722 770 584 768 756 

13 43.07484

4 

141.335250 660 674 705 575 707 697 

14 43.07497

6 

141.335123 720 760 757 577 775 765 

15 43.07509

6 

141.335155 200 233 222 280 241 241 

 

 

Fig.4. 17 Variation of estimated stalk densities based on different interpolation methods 

 

Subsequently, estimated stalk density values were extracted from the resulting stalk 

density map based on different interpolation models according to the geographical 

coordinates of the manual samples. The accuracies were also confirmed by calculating 

RMSEs between the 15 manually sampled stalk density values and the corresponding 

estimated stalk density values extracted from each stalk density map based on TIN, IDW, and 

natural neighbor interpolation model, as 75, 51, and 62, respectively. For reference, the 

average value of the manually sampled stalk density was calculated as 593 stalks per square 

meter. By observing the variations of estimated stalk density based on different interpolation 

methods from Fig.4. 17, the stalk density map based on IDW interpolation model was 

selected to demonstrate the within-field spatial variation of wheat stalk density. From the 

IDW interpolation method based stalk density map we may conclude that the field under 
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study has a spatially varying stalk density ranging from 40 to 906 stalks per square meter. We 

can also understand that the headland of both sides has a relatively lower stalk density, and 

several low-stalk-density areas could also be spotted distributing all over the wheat field 

shown in red color. 

𝑅𝑀𝑆𝐸𝑠𝑡𝑎𝑙𝑘𝑇𝐼𝑁 = √∑ (𝑆𝑚𝑎𝑛𝑢𝑎𝑙𝑖−𝑆𝑇𝐼𝑁𝑖)15
𝑖=1

2

15
        (4.5) 

𝑅𝑀𝑆𝐸𝑠𝑡𝑎𝑙𝑘𝐼𝐷𝑊 = √∑ (𝑆𝑚𝑎𝑛𝑢𝑎𝑙𝑖−𝑆𝐼𝐷𝑊𝑖)15
𝑖=1

2

15
       (4.6) 

𝑅𝑀𝑆𝐸𝑠𝑡𝑎𝑙𝑘𝑁𝑎𝑡 = √∑ (𝑆𝑚𝑎𝑛𝑢𝑎𝑙𝑖−𝑆𝑁𝑎𝑡𝑖)15
𝑖=1

2

15
       (4.7) 

where 𝑅𝑀𝑆𝐸𝑠𝑡𝑎𝑙𝑘𝑇𝐼𝑁 , 𝑅𝑀𝑆𝐸𝑠𝑡𝑎𝑙𝑘𝐼𝐷𝑊 , and 𝑅𝑀𝑆𝐸𝑠𝑡𝑎𝑙𝑘𝑁𝑎𝑡  is the root mean square error 

between the reference stalk density values by manual sampling and stalk density values 

extracted from the stalk density maps based on TIN interpolation model, IDW interpolation 

model, and natural neighbor interpolation model, respectively; whilst 𝑆𝑚𝑎𝑛𝑢𝑎𝑙,  𝑆𝑇𝐼𝑁, 𝑆𝐼𝐷𝑊, 

and 𝑆𝑁𝑎𝑡  the reference stalk density values by manual sampling and stalk density values 

extracted from the stalk density maps based on TIN interpolation model, IDW interpolation 

model, and natural neighbor interpolation model, respectively. 

From the histogram of the stalk density map based on IDW interpolation method we 

obtained the information that the average value and standard deviation of the stalk density of 

the field was 554 and 136 stalks per square meter, respectively. About 12% acreages of the 

studied field have the stalk density ranging from 800 to 1000 stalks per square meter, which 

need low dose of nitrogenous topdressing such as 30 kg/10a ammonium sulfate; whilst about 

22% acreages of the studied field have the stalk density ranging from 600 to 800 stalks per 

square meter, which need moderate dose of nitrogenous topdressing such as 40 kg/10a 

ammonium sulfate; and about 66% acreages of the field have the stalk density lower than 600 

stalks per square meter, which desperately need high dose of nitrogenous topdressing such as 

50 kg/10a or more ammonium sulfate for generating enough stalks before the end of tillering 

stage. There are no part of this field has the stalk density beyond 1500 stalks per square meter, 

indicating that there are no over-flourished canopies that would lead to the occurrence of 

lodging in later growth stage.  
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Fig.4. 18 Histogram of estimated stalk density map based on IDW interpolation method 

 

4.4 Experimental Validation of the Stalk Density Estimation Model 

 

Table 4. 5 Sampled stalk densities and the corresponding VCC values of validating experiment 

Sample 

ID 
Latitude Longitude 

Sampled 

Stalk Density 

VCC 

(SVM) 

Estimated  

Stalk Density 

1 43.07486

262 

141.334477

83 

570 0.60 602 

2 43.07482

364 

141.334689

88 

140 0.12 126 

3 43.07468

099 

141.334633

83 

790 0.82 814 

4 43.07459

920 

141.334886

42 

830 0.84 833 

5 43.07449

290 

141.334839

41 

720 0.66 660 

6 43.07444

997 

141.334987

56 

600 0.59 592 

7 43.07435

416 

141.334923

17 

360 0.39 396 

8 43.07437

925 

141.335089

13 

700 0.64 640 

9 43.07421

956 

141.335068

61 

690 0.66 660 

10 43.07426

166 

141.335208

38 

330 0.34 347 

11 43.07409

751 

141.335233

77 

270 0.31 317 

12 43.07414

395 

141.335364

96 

610 0.63 631 

13 43.07393

938 

141.335357

95 

560 0.63 631 

14 43.07391

121 

141.335506

18 

590 0.51 514 

15 43.07381

541 

141.335441

54 

770 0.72 718 

The validating experiment on the accuracy and repeatability of the stalk density 

estimation model was conducted for anther wheat field of the Hokkaido University on 20 

May 2017. The test field was described in Sec.2.3.1 and shown in Fig.2. 9, where the 

topographic mapping experiment was conducted. The same wheat variety and seeding rate 

was applied with another wheat field of previous year that was described in Sec.4.2.1. 15 

stalk densities were also manually sampled as ground truth and the geographical coordinates 
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of each sample was measured by using the same RTK-GPS module described in Sec.4.2.2. 

The spatial distribution of these stalk densities was shown in Fig.4. 19 as red dots, and the 

geographical coordinates as well as the stalk density values were listed in Table 4. 5. 

Similarly, each 200 vegetation pixels and background pixels were selected from the resulting 

NDVI map with the ground resolution of about 2 cm as training data through visual 

inspection, respectively; and by means of the supervised classification method of SVM 

classifier, the VCC map of the wheat field was generated for the validating experiment. The 

resulting VCC map was shown in Fig.4. 19, in which the green pixels represent vegetation 

class and the white pixels represent the background class. From the VCC map we may 

understand that the areas circled in red color have no sign of vegetation, as the wheat plants 

over there were drowned in the snowmelt water during the early April due to the relatively 

low ground elevation, also discussed in Sec.3.3.2. 

 

Fig.4. 19 Vegetation classification result of wheat field for validating experiment 

 

VCC values of the areas that share the same geographical coordinates with each 

corresponding manually sampled stalk density were subsequently obtained and also listed in 

Table 4. 5. Different regression models between the manually sampled stalk density values 

with the corresponding VCC values were built, as shown in Fig.4. 20, from which we can 

come to the conclusion that power regression model with the coefficient of determination of 
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0.97 is still the most accurate one for estimating wheat stalk density by using the calculated 

VCC values.  

  

Fig.4. 20 Regression models between sampled stalk densities with VCC for validating experiment 

 

Finally, 125 VCC values were extracted from Fig.4. 19 that randomly distributed all 

around the field under study; and the corresponding stalk densities were estimated from the 

power regression model; then, the stalk density map was generated by using these 125 

estimated stalk density samples based on the IDW interpolation method, shown in Fig.4. 21. 

From Fig.4. 21 we can see that the south part of the field has a relatively lower stalk density, 

and in consideration of the topographic map shown in Fig.3. 16 we may conclude that 

plentiful and stagnant snowmelt water is harmful to the survival and development of wheat 

plant, which might led to the worst situation of total crop failure over the areas of relatively 

low ground elevation. The RMSE between the manually sampled stalk density values and 

each corresponding stalk density values that were extracted out of the resulting stalk density 

map based on the IDW interpolation model were calculated as 43 stalks per square meter, 



 

105 
 

which showed acceptable accuracy and practical feasibility in comparison with the average 

value of the manually sampled wheat stalk density of 569 stalks per square meter. 

𝑅𝑀𝑆𝐸𝑠𝑡𝑎𝑙𝑘𝑉𝑎𝑙 = √∑ (𝑆𝑚𝑎𝑛𝑢𝑎𝑙𝑉𝑎𝑙𝑖−𝑆𝑉𝑎𝑙𝑖)15
𝑖=1

2

15
       (4.8) 

where 𝑅𝑀𝑆𝐸𝑠𝑡𝑎𝑙𝑘𝑉𝑎𝑙 is the root mean square error between the stalk density values by manual 

sampling and the stalk density values that were extracted out of the resulting stalk density 

map based on the IDW interpolation model; whilst 𝑆𝑚𝑎𝑛𝑢𝑎𝑙𝑉𝑎𝑙, and 𝑆𝑉𝑎𝑙 is the reference stalk 

density values by manual sampling and the stalk density values that were extracted out of the 

resulting stalk density map based on the IDW interpolation model, respectively. 

