

Instructions for use

Title Scenario Verification for Proximity-Based Federation of Smart Objects Using Model Checking

Author(s) 蓑田, 玲緒奈

Citation 北海道大学. 博士(情報科学) 甲第13081号

Issue Date 2018-03-22

DOI 10.14943/doctoral.k13081

Doc URL http://hdl.handle.net/2115/70418

Type theses (doctoral)

File Information Reona_Minoda.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF INFORMATION SCIENCE

IN THE GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

OF HOKKAIDO UNIVERSITY

平成 29年度　博士論文

Scenario Verification for Proximity-Based

Federation of Smart Objects Using Model Checking

モデル検査によるスマートオブジェクトの近接連携シナリオの形式検証

Reona Minoda

蓑田　玲緒奈

Large-Scale Knowledge Processing Laboratory,

Division of Computer Science,

Graduate School of Information Science and Technology,

Hokkaido University

北海道大学　大学院情報科学研究科

コンピュータサイエンス専攻　大規模知識処理研究室

February 2018

Abstract

This thesis proposes a verification method of ubiquitous computing sce-

narios using model checking. Model checking is one of the most popu-

lar formal verification approach and it is often used in various fields of

industry. Model checking is conducted using a Kripke structure which

is a formal state transition model. In this thesis, we present following

three verification frameworks for ubiquitous computing scenarios.

First, we introduce a model called Context Catalytic Reaction Net-

work (CCRN) to handle this federation model as a formal state transition

model. We also give an algorithm to transform a CCRN into a Kripke

structure and we conduct a case study of ubiquitous computing sce-

nario verification, using this algorithm and the model checking. Finally,

we discuss the advantages of our formal approach by showing the dif-

ficulties of our target problem experimentally.

Second, we propose an efficient verification framework of CCRN

as a new application field of symbolic model checking. To do so, we

illustrate a method how to transform a scenario written in CCRN into

a symbolic model checking problem. We also show experimentally that

our framework makes it possible to verify large scale ubiquitous com-

ii Abstract

puting scenarios which could not be verified in realistic time by our pre-

vious method. Additionally, we show experimentally the usefulness of

fault detections using bounded model checking in the same framework.

Third, we propose the method of reliability analysis of ubiqui-

tous computing scenarios. In ubiquitous computing scenarios, various

devices communicate with each other through wireless network, and

this kind of communications sometimes break due to external interfer-

ences. To discuss the reliability in such situation, we introduce the no-

tion of probability into CCRN, which is a description model of ubiq-

uitous computing scenarios. This enables us to conduct quantitative

analyses such as considerations of a trade-off between the reliability of

ubiquitous computing scenarios and the costs which may be necessary

for their implementations. To conduct a reliability analysis of ubiqui-

tous computing scenarios, we use the technique of probabilistic model

checking. We also evaluate our method experimentally by conducting a

case study using a practical example assuming a museum.

iii

Contents

1 Introduction 1

1.1 Background . 1

1.2 Our Contributions 5

1.3 Related Works . 8

1.4 Structure of this thesis 9

2 Preliminaries 11

2.1 Basic Definitions and Notation 11

2.2 Catalytic Reaction Network 12

2.3 Model Checking . 16

2.4 Summary . 27

3 Scenario Verification for Ubiquitous Computing

using Model Checking 29

3.1 Introduction . 30

iv

3.2 Context Catalytic Reaction Network 31

3.3 Verification Method of a CCRN 33

3.4 Case Study of the Verification 38

3.5 Scalability of Our Method 48

3.6 Summary . 50

4 Improving the Scalability of Scenario Verification

Using Symbolic Model Checking 53

4.1 Introduction . 54

4.2 CCRN Verification through Symbolic Model

Checking . 55

4.3 Experiments and Discussion 58

4.4 Summary . 66

5 Reliability Analysis of Ubiquitous Computing

Scenario Using Probabilistic Model Checking 67

5.1 Introduction . 68

5.2 Probabilistic CCRN 69

5.3 Formulation of P-CCRN Reliability Analysis . . . 70

5.4 Case Study of Reliability Analysis 73

5.5 Summary . 78

v

6 Conclusions and Open Problems 79

6.1 Concluding Remarks 79

6.2 Open Problems and Future Directions 81

Acknowledgements 83

Related Publications 85

Bibliography 87

vii

List of Figures

1.1 Example of Ubiquitous Computing Application Scenario 2

1.2 Example of location transparent service continuance . . 4

1.3 Example of context-aware service provision 4

2.1 Example of a Catalytic Reaction 13

2.2 Four Types of a Catalytic Reactions 14

3.1 Example of Segment Graph 32

3.2 Mechanism of the Algorithm 35

3.3 Algorithm for transforming CCRN into Kripke structure 37

3.4 Example of Museum . 40

3.5 Example of a SMV Language File 42

3.6 Counterexample corresponding to ϕ2 of Museum Example 44

3.7 Counterexample corresponding to ϕ3 of Museum Example 44

3.8 Revised Museum Example 45

viii

3.9 Example of Museum Containing Multiple Rooms 49

4.1 Museum Example of CCRN 60

4.2 Computational Costs for CCRN Fault Detection 65

4.3 Fault Detection Time Comparison between Symbolic

Model Checking (SMV) and Bounded Model Checking

(BMC) . 65

5.1 A CCRN assuming a museum 75

5.2 Results of Experiments 77

ix

List of Tables

3.1 Number of Graph Walk Patterns of Museum Example . 47

3.2 Results of the Scalability Experiment 50

4.1 Experiment Results of The Scalability Evaluation 62

1

Chapter 1

Introduction

1.1 Background

Nowadays, we are surrounded with a lot of devices with compu-

tation and communication capabilities. These devices are called smart

objects (SOs). SOs include PCs, smart phones, embedded computers,

sensor devices and RFID tags. By embedding RFID tags in physical

things such as mugs, food and medicine bottles, we can also treat them

as SOs. The notion of ubiquitous computing assumes that a lot of these

SOs surround enough around users. Here we use the term federation to

denote the definition and execution of interoperation among resources

that are accessible either through the Internet or through peer-to-peer

ad hoc communication. For example, let us consider that there are a

phone, a medicine bottle and food; and RFID tags are embedded in a

medicine bottle and food. Imagine that this food and the medicine have

a harmful effect when eaten together. If all these things are close to each

2 Chapter 1 Introduction

Federation

...

Federation

Federation Federation

Federation

Involved in
Each Other

Other
Federations

Embeded Chips
(e.g., RFID tags, etc.)

Close to
Each
Other

Ring!
 Ring!

Food

Phone

Medicine
Bottle

Figure 1.1 Example of Ubiquitous Computing Application Scenario

other, a phone rings to inform a user to warn not to eat them together. This

phenomenon is a federation. Of course, we can also consider other fed-

erations related to other SOs and these federations may be involved in

each other. And we call these federations “ubiquitous computing appli-

cation scenarios” (see Fig. 1.1). As various kinds of devices and physical

things can be treated as SOs thanks to technological innovation, our real

world environment is now steadily laying the foundation for the con-

cept of ubiquitous computing which Mark Weiser looked beyond [37].

Since Weiser proposed the notion of ubiquitous computing, it

has been almost quarter of century. In the meantime, a lot of differ-

1.1 Background 3

ent frameworks have been proposed to realize ubiquitous computing.

However, regardless of specific research areas in ubiquitous computing,

Yuzuru Tanaka pointed out that these researches typically only consider

two types of application scenarios [35]. One is “location transparent ser-

vice continuance” (i.e., a user can use a service wherever the user goes;

See Fig. 1.2). The other one is “context-aware service provision” (i.e., a

user can use different kinds of services depending on where the user is;

See Fig. 1.3). Robin Milner thought that the lack of models for describ-

ing ubiquitous computing application scenarios caused to prevent from

considering various types of application scenarios [29]. Besides, accord-

ing to Milner, it is not possible to describe all concepts of ubiquitous

computing by using a single model [29]. Milner argued that the hier-

archical structure of models (Milner called it “a tower of models”) was

necessary. In a tower of models, each higher model should be imple-

mented by a lower model.

Following the notion of a tower of models, Tanaka once proposed

the basic idea for describing ubiquitous computing application scenar-

ios using catalytic reaction network model [35]. This idea includes fol-

lowing three models:

• At the first (lowest) level, the port matching model describes the

federation mechanism between two SOs in close proximity to

each other.

• At the second (middle) level, the graph rewriting model describes

the dynamic change of federation structures among SOs.

• At the third (highest) level, the catalytic reaction network model

4 Chapter 1 Introduction

Service A

Move Move

Location 1 Location 2 Location 3

Figure 1.2 Example of location transparent service continuance

Service A Service B Service C

Move Move

Location 1 Location 2 Location 3

Figure 1.3 Example of context-aware service provision

1.2 Our Contributions 5

describes application scenarios involving mutually related multi-

ple federations.

Then, Julia and Tanaka brushed up these three models and es-

tablished a concrete tower of models by proving that a higher model

is surely implemented by a lower model [22]. Moreover, Julia’s model

implementation has error handling mechanisms assuming unexpected

situations such as the connection failures between two SOs. Therefore

we can focus on the catalytic reaction network model for describing ap-

plication scenarios of ubiquitous computing.

However, there are still challenges of establishing the verification

method of the catalytic reaction network model. So far, when we made a

scenario using the catalytic reaction network model, we could not prove

easily whether a particular federation would occur because federations

of multiple devices are formed by proximity sensitive connections be-

tween SOs. So when we discuss a scenario using the catalytic reaction

network, we also need to consider the proximity relations of SOs.

1.2 Our Contributions

In this thesis, we propose three frameworks for scenario verifica-

tion of ubiquitous computing.

In chapter 3, we propose a verification method of device-

federation model based on catalytic reaction network. Basically we

transform a scenario into the well-known state-transition model such

as Kripke structure. This enables us to apply existing model checking

6 Chapter 1 Introduction

verifiers. With this method, we can discuss the following things:

• Determining whether a property described in a temporal logic

specification (e.g., a particular federation finally occured) is satis-

fied or not in the given scenario described by the catalytic reaction

network model.

• Showing a counterexample if there is any case violating the prop-

erty described above.

In a scenario using original catalytic reaction network model,

there are so many proximity relations among SOs (n SOs would have 2n

proximity relations). This sometimes causes the state explosion problem

in the model checking. We need to constrain the proximity relations in

the original catalytic reaction network model. For this reason, we will

first define the constrained model called “Context Catalytic Reaction Net-

work (CCRN).” Then, we will propose the method to transform CCRN

into the well-known state transition model such as a Kripke structure

that can apply existing model checking verifiers.

In chapter 4, we propose a verification method using symbolic

model checking to improve the scalability. Symbolic model checking is a

one of model checking technique to verify very large scale of state tran-

sition systems [7]. We show the method how to take advantage of sym-

bolic model checking techniques when we reduce ubiquitous comput-

ing scenario verification problems to model checking problems. We also

show experimentally that our method can verify larger ubiquitous com-

puting scenario verification problems compared to our previous naive

approach. As a result, this method enables us to discuss more practical

1.2 Our Contributions 7

ubiquitous computing scenario verification problems.

Additionally, if we establish a reduction method using a sym-

bolic model checking approach, we can also take advantage of bounded

model checking in the same framework [4]. Bounded model check-

ing can detect counterexamples from a given model checking problem

faster than symbolic model checking in most cases (Note that bounded

model checking is not good at proving that there is no counterexam-

ple of a given model checking problem). Bounded model checking

is widely used for the counterexample detection from model checking

problems. In this chapter, we also evaluate experimentally how practi-

cal is bounded model checking for ubiquitous computing scenario ver-

ification problems.

In chapter 5, we show an approach to reliability analysis of ubiq-

uitous computing scenarios by introducing a notion of probability to

CCRN, which is a description model of ubiquitous computing scenar-

ios. To analyze this kind of reliability, we use the technique of proba-

bilistic model checking [25]. For example, ubiquitous computing sce-

narios are assumed that SOs typically communicate with each other by

the wireless communication. This framework enables us to consider

these communications which sometimes break due to various external

causes. With this method, we discuss this kind of interference formally.

8 Chapter 1 Introduction

1.3 Related Works

1.3.1 Formal Verification of Cyber Physical Systems

Similarly to ubiquitous computing, a lot of devices such as sen-

sors measure physical phenomena such as temperature, humidity, ac-

celeration and so on, while actuators manipulate the physical world,

like in automated robots. The combination of an electronic system with

a physical process is called cyber physical system (CPS). In the field

of CPS, Drechsler and Kühne use timed automata [2] as a state transi-

tion model to conduct formal verifications of given systems’ proper-

ties [18][12].

Hasuo et al. introduce a metamathematical strategy to verify

properties of CPS systems [17]. They generalize a methodology of

verification for formal models and they try to establish meta-level

verification theories which they can apply to no matter what kind of

a model they verify. Hartmanns et al., one of their groups, extend

timed automata by introducing a notion of probability to handle with

a formal model for real-time systems with discrete probabilistic and

non-deterministic choices [15].

