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PREFACE

This volume, together with the last, is intended as the proceedings of

expository lectures in Special Months “Nonlinear Dispersive Equations. ”

　 Nonlinear dispersive equations, such as nonlinear Schrödinger equations,

KdV equation, and Benjamin-Ono equation, are of mathematical and physi-

cal importance. Expository courses in September 2004 are intended to cover

a broad spectrum of the issues, especially the Cauchy problem and related

topics.

　We wish to express our sincere thanks to

- J. Bona, H. Koch, F. Planchon, P. Raphaël, and N. Tzvetkov for excellent

lectures.

- M. Ikawa and A. Ogino for efficient arrangements.

T. Ozawa and Y. Tsutsumi
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ILL�POSEDNESS ISSUES FOR NONLINEAR DISPERSIVE

EQUATIONS

N� TZVETKOV

Abstract� These notes are devoted to the notion of well�posedness of the Cauchy
problem for nonlinear dispersive equations� We present recent methods for prov�
ing ill�posedness type results for dispersive PDE�s� The common feature in the
analysis is that the proof of such results requires the construction of high fre�
quency approximate solutions on small time intervals �possibly depending on the
frequency�� The classical notion of well�posedness� going back to Hadamard� re�
quires the existence� the uniqueness and the continuity of the �ow map on the
spaces where the existence is established� It turns out that in many cases a
stronger form of well�posedness holds� Namely� the �ow map enjoys better con�
tinuity properties as for example being Lipschitz continuous on bounded sets� In
such a situation we say that the corresponding problem is semi�linearly well�posed
in the corresponding functional setting� Our main message is that for dispersive
PDE�s� contrary to the case of hyperbolic PDE�s� the veri�cation whether an
equation in hand is semi�linearly well�posed in a given functional framework re�
quires a considerable care� Our examples are KdV type equations and non linear
Schr�odinger equations�

�� Introduction

We will discuss here the Cauchy problem for nonlinear PDE�s which can be written
in the form

�u�t� � Lu�t� � F �u�t��� u��� � u�������

where u�t�	 t � R is a function de
ned on a Riemannian manifold �M� g� with values
either in R or in C � In �����	 L is a linear map acting as an isometry on the Sobolev
spaces Hs�M� while F �u�t�� represents the nonlinear interaction� The initial data
u� is supposed to belong to H

s�M�� This choice is natural because	 for the models
we are interested in	 the equation ����� enjoys conservation laws providing a uniform
control on �low regularity� Sobolev norms of the solutions of ������ An important
aspect of the analysis of the Cauchy problem ����� is to understand the impact of
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the interplay between L and F on the behavior on the solutions of ������ Here we
will study this issue only for small times t� As far as the Sobolev spaces Hs�M�
are chosen for phase spaces	 the local in time behavior of the solutions is naturally
linked to the notion of well�posedness of the Cauchy problem ����� that we recall
now�

De�nition ���� We say that the Cauchy problem ����� is well�posed for data in
Hs�M�� if for every bounded set B of Hs�M� there exist T � � and a Banach space
XT continuously embedded in C���T� T  �Hs�M�� such that if u� � B then there
exists a unique solution u of ����� on ��T� T  in the class XT � Moreover �

�� The �ow map u� �� u is continuous from B to C���T� T  �Hs�M���
�� Higher smoothness is propagated by the �ow� More precisely� if u� � H��M��

� � s then u � C���T� T  � H��M���

Let us notice that in the above de
nition	 the time of existence T depends only
on the bounded set B	 i�e� on an Hs bound of the initial data� There are several
important examples of the so called critical problems when the time of existence
existence is depending in a more complicated way on the initial data� It is worth
noticing that �usually�	 if a problem in hand is critical for data in Hs then it is
well�posed in the sense of De
nition ��� for data in H�	 � � s� It is also �usual�
that the well�posedness in Hs	 implies the well�posedness in Hs� 	 s� � s�

A very common way to prove the well�posedness of ����� is to solve by a con�
traction principle an equivalent integral equation	 exactly as we do in the proof of
the Cauchy�Lipschitz theorem in the theory of the ordinary di�erential equations�
More precisely	 the problem ����� can be rewritten	 at least formally	 as an integral
equation �Duhamel formula�

u�t� � exp�tL�u� �

Z t

�
exp��t� t��L�F �u�t���dt� ������

The well�posedness of ����� is reduced to 
nding a functional spaces X� 	 � � �
continuously embedded in C����� �  � Hs�M�� such that for every bounded set B of
Hs�M� there exists T � � such that for every u� � B the right hand�side of ����� is
a contraction in a suitable ball of XT � In some cases	 the space C����� �  � Hs�M��
can give the contraction properties� However	 in these cases the assumption on s is
quite restrictive� In order to include a larger possible values of s	 the whole di�culty
in making work the above approach is to 
nd functional spaces X� 	 � � � which
are adapted in the best way to the equation in hand� This problematic has now
a long history and remains and active research 
eld� Once the existence and the
uniqueness in XT is established	 it is natural to look for a larger uniqueness class	
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for instance one may ask whether the uniqueness holds in C���T� T  �Hs�M�� �cf�
e�g� �����
It turns out that if we are able to show the well�posedness of ����� by the above

procedure then the �ow map enjoys better continuity properties	 for example it is
Lipschitz continuous on B	 and	 in the case of polynomial nonlinearities it is a C�

map from Hs�M� to C���T� T  �Hs�M��� These properties seem to be related to
what we call a semi�linearly well�posed problem� The following de
nition seems to
be natural �cf� e�g� ��	 �	 �� �����

De�nition ���� We say that the Cauchy problem ����� is semi�linearly well�posed
for data in Hs�M�� if it is well�posed in the sense of De�nition ���� and� in addition
the �ow map u� �� u is uniformly continuous from B to C���T� T  � Hs�M���

The notion of well�posedness of De
nition ��� is invariant under changes of vari�
ables in the phase space which are continuous on Hs� Similarly the notion of semi�
linear well�posedness is invariant under uniformly continuous changes of variables�
Therefore	 it is not excluded that	 by a change of variables �gauge transform�

u�t� �� v�t�

in ����� which is continuous on Hs but not uniformly continuous	 the equation for
v�t� to be semi�linearly well�posed even if the equation for u�t� is not semi�linearly
well�posed�

Another and quite di�erent way to solve ����� is to apply a compactness argument�
Roughly speaking	 it means to solve the equation by passing to a �weak� limit in a
family of approximate solutions� Usually this method can provide the well�posedness
of �����	 but it does not give directly the semi�linear well�posedness as the contraction
method does� A natural question is whether there exists PDE�s which are well�posed
but not semi�linearly well�posed in Hs�M�� Probably the simplest example of such
a PDE is the Burgers equation

ut � uux � �������

posed on Hs�R� for real valued u �if u is not real valued the situation is quite
di�erent	 as it is shown in ����� It turns out that ����� is well�posed in Hs�R�	
s � ��� but not semi�linearly well�posed in this same space� Let us explain how we
prove the well�posedness of ����� for data in Hs�R�	 s � ���� Let u be a smooth
solution of ����� which belong to all H�	 � � R� Our purpose is to establish a priori
bounds for u� Denote by Ds the Fourier multiplier with symbol �� � ���s��	 i�e�

dDsu��� � �� � ���s��bu��� �
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where the Fourier transform is de
ned as follows

bu��� � Z �

��
e�ix� u�x�dx �

Notice that kukHs � kDsukL� � Applying Ds to �����	 multiplying it with Dsu and
an integration by parts gives	

d

dt
ku�t� ��k�Hs �

Z �

��

ux�t� x�
�
Dsu�t� x�

��
dx� �

Z �

��

�
�Ds� uux

�
�t� x�Dsu�t� x�dx �

Using the Kato�Ponce �cf� ���� commutator estimate

k�Ds� f  gkL� � C
�kfxkL�kDs��gkL� � kDsfkL�kgkL�

�
�����

with f � u and g � ux	 we obtain that

d

dt
ku�t� ��k�Hs � Ckux�t� ��kL�ku�t� ��k�Hs �

Thus the Gronwall lemma yields that for every � � t � T 	

ku�t� ��kHs � ku��� ��kHs exp
�
CkuxkL�����T 	 
L��

�
������

If s � ���	 the Sobolev embedding gives	

kuxkL�����T 	 
L�� � C TkukL�����T 	 
Hs� ������

Combining ����� and �����	 using a continuity argument	 we deduce that there exist
c � � and C � � such that if

T � c�� � ku�kHs���

then

kuxkL�����T 	 
L�� � C�����

and

kukL�����T 	 
Hs� � Cku��� ��kHs ������

The priori estimate ����� is the key to perform a classical compactness argument
�cf� e�g� ���� which provides the existence� The uniqueness is easily ensured by the
Gronwall lemma� The propagation of the higher Sobolev regularity readily follows
from ����� and ������
The continuous dependence is a slightly more delicate issue and can be obtained

for instance by the Bona�Smith argument �� �cf� also ����� Let us brie�y recall this
argument� Fix a bump function � � S�R� such that b� � C�� �R� and b���� � � for �
in a neighborhood of �� For � � �	 we set ���x� �� �����x��� � Let u be a solution
of ����� with data u��� � Hs�R�	 s � ��� which belongs to a �xed bounded set of
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Hs�R�� Denote by u� the solution of the Burgers equation ����� with initial data
�� 	 u���� One can easily check that

k�� 	 u���kHs � Cku�kHs� � ��� �
and therefore we can assume that u� enjoys the bounds ����� and ����� on the time

of existence of u� For � � �� � �	 we set v �� u� � u�
�
� Then v is a solution of the

equation

�vt � �u
�
x � u�

�

x �v � �u
� � u�

�
�vx � � ������

It is easy to check that

kv���kHs � o���� kv���kL� � O��s�������

as � � �� Multiplying ����� with v and applying ����� �with u� and u�
�
instead of

u� gives the bound

kv�t� ��kL� � C �s������

for t in the time of existence of u� Applying Ds to �����	 multiplying it with Dsv
and using the Kato�Ponce estimate ����� yields the estimate

