<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>誤差を伴う多軸加工シミュレーションのための工具掃引体導出に関する研究</td>
</tr>
<tr>
<td>著者</td>
<td>荒井 航</td>
</tr>
<tr>
<td>出版者</td>
<td>北海道大学 情報科学部 甲第13089号</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2018-03-22</td>
</tr>
<tr>
<td>DOI</td>
<td>10.14943/doctoral.k13089</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/70613</td>
</tr>
<tr>
<td>Type</td>
<td>theses (doctoral)</td>
</tr>
<tr>
<td>File Information</td>
<td>Wataru_Arai.pdf</td>
</tr>
</tbody>
</table>
博士論文

誤差を伴う多軸加工シミュレーションのための工具掃引体に関する研究

Study on generating tool swept volumes for machining simulation with errors of multi-axis machine tools

荒井 航

2018年3月

北海道大学 大学院情報科学研究科
システム情報科学専攻
本論文は北海道大学 大学院情報科学研究科に
博士（情報科学）授与の要件として提出した博士論文である。

荒井 航

審査委員： 主査 田中 文基 准教授
副査 金井 理 教授
小野里 雅彦 教授
誤差を伴う多軸加工シミュレーションのための工具掃引体導出に関する研究 *

荒井 航

概要

近年、製造業の競争力を高めるために、より高機能な部品を低コストで生産することの重要性はますます高くなってきている。生産加工システムに対する要求としては、航空機のインペラに代表される複雑な形状を加工すること、一度の段取りによる加工の効率化を図ることが挙げられる。これを実現できる多軸加工が注目されているが、多軸工作機械は並進駆動軸と回転駆動軸を組み合わせた複雑な軸構成を持ち加工運動が複雑となるため、誤差が生じやすいという問題がある。従って、複雑な加工運動を確認し、加工運動の結果である加工形状や加工誤差を検証する加工シミュレーションシステムの確立は、生産システムの発展において非常に重要である。従来の加工シミュレーション技術は、複雑な工具運動を検証し、工作機械や工具との干渉判定を行うことに重点が置かれてきた。一方、加工形状を導出する方法として、微小立方体（ボクセル）で素材や空間を分割し、加工運動によって工具が通過した部分を導出し、加工形状を導出する方法が主流であるが、現在のコンピュータのメモリ使用量と計算時間を考慮すると、ある程度の大きさの部品に対する微小な加工誤差までは表現できず、新しい方法論が求められている。

形状モデルやコンピュータグラフィックスの分野では、物体が運動した掃引形状を定義する研究が行われており、CAD（Computer Aided Design）システムに実装されている。提案されている基本原理は、物体表面上における法線ベクトルと速度ベクトルが直交する領域が掃引体を形成する、という掃引条件に基づく方法である。この方法は、前述の方法とは異なり、形状を表す数式に基づくため、高精度かつ高速に加工形状を導出できる可能性がある。これに基づき、工具掃引形状の導出に関する研究が行われてきたが、CADシステムを含め、工具の自己公差運動における工具掃引形状を導出できないという問題があった。この問題に対し、円柱形状の工具を対象として工具掃引条件式を解く方法が提案されているが、多軸加工で一般的な工具形状である円錐、トーラスといった工具形状を対象とした工具掃引条件式の解法は確立されていないという問題が残されている。

以上より、本研究では、多軸加工で一般的な工具形状に対し、工具掃引条件式を解析的に解き、その解に基づいて工具掃引体を導出する方法を確立する。これにより、工具の自己交差運動を含む多軸加工に対応した加工シミュレーションシステムを実現できる。このシミュレーションシステムは、高精度加工面を導出することができため、従来提案されている工作機械の誤差モデルを用いることで、ある加工運動に対する加工誤差を導出すること、また、さまざまな加工運動を高速・高精度に検証することで、工程設計へ応用することが可能となる。

キーワード：多軸工作機械、工具掃引体、工具掃引条件、加工誤差

*北海道大学 大学院情報科学研究科 システム情報科学専攻 博士論文、2018年3月
目次

第1章 緒論 5
 1.1 研究背景 ... 5
 1.2 研究目的 ... 6
 1.3 本論文の構成 ... 8

第2章 多軸加工シミュレーションと工作機械の誤差特性に関する研究動向 10
 2.1 本研究の関連分野について 10
 2.2 コンピュータシミュレーションによる加工形状導出に関する研究 10
 2.3 誤差特性的誤差補償に関する研究 16
 2.4 関連研究における問題点と本研究の位置づけ 20

第3章 工具掃引条件に基づく工具掃引体導出の基本的な考え方 21
 3.1 工具掃引条件に基づく工具掃引体導出の概要 21
 3.2 工具形状表現 .. 23
 3.3 加工指令定義方法と加工指令からの工具運動算出方法 26
 3.4 形状創成理論に基づく誤差を含む工作機械運動機構表現 28
 3.4.1 形状創成関数を用いた工作機械の運動表現 28
 3.4.2 誤差を考慮した形状創成関数を用いた工作機械の運動表現 ... 32
 3.5 工具掃引条件式の導出 ... 38
 3.5.1 工具掃引条件式導出の基本的な考え方 38
 3.5.2 フラットエンドミル側面を表す円柱形状の工具掃引条件式 39
 3.5.3 テーパエンドミル側面を表す円錐形状の工具掃引条件式 39
 3.5.4 ラジアスエンドミルのコーナーラジアス側面を表すトーラス形状の工具掃引条件式 40
 3.5.5 フラットエンドミル工具底面を表す平面の工具掃引条件式 41
 3.6 本章の結論 ... 41

第4章 工具掃引条件式の解析的な解導出による工具掃引形状導出 42
 4.1 工具掃引条件式の解析的な解導出による工具掃引形状導出の概要 42
 4.2 回転工具の工具掃引形状導出 .. 43
 4.3 回転工具の工具掃引形状導出 .. 46
 4.4 トーラス工具の工具掃引形状導出 60
 4.5 工具底面の工具掃引形状導出 .. 69
 4.6 不連続領域の工具掃引形状導出 72
 4.7 本章の結論 ... 73

第5章 工具の自己交差運動を含む多軸加工に対応した工具掃引体の算出 74
5.1 要求精度を満たす工具掃引体算出の概要...74
5.2 本論文で対象とする工具パスと工具掃引形状...75
5.3 要求精度を満たす工具掃引面の生成...77
 5.3.1 要求精度を満たす工具掃引面生成の概要...77
 5.3.2 要求精度を満たす工具掃引形状の生成...79
 5.3.3 要求近似精度を満たす工具掃引面の生成...83
5.4 工具パスの初期位置・終了位置における工具掃引形状の算出と工具掃引面との統合90
5.5 工具掃引体算出..92
5.6 本章の結論..97

第6章 高精度部品加工を支援する加工システムへの工具掃引体導出方法の応用 98
 6.1 高精度部品加工を支援する加工システムへの工具掃引体導出方法の応用に関する概要
 98
 6.2 工具掃引体を用いた加工面の加工誤差表を表し誤差ベクトルの算出........................100
 6.3 誤差ベクトルに基づく作業方法の評価..101
 6.4 誤差ベクトルの算出例...103
 6.5 本章の結論..106

第7章 結論 ... 107
 7.1 本論文の結論..107
 7.2 今後の研究課題と展望..112

参考文献 ... 113
研究業績 ... 116
謝辞 ... 118
図目次

図 1.1 論文構成.. 9
図 2.1 平行移動と回転の分離... 12
図 2.2 工具掃引体概要.. 12
図 2.3 工具掃引条件.. 13
図 2.4 工具表面上の点Pへの位置ベクトルの成分分解... 15
図 3.1 工具掃引体導出に関する章の関係.. 23
図 3.2 本論文で提案すると工具掃引体の導出手順.. 23
図 3.3 工具切れ刃部形状の近似.. 24
図 3.4 工具断面図.. 24
図 3.5 例として使用した5軸工作機械の構成... 31
図 3.6 工具掃引条件式から解析的に算出される解に基づく工具掃引形状の導出.................. 43
図 3.7 本論文で提案する工具掃引体の導出手順... 43
図 3.8 例として使用した5軸工作機械の構成... 51
図 3.9 工具切れ刃部形状の近似.. 51
図 3.10 工具断面図.. 51
図 3.11 例として使用した5軸工作機械の構成... 53
図 3.12 工具掃引条件式から解析的に算出される解に基づく工具掃引形状の導出.................. 53
図 3.13 本論文で提案する工具掃引体の導出手順... 53
図 3.14 例として使用した5軸工作機械の構成... 55
図 3.15 工具切れ刃部形状の近似.. 55
図 3.16 工具断面図.. 55
図 3.17 例として使用した5軸工作機械の構成... 57
図 3.18 工具掃引条件式から解析的に算出される解に基づく工具掃引形状の導出.................. 57
図 3.19 本論文で提案する工具掃引体の導出手順... 57
図 3.20 例として使用した5軸工作機械の構成... 59
図 3.21 工具切れ刃部形状の近似.. 59
図 3.22 工具断面図.. 59
図 3.23 例として使用した5軸工作機械の構成... 61
図 3.24 工具掃引条件式から解析的に算出される解に基づく工具掃引形状の導出.................. 61
図 3.25 本論文で提案する工具掃引体の導出手順... 61
図 3.26 例として使用した5軸工作機械の構成... 63
図 3.27 工具切れ刃部形状の近似.. 63
図 3.28 工具断面図.. 63
図 3.29 例として使用した5軸工作機械の構成... 65
図 3.30 工具掃引条件式から解析的に算出される解に基づく工具掃引形状の導出.................. 65
図 3.31 本論文で提案する工具掃引体の導出手順... 65
図 3.32 例として使用した5軸工作機械の構成... 67
図 3.33 工具切れ刃部形状の近似.. 67
図 3.34 工具断面図.. 67
図 3.35 例として使用した5軸工作機械の構成... 69
図 3.36 工具掃引条件式から解析的に算出される解に基づく工具掃引形状の導出.................. 69
図 3.37 本論文で提案する工具掃引体の導出手順... 69
図 3.38 例として使用した5軸工作機械の構成... 71
図 3.39 工具切れ刃部形状の近似.. 71
図 3.40 工具断面図.. 71
図 3.41 例として使用した5軸工作機械の構成... 73
図 3.42 工具掃引条件式から解析的に算出される解に基づく工具掃引形状の導出.................. 73
図 3.43 本論文で提案する工具掃引体の導出手順... 73
図 3.44 例として使用した5軸工作機械の構成... 75
図 3.45 工具切れ刃部形状の近似.. 75
図 3.46 工具断面図.. 75
図 3.47 例として使用した5軸工作機械の構成... 77
表目次

表 2.1 コンピュータシミュレーションにおける形状表現方法 .. 16
表 2.2 幾何学的誤差に対する誤差補償を行う研究の概要と補償結果の評価項目 18
表 2.3 工作機械の誤差特性による影響の評価方法 ... 20
表 3.1 相対運動と対応する数字 ... 30
表 4.1 φの範囲0 < φ < π2での各工具断面における工具掃引条件を満たす点数 66
表 5.1 工具掃引面導出結果の詳細 ... 93
表 6.1 ケーススタディにおける幾何学的誤差 .. 104
表 6.2 誤差ベクトル平均値 .. 106
緒論

1.1 研究背景

近年、製造業の競争力を高めるために、より高機能な部品を低コストで生産することの重要性は、ますます高まっている。生産加工システムに対する要求としては、航空機のインパラに代表される複雑な形状を加工すること、一度の段取りによる加工の効率化を図ることがあげられ、それを実現できる多軸加工が注目されている。多軸工作機械は、並進駆動軸だけではなく回転駆動軸も組み合わせた複雑な軸構成を持つ。そのため、加工運動は複雑となり、3軸工作機械と比較して、工作機械の組立誤差といった幾何学的誤差、加工プロセス中に生じる熱や振動、切削力等による誤差、といった工作機械の誤差特性による加工誤差の低下が起こりやすくなりやすく、加工形状に加工誤差が生じやすい、といった問題がある[Inasaki1997]。

こういった現状において、より高精度な加工部品を得る方法として、工作機械に対する誤差補償を行う方法と、工程計画に対する誤差補償を行う方法の2つが挙げられる。工作機械に対する誤差補償としては、以下のことが行われている。幾何学的誤差の誤差補償としては、予めモデル化した幾何学的誤差の誤差量を計測し、その誤差量を用いた工作機械のメンテナンスや指令の修正等が行われている[Take2012等]。加工プロセス中に生じる様々な誤差の誤差補償については、例えば、熱による工作機械の構成部品の熱変形は、図の温度と変形の対応関係をモデル化し、振動と同様に生じる誤差量をリアルタイムに工具の移動指令へフィードバックすることで補償されている[Sasaki2012等]。これらの誤差補償により、加工運動に生じる誤差が低減され、工作機械の加工精度は向上されてきた。なお、これらの研究において工作機械の加工精度は、主に、共通の加工運動を行った際の工具中心や姿勢の軌跡に生じる偏差、加工面のパターンに生じる変化[Saito2012]によって評価されている。しかし、より高精度な部品加工を実現するためには、特定の加工運動において加工面に生じる加工誤差への影響を検証する必要がある。加工誤差を含む加工形状は、実際に加工によって得られるが、要する時間とコストの観点から、加工シミュレーションシステムを用いることが望ましいといえる。

工程計画に対する誤差補償は、工程計画を実施することで得られる加工面を加工誤差について評価し、工程計画の修正を繰り返すことで、実現することができる。同様に、要する時間とコストの観点から、加工シミュレーションシステムを用いることが望ましいといえる。

したがって、多軸加工における複雑な加工運動を確認し、加工運動の結果である加工形状や加工誤差を検証する加工シミュレーションシステムを確立することは、生産システムの更なる発展において非常に重要である。

従来の加工シミュレーション技術は、複雑な工具運動を検証し、工作機械や工具との干渉判定を行う際に重点がおかれてきた。一方、加工形状を導出する方法として、微小直方体（ボクセル）で素材や空間を分割し、加工運動によって工具が通過した部分を導出し、加工形状を
誤差を伴う多軸加工シミュレーションのための工具掃引体導出に関する研究