  

Fig.4. 21 Estimated stalk density map for validating experiment 

 

From the histogram of the estimated stalk density map based on IDW interpolation 

method we obtained the information that the minimum and maximum stalk density value was 

0 and 939 stalks per square meter, respectively, with the average value of 508 stalks per 

square meter. We may also understand that about 15% acreages of the studied field have the 

stalk density ranging from 800 to 1000 stalks per square meter, which need low dose of 

nitrogenous topdressing such as 30 kg/10a ammonium sulfate; whilst about 21% acreages of 

the studied field have the stalk density ranging from 600 to 800 stalks per square meter, 

which need moderate dose of nitrogenous topdressing such as 40 kg/10a ammonium sulfate; 
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and about 64% acreages of the field have the stalk density lower than 600 stalks per square 

meter, which desperately need high dose of nitrogenous topdressing such as 50 kg/10a or 

more ammonium sulfate for generating enough stalks before the end of tillering stage. There 

are no part of this field has the stalk density beyond 1500 stalks per square meter, indicating 

that there are no over-flourished canopies that would lead to the occurrence of lodging in 

later growth stage. 

 

Fig.4. 22 Histogram of estimated stalk density map for validating experiment. 

 

4.5 Conclusion 

The novel approach of obtaining spatially-varied stalk density information of winter 

wheat at early growth stage by using UAV images and ground samples, which was described 

in this paper in detail, provides an accurate, time-and-cost efficient alternative of generating 

site-specific fertilizing prescription for precision agriculture. The aerial images were stitched 

as an ortho-mosaic image and further post-processed by geo-referencing. Subsequently map 

of normalized difference vegetation index (NDVI) was generated; then NDVI map was 

binarized as vegetation and background, and fractional green vegetation (FGV) as well as 

vertical canopy coverage (VCC) was calculated out of the binarization result. Finally 

regression models were built between the manually sampled stalk density values and the 

corresponding FGV and VCC values.  

From the comparison of the extracted values of FGV, thresholding method based VCC, 

and support vector machine (SVM) classifier based VCC, we came to a conclusion that the 
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conventional thresholding method is the simplest image segmentation tool but not suitable for 

this study of estimating wheat stalk density from UAV remote sensing images, as the 

important thresholding value is usually not clear for segmenting the vegetation pixels from 

the non-vegetation pixels in aerial remote sensing images. The directly generated FGV values 

by determining NDVI value of the soil and the maximum NDVI value showed good 

correlation with the corresponding manually sampled stalk density values. Nevertheless, the 

FGV values concentrated to a very short range, indicating that the capability of distinguishing 

different levels of canopy coverage is limited. On the other hand, supervised classification 

based on SVM classifier needs massive human intervention by selecting training dataset from 

the NDVI map; however, VCC values extracted from the resulting classification map based 

on SVM classifier had a considerably wide range and the correlation with the corresponding 

manually sampled stalk density values is also very strong, due to the flexible decision surface 

of the SVM classifier that maximizes the margin between the vegetation class and the 

background class. 

Based on the extracted FGV values as well as the SVM classifier based VCC values and 

the corresponding samples of stalk density acquired through manual counting, different kinds 

of regression models such as linear, second-order polynomial, exponential, and power 

regression models were built, respectively. And we may conclude that the regression models 

based on FGV values have good accuracy with the coefficient of determination around 0.89, 

and the regression models based on VCC values have better accuracy with the coefficient of 

determination around 0.94. Furthermore, we selected the power regression model between 

manually sampled stalk density values and the corresponding SVM classifier based VCC 

values for generating stalk density map for the wheat field under study, which has a high 

coefficient of determination of 0.95 and root-mean-square error of 24, in consideration that 

the average value of the manually sampled stalk density values was calculated as 593 stalks 

per square meter. The validating experiment on the other wheat field with the same seeding 

rate and similar field management treatment also confirmed that the power regression model 

is the most accurate and suitable model between the manually sampled stalk density values 

and the SVM classifier based VCC values. According to the power regression model between 

stalk density values and SVM classifier based VCC values, 125 stalk density values were 

calculated by extracting the corresponding VCC values from the resulting vegetation 

classification map based on SVM classification method. Subsequently, stalk density maps 

were generated out of the calculated stalk density values by using triangular irregular network, 



 

108 
 

inverse distance weight (IDW), spline, Kriging, and natural neighbor interpolation method, 

respectively. As the result, IDW interpolation method based stalk density map was selected to 

demonstrated stalk densities’ within-field spatial variations and different rate of nitrogenous 

topdressing could be suggested accordingly.  

In thus, we would like to conclude that the UAV-camera system used in this study could 

be used to obtain quantitative information for variable-rate topdressing in terms of site-

specific or precision agriculture in an accurate and efficient manner. Also, the UAV-camera 

system presented here can be used for vegetation monitoring in various applications of 

determining plant cover or above-ground biomass estimation, and fulfil the need for remote 

sensing of high ground resolution imagery at low cost.  
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Chapter 5 Multi-temporal Monitoring of Wheat Growth Status and 

Mapping within-Field Variations of Wheat Yield  

 

5.1 Introduction 

In Chapter 4 we monitored wheat growth status during the early growth stage (tillering 

stage), and concluded that the low altitude UAV-camera system could be practically used as a 

powerful tool for quantitative analysis between wheat stalk density and remote sensing 

images. However, we cannot assert that the monitoring of wheat growth status is no longer 

needed after the tillering stage, as the field condition during the reproductive growth stages 

(booting stage, heading stage, flowering stage, dough development stage, and ripening stage) 

plays an even more important role in the yield formation, grain moisture content estimation, 

as well as the protein concentration. In order to optimize wheat yield and grain quality, 

especially in terms of protein content that varies significantly depending on different 

agricultural practices, wheat growers are expected to have a detailed understanding of wheat 

growth status during each specific development stage in wheat cultivation [90]. It implies that 

real-time monitoring of actual wheat growth status throughout the wheat growing season is of 

vital importance in helping wheat growers with management decision making. Meanwhile, it 

was frequently reported that reproductive growth of wheat after the flowering stage is closely 

related to grain yield, and many studies in recent years on wheat growth have indicated that 

accumulative vegetation index values of multi-temporal satellite remote sensing images after 

flowering stage have good relationship with crop yield [91]-[93]. Besides, Okuno studied on 

the wheat harvest support system by using satellite images during late-season of wheat 

growth stages in order to optimize harvest timing at regional scale, and generated a 

harvesting sequence map covering about 4000 ha [94]. And Han-ya and et al. investigated the 

correlation between the moisture content of wheat ear and the satellite and helicopter imagery, 

and accordingly reduced estimation error of moisture content [95]. 

Lodging, which usually occurs during wheat’s ripening growth stage when ears fall over 

and rot on the ground, is another big concern especially for wheat growers in Hokkaido, 

Japan, as the storms and rainfalls usually coincide with the ripening process of winter wheat 

in the middle of July. Heavy nitrogenous fertilization makes wheat stalk grow taller and 

become more susceptible to this problem, and cautions are increasingly paid to the 
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application of nitrogenous fertilizers giving consideration to both desired wheat stalk density 

and the avoidance of heavy lodging situation. Adverse impacts of the occurrence of lodging 

in wheat field are tremendous. It not only affects the grain quality due to rot but also hinders 

the harvesting operation of combine harvester in the following aspects, as jam fault of 

combine harvester by the over-high humidity of the lodged wheat stalks is a typical failure. In 

the first place, the cutting process could be interrupted when the gap between moving blade 

and fixed blade is suffused by wheat stalks with high wetness. More likely, the threshing 

drum is apt to be entangled with the succulent wheat stalks; and as more and more wheat 

stalks stagnate upon the drum, it eventually gets stalled or even leads to the failure of the 

combine harvester’s transmission system. Lastly, even if the wet wheat stalks successfully 

went through the cutting and threshing mechanisms of the combine harvester, it would 

inevitably “smuggle” plentiful grains by mixing and sheltering them from the sieves, which 

gives rise to extra yield loss [96], illustrated in Fig.5. 1. Since the “harvesting window” is 

usually very limited and we cannot afford wasting any moment in fixing or repairing the 

broken machine, the lodging situation of the wheat field is in desperate need before the 

harvesting operation so that drivers or the autonomous combine harvester could adjust 

working velocity accordingly.  

 

Fig.5. 1 Working principle of a combine harvester (Missotten, 1998) 

 

As we have discussed in Sec.1.1.2 that satellite images can be regularly obtained at large 

scale, the ground resolution is yet inadequate for quantitative analysis that aims at 

demonstrating within-field variations. Besides, the minimum purchasing area of the satellite 
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images often starts from 2000 ha or so and it still increases if the ground resolution of the 

image gets more sparse. For example, the minimum purchasing area of WorldView satellite 

images with the ground resolution of about 50 cm is set as 2500 ha, whilst the minimum 

purchasing area of RapidEye satellite images with the ground resolution of about 5 m is set as 

50 000 ha [97], [98]. For comparison, the average value of farmland area under cultivation 

per farmer was surveyed as 2.4 ha in the year of 2016 in Japan [99]. Using satellite images 

for multi-temporal monitoring of field condition and thus putting forward corresponding field 

management decisions seems neither particularly economical nor practical for both individual 

farmers and small farming-related organizations, not even to speak of the unavailability of a 

specific area due to cloud shadows, and etc.  