For appropriate CPS reactions to the physical world, Sun et al.

propose a framework to verify the consistency of a rule set for detect-

ing physical world situations, which can be judged from information

gathered from various sensors [34].

1.4 Structure of this thesis 9

1.3.2 Context Inconsistency Detection

In the field of ambient computing, Xu and Cheung propose a

method of context inconsistency detection [38]. This method detects

inconsistencies from a series of gathered events such as “a user entered

a room” and “the temperature of room is 30◦C” by logical deduction.

Unlike a formal verification, this method can be applied only after the

system begins to work. Instead, a formal verification can find the failed

cases from a given system in advance.

1.3.3 Reconfigurable hardware verification for Ubiqui-

tous Systems

In the field of implementations for ubiquitous systems, Guel-

louz, et al. use probabilistic model checking to verify the behavior of

devices [14]. These devices have reconfigurable function blocks, which

is standardized as IEC 61499 and a part of each blocks behaves proba-

bilistically. Guellouz, et al. analyzed this behavior by using probabilistic

model checking.

1.4 Structure of this thesis

The rest of this thesis is organized as follows. Chapter 2 provides

preliminaries of this thesis, such as basic definitions and notations. Us-

ing them, we define a CCRN and we propose the verification method

of a CCRN in chapter 3. To improve the scalability of our method, we

10 Chapter 1 Introduction

propose a more efficient verification method of CCRN using symbolic

model checking in chapter 4. In chapter 5, we propose the method of re-

liability analysis of probabilistic CCRN using probabilistic model check-

ing. Finally, we summarize the results of this thesis in chapter 6.

11

Chapter 2

Preliminaries

In this section, we give definitions and notations which

is necessary for this thesis. We also introduce an model of

catalytic reaction network for proximity-based federation of

SOs. Finally, we introduce formal verification methods which

we use in later chapters.

2.1 Basic Definitions and Notation

Let X and Y be any two sets, we use X ∪ Y, X ∩ Y and X \ Y to de-

note the union, intersection and difference of X and Y respectively. For a

set X, we denote its power set (i.e., all subsets) by 2X and its cardinality

by |X|. For a set X, we denote a set of k-elements subsets of X by (X
k).

For a family M of sets (i.e., a set of sets), we denote the union and the

intersection of all sets in M by
∪

M and
∩

M respectively. Let X be a set,

12 Chapter 2 Preliminaries

we denote a set of all set partitions of X by P(X). For example, given

X = {1, 2}, we have P(X) = {{{1}, {2}}, {{1, 2}}}.

2.2 Catalytic Reaction Network

A catalytic reaction network is originally proposed by Stuart

Kauffman in the field of biology to analyze protein metabolism [23].

Based on this model, Tanaka applied it to the field of ubiquitous

computing as the way to describe an application scenario involving

mutually related multiple federations among SOs [35]. In this thesis,

we mean the latter by the term “catalytic reaction network”.

A catalytic reaction network is a set of catalytic reactions. Each

catalytic reaction takes input materials and transforms them into output

materials. And each catalytic reaction has a catalyst which is called con-

text. It may be also possible to include a catalyst in input materials. We

call this kind of catalyst stimulus. A catalytic reaction is occurred when

all required SOs are in the proximity of each other. We use the term

“scope” to denote the inside of the proximity area (we assume a range

of Wi-Fi radiowave, and so on). The scope of a SO o is represented as

a set of SOs which are accessible from the SO o. Tanaka assumed that

all scopes of the context and SOs involved in a catalytic reaction are

considered [35].

However, as we mentioned in previous section, this causes the

state explosion problem during the model checking. For this reason, in

this thesis, we assume that only the scopes of contexts are considered

instead. In other words, we consider that the catalytic reaction is oc-

2.2 Catalytic Reaction Network 13

expressed
as

Gate

Headset Phone

IC card

Scope of

(iii) Phone and headset
 are federated (denoted by).

makes and federated.(ii)

(i) A user enters into
the scope of .

(This action is triggered by .)

Figure 2.1 Example of a Catalytic Reaction

14 Chapter 2 Preliminaries

Figure 2.2 Four Types of a Catalytic Reactions

curred if all required SOs just enter into the scope of the corresponding

context.

Figure 2.1 shows an example of single catalytic reaction. In this

example, there is a gate c1 regarded as a context and a user has three

SOs i.e., a phone a, a headset b and an IC card s. If the user enters into

the scope of c1, c1 makes a and b federated. This action is triggered by

s. After that, phone a and headset b are federated. We denote federated

SOs such as a and b by a concatenation of a and b, i.e., ab. During this

process, c1 and s work as catalysts. In particular, s is a stimulus in this

reaction. We express this reaction as the right hand side diagram of Fig.

2.1.

In catalytic reaction networks, there are four types of catalytic

reactions as we show in Fig. 2.2. We categorize these four types of reac-

tions into two groups. One group is the composition reaction group (Fig.

2.2 (i) and (ii)), the other group is the decomposition reaction group (i.e.,

2.2 Catalytic Reaction Network 15

Fig. 2.2 (iii) and (iv)). A catalytic reaction of Fig. 2.1 is a type (i) catalytic

reaction. We also consider the catalytic reaction without a stimulus such

as Fig. 2.2 (ii). In type (ii), if a user who has SO a and SO b enters into

the scope of context c2, c2 makes a and b federated without a stimulus. In

a similar way, we consider the decomposition reactions such as Fig. 2.2

(iii) and (iv). In type (iii), if a user who has two SOs that are federated

into ab enters into the scope of context c3, c3 decomposes these SOs ab

into a and b triggered by SO s. Type (iv) is a decomposition reaction

without a stimulus.

The output SO of a reaction may promote other reactions as a

stimulus or become an input SO of other reactions. In this way, catalytic

reactions form a network of reactions.

Now we define a catalytic reaction network formally. First, let

O be a set of SOs, we give a definition of a federated SO o f by o f ∈

2O \ {∅} where |o f | > 1. If |o f | = 1, we treat o f as a single SO. Next, we

define a catalytic reaction as follows:

Definition 2.2.1（Catalytic Reaction） Let O and C be a set of SOs and

a set of contexts respectively, a catalytic reaction is defined as a tuple

(c, M, N) where

• c ∈ C, M ⊆ 2O \ ∅, N ⊆ 2O \ ∅

• ∀o f ∀o′f ∈ M.(o f ̸= o′f → o f ∩ o′f = ∅)

• ∀o f ∀o′f ∈ N.(o f ̸= o′f → o f ∩ o′f = ∅)

•
∪

M =
∪

N, and

16 Chapter 2 Preliminaries

• (|M ∩ N|+ 1 = |N|, |M| > |N|) ∨

(|M ∩ N|+ 1 = |M|, |M| < |N|) (∗)

The former of the last condition (signed by (∗)) and the latter of the last

condition correspond to a necessary condition for composition reaction

and decomposition reaction respectively.

We give some examples of catalytic reactions. Given C =

{c1, c3}, O = {a, b, s}, a catalytic reaction of Fig. 2.2 (i) and (iii) can be

defined by

(c1, {{a}, {b}, {s}}, {{a, b}, {s}}) and

(c3, {{a, b}, {s}}, {{a}, {b}, {s}}) respectively.

Finally, a catalytic reaction network is defined as follows:

Definition 2.2.2（Catalytic Reaction Network） A catalytic reaction

network is a set of catalytic reactions.

2.3 Model Checking

A model checking is a method to verify a property of a state tran-

sition system. It was proposed by Clarke and Emerson [10]; separately

Quielle and Sifakis proposed basically the same method [32]. It has been

often used in various fields, which ranges from electronic-circuit-design

verification [6] to secure-network-protocol (e.g., Secure Sockets Layer

(SSL) protocol [13]) design verification [30]. In the model checking, it is

typically assumed to use a Kripke structure as a state transition system.

The property of a Kripke structure is described by a modal logic. There

2.3 Model Checking 17

are two kind of commonly used modal logics such as computational tree

logic (CTL) and linear temporal logic (LTL).

2.3.1 Kripke Structure

Before we look on the detail of a model checking, we give the

definition of a Kripke structure [24] which is necessary for a modal logic

and a model checking.

Definition 2.3.1（Kripke Structure） Let AP be a set of atomic propo-

sitions, a Kripke structrue M is a tuple (S, I, R, L), where

• S is a finite set of states,

• I ⊆ S is a set of initial states,

• R ⊆ S × S is a set of transition relation such that R is left-total,

i.e., ∀s ∈ S, ∃s′ ∈ S such that (s, s′) ∈ R, and

• L : S → 2AP is a labeling function.

2.3.2 Computational Tree Logic

CTL was proposed by Clarke et al. for the purpose of analysis

and design of concurrent programs. [10] First, we give a definition of

CTL syntax.

18 Chapter 2 Preliminaries

Definition 2.3.2（CTL Syntax） Let AP be a set of atomic propositions,

a CTL formula ϕ is defined by the following syntax recursively.

ϕ ::=⊤ | ⊥ | p | ¬ϕ | ϕ ∨ ϕ |
EXϕ | EGϕ | EFϕ | E(ϕUϕ) |
AXϕ | AGϕ | AFϕ | A(ϕUϕ)

where p ∈ AP.

These right-hand terms denote basic logical terms i.e., true, false, p,

negation and disjunction, quantifiers over paths i.e., all and exist, and

path-specific operators i.e., next time, always, eventually and until re-

spectively.

Next, we focus on the semantics of CTL. The semantics of CTL

are defined as satisfaction relations (denoted by |=) of a pair ⟨M, s⟩ of a

Kripke structure M = (S, I, R, L) and its present state s ∈ S. We enu-

merate the semantics of CTL as follows:

• M, s |= ⊤ (true is always satisfied)

• M, s ̸|= ⊥ (false is never satisfied)

• (M, s |= p) iff (p ∈ L(s)) (atomic propositions are satisfied when

they are members of the present state’s labels)

And there are two CTL semantics of boolean combinations as follows:

• (M, s |= ¬ϕ) iff (M, s ̸|= ϕ)

• (M, s |= ϕ ∨ ψ) iff [(M, s |= ϕ) ∨ (M, s |= ψ)]

2.3 Model Checking 19

And there are eight CTL semantics of combinations of quantifiers over

paths and path-specific operators as follows:

• (M, s |= EXϕ) iff [∃s′ ∈ S.((s, s′) ∈ R ∧ (M, s′ |= ϕ))].

• (M, s |= AXϕ) iff [∀s′ ∈ S.((s, s′) ∈ R ∧ (M, s′ |= ϕ))].

• (M, s |= EGϕ) iff there exists an infinite transition-path

s0, s1, s2, . . . generated from R such that s0 = s and for all

k ≥ 0, M, sk |= ϕ is satisfied.

• (M, s |= AGϕ) iff M, s′ |= ϕ is satisfied for all s′ ∈ S which is

reachable from s by R.

• (M, s |= EFϕ) iff there exists s′ ∈ S which is reachable from s by

R and M, s′ |= ϕ is satisfied.

• (M, s |= AFϕ) iff for all infinite transition-path s0, s1, s2, . . . gen-

erated from R such that s0 = s, there exists k ≥ 0 such that

M, sk |= ϕ.

• (M, s |= E(ϕUψ)) iff there exists an infinite transition-path

s0, s1, s2, . . . generated from R such that s0 = s, it is satisfied that[
(∃i.(M, si |= ψ)) ∧ (∀j < i.(M, sj |= ϕ))

]
.

• (M, s |= A(ϕUψ)) iff for all infinite transition-paths s0, s1, s2, . . .

generated from R such that s0 = s, it is satisfied that[
(∃i.(M, si |= ψ)) ∧ (∀j < i.(M, sj |= ϕ))

]
.

20 Chapter 2 Preliminaries

2.3.3 Linear Temporal Logic

LTL was first proposed for the formal verification of computer

programs by Amir Pnueil in 1977 [31]. First, we give a definition of LTL

syntax.

Definition 2.3.3（LTL Syntax） Let AP be a set of atomic propositions,

a LTL formula ϕ is defined by the following syntax recursively.

ϕ ::= ⊤ | ⊥ | p | ¬ϕ | ϕ ∨ ϕ | X ϕ | G ϕ | F ϕ | ϕ U ϕ

where p ∈ AP.

These right-hand terms denote true, false, p, negation, disjunction, next

time, always, eventually and until respectively.

Next, we define a transition path π of a Kripke structure M.

Definition 2.3.4（Transition Path） Let M be a Kripke structure, π =

(π0, π1, π2, . . .) is a transition path in M if it respects M’s transition

relation, i.e., ∀i.(πi, πi+1) ∈ R. πi denotes π’s ith suffix, i.e., πi =

(πi, πi+1, πi+2, . . .).

Also it can be shown that

(πi)j = (πi, πi+1, πi+2, . . .)j

= (πi+j, πi+j+1, πi+j+2, . . .)