得る方法が主流である。この方法は、効率化のために空間分割方法を工夫した Octree などがその派生的研究として提案されている。しかしながら、この方法では現状のコンピュータのメモリ使用量の_list_変数的な計算時間で、ある程度の大きさの部品に対する微小な加工誤差までを表現可能とはならず、新しい方法論が求められている。

形状モデルやコンピュータグラフィックスの分野では、物体が運動した掃引形状を定義する研究が行われており、CAD (Computer Aided Design) システムに実装されている。基本原理は、Wang [Wang1986] の提案による。物体表面上における法線ベクトルと速度ベクトルが直交する領域が掃引体を形成する、という掃引条件である。この方法は、前述のボクセルを用いた方法とは異なり、形状を表す数式に基づくため、高速かつ高精度に加工形状を導出できる可能性がある。この研究に基づき、工具掃引形状の導出に関する研究が多数行われてきたが、CAD システムを含め、工具の自己交差運動に対しては、工具掃引形状が導出できないという問題があった。この問題に対し、Lee [Lee2011-A] [Lee2011-B] は、円柱形状の工具を対象として、工具の掃引条件を表す工具掃引条件式を解析的に解く方法を提案し、工具の自己交差運動における工具掃引体を導出可能とした。しかし、多軸加工で一般的な工具形状である円錐、トーラスといった工具形状を対象とした工具掃引条件式の解は確立されていない、という問題が残されている。

以上より、高精度な部品加工を実現するための 2 つの誤差補償において、多軸加工における加工誤差を含む加工面を高精度にシミュレーション可能とする方法が必要とされており、多軸加工で一般的な工具を対象に、工具の自己交差運動を含む多軸加工に対応し、加工面に生じる微小な加工誤差までを評価可能とする加工シミュレーションを実現するため、既存の工具掃引体導出方法における工具運動に関する問題を解決する必要がある。

1.2 研究目的

本研究では、工具の自己交差運動を含む多軸加工に対応した高精度な加工シミュレーションシステムを実現するため、工具の自己交差運動を含む多軸加工に対応した工具掃引体導出方法を提案する。また、提案する工具掃引体による加工シミュレーションシステムの有効性と応用性を示すため、特定の工具運動によって加工面に生じる加工誤差を導出するシステムを実装する。

上述した 2 つの課題について、具体的には以下の内容について取り組む。

高精度な加工シミュレーションの実現:

Wang の掃引条件に基づき導出される工具掃引体は、工具パスの各位置・姿勢において工具表面上で掃引条件を満たす領域である工具掃引形状の集合とみなすことができる。このとき、工具掃引形状によって、工具掃引体の生成方法が異なる。工具の自己交差運動を含む多軸加工に対応するためには、多軸加工における工具掃引形状を解析的に導出し、各形状に対し工具掃引体導出方法を提案する必要がある。

そこで、本研究では、Lee の円柱工具の工具掃引体導出方法における、工具の掃引条件を表す工具掃引条件式から解析的に解を導出可能となる式変形についての考え方を、多軸加工で一般的である円錐、トーラスといった工具形状に拡張し、工具掃引条件式の解を解析的に導出
第１章 緒論

可能とする。また、工具掃引条件式から解析的に得られる解に基づき、工具掃引形状を導出する。導出した各形状に対し、工具掃引体導出方法を提案することで、最終的に、工具の自己交差運動を含む多軸加工に対応した工具掃引体導出方法を確立する。なお、導出される工具掃引体は、加工面に生じる加工誤差の評価を利用することを想定しているため、工具掃引体を構成する工具要素上の工具掃引形状の追加することで、形状に要求される近似精度を満たすよう工具掃引体を導出可能とする。

高精度な部品加工を実現するための加工シミュレーションの応用：
算出した工具掃引体により、工具運動を制約なく、加工誤差を含む加工面のシミュレーションが可能となる。高精度な部品加工を実現する上で、加工面にどのような加工誤差が生じるかを、工具掃引体によって導出する必要がある。これが実現することで、工程設計において、加工面に生じる加工誤差を確認し、必要な工具掃引体を低減させるよう工程計画の修正が可能となる。これを実現するためには、加工面に生じる加工誤差の算出方法と、加工面に生じる加工誤差の評価方法が必要である。
そこで本研究では、工具掃引体を用いた加工面に生じる加工誤差を表す方法として、誤差を含まない工具運動（理想の工具運動）による工具掃引体（ノミナル工具掃引体）と、誤差を含む工具運動（誤差工具運動）による工具掃引体（誤差工具掃引体）を比較し、その差を誤差ベクトルとして表現する方法を提案する。これにより、加工面に生じる加工誤差を、ベクトルの長さやその方向等といった、定量的な値で評価可能となる。
また、工具掃引体を用いた算出される加工面の加工誤差を表す誤差ベクトルを用い、作業方法の取り付け位置や工具進行方向といった作業方法が異なることで加工面に生じる加工誤差の違いを評価する方法として、次の方法を提案する。
加工工法、例えば加工開始位置や加工方向を変更しても、共通の工具運動に対するノミナル工具掃引体形状は同一となる。これに基づき、複数の加工方法による誤差ベクトル算出結果を単一のノミナル工具掃引体上に定義する。これにより、一括して異なる工具掃引体による加工誤差の違いが評価可能となる。
以上について、基本的な考え方について述べる。また、提案する加工誤差表現・比較方法の有効性を確認するために、多軸加工運動により導出される工具掃引体を用いた誤差ベクトルを算出する。また、複数の加工方法を実施する際の誤差ベクトル算出・比較を行う。

1.3 本論文の構成
本論文の構成を、図1.1に示す。本論文は、本章を含む7章で構成されており、第2章以降は以下の内容である。
第2章では、多軸加工シミュレーションシステムを実現する方法の現状と問題点について調査した。現状の多軸加工シミュレーションシステムでは、ボクセルを用いた方法が主流であるが、この手法では現状のコンピュータのメモリ使用量かつ実用的な計算時間で、ある程度の大きさの部品に対する微小な加工誤差までを表現可能とはならず、新しい方法論が求められていることから、本研究は、工具掃引体に基づくこれまでの研究では、工具の自己交差運動に対応できないという問題を指摘し、新たな工具掃引体生成方法の必要性
第3章では、第2章で指摘した問題点を解決するために、工具掃引体を導出するための基本的な考え方を示した。その考え方は、円柱形状に対するLeeらの提案を拡張し、一般的な工具に対し、解析的に解を導出可能となるよう工具掃引条件式を変形し、工具掃引条件式から解析的に導出される解に基づき工具掃引形状を導出することである。さらに、本研究で対象とする工具形状、工具運動表現に関して述べた。

第4章では、一般的な工具形状を対象に、第3章で述べた基本的な考えに基づき工具掃引形状を導出するために、工具掃引条件式を解析的に解く手順およびその解に関して述べた。ここでは、一般的な工具形状として、フラットエンドミル側面を表す円柱、テーパエンドミル側面を表す丸柱、ラジアスエンドミルにおけるコーナーラジアス側面を表すトーラス、フラットエンドミル底面を表す平面を対象とした。

第5章では、第4章で明らかにした工具掃引条件の解に基づいて、要求される形状の近似精度を満たす工具掃引体を、三角形メッシュモデルとして構築する方法を提案した。また、工具の自己交差運動を例に、提案する工具掃引体導出方法によって、設定した要求近似精度を満たすよう工具掃引体を生成可能であることを示した。

第6章では、提案する工具掃引体導出方法を、高精度な部品加工を支援する加工システムに応用する方法について述べた。従来提案されている工作機械の誤差モデルを用いることで、特定の加工運動に対する加工誤差を導出可能であることを示した。また、さまざまな加工運動を高速・高精度に検証することで工程設計に応用することが可能となることを示した。

第7章では、結論として本研究において得られた成果をまとめ、本研究の新規性、有用性を明らかにした。最後に、今後の研究課題と展望について述べた。
第1章 緒論

研究目的：高精度な加工シミュレーションの実現

関連研究

工具の自己交差運動を含む多軸加工にに対応した工具掃引体の導出

工具距離条件に基づく工具掃引体導出の基本的な考え方

高精度部品加工を実現するための加工シミュレーションの応用

第6章 高精度部品加工を実現するための加工シミュレーションの応用

第5章 工具の自己交差運動を含む多軸加工にに対応した工具掃引体の導出

第4章 工具掃引条件に基づく工具掃引体導出の基本的な考え方

第3章 工具掃引条件に基づく工具掃引体導出の基本的な考え方

第2章 工具距離条件に基づく工具掃引体導出の基本的な考え方

第1章 緒論
誤差を伴う多軸加工シミュレーションのための工具掃引体導出に関する研究

荒井 航
第2章 多軸加工シミュレーションと工作機械の誤差特性に関する研究動向

2.1 本研究の関連分野について

第1章にて、誤差特性により加工精度の低下した工作機械を用いた多軸加工において、設計された工程計画を実施する際に加工形状に生じる加工誤差を確認し、生じる加工誤差が少なくなるように工程計画を修正することで、高精度な部品加工が実現できると考え、必要なコスト・時間の観点から、シミュレーションによる加工誤差を含む加工形状導出方法の必要性について述べた。本研究では、シミュレーションによる加工誤差を含む加工形状導出方法の確立に取り組む。これより、本研究に関連するのは、コンピュータシミュレーションによる加工形状導出に関する研究である。そこで、これらの研究において、多軸加工を対象に、加工形状に生じる微小な加工誤差を評価可能な表現精度を得られるか、を基準とし、調査を行う。また、加工形状に生じる加工誤差は、工作機械の加工精度低下が原因であるため、既存の工作機械の誤差特性に関する研究も本研究に関連する。そこで、工作機械の誤差特性に関する研究において、加工誤差の低下がどの様に表現・評価されているかを調査する。

次節以降、関連分野の研究動向について述べる。

2.2 コンピュータシミュレーションによる加工形状導出に関する研究

コンピュータシミュレーションによる加工形状導出について、これまでに様々な研究により様々な導出方法が提案されている。本研究では、コンピュータシミュレーションにより加工形状に生じる微小な加工誤差までを表現する。そこで本論文では、形状の表現精度を基準に、既存の研究を調査し、その結果について述べる。

従来の加工シミュレーション技術は、複雑な運動を検証し、工作機械や工具との干渉判定を行うことに重点がおかれてきた。一方、加工形状を導出する方法として、微小直方体（ボックスル[Rihari1981]）で素材や空間を分割し、加工運動によって工具が通過した部分を導出し、加工形状を得る方法が主流である。この方法は、効率化のために空間分割方法を工夫したOctree[Donald1982]や、Dexel[Tim1986]といったものが、その派生的研究として提案されている。これら方法の利点として、単純なアルゴリズムによって加工形状の概要を導出することができる。加工ステップ毎に工作機械や工具との干渉判定が必要な状況では有効である。しかしながら、この方法では現状のコンピュータのメモリ使用量かつ実行可能な計算時間で、ある程度の大きさの部品に対する微小な加工誤差までを表現することができないと、そのため、これら既存方法に代わる新しい方法論が求められている。
これに対し、形状モデルやコンピュータグラフィックスの分野では、物体が運動した掃引形状を定義する研究がおこなわれている。工具掃引体は、一般的な工具の移動領域の表現方法の1つである。もう一つの方法として、工具形状をそのまま利用し、工具パス上の離散的な位置に工具形状を配置することで工具の移動領域を表現する方法がある[Bouhadja2014]が、工具掃引体を用いるほうがより高精度に加工面をシミュレーション可能である。そのため、工具の掃引体が、CAD（Computer Aided Design）システムに実装されている。

はじめに、コンピューターシミュレーションにおける工具形状表現について述べる。加工シミュレーションにおける工具の表現方法は、工具切刃部の形状をそのまま扱うか、近似した形状として扱うかに分類される。切削加工は工具の切刃と工作物が衝突し、切刃が工作物をすり切ることで、切削が行われる。そのため、加工に伴う生じる切削抵抗や、切屑生成状態までを評価するためには、工具の切刃に注目する必要がある[Kasahara2003]等。工具切刃による加工をシミュレーションする場合、切れ刃が工具中心部から外周部に向けて運動的に行われているため各切れ刃部での切削条件が異なり、また工具の運動が3次元空間での任意の運動を行なうものであるとするとき、工具切れ刃の切削機構の表現が複雑になる[Kishinami1980]。そこで、加工力の検証などを行わない場合は、その工具切れ刃部を近似扱いする場合がある。工具が工具軸を中心に回転しながら加工運動をする場合、工具軸周りの回転速度が工具移動方向の速度よりも非常に早い場合は、工具表面での工具切刃を工具軸中心に回転してできる形状を、工具における工具切刃部の形状とする場合がある。工具パスの検証のための加工シミュレーションなどでは、この工具切刃部の形状を近似したものが用いられることが多い[Karunakaran2009]等。本研究では、工作機械の幾何学的誤差といった誤差特性の影響により加工面に生じる加工誤差を評価することを目的に、工具切れ刃形状を近似して加工面のシミュレーションを行うこととする。これ以降、切れ刃形状を近似した工具形状の掃引形状導出について述べる。

工具軸が工作物に対して垂直であり、工具移動が工作物座標系のXY平面に対して平行に行われる場合（2.5次元加工）、工具掃引体は容易に導出することができる[Anderson1978]等。しかし、多軸加工時など、工具が移動に伴い上下する場合や、姿勢が変化する場合は工具掃引体の導出は難しくなる。その場合、導出を容易にするための工具運動を微小並進運動などに分割して扱う工具掃引体導出方法と、Wangらの提案する掃引条件に基づいた工具掃引体導出方法の、どちらかの方法が用いられることが多い。

工具運動を微小並進運動などに分割して扱う工具掃引体導出方法では、図2.1に示すように、工具の移動を微小な間隔で分離し、各区間において、平行移動を行った後に回転を行なうとみなすことで、工具掃引体は2.5次元加工とほぼ同じ方法で導出可能である=Peng2011]。しかし、多軸加工においては、平行移動と回転が同時におこるため、加工形状に生じる誤差を評価するなどの詳細なシミュレーションを行なう上では適切ではない。

これに対し、平行移動と回転が同時におこる多軸加工を対象とするとき、Wangの提案する掃引条件に基づく工具掃引体導出が用いられる。工具掃引条件について以下に述べる。