In recent years, civilian applications of small UAVs have widespread from entertainment 

industry to professional photogrammetry, hazard survey, crop protection, and remote sensing, 

etc., as UAV image has increasing spatial resolution, may be acquired more cost-effectively 

and with excellent maneuverability as well as greater safety when compared with manned 

aircrafts [100]. Besides, agricultural application of UAV remote sensing by using commercial 

color cameras decreases high cost of remote sensing sharply and provides instantly 

researchers and farmers with actual and intuitive visualization of crop growth status, since 

color images accentuate particular vegetation greenness and have been suggested to be less 

sensitive to variations of illumination conditions [101]-[103]. Furthermore, several vegetation 

indices based on color images were proposed such as visible-band difference vegetation 

index (VDVI) [102], among other color vegetation indices of normalized green-red difference 

index (NGRDI) [104], normalized green-blue difference index (NGBDI) [105], and green-red 

ratio index (GRRI) [104], and excessive greenness (ExG) [105]. Woebbecke et al. tested 

several color indices derived by using chromatic coordinates and modified hue to distinguish 

vegetation from background such as bare soil and crop residues [105], among which ExG 

provides a near-binary intensity image outlining a plant region of interest has been widely 

cited. Wang and et al. [102] distinguished vegetative areas from non-vegetative areas by 

analyzing color images acquired from a UAV and found VDVI has the most precise 

capability of extracting vegetation areas in comparison with other vegetation indices of 

NGRDI, NGBDI, GRRI, and ExG.  Rasmussen and et al. [76] investigated four different 

vegetation indices acquired from a color camera and a color-infrared camera by using both a 

fixed-wing and a rotary-wing UAV, and concluded that vegetation indices based on UAV’s 

RGB image have the same ability to quantify crop responses with ground-based recordings. 
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Torres-Sánchez et al. mapped multi-temporal vegetation fraction in early-season wheat fields 

by using a UAV equipped with a commercial color camera and studied the influence of flight 

altitude and growing days after sowing on the classification accuracy, which showed that 

visible spectral vegetation indices derived from low-altitude UAV-camera system could be 

used as a suitable tool to discriminate vegetation in wheat fields in the early season [104]. Cui 

et al. evaluated the reliability of using color digital images to estimate above ground biomass 

at canopy level of winter wheat by taking pictures from one meter above the top of the wheat 

canopy [106]. In short, most past agricultural studies on color images focused on individual 

level of crop or weed, and the point-source samplings of which are usually inevitably both 

time-consuming and have to be conducted under poor working condition. 

Therefore, in this study we monitored the time-varying canopy status of wheat through 

both the multispectral satellite images and also the UAV’s RGB images. Subsequently, we 

investigated correlations between vegetation indices of UAV’s RGB images and 

multispectral satellite images for future study of temporal complementation of these two 

different remote sensing systems. Correlation analysis between vegetation indices with 

sampled grain yield was also conducted, and the yield map that demonstrated the within-field 

spatial variations was generated accordingly.  

5.2 Methodology 

Four satellite images as well as eight UAV ortho-mosaic images during the late-season 

of wheat growth stages were utilized extending from the early June to the late July of 2015 

for multi-temporally monitoring wheat growth status and mapping within-field variations of 

wheat yield. Firstly, UAV ortho-mosaic images were generated and geo-referenced to be 

aligned with satellite images; then different vegetation indices were extracted from each 

remote sensing images; subsequently, wheat growth status was monitored from both the 

multi-temporal remote sensing images and also the vegetation index maps; finally, within-

field variations of yield was mapped according to the result of correlation analysis among the 

vegetation indices and ground samples of wheat yield. 

5.2.1 Field Site and Remote Sensing Images 

Experiments were established on two neighboring fields, which were planted with two 

different winter wheat varieties of Kitahonami and Yumechikara around 25 September 2014 

and harvested on 27 July 2015.  Fig.5. 2 showed the location of the investigated farmland in 
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Memuro, Hokkaido, Japan (around 42.902041°N–42.899607°N and 142.977953°E–

142.981734°E).  From weather data of 1981-2015 [106], regional annual precipitation, 

average annual temperature, and average accumulative annual duration of sunshine of this 

area is reported as 953.3 mm, 6.2°C, and 1939.6 h, respectively; whilst in 2015 annual 

precipitation, average annual temperature, and accumulative annual duration of sunshine of 

this area is reported as 828.5 mm, 7.0°C, and 2115.0 h, respectively.  The lower left field 

No.1 (marked in black rectangle shown in Fig.5. 2) and upper right field No.2 (marked in red 

rectangle shown in Fig.5. 2) was planted with wheat variety of Kitahonami and Yumechikara, 

respectively.  Each of these two fields occupies about 3.2 ha and 2 ha, of which the variety of 

Kitahonami is the most widely planted winter wheat variety in Japan and is reported to have 

taken up about 90% acreages of winter wheat in Hokkaido alone[108].  

  

Fig.5. 2 Two neighboring wheat fields were studied planted with different winter wheat varieties 

 

 

 

Fig.5. 3 Color change of wheat canopy shown by using satellite images in true color mode (Images 

taken on June 1, 7, 15, and July 17, 2015 were demonstrated in sequence from left to right) 
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Fig.5. 4 Color change of wheat canopy was showed by using satellite images in standard false color 

mode (Images taken on June 1, 7, 15, and July 17, 2015 were demonstrated in sequence from left to 

right) 

 

Four Rapideye satellite images taken on 1, 7, 15 June and 17 July 2015 were used in this 

study. Identical push-broom imaging sensors carried on each RapidEye satellite collect 

multispectral data of five spectral bands including blue (440-510 nm), green (520-590 nm), 

red (630-685 nm), red edge (690-730 nm), and near-infrared (760-850 nm) with 77 km swath 

width. During on-ground processing the remote sensing imagery is radiometrically calibrated 

and scaled to a 16 bit dynamic range, which converts the relative pixel digitalized number 

into values related with at sensor radiances by a radiometric scale factor of 0.01 [109].  High 

spatial resolution of 6.5 m of level 1B products and 5 m in terms of nadir ground sampling 

distance of the ortho-rectified ones is the another merit in consideration of the study on 

combination of satellite remote sensing images based vegetation indices with UAV’s RGB 

images based vegetation indices. 

 

Fig.5. 5 UAV’s flight path 
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Fig.5. 6 UAV’s RGB images from heading stage to harvesting (the upper four images from left to 

right were taken on June 2, 10, 19 and 25, and the lower four images from left to right were taken on 

July 2, 10, 16 and 24, 2015) 

 

Since satellite remote sensing images’ temporal frequencies and spatial resolution are not 

adequate to monitor rapidly changing wheat growth conditions, eight RGB images acquired 

from UAV were also taken from early June to the end of July 2015 covering two wheat fields 

at the interval of about one week. Autonomous flights were conducted eight times from 

winter wheat’s heading stage to ripening stage, on 2, 10, 19, and 25 June, 2015, and 2, 10, 16, 

and 24 July 2015 (at about 11:00 local time), using the flight paths that were designed 

beforehand in the GCS software, shown in Fig.5. 5 as blue lines. A SONY ILCE-6000 

commercial digital camera with the sensor size of 23.5 mm * 15.6 mm and the focal length of 

16 mm was used to take pictures in continuous mode every two seconds (f/8, 1/500 sec, ISO 

100). During each flight the camera was fixed on a two-axis gimbal, pointing vertically 

downwards and took about 120 photos covering two adjacent fields in order to get enough 

GCPs for geo-referencing. Every 120 individual photographs were stitched together as an 

Ortho-mosaic image by using Agisoft Photoscan software, which was shown in Fig.5. 6. 

Each of the Ortho-mosaic images has about 3600 * 2450 pixels in size, and the ground 

resolution reached up to about 12.5 cm after ortho-mosaicking. Geo-referencing of UAV 

ortho-mosaic images were accomplished using ArcMap software by using eight GCPs, which 

consist of headline corners, telegraph poles around the test field.  First order polynomial 

transformation creates two least-square-fit equations by comparing the image space 

coordinates of the GCPs with the geographic coordinates (latitude and longitude) and 

translates image coordinates of each pixel into geographic coordinates.  These GCPs’ geo-
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spatial coordinates were measured by using Trimble SPS855 GNSS modular receiver in 

RTK-GPS mode.  And the result of UAV Ortho-mosaic image’s geo-referencing was shown 

in Fig.5. 7 as geo-spatially overlaid upon a satellite image. 