= πi+j.

Now we focus on the semantics of LTL. First, we define the bi-

nary satisfaction relation, denoted by |=, for LTL formulae. This sat-

2.3 Model Checking 21

isfaction is with respect to a pair – ⟨M, π⟩, a Kripke structure and a

transition path. Then we enumerate LTL semantics as follows:

• M, π |= ⊤ (true is always satisfied)

• M, π ̸|= ⊥ (false is never satisfied)

• (M, π |= p) iff (p ∈ L(π0)) (atomic propositions are satisfied

when they are members of the path’s first element’s labels)

And there are two LTL semantics of boolean combinations as follows:

• (M, π |= ¬ϕ) iff (M, π ̸|= ϕ)

• (M, π |= ϕ ∨ ψ) iff [(M, π |= ϕ) ∨ (M, π |= ψ)]

And there are four LTL semantics of temporal operators as follows:

• (M, π |= X ϕ) iff (M, π1 |= ϕ)

• (M, π |= F ϕ) iff
[
∃i.(M, πi |= ϕ)

]
• (M, π |= G ϕ) iff

[
∀i.(M, πi |= ϕ)

]
• (M, π |= ϕ U ψ) iff

[
(∃i.(M, πi |= ψ)) ∧ (∀j < i.(M, π j |= ϕ))

]

22 Chapter 2 Preliminaries

2.3.4 Model Checking Problem

Intuitively saying, a model checking problem is to judge whether

a given Kripke structure M satisfies a given property described in a

modal logic formula ϕ. Definitions of model checking problems depend

on that they are given CTL or LTL as a property. Model checking prob-

lems of CTL and LTL are formally stated as follows respectively.

Definition 2.3.5（Model Checking Problem of CTL） Given a de-

sired property decribed by a CTL formula ϕ and a Kripke structure

M = (S, I, R, L), a model checking problem of CTL is a decision

problem whether the following formula

M, s |= ϕ

is satisfied or not where s ∈ I is a initial state.

Definition 2.3.6（Model Checking Problem of LTL） Given a de-

sired property described by a LTL formula ϕ and a Kripke structure

M = (S, I, R, L), a model checking problem of LTL is a decision problem

whether the following formula

∀π.(M, π |= ϕ)

is satisfied or not where π0 ∈ I. Note that a set {π | (M, π ̸|= ϕ)} is

particularly called a set of counterexamples.

It is known that a model checking problem can be reduced to a graph

search if M has finite states. Also it is known that a model checking

2.3 Model Checking 23

problem is a NP-complete problem if a given property is represented

by a restricted LTL formula which contains temporal operators G and F

only. If a given property is represented by a general LTL formula, this

problem becomes a PSPACE-complete problem [33].

There are several implementations of the model checking veri-

fier such as Simple Promela INterpreter (SPIN) [20], Label Transition

System Analyzer (LTSA) [27], New Symbolic Model Verifier version 2

(NuSMV2) [9] and so on. In this thesis, we use a model checking verifier

NuSMV2.

2.3.5 Symbolic Model Checking

If the number of states in a given Kripke structure M becomes

bigger, the cost of “a graph search” increases exponentially. To ease this

problem, McMillan et al. proposed symbolic model checking [28][7]. Sym-

bolic model checking does not hold explicitly states and transitions of a

given Kripke structure. Instead, it holds symbolically them as Boolean

formulae. It uses a binary decision diagram (BDD) [5] to store these

Boolean formulae. By this, it can verify efficiently a very large Kripke

structure such as 1020 states and more.

In symbolic model checking, a set of states S in a Kripke structure

are represented as a following Boolean function S(s) using a variable

vector s.

S(s) =

True if s ∈ S

False otherwise
(2.1)

A set of initial states I ⊆ S also can be represented as the same way. To

represent transition from s ∈ S to s′ ∈ S and its relations R ⊆ S × S, we

24 Chapter 2 Preliminaries

use following Boolean function T(s, s′).

T(s, s′) =

True if (s, s′) ∈ R

False otherwise
(2.2)

S(s) and T(s, s′) are actually held as BDDs in symbolic model

checking verifiers but we do not need give BDDs to them directly. In-

stead, we give a variable vector s representing states and Boolean func-

tions of S(s), I(s) and T(s, s′) to symbolic model checking verifiers.

One of famous implementations of symbolic model checking is New

Symbolic Model Verifier version 2 (NuSMV2) [9].

2.3.6 Bounded Model Checking

Using above the variable vector s, Boolean functions I(s) and

T(s, s′), we can introduce bounded model checking proposed by Biere et

al. [4]. Bounded model checking is a kind of symbolic model checking.

Most remarkable thing is that it reduces a model checking problem to a

satisfiability problem (SAT) which can be solved by various SAT solvers.

In recent days, a lot of SAT solvers are developed day by day and these

SAT solvers’ capability of solving SATs increases very rapidly [21].

Basically, to conduct bounded model checking, we judge whether

following Boolean function

I(s0) ∧
(

k−1∧
i=0

T(si, si+1)

)
∧ ¬p(s0, . . . , sk) (2.3)

is satisfiable or not. Note that Boolean function p(s0, . . . , sk) is gener-

ated from a given LTL formula ϕ by a bounded model checking method,

and k is the number of steps from initial states to verify a property ϕ.

2.3 Model Checking 25

This is a reason why this method is called “bounded” model checking.

If above Boolean formula is satisfiable, the corresponding assignments

s0, . . . , sk represents a counterexample of ϕ. Otherwise it means that

there is no counterexample of ϕ at least k-steps from initial states. Most

of modern SAT solvers are good at finding satisfiable assignments of a

given Boolean function rather than proving non-existence of satisfiable

assignments of the function. This means that bounded model check-

ing is suitable for detecting counterexamples of LTL formulae. In fact,

NuSMV2 can also conduct bounded model checking.

2.3.7 Probabilistic Model Checking

Probabilistic model checking is another method of reliability

analysis for given Kripke structure. Probabilistic model checking is also

called as stochastic model checking; and was introduced by Vardi [36].

Like conventional model checking, probabilistic model checking is also

applied to industrial applications including the verification of IEEE

1394 (also known as Firewire) [1], which is a interface standard of a

serial bus [26]. In original model checking, the reachability between

two states of Kripke structure is defined as the existence of the directed

edge between these states. Instead, in probabilistic model checking,

the reachability between two states of Kripke structure is represented

as a probability. This probability of the reachability is normalized with

respect to each states as follows

∑
s′ ,(s,s′)∈R

P(s′ | s) = 1 for all s ∈ S. (2.4)

Implementations of probabilistic model checkers include Prob-

26 Chapter 2 Preliminaries

Verus [16], E ⊢ MC [19] and Probabilistic Symbolic Model Checker

(PRISM) [11][25]. In this thesis, we use PRISM to conduct a case study

in chapter 5.

Probabilistic LTL

There are several logics such as pCTL and pCTL* [3] to express

properties of probabilistic state transition models. In this thesis, we use

probabilistic LTL which is used in PRISM.

Probabilistic LTL is extended property description language of

LTL for probabilistic model checking. In probabilistic LTL, temporal

operators G and F has an additional bound parameter k denoted by

G≤k and G≤k. These temporal operators have following semantics:

• (M, π |= F≤k ϕ) iff
[
∃i ≤ k.(M, πi |= ϕ)

]
• (M, π |= G≤k ϕ) iff

[
∀i ≤ k.(M, πi |= ϕ)

]
To discuss the probability of the transition path, probabilistic LTL also

has quantitative operator P=?. Given a LTL property ϕ, P=? ϕ evalu-

ates the existence probability of transition paths which satisfies the LTL

property ϕ.

Probabilistic Model Checking Problem

Intuitively saying, a probabilistic model checking problem eval-

uates the existence probability of transition paths with length k which

satisfies the property ϕ described by probabilistic LTL. This transition

2.4 Summary 27

assumes discrete-time Markov chain. A probabilistic model checking

problem is defined as follows:

Definition 2.3.7 Given a Kripke structure M, τs,s′ = P(s′ | s), a prob-

abilistic LTL ϕ and a length of bound k, a probabilistic model checking

problem evaluates the following probability:

∑
∀π.(M,π|=ϕ∧|π|=k)

k

∏
t=1

P(πt | πt−1) (2.5)

2.4 Summary

In this chapter, we introduced enabling technologies and con-

cepts for ubiquitous computing scenario verification. Catalytic reaction

network itself is originally from a bio-inspired framework. On the other

hand, model checking is a formal method. From now on, we span a gap

between ubiquitous computing related concepts and formal methods of

model checking with our frameworks mentioned in the following chap-

ters.

29

Chapter 3

Scenario Verification for

Ubiquitous Computing

using Model Checking

This chapter proposes a verification method of this model

through model checking. Model checking is one of the most

popular formal verification approach and it is often used in

various fields of industry. Model checking is conducted using

a Kripke structure which is a formal state transition model.

We introduce a model called Context Catalytic Reaction Net-

work (CCRN) to handle this federation model as a formal state

transition model. We also give an algorithm to transform a

CCRN into a Kripke structure and we conduct a case study

of ubiquitous computing scenario verification, using this al-

gorithm and the model checking. Finally, we discuss the ad-

30 Chapter 3 Scenario Verification for UC using Model Checking

vantages of our formal approach by showing the difficulties

of our target problem experimentally.

3.1 Introduction

In this chapter, we propose a verification method of device-

federation model based on catalytic reaction network. Basically we

transform a scenario into the well-known state-transition model such

as Kripke structure. This enables us to apply existing model checking

verifiers. With this method, we can discuss the following things:

• Determining whether a property described in a temporal logic

specification (e.g., a particular federation finally occured) is satis-

fied or not in the given scenario described by the catalytic reaction

network model.

• Showing a counterexample if there is any case violating the prop-

erty described above.

In a scenario using original catalytic reaction network model,

there are so many proximity relations among SOs (n SOs would have 2n

proximity relations). This sometimes causes the state explosion problem

in the model checking. We need to constrain the proximity relations in

the original catalytic reaction network model. For this reason, we will

first define the constrained model called “Context Catalytic Reaction Net-

work (CCRN).” Then, we will propose the method to transform CCRN

3.2 Context Catalytic Reaction Network 31

into the well-known state transition model such as a Kripke structure

that can apply existing model checking verifiers.

3.2 Context Catalytic Reaction Network

This section introduces a segment graph and a CCRN.

3.2.1 Segment Graph

As we discussed in previous section, a catalytic reaction is oc-

curred when required SOs enter into the scope of the corresponding

context. To analyze the property of a given catalytic reaction network as

a state transition system, it is necessary to formalize the movement of

SOs. For example, in Fig. 3.1 (i), there are contexts c1 and c2 and these

scopes have an overlap. A user can walk around the path αβ shown in

Fig. 3.1 (i). This situation can be represented as a segment graph shown

in Fig. 3.1 (ii). We consider that the user walk around this segment graph

and the user is always located at one of the nodes of this segment graph.

Each node of a segment graph has a corresponding set of scopes of con-

texts. In this way, the given situation like Fig. 3.1 (i) including overlaps

of scopes of contexts can be represented as a discrete structure. Now we

define a segment graph as follows.

Definition 3.2.1（Segment Graph） Let C be a set of contexts, a seg-

ment graph G is a tuple (S, E, F), where

• S is a finite set of segments,

32 Chapter 3 Scenario Verification for UC using Model Checking

Scope of
Scope of

Context
Context

A user can walk around a path .

Given Situation

Corresponding Segment Graph

Scope of Scope of

Figure 3.1 Example of Segment Graph

• E ⊆ S × S is a set of directed edges between two segments, and

• F : S → 2C is a function returning scopes of contexts at corre-

sponding segments.

3.2.2 Context Catalytic Reaction Network

A CCRN is a discrete structure of a situation involving SOs in

a catalytic reaction network. A CCRN is defined as a conbination of a

segment graph and a catalytic reaction network.

3.3 Verification Method of a CCRN 33

Definition 3.2.2（Context Catalytic Reaction Network） A context cat-

alytic reaction network (CCRN) is a tuple (O, C, R, G, LFIX, l0), where

• O is a set of SOs,

• C is a set of contexts,

• R is a set of catalytic reactions,

• G is a segment graph (S, E, F),

• LFIX ⊆ O × S is the locations of fixed SOs, and

• l0 ∈ S is the initial segment locating mobile SOs (mobile SOs can

be represented as O \ {o ∈ O | ∃s ∈ S.((o, s) ∈ LFIX)}).