工具が図2.2(a)に示すように動作するとき、工具掃引体は図2.2(b)に示すように生成される。このとき、工具掃引体は、図2.2(b)に示すように、工具掃引面と、工具パスの初期位置、終了位置における工具表面、の計2種類の表面から構成される。なお、工具掃引面は、移動する工具表面上の工具掃引形状から構成される。
第2章 多軸加工シミュレーションと工作機械の誤差特性に関する研究動向

図2.1 平行移動と回転の分離

(a) 工具運動
(b) 工具掃引体を構成する2種類の面

図2.2 工具掃引体概要
ここで、工具表面上のある点Pが、工具掃引面を生成する工具掃引形状上に存在する場合、点Pについて、次の2つの関係が成り立つ：

- 図2.3(a)に示すように、点Pにおける法線ベクトル$n(P)$は、点Pが生成した工具掃引面上の対応点P'の法線ベクトル$n(P')$と同一方向となる。
- 図2.3(b)に示すように、点Pに生じる速度ベクトル$v(P)$は、点Pの接平面上に生じるこの2つの関係より、工具掃引点Pにおける法線ベクトル$n(P)$と速度ベクトル$v(P)$は、図2.3(c)に示すように直交するといえる。この直交関係が掃引条件である。工具に関する工具掃引条件は、次式に示す工具掃引条件式として定式化できる。

$$n(P) \cdot v(P) = 0 \quad (2.1)$$

この方法は、前述のボクセルを用いた方法とは異なり、形状を表す数式に基づくため、高精度にしかも高速に加工形状を導出できる可能性がある。そのため、現在までにこの掃引条件を基に、主に多軸加工を対象に、工具掃引体導出に関する研究が行われてきた。

Chiouら[Chiou2002]は、軸工作機械を対象に、工具形状を7つのパラメータでモデル化し、工具中心に生じる速度と、工具表面上でのそれぞれの法線ベクトルから、工具掃引条件をもとに、各工具パスの位置での工具掃引線を導出し、工具掃引体の導出を行っている。対象を工具旋回型の5軸工作機械とし、工具座標系原点における速度ベクトルと、工具表面上の法線ベクトルを立式し、工具掃引条件式を求め、解を導出している。この方法の問題点は、すべての工具表面に生じる速度ベクトルが、同一のものとして扱われている点である[Lee2011-A]、[Lee2011-B]。なぜなら、回転運動を含む場合、工具表面に生じる速度ベクトルは、位置によって異なるからである。そのため、導出される工具掃引体は正しいとは言えない。

これに対し、次に述べる研究では、より工具運動に対し正しい工具掃引体を生成するために、工具表面に生じる速度ベクトルを用い、工具掃引体を生成している。
第2章 多軸加工シミュレーションと工作機械の誤差特性に関する研究動向

Duら[Du2005]とShaoら[Shao2011]は、Chiouらと同様に、5軸工作機械を対象に、7つのパラメータでモデル化した工具形状を用いた工具掃引体導出を行っている。さらに、Chiouらの方法と異なり、工具に剛体運動を定義することで、表面上の任意の点における速度ベクトルを導出し、工具掃引条件をもとに、各工具パスの位置で工具掃引体を生成する領域を導出し、それらをつなぎ合わせることで、工具掃引体の導出を行っている。

しかし、上記の工具掃引体導出方法は、工具掃引体を導出可能な工具運動に制約がある。例えば、その自己公差運動における工具掃引体を導出することができない。これは、一般化表現した工具運動を用い工具掃引条件式を立式したとき、そのままでは式が複雑となり、解析的に解を導出することができないからである。

この問題に対し、Leeら[Lee2011-A][Lee2011-B]は、円柱形状の工具を対象に、工具掃引条件式を以下のようにする方法によって単純化することで、工具の掃引条件を表す工具掃引条件式を解析的に解くことができるようになった。まず、図2.4に示すように、工具表面上の点Pへの位置ベクトル\(r_T \)を、工具軸上の位置ベクトル\(r_a \)と、\(r_T \)から工具表面上の点Pを結ぶベクトル\(n_T \)の和として、次式に示すように定義した。

\[
 r_T = r_a + m n_T \quad (2.2)
\]

なお、\(m \)は、工具表面上の点を定義するための定数である。

次に、工具座標系において、位置ベクトル\(r_T \)に生じる速度ベクトル\(\dot{r}_T \)を、工具座標系原点の速度ベクトル\(\dot{r}_a \)と、\(\dot{r}_a \)から工具表面上の点Pを結ぶベクトル\(\omega_T \)の和として、次式に示すように定義した。

\[
 \dot{v}_T = \tau_T + \omega_T \times r_T = \tau_T + \omega_T \times (r_a + m n_T) \quad (2.3)
\]

ここで、工具座標系における法線ベクトル\(n_T \)と、速度ベクトル\(v_T \)を用い、工具掃引条件式を次式に示すように立式する。

\[
 n_T \cdot v_T = n_T \cdot (\tau_T + \omega_T \times (r_a + m n_T)) \quad (2.4)
\]

これを次式に示すように展開、整理する。

\[
 n_T \cdot (\tau_T + \omega_T \times (r_a + m n_T)) = n_T \cdot \tau_T + n_T \cdot \omega_T \times (r_a + m n_T) \quad (2.5)
\]

ここで、\(\tau_T \cdot \omega_T \times m n_T = 0 \)となるため、最終的に、次式に示す工具掃引条件式を得る。

\[
 n_T \cdot v_T = n_T \cdot (\tau_T + \omega_T \times r_a) \quad (2.6)
\]

上記に述べた手順で工具掃引条件式を求めることで、最終的に工具掃引条件式における速度ベクトルを工具軸上の速度ベクトルのみにすることができる。
誤差を伴う多軸加工シミュレーションのための工具掃引体導出に関する研究

荒井 航

れにより、工具掃引条件式を解析的に解くことを可能とし、円柱形状の工具の工具掃引形状を解析的に導出することで、円柱形状の工具のみ工具運動に制約なく工具掃引体を導出可能とした。

しかし、多軸加工で一般的な工具形状である円錐、トーラスといった工具形状を対象とした工具掃引条件式の解法は確立されていないため、新しい方法論が求められている。

また、市販 CAD システムとして主要な、Solidworks, AutoCAD において実装されている 3次元形状の掃引形状算出機能においても、同様に掃引形状を算出可能な 3 次元形状と運動に制約がある。

以上に述べた、コンピューターシミュレーションにおける形状表現方法に関する調査結果を、表 2.1 にまとめる。表 2.1 より、微小な加工誤差を含む加工面を高精度にシミュレーションするとき、工具掃引体を用いることが有効的であると考えられるが、既存の工具掃引体を算出可能な方法では、例えば工具の自己公差運動といった加工運動に制約がある、という問題があることがわかった。そのため、工具掃引体によって多軸加工における加工誤差を含む加工面のシミュレーションを実現するためには、この問題を解決する必要がある。

図 2.4 工具表面上の点 P への位置ベクトルの成分分解
第2章 多軸加工シミュレーションと工作機械の誤差特性に関する研究動向

表2.1 コンピュータシミュレーションにおける形状表現方法

<table>
<thead>
<tr>
<th>形状表現方法</th>
<th>空間分割</th>
<th>工具掃引体</th>
</tr>
</thead>
<tbody>
<tr>
<td>関連研究</td>
<td>[Rihari1981] [Donald1982] [Tim1986]等</td>
<td>[Chiou2012] [Du2005] [Shao2011]等</td>
</tr>
<tr>
<td>工具形状</td>
<td>任意</td>
<td>円柱工具</td>
</tr>
<tr>
<td>工具運動の制約</td>
<td>なし</td>
<td>あり</td>
</tr>
<tr>
<td>長所</td>
<td>実装が容易</td>
<td>加工面に生じる微小な加工誤差を空間分割による形状表現より低メモリで実行可能時間にて導出可能</td>
</tr>
<tr>
<td>短所</td>
<td>加工面に生じる微小な加工誤差は現状のメモリ使用量かつ実行可能な計算時間で導出できない</td>
<td>多軸加工で一般的な工具形状である円錐、トーラスといった形状の工具掃引体導出において工具運動の制約がある</td>
</tr>
</tbody>
</table>

2.3 誤差特性の誤差補償に関する研究

工作機械の加工精度に関係するのは、工作機械に生じる幾何学的な誤差である。そこで本研究では、この幾何学的誤差に対する誤差補償を行なういくつかの研究を対象に、誤差補償結果の評価項目、方法の調査を行った。

Chenら[Chen1993]は、3軸工作機械の時間的に変化する空間精度を対象に、検出、計測、コンピュータ技術を用いた誤差補償システムを提案した。誤差補償の効果は、時間変化による精度変化を評価するために、機械使用直後と連続運転後の平面加工に生じた空間的な誤差、Y, Z軸方向の直線移動に生じた誤差が評価項目として用いられた。

Mou[Mou1997]は精密製作のための多軸工作機械の誤差推定と誤差修正をベースとしたニューラルネットワークを用いた誤差補償を提案した。誤差補償の効果は、点の位置がX, Y方向にどれだけの偏差を持つかが評価項目として用いられた。

Rahmanら[Rahman2000]は工作機械のモデルと実際の計測データをポストプロセッサ内に持ち誤差補償を行なう方法を提案した。誤差補償の効果は、XY平面上における直角度誤差が評価項目として用いられた。

Fanら[Fan2002]はMulti-body system(MBS)に基づき運動学誤差モデル化方法、誤差解析方法、それを用いた誤差補償方法を提案した。誤差補償の効果は、理想的な工具パスと実際の工具パスとの差が評価項目として用いられた。

Wangら[Wang2002]は誤差予測に対する形状間数に基づく補間アルゴリズムを用いた誤差補償方法を提案した。誤差補償の効果は、ある工具パスに対し複数の基準点を設け、誤差補償後の対応点との偏差が評価項目として用いられた。

Leiら[Lei2003]はリンク誤差の測定、推定を行い同定した誤差モデルを用いた誤差補償方法を提案した。誤差補償の効果は、比較用に設けられた試験工具パスに沿った運動を行ったとき
の、誤差補償を行ったものを行っていない場合のX, Y, Z軸方向への位置・角度の差が評価項目として用いられた。

Raksiriら[Raksiri2004]は幾何学的誤差と切削力誤差を考慮したオフライン誤差補償モデルを提案した。誤差補償の効果は、比較用に設けられた試験工具パスにそった運動を行ったときの予め決められた位置における理想的な点と実際の点の差が評価項目として用いられた。

Leeら[Lee2006]は小型工作機械の誤差補償のための再帰補償方法を提案した。誤差補償の効果は、X, Y, Z軸方向の平行移動誤差と角度誤差が評価項目として用いられた。

Wanら[Wang2006]は誤差予測に対するガラーキン法に基づくアルゴリズムを用いた誤差補償システムを提案した。誤差補償の効果は、比較用に設けられた試験工具パスにそった運動を行ったときの予め決められた位置における理想的な点と実際の点の差が評価項目として用いられた。

Hsuら[Hsu2007]は機械回転軸の運動だけに関連する工具姿勢誤差を考慮したモデルを用いた誤差補償方法を提案した。誤差補償の効果は、複数の試験用の工具パスに沿った運動を行ったときの、誤差補償を行ったものに行っていない場合のX, Y, Z軸方向への位置・角度の差が評価項目として用いられた。

Cui[Cui2012]は工具運動の直線補間と円弧補間運動に対する誤差補償方法を提案した。誤差補償の効果は誤差補償前と誤差補償後の直線補間、円弧補間を行ったときの工具軌跡の差が評価項目として用いられた。

以上の結果を、表2.2に示す。これより、誤差特性の中でも加工精度に影響を与える幾何学的誤差は、様々な方法によって誤差補償が行われていることがわかる。しかし、誤差補償の効果の評価については、どれも誤差補償前と後の、工具中心位置や工具姿勢に生じた変化が用いられていることもわかる。3軸工作機械において、それらの情報から加工形状がどのように変化するかの予測は可能である。しかし、多軸工作機械では、構成要素のそれぞれがもつ誤差特性の特徴や、工具中心に生じる誤差特性の影響を評価するだけでは、加工形状に与える影響は評価できない。
表 2.2 幾何学的誤差に対する誤差補償を行う研究の概要と補償結果の評価項目