 

Fig.5. 7 Geo-referenced UAV’s Ortho-mosaic image overlaid upon satellite image 

 

5.2.2 Radiometric Normalization of Multi-temporal Remote Sensing Images 

Due to variated atmospheric conditions, different illumination intensity, viewing angles, 

and etc., radiometric accuracy and consistency are difficult to maintain among multi-temporal 

remote sensing images. Different from absolute radiometric correction, which is usually 

based on radiative transfer models such as 6S [110], MODTRAN [111], and etc., relative 

radiometric correction or radiometric normalization was performed to adjust multi-temporal 

images to a set of reference data and compensate for the above effects. The reference data 

were generated by calculating the average values of each pseudo-invariant features’ (PIF) 

pixel values, band by band, which refer to the ground objects of which the reflectance values 

are nearly constant over time during a certain period [112].  According to these PIFs’ pixel 

values of each band and corresponding reference data, the radiometric normalization models 

of different dates’ satellite images as well as UAV ortho-mosaic images, band by band, were 

obtained by building linear regression equations. 

As to the satellite images, 38 crossroads and 2 flat grounds nearby construction sites, 

covering considerable large area around the experimental field, were selected as PIFs by 

visual inspection, marked as dark dots shown in Fig.5. 8. Forty PIFs’ pixel values and the 

corresponding average values are listed in Table 5. 1, taking blue band as an example. 7 
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places along road as well as 5 places on roofs were chosen as PIFs in each UAV ortho-

mosaic images, and around each PIF’s location the average value of 6 pixels distributed 

within 1-meter-square were calculated so that the influence of abnormal values caused by 

foreign matters etc. could be decreased to the minimum. The spatial distribution of UAV 

Ortho-mosaic images’ PIFs was also shown in Fig.5. 8.  

Table 5. 1 PIFs’ pixel values of satellite images (taking blue band as an example) 

PIF ID 17 July 15 June 7 June 1 June Average 

1 8046 8827 8846 8775 8624 

2 6161 7684 7229 7374 7112 

3 6704 8107 7532 7477 7455 

4 6478 7817 7035 7190 7130 

5 7761 8605 7939 8083 8097 

6 6726 7864 6685 7218 7123 

7 5997 8042 6759 7606 7101 

8 6613 8065 7328 7615 7405 

9 6213 7927 7232 7191 7141 

10 7288 8281 7694 8002 7816 

11 6705 7998 7954 7636 7573 

12 6624 8565 7128 6960 7319 

13 6070 7720 6872 6914 6894 

14 6766 8013 7288 7436 7376 

15 6645 7937 7187 7497 7317 

16 6466 8268 7561 7208 7376 

17 7287 8070 7062 7773 7548 

18 5889 7405 6327 6752 6593 

19 6603 7869 7603 7946 7505 

20 6950 7860 6739 7153 7176 

21 6657 8023 7502 7040 7306 

22 6991 8268 7957 7773 7747 

23 6936 7948 7714 8023 7655 

24 5561 7680 6668 7136 6761 

25 6963 8212 7308 6926 7352 

26 6326 7912 7509 7771 7380 

27 5961 8014 6508 6863 6837 

28 11228 9701 10003 11163 10524 

29 6798 8116 7659 7940 7628 

30 6720 8107 7937 7865 7657 

31 6033 7551 6428 7059 6768 

32 6214 7803 6605 7227 6962 

33 6261 7855 6797 7574 7122 

34 6997 8122 7267 7349 7434 

35 12584 11324 12723 15994 13156 

36 7938 8688 8278 8186 8273 

37 6888 7979 7200 7651 7430 

38 5933 7948 7271 7381 7133 
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39 6224 7996 6380 6791 6848 

40 5801 7823 6446 7091 6790 

 

   

Fig.5. 8 Spatial distribution PIFs in satellite image (left) and UAV Ortho-mosaic image (right)  

 

Table 5. 2 Linear regression normalization models of satellites images 

Image date Band Slope Intercept R-squared 

1 June Blue 0.72 1977.00 0.96 

Green 0.76 1419.83 0.98 

Red 0.81 830.67 0.97 

RE 0.80 917.50 0.98 

NIR 0.90 710.89 0.87 

7 June Blue 0.98 228.58 0.95 

Green 0.94 443.09 0.99 

Red 1.04 -306.32 0.96 

RE 1.00 -104.54 0.96 

NIR 0.83 1444.00 0.91 

15 June Blue 1.68 -6117.00 0.94 

Green 1.52 -3627.00 0.93 

Red 1.25 -993.83 0.89 

RE 1.24 -877.75 0.90 

NIR 0.98 -369.56 0.84 

17 July Blue 0.84 1817.00 0.95 

Green 0.90 962.98 0.94 

Red 0.83 1029.00 0.96 

RE 0.89 620.13 0.97 

NIR 0.80 169.00 0.86 
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Table 5.3 Linear regression normalization models of UAV images 

Image date Band Slope Intercept R-squared 

2 June Blue 1.01 6.55 0.83 

Green 0.77 45.38 0.96 

Red 0.74 52.52 0.94 

10 June Blue 0.86 15.43 0.73 

Green 0.87 7.96 0.91 

Red 0.85 11.55 0.91 

19 June Blue 0.77 42.65 0.91 

Green 1.09 -15.09 0.94 

Red 1.10 -17.33 0.93 

25 June Blue 0.99 4.14 0.97 

Green 0.95 9.63 0.99 

Red 0.92 12.56 0.99 

2 July Blue 0.82 28.49 0.94 

Green 1.03 -13.48 0.98 

Red 1.03 -12.15 0.98 

10 July Blue 0.88 22.77 0.81 

Green 1.01 -2.42 0.94 

Red 1.06 -10.30 0.93 

16 July Blue 0.79 47.09 0.97 

Green 1.16 -15.27 0.98 

Red 1.16 -16.84 0.97 

24 July Blue 0.94 12.01 0.80 

Green 0.89 17.61 0.97 

Red 0.90 16.28 0.97 

 

According to these PIFs’ pixel values, radiometric normalization models of different 

dates’ satellite images as well as UAV ortho-mosaic images, band by band, were built and 

shown in Table 5. 2 and Table 5.3, respectively. From the results of R-squared values we can 

see that the deviation of the satellite image on 15 June from the reference data is most 

significant, which means the atmospheric effects such as weather condition comparatively 

differ from other days. When considered from the viewpoint of the performances of each 

band, NIR band of the satellite images expressed worst correlation, and the other bands 

seemed to be correspondingly correlated better among these images, due to different spectral 

responsive characteristics. As to UAV ortho-mosaic images, conclusion could be drawn that 

the variation of blue band is most significant, whilst green band and red band expressed 

consistently higher relevance and less variation, indicating that blue band is more susceptible 

to influences of different photographing environment. And we can also conclude that the 

image of 10 June was taken under the most deviated photographing condition when 
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compared to other UAV ortho-mosaic images. And based on these linear regression models, 

each band of all images was radiometrically normalized to the reference data and the effects 

caused by the deviation of atmosphere condition could be compensated, so that we can ignore 

the disturbance of atmosphere and extract the real changes of crops in multi-temporal 

analysis. 

5.2.3 Vegetation Indices of Remote Sensing Images 

 

Fig.5. 9 Typical spectral signature of different features (Saba Daneshgar) 

 

NDVI is the most well-known and widely used vegetation index to detect live plant 

canopies due to the high spectral reflectance of plants in the spectrum of NIR region. In 

recent years several vegetation indices that are different from the NDVI associated with NIR 

band were proposed based on high-resolution color remote sensing images, in order to 

identify vegetative features from background such as VDVI, NGRDI, NGBDI, GRRI, and 

ExG mentioned above in Sec.5.1, according to the typical spectral signature of different 

features shown in Fig.5. 9. 

𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅𝑠𝑎𝑡𝑒)/(𝑁𝐼𝑅 + 𝑅𝑠𝑎𝑡𝑒)       (5.1) 

𝑉𝐷𝑉𝐼𝑠𝑎𝑡𝑒 = (2𝐺𝑠𝑎𝑡𝑒 − 𝑅𝑠𝑎𝑡𝑒 − 𝐵𝑠𝑎𝑡𝑒)/(2𝐺𝑠𝑎𝑡𝑒 + 𝑅𝑠𝑎𝑡𝑒 + 𝐵𝑠𝑎𝑡𝑒)    (5.2) 

𝑉𝐷𝑉𝐼 = (2𝐺𝑈𝐴𝑉 − 𝑅𝑈𝐴𝑉 − 𝐵𝑈𝐴𝑉)/(2𝐺𝑈𝐴𝑉 + 𝑅𝑈𝐴𝑉 + 𝐵𝑈𝐴𝑉)    (5.3) 

𝑁𝐺𝑅𝐷𝐼 = (𝐺𝑈𝐴𝑉 − 𝑅𝑈𝐴𝑉)/(𝐺𝑈𝐴𝑉 + 𝑅𝑈𝐴𝑉)       (5.4) 
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𝑁𝐺𝐵𝐷𝐼 = (𝐺𝑈𝐴𝑉 − 𝐵𝑈𝐴𝑉)/(𝐺𝑈𝐴𝑉 + 𝐵𝑈𝐴𝑉)       (5.5) 

𝐺𝑅𝑅𝐼 = 𝐺𝑈𝐴𝑉/𝑅𝑈𝐴𝑉          (5.6) 

𝐸𝑥𝐺 = 2𝐺𝑈𝐴𝑉 − 𝑅𝑈𝐴𝑉 − 𝐵𝑈𝐴𝑉        (5.7) 

where 𝑁𝐼𝑅, 𝑅𝑠𝑎𝑡𝑒, 𝐺𝑠𝑎𝑡𝑒 and 𝐵𝑠𝑎𝑡𝑒 is the radiometrically normalized pixel value of NIR band, 

red band, green band and blue band of satellite images, respectively; whilst  𝐺𝑈𝐴𝑉, 𝑅𝑈𝐴𝑉, and 

𝐵𝑈𝐴𝑉 is the radiometrically normalized pixel values of green band, red band and blue band of 

UAV’s ortho-mosaic images, respectively.  