3.3 Verification Method of a CCRN

In this section, we propose a verification method of a CCRN. Be-

fore discussing the details of the method, we assume that all mobile SOs

are carried together (by a single user). A state of a CCRN can be repre-

sented as a combination of the location of mobile SOs (e.g., mobile SOs

are located at segment s) and the presence of federated SOs (e.g., feder-

ated SOs o f and o′f are existing) and we regard these two kind of facts

as atomic propositions. We use the following atomic propositions (AP):

• locOMOB(s): mobile SOs are located at segment s

• fed(o f): federated SOs o f is existing

34 Chapter 3 Scenario Verification for UC using Model Checking

While mobile SOs move around a segment graph, more than one

federated SOs may appear. For example, federated SOs {a, b} and {c, d}

may appear at the same time. For that reason, we define a single state

of the presence of federated SOs as the subset of 2O (e.g., {{a, b}, {c, d}}

is a subset of 2{a,b,c,d}). But each SO can not be a part of more than one

federated SOs. For example, we do not permit federated SOs like {a, b}

and {b, c} are presented at the same time because SO b is a part of both

of these two federated SOs. Considering this constraint, a set of states

of presence of federated SOs can be represented as OF = {∅} ∪ {oF |

oF ⊆ 2O, ∀o f , o′f ∈ oF.(o f ̸= o′f → o f ∩ o′f = ∅), ∀o f ∈ oF.(|o f | > 1)}.

Finally, we represent a state of a CCRN as state(s, oF) where s is the seg-

ment at which mobile SOs are located and oF is the set of federated SOs.

For example, state(s0, {{a, b}, {c, d}}) means mobile SOs are located at

segment s0 and federated SOs {a, b} and {c, d} are existing.

Using the above representation of a state of a CCRN and atomic

propositions, we conduct verification of a CCRN by constructing a

Kripke structure from a given CCRN. For example, let a set of SO O

be {a, b} and given a catalytic reaction network and a segment graph

such as Fig. 3.2 (i). In this case, OF is a set { ∅, {{a, b}} } and a set of

segments is S = {s1, . . . , s5}. So we consider the product of OF and S as

the set of states in Kripke structure. White colored nodes in Fig. 3.2 (ii)

are states in Kripke structure. States enclosed in dotted rectangle I . . . V

correspond to the element s1 . . . s5 ∈ S repectively. States enclosed in

dotted rectangle A correspond to the element ∅ ∈ OF. Similarly, states

enclosed in dotted rectangle B correspond to the element {{a, b}} ∈ OF.

If we consider the state of Kripke structure in this way, we can treat the

movement of SOs without any catalytic reactions as transitions between

3.3 Verification Method of a CCRN 35

Scope of Scope of

A

I II III IV V

B

This state corresponds to
.

Scope of Scope of

Given CCRN

Constructed Kripke Structure by Proposed Method

Catalytic Reactions:

Initially,
SO and
are here.

Initial
State

Figure 3.2 Mechanism of the Algorithm

two states which both are in either group A or B. We can also treat the

movement of SOs with any catalytic reactions as transition between

two states which are in different groups. In this example, if no catalytic

reaction is occured during SOs’ movement, corresponding transition

is defined as (state(s, o f), state(s′, o f)) where s, s′ ∈ S, (s, s′) ∈ E and

o f ∈ OF and if any catalytic reactions are occurred during SOs’ move-

ment, corresponding transition is defined as (state(s, o f), state(s′, o′f))

36 Chapter 3 Scenario Verification for UC using Model Checking

where s, s′ ∈ S, (s, s′) ∈ E, o f , o′f ∈ OF and o f ̸= o′f . In Fig. 3.2 (ii), black

lined transitions and gray lined transitions and gray dotted lined tran-

sitions correspond to SOs’ movement without any catalytic reactions,

SOs’ movement with catalytic reaction r1 and SOs’ movement with

catalytic reaction r2 respectively. Generalizing about this mechanism,

here we give an algorithm in Fig. 3.3 to construct a Kripke structure

from a given CCRN.

After constructing a Kripke structure from a CCRN, now we de-

scribe properties of a CCRN by LTL formulae. We enumerate examples

of LTL formulae:

• G(¬fed(o f) → F(fed(o f)))

Informally and intuitively saying, federated SOs o f finally exists

if o f does not exist at the beginning and this always happens.

• G((¬fed(o f) → F(fed(o f))) ∨ (¬fed(o′f) → F(fed(o′f))))

This means federated SOs o f finally exists if o f does not exist at

the beginning. Similarly, federated SOs o′f finally exists if o′f does

not exist at the beginning. At least one of these phenomena al-

ways happens.

Finally, we conduct the model checking, giving a Kripke struc-

ture and LTL formulae. This can be done by various implementations

of model checking verifiers which we introduced in previous section.

3.3 Verification Method of a CCRN 37

Input: CCRN (O, C, R, (S, E, F), LFIX, l0)

Output: Kripke Structure (S , I ,R,L)
Initialization :

1: OMOB = O \ {o ∈ O | ∃s ∈ S.((o, s) ∈ LFIX)}
2: OF = {∅} ∪ {oF | oF ⊆ 2O, ∀o f ,o′f ∈ oF.(o f ̸= o′f → o f ∩o′f = ∅),

∀o f ∈ oF.(|o f | > 1)}
3: AP = {locOMOB(s) | s ∈ S} ∪ {fed(o f) | o f ∈ oF, oF ∈ OF}
4: S = {state(s, oF) | s ∈ S, oF ∈ OF}
5: I = state(l0, ∅)

6: R = ∅

Loop Process :

7: for each oF ∈ OF do

8: for each s ∈ S do

9: L(state(s, oF)) = {locOMOB(s)} ∪ {fed(o f) | o f ∈ oF}
10: S′ = {s′ | (s, s′) ∈ E}
11: for each s′ ∈ S′ do

12: R′ = {(c, M, N) ∈ R | c ∈ F(s′),

{o f ∈ M \ N | |o f | > 1} ⊆ oF, O(c) ⊇ ∪
M}

where O(c ∈ C) = OMOB ∪
{o ∈ O | ∃s′′ ∈ S.(c ∈ F(s′′), (o, s′′) ∈ LFIX)}

13: if R′ ̸= ∅ then

14: for each (c, M, N) ∈ R′ do

15: choose o′F ∈ OF s.t. oF \ o′F = {o f ∈ M \ N | |o f | > 1},

o′F \ oF = {o f ∈ N \ M | |o f | > 1}
16: R = R∪ {(state(s, oF), state(s′, o′F))}
17: end for

18: else

19: R = R∪ {(state(s, oF), state(s′, oF))}
20: end if

21: end for

22: end for

23: end for

24: return(S , I ,R,L)
Figure 3.3 Algorithm for transforming CCRN into Kripke structure

38 Chapter 3 Scenario Verification for UC using Model Checking

3.4 Case Study of the Verification

We have conducted a case study of a verification of a given

CCRN, using a model checking. We assume that a CCRN is given by

the designer who intend to design applications of ubiquitous comput-

ing. Here we use an example of museum as shown in Fig. 3.4. A CCRN

of this example is represented as a tuple (O, C, R, (S, E, F), LFIX, l0)

where

• O = {a, b, d, e, s},

• C = {c1, c2, c3, c4, c5, c6},

• R = {(c1, {{a}, {b}, {s}}, {{a, b}, {s}}),

(c2, {{a, b}, {d}}, {{a, b, d}}),

(c3, {{a, b, d}}, {{a, b}, {d}}),

(c4, {{a, b}, {e}}, {{a, b, e}}),

(c5, {{a, b, e}}, {{a, b}, {e}}),

(c6, {{a, b}, {s}}, {{a}, {b}, {s}}) },

• S = {s1, s2, s3, s4, s5, s6, s7, s8, s9},

• E = {(s1, s2), (s2, s1), (s2, s3), (s3, s2), (s3, s4), (s4, s3),

(s4, s5), (s5, s4), (s5, s9), (s9, s5), (s2, s6), (s6, s2),

(s6, s7), (s7, s6), (s7, s8), (s8, s7), (s8, s9), (s9, s8),

(s9, s1), (s1, s9)},

• F = {(s1, ∅), (s2, {c1}), (s3, {c2}), (s4, {c2, c3}), (s5, {c3}),

(s6, {c4}), (s7, {c4, c5}), (s8, {c5}), (s9, {c6})},

3.4 Case Study of the Verification 39

• LFIX = {(d, s4), (e, s7)}, and

• l0 = s1.

In this example, a user enters the entrance of a museum, carrying

a phone a, a headset b and a ticket s. Once the user entered the entrance,

the phone a and the headset b are federated by a reaction associated with

the scope of c1, which is triggered by the ticket s. Then, the federated

SOs ab are worked as a voice guide of the museum. Next, if the user

enters into room A, the federated SO ab and an exhibit d are federated

by a reaction associated with the scope of c2. By the federated SO abd,

an explanation of the exhibit d can be provided to the user. After this,

the user leaves the room A and the federated SO abd is decomposed

and becomes ab again by a reaction associated with the scope of c3. The

similar reactions occur in the room B, which is for an explanation of

an exhibit e. If the user leaves one of the exhibition rooms and returns

to the entrance, the federated SO ab is decomposed before leaving the

museum.

Now we verify a CCRN of this example. Using an algorithm

shown in Fig. 3.3, we can obtain a Kripke structure M. Then, the de-

signer may give desired properties of the given CCRN by LTL formulae

such as:

• ϕ1 = G(¬(fed({a, b, d}) ∧ fed({a, b, e}))),

• ϕ2 = G((¬fed({a, b, d}) → F(fed({a, b, d}))) ∨

(¬fed({a, b, e}) → F(fed({a, b, e})))), and

• ϕ3 = G((locOMOB(s3) ∨ locOMOB(s6)) ∧ fed({a, b})).

40 Chapter 3 Scenario Verification for UC using Model Checking

Catalytic Reactions:

(Outside)

(Entrance)

(Room A)(Room B)
Headset Phone

Ticket

Exhibit Exhibit

At first, a user locates at .

, and are mobile SOs.
and are fixed SOs located at and respectively.

: a scope of a context.

Figure 3.4 Example of Museum

3.4 Case Study of the Verification 41

Intuitively saying, ϕ1 means that no more than one federation for the

explanation of exhibits exists at the same time and ϕ2 means that if a

user enters into one of the exhibition rooms, an explanation of each ex-

hibit is always provided to a user and ϕ3 means that when a user enters

into one of the exhibition rooms, the federation for a voice guide of the

museum is always ready.

Now we verify a CCRN using a generated Kripke structure M,

ϕ1, ϕ2 and ϕ3. To conduct model checking, we used NuSMV2 as a model

checking verifier.

In NuSMV2, SMV language is used to represent Kripke struc-

tures. In this chapter, we enumerated all possible states, their corre-

sponding atomic propositions and transitions explicitly. For example,

if we are given a set of atomic propositions AP = {p, q} and a Kripke

structure (S, I, R, L) where

• S = {s0, s1, s2, s3},

• I = {s0},

• R = {(s0, s1), (s0, s2),

(s1, s2),

(s2, s3),

(s3, s3)} and

• L(s0) = ∅, L(s1) = {p}, L(s2) = {q}, L(s3) = {p, q};

we generate a SMV language file such as Fig. 3.5 straightforwardly. The

size of this SMV language file generated by like this way is in proportion

42 Chapter 3 Scenario Verification for UC using Model Checking

� �
MODULE main

VAR

state : {s0, s1, s2, s3};

ASSIGN

init(state) := s0;

next(state) :=

case

state = s0 : {s1, s2};

state = s1 : {s2};

state = s2 : {s3};

state = s3 : {s3};

esac;

DEFINE

p := state = s1 | state = s3;

q := state = s2 | state = s3;� �
Figure 3.5 Example of a SMV Language File

3.4 Case Study of the Verification 43

to the number of states, atomic propositions and transitions of given

Kripke structure. NuSMV2 manual [8] describes details of SMV lan-

guage format.

We have confirmed that ∀π.(M, π |= ϕ1) is satisfied. However,

∀π.(M, π |= ϕ2) and ∀π.(M, π |= ϕ3) are not satisfied. A model check-

ing verifier also gives a counterexample πc2 and πc3 corresponding to

ϕ2 and ϕ3 respectively such as

πc2 = (state(s1, ∅), state(s2, {{a, b}}), state(s3, {{a, b, d}}),
state(s4, {{a, b}}), state(s5, {{a, b}}), state(s9, ∅),

state(s5, ∅), state(s4, ∅), state(s5, ∅), state(s4, ∅) . . .),

and

πc3 = (state(s1, ∅), state(s2, {{a, b}}), state(s3, {{a, b, d}}),
state(s4, {{a, b}}), state(s5, {{a, b}}), state(s9, ∅),

state(s8, ∅), state(s7, ∅), state(s6, ∅)).

Bold lines in Fig. 3.6 and Fig. 3.7 are the visualization of πc2 and πc3

respectively.

In the case of πc2 , first, the user enters the entrance of the mu-

seum, then, the user goes to the room A and goes away from room A.

But the user enters the room A again from which the user goes away.