<table>
<thead>
<tr>
<th>関連研究</th>
<th>誤差補償の概要</th>
<th>誤差補償結果の評価項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Chen1993]</td>
<td>3 軸工作機械の時間的に変化する空間精度を対象に，誤差補償システムを提案</td>
<td>機械使用直後と連続運転後の平面加工に生じた空間的な誤差，Y, Z 軸方向の直線移動に生じた誤差</td>
</tr>
<tr>
<td>[Mou1997]</td>
<td>多軸工作機械の誤差推定と誤差修正をベースとしたニューラルネットワークを用いた誤差補償</td>
<td>点の位置において生じる X, Y 方向の偏差</td>
</tr>
<tr>
<td>[Rahman2000]</td>
<td>工作機械のモデルと実際の計測データをポストプロセッサ内に持つ誤差補償を提案</td>
<td>XY 平面上における直角度誤差</td>
</tr>
<tr>
<td>[Fan2002]</td>
<td>Multi-body system(MBS)に基づき運動学誤差モデル化方法，誤差解析方法，それを利用した誤差補償方法を提案</td>
<td>理想的な工具パスと実際の工具パスとの差</td>
</tr>
<tr>
<td>[Wang2002]</td>
<td>誤差予測に対する形状関数に基づく補間アルゴリズムを用いた誤差補償方法を提案</td>
<td>工具パスに対し定義した複数の基準点，誤差補償後の基準点との偏差</td>
</tr>
<tr>
<td>[Lei2003]</td>
<td>リンク誤差の測定，推定を行い同定した誤差モデルを用いた誤差補償方法を提案</td>
<td>工具パスに沿った運動を行ったときの，誤差補償を行ったものと行っていない場合の X, Y, Z 軸方向への位置・角度の差</td>
</tr>
<tr>
<td>[Raksiri2004]</td>
<td>幾何学的誤差と切削力誤差を考慮したオフライン誤差補償モデルを提案</td>
<td>工具パスに運動を行ったときの予め決められた位置における理想的な点と実際の点の差</td>
</tr>
<tr>
<td>[Lee2006]</td>
<td>小型工作機械の誤差補償のための再帰補償方法を提案</td>
<td>X, Y, Z 軸方向の平行移動誤差と角度誤差</td>
</tr>
<tr>
<td>[Hsu2007]</td>
<td>機械回転軸の運動だけに関連する工具姿勢誤差を考慮したモデルを用いた誤差補償方法を提案</td>
<td>複数の試験用の工具パスに沿った運動を行ったときの，誤差補償を行ったものを行っていない場合の X, Y, Z 軸方向への位置・角度の差</td>
</tr>
<tr>
<td>[Cui2012]</td>
<td>工具運動の直線補間と円弧補間運動に対する誤差補償方法を提案</td>
<td>誤差補償前と誤差補償後の直線補間，円弧補間を行ったときの工具軌跡の差</td>
</tr>
</tbody>
</table>
次の通り、誤差特性による影響を評価する研究について述べる。
坂本ら[Sakamoto1997]は5軸マシニングセンタ向けボールバーを用いた組立精度評価法について提案している。主軸端がテーブル上においてボールバーの長さを半径とした半球表面を描き、かつ主軸方向が半球表面に対して法線方向となるような運動を行わせたときのボールバーの伸縮量を検出し、運動精度を評価する。
青木[Aoki1966]は、工作機械の主軸回転精度を正しく評価するための3点式主軸回転精度測定方法を提案している。ある軸を中心に工具を回転したとき、精度が高ければ回転中心は一致するが、精度が低ければ回転中心は工具の位置によって異なる。これによって工作機械の回転精度を評価する。
多軸制御工作機械の精度検査方法として、NAS979に規定される主軸旋回形5軸マシニングセンタにて円錐台加工を行いその精度を測定する方法がある[NAS979]。
井原ら[Ihara2005]は、NAS979にて実加工が必要な点、また加工形状を用いた評価でありごこの要素の影響を特定できない点、を改善するため、主軸旋回形5軸マシニングセンタを対象に、ボールバーを用いた精度検査方法を提案した。対象とする工作機械の運動機構について考察し、工作機械を構成する各軸とボールバーを用いた回転の軌跡に生じる変化を対応付け、精度評価を行っている。
斉藤ら[Saito2012]は、加工シミュレーションにて数学モデル化された工作機械の幾何学的誤差を用い誤差を伴う工具運動を再現し、工作物表面に市松模様の加工を行い、そのパターンを用いた評価方法を提案している。
以上の結果を、表2.3にまとめめる。なお、上記に挙げた[NAS979]や[Ihara2005]等の方法は、様々な工作機械メーカーなどの精度試験に用いられている。これより、誤差特性の工作機械の加工精度への影響を評価する方法として、工作機械の運動精度に着目することで、工作機械がどの程度の運動精度をもって加工を行なうか、については評価可能である。しかし、運動軌跡に生じる変化とそれに伴って生じる加工形状の加工誤差の対応はつかないため、その運動により得られる加工面に生じる加工誤差を評価することはできない。
第2章 多軸加工シミュレーションと工作機械の誤差特性に関する研究動向

表2.3 工作機械の誤差特性による影響の評価方法

<table>
<thead>
<tr>
<th>関連研究</th>
<th>影響評価方法の概要</th>
<th>評価項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Sakamoto1997]</td>
<td>5軸マシニングセンタ向けボールバーを用いた組立精度評価方法について提案</td>
<td>特定の運動を行う際の、ボールバーの伸縮量</td>
</tr>
<tr>
<td>[Aoki1966]</td>
<td>3点式主軸回転精度測定方法を提案</td>
<td>ある軸を中心に工具を回転したときの回転中心に生じる偏差</td>
</tr>
<tr>
<td>[Ihara2005]</td>
<td>主軸旋回形5軸マシニングセンタを対象に、ボールバーを用いた精度検査方法を提案</td>
<td>円運動の軌跡に生じる変化</td>
</tr>
<tr>
<td>[Saito2012]</td>
<td>加工シミュレーションを用いた評価方法を提案</td>
<td>工作物表面に市松模様の加工を行った際に生じる偏差</td>
</tr>
</tbody>
</table>

本節では、工作機械の誤差特性に関する既存研究における、誤差特性が加工に与える影響の表現・評価方法について調査するため、誤差特性の影響を低減させるための誤差補償に関する研究と、工作機械の誤差特性による影響の評価に関する研究について調査を行った。その結果、幾何学的誤差の誤差補償に関する研究では、検査用に定義された工具運動に生じる偏差が主に用いられており、加工面に生じる加工誤差までは評価されていない。また、工作機械の誤差特性による影響の評価も同様に、検査用に定義された工具運動に生じる偏差が主に用いられており、任意の工具運動を行う際の加工誤差は評価されていない。より高精度な部品加工を実現するためには、加工面に生じる加工誤差に基づく評価が必要であり、誤差を伴う多軸加工に対応した加工シミュレータによって、特定の工具運動による加工面に生じる加工誤差を評価する必要がある。

2.4 関連研究における問題点と本研究の位置づけ

関連研究における問題点を以下に示す。

- 従来の加工シミュレーション技術は、複雑な工具運動における、工作機械や工具との干涉判定を行うことを重点に置き、ボクセル等の微小立方体で素材や空間を分割し、加工形状が表現されてきた。従来の表現方法では、加工形状導出のアルゴリズムの実装は容易であるが、ある程度の大きさの部品に対する微小な加工誤差を現状のコンピュータのメモリ使用量か実行可能な計算時間で表現することができない、という問題がある。
- 既存のシュミュレーション方法に対し、形状モデルやコンピュータグラフィックスの分野では、物体が運動した際の掃引形状を定義するための研究が行われており、CADシステムで利用されている。掃引体の利用は、従来の加工シミュレーション方法と比較し、従来の工具運動を含む加工面を、低メモリかつ実行可能な計算時間で導出できる。
- 既存の多く研究により、一般的に、Wangらによって提案されている、工具表面上の法
線ベクトルと速度ベクトルの直交関係を表す工具掃引条件に基づいた工具掃引体導出方法が提案されてきた。しかし、工具掃引条件を表す式である工具掃引条件式を解析的に解くことが困難なため、工具の自己交差運動を含む多軸加工における工具掃引体を導出できない、という問題がある。

これに対し、Lee らは、円柱形状の工具を対象に、工具表面上の点への位置ベクトルを工具軸方向のベクトルと、法線方向のベクトルの和として表現し、工具座標系で工具掃引条件式を導出することで、工具掃引条件式を簡単化し、解析的に解くことを可能とした。これにより、円柱形状の工具について、工具の自己交差運動を含む多軸加工における工具掃引体を導出可能とした。しかし、多軸加工で一般的な、円錐、トーラスといった工具形状には対応していない。

既存の工具掃引体に関する研究の調査より、工具掃引体導出における課題は、多軸加工で一般的な工具形状に対し、3 次元空間での任意の工具運動に対応した工具掃引体導出方法を提案することである。

誤差特性の工作機械の加工精度への影響については、工作機械の加工精度がどの程度であるかを、工具中心や工具姿勢、ボールバーの変位や、加工面に生じる加工パターーンに生じる影響を評価項目とし、確認されてきた。しかし、この方法では、特定の工具運動において加工面に生じる加工誤差を評価することができない。そのため、加工誤差を含む加工面を、誤差を伴う多軸加工に対応した加工シミュレータによって算出し、その結果を評価する必要がある。

以上より、生産システムの更なる発展のためには、多軸加工における複雑な工具運動を検証し、工具運動の結果である加工形状や加工誤差を検証するためのシステムが必要であることがわかる。また、ある程度の大きさをもつ加工形状に生じる微小な加工誤差までを表現可能な工具掃引体について、既存の研究による方法では、多軸加工で一般的な円錐やトーラス形状の、工具の自己交差運動における工具掃引体を算出することができない、という問題があることを明らかにした。

本研究では、この問題を解決した工具掃引体導出方法を、以下に述べる手順によって提案する。はじめに、一般的な工具形状を表現可能な形状表現方法を定義し、定義した各形状に対する工具掃引条件式を導出する。次に、導出した工具掃引条件式から解析的に解を導出し、導出した解から工具掃引形状を導出する。最後に、導出した工具掃引形状に対し適切な工具掃引体導出方法を提案する。これについて、第 3 章で基本的な考え方について述べる。

また、提案する工具掃引体導出方法を、高精度な部品加工を実現するため設計へ応用することについて、第 6 章にて述べる。
第3章 工具掃引条件に基づく工具掃引体導出の基本的な考え方

3.1 工具掃引条件に基づく工具掃引体導出の概要

本研究では、微小な加工誤差を含む加工面を高精度にシミュレーションするため、Wangらの提案する工具掃引条件に基づき得られる工具掃引体によって加工面をシミュレーションする。第2章で述べたように、工具掃引体は、工具パス上の工具表面において、工具掃引条件を満たす領域である工具掃引形状から構築される。そのため、工具掃引体導出方法は、工具掃引形状によって異なる。これに対し、Leeらによって、工具掃引条件を表す工具掃引条件式について解析的に解を導出可能とするよう変形し、円柱工具の工具掃引条件式から解析的導出した解を用い、工具の自己交差運動を含む多軸工具運動に対応した工具掃引体導出を可能とした。しかし、既存の研究や市販CADシステムでは、多軸加工で一般的な円錐、トーラスといった工具形状の工具掃引体を、工具の自己交差運動を含む多軸運動において、導出可能とはされていない。以上より、本研究では、WangらとLeeらの考えを拡張し、多軸加工で一般的な工具形状の工具掃引体を、工具の自己交差運動を含む多軸加工にて導出可能とする、工具掃引体導出方法を提案する。

工具掃引体導出に関し、第3章から第5章にかけて述べる。各章の関係を、図3.1に示す。そして、第3章では、工具掃引体導出の基本的な考え方として、工具掃引体の導出方法、対象とする工具形状の定義、工具運動の一般表現について述べ、対象とする工具形状の工具掃引条件式を導出する。また、誤差を含む工具運動を表現するにあたり、工作機械の幾何学的誤差をモデル化した形状創成理論に基づいた、誤差を含む工作機械の運動機構表現と、同次座標変換行列からの工具運動算出方法について述べる。次に、第4章では、第3章で導出した、対象とする工具形状の工具掃引条件式について、WangらとLeeらの考えに基づき、解析的解を導出する。また、得られた解を基に、工具掃引形状を導出する。最後に、第5章にて、得られた工具掃引形状に対し、工具掃引体導出方法を提案する。このとき、得られる工具掃引体は、加工面に生じる微小な加工誤差を評価するのに用いるため、要求される形状の近似誤差を満たすよう工具掃引体を導出可能とする。

本研究では、工具掃引体を図3.2に示す手順で導出する。第2章で述べたように、工具掃引体表面の構成要素は、工具パスの初期位置・終了位置における工具形状表面と、工具表面の掃引により得られる工具掃引面であり、工具掃引面は工具パスの各位置における工具掃引形状から構築される。これより、本研究では、入力される工具運動、工具形状より、工具パスの各位置にて、工具掃引形状を導出する。次に、導出した工具掃引形状から工具掃引面を構築する。また、入力される工具運動、工具形状より、工具パスの初期位置・終了位置における工具表面を算出する。算出される面を統合することで、最終的に、工具掃引体を得る。以降、3.2節にて工具形状表現、3.3節にて工具運動表現について述べる。
図 3.1 工具掃引体導出に関する章の関係

図 3.2 本論文で提案する工具掃引体の導出手順
3.2 工具形状表現

本研究では、回転工具を対象とした工具掃引体導出を行う。工具軸周りの回転速度 \(v_c \) が、工具パスに沿った工具の移動速度 \(v_T \) よりも十分早い場合、工具の切れ刃形状は、図 3.3 に示すように、工具表面上の工具切れ刃を工具中心に回転させて得られる形状とみなすことができる。

本研究では、近似した工具切れ刃部の形状を図 3.4 に示す。工具形状を、円柱、円錐、トーラス、工具先端を表す平面を組み合わせ表現する。本表現方法では、円錐形状が 2 つ含まれるため、工具上部の円錐を upper taper、下部の円錐を lower taper と区別する。このとき、法線ベクトルの不連続な面同士の接続領域が生じる場合があるので、これも工具形状の構成要素の一つとする。なお、\(R \) は工具半径、\(R_{tc} \) はコーナ半径、\(E \) は工具軸から工具コーナ中心点への工具軸に垂直な方向の距離、\(H \) は工具座標系原点から工具コーナ中心点への工具軸方向の距離、\(\alpha \) は工具下部の円錐形状におけるテーパ角度、\(\beta \) は工具上部のテーパ形状におけるテーパ角度を表す定数、\(L_{cy} \) は円柱の長さ、\(L_{uc} \) は上円錐の長さ、\(L_{ct} \) はトーラスの長さ、\(L_{lc} \) は下円錐の長さである。また、\(l \) は工具高さを表す変数、\(\phi \) はトーラス形状を表す円弧における円弧中点周りの角度を表す変数、\(\rho \) は工具軸周りの角度を表す。

![図 3.3 工具切れ刃部形状の近似](image1)

![図 3.4 工具断面図](image2)
誤差を伴う多軸加工シミュレーションのための工具掃引体導出に関する研究

以下に、工具座標系Σ_T(x_T, y_T, z_T)における各要素的位置ベクトル、法線ベクトルを示す。

円柱工具表面上の位置ベクトル \(\mathbf{r}_T \)，法線ベクトル \(\mathbf{n}_T \) は、それぞれ次のように定義される。

\[
\mathbf{r}_T(l, \rho) = \begin{bmatrix} R \cos \rho \\ R \sin \rho \\ -l \end{bmatrix} \quad (3.1)
\]

\[
\mathbf{n}_T(l, \rho) = \begin{bmatrix} \cos \rho \\ \sin \rho \\ 0 \end{bmatrix} \quad (3.2)
\]

円錐工具表面上の位置ベクトル \(\mathbf{r}_T \)，法線ベクトル \(\mathbf{n}_T \) は、それぞれ次のように定義される。

\[
\mathbf{r}_T(l, \rho) = \begin{bmatrix} (-l \cdot f_1 + f_0) \cos \rho \\ (-l \cdot f_1 + f_0) \sin \rho \\ -l \end{bmatrix} \quad (3.3)
\]

\[
\mathbf{n}_T(l, \rho) = \begin{bmatrix} u \cos \rho \\ u \sin \rho \\ w \end{bmatrix} \quad (3.4)
\]