������
d

dt
kv�t� ��k�Hs � C

�ku��t� ��kHs � ku���t� ��kHs

�kv�t� ��k�Hs �

� C
�ku��t� ��kHs�� � ku���t� ��kHs��

�kv�t� ��kHs�� kv�t� ��kHs�

Using ����� gives

ku��t� ��kHs�� � Cku���� ��kHs�� � C��� �������

On the other hand	 thanks to ������	

kv�t� ��kHs�� � kv�t� ��k
�
s

L�
kv�t� ��k��

�
s

Hs � C�kv�t� ��k��
�
s

Hs������

Using ������	 ������	 ������	 a variant of the Gronwall lemma	 and ������ gives

ku��t� ��� u�
�
�t� ��kHs � kv�t� ��kHs � o���������

as � � �� We can now easily obtain the continuity of the �ow map� Indeed	 let
�u��n� be a sequence converging to u� in Hs�R� with corresponding solutions �un��
Then �� 	 u��n � u��n as �� � in Hs�R�	 uniformly in n	 and	 exactly as above	 we
can show

ku�n�t� ��� u��t� ��kHs � Cku��n � u�kHs � o����������
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where o��� � � as � � �� It is now a routine procedure to show that ������ and
������ imply the continuity on Hs�R�	 s � ��� of the �ow map of the Burgers equa�
tion ������

At this point	 it is worth to notice that the argument based on a priori esti�
mates for proving the well�posedness that we have just presented is less perturbative
��more nonlinear�� than the contraction method explained after De
nition ���� It
has the advantage to have a larger scope of applicability compared to the contraction
method	 but	 at the present moment	 to make it work one should require consider�
ably more regularity on the initial data�

Let us next describe an argument providing the lack of semi�linear well�posedness
of ������ We 
rst observe that if u solves ����� then so does

v�t� x� � u�t� x� 
t� � 
� 
 � R�������

The shift in the spatial variable in ������ is �responsible� for the failure of uniform
continuity of the �ow map� The constant 
 in ������ can be replaced by a function
which is zero at in
nity	 thanks to the 
nite propagation speed of the Burgers equa�
tion� More precisely	 inspired by ������	 we look for an approximate solution of the
Burgers equation of the form

u���ap �t� x� � 
���e��x����� ������s�
�
x���

�
cos��x� 
t��������

where s � ���	 � � ���� �	 
 � R	 �  �  � and �	 e� are non zero C�� �R� functions
such that e� is equal to one on the support �� We can then show that there exists
� � � such that

k�tu���ap � u���ap �xu
���
ap kL��R� � C ����s �������

Thanks to ������ and the well�posedness analysis in Hs	 s � ���	 we obtain that
������ is indeed a good approximate solution	 inHs	 of the Burgers equation� Consid�

ering the sequences �u���ap � and �u
����
ap �	 �� � gives the failure of uniform continuity

on Hs�R�	 s � ��� of the �ow map of the Burgers equation�

However	 the Burgers equation ����� does not 
t in the class of dispersive PDE�s
and one may think that the above described property of ����� is only related to its
the hyperbolic nature� It turns out that the Benjamin�Ono equation

ut �Huxx � uux � ��������

posed on Hs�R� �in ������ H denotes the Hilbert transform which is a �zero order�
operator� is well�posed in Hs�R�	 s � ��� but not semi�linearly well�posed in this
same space� The equation ������ 
ts in the class of the dispersive equations because
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of the presence of the term Huxx� We use the term �dispersive equation� since any
solution of

ut �Huxx � ��������

issued form L��R� initial data disperses as t��	 more precisely	
lim
t��

ku�t� ��kL��R� � � �

However this property is for large times	 and	 since we are concerned with a small
time analysis a more relevant property related to the dispersive nature of the equa�
tion ������ is the �small time� Strichartz inequality �cf� e�g� ����� More precisely	
there exists C � � such that for every T � �	 every u� � L��R� the solution u of
������ with data u� satis
es	

kukLp����T 	 
Lq�R�� � Cku�kL��R��
�

p
�
�

q
�
�

�
� p � � �������

Estimates of type ������ are usually very useful to apply the contraction strategy
but in the case of ������ they are not su�cient to make it work�

We next consider the KdV equation

ut � uxxx � uux � ��������

posed on Hs�R�	 which have a higher order dispersion compared to ������� It turns
out that	 in sharp contrast with the Burgers and the Benjamin�Ono equations	 the
KdV equation ������ is semi�linearly well�posed for data in Hs�R�	 s � ����� There�
fore	 the notion of semi�linear well�posedness makes a natural classi
cation in the
class of KdV type models	 i�e� equation ����� with F �u� � uux and L � jDxj	�x	
depending on the order of dispersion � � ��

Another set of models where the notion of semi�linear well�posedness is naturally
involved �but less understood� are the nonlinear Schr�odinger equations �NLS�� Let
�M� g� be a compact smooth boundaryless Riemannian manifold of dimensions d �
�� �� Denote by � the Laplace�Beltrami operator associated to the metric g� We
consider the nonlinear Schr�odinger equation

iut � �u� juj�u � ��������

posed on M � In ������	 u is complex valued function on M � Let us 
rst consider
the case d � �	 i�e� the case when M is a surface� If M is the �at torus T� then the
Cauchy problem associated to ������ is semi�linearly well�posed for data in Hs�T��	
provided s � �� This result is essentially sharp	 since for s  � the problem is
not semi�linearly well�posed for data in in Hs�M� for an arbitrary �M� g�� On the
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other hand if M is the standard sphere S� then the Cauchy problem for ������ is
not semi�linearly well�posed far data in Hs�S��	 s  ���	 in sharp contrast with the
case of the torus T�� Hence the same equation ������ behaves quite di�erently with
respect to the semi�linear well�posedness depending on the geometry of the spatial
domain� It is an interesting open problem whether ������ posed on S� might be
well�posed for some s � ��� ���� Let us next consider the case d � �� If M is the
torus T� or the sphere S� then the Cauchy problem for ������ is semi�linearly well�
posed for data in Hs	 s � ���� It turns out that this result is essentially sharp even
regarding the classical notion of well�posedness� More precisely	 for �  s  ���	 the
Cauchy problem for ������ posed on an arbitraryM is not well�posed for data in Hs�

One may ask for the critical threshold in the scale of Hs for the well�posedness of
������ It means to 
nd a real number sc such that for s  sc ����� is not well�posed
for data in Hs�M�	 while for s � sc ����� is well�posed for data in Hs�M�� Similarly	
one can de
ne a critical threshold for the semi�linear well�posedness� In this context	
the discussion around ������ above simply a�rms that	 for d � � and M � T�	 the
value sc �

�
� is the critical threshold for both the well�posedness and the semi�linear

well�posedness	 as far as positive values of the Sobolev regularity s are considered�
It is a natural question whether the critical threshold for the well�posedness and the
semi�linear well�posedness may be di�erent� The answer of this question is positive
as shows the following example� Consider the following version of the modi
ed KdV
equation

ut � uxxx � �u
� �

Z
T

u��t� x�dx�ux � ��������

posed on the torusT� R�Z� The equation ������ can be obtained from the modi
ed
KdV equation

vt � vxxx � v�vx � ��������

by the gauge transformation u� v de
ned as

v�t� x� � u
�
t� x�

Z t

�

Z
T

u���� y�dyd�
�
�

The Cauchy problem for ������ is semi�linearly well�posed for data in Hs�T�	 s � ���
�cf� ����	 it is not semi�linearly well�posed for data in Hs�T�	 ���  s  ��� �cf�
����	 but ��� it is still well�posed for data in Hs�T�	 s � ����� ��� �cf� ���	 ��	 ����
Hence the critical threshold for the well�posedness and the semi�linear well�posedness
can be di�erent�
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Let us complete this introduction by noticing that	 in the last years	 gauge
transformations were an important tool in the study of dispersive PDE�s	 cf� e�g�
���	 ��	 ��	 ��	 ��	 ��	 �� ���

�� KdV type problems

Consider the Cauchy problem for the Korteweg de Vries �KdV� equation

ut � uxxx � uux � �� u��� � u�������

The best known result regarding the well�posedness of ����� is due to Kenig�Ponce�
Vega�

Theorem ��� �cf� ����� For s � ���� the Cauchy problem �	��� is semi�linearly
well�posed for data in Hs�R��

To prove Theorem ��� one uses the contraction method as explained after De
ni�
tion ��� of the previous section� The spacesXT where one performs the argument are
the Fourier transform restriction spaces introduced by Bourgain ��	 �	 ��	 equipped
with the norm

kukXT
� inffkwkX � w � X with wj��T�T 	 � ug�

where

kwk�X �
Z
R�

�
� � j� � ��j��b�� � j�j��sj bw��� ��j�d�d�

with b � ��� su�ciently close to ���� The spaces of Bourgain are very useful to
recover the derivative loss in the nonlinearity� We refer to ���	 �� for an introduction
to the Fourier transform restriction method of Bourgain� There has been a number
of works preceding Theorem ��� where the well�posedness for bigger values of s were
established �cf� e�g� ���	 ��	 ��	 ���� A particularly important step was done in ���	
where it is realized for the 
rst time that the KdV equation can be semi�linearly
well�posed� The value s � ���� in Theorem ��� is optimal	 as far as the semi�linear
well�posedness is concerned �cf� ����� But it is a priori not excluded ����� to be
well�posed for some s  �����
Next we consider the Cauchy problem for the Benjamin�Ono �BO� equation

�cf� ���

ut �Huxx � uux � �� u��� � u�������

In �����	 H denotes the Hilbert transform	 namely	

�Hf��x� �� � lim
���

Z
jx�yj��

f�y�

x� y
dy �
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It is easy to check that dHf��� � �i sign���bf��� �
Therefore the Hilbert transform is acting essentially as a zero order operator� The
presence of H in ����� is important to establish some monotonicity properties of
the local mass of the solutions of �����	 but it will not play an essential role in our
discussion here�
There has been many works regarding the well�posedness of ����� �cf� ���	 �	 ��	

��	 ��	 ��	 ���� The best result in the present moment is due to Tao�

Theorem ��� �cf� ����� For s � � the Cauchy problem �	�	� is well�posed for data
in Hs�R��

One may ask whether	 similarly to the KdV case	 we also have the semi�linear
well�posedness in Theorem ���� It turns out that the answer is negative�

Theorem ��� �cf� ����� In Theorem 	�	� one can not replace the well�posedness
with semi�linear well�posedness�

Therefore in the well�posedness analysis of �����	 it is not a question to 
nd a
suitable space to perform the contraction method	 simply this method for proving
the well�posedness does not work	 as far as the classical Sobolev spaces Hs are
considered as a space for the initial data� This fact was 
rst detected in ����
A related to Theorem ��� result is obtained in �� where it is shown the lack of

semi�linear well�posedness for ����� with data in Hs�R�	 s  �����

Interestingly	 the modi
ed Benjamin�Ono equation

ut �Huxx � u�ux � �� u��� � u�

turns out to be semi�linearly well�posed for data in Hs�R�	 s � ��� �cf� ����� Hence	
even if the dispersion is the same	 the semi�linear well�posedness may also be sensi�
tive to the �degree� of the nonlinearity��

It is clear that Theorem ��� is a consequence of the following statement�

Theorem ��� �cf� ����� Let s � �� There exist two positive constants c and C and
two sequences �un� and �eun� of solutions of the Benjamin�Ono equation such that
for every t � ��� ��

sup
n
kun�t� ��kHs�R�� sup

n
keun�t� ��kHs�R� � C �

�The example of KdV and Benjamin�Ono equations is an instance when the the semi�linear
well�posedness depends on the degree of the dispersion�
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�un� and �eun� satisfy initially

lim
n��

kun��� ��� eun��� ��kHs�R� � ��

but� for every t � ��� ��
lim inf
n��

kun�t� ��� eun�t� ��kHs�R� � c sin t �

In the proof of Theorem ���	 we will make use of the following well�posedness
result for ������

Proposition ���� Fix s � � � ���� Then for every u� � Hs�R� there exists a
unique global solution u � C�R�Hs�R�� of �	�	�� Moreover

ku�t� ��kHs�R� � Cku�kHs�R� �

provided jtj � cku�k��H��R��

Sketch of the proof� The proof of Proposition ��� is based on the compactness ar�
gument explained in the introduction in the context of the Burgers equation ������
One 
rst proves the result for s � �� The nature of the restriction jtj � cku�k��H��R�

is related to the scaling of ������ It turns out that one can reduce the matters to
the problem of existence on the time interval ��� � with initial data with small norm
in H��R�� Suppose that there exists a positive constant � such that if the initial
data of the Benjamin�Ono equation satis
es ku�kH� � � then we can 
nd a unique
solution on the time interval ��� �� We now prove that for u� � H� of arbitrary size
we can solve ����� for time of order ku�k��H� � Indeed	 given u� � H� we choose �	 �
such that

�  �
�
� �� � ���ku�kH� 	 �������

Set eu��x� �� �u���x�� Then due to �����	 keu�kH� � � and we can apply our
assumption to eu�� Let eu�t� x� be the solution of the Benjamin�Ono equation with
data eu� up to time one� Then one can easily verify that u�t� x� �� ���eu����t� ���x�
is a solution of the Benjamin�Ono equation up to time �� which in view of ����� is of
order ku�k��H� � Hence we may reduce the matters to the existence on ��� � for small
data�
Let u be a su�ciently smooth in the scale of the Sobolev spaces solution of the

Benjamin�Ono equation ������ Then	 as in the case of the Burgers equation	 one
gets the bound

kD�ukL�����T 	 
L�� � ku���kH� exp�CkuxkL�����T 	 
L��� ������
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Notice that the key quantity
R T
� kux�t�kL�dt is invariant with respect the scaling of

the equation� More precisely if u�t� x� � ���eu����t� ���x� thenZ ��

�
kux�t�kL�dt �

Z �

�
keux�t�kL�dt �

With

F �T � �� kuxkL�TL� � kD
�ukL�T L� � T � ��� �

we can deduce from ����� and the Sobolev inequality �here we use that � � ����
that

F �T � � Cku���kH� exp�cF �T ���

Now a straightforward continuity argument shows that there exist positive constants
� and C such that if ku���kH� � � �and hence F ��� � �� then F ��� � C	 and in
particular Z �

�
kux�t�kL�dt � C�����

Using ����� and ����� �with T � �� we obtain that if u is a smooth solution of the
Benjamin�Ono equation	 then

kD�ukL������	
L��R�� � Cku���kHs������

provided ku���kHs � �� Moreover the solution satis
es ������ The bounds ����� and
����� enable one to perform a standard compactness argument for the proof of the
existence� As for the Burgers equation	 the uniqueness follows from the Gronwall
lemma	 the assumption � � ��� and the Sobolev embedding� Let us next show the
bound for the higher Sobolev norms� Let s � �� Then we clearly have an analog of
����� on the Hs level� Namely	

kDsukL������	
L�� � ku���kHs exp�c

Z �

�
kux�t�kL�dt� � Cku���kHs�

where in the last inequality	 we used ������ Finally the global well�posedness follows
from the conservation lows enjoyed by the solutions of the ������ Indeed one has
controls �cf� e�g� ��� on ku�t� ��kHk�� for k � �� �� �� � � � Hence the assertion of

global existence is straightforward for s � �� For s  � one may use the H���

well�posedness result result of Theorem ��� and the H��� control� This completes
the discussion on the proof of Proposition ����

Next	 we pick a usual bump function � � C�� �R� such that ��x� � � for jxj  � and
��x� � � for jxj � �� Let �� � C�� �R� be equal to one on the support of �� Notice
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that � �� � �� For �  �  �	 we set

���x� �� �
� x

����
�
� ����x� �� ��

� x

����
�
������

The assertion of Theorem ��� is a corollary of the following statement�

Theorem ���� Let max�� � s� ��  �  � and j
j 	 �
���
� � Let u��� be the unique

global solution of the Benjamin�Ono equation subject to initial data

u������ x� � �
 ��� ����x�� ��
�
�
� �

�
�s���x� cos�x�

Then the identity

u����t� x� � ��� �
��

�
��s���x� cos����t � �x� 
t� �O

�
�
�

minf�����g
��s��� � j
j�� ���

�

�
holds in Hs

x�R�� uniformly in t � ��� ��
Let us notice that if 
 � �	 the solution propagates as a high frequency linear

Benjamin�Ono wave while when 
 
� �	 the solution propagates as a high frequency
linear dispersive wave with modi
ed propagation speed which is the crucial nonlin�
ear e�ect�

Let us now show why Theorem ��� implies Theorem ���� Apply Theorem ��� with

 � �� and � � �� �� � � � We thus obtain two families �u���� and �u����� of solutions
to the Benjamin�Ono equation� Notice that

ku������ ��� u������� ��kHs � C��
���
�

and moreover due to Theorem ���	 setting � � ���t � �x	 we arrive at

ku����t� ��� u�����t� ��kHs � k��� ���� �s����x��cos��� t�� cos��� t��kHs
x
� o����

if t � ��� � and where o��� � � as � � �� At this point we need the following
elementary lemma whose proof will be omitted�

Lemma ��	� Fix s � �� �  �  �� � � R and � � C�� �R�� Then

lim
���

��
���
�
�s k���x� cos��x� ��kHs

x
�

�p
�
k�kL� �

where �� is de�ned by �	�
��

Using Lemma ���	 we get

lim
���

k��� ���� �s����x��cos��� t�� cos��� t��kHs
x
�
p
�j sin tj k�kL� �

Therefore Theorem ��� implies Theorem ����
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Proof of Theorem 	��� Let ulow�t� x� be the solution of ����� with initial data

ulow��� x� � �
��� ����x�� �  �  �� 
 � R������

In the next lemma	 we collect several bounds for ulow�t� x��

Lemma ��
� Let k � �� Then the following estimates hold �

k�kxulow�t� ��kL��R� � Cj
j�� ���
� �k�����������

k�xulow�t� ��kL��R� � Cj
j������������

kulow�t� ��� ulow��� ��kL��R� � Cj
j����� �������

if jtj � � and j
j 	 �
���
� �

Proof of Lemma 	��� Rescale by setting

v�t� x� �� ����ulow��
����t� ����x��������

Then v is again a solution of the Benjamin�Ono equation� Since v��� x� � �
�� ���x�
we obtain

kv��� ��kHs � j
j��k ��kHs

and therefore by Proposition ���

kv�t� ��kHs � Cj
j���������

if jtj � j
j������ and s � ���� But since the right hand�side of ������ does not
depend on s	 we conclude that ������ is valid for any real s� The Sobolev embedding
and ������ now give

kvx�t� ��kL� � Cj
j���������

if jtj � j
j�������
Using ������ and the restriction on j
j	 we deduce from ������ by scaling back

that

k�xulow�t� ��kL� � C j
j����� �������

if jtj � � which is �������
We now turn to the proof of ����� and ������� Di�erentiating ������ and using

������ �with s � k� yields

k�kxulow�t� ��kL� � Cj
j�� ���
�
�k������ k � �� �� �� � � �������

if jtj � �� Estimate ������ is indeed ������ Next	 using ������	 ������ and the equation
satis
ed by ulow gives

k�tulow�t� ��kL� � C
�k��xulow�t� ��kL�� k�xulow�t� ��kL�kulow�t� ��kL�� � C j
j������
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if jtj � �� We now observe that ������ can be deduced from the above bound via
the fundamental theorem of calculus	 applied to ulow in the time variable� This
completes the proof of Lemma ����

We now set for � � �	 �  �  � and j
j 	 �
���
� 	

uap�t� x� �� ulow�t� x�� ��
�
��

�
��s���x� cos����t� �x� � t ulow��� x���������

The above function is an approximate solution of ����� for �� � and s � � as shows
the next statement�

Lemma ���� Let s � �� �  �  �� j
j 	 �
���
� and jtj � �� Set

F �� ��t �H��x�uap � uap �xuap�

Then there exist positive constants C and �� such that for � � �� one has

kF �t� ��kL��R� � C
�
����s � �

���
� ��s

�
�

Proof� Set  �� ���t � �x� 
 t� We observe that

uap�t� x� � ulow�t� x�� ��
�
��

�
��s���x� cos �

Furthermore	 we de
ne the high frequency part of uap by setting

uh�t� x� �� ��� �
�
� �

�
�s���x� cos �

Next	 we can write

��t �H��x�uap � uap �xuap � F� � F� � F� � F� � F��

where

F� �� ��t �H��x�ulow � ulow�xulow

F� �� ��� ���
� �s cos �x

�
ulow ��

�
F� �� uh�xuh

F� �� ��� ���
� �s

h
H��x� ��

i
cos  

F� �� ��� ���
� �s����t �H��x � ulow�x� cos �

Since ulow is a solution of the Benjamin�Ono equation	 we deduce that F� � �� Using
that �� ��� � ��	 we readily obtain that

F� � �
���
� �s�ulow�t� x�� ulow��� x�����x� sin �

Using Lemma ���	 we get

kF��t� ��kL� � C �
���
� �s j
j����� � C �������s�������
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It remains to bound F�	 F� and F�� Let us expand F� as

������ F� � �
���
� �s�H��� cos � ���

���
� �s��H

�
����� sin  

��
� ��

�
��

��
� �sH

�
������ cos 

�
�

where

����� � ��
� x

����
�
� ������ � ���

� x

����
�
�

The 
rst term in the right hand�side of ������ is controlled in L� by the estimate

k�H��� cos kL� � CN�
�N

which follows easily from the de
nition of the Hilbert transform� The L� norm of
the other terms in the right hand�side of ������ are readily estimated by c����s�
Therefore

kF��t� ��kL� � C ����s �������

Expanding �xuh	 the L
� norm of F� is controlled as follows

kF��t� ��kL� � C ��
�
��

��
� ��s � C �

�
��

�
���s � C �

���
� ��s �������

Next	 using Lemma ��� and the assumption on j
j	 we obtain

������ kF��t� ��kL� � C
�
��sk�xulow�t� ��kL� � ��

����
� �skulow�t� ��kL�

� �
� C ��

����
� �s�

Collecting ������	 ������	 ������ and ������ completes the proof of Lemma ����

Let us now 
nish the proof of Theorem ���� The 
rst step is to bound u��� in high
Sobolev norms� We distinguish two cases � s � ��� and �  s � ���� In the second
case we will need to exploit the higher conservation laws for the Benjamin�Ono
equation while in the 
rst case we use Proposition ��� instead�
Let s � ���� Observe that for ���  �  s

ku������ ��kH� � C
�
���s � j
j�� ���

�
�
�

Therefore for k � s	 it follows from Proposition ��� that

ku����t� ��kHk � Cku������ ��kHk � C�k�s� jtj � ��������

Let �  s � �
� � Using the conservation laws associated to the Benjamin�Ono equation

�cf� ��	 Lemma ������	 we get the following bound uniformly in t � R
ku����t� ��kH� � C

�ku������ ��kH� � ku������ ��k�L�
� � C

�
� � ���s

�
�������
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and therefore we obtain

ku����t� ��kH� � C���s� t � R� � � � �������

Let uap be as in ������� Set
v��� �� u��� � uap �

The aim is to show that v��� is small comparing to uap in the H
s norm�

Due to Lemma ���	 we get

kulow�t� ��kHs � C j
j�� ���
� �

if jtj � �� Next	 using Lemma ���	 we obtain the bound
kuap�t� ��kHk�R� � C �k�s�

if jtj � � and k � s�
Therefore using ������ and ������	 we get the bounds for the high Sobolev norms

kv����t� ��kHk � C �k�s�������

if jtj � � and ���  s  k	 and

kv����t� ��kH� � C���s�������

if t � R and �  s  ����

Further	 we prove a good bound of the L� norm of v���� Clearly

��t �H��x�v��� � v��� �xv��� � �x�uap v���� � F � �� v������ x� � �������

with
F � ��t �H��x�uap � uap�xuap�

which satis
es

kF �t� ��kL� � C ��
minf�����g

� �s

by Lemma ��� and the assumption �� s  �  ��
The second endpoint in the bounds for v��� is the L

� estimate

kv����t� ��kL� � C��
minf�����g

� �s� jtj � ��������

To prove ������	 we multiply ������ by v��� and we integrate in x

d

dt
kv����t� ��k�L� � C

�k�xuap�t� ��kL�kv����t� ��k�L� � kv����t� ��kL�kF �t� ��kL�� �
Hence	 since we have for �� s  �  � and �� �	

k�xuap�t� ��kL� � Ck�xulow�t� ��kL� � C�
���
�
�s � Cj
j����� � C�

���
�
�s 	 ��
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we readily get the bound �������
We now complete the proof by an interpolation argument� Let 
rst s � ����

Choose k � �s� �
� � s� � and interpolate between ������ and ������ as follows

kv����t� ��kHs � kv����t� ��k
k�s
k

L�
kv����t� ��k

s
k

Hk � C�
�

minf�����g
��s��� �

If s � �
� we obtain the same estimate by using k � � in the interpolation and ������

instead of ������� This completes the proof of Theorem ����

We end this section by a series of remarks�

The method of proof of Theorem ��� can be generalized to many other equations�
For example the corresponding to Theorem ��� result in the context of the KdV
equation provides a family of essentially linear KdV waves �
 � �� as approximate
solutions and thus no instability property of the �ow is displayed�

The proof of Theorem ��� is based on a gauge transform reducing ����� to a prob�
lem which	 despite the lack of semi�linear well�posedness displayed by Theorem ���	
shares many features with a semi�linearly well�posed problem�

One may consider the higher dispersion versions of the �����

ut � Lux � uux � �� u��� � u� �������

where L is Fourier multiplier with symbol j�j
 	 � � � � �� The KdV equation
corresponds to � � �	 and	 thanks to Theorem ��� in this case ������ is semi�linearly
well�posed in Hs�R�	 s � ����� On the other hand	 in view of the result of ���	 it
seems reasonable to conjecture that for �  �  �	 the Cauchy problem ������ is not
semi�linearly well�posed in all Hs�R��

Another instance when the notion of semi�linear well�posedness is naturally in�
volved is the analysis of the Cauchy problem for the Kadomtsev�Petviashvili equa�
tions� The Kadomtsev�Petviashvili �KP� equations are natural two dimensional
generalizations of the KdV equation �cf� ����� There are two KP equations	 the
KP�I equation

�ut � uxxx � uux�x � uyy � ��������

and the KP�II equation

�ut � uxxx � uux�x � uyy � ��������

It is known that the Cauchy problem for the KP�II equation ������ is semi�linearly
well�posed in Hs�R��	 s � � and even in Sobolev type spaces of negative indices
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�spaces of distributions�	 cf� ���	 ��	 ��� On the other hand	 in view of the result
of ���	 it seems reasonable to conjecture that the Cauchy problem for the KP�I
equation ������ is not semi�linearly well�posed in all Hs�R���

�� Nonlinear Schr�odinger equations �NLS�

���� Nonlinear Schr�odinger equations on Rd� Consider the Cauchy problem
for the nonlinear Schr�odinger equation

iut � �u� juj�u � �� u��� � u�������

posed on the Euclidean space Rd	 d � �� Equation ����� is a focusing model� The
defocusing model

iut � �u� juj�u � ������

is also of interest� The long time dynamics of ����� and ����� are quite di�erent�
But for our discussion here �small time analysis� it will be relevant to concentrate
only on ������ There has been a large number of articles studying �����	 ����� and
their generalizations	 when juj�u �which is the term involved in many applications�
is replaced by a more general nonlinear term f�juj��u �cf� ���	 ��	 ��	 ��	 ��	 ��	
��	 �� ����� The equation ����� is an in
nite dimensional Hamiltonian equation with
canonical coordinates �u� !u� and Hamiltonian

H�u� !u� �
�

�

Z
Rd

jruj� � �

�

Z
Rd

juj� �

The Hamiltonian is formally preserved by the �ow of ������ So is the L� norm of
u� Therefore the space H��Rd� is a natural phase space� for ����� and ����� at least
for d � � when the second term of the Hamiltonian is dominated by the 
rst one
and the L� norm of u� Fortunately	 we can achieve this regularity for d � � in the
context of the well�posedness theory of ������ More precisely	 we have the following
result regarding the well�posedness of ������

Theorem ��� �cf� ����� Let s � d��
� � d � �� Then the Cauchy problem ���� is

semi�linearly well�posed for data in Hs�Rd��

Proof� We will give the proof because it is �typical� for a semi�linearly well�posed
problem� It is worth noticing that such a proof is indeed quite di�erent from the
reasoning in the proof of Proposition ��� above� To simplify a little the notations we
will only consider the case d � �	 the proof in higher dimensions being very similar�
The proof is based on the following Strichartz inequality for the free evolution�

�In this space the well�posedness of ����� is actually global in time� For ���	� the well�posedness is
global as far as the data is small in a suitable sense� for large data solutions developing singularities
in �nite time appear�
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Proposition ���� Let �p� q� such that� �
p �

�
q �

�
� � p � �� Then there exists a

constant C � � such that for every T � �� every u� � L��R���

keit�u�kLp����T 	 
Lq�R��� � Cku�kL��R�� �
Proof� The proof of Proposition ��� can be found in ����

Let us now show how Proposition ��� implies Theorem ���� Consider the integral
equation corresponding to �����

u�t� � eit�u� � i

Z t

�
ei�t�����ju���j�u����d�������

Let us 
x a real number � satisfying

�  �  min
n
s�
�

�

o
�

The value of � being 
xed	 we de
ne q � ��� �� by the identity
�

q
� �

�
�

�

�
�

Next	 we de
ne p such that
�

p
�
�

q
�
�

�
�

Set

XT � L����� T  � Hs�R��� � YT � ZT �

where YT 	 ZT are equipped with the norms

kuk�YT �
X

N�dyadic

N�sk�N �u�k�LpTLq�R��� kuk�ZT �
X

N�dyadic

N�sk�N�u�k�L�TL��R�� �

The sums over N are running over all dyadic values of N 	 i�e N � �n	 n � � and
u �

X
N

�N �u�

is a Littlewood�Paley decomposition� of u� More precisely	 �N are the Fourier
multipliers de
ned by

��N�u���� � ��N����"u���� N � �n� n � �
and

����u���� � ����"u���

�Actually we do not need to use the precise from of �N here� cut�o� projectors would also make
work the argument�
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with � � C�� ��� ��� and

���� �
X
n��

����n�� � � �

Notice that if u � S ��R�� then �N �u� is localized at frequencies of order N � It is
also useful to see the norm in YT as kN s�N �u�kl�NLpTLq �

Next	 using Proposition ���	 we get

keit��N�u��kLpTLq�R�� � ke
it��N�u��kL�TL��R�� � Ck�N�u��kL��R��

and therefore

keit�u�kXT
� Cku�kHs ������

Similarly	 using the Minkowski inequality	 we get the bound	��� Z t

�
ei�t�����ju���j�u����d�

���
XT

� C

Z T

�

���e�i���ju���j�u�������
Hs
d�������

In order to bound the right hand�side of �����	 we will show that there exists C � �
such that for every u�	 u�	 u� in XT 	Z T

�

���e�i���u����u����u��������
Hs
d� � CT�

�Y
j��

kujkXT
������

By duality	 to show �����	 it su�ces to obtain that for every w � H�s�R��	Z T

�

Z
R�
�u����u����u������e

i��w� d� � CT �kwkH�s

�Y
j��

kujkXT
������

Notice that if u����	 u����	 u���� are localized at frequencies N�	 N�	 N� respectively
then only frequencies of order � C�N� � N� � N�� of ei��w contribute to the left
hand�side of ������ Writhing down the Littlewood�Paley decompositions of u����	
u����	 u���� et w	 using the H�older inequality and Proposition ��� to bound e

i��w	
we deduce that we can bound the left hand�side of ����� byX

N�C�N��N��N��

k�N��u��kL�TL�k�N��u��kL�TL�k�N��u��kL�TL�k�N�w�kL������

By symmetry	 we can suppose that in ����� the summation is restricted to

N� � N� � N� �
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Next	 using the Sobolev embedding W��q�R��  L��R��	 and	 the H�older inequality
in the time variable	 we get the bound

k�N��u��kL�TL�k�N��u��kL�TL� � CT��N�N��
�k�N��u��kLpTLqk�N��u��kLpTLq �

Set

c��N� � N sk�N��u��kL�TL� � cj�N� � N sk�N�uj�kLpTLq � j � �� ��
and d�N� � N�sk�N�w�kL�� We obtain that ����� is bounded byX

N�CN�

X
N��N�

� N
N�

�s CT �

�N�N��s��
c��N��c��N��c��N��d�N� ������

Summing geometric series in N�	 N�	 we obtain that ����� is bounded by

CT �ku�kXT
ku�kXT

X
N�CN�

� N
N�

�s
c��N��d�N� �������

To bound ������	 we use the following lemma�

Lemma ���� For every # � �� every s � � there exists C � � such that if �cN��
and �dN�� are two sequences of nonnegative numbers indexed by the dyadic integers�
then� X

N���N�

� N
N�

�s
cN� dN� � C

�X
N�

c�N�

� �
�
�X

N�

d�N�

� �
�
�

Proof� Let us set

K�N�� N�� �� �lN���N�

N s
�

N s
�

�

Summing geometric series imply that there exists C � � such that

sup
N�

X
N�

K�N�� N�� � sup
N�

X
N�

K�N�� N�� � C �

Therefore the Schur lemma implies the boundedness on l�N�
�l�N�

of the bilinear form
with kernel K�N�� N��� This completes the proof of Lemma ����

Using Lemma ���	 we bound ������ by the right hand�side if ����� which completes
the proof of ������
Estimates �����	 ����� et ����� yield that for every bounded set B of Hs�R�� there

exists T � � such that for every u� � B the right hand�side of ����� is a contraction
in a suitable ball of XT �
Let us 
nally explain how we obtain the propagation of regularity property for

data in H�s	 �s � s� Denote by Xs
T the space XT use above associated to the Hs
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regularity� It is easy to observe that the preceding analysis also gives the tame
estimate ���Z t

�
ei�t�����ju���j�u����d�

���
X	s
T

� CT�kuk�Xs
T
kukX	s

T

which implies the propagation of the H�s regularity in a straightforward way� This
ends the discussion on the proof of Theorem ����

The indice d��
� appeared in Theorem ��� is closely related to the scaling of the

equation ������ More precisely if u�t� x� solves ����� then so does

u��t� x� �� �u���t� �x��

The norm of u� in the homogeneous Sobolev �Hs is independent of � only for s � d��
� �

At this point	 it is worth noticing that the scaling invariance is responsible for
the existence of solutions of ����� which concentrate in a point� Such kind of con�
centrations may give ill�posedness results only below the scaling norm� As we will
see later concentration on higher dimensional objects as curves are responsible for
ill�posedness above the scaling exponent�

It turns out that the result of Theorem ��� is essentially sharp	 i�e� the point
concentration coming from of the scaling invariance are the worst possible�

Theorem ��� �cf� ����� Let d � �� Then �

�� For d � �� the Cauchy problem ���� is not semi�linearly well�posed for data
in Hs�Rd�� s  � �� d��

� �� Moreover� it is not well�posed for data in Hs�Rd��

s � �� �� �d
� ��

�� For d � �� the Cauchy problem ���� is not well�posed for data in Hs�Rd��
�  s  d��

� or s � �d
� � Moreover� it is not semi�linearly well�posed for data

in Hs�Rd�� �d
� � s � ��

Proof� In order to simplify the exposition	 we will give the proof of Theorem ���	
for d � � and s a positive integer� This will cover the most interesting case s � �	
i�e� the ill�posedness of ����� in the �energy space� H��Rd�	 d � �� The proof of
Theorem ��� in the other cases has a very similar �avor�

Let us 
rst observe that it su�ces to prove the following statement�

Proposition ���� Let d � � and s ��� d��� � be a positive integer� Then there
exist a sequence �tn� of positive numbers tending to zero and a sequence �un�t�� of
C��Rd� �Hs�Rd� functions de�ned for t � ��� tn� such that

�i�t � ��un � junj�un � �
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with
lim
n��

kun��� ��kHs�Rd� � � �

and
lim
n��

kun�tn� ��kHs�Rd� �� �

Proof� Let us consider an initial data concentrating in the point x � �

un��� x� �� �nn
d
��s��nx�� n� ��

where � is a non identically zero smooth compactly supported function and

�n � log
����n�

with �� � � to be 
xed later� Remark that

kun��� ��kHs�Rd� � �n�

The function

vn�t� x� � �nn
d
��s��nx�eit��nn

d
��s��nx�	�

is the solution of the equation

i�tvn � jvnj�vn � �� vn��� x� � un��� x� �������

It turns out that for very small times vn is near the actual solutions� of ������

Next	 for a 
xed integer l � d��	 we de
ne quantity	

En�u� ��
�
n�skuk�L��Rd� � n���l�s�kuk�Hl�Rd�

� �
�

which can be seen as a semi�classical energy of u� Notice that	 uniformly in n	

kukHs � CEn�u� �������

The main point in the proof of Proposition ��� is the next statement�

Lemma ���� Fix �� � R such that

�  �� 
�

l � �
�

Then the solution un of ����� with initial data

u��x� � �nn
d
�
�s��nx�

exists for � � t � tn� where

tn � log
���n�n���

d
��s��

�A similar idea was used� in a di�erent context� by Kuksin ��	��
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Moreover� there exists � � � such that for t � ��� tn�
En�un�t�� vn�t�� � Cn�� �

Proof� Since the initial data are in H l	 l � d��	 we know that un�t� exist on small
time interval ���etn� Consequently	 to prove Lemma ���	 we simply prove the a priori
estimates which ensure	 by a classical bootstrap argument	 both the existence and
the control on En�un�t�� vn�t�� for t � ��� tn� Let us set

wn �� un � vn �

The a priori estimates involved in the proof are energy inequalities in the equation
satis
ed by wn	

�i�t ���wn � ��vn � v�nwn � �jvnj�wn � �vnjwnj� � vnw
�
n � jwnj�wn

�� ��vn �#�vn� wn� �

Using the explicit formula for vn	 we have that for � � t � tn	

kvn�t� ��kL��Rd� � Cn
d
��s������

and for � � �	 � � t � tn	

kvn�t� ��kH��Rd� � Cn��s log����n� �������

Let us now estimate En�#�vn�t�� wn�t��� for � � t � tn� Using the Gagliardo�
Nirenberg inequality

kfkL��Rd� � Ckfk��
d
�l

L��Rd�
kfk

d
�l

Hl�Rd�
� l � d���

we infer that

kfkL��Rd� � Cn
d
��sEn�f� �������

Coming back to the expression for #�vn� wn�	 we get

k#�vn� wn�kL� � C
�kvnk�L� � kwnk�L�

�kwnkL� �
Using ������ and ������	 we obtain that for � � t � tn	

nsk#�vn�t�� wn�t��kL� � Cn��
d
�
�s�
�
En�wn�t�� �E�

n�wn�t��
�
�

Next	 using several times the classical bilinear inequality

kfgkHl � C
�kfkL�kgkHl � kgkL�kfkHl

�
�

we deduce that

k#�vn� wn�kHl � C
�kvnk�L�kwnkHl � kvnkL�kvnkH lkwnkL� �

� kvnkHlkwnk�L� � kvnkL�kwnkL�kwnkH l � kwnk�L�kwnkHl

�
�
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Using ������	 ������ and ������	 we infer that for � � t � tn	

n��l�s�k#�vn�t�� wn�t��kHl � Cn��
d
��s� log��l�n�

�
En�wn�t�� �E�

n�wn�t��
�
�

Summarizing the above discussion yields that for � � t � tn	

En�#�vn�t�� wn�t��� � Cn��
d
��s� log��l�n�

�
En�wn�t�� �E�

n�wn�t��
�
�

Next	 we estimate the source term��vn� Using ������	 we obtain that for � � t � tn	

k�vn�t� ��kL� � Ckvn�t� ��kH� � Cn��s log����n� �

Similarly	

k�vn�t� ��kHl � Ckvn�t� ��kHl�� � Cnl���s log�l������n� �

Therefore	 for � � t � tn	

En��vn�t�� � Cn� log�l������n� �

Coming back to the equation solved by wn	 we deduce that for � � t � tn	

d

dt
E�
n�wn�t�� � C n��

d
��s� log��l�n�

�
E�
n�wn�t�� �E�

n�wn�t��
�
�

� Cn� log�l������n�En�wn�t�� �

Suppose 
rst that En�wn�t�� � � which is clearly the case at least for t 	 � since
wn��� x� � �� Using the elementary inequality

�n� log�l������n�En�wn� � n��
d
��s� log��l�n�E�

n�wn� � n����
d
��s� log�l������n�

we obtain that for � � t � tn	

d

dt

h
e�C tn��

d
��s� log��l�n�E�

n�wn�t��
i
� C n����

d
��s� log�l������n� e�C tn��

d
��s� log��l�n� �

Integrating between � and t yields	

En�wn�t�� � Cn����
d
�
�s� log����n� eC log�l������n� �

The assumption s  �d � ���� implies � � ��d� � s�  �� Moreover �� is such that
�l� ����  �� Therefore there exists � � � such that

En�wn�t�� � Cn�� �

Finally	 a bootstrap argument allows to drop the assumption

En�wn�t�� � � �
This completes the proof of Lemma ����
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Let us now 
nish the proof of Proposition ���� We need to make a proper choice of
the number �� involved in the de
nition of �n� Using the explicit formula for vn	 we
easily obtain that for s �Z�	

kvn�tn� ��kHs � C�n
�
tn��nn

d
�
�s�

�s
�

provided tn��nn
d
��s� � �	 i�e� log�������n�� �� The 
rst assumption on �� is thus

�  �� 
��
�
�

Therefore	 using Lemma ��� and ������	 we obtain that for n� �	

kun�tn� ��kHs � Ckvn�tn� ��kHs � Cn�� � C�n
�
tn��nn

d
��s�

�s � Cn�� �

� C logs�������s����n�� Cn�� �

The proof of Proposition ��� is completed by choosing �� � R such that
�  �� 

s��
� � �s

�

The ansatz with vn as an approximate solution still holds for �d
�  s � � and very

small times of order � log��n�n��� d��s� with a suitable � � �� Unfortunately	 we can
no longer bound from below kvn�tn� ��kHs as above� For that reason one can not get
the failure of well�posedness for data in Hs�Rd�	 �d

�  s � �� One can however still
obtain the lack of semi�linear well�posedness	 by an argument very similar to the
one that we presented in the context of the Benjamin�Ono equation� This ends the
discussion on the proof of Theorem ����

Remark ��	� The approach to Theorem �� we present here may seem more in�
volved than in ��� but it has the advantage to avoid the scaling considerations of
���� In particular it works for variable coe�cients second order operators instead
of � or for ���� posed on a curved space�

Let us next consider ����� posed on the real line R� In this case the critical threshold
for the semi�linear well�posedness is shifted with respect to the scaling regularity�

Theorem ��
 �cf� ���	 ��	 ���� For d � � the Cauchy problem ���� is semi�linearly
well�posed for data in Hs�R�� s � �� and� it is not semi�linearly well�posed for data
in Hs�R�� s  ��

It is worth noticing that in the proof of the lack of semi�linear well�posedness
for s  �	 one uses a family of solutions which concentrate on the line ft � �g of
the space time �t� x�� This family of solutions is related to the Galilean invariance
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of ������

Notice that for d � �	 the space H� is essentially covered by Theorem ���� For
d � �	 the result of Theorem ��� is far from the regularity H�	 and moreover as we
have shown	 for d � � the Cauchy problem ����� is not well�posed for data in H��Rd��

In order to have an H� theory in dimensions d � �	 it is reasonable to replace
����� with the equation

�i�t ���u � F �u��������

where the nonlinear interaction F is supposed to satisfy F ��� � � and is supposed of
the form F � V

�z with a positive V � C��C � R� satisfying V �ei�z� � V �z�	 � � R	
z � C 	 and	 for some � � �	

j�k�z �k��z V �z�j � Ck��k��� � jzj���	�k��k� �
The number � involved in the second condition on V corresponds to the degree of
the nonlinearity F �u�� The Hamiltonian associated to ������ isZ

Rd

jruj� �
Z
Rd

V �u� �������

which controls the �H� norm� If �  �� �
d�� 	 the second term in ������ is controlled

by the 
rst one and the L� norm of u� It is therefore reasonable to expect that for
�  � � �

d�� the Cauchy problem for ������ is well�posed for data in H�� It turns
out to be the case at least for d � �� ��

Theorem ��� �cf� ���	 ��	 ���� Let �  � � �
d�� and d � �� Then the Cauchy

problem associated to ����� is semi�linearly well�posed for data in H��Rd��

Remark ���� The proof of Theorem �� relies crucially on the Strichartz inequal�
ities for the non�homogeneous linear problem �recall that in the proof of Theorem ��
we only used the Strichartz inequalities for the free evolution�� For d � � one can
still prove the existence and the uniqueness� Since the nonlinearity in ����� is
not polynomial� the propagation of of the regularity is a nontrivial problem in the
analysis of ����� �cf� e�g� ����� In addition� even if one can prove the regularity
propagation� the semi�linear well�posedness of ����� for d � � remains a non trivial
issue�

���� Nonlinear Schr�odinger equations on compact manifolds� Let �M� g� be
a compact smooth boundaryless Riemannian manifold of dimension d � �� Denote
by �g the Laplace operator associated to the metric g� In this section we consider
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the analog of ����� on �M� g�

iut � �gu� juj�u � �� u��� � u� �������

We have the following well�posedness result for ������

Theorem ���� �cf� ����� The Cauchy problem ����� is semi�linearly well�posed
for data in Hs�M�� s � d��

� �

The proof of Theorem ���� is based on the following Strichartz inequality with
derivative losses for the free evolution

k exp�it�g�u�kLp����T 	 
Lq�M�� � CTku�k
H

�
p �M�

�

where

�

p
�
d

q
�

d

�
� p � �� �p� q� 
� ����� �������

Then the contraction argument is performed in the space

XT � L����� T  � Hs�M��� Lp���� T  �W s� �
p
�q�M���

with suitable �p� q� satisfying �������
Notice that there is a gap between the regularity d��

� of Theorem ���� and the

regularity d��
� of Theorem ���� It is natural question what happens for data in Hs	

s � �d��� � d��� � It turns out that in the case of the �at torus T
d we can recover the

result of the case Rd�

Theorem ���� �cf� ���� Let M be the �at torus� Then ����� is semi�linearly well�
posed for data in Hs�Td�� s � d��

� �

As in the case of the KdV equation of the previous section	 the proof of Theo�
rem ���� uses the Fourier transform restrictions spaces� An important additional
element in the analysis is the use of bilinear improvements of the Strichartz inequal�
ities�
The spaces of Bourgain and bilinear Strichartz estimates can also be used in the

case of the sphere to get the following result�

Theorem ���� �cf� ���	 ���� Let M be the standard sphere Sd� Then �

�� If d � � then ����� is semi�linearly well�posed for data in Hs�S��� s � �
� �

�� If d � � then ����� is semi�linearly well�posed for data in Hs�Sd�� s � d��
� �

It is worth noticing that the ill�posedness result of Theorem ��� still applies in
the setting of the Riemannian manifolds �cf� Remark ����� Therefore	 for d � �	
the indice s � d��

� 	 turns out to be the critical one for both the well�posedness and
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the semi�linear well�posedness of ������ posed on the �at torus or on the standard
sphere�
We observe that in the case d � � the assumption s � ��� in Theorem ���� is

more restrictive then in the case of the torus T�� It turns out that this assumption
is sharp	 as far as the semi�linear well�posedness is concerned�

Theorem ���� �cf� ����� Let M be the standard sphere S�� Then ����� is not
semi�linearly well�posed for data in Hs�S��� s  �

��

Proof� The assertion of Theorem ���� is a consequence of the description of the
evolution by the �ow of ������ of the highest weight spherical harmonics�

Proposition ����� Let T � �� s � ��� � �� �� � ��� ��� Take M � S� with the canon�

ical metric in ������ For n � N� we denote by �n � S
� � C the restriction to S�

of the harmonic polynomial �x� � ix��
n� Then there exists n� such that for n � n��

the solution un�t� of ����� with initial data ��n� where �n � n
�
�
�s�n is globally

de�ned� and� for t � ��� T  it can be represented as

un�t� � � e�it�n�n�����
��n�

�
�n � rn�t�

�
�������

where 
n � n
�
���s and rn�t� satis�es

krn�t�kHs�S�� � CT n
��

where � � � and CT depends on T but not on n� Moreover there exists C � ��
independent of T and n such that

kunkL��R
Hs�S��� � C��������

Proof of Proposition ���� Recall that �n is and eigenfunction of ��g associated to
and eigenvalue n� � n� An easy computation shows that

k�nkLp � n�
�
�p � n� � �

Therefore k�nkHs � � and k�nkL� � Cn�s� Similarly to the Euclidean case	 the
solutions of ������ enjoy the conservation lawsZ

M
ju�t� x�j�dx � Const������

and Z
M
jru�t� x�j�dx� �

�

Z
M
ju�t� x�j�dx � Const �������

The well�posedness result of Theorem ���� applies for the initial data u� � ��n and
we obtain a local solution un�t�� But since k�nkL� � Cn�s	 using the conserva�
tion laws ������	 ������ and the Gagliardo�Nirenberg inequalities	 we deduce that for
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n� � the H� norm of un�t� is bounded uniformly with respect to t� Therefore	 we
can reiterate the well�posedness results and to obtain that for n � �	 the solutions
un�t� are globally de
ned�

For every � � R	 we denote by R	 the rotation of R� de
ned by

R	�x�� x�� x�� � �cos�x� � sin�x�� sin �x� � cos�x�� x��
and by R�

	 the associated unitary operator of L
��S��	

R�
	u�x� � u�R	�x���

Observe that R�
	�n � exp�in���n for every � � R� The following elementary lemma

will be useful in the sequel�

Lemma ����� Let n �Z� and u � L��S�� be such that for every � � R�
R�
	u � exp�in��u�������

Then the decomposition of u in spherical harmonics reads

u � c�n �
X
j

gj

where c � C and each gj is a spherical harmonic of degree � n�

Proof� Since the family �R�
	�	�R is a one�parameter group of unitary operators leav�

ing invariant the space of spherical harmonics of degree l	 one can 
nd an orthonor�
mal basis �hk� of L

��S�� such that	 for every k	 hk is a spherical harmonic satisfying	
for some nk �Z	 for every � � R	

R�
	hk � exp�ink��hk �������

Comparing ������ and ������	 the decomposition of u in the basis �hk� reads

u �
X

k �nk�n

ckhk�������

Let h be a spherical harmonic of degree l satisfying property ������ for every � � R�
Denote by P the l�homogeneous polynomial on R� such that h � PjS� � Then ������
is equivalent to

� x � R�� P �R	�x�� � exp�in��P �x��������

Let us decompose P according to the powers of z � x� � ix� and !z � x� � ix�

P �x�� x�� x�� �
X
p�q�l

apq z
p!zqxl�p�q�������
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where apq � C � In view of ������	 ������ and
P �R	�x�� �

X
p�q�l

apq exp�i�p� q���zp!zqxl�p�q� �������

we conclude that apq � � unless p� q � n� As a consequence	

l � p� q � p� q � n

and	 if l � n	 then p � n and q � �	 so that P � czn	 i�e� h � c�n for some c � C �
Coming back to decomposition ������ completes the proof of Lemma �����

Using Lemma ����	 we can write

j�nj��n � 
n�n � rn �

where rn contains only spherical harmonics of degree � n in its spectral decompo�
sition and


n �
k�nk�L�
k�nk�L�

� n
�
���s �

Observe that that R�
	un is a solution of ������ with data u� � �ein	�n� On the

other hand ein	un is also a solution of ������ with the same initial data� Therefore	
using the uniqueness assertion of Theorem ��� �in spaces invariant under the action
of R�

	� for the Cauchy problem ������	 we obtain

R�
	un � ein	un �

Using Lemma ����	 we deduce that un�t� is a linear combination of �n and spherical
harmonics of degree � n�

Let us give the heuristic argument which permits us to 
nd an ansatz for un�t��
In view of the above discussion	 we may hope that un�t� can be written as

un�t� � �cn�t��n � �small error
�� �

Substituting this in the equation ������	 neglecting the �small error� and projection
on �n yields the equation

i� �cn � n�n� ���cn � �� 
n jcnj�cn � �� cn��� � �

which gives

cn�t� � e�it�n�n�����
��n� �

In order to make the above formal discussion rigorous	 we set

un�t� � � e�it�n�n�����
��n���� � zn�t���n � qn�t���
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where zn��� � �	 qn��� � � and qn�t� contains only spherical harmonics of degree
� n in its spectral decomposition� Proposition ���� is clearly a consequence of the
following statements�

Lemma ���	� There exists a constant C � �� independent of T and n such that

kqn�t�kHs � Cn�
�
��s�

Lemma ���
� There exists a constant CT � �� which depends on T but not on n
such that

sup
t����T 	

jzn�t�j � CTn
�
���s�

Proof of Lemma ��
� Let us 
rst rewrite the conservation laws ������	 ������ in
terms of zn�t� and qn�t�� Since �n is orthogonal to qn�t� in L��S�� as well as r�n
to rqn�t�	 we can rewrite ������ and ������ as

j� � zn�t�j�k�nk�L� � kqn�t�k�L� � k�nk�L� �������

������ j� � zn�t�j�kr�nk�L� � krqn�t�k�L� �
�

���
kun�t�k�L� �

kr�nk�L� �
��

�
k�nk�L� �

Observe that

kr�nk�L� � h�n � ���ni � n�n� ��k�nk�L� �
where h�� �i denotes the L��S�� scalar product� Therefore multiplying ������ with
�n�n � �� and adding it to ������ gives

������ krqn�t�k�L� � n�n � ��kqn�t�k�L� �
�

���
kun�t�k�L� �

��

�
k�nk�L� �

�

���
kun�t�k�L� �

Let us bound the right hand�side of ������ as follows

kun�t�k�L� � C
�k�nk�L� � kqn�t�k�L�� �

� C
�
n

�
���s � kqn�t�k�L�

� � C
�
n

�
���s � kqn�t�k�

H
�
�

�
�

where we used the Sobolev inequality in the last estimate� We can decompose

qn�t� �
X

l�n��

qn�l�t�
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where qn�l � Ker��S� � l�l� ���� Hence

krqn�t�k�L� � n�n� ��kqn�t�k�L� �
X

l�n��

�l�l� ��� n�n� ���kqn�l�t�k�L� �

If l � n� �	 we have l�l� ��� n�n� �� � l and therefore

krqn�t�k�L� � n�n� ��kqn�t�k�L� � kqn�t�k�
H

�
�
�

Coming back to ������	

kqn�t�k�
H

�
�
� C

�
n

�
���s � kqn�t�k�

H
�
�

�
�

Since qn��� � � by a bootstrap argument	

kqn�t�k
H

�
�
� Cn

�
���s �������

On the other hand	 we also have that if l � n � � then l�l� ��� n�n� �� � n and
thus

nkqn�t�k�L� � C
�
n

�
�
��s � n���s

�
�

Since s � ����	 we get the bound

kqn�t�kL� � Cn�
�
���s �������

Using ������ and ������	 we 
nally arrive at

kqn�t�kHs � kqn�t�k���sL�
kqn�t�k�s

H
�
�
� Cn�

�
��s �

This completes the proof of Lemma ����

Proof of Lemma ���� Let us set wn�t� �� zn�t��n � qn�t�� By projecting the equa�
tion