Finally, the user stays there. In this situation, we never obtain the fed-

erated SO abd again since the user stays in the room A. In the case of

πc3 , first, similarly to the case of πc2 , the user enters the entrance of the

museum, then, the user goes to the room A and goes away from room

A. But the user enters the room B from which is intended for an exit of

room B. And then, the user goes to the entrance of room B reversely. In

this situation, the user don’t have the federated SO ab when the user

intend to receive the explanation of exhibit e, so the user can not receive

44 Chapter 3 Scenario Verification for UC using Model Checking

(Entrance)

(Room A)(Room B)

Exhibit Exhibit

Figure 3.6 Counterexample corresponding to ϕ2 of Museum Example

(Entrance)

(Room A)(Room B)

Exhibit Exhibit

Figure 3.7 Counterexample corresponding to ϕ3 of Museum Example

3.4 Case Study of the Verification 45

(Entrance)

(Room A)(Room B)

Exhibit Exhibit

Figure 3.8 Revised Museum Example

the explanation ob exhibit e.

From these counterexamples, we learned that which some appro-

priate constraint on the segment graph is necessary.

Now we debug the system to make all properties of a given CCRN

given by LTL formulae satisfied. To do so, we need to revise the segment

graph of a given CCRN of this example. We have rewritten E of the

given CCRN as follows (Fig. 3.8 is the visualization of this revision):

E = {(s1, s2), (s2, s3), (s3, s4), (s4, s5), (s5, s9), (s2, s6),

(s6, s7), (s7, s8), (s8, s9), (s9, s1)}.

This revision indicates that the user should follow the regular route of

the museum.

Then, we have conducted the model checking again using the re-

vised Kripke structure M, ϕ1, ϕ2 and ϕ3. Finally, we have confirmed

46 Chapter 3 Scenario Verification for UC using Model Checking

that all of ∀π.(M, π |= ϕ1), ∀π.(M, π |= ϕ2) and ∀π.(M, π |= ϕ3) are

satisfied. If all of these LTL formulae are satisfied, this museum meets

all of requirements defined by the designer of this museum. Of course,

the designer can try other properties within range of LTL, using a com-

bination of two kind of atomic propositions.

In this case study, we show that our method actually helps de-

signers of applications to find exceptions of the design of applications

and to debug these exceptions using counterexamples provided by

model checking verifiers through trial and error. Using our method,

we can discuss the property such as the validity and the safety of

applications consisting of mutually related multiple federations among

SOs without exhaustive hand simulation. As we mentioned in previous

section, model checking problems of Kripke structure with finite states

can be reduced to a graph search. If we conduct this graph search on

the this example by hand, we must test very large number of patterns

of user’s walk. Table 3.1 indicates the number of 1–20 steps graph

walk patterns starting from segment s1. For example, to detect the

counterexample πc3 which has 9 steps by hand, we must conduct the

exhaustive test from 1 step to 9 steps cases to make sure whether ϕ3 are

satisfied or not. In this case, we must check 14,022 patterns of user’s

walk. This is very expensive. It is important to reduce to a model

checking problem which is able to be solved by various implemen-

tations of model checking verifiers. Formal approaches such as this

kind of verification liberates the designers from conducting exhaustive

checking. Formal approaches such as this kind of verification is also

important because it can avoid specifications errors of ubiquitous

computing applications in advance of actual implementations of these

3.4 Case Study of the Verification 47

Table 3.1 Number of Graph Walk Patterns of Museum Example

of Steps # of Patterns # of Steps # of Patterns

1 2 11 66,332

2 8 12 182,300

3 20 13 495,900

4 60 14 1,359,132

5 156 15 3,704,604

6 444 16 10,138,396

7 1,180 17 27,664,156

8 3,292 18 75,648,796

9 8,860 19 206,538,524

10 24,476 20 564,549,404

Remark: These results are the case of Fig. 3.4. In the revised case (Fig.

3.8), the number of graph walk patterns will be decreased.

48 Chapter 3 Scenario Verification for UC using Model Checking

applications, which may incur additional costs.

3.5 Scalability of Our Method

We evaluated the scalability of our method. To evaluate, we used

a generalized example of the museum such as Fig. 3.9. In this exam-

ple, there are n rooms and each room i has a exhibit d(i) and we de-

fined reactions to provide an explanation of exhibit d(i) to the user in

corresponding room i. Directed edges (s(i)6 , s(i+1)
2) and (s(i+1)

6 , s(i)2) of

the segment graph represent stairs connected between room i and room

i + 1. We verified this example through the cases from n = 1 to n = 6.

We set properties of these cases by a LTL formula G(locOMOB(s
(1)
1) →

F(locOMOB(s
(n)
4) → fed({a, b, d(n)})). This formula means that if the user

once enters the museum, the exhibit explanation of the highest floor is

always provided to the user.

We conducted an experiment by using a Core i7 3820QM ma-

chine with 16GB memory. In this experiment, we use NuSMV2 version

2.6.0 as a model checking verifier. Table. 3.2 indicates the experiment

results of these cases. The left-hand side and the right-hand side of this

table indicate the size of model checking problems and the cost needed

for solving them by NuSMV2 respectively. The more the number of

rooms, the more cost needed for solving increases exponentially. This is

because of the size of |OF| which is defined by a power set of O. But note

that, as we mentioned in sect. 1, if we consider this kind of verification

problem by using original catalytic reaction model, we would be forced

to consider 2n states of n SOs’ proximity relations on each segment. In

that situation, the state space would be exploded more rapidly and ex-

3.5 Scalability of Our Method 49

(Room 1)

(Room 2)

Exhibit

Exhibit

Headset Phone

TicketAt first, a user locates at .

Catalytic Reactions:

, and are mobile SOs. is fixed SOs located at .
: a scope of a context.

Figure 3.9 Example of Museum Containing Multiple Rooms

50 Chapter 3 Scenario Verification for UC using Model Checking

Table 3.2 Results of the Scalability Experiment

n |O| |C| |S| |S| CPU Time MEM. Usage

1 4 4 6 30 0.01 s 13.81 MB

2 5 6 11 165 0.04 s 16.50 MB

3 6 8 16 832 0.41 s 48.46 MB

4 7 10 21 4,263 8.69 s 656.75 MB

5 8 12 26 22,802 273.56 s 13,088.76 MB

6 9 14 31 128,340 N/A MEM. Out

Remark: “MEM. Out” means that we abort the calculation due to the

lack of memory space.

ponentially and we would not be able to verify even a small case such

as shown in Table. 3.2 in realistic time. For this reason, our framework

is important as the first step of the formularization to verify scenarios of

federations of SOs.

3.6 Summary

In this chapter, we proposed a verification method of applica-

tions which is described by a CCRN using model checking. Using our

framework, various properties of application scenarios of ubiquitous

computing can be discussed by logic such as LTL. Our framework actu-

ally helps the designers to debug ubiquitous computing application sce-

narios. With our framework, the cost of detecting any counterexamples

is much reduced compared to hand simulation. These contributions are

important as the first step of the formularization to verify ubiquitous

computing scenarios.

3.6 Summary 51

To verify more practical ubiquitous computing scenarios, the

scalability of the verification method is important. In next chapter,

we will consider the efficient way of representing all possible states of

given CCRN by introducing techniques such as symbolic approaches

instead of the naive approach.

53

Chapter 4

Improving the Scalability

of Scenario Verification

Using Symbolic Model

Checking

Verification of ubiquitous computing scenarios enables us

to detect design-related faults of ubiquitous computing ap-

plications before we actually implement them. In this chap-

ter, we propose a verification framework of CCRN, which is

a description model of ubiquitous computing scenarios, as a

new application field of symbolic model checking. To do so,

we illustrate a method how to transform a scenario written

in CCRN into a symbolic model checking problem. We also

show experimentally that our framework makes it possible

54 Chapter 4 Improving the Scalability of Scenario Verification

to verify large scale ubiquitous computing scenarios which

could not be verified in realistic time by our previous method.

Additionally, we show experimentally the usefulness of fault

detections using bounded model checking in the same frame-

work.

4.1 Introduction

In the previous chapter, we extended a catalytic reaction network

model to CCRN by adding a discrete structure called “segment graph”.

Using a CCRN model, we formalized a ubiquitous computing scenario

verification problem and proposed a method to reduce ubiquitous com-

puting scenario verification problems to model checking problems. This

method enabled us to discuss the properties of ubiquitous computing

scenarios. These properties are included as mentioned in the previous

chapter.

Most important aspect of this kind of verification is that these

discussions about properties of a given ubiquitous computing scenario

can be done in the step of the design before the implementation steps

which may incur additional costs.

However, this reduction method was a kind of naive approach so

there were challenges related to the scalability during the verification.

In this chapter, we propose a verification method using symbolic model

checking to improve the scalability. Symbolic model checking is a one

of model checking technique to verify very large scale of state transition

4.2 CCRN Verification through Symbolic Model Checking 55

systems [7]. We show the method how to take advantage of symbolic

model checking techniques when we reduce ubiquitous computing sce-

nario verification problems to model checking problems. We also show

experimentally that our method can verify larger ubiquitous comput-

ing scenario verification problems compared to our previous naive ap-

proach. As a result, this method enables us to discuss more practical

ubiquitous computing scenario verification problems.

Additionally, if we establish a reduction method using a sym-

bolic model checking approach, we can also take advantage of bounded

model checking in the same framework [4]. Bounded model check-

ing can detect counterexamples from a given model checking problem

faster than symbolic model checking in most cases (Note that bounded

model checking is not good at proving that there is no counterexam-

ple of a given model checking problem). Bounded model checking

is widely used for the counterexample detection from model checking

problems. In this chapter, we also evaluate experimentally how practi-

cal is bounded model checking for ubiquitous computing scenario ver-

ification problems.

4.2 CCRN Verification through Symbolic Model

Checking

In this section, we propose a method of reducing a CCRN verifi-

cation to a symbolic model checking problem. Concretely, we propose

a way to transform a CCRN (O, C, R, (S, E, F), LFIX, l0) into a variable

vector s and Boolean functions S(s), I(s) and T(s).

56 Chapter 4 Improving the Scalability of Scenario Verification

There are two types of states in a CCRN (O, C, R, (S, E, F), LFIX, l0).

One is a state of mobile SOs’ location. A set of mobile SOs OMOB are

defined as O \ {o ∈ O | ∃s ∈ S.((o, s) ∈ LFIX}. OMOB are carried

together by a user and are located at segment s ∈ S, so this kind of

states has |S| states. The other type of states is a state of existence of

federated SOs o f . Federated SOs o f are defined as o f ∈ 2O \ {}, so

2|O| − 1 kinds of o f can be considered. As a result, there are 22|O|−1

states of 2|O| − 1 kinds of o f s’ existence. Therefore, there are |S| × 22|O|−1

states of a given CCRN if we count its states explicitly. Now we deal

with this large states by introducing a symbolic approach for efficient

verification.

At first, we define a variable vector s representing states. Consid-

ering the above discussion, we represent a state that mobile SOs OMOB

are located at segment s ∈ S as “segment = s”, and a state that federated

SOs o f are existing as “fed(o f) = True” respectively. Using those, we

define a variable vector s as follows.

s = (segment, fed(o f), fed(o f
′), · · ·︸ ︷︷ ︸

2|O|−1

) (4.1)

In this chapter, Boolean function S(s) representing all possible states

are defined as a Boolean function that returns True for all s. Instead, we

define appropriate T(s, s′) in the rest of this section. Boolean function

4.2 CCRN Verification through Symbolic Model Checking 57

I(s) representing initial states are defined as follows.

I(s) =(segment = l0)

∧

 ∧
o f ∈2O\{},|o f |=1

fed(o f) = True


∧

 ∧
o f ∈2O\{},|o f |>1

fed(o f) = False

 (4.2)

Next, we define T(s, s′). To make the representation of T(s, s′)

simple, we define auxiliary variables. We define transitions Se that mo-

bile SOs SMOB move from segment s to segment s′ along the edge e of a

given segment graph as follows.

Se ≜ (segment = s) ∧ (segment′ = s′) (4.3)

We also consider transitions of changing the state of federated SOs’ ex-

istence. In the case of CCRN, this kind of state changes are occurred

when catalytic reactions are occurred. We define transitions R∅ that no

catalytic reaction was occurred as follows.

R∅ ≜
∧

o f ∈2O\{}

(
fed(o f) = fed′(o f)

)
(4.4)

Furthermore, we define transitions Rr that catalytic reaction r =

(c, M, N) was occurred as follows.

Rr ≜
∧

o f ∈N

(
fed′(o f) = True

)
∧

∧
o f ∈M

(
fed′(o f) = False

)
∧

∧
o f ∈(2O\{})\(M∪N)

(
fed(o f) = fed′(o f)

)
(4.5)

And we define the condition RCr which is necessary for catalytic reac-

tion r as follows.

RCr ≜
∧

o f ∈M

(
fed(o f) = True

)
(4.6)

58 Chapter 4 Improving the Scalability of Scenario Verification

A set of catalytic reactions Rapp(e) that are occurred when mobile SOs

OMOB move from segment s ∈ S to segment s′ ∈ S along the edge e in a

given segment graph, is defined as follows.