なお、\(f_0, f_1, u, w \) は円錐工具の形状によって異なり、工具形状表現における upper taper では次のようになる。ただし、\(\beta \neq 0 \) である。

\[
\begin{cases}
 f_1 &= \frac{(-H + L_{uc} + R_{tc} \sin \beta) \tan \beta}{L_{uc}} \\
 f_0 &= \frac{L_{uc}(E + R_{tc} \cos \beta) + (L_{cy} + L_{uc})(-H + L_{uc} + R_{tc} \sin \beta)}{L_{uc}} \\
 u &= 1 \\
 w &= - \tan \beta
\end{cases} \quad (3.5)
\]

また、lower cone では次のようになる。ただし、\(\alpha \neq 0 \) である。
第3章 工具掃引条件に基づく工具掃引体導出の基本的な考え方

\[
\begin{align*}
&f_1 = \frac{E + R_{tc} \sin \alpha}{L_{ic}} \\
&f_0 = \frac{(L_{cy} + L_{uc} + L_{ct} + L_{tc})(E + R_{tc} \sin \alpha)}{L_{ic}} \\
&u = \tan \alpha \\
w = -1
\end{align*}
\]

(3.6)

トーラス工具表面上の位置ベクトル\(\mathbf{r}_T \)，法線ベクトル\(\mathbf{n}_T \)は，それぞれ次のように定義される。

\[
\mathbf{r}_T(\phi, \rho) = \begin{bmatrix}
(E + R_{tc} \cos \phi) \cos \rho \\
(E + R_{tc} \cos \phi) \sin \rho \\
-(H + R_{tc} \cos \phi)
\end{bmatrix}
\]

(3.7)

\[
\mathbf{n}_T(\phi, \rho) = \begin{bmatrix}
\cos \phi \cos \rho \\
\cos \phi \sin \rho \\
- \sin \phi
\end{bmatrix}
\]

(3.8)

工具底面の位置ベクトル\(\mathbf{r}_T \)，法線ベクトル\(\mathbf{n}_T \)は，それぞれ次のように定義される。

\[
\mathbf{r}_T(c_{fl}) = \begin{bmatrix}
c_{fl} \cos \rho \\
c_{fl} \sin \rho \\
-L
\end{bmatrix}
\]

(3.9)

\[
\mathbf{n}_T(c_{fl}) = \begin{bmatrix}
0 \\
0 \\
-1
\end{bmatrix}
\]

(3.10)

上記の通り，工具底面を除き工具構成要素は変数 \(l \) または \(\phi \) と，\(\rho \) の2つで表現される。全ての変数が定まるとき，工具表面上の1点が定まる。

3.3 加工指令定義方法と加工指令からの工具運動算出方法

本研究では，式(3.11)，(3.12)に示すように，共通の変数 \(t \) によって連続的な関数として表現される工具先端の軌跡\(\mathbf{r}_{trj}(t) \)と，軌跡の各位置における工具姿勢を表すベクトル\(\mathbf{r}_{psd}(t) \)によって，加工指令を定義する。
誤差を伴う多軸加工シミュレーションのための工具書き体導出に関する研究

荒井 航

\[
r_{trj}(t) = \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix}
\]
(3.11)

\[
r_{pat}(t) = \begin{bmatrix} i(t) \\ j(t) \\ k(t) \end{bmatrix}
\]
(3.12)

このとき、工作機械を構成する各駆動軸への指令値は、形状創成理論に基づき算出する。ここ
で、にて例として挙げた CAYXZ 型 5 軸工作機械を対象とするとき、並進駆動軸 XYZ と回転
軸 AC のそれぞれの指令値はそれぞれ、次の式で求めることができる。

回転軸の駆動量：

工作機械が CAYXZ 型であるとき、X 軸回りの駆動軸 A、Z 軸回りの駆動軸 C の駆動量を、
工具姿勢を表すベクトル \(r_{pat}(t) \) に基づき、次式によって得られる。

\[
\begin{align*}
A(t) &= \cos^{-1} k(t) \\
C(t) &= \begin{cases}
\text{arbitrary}, & (k(t) = 1) \\
\text{sgn}(i(t)) \cos^{-1} \frac{j(t)}{\sqrt{i^2(t) + j^2(t)}}, & (k(t) \neq 1)
\end{cases}
\end{align*}
\]
(3.13)

\[
\text{sgn}(i(t)) = \begin{cases}
1, & (i(t) \geq 0) \\
0, & (i(t) < 0)
\end{cases}
\]
(3.14)

C にて、\(k(t) = 1 \) の場合は任意の値を設定できる。時間 \(t \) の前後の連続性を考慮し、現時刻よ
り前の時刻または、後の時刻における C の値を利用して、

並進駆動軸の駆動量：

式(3.11)に示す工具先端の軌跡 \(r_{trj}(t) \) が工作物座標系で定義される場合、CAYXZ 型の 5 軸工
作機械における、並進駆動軸 X, Y, Z 軸の駆動量 \(X, Y, Z \) は次式によって得られる。

\[
\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} \cos C(t) & \cos A(t) \sin C(t) & \sin A(t) \sin C(t) \\ -\sin C(t) & \cos A(t) \cos C(t) & \cos A(t) \sin C(t) \\ 0 & -\sin A(t) & \cos A(t) \end{bmatrix}^{-1} r_{trj}(t)
\]
(3.15)

工具先端の軌跡と工具姿勢によって定義される加工指令から算出される工作機械の運動機構
を表す同次座標変換行列を用い、工具座標系における工具運動を導出する。以下にその手順と
方法について述べる。

はじめに、加工指令から算出されるある時刻 \(t \) における工作機械の運動機構を表す同次座標変
換行列 \(T_W(t) \) を次式に示すように定義する。

24
第3章 工具掃引条件に基づく工具掃引体導出の基本的な考え方

\[
T_W(t) = \begin{bmatrix}
T_{W11}(t) & T_{W12}(t) & T_{W13}(t) & T_{W14}(t) \\
T_{W21}(t) & T_{W22}(t) & T_{W23}(t) & T_{W2}(t) \\
T_{W31}(t) & T_{W32}(t) & T_{W33}(t) & T_{W34}(t) \\
0 & 0 & 0 & 1
\end{bmatrix}
\] (3.16)

例えば、後に記述する形状創成理論に基づく運動機構の定義を行うことで、工作機械の幾何学的誤差を組み込んだ同次座標変換行列を定義することができ、誤差を伴う多軸運動をシミュレーション可能となる。

次に、工具座標系において工具表面上の点\(r_T\)に生じる速度ベクトル\(v_T\)を、工具座標系原点に生じる平行移動速度ベクトル\(\tau_T(t)\)と、工具座標系原点を通る各速度ベクトル\(\omega_T(t)\)を用い、次式に示すように定義する。

\[
v_T(t) = \tau_T(t) + \omega_T(t) \times r_T
\] (3.17)

それぞれを、同次座標変換行列の要素から、次のように定義することができる。

\[
\tau_T(t) = A^T(t) \dot{r}_{12}(t)
\] (3.18)

\[
\omega_T(t) = \begin{bmatrix}
\frac{AtAd_{32}(t) - AtAd_{23}(t)}{2} \\
\frac{AtAd_{13}(t) - AtAd_{31}(t)}{2} \\
\frac{AtAd_{21}(t) - AtAd_{12}(t)}{2}
\end{bmatrix}
\] (3.19)

ただし、

\[
r_{21}(t) = \begin{bmatrix}
T_{W14}(t) \\
T_{W24}(t) \\
T_{W34}(t)
\end{bmatrix}
\] (3.20)

\[
A(t) = \begin{bmatrix}
T_{W11}(t) & T_{W12}(t) & T_{W13}(t) \\
T_{W21}(t) & T_{W22}(t) & T_{W23}(t) \\
T_{W31}(t) & T_{W32}(t) & T_{W33}(t)
\end{bmatrix}
\] (3.21)

\[
AtAd(t) = A^T(t) \frac{dA(t)}{dt} = \begin{bmatrix}
AtAd_{11}(t) & AtAd_{12}(t) & AtAd_{13}(t) \\
AtAd_{21}(t) & AtAd_{22}(t) & AtAd_{23}(t) \\
AtAd_{31}(t) & AtAd_{32}(t) & AtAd_{33}(t)
\end{bmatrix}
\] (3.22)

である。これ以降、平行移動速度ベクトル\(\tau_T(t)\)と、工具座標系原点を通る各速度ベクトル\(\omega_T(t)\)
誤差を伴う多軸加工シミュレーションのための工具掃引体導出に関する研究

荒井 航

をそれぞれ次のように表す。

\[
\mathbf{r}_x(t) = \begin{bmatrix} r_{\Sigma x}(t) \\ r_{\Sigma y}(t) \\ r_{\Sigma z}(t) \end{bmatrix}
\quad (3.23)
\]

\[
\mathbf{\omega}_x(t) = \begin{bmatrix} \omega_{\Sigma x}(t) \\ \omega_{\Sigma y}(t) \\ \omega_{\Sigma z}(t) \end{bmatrix}
\quad (3.24)
\]

以降、式(3.23), (3.24)を用い、工具掃引条件式を立式する。

3.4 形状創成理論に基づく誤差を含む工作機械運動機構表現

3.4.1 形状創成関数を用いた工作機械の運動表現

工作機械は、切削運動と送り運動に基づく工芸と工作物の相対運動により、工具切刃の形状を工作物表面に転写して部品の創成を行う。工作機械構造を系統的に解析するため、機械加工における形状創成過程を記述するための数学モデルである形状創成関数が提案されている。本節では、形状創成理論、形状創成関数について述べた「工作機械の形状創成理論」 [Inasaki1997]を参考に、誤差を伴う工作機械の運動表現方法について述べる。

工作機械は、ベッド、テーブル、主軸など種々の要素が工作物と工具間に構成されており、それらの相対運動が、工作物と工具間における相対運動となり、工具軌跡を生み出し、加工面の創成につながる。このような工作機械におけるシステムを形状創成システムという。

最も単純な形状創成システムは、一つの工具と一つの工作物を含み、それらをつなぐ構成要素が1列の連鎖のものである。本研究では、基本的な工作機械の構造である、工作物から始まり、各構成要素を経て工具で終わる、1工具1工作物の創成システムのみを扱うこととし、形状創成理論について述べる。なお、工作物から始まり各構成要素を工具で終わる連鎖を、形状創成連鎖と呼び、各構成要素に工作物から工具まで順に固有の座標系 Siを与える。添字は、各構成要素を表す。工作機械の座標軸には、X, Y, Zを使用し、座標軸周りの回転運動および旋回運動の記号には、A, B, Cを使用する。今後は、右手直交座標系を基準とする。

工作機械の各要素の運動は、隣接する構成要素のもつ座標間に相対運動とされ、そのため、形状創成運動は、各座標系間の相対運動の重畳とみなすことができる。ここでは、工作機械の構成要素を剛体と仮定すると、剛体の運動は6自由度であるので、相対運動を表3.1に示すように、1から6の数字で定めることができる。

工作機械の構成要素は、自身の座標系 Siの軸方向の直線運動または軸中心の回転運動のいずれか一つだけを行うものとする。すると、隣接する構成要素Si-1とSiの相対運動は、1自由度となるため、Si-1とSiの座標系間の相対運動は上記のいずれかの数字によって表現される。この
第3章 工具掃引条件に基づく工具掃引体導出の基本的な考え方

数字を形状創成連鎖の順に並べたものを機構コードkと定義する。

\[k = k_1 k_2 k_3 \cdots k_n \quad (3.25) \]

添字iは、構成要素S_iに対するi番目の座標系の運動であることを示し、k_iは表3.1に示した運動と対応する1から6までの数字のいずれかである。この数字に対応する相対運動は座標変換行列A_iとして表すこととする。5軸工作機械を例にとると、その構成要素、相対運動、座標変換行列は図3.5に示すようになる。

こうして工作物から工具まで一連の構成要素によって結ぶことで、次式に示す機構コードkを得る。

\[k = 64213 \quad (3.26) \]

このように座標系を設定し、運動形態を表すコードを設定することで、工作機械の形状創成運動を数学的に示すことができる。

工作機械の工具と工作物の相対運動を表す関係は、工作物に設定した座標系での、工具の位置ベクトルによって表現される。これは、工具に与えた座標系S_0における工具の位置ベクトルを、形状創成連鎖の後ろから順に座標変換を行うことで求められる。座標変換の表現には、同次座標変換行列を利用。同次変換行列を用いた相対運動の座標変換行列式は以下のように示される。

\[
A^1 = \begin{bmatrix}
1 & 0 & 0 & x \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix},
A^2 = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & y \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix},
A^3 = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & z \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix},
A^4 = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix},
A^5 = \begin{bmatrix}
\cos \phi & \sin \phi & 0 & 0 \\
-sin \phi & \cos \phi & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix},
A^6 = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \cos \psi & -\sin \psi & 0 \\
0 & \sin \psi & \cos \psi & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

（3.27）

行列A^i(q_i)は一つの変数q_iだけを含み、並進運動における変数q_iは座標系S_iがS_{i-1}の方向に移動した距離を意味し、座標系S_iが座標系S_{i-1}に対して正の方向に動いた場合に正の値とする。一方、回転運動における変数q_iは、回転座標軸の終端側から見て座標系S_iが座標系S_{i-1}に対して反時計回りに回転した場合に正の値とする。

加工は、工具と工作物の相対運動であるので、工具の座標系における工具切刃の位置ベクトルを工作物の座標系において表現することを考える。つまり、同次座標変換行列を、工具の座標系S_nにおける工具の位置ベクトルから各構成要素の座標系S_{n-1}, S_{n-2}, … S_0に対して順に行うことで、工作物座標系S_0での工具切刃位置ベクトルを得ることができる。工具と工作物間の相対運動は次のようになる。
表 3.1 相対運動と対応する数字

<table>
<thead>
<tr>
<th>運動</th>
<th>対応する数字</th>
</tr>
</thead>
<tbody>
<tr>
<td>X 軸方向の直線運動</td>
<td>k = 1</td>
</tr>
<tr>
<td>Y 軸方向の直線運動</td>
<td>k = 2</td>
</tr>
<tr>
<td>Z 軸方向の直線運動</td>
<td>k = 3</td>
</tr>
<tr>
<td>X 軸回りの回転運動</td>
<td>k = 4</td>
</tr>
<tr>
<td>Y 軸回りの回転運動</td>
<td>k = 5</td>
</tr>
<tr>
<td>Z 軸回りの回転運動</td>
<td>k = 6</td>
</tr>
</tbody>
</table>