�i�t � ��un � junj�un � �
on the mode �n	 we get that zn solves the equation

i �zn � ��
nzn � � ��

k�nk�L�
�
hj�n � wnj���n � wn� � �ni � hj�nj��n � �ni

�
�

� � ��

k�nk�L�
� Z

��j�nj�wn��
�
n !wn��n���Re��nwn�wn�n�jwnj�j�nj��jwnj�wn�n�

�
�
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Next	 the equation for zn�t� can be rewritten as

i �zn � ��
nzn � ��
n��zn � 
n�
� !zn �

��

k�nk�L�
O�jznj�

Z
j�nj� �

� jznj�
Z
j�nj� �

Z
jqnj�j�nj�

Z
jqnj�j�nj� � jhqn� rnij��

Let us estimate the source terms� Write using Lemma ����R jqnj�j�nj
k�nk�L�

� Cn�skqnk�L�k�nkL� � Cn�skqnkL�kqnk�
H

�
�
k�nkL� �

� Cn�s n�
�
���s n

�
���s n

�
��s � Cn

�
���s�

Further we haveR jqnj�j�nj�
k�nk�L�

� Cn�skqnk�L�k�nk�L� � Cn�s n�
�
���s n

�
���s � Cn��s�

and

jhqn � rnij
k�nk�L�

� Cn�skqnkL�krnkL� � Cn�s n�
�
���s n

�
���s � Cn

�
���s�

Therefore	 if s � �
� 	 the equation for zn�t� can be written as

i�tzn � ��
n��Re�zn� � O�
njznj� � 
njznj� � n
�
���s�������

with zn��� � �� Moreover using once again the L
� conservation law ������	 we have

�� j� � znj� �
kqn�t�k�L�
k�nk�L�

� O�n� �
���s��

Therefore
j�Re�zn� � jznj�j � O�n� �

���s�

and the equation ������ takes the form

i�tzn � O�
njznj� � 
njznj� � n
�
�
��s��

with 
n � O�n �
���s�� Hence if we set

Mn�T � � sup
��t�T

jzn�t�j�

we obtain

Mn�T � � CT �n
�
���s�Mn�T �

� � n
�
���s�Mn�T �

�� n
�
���s��������

In view of ������	 we set
�Mn�T � � n�s�

�
�Mn�T �
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and therefore ������ yields

�Mn�T � � CT �� � n
�
���s� �Mn�T �

�� n���s� �Mn�T �
���

Since �Mn��� � � and s � �
�� 	 we obtain that

�Mn�T � � CT uniformly with respect
to n� This completes the proof of Lemma �����

This proof of Proposition ���� is now completed�

Notice that the assertion of Theorem ���� is new only for � � s  ���� Indeed for
s  �	 we can apply Theorem ����

Let us now show how Proposition ���� implies Theorem ���� for ����  s  ����
The main point is that for s  ��� we have 
n � � as n � �� Let us 
x T � �	
� ��� � and let ��n� be a sequence of positive numbers such that

��� � ��n�
n � n� � �  �  � �

Since s  ��� and 
n � n
�
���s	 we have that for � 	 �	 �n � �� Let �u��n� and

�u�n�n� be the solutions of ������ with data ��n and �n�n respectively� Then

ku��n��� ��� u�n�n��� ��kHs � Cj�� �nj �� �

but thanks to Proposition ����	 for t � ��� T 	
ku��n�t� ��� u�n�n�t� ��kHs � cjeitn� � �j � CTn

��

with � � �� The proof of Theorem ���� for ����  s  ��� is completes by observing
that for all n� �	

sup
��t�T

jeitn� � �j � � �

When � � s � ����	 we need to perform a slight modi
cation of the argument�
Indeed	 in this case is su�ces to remark that in fact we need to justify the ansatz
only on a a small interval� ��� Tn with Tn satisfying

lim
n��

n
�
���sTn �� �

The bound of Lemma ���� is uniform in time� We only need to slightly modify the
proof of Lemma ����� In the case � � s � ����	 we de
ne

�Mn�T � �� T��n n�s�
�
�Mn�T �� � � T � Tn �

and	 the argument of Lemma ���� yields the bound

�Mn�T � � C
�
� � T �

nn
�
���s� �Mn�T �

� � T �
nn

���s� �Mn�T �
�
�
�

�Recall that a similar idea idea was used in the discussion around Theorem ����
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If we set

Tn �� n
�s
� �

�

��

with �  �	 �	 a bootstrap argument gives

�Mn�T � � C

and therefore

jzn�t�j � Cn
�
���s n

�s
� �

�

�� � Cn�

�

�

s
���� � � t � Tn �

Therefore the ansatz is valid on ��� Tn	 which is a su�ciently large small interval to
get the instability property of the �ow map� Indeed

n
�
���sTn � n

�

�

s
���

which gives the big oscillations needed to assure the lack of uniform continuity of
the �ow map� Let us 
nally mention that in the case s � �	 to assure the global
existence one also has to impose a smallness assumption �independent of n� on the
parameter �� This completes the proof of Theorem �����

We end this section by several remarks�

The result of Theorem ���� is another instance when we see that the critical indice
for the semi�linear well�posedness is shifted from the scaling one because of concen�
tration on a curve �a closed geodesic�� It would be interesting to develop a notion of
critical exponent associated to curve similarly to the one associated to a point via
the scaling invariance�

It would be interesting to decide whether for some � � s � ���	 the Cauchy
problem ������ is well�posed �probably after a suitable gauge transform� for data in
Hs�S��� Recall that such a phenomenon is not excluded as shows the experience
with the modi
ed KdV equation�

We do not know for an analog of Theorem ��� in the setting of compact manifolds�
Moreover	 it is known that in case of the sphere S the assertion of Theorem ���
fails� More precisely the Cauchy problem

iut ��gu � �� � juj��
�
� u� u��� � u�� �  � � ��

posed on S is not semi�linearly well�posed for data in H��S� �cf� ���	 ���

We refer to the work of Banica ��	 where the ansatz used in the proof of Theo�
rem ���� is justi
ed up to time one for �  s � ����� Let us also mention the work
��� where the approach of Theorem ���� is extended to ������ posed on the unit



�� N� TZVETKOV

disc of R� with Dirichlet boundary conditions� We also refer to ��� for ill�posedness
results for the cubic NLS posed on the circle S��

�� Final remarks

There has been a number of works	 closely related to the discussion in these notes
for nonlinear wave equations �cf� ���	 ��	 ��	 ��	 ��	 �� ��� �� In the context of
the nonlinear wave equations	 again	 families of solutions concentrating at a point
contradict the well�posedness �or semi�linear well�posedness� below the scaling ex�
ponent� The 
nite propagation speed of the wave equation is exploited in ��� to
construct a single solution	 concentrating in an in
nite number of points	 which stays
bounded in Hs �for some suitable s� and becomes instantaneously very large in H�	
� � s� It would be interesting to prove the analogue of Lebeau�s result in the context
of the NLS� Despite the lack of the 
nite propagation speed for the Schr�odinger op�
erator	 the reasoning in the proof of Theorem ��� above is of a semi�classical nature
�cf� also ���� and thus 
nite propagation speed considerations could be employed�
It is worth noticing that	 again	 in the case of nonlinear wave equations ill�posedness
above the scaling is closely related to concentrations on curves	 for instance the
Lorenz invariance provides families of solutions concentrating on light rays�
The problematic discussed in these notes 
ts naturally in the context of parabolic

PDE�s� There has been some 
rst results in that direction �cf� ���	 �� ����	 and	 we
believe there is further progress to come�
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Dispersive estimates and applications

Herbert Koch, Dortmund

Strichartz estimates are one of several basic tools in the study of linear and

nonlinear dispersive equations. They quantify the limitations of the extent

to which waves can be focussed over a certain time interval. Analytically

they extend estimates which are valid for elliptic operators to certain non

elliptic operators.

The lectures series will focus on Strichartz estimates for equations with

rough coefficients, which are motivated by strong wave interactions for non-

linear equations.

The first talk will give a survey on Strichartz estimates for equations with

rough coefficients and their applications. The second lecture will describe

the technique of wave packet decomposition leading to a calculus based on

the FBI transform.

This wave packet decomposition is applied in the third lecture to linear dis-

persive equations, leading to a representation of the fundamental solution.

This wave packet decomposition implies dispersive estimates.

Finally these techniques are applied to nonlinear dispersive equations and

to spectral projections.

Most of the lecture series is based on the joint paper with D. Tataru:

Dispersive estimates for principally normal pseudodifferential operators,

aiXiv:math.AP/0401234

and on joint work with N. Tzvetkov:

On the local well-posedness of the Benjamin-Ono equation in Hs(R), Int.

Math. Res. Not. (26), 1449-1464(2003).