 

 

Fig.5. 10 Spatial distribution of vegetation indices 

 

In this study, forty vegetation indices’ samples (each twenty samples for field 

Kitahonami and Yumechikara, respectively) of NDVI as well as VDVIsate  out of each 

satellite images were extracted respectively, listed in Table 5. 4. At the same sampling 

positions forty samples of VDVI were correspondingly extracted out of UAV’s ortho-mosaic 

images for multi-temporal monitoring of wheat growth status as well as correlation analysis 

between vegetation indices based on these two different sources of remote sensing images, 

listed in Table 5.5.  Mean filter of 39 * 39 kernels was applied to UAV’s Ortho-mosaic image 

based VDVI maps so that noise signal of bare soil could be largely reduced and spatial 

resolution of UAV’s ortho-mosaic images based VDVI map could be coordinated with 

satellite images based NDVI map as well as satellite images based VDVI map. Spatial 

distribution of forty vegetation indices samples is described in a NDVI map based on satellite 

image taken on June 15 2015 in Fig.5. 10. 
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Table 5. 4 Satellite images based vegetation indices 

ID 

Coordinates NDVI VDVIsate 

Latitude Longitude 
1 

June 

7  

June 

15 

June 

17 

July 

1 

June 

7   

June 

15 

June 

17 

July 

1 42.90233 142.9792 0.54 0.72 0.58 0.20 0.02 0.05 -0.01 -0.01 

2 42.90219 142.9789 0.56 0.76 0.60 0.20 0.02 0.06 0.01 -0.02 

3 42.90214 142.9795 0.52 0.72 0.57 0.18 0.02 0.06 0.00 0.00 

4 42.90202 142.9792 0.56 0.76 0.59 0.22 0.02 0.07 0.01 0.01 

5 42.90194 142.9798 0.55 0.75 0.57 0.18 0.03 0.06 -0.02 -0.02 

6 42.9018 142.9796 0.58 0.77 0.60 0.17 0.03 0.09 0.01 0.00 

7 42.90169 142.9788 0.44 0.62 0.52 0.21 0.02 0.04 0.00 0.01 

8 42.90169 142.9802 0.55 0.73 0.58 0.18 0.02 0.07 0.03 -0.01 

9 42.90162 142.9799 0.57 0.73 0.57 0.18 0.03 0.06 -0.03 -0.01 

10 42.90158 142.9805 0.58 0.77 0.61 0.18 0.03 0.07 0.00 0.01 

11 42.90148 142.9783 0.55 0.72 0.56 0.34 0.03 0.05 0.01 0.09 

12 42.90148 142.9792 0.49 0.66 0.53 0.22 0.02 0.03 -0.02 0.02 

13 42.90143 142.9802 0.57 0.74 0.57 0.16 0.02 0.07 -0.03 -0.01 

14 42.90142 142.9808 0.60 0.78 0.61 0.16 0.04 0.09 0.00 0.00 

15 42.90132 142.9804 0.61 0.79 0.61 0.17 0.04 0.07 -0.02 -0.01 

16 42.90128 142.9796 0.47 0.64 0.52 0.20 0.01 0.03 0.01 0.02 

17 42.90126 142.9786 0.56 0.73 0.60 0.16 0.02 0.06 -0.01 -0.01 

18 42.90124 142.9811 0.51 0.69 0.56 0.24 0.02 0.04 0.00 -0.01 

19 42.9012 142.9806 0.60 0.78 0.61 0.15 0.03 0.08 0.00 -0.03 

20 42.90112 142.9807 0.59 0.76 0.61 0.14 0.03 0.08 -0.01 -0.01 

21 42.90111 142.9798 0.47 0.68 0.54 0.20 0.02 0.05 -0.03 0.00 

22 42.90104 142.9814 0.50 0.66 0.55 0.18 0.02 0.05 0.00 0.00 

23 42.90103 142.979 0.53 0.72 0.59 0.23 0.02 0.04 -0.04 0.01 

24 42.90101 142.98 0.55 0.74 0.58 0.13 0.02 0.05 -0.03 -0.02 

25 42.90094 142.981 0.59 0.78 0.61 0.14 0.03 0.08 -0.03 -0.01 

26 42.90087 142.9816 0.55 0.73 0.58 0.10 0.02 0.06 0.01 -0.02 

27 42.90086 142.9803 0.52 0.70 0.56 0.22 0.03 0.05 -0.03 0.03 

28 42.90086 142.9798 0.55 0.74 0.58 0.21 0.02 0.05 -0.04 0.01 

29 42.90081 142.9794 0.46 0.62 0.51 0.16 0.01 0.03 -0.03 0.01 

30 42.90074 142.98 0.51 0.73 0.56 0.26 0.01 0.07 -0.01 0.02 

31 42.90067 142.9815 0.58 0.77 0.61 0.12 0.02 0.08 0.01 -0.02 

32 42.90067 142.982 0.53 0.73 0.58 0.11 0.01 0.05 -0.03 -0.02 

33 42.90064 142.9806 0.51 0.70 0.56 0.22 0.02 0.04 -0.06 -0.01 

34 42.9006 142.9802 0.52 0.70 0.54 0.23 0.03 0.05 -0.03 0.02 

35 42.9005 142.9809 0.53 0.71 0.56 0.24 0.03 0.05 -0.01 0.03 

36 42.90045 142.9805 0.48 0.68 0.56 0.20 0.02 0.04 -0.05 0.02 

37 42.90031 142.9812 0.49 0.67 0.54 0.22 0.02 0.05 -0.06 -0.01 

38 42.90031 142.9807 0.56 0.74 0.60 0.25 0.02 0.07 -0.01 0.02 

39 42.90017 142.981 0.53 0.71 0.56 0.26 0.02 0.05 0.01 0.03 

40 42.90017 142.9814 0.48 0.67 0.54 0.18 0.02 0.04 -0.04 0.02 
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Table 5. 5 UAV ortho-mosaic images based VDVI 

ID 

Coordinates Date 

Latitude Longitude 2 Jun. 10 Jun. 19 Jun. 25 Jun. 2 Jul. 10 Jul. 16 Jul. 24 Jul. 