図 3.5 例として使用した5軸工作機械の構成
第3章 工具挿引条件に基づく工具挿引体導出の基本的な考え方

\[r_0 = A^{l_1}(q_1)A^{l_2}(q_2) \cdots A^{l_i}(q_i) \cdots A^{l_n}(q_n)r_n = T_Wr_n \] (3.28)

ただし，\(r_n \)は工具切刃位置ベクトルであり，\(T_W \)は工具と工作物の相対運動による座標変換行列を全て重畳したものとする．工具と工作物間の相対運動を表す式を，形状挿成関数と呼ぶこととする．

\(N \)軸工作機械での形状挿成関数は次のように表すことができる．

\[r_W = \prod_{i=1}^{N} (A^{l_i}(q_i))r_T \] (3.29)

図3.5に示す5軸工作機械を例に，形状挿成関数を構築すると次のようになる．

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 1 \\
0 & \cos \psi & -\sin \psi & 0 & 0 \\
0 & \sin \psi & \cos \psi & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & x & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
\end{pmatrix}
\begin{pmatrix}
1 \\
0 \\
0 \\
1 \\
x \\
y \\
z \\
\end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}
\] (3.30)

ただし，ここでは切削運動のための工具回転は省略されている．また，工具切刃位置ベクトルを，工具座標系では\(r_T \)，工作物座標系では\(r_W \)としている．\(x, y, z \)は各直線案内，\(\theta, \psi \)は各回転案内の回転量を表す．

3.4.2 誤差を考慮した形状挿成関数を用いた工作機械の運動表現

工作機械には，工作物と工具間における相対運動の精度を乱す様々な誤差要因が存在する．これらが存在することで，形状挿成運動に誤差が生じ，最終的に加工形状に加工誤差を生じさせる．

稲崎ら[Inasaki1997]は，機械加工における形状挿成の精度が工作機械の母性原則に基づくと考え，加工誤差に影響を及ぼす要因を以下のようにまとめている．

- 工作機械構成要素の幾何学的精度，組み立て精度
 - テーブルの真直度
 - 案内面の真直度
 - 平行度 等
- 無負荷運動状態での運動精度
 - 主軸の回転精度
 - テーブル真直精度
誤差を伴う多軸加工シミュレーションのための工具掃引体導出に関する研究

荒井 航

・ 位置決め精度
・ サーボ系の応答特性

● 加工プロセス
 ・ 加工条件
 ・ 工具
 ・ 工作物

● 加工環境
 ・ 雰囲気
 ・ 外来振動
 ・ 室温変化

● 実加工中の運動精度
 ・ 駆動系の特性
 ・ 構造の静・動剛性
 ・ 構造の熱変形特性

すなわち、工作機械自身の構成要素の幾何学的誤差および組立誤差により、テーブルの真直度、案内面の平行度誤差など、工作機械の幾何学的な誤差が定まる。この工作機械を無負荷状態で運動することにより、幾何学的な誤差に起因する主軸の回転誤差、テーブルの真直度誤差、テーブルの位置決め誤差などが生じ、創成運動に誤差が生じる。さらに、実際の加工環境においては、加工プロセスに伴う切削力および加工熱による工作機械の変形、加工環境の温度変化、外来振動により、工作機械の変形および振動が生じ、これらが無負荷運転時の誤差に重複されることにより創成運動誤差が大きくなる。また、工具の摩耗などによる工具形状および寸法に関する誤差も加工製品の誤差に影響を与える。以上に基づき、形状創成理論では、形状創成運動の誤差は、無負荷状態の運転時の創成運動誤差と、加工時の創成運動誤差に分類している。

無負荷時状態の運転時の創成運動誤差として、稲崎らは、工作機械の静的精度および工作精度の試験を行う場合の基本的事項と各種試験方法を規定している。JIS B 6191から、無負荷状態における静的精度試験の試験項目に注目し、工作機械の創成運動を構成する直線運動および回転運動に該当する項目を抽出し、以下に示すように工作機械の幾何学的誤差を整理している。

● 案内誤差
 ・ 直線案内における案内誤差
 ・ 位置決め誤差、真直度誤差、姿勢度誤差
 ・ 回転案内における案内誤差
 ・ 回転角誤差、アンギュラ誤差、アキシアル誤差、ラジアル誤差

● 組立誤差
 ・ 互いに直交する案内を持つ構成要素間の組立誤差
 ・ 構成誤差（直角度誤差、軸心ずれ誤差）
 ・ 調整誤差（傾き誤差、位置ずれ誤差）
 ・ 互いに平行な案内を持つ構成要素間の組立誤差
 ・ 構成誤差（平行度誤差、軸心ずれ誤差）
 ・ 調整誤差（傾き誤差、位置ずれ誤差）

これらの誤差は、微小な直線運動、回転運動、またはこれらを組み合わせたものであるため、形状創成運動と同様に同次座標変換行列で記述することができる。

30
加工時の創成運動誤差は、予測、計測するのが困難な要素が多く、無負荷状態の創成運動誤差のように同次変換行列でモデル化し、創成運動で再現することは困難である。

そこで本研究では、形状創成理論で同次変換行列としてモデル化されている無負荷状態の創成誤差を扱うこととする。

ここで、工作機械に発生する誤差要因を数学モデル化するとき、系統的な誤差とランダムな誤差に分類できる。系統的な誤差は、無負荷状態の創成運動誤差である一つの構成要素が運動した時に生ずる案内誤差と 2 つの構成要素間に存在する組立誤差系統的な誤差であり、ランダムな誤差は加工時の創成運動誤差といった誤差量を確率値またはある幅をもつ値として取り扱わなくてはいけないものである。これより、本研究では、無負荷状態の創成運動誤差のみを扱うこととし、形状創成理論における、系統的な誤差の表現方法について、以下に述べる。

(1) 案内誤差の数学モデル
- 直線案内の位置決め誤差と真直度誤差

位置決め誤差は直線案内に沿って案内テーブルを運動させた時に生ずる誤差であり、直線案内をもつ構成要素の座標系にて表現された工具位置ベクトルに対して誤差を考慮する。つまり、対象とする直線案内の運動を示す同次座標変換行列の左隣りに誤差行列を代入する。直線案内 X 軸における並進誤差は次式で示される。

\[
\Delta r_0(\varepsilon_i) = A^{i_1}(q_1)A^{i_2}(q_2)\cdots \varepsilon_i A^{i_k}(q_k)\cdots A^{i_l}(q_l)r_1
\] (3.31)

\[
\varepsilon_i = \begin{bmatrix}
0 & 0 & 0 & \delta_{x_i} \\
0 & 0 & 0 & \delta_{y_i} \\
0 & 0 & 0 & \delta_{z_i} \\
0 & 0 & 0 & 0
\end{bmatrix}
\] (3.32)

\(\delta_{x_i}, \delta_{y_i}, \delta_{z_i}\) は、X, Y, Z 軸方向の並進誤差である。添字 i は、誤差が案内軸上のものであることを意味する。例として直線案内 X 軸上の並進誤差を考慮するとき、誤差行列の各誤差パラメータとして、位置決め誤差は \(\delta_{x_i}\)、真直度誤差は \(\delta_{y_i}, \delta_{z_i}\) である。直線案内 Y, Z 軸の並進誤差も同様に扱うことができる。

- 直線案内の姿勢度誤差

姿勢度誤差も、直線案内にそって案内テーブルを運動させるときに生ずる誤差である。そのため、位置決め誤差と同様に直線案内の運動を示す同次変換行列の左隣りに代入する。直線案内 X 軸における回転誤差は次式で示される。

\[
\Delta r_0(\varepsilon_i) = A^{i_1}(q_1)A^{i_2}(q_2)\cdots \varepsilon_i A^{i_k}(q_k)\cdots A^{i_l}(q_l)r_1
\] (3.33)

\[
\varepsilon_i = \begin{bmatrix}
0 & -\gamma_i & \beta_i & 0 \\
\gamma_i & 0 & -\alpha_i & 0 \\
-\beta_i & \alpha_i & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\] (3.34)
誤差を伴う多軸加工シミュレーションのための工具挿引体差出に関する研究

\[\alpha, \beta, \gamma \] は、X, Y, Z 軸まわりの姿勢度誤差を表している。添字は、誤差が案内軸上のものであることを意味する。直線案内X 軸の回転誤差を考えたとき、ローリングは\(\alpha \)であり、ピッチングは\(\beta \)であり、ヨーイングは\(\gamma \)である。直線案内Y, Z 軸の回転誤差も同様に扱うことができる。

回転案内の回転角誤差とアンギュラ誤差

回転角誤差とアンギュラ誤差は、回転案内軸の運動精度における回転誤差である。そのため、回転案内をもつ構成要素の座標系にて表現された工具位置ベクトルに対して誤差を考慮する。つまり、対象とする回転案内の運動を示す同次座標変換行列の左隣りに誤差行列を代入する。構成要素の回転誤差を扱うとき、誤差行列は次式で示される。

\[
\Delta \mathbf{r}_0(\epsilon_i) = A^1(q_1)A^2(q_2) \cdots \epsilon_i A^h(q_i) \cdots A^t(q_t) \mathbf{r}_1
\]

\[
\epsilon_i = \begin{bmatrix}
0 & -\gamma_i & \beta_i & 0 \\
\gamma_i & 0 & -\alpha_i & 0 \\
-\beta_i & \alpha_i & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

(3.35)

(3.36)

回転軸方向がX 軸であるとき、誤差行列\(\epsilon_i \)の各誤差パラメータとして、アキシアル誤差は\(\delta_{x_i} \)、ラジアル誤差は\(\delta_{y_i}, \delta_{z_i} \)である。回転案内B, C 軸の回転誤差も同様に扱うことができる。

回転案内のアキシアル誤差とラジアル誤差

アキシアル誤差とラジアル誤差は、その構成要素上での並進誤差であるため、構成要素座標系上で工具の位置ベクトルが変換されてから代入する。つまり、構成要素の同次変換行列の左隣りに代入する。構成要素の並進誤差は次式で示される。

\[
\Delta \mathbf{r}_0(\epsilon_i) = A^1(q_1)A^2(q_2) \cdots \epsilon_i A^h(q_i) \cdots A^t(q_t) \mathbf{r}_1
\]

\[
\epsilon_i = \begin{bmatrix}
0 & 0 & 0 & \delta_{x_i} \\
0 & 0 & 0 & \delta_{y_i} \\
0 & 0 & 0 & \delta_{z_i} \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

(3.37)

(3.38)

回転軸方向がX 軸であるとき、誤差行列\(\epsilon_i \)の各誤差パラメータとして、アキシアル誤差は\(\delta_{x_i} \)、ラジアル誤差は\(\delta_{y_i}, \delta_{z_i} \)である。回転案内B, C 軸の回転誤差も同様に扱うことができる。

(2) 組立誤差の数学モデル

・2 案内軸間の直角度誤差と平行度誤差

直角度誤差と平行度誤差は、2 つの案内軸間で発生する相対誤差なので、工具側から順に考え、一つ目の案内軸と2 つの案内軸の間に挿入する。この間にその他の案内軸の運動や構成要素の寸法を表す同次変換行列があるとき、2 つの案内軸の右隣りに代入する。構成要素軸と構成要素軸間の組立誤差は次式で示される。
第3章 工具掃引条件に基づく工具掃引体導出の基本的な考え方

\[
\Delta r_0(\epsilon_{ik}) = A_{11}(q_1)A_{12}(q_2)\cdots A_{1i}(q_i)\epsilon_{ik}\cdots A_{1k}(q_k)\cdots A_{11}(q_1)r_1 \tag{3.39}
\]

\[
\epsilon_{ik} = \begin{bmatrix}
0 & -\gamma_{ik} & \beta_{ik} & 0 \\
\gamma_{ik} & 0 & -\alpha_{ik} & 0 \\
-\beta_{ik} & \alpha_{ik} & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} \tag{3.40}
\]

\[
\delta_{xij}, \delta_{yij}, \delta_{zij} \text{は2軸間の並進誤差を意味している。添字} j \text{は、誤差が案内軸と案内} k \text{軸間に存在するものであることを意味する。回転案内} A \text{軸と回転案内} C \text{軸間の軸心ずれ誤差は、} Y \text{軸方向の並進誤差} \delta_{YAC} \text{を考察。}
\]

以上のように、それぞれの誤差要因を同次変換行列の形で表現し、組み合わせることで、工作機械におけるすべての幾何学的誤差を表現できる。

\[
N \text{軸工作機械での誤差を考慮した形状創成関数は次のように表すことができる。}
\]

\[
r_M = \left[\prod_{i=1}^{N} (A_{1i}(q_i)) \right] + \sum_{i=1}^{N} \left(\prod_{k=0}^{i-1} (A_{ik}(q_k)) \right) \epsilon_i' \left(\prod_{i=1}^{N} (A_{1i}(q_i)) \right) r_T \tag{3.43}
\]

\[
= (T_{Mn} + T_{Me})r_T = T_Mr_T
\]

\[
\epsilon_i' = \epsilon_i + \sum_{m=1}^{N} \epsilon_i(i-1,m) \tag{3.44}
\]

33
ここで、T_{W_n}:誤差のない運動機構を表す座標変換行列、T_{W_0}:運動機構に生じる誤差を表す座標変換行列、i:テーブルから数えたリンク番号、$A^i = A^0$:単位行列、e_i:リンクiに生じる誤差の座標変換行列、e_{ij}:リンクi,j間に生じる誤差の座標変換行列(無い場合は零行列)を表す。