Rapp(e) ≜ {(c, M, N) ∈ R | c ∈ F(s′), O(c) ⊇
∪

M} where

O(c ∈ C) = OMOB ∪ {o ∈ O | ∃s′′ ∈ S.(c ∈ F(s′′), (o, s′′) ∈ LFIX} (4.7)

Then, we define transition relation Te of each edge e ∈ E of a given

segment graph as follows.

Te ≜



Se ∧ R∅ if Rapp(e) = ∅∨
r∈Rapp(e)

(
Se ∧ RCr ∧ Rr

)
∨

Se ∧ ¬
(∨

r∈Rapp(e)

RCr

)
∧ R∅

 otherwise
(4.8)

Finally, using the definition of Te, we define T(s, s′) as follows.

T(s, s′) =
∨
e∈E

Te (4.9)

4.3 Experiments and Discussion

In this section, we report results of two kinds of experiments.

First one is intended to show the scalability of the proposed method.

Second one is aimed to show the usefulness of bounded model check-

ing.

4.3 Experiments and Discussion 59

4.3.1 Scalability of CCRN Verification through Symbolic

Model Checking

In this experiment, we evaluated the scalability of our method.

To conduct the experiment, we used a CCRN such as Fig.4.1. Left

hand side of Fig.4.1 represents the corresponding segment graph of the

CCRN. This CCRN assumes an ubiquitous computing scenario of a

museum that has n rooms and each room i has a exhibit d(i).

We define reactions c1 and c2 to make a phone a and a headset

b federated for a museum guide service and we also define reactions

c(i)3 and c(i)4 to provide an explanation of exhibit d(i) to the user in corre-

sponding room i. Directed edges (s(i)6 , s(i+1)
2) and (s(i+1)

6 , s(i)2) of the seg-

ment graph represent stairs connected between room i and room i + 1.

We set properties of these cases by following CTL formula.

AG(segment = s(1)1

→ AF(segment = s(n)4 → fed({a, b, d(n)}) = True)) (4.10)

This formula means that if the user once enters the museum, the exhibit

explanation of the highest floor is always provided to the user. And this

museum example satisfies this formula. So, in this case, we verified the

CCRN to confirm this formula actually does satisfy.

We conducted this experiment by using a Core i7 3820QM ma-

chine with 16GB memory. In this experiment, we use NuSMV2 version

2.6.0 as a model checking verifier. We also compared with our naive

method which is in previous chapter. The naive method enumerates all

possible states of a given CCRN explicitly. So even if we use NuSMV2,

60 Chapter 4 Improving the Scalability of Scenario Verification

(Room 1)

(Room 2)

Exhibit

Exhibit

Headset Phone

TicketAt first, a user locates at .

Catalytic Reactions:

, and are mobile SOs. is fixed SOs located at .
: a scope of a context.

Figure 4.1 Museum Example of CCRN

4.3 Experiments and Discussion 61

this naive method do not take any advantage of symbolic model check-

ing. Table. 4.1 indicates the experiment results through the cases from

n = 1 to n = 11. The left-hand side, the middle and the right-hand

side of this table indicate the size of model checking problems, the cost

needed for solving them by our previous naive method and the cost

needed for solving them by our proposal method respectively. On this

machine used for this experiment, the instance of n = 5 is a limit of our

previous naive method. However, our proposal method extended the

limit to n = 10. In the case of n = 10, there would be about 2.78× 102467

states if we enumerate those states explicitly. It also can be said that

our proposed method reduced the double exponential scale of problem

into the single exponential scale of problem. From these results, we il-

lustrate that using symbolic model checking enables us to verify more

large scale of ubiquitous computing scenarios in realistic time and costs.

62 Chapter 4 Improving the Scalability of Scenario Verification

Table 4.1 Experiment Results of The Scalability Evaluation

Problem Instance Naive Method (chap. 3) Proposal Method

n |O| |C| |S| CPU (s) MEM (MB) CPU (s) MEM (MB)

1 4 4 6 0.01 12.06 0.01 12.48

2 5 6 11 0.01 13.50 0.01 13.67

3 6 8 16 0.24 37.05 0.01 16.35

4 7 10 21 5.45 566.57 0.02 24.11

5 8 12 26 172.30 12,528.02 0.08 47.68

6 9 14 31 N/A MEM. Out 0.37 127.97

7 10 16 36 — — 1.47 425.63

8 11 18 41 — — 5.75 1,546.30

9 12 20 46 — — 57.30 6,113.32

10 13 22 51 — — 264.26 11,309.29

11 14 24 56 — — N/A MEM. Out

Remarks: “MEM. Out” means that we abort the experiment due to the

lack of memory.

4.3 Experiments and Discussion 63

4.3.2 Detecting Faults of CCRN through Bounded Model

Checking

We conducted another kind of experiment to show the useful-

ness of bounded model checking. In this experiment, we used the same

example of the CCRN as shown in Fig.4.1. However, to detect faults of

the given CCRN, we omitted randomly reactions c(i)3 and c(i)4 on pur-

pose. By doing this, we generated different 10 problem instances from

each example of museum with n rooms through the cases from n = 1

to n = 10. So, totally, we verified 100 problem instances of “degraded”

museum examples by bounded model checking. We set properties of

these cases by a LTL formula as follows.

G
n∧

i=1

(
(¬(segment = s(i)4) ∧ fed({a, b, d(i)}) = False)

∨ (segment = s(i)4 ∧ fed({a, b, d(i)}) = True)
)

(4.11)

This means that all reactions for corresponding explanation of exhibits

in each room occurs properly. We conducted this experiment by using

the same machine and same version of NuSMV2 as the scalability ex-

periment and we set the bound of verification k = 50. Experimental

results are represented in Fig. 4.2 and Fig. 4.3. In Fig.4.2, each dot’s

color corresponds to the size of the problem instance (i.e., the number

of rooms) and each dot’s coordinate indicates the computational costs

needed for the problem instance verification to detect the faults *1. From

*1 For all of problem instances of this experiment, it takes less than 0.1 sec to make an

counterexample of each instances. This means that time costs spent on detections

of faults are dominant. This tendency is also observed in the case of Fig. 4.3.

64 Chapter 4 Improving the Scalability of Scenario Verification

this results, we can conclude that most of cases are faster and less mem-

ory usage than the cases of symbolic model checking when we are in-

tended to detect faults of a given CCRN. For example, there is a case

of detecting a fault in less than 20 sec from one of problem instances of

n = 10. Figure 4.3 shows detailed experimental results of fault detec-

tion time comparison between symbolic model checking and bounded

model checking. When we conduct this fault detection using symbolic

model checking, we use following a CTL formula which is equivalent

to the LTL formula above.

AG
n∧

i=1

(
(¬(segment = s(i)4) ∧ fed({a, b, d(i)}) = False)

∨ (segment = s(i)4 ∧ fed({a, b, d(i)}) = True)
)

(4.12)

In Fig. 4.3, each of plots represents a problem instance and its color cor-

responds to the size of the problem instance just like Fig. 4.2. In this fig-

ure, a horizontal axis and a vertical axis are computational time needed

for the fault detection of the problem instance by using bounded model

checking and symbolic model checking respectively. If a dot is plot-

ted above the dotted diagonal line, it means bounded model checking

is faster than symbolic model checking in a corresponding problem in-

stance of the dot. From this figure, it can be said that bounded model

checking is faster than symbolic model checking to conduct fault de-

tections in most of the cases of problem instances. In the fastest case,

bounded model checking is about 10 times faster than symbolic model

checking.

Note that some cases of n = 1 enclosed with a circle in Fig.4.2

take more time and more memory space because no reactions of these

cases are omitted by chance. An usual bounded model checking verifier

4.3 Experiments and Discussion 65

 10

 100

 1000

 10000

 0.01 0.1 1 10 100

M
EM

. U
sa

ge
 (M

B)

CPU Time (sec)

n = 10
n = 9
n = 8
n = 7
n = 6
n = 5
n = 4
n = 3
n = 2
n = 1

Figure 4.2 Computational Costs for CCRN Fault Detection

n = 10
n = 9
n = 8
n = 7
n = 6
n = 5
n = 4
n = 3
n = 2
n = 1

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

SM
V

C
PU

 T
im

e
(s

ec
)

BMC CPU Time (sec)

Figure 4.3 Fault Detection Time Comparison between Symbolic

Model Checking (SMV) and Bounded Model Checking (BMC)

66 Chapter 4 Improving the Scalability of Scenario Verification

confirms the property inductively by changing the bound through k = 1

to k = 50. The verifier aborts the verification as soon as it detects any

faults. However if there is no faults in cases which we remark above, the

verifier is forced to verify until k = 50 (in this case of this experiment

setting) and this causes to take more time and more memory spaces.

In other words, we can expect that a bounded model checking method

detects faults very fast if they exists.

4.4 Summary

We proposed a method to reduce a CCRN verification problem

to a symbolic model checking problem. Our proposal method enables

us to verify more large scale ubiquitous computing scenarios in realistic

time and memory space. To show that symbolic model checking is use-

ful approach to verify ubiquitous computing scenarios, we conducted

experiments using a museum example of ubiquitous computing sce-

nario as a case study. Additionally, we also show that bounded model

checking is also useful approach especially to detect faults of ubiquitous

computing scenario.

67

Chapter 5

Reliability Analysis of

Ubiquitous Computing

Scenario Using

Probabilistic Model

Checking

This chapter proposes the method of reliability analysis of

ubiquitous computing scenarios. In ubiquitous computing

scenarios, various devices communicate with each other

through wireless network, and this kind of communications

sometimes break due to external interferences. To discuss

the reliability in such situation, we introduce the notion

of probability into CCRN, which is a description model of

68 Chapter 5 Reliability Analysis of Ubiquitous Computing Scenario

ubiquitous computing scenarios. This enables us to conduct

quantitative analyses such as considerations of a trade-off be-

tween the reliability of ubiquitous computing scenarios and

the costs which may be necessary for their implementations.

To conduct a reliability analysis of ubiquitous computing

scenarios, we use the technique of probabilistic model

checking. We also evaluate our method experimentally by

conducting a case study using a practical example assuming

a museum.

5.1 Introduction

In previous chapters, we showed an approach to verify ubiq-

uitous computing scenarios by proposing CCRN and its verification

through model checking. We also proposed more efficient method of

this kind of verifications through symbolic model checking. These con-

tributions enabled us to verify the property of ubiquitous computing

scenario, which is described in formal logic formulation and these ver-

ifications are conducted systematically thanks to various model check-

ing verifiers, such as NuSMV2 [9].

However, there are still challenges of our approach. For example,

ubiquitous computing scenarios are assumed that SOs typically com-

municate with each other by the wireless communication. This means

that we need to consider these communications sometimes break due to

various external causes. For this reason, it is important to discuss this

5.2 Probabilistic CCRN 69

kind of interference formally. In this chapter, we show an approach to

reliability analysis of ubiquitous computing scenarios by introducing a

notion of probability to CCRN, which is a description model of ubiqui-

tous computing scenarios. To analyze this kind of reliability, we use the

technique of probabilistic model checking [25].

5.2 Probabilistic CCRN

In this section, we propose probabilistic CCRN (P-CCRN), which

is the extended model of CCRN by adding a notion of probability. To

introduce a notion of probability, we consider two kinds of probability

in CCRN. One is the probability of a user behavior, and the other one is

the probability of each of catalytic reactions. We denote the probability

of users’ moving from segment i to segment j by τi,j and for all segments

i ∈ S of a given segment graph, it is satisfied that

∑
j,(i,j)∈E

τi,j = 1 (5.1)

where E is a set of edges in a given segment graph. We denote the

probability of the occurrence of catalytic reaction r by θr = [0, 1]. By

getting them together, we define a probabilistic function P as follows.

Definition 5.2.1（Probabilistic Component） A probabilistic com-

ponent P is a tuple ⟨T, Θ⟩ where T = {τi,j ∈ [0, 1] | (i, j) ∈ E},

Θ = {θr ∈ [0, 1] | r ∈ R}, E is a set of edges in a segment graph and R is

a set of catalytic reactions.

Definition 5.2.2（Probabilictic CCRN） Let C and P be a CCRN and a

probabilistic component respectively. A probabilistic CCRN (P-CCRN)

70 Chapter 5 Reliability Analysis of Ubiquitous Computing Scenario

is a tuple of ⟨C, P⟩.

5.3 Formulation of P-CCRN Reliability Analysis

This section shows a reliability analysis method by using P-

CCRN. To do so, we define states of P-CCRN and represent transitions

between two states as a probability function. Finally, we propositionize

states of P-CCRN to conduct probabilistic model checking.