1 42.90233 142.9792 0.11 0.16 0.09 0.16 0.11 0.11 0.07 0.01 

2 42.90219 142.9789 0.14 0.17 0.11 0.17 0.12 0.12 0.07 0.02 

3 42.90214 142.9795 0.11 0.16 0.09 0.15 0.11 0.10 0.07 0.02 

4 42.90202 142.9792 0.13 0.17 0.11 0.16 0.12 0.12 0.07 0.02 

5 42.90194 142.9798 0.12 0.16 0.10 0.16 0.12 0.11 0.06 0.02 

6 42.9018 142.9796 0.13 0.17 0.11 0.16 0.12 0.12 0.07 0.01 

7 42.90169 142.9788 0.08 0.12 0.05 0.10 0.07 0.08 0.06 0.02 

8 42.90169 142.9802 0.13 0.17 0.10 0.16 0.12 0.11 0.06 0.01 

9 42.90162 142.9799 0.13 0.17 0.11 0.17 0.13 0.12 0.07 0.01 

10 42.90158 142.9805 0.13 0.16 0.10 0.16 0.12 0.11 0.06 0.01 

11 42.90148 142.9783 0.15 0.14 0.06 0.12 0.08 0.10 0.06 0.02 

12 42.90148 142.9792 0.10 0.12 0.06 0.10 0.07 0.08 0.06 0.02 

13 42.90143 142.9802 0.13 0.17 0.11 0.16 0.13 0.12 0.06 0.01 

14 42.90142 142.9808 0.14 0.17 0.10 0.16 0.12 0.12 0.06 0.01 

15 42.90132 142.9804 0.13 0.18 0.12 0.17 0.13 0.12 0.07 0.01 

16 42.90128 142.9796 0.11 0.13 0.06 0.11 0.07 0.09 0.06 0.03 

17 42.90126 142.9786 0.11 0.13 0.06 0.11 0.07 0.08 0.06 0.02 

18 42.90124 142.9811 0.13 0.17 0.10 0.16 0.12 0.11 0.06 0.01 

19 42.9012 142.9806 0.13 0.17 0.11 0.17 0.13 0.12 0.06 0.01 

20 42.90112 142.9807 0.13 0.17 0.11 0.16 0.13 0.12 0.06 0.01 

21 42.90111 142.9798 0.10 0.12 0.06 0.11 0.07 0.09 0.07 0.03 

22 42.90104 142.9814 0.13 0.16 0.10 0.16 0.12 0.11 0.05 0.01 

23 42.90103 142.979 0.12 0.13 0.06 0.11 0.08 0.09 0.06 0.02 

24 42.90101 142.98 0.12 0.14 0.06 0.11 0.08 0.09 0.06 0.03 

25 42.90094 142.981 0.14 0.17 0.11 0.17 0.13 0.12 0.06 0.01 

26 42.90087 142.9816 0.13 0.17 0.10 0.16 0.12 0.12 0.05 0.01 

27 42.90086 142.9803 0.13 0.14 0.06 0.12 0.08 0.09 0.06 0.02 

28 42.90086 142.9798 0.12 0.13 0.05 0.11 0.07 0.09 0.06 0.03 

29 42.90081 142.9794 0.09 0.12 0.05 0.11 0.07 0.09 0.06 0.02 

30 42.90074 142.98 0.12 0.13 0.05 0.12 0.07 0.09 0.06 0.03 

31 42.90067 142.9815 0.14 0.17 0.11 0.17 0.12 0.12 0.04 0.01 

32 42.90067 142.982 0.14 0.16 0.09 0.16 0.11 0.11 0.03 0.01 

33 42.90064 142.9806 0.13 0.14 0.05 0.12 0.08 0.09 0.06 0.02 

34 42.9006 142.9802 0.12 0.14 0.05 0.12 0.07 0.09 0.05 0.03 

35 42.9005 142.9809 0.13 0.14 0.05 0.12 0.08 0.09 0.06 0.02 

36 42.90045 142.9805 0.12 0.13 0.04 0.12 0.07 0.09 0.05 0.03 

37 42.90031 142.9812 0.14 0.14 0.06 0.12 0.08 0.10 0.06 0.02 

38 42.90031 142.9807 0.13 0.13 0.05 0.12 0.07 0.09 0.05 0.03 

39 42.90017 142.981 0.13 0.13 0.05 0.12 0.07 0.09 0.06 0.02 

40 42.90017 142.9814 0.14 0.14 0.06 0.12 0.08 0.09 0.06 0.02 
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5.2.4 Sampling of Wheat Yield and Corresponding Vegetation Indices 

Table 5. 6 Samples of wheat yield 

ID Coordinates Grain Weight  Accumulative values of vegetation index 

Latitude Longitude VDVI NGRDI NGBDI GRRI ExG 

1 42.901657 142.978642 1.01 0.71 1.00 0.50 10.40 333.17 

2 42.901097 142.979570 0.86 0.65 1.16 0.29 10.86 264.30 

3 42.900532 142.980497 0.84 0.62 1.04 0.29 10.49 286.08 

4 42.900180 142.981070 0.91 0.64 1.11 0.27 10.70 296.75 

5 42.900360 142.981302 0.85 0.67 1.10 0.33 10.65 301.90 

6 42.900694 142.980759 0.79 0.62 1.12 0.24 10.70 276.56 

7 42.900972 142.980286 0.82 0.62 1.19 0.18 11.00 259.11 

8 42.901202 142.979924 0.80 0.63 1.16 0.25 10.81 244.95 

9 42.901476 142.979472 0.83 0.62 1.19 0.18 10.96 259.36 

 

As we have discussed in Sec.5.1 that high-resolution color images could be used as a 

suitable tool for distinguishing vegetation from the background; besides, the theory on 

harvest index indicates that the grain yield of a certain variety has a directly proportional 

relationship with the above ground biomass. Therefore, in this study we are to validate the 

correlation between the accumulative vegetation indices based on UAV ortho-mosaic images 

and the sampled grain yields. 9 samples of grain yield were taken by using a 1 m * 1 m 

square frame to separate samples of wheat canopies in the winter wheat field of Kitahonami. 

Grain samples’ position was selected after detailed visual inspection on the UAV ortho-

mosaic images and field survey on the sampling day in order to representatively choose 3 

samples of or nearby lodging area and six samples out of normal areas, of which the most 

flourished areas and sparse areas were both taken into consideration. Spatial distribution of 

the grain yield samples was shown in Fig.5. 2 as red dots. The sampling operation was 

conducted at 24 July 2015, three days ahead of harvesting, by collecting wheat ears within 

the specified 1-square-meter section. These samples’ geo-coordinates were acquired by using 

Trimble SPS855 GNSS modular receiver in RTK-GPS mode. Grain weight of each sample 

was calculated and converted to 12.5% moisture after threshing, which was listed in Table 5. 

6. 



 

125 
 

 

 

  

Fig.5. 11 Vegetation index maps based on UAV Ortho-mosaic images 

 

Subsequently, UAV ortho-mosaic images taken on eight dates were all used to generate 

color vegetation index maps of ExG, NGBDI, GRRI, NGRDI, and VDVI by using ENVI 
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software. Each pixel value was determined from the radiometrically normalized pixel values 

and using band math functions according to Eq. (5.3) to Eq. (5.7). Five vegetation index maps 

of ExG, NGBDI, GRRI, NGRDI, and VDVI based on the UAV ortho-mosaic image taken on 

2 June 2015 was shown in Fig.5. 11, respectively; and each vegetation index map based on 

the UAV ortho-mosaic images taken on other dates was also generated in the same way and 

omitted here due to limited space. Then the accumulative vegetation index maps for each 

vegetation index were generated, respectively, by overlapping the corresponding vegetation 

index maps and adding up pixel values of these scalar maps on different dates. The 

accumulative ExG map was also shown in Fig.5. 11 as an example. After applying a mean 

filter of 7 × 7 pixels (which covers about 1-square-meter area) upon each accumulative 

vegetation index maps of ExG, NGBDI, GRRI, NGRDI, and VDVI, pixel values that share 

the same geo-spatial coordinates with the nine wheat samples were extracted, also listed in 

Table 5. 6. 

5.3 Results and Discussion 

5.3.1 Multi-temporal Monitoring of Wheat Growth Status 

From multi-temporal satellite images, shown in Fig.5. 3 in true color mode and Fig.5. 4 

in standard false color mode which is combined of NIR band, red band, and green band, we 

could get general understanding of color change of wheat canopy. We may conclude that in 

true color mode the greenness of these two wheat fields of different varieties do not differ so 

much from each other; besides, the greenness of these two wheat fields keeps increasing to 

the date of June 15 and then begins to decrease since then due to ripening process. Within-

field spatial variations of canopy density as well as greenness could not be clearly observed 

due to sparse spatial resolution of satellite images; however, abrupt brightness only occurred 

in the field of Kitahonami in the last image taken on July 17 (spotted in red circle), which 

roughly revealed the lodged wheat canopy’s position. On the other hand, within-field spatial 

variations of canopy color could be clearly observed and the occurrence of lodging was 

spotted around over-flourished areas (marked in yellow circle) in the field of Kitahonami. For 

comparison, the other field of Yumechika showed homogeneous characteristics of canopy 

development, and no lodging happened throughout the field. Conclusion could also be 

reached that until June 15 both the two fields showed vigorous vegetative growth conditions, 

and since then no more bright-red areas were found in both two fields in the last image taken 
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about 10 days prior to harvesting on July 17, which indicated the dying-out process of wheat 

canopies. 

From UAV’s ortho-mosaic images straightforward visualization of wheat growth status 

could be acquired. Within-field variations of wheat canopy density are so obvious that 

existence of bare soil could even be noticed from the image taken on June 2.  In terms of 

time-domain, canopy greenness of both two wheat varieties reached peak value on June 10 

2015, and there is no significant difference of canopy greenness between these two different 

wheat varieties in early growth stages; however, from June 10 2015 it became very 

distinctive that field No.2 (marked in red box) showed heavier canopy greenness compared 

with the other one.  In image taken on June 2 2015 of field No.1 (marked in black box) such 

areas marked in circles had relatively higher level of stalk densities, and compounded with 

other environmental influences such as rainfall, wind, and etc., it eventually led to the 

occurrence of lodging at growth stage of grain-filling when the over-luxuriant canopies failed 

to support heavy wheat ears, marked in image of July 16 and 24 2015. Fig.5. 12 showed a 

close-shot photograph of the lodging spot in field No.1, taken on July 16 2015. It suggested 

that UAV’s ortho-mosaic image taken from about one week ahead of harvesting could be 

practically served as navigation references which guide either drivers of combine harvesters, 

or autonomous harvesting vehicles, to adjust operation speed according to the specific 

lodging situations for less loss rate of harvesting, as occurrence of lodging in wheat field has 

been generally considered as the most influencing and direct factor which impairs the 

working performance of combine harvester. 