図 3.6 に示す誤差を持つ 5 軸工作機械を例に、誤差行列をもつ場合の形状創成関数を構築すると次のようになる。

$$
\begin{align*}
\mathbf{r}_W &= A^3A^2A^4A^6\mathbf{r}_T \\
&+ e_3A^3A^2A^4A^6\mathbf{r}_T + A^3e_1A^3A^2A^4A^6\mathbf{r}_T + A^3A^2A^4A^6\mathbf{r}_T \\
&+ A^3A^1A^2A^4A^6\mathbf{r}_T \\
&+ A^3A^1A^2A^4A^6\mathbf{r}_T + A^3\epsilon_{33}A^1A^2A^4A^6\mathbf{r}_T + A^3\epsilon_{12}A^1A^2A^4A^6\mathbf{r}_T \\
&+ A^3A^1A^2A^4A^6\mathbf{r}_T + A^3A^1A^2A^4\epsilon_{46}A^6\mathbf{r}_T + A^3A^1A^2\epsilon_{26}A^4A^6\mathbf{r}_T \\
&+ A^3A^1A^2\epsilon_{31}A^4A^6\mathbf{r}_T + A^3A^1\epsilon_{13}A^2A^4A^6\mathbf{r}_T + A^3\epsilon_{13}A^2A^4A^6\mathbf{r}_T \\
&+ A^3\epsilon_{12}\epsilon_{31}A^4A^6\mathbf{r}_T + A^3\epsilon_{12}\epsilon_{23}A^4A^6\mathbf{r}_T \\
&+ A^3\epsilon_{12}\epsilon_{31}\epsilon_{23}A^4A^6\mathbf{r}_T \\
&+ A^3\epsilon_{12}\epsilon_{31}\epsilon_{23}\epsilon_{13}A^4A^6\mathbf{r}_T
\end{align*}
$$

ただし、ここでは切削運動のための工具回転は省略されている。また、工具切刃位置ベクトルを、工具座標系ではr_T、工作物座標系ではr_Wとしている。x,y,zは各直線案内、θ,ψは各回転案内の送り量、回転量を表す。

各誤差行列の表現には、誤差を表すパラメータが必要であり、同定方法に関しての研究も様々な研究者によって行われている。本研究では、必要な誤差パラメータは全て同定済みであるとして、同定方法については取り扱わない。

図 3.6 幾何学的誤差を持つ CAYXZ 型 5 軸工作機械
ここで、形状創成関数のパラメータについて注目する。各構成要素の動きの量を表すq_iが式(3.46)に示すように工具パスでの位置tに関する関数として表現されるとき、各構成要素の運動を表す座標変換行列$A_i^i(q_i)$は式(3.47)に示すように工具パスでの位置tに関する関数となる。各誤差行列の、誤差を表すパラメータを、工具パスでの位置tに関する関数または定数としたとき、誤差を表す座標変換行列ε_iは式(3.48)に示すように工具パスでの位置tに関する関数となる。工具から工作物までの構成要素の誤差を表すパラメータを、工具パスでの位置tに関する関数または定数としたとき、誤差を表す座標変換行列は式(3.49)に示すように工具パスでの位置tに関する関数となる。よって、形状創成関数は、式(3.50)に示すように工具パスでの位置tに関する関数となる。この時、工作物座標系における位置ベクトルは式(3.51)となる。

$$q_i = q_i(t) \quad (3.46)$$
$$A_i^i(q_i) = A_i^i(q_i(t)) \quad (3.47)$$
$$\varepsilon_i = \varepsilon_i(t) \quad (3.48)$$
$$\varepsilon_i = \varepsilon_i(t) + \sum_{m=1}^{N}(\varepsilon_{i-1,m}(t)) = \varepsilon_i(t) \quad (3.49)$$
$$T_W = \left[\prod_{i=1}^{N} \left(A_i^i(q_i(t)) \right) + \sum_{i=1}^{N} \left\{ \prod_{k=0}^{i-1} \left(A_k^k(q_k(t)) \right) \varepsilon_i \prod_{i=1}^{N} \left(A_i^i(q_i(t)) \right) \right\} \right] \quad (3.50)$$
$$= \left[\prod_{i=1}^{N} \left(A_i^i(q_i(t)) \right) + \sum_{i=1}^{N} \left\{ \prod_{k=0}^{i-1} \left(A_k^k(q_k(t)) \right) \varepsilon_i(t) \prod_{i=1}^{N} \left(A_i^i(q_i(t)) \right) \right\} \right]$$
$$r_W = T_W(t)r_T = r_W(t) \quad (3.51)$$

3.5 工具掃引条件式の導出

3.5.1 工具掃引条件式導出の基本的な考え方

第2章で述べたように、工具掃引条件は、移動する工具表面上において、工具掃引体を形成する工具掃引形状上では、工具表面の法線ベクトルnと、工具表面上の速度ベクトルvが直交する、というものである。これより、次式に示す工具表面の法線ベクトルnと速度ベクトルvの直交関係を表す工具掃引条件式が得られる。
工具有条件式の成立する場所を解析的に導出することで、工具掃引形状が得られる。そこで、Lee らは、2 章にて述べたように、工具表面上への位置ベクトル \(r_{T} \) を工具軸方向ベクトル \(r_{a} \) と工具法線方向ベクトル \(m_{T} \) に分解し、工具座標系における工具有表面の法線ベクトル \(n_{T} \) と速度ベクトル \(v_{T} \) を用い、工具掃引条件式を立式することで、工具掃引条件式における速度ベクトル \(v_{T} \) を工具軸上に生じる速度ベクトル成分のみとした。これにより、工具掃引条件式が単純化し、解析的に解を導出可能とした。これ以降、対象とする工具形状に対し、3.3 にて述べたように、工具座標系原点に生じる式(3.23)の平行移動速度ベクトル \(\tau_{a} \)、式(3.24)の工具座標系原点を通る角速度ベクトル \(\omega_{T}(t) \) を用い、式(3.17)として定義される工具有面上の点 \(r_{T} \) に生じる速度ベクトル \(v_{T} \) を用い、工具掃引条件式を導出する。

3.5.2 フラットエンドミル側面を表す円柱形状の工具掃引条件式

3.2 において、円柱工具有表面上の位置ベクトル \(r_{T} \)、法線ベクトル \(n_{T} \) は、次に示す式(3.1), (3.2)とした。

\[
\begin{align*}
 r_{T}(l, \rho) &= \begin{bmatrix} R \cos \rho \\ R \sin \rho \\ -l \end{bmatrix} \\
 n_{T}(l, \rho) &= \begin{bmatrix} \cos \rho \\ \sin \rho \\ 0 \end{bmatrix}
\end{align*}
\]

式(3.1), (3.2)を用い、工具掃引条件式を導出すると、以下に示す式を得る。

\[
\begin{align*}
 n_{T}(t) \cdot v_{T}(t) &= \begin{bmatrix} \cos \rho \\ \sin \rho \\ 0 \end{bmatrix} \cdot \left(\begin{bmatrix} \tau_{\Sigma T}(t) \\ \tau_{\Sigma Y}(t) \\ \tau_{\Sigma Z}(t) \end{bmatrix} + \begin{bmatrix} \omega_{\Sigma X}(t) \\ \omega_{\Sigma Y}(t) \\ \omega_{\Sigma Z}(t) \end{bmatrix} \times \begin{bmatrix} R \cos \rho \\ R \sin \rho \\ -l \end{bmatrix} \right) \\
 &= (\tau_{\Sigma X}(t) + \omega_{\Sigma Y}(t)t) \cos \rho + (\tau_{\Sigma Y}(t) - \omega_{\Sigma X}(t)t) \sin \rho = 0
\end{align*}
\]

3.5.3 テーパエンドミル側面を表す円錐形状の工具掃引条件式

3.2 において、円錐工具有表面上の位置ベクトル \(r_{T} \)、法線ベクトル \(n_{T} \) は、次に示す式(3.3), (3.4)とした。
第3章 工具掃引条件に基づく工具掃引体導出の基本的な考え方

\[\mathbf{r}_T(l, \rho) = \begin{bmatrix} (-l \cdot f_1 + f_0) \cos \rho \\ (-l \cdot f_1 + f_0) \sin \rho \\ -l \end{bmatrix} \] (3.3)

\[\mathbf{n}_T(l, \rho) = \begin{bmatrix} u \cos \rho \\ u \sin \rho \\ w \end{bmatrix} \] (3.4)

なお、\(f_0, f_1, u, w \)は円錐工具の形状によって異なる。Upper taper については、式(3.5)，lower taper については、式(3.6)とした。

式(3.3), (3.4) を用い、工具掃引条件式を導出すると、以下に示す式を得る。

\[
\mathbf{n}_T \cdot \mathbf{v}_T = \begin{bmatrix} u \cos \rho \\ u \sin \rho \\ w \end{bmatrix} \cdot \begin{bmatrix} \tau_{\Sigma x}(t) \\ \tau_{\Sigma y}(t) \\ \tau_{\Sigma z}(t) \end{bmatrix} + \begin{bmatrix} \omega_{\Sigma x}(t) \\ \omega_{\Sigma y}(t) \\ \omega_{\Sigma z}(t) \end{bmatrix} \times \begin{bmatrix} (-l \cdot f_1 + f_0) \cos \rho \\ (-l \cdot f_1 + f_0) \sin \rho \\ -l \end{bmatrix} = 0
\] (3.5)

なお、\(1 - f_1 \cdot \frac{w}{u} \neq 0 \)である。

3.5.4 ラジアスエンドミルのコーナーラジアス側面を表すトーラス形状の工具掃引条件式

3.2 において、トーラス工具表面上の位置ベクトル\(\mathbf{r}_T \)，法線ベクトル\(\mathbf{n}_T \)は、次に示す式(3.7), (3.8)とした。

\[\mathbf{r}_T(\phi, \rho) = \begin{bmatrix} (E + R_{tc} \cos \phi) \cos \rho \\ (E + R_{tc} \cos \phi) \sin \rho \\ -(H + R_{tc} \cos \phi) \end{bmatrix} \] (3.7)

\[\mathbf{n}_T(\phi, \rho) = \begin{bmatrix} \cos \phi \cos \rho \\ \cos \phi \sin \rho \\ -\sin \phi \end{bmatrix} \] (3.8)

式(3.7), (3.8)を用い、工具掃引条件式を導出すると、以下に示す式を得る。
誤差を伴う多軸加工シミュレーションのための工具掃引体導出に関する研究

3.5.5 フラットエンドミル工具底面を表す平面の工具掃引条件式

3.2 において、工具底面の位置ベクトル \(\mathbf{r}_T \)、法線ベクトル \(\mathbf{n}_T \) は、次に示す式(3.9), (3.10) とした。

\[
\mathbf{r}_T(c_{ft}) = \begin{bmatrix}
c_{ft} \cos \rho \\
c_{ft} \sin \rho \\
-L
\end{bmatrix} \tag{3.9}
\]

\[
\mathbf{n}_T(c_{ft}) = \begin{bmatrix}
0 \\
0 \\
-1
\end{bmatrix} \tag{3.10}
\]

式(3.9), (3.10)を用い、工具掃引条件式を導出すると、以下に示す式を得る。

\[
\mathbf{n}_T(t) \cdot \mathbf{v}_T(t) = \begin{bmatrix}
0 \\
0 \\
-1
\end{bmatrix} \cdot \left(\begin{bmatrix}
\tau_{\Sigma x}(t) \\
\tau_{\Sigma y}(t) \\
\tau_{\Sigma z}(t)
\end{bmatrix} + \begin{bmatrix}
\omega_{\Sigma x}(t) \\
\omega_{\Sigma y}(t) \\
\omega_{\Sigma z}(t)
\end{bmatrix} \times \begin{bmatrix}
c_{ft} \cos \rho \\
c_{ft} \sin \rho \\
-L
\end{bmatrix} \right) \tag{3.56}
\]

\[
= c_{ft} \omega_{\Sigma y}(t) \cos \rho - c_{ft} \omega_{\Sigma x}(t) \sin \rho - \tau_{\Sigma z}(t) = 0
\]

3.6 本章の結論

本章で得られた結論は以下のとおりである。

• 対象とする工具形状を定義した。工具形状は、回転体として表現し、円柱、円錐、トゥラス、工具先端を表す平面を組み合わせ表現することとした。これにより、多軸加工に
第3章 工具掃引条件に基づく工具掃引体導出の基本的な考え方

第3章 工具掃引条件に基づく工具掃引体導出の基本的な考え方

で一般的な工具形状を表現可能となった。

● 工具運動を3次元の速度ベクトルと一般化表現した。なお、本論文では、工具運動を表す速度ベクトルを、工作機械の同次座標変換行列から導出する方法についてのべた。

● 工作機械の運動機構表現について、例として、形状創成理論に基づいた工作機械の同次座標変換行列の定義方法を紹介した。

● 工具への加工指令の定義方法について述べた。本論文では、工具中心の軌跡を、軌跡の各位置に対応する工具姿勢によって、加工指令を定義する。工作機械の各駆動軸の駆動量は、形状創成理論に基づき、算出することとした。

● Leeらの工具掃引条件式導出に関する考え方を拡張し、Wangらの工具掃引条件に基づき、対象とする工具形状の工具掃引条件式を導出した。
誤差を伴う多軸加工シミュレーションのための工具掃引体導出に関する研究

荒井 航
第4章 工具掃引条件式の解析的な解導出による
工具掃引形状導出

4.1 工具掃引条件式の解析的な解導出による工具掃引形状導出の概要

第3章にて、多軸加工で一般的な工具形状として、フラットエンドミル側面を表す円柱、テーパーエンドミル側面を表す円錐、ラジアスエンドミルにおけるコーナーラジアス側面を表すトーラス、フラットエンドミル底面を表す平面を対象に、時刻を変数としてもつ速度ベクトル\(v_T(t) \)を用い、工具掃引条件式を導出した。本章では、Wangらの工具掃引条件とLeeらの提案する工具掃引条件式の変形方法を基に、第3章で導出した対象とする工具形状の工具掃引条件式の解を解析的に導出し、導出された解より工具掃引形状を導出する。なお、求める工具掃引形状は、工具パス上のある位置・姿勢において工具表面上の工具掃引条件を満たす形状である。そのため、これ以降、変数として表現されてきた時刻\(t \)を、任意の時刻\(t_0 \)とし定数として扱うこととし、式中における時刻\(t \)の変数であることを表現する\((t) \)の記号について省略する。