5.3.1 State Representation

Let U be a set of states included in CCRN. Each of states of given

CCRN u can be represented as a pair of states of the user’s location Sseg

and states of SOs’ federation Sfed denoted by
⟨
Sseg, Sfed

⟩
where Sseg ∈ S

and Sfed ∈ P(O) (i.e., Sfed is a partition set of O). We also assume the in-

dependence between two events a user behavior and catalytic reactions’

success or failure.

5.3.2 Transition Representation

A transition (u, unext) between two states are occurred when a

user who has SOs moves along with a directed edge in given segment

graph. Sseg is changed directly when the user moves and Sfed is changed

by catalytic reactions of corresponding contexts located at the segment

that the user aims to go. We define the function of ri(Sfed) to represent

applications of catalytic reactions.

5.3 Formulation of P-CCRN Reliability Analysis 71

Definition 5.3.1（Catalytic Reaction Application） Let ri = (ci, Mi, Ni)

and Sfed be a catalytic reaction and a state of SOs’ federation respec-

tively. ri(Sfed) : P(O) → P(O) is a function of catalytic reaction

application which is a procedure of following update of given Sfed:

ri(Sfed) =

Sfed \ del(ri) ∪ add(ri) if pre(ri) ⊆ Sfed

Sfed otherwise
(5.2)

where pre(ri) ≜ M, add(ri) ≜ N \ M and del(ri) ≜ M \ N.

When the state of CCRN is
⟨
Sseg, Sfed

⟩
and a transition

(
⟨
Sseg, Sfed

⟩
,
⟨

Snext
seg , Snext

fed

⟩
) occurs, ∃Snext

seg .(Sseg, Snext
seg) ∈ E and ∃r.(r ∈

R(Snext
seg , Sfed)) are selected probabilistically where R(s, A) = {ri | ci ∈

F(s) ∧ pre(ri) ⊆ A}.

5.3.3 Assigning the probability of a transition between

two states

Now we assign the probability of a transition

(
⟨
Sseg, Sfed

⟩
,
⟨

Snext
seg , Snext

fed

⟩
) between two states of given probabilistic

CCRN. This probability is represented as P(
⟨

Snext
seg , Snext

fed

⟩
|
⟨
Sseg, Sfed

⟩
).

Using the assumption of the independence between two events a user

behavior and catalytic reactions’ success or failure, we can rewrite this

probability as follows:

P(
⟨

Snext
seg , Snext

fed

⟩
|
⟨
Sseg, Sfed

⟩
) = P(Snext

seg | Sseg)P(Snext
fed | Snext

seg , Sfed)

(5.3)

P(Snext
seg | Sseg) can be defined from T directly, namely,

P(Snext
seg | Sseg) ≜ τSseg,Snext

seg
. (5.4)

72 Chapter 5 Reliability Analysis of Ubiquitous Computing Scenario

On the other hand, P(Snext
fed | Snext

seg , Sfed) can be defined by several ways.

For example, if there are more than one catalytic reaction that can be

applied when a user enters into a segment Snext
seg with federated devices

Sfed, at first, we evaluate the probability of all catalytic reactions inde-

pendently like we try a coin flip with the number of these reactions of

coins and assume that heads are reactions that are applied. In this chap-

ter, we give three strategy to deal with this kind of situation.

1. If there are more than one head, we choose one of them uniformly.

This represents mutual exclusion of concurrent processes among

multiple devices.

2. If there are more than one head, we do not choose any of these.

This assumes that the mutual exclusion does not work and of

course this kind of situation should be avoided properly.

3. Let all the catalytic reactions be indexed in order of reaction rate

and if there are more than one head, we choose the catalytic reac-

tion with lowest number from them. This represents that fastest

catalytic reaction is applied at the highest priority.

In this chapter, we use the first strategy to conduct case studies in latter

section. This strategy can be represented as follows:

P(Snext
fed | Snext

seg , Sfed) =∏i∈R′(1 − θi) if Snext
fed = Sfed

∑
|R′ |
j=1 ∑χ∈Xij

1
j ∏k∈χ θk ∏ℓ∈R′\χ(1 − θℓ) otherwise

such that Snext
fed \ Sfed = add(ri)and ri ∈ R′,

where Xij = {i} ∪
(

R′ \ {i}
j − 1

)
and R′ = R(Snext

seg , Sfed). (5.5)

5.4 Case Study of Reliability Analysis 73

5.3.4 Propositionizing

To conduct probabilistic model checking, we assign two kinds

of propositions fed(O′ ⊆ O) and seg(s ∈ S) to each states of given

P-CCRN. Given a state
⟨
Sseg, Sfed

⟩
, semantics of these propositions are

defined as follows:

• seg(s ∈ S) |= ⊤ iff s = Sseg (a user locates at segment s)

• fed(O′ ⊆ O) |= ⊤ iff O′ ∈ Sfed (a federation O′ exists)

5.4 Case Study of Reliability Analysis

We have conducted a case study of a reliability analysis of a given

P-CCRN, using probabilistic model checking. We assume that a CCRN

is given by the designer who intend to design applications of ubiquitous

computing. Here we use a CCRN of a museum example as shown in

Figure 5.1. Left hand side and right hand side of this figure represent

the segment graph G and the catalytic reaction network R of this CCRN

respectively. In this example, a user enters the entrance of a museum,

carrying a phone a, a headset b and a ticket s. Once the user entered

the entrance, the phone a and the headset b are federated by a reaction

associated with the scope of c1, which is triggered by the ticket s. Then,

the federated SOs ab are worked as a voice guide of the museum. Next,

if the user enters into room A, the federated SO ab and an exhibit d are

federated by a reaction associated with the scope of c2. By the federated

74 Chapter 5 Reliability Analysis of Ubiquitous Computing Scenario

SO abd, an explanation of the exhibit d can be provided to the user. After

this, the user leaves the room A and the federated SO abd is decomposed

and becomes ab again by a reaction associated with the scope of c3. The

similar reactions occur in the room B, which is for an explanation of

an exhibit e. If the user leaves one of the exhibition rooms and returns

to the entrance, the federated SO ab is decomposed before leaving the

museum.

Next we assign the probability to the user movement and cat-

alytic reactions. In Figure 5.1, every directed edges of the segment graph

is colored with blue or red. Blue edges assume the regular route of the

museum to tour and red edges assume the opposite (i.e., wrong) way.

The user can move along with these edges but here we use parameter

α ∈ [0, 1] to decide how frequent he or she tends to go along with the

regular route. More precisely, in every segments, the user chooses blue

edges with a probability of α, otherwise, he or she chooses red edges

with a probability of 1 − α. Then, if there are more than one edge after

he or she chooses color of edge, he or she chooses an one edge uniformly

from them. For all (i, j) ∈ E, we can set τi,j as follows:

τi,j =

α/|BLUEi| if τi,j is a blue edge

(1 − α)/|REDi| if τi,j is a red edge
(5.6)

where BLUEi is a set of {(i, j) ∈ E | (i, j) is a blue edge} and REDi is a

set of {(i, j) ∈ E | (i, j) is a red edge}. In regards to catalytic reactions,

we assign the same probability β ∈ [0, 1] to occurrences of all catalytic

reactions. Namely, we set θr = β for all r ∈ R.

In this configuration, we conducted an experiment of reliability

analysis of P-CCRN. We use PRISM to evaluate the probability of fol-

5.4 Case Study of Reliability Analysis 75

Catalytic Reactions:

(Outside)

(Entrance)

(Room A)(Room B)
Headset Phone

Ticket

Exhibit Exhibit

At first, a user locates at .

, and are mobile SOs.
and are fixed SOs located at and respectively.

: a scope of a context.

Figure 5.1 A CCRN assuming a museum

76 Chapter 5 Reliability Analysis of Ubiquitous Computing Scenario

lowing properties with the bound parameter k = 20.

ϕ1 = P=? [G≤k (¬seg(s3) ∨ fed({a, b, d}))] (5.7)

ϕ2 = P=?[F≤k((seg(s3)∧ fed({a, b, d})) ∨ (seg(s6)∧ fed({a, b, e})))]
(5.8)

Intuitively, ϕ1 means that how frequent the user can be always provided

the explanation of exhibition d when he or she is at segment s2 and ϕ2

means that how frequent the user can be provided the explanation of

exhibition d or e even just once when he or she enters the corresponding

room of the exhibition.

Figure 5.2 shows results of these probability evaluation of prop-

erty ϕ1 and ϕ2 by changing parameters α and β from 0 to 1. When α

and β are 1, this is the most ideal case. In other words, the user always

moves along with the regular route only and catalytic reactions always

react when the conditions of them satisfy. In this case, both of properties

ϕ1 and ϕ2 are satisfied with a probability of 1. However, if α and β are

decreased (i.e., the user behaves unpleasantly and catalytic reactions do

not fire even if the conditions of them satisfy), probabilities of properties

ϕ1 and ϕ2 are also decreased. The most important aspect of this relia-

bility analysis is that we can evaluate precisely and quantitatively how

reliable this kind of ubiquitous computing scenarios are. For a particu-

lar example, quantitative evaluation of ubiquitous computing scenarios

help us to consider trade-offs between the reliability of ubiquitous com-

puting scenarios and the cost of implementation for the satisfaction of

the reliability by changing parameters of probabilities, such as α and β

in this case study. In this case, if β is closer to 1, this means we may need

more costs for the implementations.

5.4 Case Study of Reliability Analysis 77

Re
lia
bi
lit
y

Property

Re
lia
bi
lit
y

Property

Figure 5.2 Results of Experiments

78 Chapter 5 Reliability Analysis of Ubiquitous Computing Scenario

5.5 Summary

In this chapter, we proposed the method of reliability analysis for

ubiquitous computing scenarios described by P-CCRN. By our method,

we can discuss the reliability of ubiquitous computing scenarios even if

these scenarios are in rather practical situation than ideal cases. Reliabil-

ity analyses are important because these analyses are quantitative, and

this means we can discuss about trade-offs between the reliability and

the cost for the satisfaction of the reliability. Once we design a ubiqui-

tous computing scenario by P-CCRN, we may actually implement this

which usually takes the cost. In that sense, our approach for reliability

analysis is not only theoretical but also practical.

79

Chapter 6

Conclusions and Open

Problems

In this chapter, we conclude our contributions presented in

this thesis.

6.1 Concluding Remarks

In chapter 3, we proposed a verification method of applications

which is described by a CCRN using model checking. Using our frame-

work, various properties of application scenarios of ubiquitous com-

puting can be discussed by logic such as LTL. Our framework actually

helps the designers to debug ubiquitous computing application scenar-

ios. With our framework, the cost of detecting any counterexamples is

much reduced compared to hand simulation. These contributions are

80 Chapter 6 Conclusions and Open Problems

important as the first step of the formularization to verify ubiquitous

computing scenarios.

In chapter 4, we proposed a method to reduce a CCRN verifi-

cation problem to a symbolic model checking problem. Our proposal

method enables us to verify more large scale ubiquitous computing

scenarios in realistic time and memory space. To show that symbolic

model checking is useful approach to verify ubiquitous computing sce-

narios, we conducted experiments using a museum example of ubiqui-

tous computing scenario as a case study. Additionally, we also show

that bounded model checking is also useful approach especially to de-

tect faults of ubiquitous computing scenario.

In chapter 5, we proposed the method of reliability analysis for

ubiquitous computing scenarios described by P-CCRN. By our method,

we can discuss the reliability of ubiquitous computing scenarios even if

these scenarios are in rather practical situation than ideal cases. Reliabil-

ity analyses are important because these analyses are quantitative, and

this means we can discuss about trade-offs between the reliability and

the cost for the satisfaction of the reliability. Once we design a ubiqui-

tous computing scenario by P-CCRN, we may actually implement this

which usually takes the cost. In that sense, our approach for reliability

analysis is not only theoretical but also practical.

With above these three propositions, we established a formal

verification framework for verifying appropriateness of ubiquitous

computing scenario design. Formal verification can find design-related

faults of objects before actual implementations of them. In particular,

objects which take roles of social infrastructures such as ubiquitous

6.2 Open Problems and Future Directions 81

computing scenarios typically need many of costs for their implemen-

tations. In this sense, it is important to conduct comprehensive fault

detections of these ubiquitous computing scenarios during a step of

their design by using formal verification. In addition to these formal

verification, we also showed the method to evaluate the reliability of

ubiquitous computing scenarios with considerations of uncertainties

including external interferences. This method extends our theoretical

contributions to the more practical applications in the sense that we

can discuss trade-offs between the reliability of ubiquitous computing

scenarios and their implementation costs by using our method. From

these facts about our contributions, we conclude that our contributions

are worthwhile on both theoretically and practically.

6.2 Open Problems and Future Directions

As future directions, there are several challenges.

In chapter 3, we have considered the case of a single user and we

believe this is enough to verify the connectivity of mutual related multi-

ple federations among SOs. We assumed that the designers has already

understood the notion of a catalytic reaction network. But we need to

develop more designer-friendly tools such as graphical user interfaces

to generate a CCRN in future work. To consider more practical situa-

tions, we will also consider the case of multiple users. Namely, more

than one user move around, carrying SOs simultaneously. This will en-

able us to consider more complex applications of ubiquitous computing.