 

Fig.5. 12 Close-shot photograph of the lodging spot in test wheat field  
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Table 5. 7 Time-varying NDVI and VDVI values calculated from satellite images 

 Date Average Standard deviation 

Satellite 

NDVI 

June 1 0.54 0.04 

June 7 0.72 0.04 

June 15 0.57 0.03 

July 17 0.19 0.05 

Satellite 

VDVI 

June 1 0.02 0.001 

June 7 0.06 0.01 

June 15 -0.01 0.02 

July 17 0.003 0.02 

 

Table 5. 8 Time-varying VDVI values calculated from UAV’s Ortho-mosaic images 

 Date Average Standard deviation 

UAV 

VDVI 

June 2 0.12 0.01 

June 10 0.15 0.02 

June 19 0.08 0.03 

June 25 0.14 0.02 

July 2 0.10 0.02 

July 10 0.10 0.01 

July 16 0.06 0.01 

July 24 0.02 0.01 

 

In order to further analyze time-varying canopy color changes, the average values and 

standard deviations of NDVI as well as VDVI samples derived out of each satellite image 

were listed in Table 5. 7; and the average values and standard deviations of the corresponding 

of VDVI samples based on each UAV ortho-mosaic image were listed Table 5. 8. The 

increasing trend of satellite image based NDVI values was very clear at early growth stages, 

and then NDVI values began to decrease stage by stage to minimum value around 0.19, 

which was also showed in Fig.5. 13. On the other hand, VDVI values calculated from 

satellite images suggested the same tendency with the NDVI counterpart that VDVI reached 

maximum values on June 7 and then began to decrease as wheat changed from vegetative 

growth into reproductive process. Besides, heavy variation of VDVI values derived from 

satellite images around wheat ripening stage may be a big issue when used for quantitative 

inversion with ground variables, showed in Fig.5. 13, as satellite image based VDVI is not as 

reliable as NDVI when crops are in the process of ripening or yellowing and VDVI values 

diverge around the threshold value of 0.  Data on June 15 and July 17 indicated that most of 

VDVI values were found to be negative numbers due to the interference of soil pixels 
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compounding with other reasons such as lodging, as the sparse resolution of satellite images 

reaches up to about 5 m.  

 

Fig.5. 13 Satellite image based vegetation indices 

 

 

Fig.5. 14 UAV Ortho-mosaic image based VDVI 

 

However, from the VDVI data based on UAV ortho-mosaic images, shown in Fig.5. 14, 

we may conclude that the time-varying trend of VDVI based on the UAV ortho-mosaic 

image is very alike with the one we made by observing multi-temporal changes of satellite 

image based NDVI as well as satellite image based VDVI.  Firstly VDVI values increased 

until June 10 and then began to decrease stage by stage to the minimum value around 0.02. 

The difference of UAV’s ortho-mosaic image based VDVI from satellite image based VDVI 

is that the VDVI values of the former remote sensing source were found to be positive values 

even until July 24, 2 day prior to harvesting, which once again confirmed VDVI’s capability 
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to differentiate vegetative areas from non-vegetative areas. The reason could be that 

decimeter-level ground resolution of UAV’s ortho-mosaic images eliminated soil and other 

background features’ interference. Nevertheless, the existence of abnormal value on 19 June 

also indicated that the individual VDVI values based on a specific color image could be 

deceptive, as it is not as reliable as the NDVI value due to the lack of NIR band. 

Furthermore, correlation analysis of vegetation indices based on satellite images and 

UAV’s ortho-mosaic images was performed for temporal complementation. All of four 

satellite images and four out of eight UAV’s ortho-mosaic images that were taken temporally 

around the dates of satellite images were used, from which vegetation indices were extracted, 

respectively, as has been described in Sec. 5.2.3.  Regression analysis showed that second-

order polynomial models fitted best between UAV’s Ortho-mosaic image based VDVI and 

satellite image based VDVI as well as satellite image based NDVI, when compared with 

other regression models such as linear, exponential, and power.  Coefficient of determination 

and RMSE were calculated as 0.62 and 0.019 for second-order polynomial regression model 

between UAV’s ortho-mosaic image based VDVI and satellite image based VDVI. On the 

other hand, coefficient of determination and RMSE were calculated as 0.58 and 0.127 for 

second-order polynomial regression model between UAV’s ortho-mosaic image based VDVI 

and satellite image based NDVI, respectively. Therefore, we may conclude that it is feasible 

to temporally complement satellite remote sensing by using UAV’s ortho-mosaic images by 

both visual interpretation and also quantitative analysis to monitor wheat growth status.  

 

Fig.5. 15 Regression model between UAV images’ VDVI and satellite images’ VDVI 
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Fig.5. 16 Regression model between UAV images’ VDVI and satellite images’ NDVI 

 

5.3.2 Mapping within-Field Variations of Wheat Yield 

As mentioned in Sec.5.1, it was reported that accumulative vegetation indices values of 

multi-temporal remote sensing images after flowering stage have good relationship with crop 

yield. Besides, we have also understood from Sec.5.3.1 that vegetation index values from an 

individual remote sensing image taken on a specific date could be inaccurate and deceptive 

due to weather condition and etc. Therefore, in this study we conducted stepwise regression 

analysis of sampled wheat yield with five different accumulative vegetation indices, which 

were extracted from eight UAV’s ortho-mosaic images that covered a winter wheat field 

from heading stage to ripening stage, as described in Sec.5.2.4. By using stepwise method, a 

regression analysis was performed in MATLAB R2013a (The MathWorks, Inc.,Natick, MA, 

USA) among the response variable of sampled wheat yield and five predictive variables of 

accumulative vegetation indices of ExG, NGBDI, GRRI, NGRDI, and VDVI, listed in Table 

5. 6.  

The result of stepwise regression analysis showed that the variable of NGRDI was 

removed from the stepwise regression model due to insignificant correlation with the 

responsive variable of wheat yield, whilst the rest variable of VDVI, NGBDI, GRRI, and 

ExG were included to fit the regression model expressed as Eq. (5.8), with coefficient of 

determination as 0.94 and RMSE = 0.02. For comparison, the average value of sampled grain 

yield was calculated as 0.86 kg per square meter. Subsequently, LOOCV was also conducted 
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by building nine linear regression models that uses eight set variables of sampled wheat yield 

and values of VDVI, NGBDI, GRRI, and ExG as training data, whilst leaves one set of 

variables as test data. RMSEP for the LOOCV was calculated as 0.06. 

Y = −6.19−6.78 × X1 + 3.45 × X3 + 0.88 × X4 + 0.003 × X5    (5.8) 

where Y, X1, X3, X4, and X5 denotes estimated wheat yield, accumulative VDVI, NGBDI, 

GRRI, and ExG, respectively.  

Based on the regression model expressed as Eq. (5.8), wheat yield was calculated by 

using VDVI, NGBDI, GRRI, and ExG maps, and finally map of wheat yield was generated 

accordingly in ENVI software. Wheat yield’s within-field spatial variations could be 

observed from the yield map shown in Fig.5. 17 that non-uniformity of wheat yield of this 

field is quite obvious and the occurrence of lodging coincide with the high-yield areas. By 

observing the histogram of the wheat yield map we could also obtain the information that 

about 25.8% areas in the studied field had grain weight per square meter below 0.5 kg, which 

still has much room for improvement by implementing variable-rate fertilization, precise land 

leveling, and etc.; whilst grain weight per square meter of most areas reached between 0.5–

1.5 kg, occupying about 50.4% acreages; and the average value of grain weight per square 

meter was calculated as 0.72 kg, which indicated the estimated average yield of the studied 

field as 7.2 t/ha. (The yield of Kitahonami planted in Hokkaido is reported from 6.0 to 8.5 

t/ha year by year.) 

 

Fig.5. 17 Map of wheat yield (expressed as grain weight per square meter). 
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Fig.5. 18 Histogram of wheat yield map 

 

5.3 Conclusion 

Based on the multi-temporal satellite remote sensing images and UAV’s ortho-mosaic 

images, we monitored the time-varying canopy color change through image interpretation 

and spotted the occurrence of wheat lodging from UAV ortho-mosaic images take from about 

10 days prior to harvesting. It indicated that the high-resolution UAV ortho-mosaic image 

could be used to guide drivers or autonomous harvesting vehicles to adjust operation speed 

for less harvesting loss. Through monitoring changes of both satellite image based NDVI as 

well as VDVI values and UAV’s ortho-mosaic image based VDVI values, conclusion was 

reached that all of these three vegetation indices have the same and synchronized trend of 

increasing at first, reaching up to peak values around June 7 or 10 2015 before wheat’s 

reproductive growth begins, and starting to decrease since then. By observing the time-

varying values of vegetation indices, we concluded that UAV’s ortho-mosaic images with 

high spatial resolution demonstrated good performance because pixel values are less affected 

by background interference when compared with satellite images. We may also suggest that it 

could be feasible of using commercial camera which is mounted upon small UAVs to 

conduct both qualitative and quantitative study on crop monitoring. 

We also analyzed the correlations among satellite remote sensing images based 

vegetation indices and UAV’s ortho-mosaic image based vegetation index, to discuss the 
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feasibility of utilizing UAV remote sensing images to temporarily complement satellite 

remote sensing in case that satellite images were not available or cost-efficient over specific 

areas. The correlation analysis of satellite image based NDVI as well as VDVI with UAV 

ortho-mosaic image based VDVI showed good consistency at the early stage of wheat 

growing season. However, at the late stage of wheat growing season VDVI based on satellite 

images showed unreliable characteristics due to satellite image’s sparse spatial resolution; on 

the other hand, VDVI based on UAV ortho-mosaic images fell rapidly to the values around 

0.05 at the late growth stage and also showed very limited capability to differentiate wheat 

growing status when compared with NDVI, due to the absence of the NIR band information. 