In chapter 4, we improved the scalability of scenario verification

82 Chapter 6 Conclusions and Open Problems

of CCRN. However, we still continue to improve the scalability of our

method. To do so, we consider to reduce variables in variable vector s.

In chapter 5, we considered interferences of ubiquitous comput-

ing scenario. However, we still need to analyze more various kinds of

ubiquitous computing scenarios assuming more various interferences

including possible situations in real places.

83

Acknowledgements

I would like to thank my supervisor Prof. Shin-ichi Minato. He not only

advised me many of technical things for this research, but also encour-

aged me all the time. I also would like to thank Prof. Hiroki Arimura

and Assoc. Prof. Ichigaku Takigawa for their valuable comments and

supports to write this thesis. Also I would like to thank Prof. Yuzuru

Tanaka. He has not explicitly shown me how to conduct research, but

I have learned much from him what a researcher should be like, and

what kind of a philosophy I should have. I would like to thank my

co-authors, especially, Masakazu Ishihata for his meaningful discussion

and advice. I would like to thank the secretary of Large-Scale Knowl-

edge Processing Laboratory Sachiko Soma and the secretary of JSPS

KAKENHI KIBAN (S) Discrete Structure Manipulation System Project

Yukie Watanabe. They supported me in many complicated office tasks

of the university. I also would like to thank all colleagues and alumni of

Large-Scale Knowledge Processing Laboratory (formerly called Knowl-

edge Media Laboratory) and Meme Media Laboratory. Particularly, I

would like to thank Hajime Imura. He has supported my mind for my

entire laboratory life of almost a decade.

84 Acknowledgements

Finally, I would like to express my special thanks to my mother

Satomi Minoda and my father Mitsuhiko Minoda for being patient and

having understanding during my very long student life of a dozen

years.

85

Related Publications

[a] 蓑田玲緒奈，湊真一．記号モデル検査によるスマートオブジェクト

の近接連携シナリオの効率的な検証. 電子情報通信学会論文誌（Ｄ）,

J101.D(3), 2018. (to appear, written in Japanese text)

[b] Reona Minoda and Shin-ichi Minato. Verifying Scenarios of

Proximity-Based Federations among Smart Objects through

Model Checking and Its Advantages. IEICE Transactions on

Information and Systems, E100.D(6):1172–1181, 2017.

[c] Reona Minoda, Masakazu Ishihata, and Shin-ichi Minato. Proba-

bilistic CCRN: Reliability Analysis of Ubiquitous Computing Sce-

narios Using Probabilistic Model Checking. In Proceedings of The

Eleventh International Conference on Mobile Ubiquitous Computing,

Systems, Services and Technologies (UBICOMM 2017), pages 85–91,

2017.

[d] Reona Minoda and Shin-ichi Minato. Efficient Scenario Veri-

fication of Proximity-based Federations among Smart Objects

through Symbolic Model Checking. In Proceedings of the 7th

International Joint Conference on Pervasive and Embedded Computing

86 Related Publications

and Communication Systems (PECCS/PEC 2017), pages 13–21, 2017.

[e] Reona Minoda, Yuzuru Tanaka, and Shin-ichi Minato. Verify-

ing Scenarios of Proximity-based Federation among Smart Ob-

jects through Model Checking. In Proceedings of The Tenth Interna-

tional Conference on Mobile Ubiquitous Computing, Systems, Services

and Technologies (UBICOMM 2016), pages 65–71, 2016.

Copyright Notice

Some materials such as figures and tables in this thesis are used with

permissions issued from publishers of articles above.

Materials which are from [b] with a permission No. 17RB0088 issued from IEICE

Fig. 1.1, Fig. 2.1, Fig. 2.2 Fig. 3.1, Fig. 3.2, Fig. 3.3, Fig. 3.4, Fig. 3.5,

Fig. 3.6, Fig. 3.7, Fig. 3.8, Fig. 3.9, Table. 3.1, Table. 3.2.

Copyright c⃝ 2017 IEICE.

Materials which are from [a] with a permission No. 17RB0090 issued from IEICE

Fig. 4.2, Fig. 4.3, Table. 4.1.

Copyright c⃝ 2018 IEICE.

87

Bibliography

[1] IEEE Standard for a High-Performance Serial Bus. IEEE Standard

1394-2008, pages i–954, 2008.

[2] Rajeev Alur and David L. Dill. A theory of timed automata. Theo-

retical Computer Science, 126(2):183–235, 1994.

[3] Andrea Bianco and Luca de Alfaro. Model checking of probabilistic

and nondeterministic systems. In Proceedings of 15th Conference on

Foundations of Software Technology and Theoretical Computer Science

(FSTTCS ’95), pages 499–513, 1995.

[4] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan

Zhu. Symbolic model checking without BDDs. In Proceedings of 5th

International Conference on Tools and Algorithms for the Analysis and

Constructions of Systems (TACAS ’99), number 97, pages 193–207,

1999.

[5] Randal E. Bryant. Graph-Based Algorithms for Boolean Function

Manipulation. IEEE Transactions on Computers, C-35(8):677–691,

1986.

[6] Jerry R. Burch, Edmund M. Clarke, David E. Long, Kenneth L.

McMillan, and David L. Dill. Sequential circuit verification using

symbolic model checking. In Proceedings of the 27th ACM/IEEE De-

88 Bibliography

sign Automation Conference (DAC ’90), pages 46–51, New York, NY,

USA, 1990. ACM.

[7] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L.

Dill, and Lain-Jinn Hwang. Symbolic model checking: 1020 States

and beyond. Information and Computation, 98(2):142–170, 1992.

[8] Roberto Cavada, Alessandro Cimatti, Charles Arthur Jochim,

Gavin Keighren, Emanuele Olivetti, Marco Pistore, Marco Roveri,

and Andrei Tchaltsev. NuSMV 2.6 User Manual. http://nusmv.

fbk.eu/NuSMV/userman/v26/nusmv.pdf, 2016 (accessed De-

cember 14, 2017).

[9] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto

Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and

Armando Tacchella. Nusmv 2: An opensource tool for symbolic

model checking. Computer Aided Verification, 2404:359–364, 2002.

[10] Edmund M. Clarke and E. Allen Emerson. Design and synthesis

of synchronization skeletons using branching time temporal logic.

In Proceedings of Logics of Programs Workshop, pages 52–71, Berlin,

Heidelberg, 1982. Springer Berlin Heidelberg.

[11] Luca de Alfaro, Marta Kwiatkowska, Gethin Norman, David

Parker, and Roberto Segala. Symbolic Model Checking of Proba-

bilistic Processes Using MTBDDs and the Kronecker Representa-

tion. In Proceedings of Sixth International Conference on Tools and Al-

gorithms for the Construction and Analysis of Systems (TACAS 2000),

pages 395–410, 2000.

[12] Rolf Drechsler and Ulrich Kühne, editors. Formal Modeling and Veri-

fication of Cyber-Physical Systems. Springer Fachmedien Wiesbaden,

Wiesbaden, 2015.

89

[13] Alan Freier, Phil Karlton, and Paul Kocher. RFC6101: The Secure

Sockets Layer (SSL) Protocol Version 3.0. https://www.rfc-

editor.org/rfc/rfc6101.txt, 2011 (accessed January 13th,

2018).

[14] Safa Guellouz, Adel Benzina, Mohamed Khalgui, and Georg Frey.

ZiZo : A Complete Tool Chain for the Modeling and Verification

of Reconfigurable Function Blocks. In Proceedings of 10th Interna-

tional Conference on Mobile Ubiquitous Computing, Systems, Services

and Technologies (UBICOMM 2016), pages 144–151, 2016.

[15] Arnd Hartmanns, Sean Sedwards, and Pedro R. D’Argenio. Ef-

ficient Simulation-Based Verification of Probabilistic Timed Au-

tomata. In Proceedings of the 2017 Winter Simulation Conference (WSC

2017), pages 1419–1430, 2017.

[16] Vasiliki Hartonas-Garmhausen, Sergio Campos, and Edmund M.

Clarke. ProbVerus: Probabilistic Symbolic Model Checking. In

Proceedings of 5th International AMAST Workshop on Real-Time and

Probabilistic Systems (ARTS ’99), pages LNCS 1601, 96–110, 1999.

[17] Ichiro Hasuo. Metamathematics for Systems Design. New Genera-

tion Computing, 35(3):271–305, 2017.

[18] Paula Herber, Marcel Pockrandt, and Sabine Glesner. STATE – A

SystemC to Timed Automata Transformation Engine. In Proceed-

ings of IEEE 17th International Conference on High Performance Com-

puting and Communications, IEEE 7th International Symposium on Cy-

berspace Safety and Security, and IEEE 12th International Conference

on Embedded Software and Systems (HPCC/CSS/ICESS 2015), pages

1074–1077, 2015.

[19] Holger Hermanns, Joost-Pieter Katoen, Joachim Meyer-Kayser,

90 Bibliography

and Siegle Markus. A Markov chain model checker. Proceedings of

International Conference on Tools and Algorithms for the Construction

and Analysis of Systems (TACAS 2000), pages 347–362, 2000.

[20] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions

on Software Engineering, 23(5):279–295, 1997.

[21] Matti Jarvisalo, Daniel Le Berre, Olivier Roussel, and Laurent Si-

mon. The International SAT Solver Competitions. Ai Magazine,

33(1):89–94, 2012.

[22] Jérémie Julia and Yuzuru Tanaka. Proximity-based federation of

smart objects. Journal of Intelligent Information Systems, 46(1):147–

178, 2016.

[23] Stuart Kauffman. Investigations. Oxford University Press, Oxford

New York, 2002.

[24] Saul A. Kripke. Semantical Analysis of Modal Logic I Normal

Modal Propositional Calculi. Zeitschrift für Mathematische Logik und

Grundlagen der Mathematik, 9(5-6):67–96, 1963.

[25] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM

4.0: Verification of Probabilistic Real-Time Systems. In G Gopalakr-

ishnan and S Qadeer, editors, Proceedings of 23rd International Con-

ference on Computer Aided Verification (CAV 2011), volume 6806 of

LNCS, pages 585–591. Springer, 2011.

[26] Marta Kwiatkowska, Gethin Norman, and Jeremy Sproston. Prob-

abilistic model checking of deadline properties in the IEEE 1394

FireWire root contention protocol. Formal Aspects of Computing,

14(3):295–318, 2003.

[27] Jeff Magee and Jeff Kramer. Concurrency State Models and Java Pro-

grams. John Wiley and Sons, 1999.

91

[28] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic

Publishers, 1993.

[29] Robin Milner. Theories for the global ubiquitous computer. In

In Proceedings of 7th International Conference on Foundations of Soft-

ware Science and Computation Structures (FoSSaCS 2014), pages 5–11,

2004.

[30] John C. Mitchell, Vitaly Shmatikov, and Ulrich Stern. Finite-state

Analysis of SSL 3.0. In Proceedings of the 7th Conference on USENIX

Security Symposium (SSYM ’98), page 16, Berkeley, CA, USA, 1998.

USENIX Association.

[31] Amir Pnueli. The temporal logic of programs. Proceedings of 18th

Annual Symposium on Foundations of Computer Science (SFCS 1977),

pages 46–57, 1977.

[32] Jean-Pierre Queille and Joseph Sifakis. Specification and verifica-

tion of concurrent systems in CESAR. In Proceedings of 5th Interna-

tional Symposium on Programming, pages 337–351, 1982.

[33] A. Prasad Sistla and Edmund M. Clarke. The complexity of propo-

sitional linear temporal logics. Journal of the ACM, 32(3):733–749,

1985.

[34] Yan Sun, Tin-Yu Wu, Xinming Li, and Mohsen Guizani. A Rule Ver-

ification System for Smart Buildings. IEEE Transactions on Emerging

Topics in Computing, 5(3):367–379, 2017.

[35] Yuzuru Tanaka. Proximity-based federation of smart objects: liber-

ating ubiquitous computing from stereotyped application scenar-

ios. In In Proceedings of 14th International Conference on Knowledge-

Based and Intelligent Information and Engineering Systems (KES 2010),

pages 14–30. Springer, 2010.

92 Bibliography

[36] Moshe Y. Vardi. Automatic Verification of Probabilistic Concurrent

Finite-State Systems. In 26th Annual Symposium on Foundations of

Computer Science (FOCS ’85), pages 327–338, 1985.

[37] Mark Weiser. The Computer for the 21st Century. Scientific Ameri-

can, 265(3):94–104, 1991.

[38] Chang Xu and Shing-Chi Cheung. Inconsistency Detection and

Resolution for Context-aware Middleware Support. In Proceedings

of the 10th European Software Engineering Conference Held Jointly with

13th ACM SIGSOFT International Symposium on Foundations of Soft-

ware Engineering (ESEC/FSE 2005), pages 336–345, 2005.