Therefore, in order to remedy the confine of the direct use of UAV’s ortho-mosaic images, 

image processing techniques such as image segmentation are considered to integrate UAV 

ortho-mosaic images with satellite images in future work. 

Through stepwise regression analysis of the response variable of sampled grain weight 

per square meter and the predictive variables of accumulative color vegetation indices, we 

can conclude that only the variable of normalized green-red difference index was removed 

from the stepwise regression model due to insignificant p-value, whilst the rest variables of 

visible-band difference vegetation index (the normalized green-blue difference index, green-

red ratio index, and excess green vegetation index) were included to fit the regression model, 

with coefficient of determination and RMSE as 0.94 and 0.02, respectively. The averaged 

value of sampled grain weight per square meter was calculated as 0.86 kg. The regression 

model was also validated by using leave-one-out cross validation method, which showed that 

the root-mean-square error of predication of the regression model was 0.06. Based on the 

stepwise regression model, a map of estimated grain weight per square meter (yield map) was 

generated and within-field spatial variations of wheat yield could be understood. The yield 

map could be seen as the comprehensive presentation of the spatial variations of soil fertility, 

tiller density, effective water potential, canopy aeration condition, and etc., which could be 

used as reference for variable-rate fertilization and precise land-leveling in order to further 

improve the overall yield. 
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Chapter 6 Summary 

 

Agricultural remote sensing is a vital component of precision agriculture, which collects 

and manifests the spatial variations of farmland condition and crop growth status for site-

specific treatments. Civilian applications of UAVs witnessed rapid development during these 

two decades from recreational aerial photography to security monitoring, agricultural 

spraying, remote sensing, and etc., due to advantages such like low cost, high efficiency, 

good maneuverability, and safety. In this dissertation, we explored the feasibility of 

introducing a low-altitude UAV as the platform into three agricultural remote sensing 

projects including: (a). to generate topographic maps of farmland for precision land levelling 

operation by integrating multiple sensors onboard the UAV platform; (b). to generate wheat 

stalk density maps during the early growth stage for variable-rate topdressing by segmenting 

UAV remote sensing images; and (c). to conduct correlation analysis between vegetation 

indices based on UAV ortho-mosaic images and satellite remote sensing images, as well as to 

map within-field spatial variations of wheat yield according to multi-temporal UAV remote 

sensing images.  

(a). A one-dimensional LiDAR distance measurement device was installed upon the 

UAV platform, which is set to measure the distance between the ground surface to the UAV-

LiDAR system at the frequency of 10 Hz. The LiDAR distance measurements were amended 

according to the UAV-LiDAR system’s attitude information, which were calculated from the 

multiple MEMS IMU sensors incorporated inside the UAV’s flight controller. A PPK-GPS 

module with small size and light weight features was also attached to the UAV-LiDAR 

system, so that each LiDAR distance measurement could be geo-referenced and accordingly 

the ground elevation of each surveying point could be calculated to acquire 3D coordinates 

(latitude, longitude, and altitude). The static accuracies of LiDAR distance measurements and 

the PPK-GPS positioning coordinates were validated by extracting 6000 sets of measuring 

data, which indicated that the accuracy of LiDAR distance measurements is as high as 1cm, 

whilst the horizontal and vertical accuracy of PPK-GPS is 1cm and about 2 cm, respectively. 

The overall accuracy of the UAV-LiDAR system based topographic surveying approach was 

also validated by using a RTK-GPS module to take 35 samples that uniformly spread 

throughout the field under study and overlapped with the UAV-LiDAR system’s trajectory. 
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The RMSE between the ground elevation data of the UAV-LiDAR system and the validating 

RTK-GPS altitude was calculated as 3.5 cm, which demonstrated high-accuracy and 

feasibility of conducting topographic survey by using our proposed UAV-LiDAR system. 

Visual inspection of the UAV-LiDAR system based topographic survey was also 

implemented by manually building bumps and hollows inside the experimental field, and the 

UAV-LiDAR system was found to be capable of clearly recognizing and demonstrating these 

artificial features. Subsequently, different interpolation methods that were used to generate 

farmland topographic maps based on the UAV-LiDAR system’s topographic surveying data 

were investigated to select the most accurate interpolation model. As the result, TIN 

interpolation model was found to be the most accurate one, and RMSE between the sampled 

reference altitude values of RTK-GPS data and the corresponding ground elevation values of 

the resulting topographic map based on TIN interpolation model was calculated as 13.7 cm. 

Finally aerial photogrammetric DSM was integrated with the UAV-LiDAR system’s 

topographic surveying data for an improved topographic map, as the former topographic data 

has the advantage of large coverage but is also known for its unreliable accuracy, whist the 

accuracy of the UAV-LiDAR system based topographic data is proved to be very high but the 

spatial coverage is very poor. The RSME between the validating RTK-GPS altitude data and 

the corresponding ground elevation values of the improved topographic map based on TIN 

interpolation model was calculated as 5.9 cm, which showed great accuracy and practicability 

of our proposed topographic mapping method. 

(b). A multispectral camera (Green-Ren-NIR) was installed upon the UAV platform for 

acquiring high-resolution images of wheat field during early growth stages. After ortho-

mosaicking and geo-referencing, the multispectral UAV images were transformed into a 

NDVI map. Wheat stalk densities of the field under study were manually counted as ground 

truth, of which the geographical coordinates were measured by using a RTK-GPS module. 

The NDVI map was used to calculate FGV value, which is an indicator of the vegetation 

coverage. Besides, the NDVI map was further binarized into vegetation class and background 

class based on the conventional thresholding method as well as the SVM classifier method, 

respectively; and VCC was calculated out of the classification result. Subsequently, different 

regression models (linear, second-order polynomial, exponential, and power regression) were 

built between the ground truth and the corresponding FGV and VCC, respectively. As the 

result, we concluded that the regression models based on FGV have good accuracies with the 

coefficient of determination around 0.89, whilst the regression models based on VCC have 
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better accuracies with the coefficient of determination around 0.94. Furthermore, we selected 

the power regression model, which has the highest coefficient of determination of 0.95 and 

root-mean-square error of 24, in consideration that the average value of the sampled stalk 

densities was calculated as 593 stalks per square meter. The validating experiment on the 

other wheat field with the same seeding rate and similar field management treatment also 

confirmed that the power regression model is the most accurate and suitable model between 

the sampled stalk density values and the SVM classifier based VCC values. Finally, 

according to the power regression model 125 stalk density values were calculated by 

extracting the corresponding VCC values from the resulting vegetation classification map 

based on SVM classification method, and stalk density maps were generated by using 

different interpolation methods. In thus, we would like to conclude that the UAV-camera 

system could be used to obtain quantitative information for variable-rate topdressing in an 

accurate and efficient manner. 

(c). Agricultural application of UAV remote sensing by using commercial RGB cameras 

decreases high cost of remote sensing sharply and provides instantly researchers and farmers 

with actual and intuitive visualization of crop growth status, since color images accentuate 

particular vegetation greenness and have been suggested to be less sensitive to variations of 

illumination conditions. We installed a SONY ILCE-6000 commercial digital camera upon 

the UAV platform and acquired 8 sets of RGB images over a wheat farmland, which were 

further processed by generating and geo-referencing eight ortho-mosaic images. Based on the 

multi-temporal (from early June to late July 2015) satellite remote sensing images on four 

different dates and UAV’s ortho-mosaic images on eight different dates, we monitored the 

time-varying canopy color change through image interpretation and spotted the occurrence of 

wheat lodging from UAV ortho-mosaic images taken from about 10 days prior to harvesting. 

It indicated that the high-resolution UAV ortho-mosaic image could be used to guide drivers 

or autonomous harvesting vehicles to adjust operation speed for less harvesting loss 

according to the specific lodging situations. We also analyzed the correlations among satellite 

remote sensing images based vegetation indices and UAV’s ortho-mosaic image based 

vegetation index, and the correlation analysis of satellite image based NDVI as well as VDVI 

with UAV image based VDVI showed good consistency at the early stage of wheat growing 

season. Through stepwise regression analysis of the response variable of sampled grain 

weight per square meter and the predictive variables of accumulative color vegetation indices, 

we can conclude that only the variable of normalized green-red difference index was 
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removed from the stepwise regression model due to insignificant p-value, whilst the rest 

variables of visible-band difference vegetation index, the normalized green-blue difference 

index, green-red ratio index, and excess green vegetation index were included to fit the 

regression model, with coefficient of determination and RMSE as 0.94 and 0.02, respectively. 

The averaged value of sampled grain weight per square meter was calculated as 0.86 kg. The 

regression model was also validated by using leave-one-out cross validation method, which 

showed that the RMSE of predication of the regression model was 0.06. Based on the 

stepwise regression model, a map of estimated grain weight per square meter (yield map) was 

generated and within-field spatial variations of wheat yield could be understood. The yield 

map could be seen as the comprehensive presentation of the spatial variations of soil fertility, 

tiller density, effective water potential, canopy aeration condition, and etc., which could be 

used as reference for variable-rate fertilization and precise land-leveling in order to further 

improve the overall yield. 

In short, the UAV platform based agricultural remote sensing showed high accuracy and 

efficiency in terms of the acquisition of field information, which is paramount for filling yield 

gaps through site-specific farming techniques. 
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