本研究における、工具掃引形状導出手順と、各手順に対応する円錐と円の例を、図4.1に示す。はじめに、任意の時刻\(t_0 \)における工具掃引条件式から、解析的に工具掃引条件を満たす解を導出する。工具掃引条件式は、形状が円柱、円錐、トーラスの場合は、時刻を表す変数、工具高さに関連する変数（円柱、円錐）または\(\phi \)（コーナーラジアス）、工具軸周りの角度\(\rho \)の3変数、工具底面を表す面の場合は、時刻を表す変数、円の半径を表す\(c_N \)、工具軸周りの角度\(\rho \)の3変数で表現され、工具掃引形状の導出では、時刻\(t_0 \)が定数となるため、計2変数で式が表現される。これに対し、円柱、円錐、トーラスだと工具高さに関連する変数（円柱、円錐）または\(\phi \)（コーナーラジアス）、平面だと円の半径を表す\(c_N \)を基準に、工具掃引条件を成立させる工具軸周りの角度\(\rho \)の分布を求める。例えば、円錐形状の工具にて、工具高さのある範囲では工具掃引条件を満たす\(\rho \)が2つ存在し、別の範囲では工具掃引条件を満たす\(\rho \)が1つ存在し、その他の範囲では工具掃引条件を満たす\(\rho \)が存在しない。といった分布が得られる場合、円錐表面には下に凸の曲線が工具掃引形状となる。また、円において、工具半径のある範囲では工具掃引条件を満たす\(\rho \)が2つ存在し、別の範囲では工具掃引条件を満たす\(\rho \)が1つ存在し、その他の範囲では工具掃引条件を満たす\(\rho \)が存在しない、といった分布が得られる場合、直線が工具掃引形状として導出される。

工具形状と工具運動によって、解の分布が異なる。そのため、工具掃引条件式より、解析的に全ての解の分布を導出することで、対象とする工具の全ての工具掃引形状を得ることができる。
4.2 円柱工具の工具掃引形状導出

工具掃引条件式の変数は、工具高さ \(l \) と、工具軸周りの角度 \(\rho \) である。ここで、工具掃引条件式を変形する。

\[
A(l) \cos \rho + B(l) \sin \rho \\
= \sqrt{A(l)^2 + B(l)^2} \sin(\rho + \mu(l)) = 0
\] \hspace{1cm} (4.1)

\[
\begin{align*}
A(l) &= \tau_{\Sigma x} + \omega_{\Sigma y} l \\
B(l) &= \tau_{\Sigma y} - \omega_{\Sigma x} l \\
\mu(l) &= \tan^{-1} \frac{A(l)}{B(l)}
\end{align*}
\] \hspace{1cm} (4.2)

この式は、次の 3 つの条件で成立する。
第4章 工具掃引条件式の解析的な解導出による工具掃引形状導出

(1) $A(l), B(l)$が常に0となる場合
(2) 特定のlにおいて$A(l), B(l)$が0となる場合
(3) $A(l), B(l)$が同時に0とならない場合

これ以降，(1)～(3)の場合における解析的な解導出について述べる。

(1) $A(l), B(l)$が常に0となる場合

これは，速度ベクトルを表す成分が次を満たす場合，工具掃引条件式はどのようなlにおいても$A(l)^2 + B(l)^2 = 0$となる。

\[
\begin{bmatrix}
\tau_{\Sigma x} \\
\tau_{\Sigma y} \\
\tau_{\Sigma z} \\
\omega_{\Sigma x} \\
\omega_{\Sigma y} \\
\omega_{\Sigma z}
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
[arbitrary] \\
0 \\
0 \\
[arbitrary]
\end{bmatrix}
\] (4.3)

このとき工具掃引条件式は，変数l, ρの値に関わらず成立するため，図4.2(a)に示すように，工具側面全体が工具掃引条件を満たし，工具掃引面を生成する。（All region）この場合の工具運動例として，工具軸方向の並進移動や，工具軸周りの回転が挙げられる。

(2) 特定のlにおいて$A(l), B(l)$が0となる場合

これは，特定の$l = l_{arb}$において，$A(l) = 0$と$B(l) = 0$が同時に成立することでもある。

$A(l) = 0$が特定の$l = l_{arb}$にて成立する条件は

\[
\omega_{\Sigma y} \neq 0
\] (4.4)

である。このとき，lに関して次式を得る。

\[
l = -\frac{\tau_{\Sigma x}}{\omega_{\Sigma y}}
\] (4.5)

なお，式(4.4)が成立しない場合，特定のlにおいて$A(l)^2 + B(l)^2 = 0$となるには，$A(l)$が常に0であり，特定のlにて$B(l) = 0$が成立する必要がある。$A(l)$が常に0となる条件は

\[
\begin{cases}
\omega_{\Sigma y} = 0 \\
\tau_{\Sigma x} = 0
\end{cases}
\] (4.6)

である。

また同様に，$B(l) = 0$が特定$l = l_{arb}$にて成立する条件は

\[
\omega_{\Sigma x} \neq 0
\] (4.7)
誤差を伴う多軸加工シミュレーションのための工具掃引体導出に関する研究

荒井 航

である。このとき、\(l \)に関して次式を得る。

\[
\begin{align*}
l &= \frac{\tau_{\Sigma y}}{\omega_{\Sigma x}} \quad (4.8)
\end{align*}
\]

なお、式(4.7)が成立しない場合、特定の\(l \)において\(A(l) + B(l)^2 = 0 \)となるには、\(B(l) \)が常に0であり、特定の\(l \)にて\(A(l) = 0 \)が成立する必要がある。\(B(l) \)が常に0となる条件は

\[
\begin{align*}
\begin{cases}
\omega_{\Sigma x} = 0 \\
\tau_{\Sigma y} = 0
\end{cases} \quad (4.9)
\end{align*}
\]

である。これが同時に成立する必要があるため、速度ベクトルの制約は次の3つの組み合わせとなる。

\(A(l) \)と\(B(l) \)が特定の\(l = l_{\text{arb}} \)にて0となる場合、速度ベクトルの制約は

\[
\omega_{\Sigma x} \tau_{\Sigma x} + \omega_{\Sigma y} \tau_{\Sigma y} = 0 \quad (4.10)
\]

となる。これが成立するとき、\(l = l_{\text{arb}} \)は

\[
l_{\text{arb}} = -\frac{\tau_{\Sigma x}}{\omega_{\Sigma y}} \left(= \frac{\tau_{\Sigma y}}{\omega_{\Sigma x}} \right) \quad (4.11)
\]

である。

また、\(A(l) \)が常に0であり、\(B(l) \)が特定の\(l = l_{\text{arb}} \)にて0となる場合、速度ベクトルの制約は

\[
\begin{align*}
\begin{cases}
\omega_{\Sigma y} = 0 \\
\tau_{\Sigma x} = 0
\end{cases} \quad (4.12)
\end{align*}
\]

となる。これが成立するとき、\(l = l_{\text{arb}} \)は

\[
l_{\text{arb}} = -\frac{\tau_{\Sigma x}}{\omega_{\Sigma y}} \quad (4.13)
\]

である。

また、\(B(l) \)が常に0であり、\(A(l) \)が特定の\(l = l_{\text{arb}} \)にて0となる場合、速度ベクトルの制約は

\[
\begin{align*}
\begin{cases}
\omega_{\Sigma x} = 0 \\
\tau_{\Sigma y} = 0
\end{cases} \quad (4.14)
\end{align*}
\]

である。
第4章 工具掃引条件式の解析的な解導出による工具掃引形状導出

\[
\begin{align*}
\omega_{x} &= 0 \\
\tau_{xy} &= 0
\end{align*}
\] (4.14)

となる。これが成立するとき、\(l = l_{arb} \) は

\[
l_{arb} = -\frac{\tau_{xy}}{\omega_{x}}
\] (4.15)

である。上記のいずれかが成立する時、\(l = l_{arb} \) では、変数\(\rho \)の値にかかわらず工具掃引条件が成立するため、\(l = l_{arb} \) の工具断面を表す境界全体が工具掃引形状となる。また、上記のいずれかが成立する時、\(l \neq l_{arb} \) では \(A(l)^{2} + B(l)^{2} \neq 0 \) となる。このとき、工具掃引条件の解は

\[
\sin(\rho + \mu(l)) = 0
\] (4.16)

によって決まる。三角関数 \(\sin \) の解は、常に2つ存在する。そのため、\(l \neq l_{arb} \) の各工具断面には、工具掃引条件を満たす点が2つ存在する。以上より、工具掃引形状は、\(l_{arb} \) の値によって定まる。円柱形状の工具における\(l \)の範囲を \(l_{min} \leq l \leq l_{max} \) とする。

\(l_{arb} < l_{min} \) または \(l_{max} < l_{arb} \) であるとき、図4.2(b)に示すように、全ての工具断面上に存在する2つの工具掃引点を結び得られる2本の線が、工具掃引条件を満たし工具掃引形状となる。(Two curves)

\(l_{min} \leq l_{arb} \leq l_{max} \) であるとき、図4.2(c)に示すように、\(l = l_{arb} \) の工具断面を表す境界である円と、\(l \neq l_{arb} \) の工具断面上に存在する2つの工具掃引点を結び得られる2本の線が、工具掃引条件を満たし工具掃引形状となる。(Two curves and a circle) この場合の工具運動例として、工具軸と垂直に交わる軸周りの回転運動が挙げられる。

(3) \(A(l), B(l) \) が同時に0となる場合

前述の全ての条件を満たさない場合、全ての工具高さ \(l \) で \(A(l)^{2} + B(l)^{2} \neq 0 \) である。このとき、このとき、工具掃引条件の解は

\[
\sin(\rho + \mu(l)) = 0
\] (4.17)

によって決まる。三角関数 \(\sin \) の解は、常に2つ存在する。そのため、全ての工具断面には、工具掃引条件を満たす点が2つ存在する。これより、図4.2(b)に示すように、各工具高さの工具断面上に存在する2つの工具掃引点を結び得られる2本の線が、工具掃引形状となる。(Two curves)

以上より、円柱工具の工具掃引形状は、

- All region (図4.2(a))
- Two curves (図4.2(b))
- Two curves and a circle (図4.2(c))
4.3 円錐工具の工具掃引形状導出

工具掃引条件式の変数は、工具高さlと、工具軸周りの角度ρである。ここで、工具掃引条件式を変形する。

\[
A(l) \cos \rho + B(l) \sin \rho = \sqrt{A(l)^2 + B(l)^2} \sin(\rho + \mu(l)) + C(l) = 0
\]

(4.18)

\[
\begin{align*}
A(l) &= u \left(\tau_{x} - \omega_{x} f_0 \frac{u}{w} - \omega_{y} l \left(1 - f_1 \frac{w}{u} \right) \right) \\
B(l) &= u \left(\tau_{y} + \omega_{x} f_0 \frac{u}{w} + \omega_{y} l \left(1 - f_1 \frac{w}{u} \right) \right) \\
C(l) &= \omega \tau_{x} \\
\mu(l) &= \tan^{-1} \frac{A(l)}{B(l)}
\end{align*}
\]

(4.19)

この式は、次の3つの条件で成立する。
(1) $A(l), B(l)$が常に0となる場合
(2) 特定のlにおいて$A(l), B(l)$が0となる場合
(3) $A(l), B(l)$が同時に0とならない場合

これ以降、(1)〜(3)の場合における解析的な解導出について述べる。
第4章 工具掃引条件式の解析的な解導出による工具掃引形状導出

(1) $A(l)$, $B(l)$が常に0となる場合

これは、速度ベクトルを表す成分が次を満たす場合、工具掃引条件式はどのようなlにおいても$A(l)^2 + B(l)^2 = 0$となる。

\[
\begin{align*}
\tau_{\Sigma x} &= 0 \\
\tau_{\Sigma y} &= 0 \\
\omega_{\Sigma x} &= 0 \\
\omega_{\Sigma y} &= 0
\end{align*}
\]

このとき、工具掃引条件式は次式となる。

\[w \tau_{\Sigma z} = 0 \] (4.21)

\(\tau_{\Sigma x} = 0 \)であるとき、工具掃引条件は変数l, \(\rho \)の値に関わらず成立するため、図 4.3(a)に示すように、工具側面全体が工具掃引形状となり、工具掃引面を生成する。（All region）この場合の工具運動の例として、工具軸周りの回転が挙げられる。

\(\tau_{\Sigma x} \neq 0 \)であるとき、工具掃引条件は変数l, \(\rho \)の値に関わらず成立しない。そのため、図 4.3(b)に示すように、工具側面に工具掃引条件を満たす領域は存在しない。（Not swept）この場合の工具運動の例として、工具軸方向への並進移動が挙げられる。

図 4.3 円錐工具の工具掃引形状 ($A(l)$, $B(l)$が常に0となる場合)
(2) 特定のlにおいて$A(l)$, $B(l)$が0となる場合
これは, 特定の$l = l_{arb}$において, $A(l) = 0$と$B(l) = 0$が同時に成立することもある．
$A(l) = 0$が特定の$l = l_{arb}$にて成立する条件は

$$\omega_{\Sigma y} \neq 0$$

である．このとき, lに関して次式を得る．

$$l = -\frac{r_{\Sigma x}}{\omega_{\Sigma y}}$$

なお, 式(4.22)が成立しない場合, 特定のlにおいて$A(l)^2 + B(l)^2 = 0$となるには, $A(l)$が常に
0であり, 特定のlにて$B(l) = 0$が成立する必要がある．$A(l)$が常に0となる条件は

$$\{ \omega_{\Sigma y} = 0 \quad \tau_{\Sigma x} = 0 \}$$

である．
また同様に, $B(l) = 0$が特定$l = l_{arb}$にて成立する条件は

$$\omega_{\Sigma x} \neq 0$$

である．このとき, lに関して次式を得る．

$$l = \frac{r_{\Sigma y}}{\omega_{\Sigma x}}$$

なお, 式(4.25)が成立しない場合, 特定のlにおいて$A(l)^2 + B(l)^2 = 0$となるには, $B(l)$が常に
0であり, 特定のlにて$A(l) = 0$が成立する必要がある．$B(l)$が常に0となる条件は

$$\{ \omega_{\Sigma x} = 0 \quad \tau_{\Sigma y} = 0 \}$$

である．これが同時に成立する必要があるため, 速度ベクトルの制約は次の3つの組み合わせ
となる．
$A(l)$と$B(l)$が特定の$l = l_{arb}$にて0となる場合, 速度ベクトルの制約は

$$\omega_{\Sigma x} \tau_{\Sigma x} + \omega_{\Sigma y} \tau_{\Sigma y} = 0$$

である．
4章 工具掃引条件式の解析的な解導出による工具掃引形状導出

となる。これが成立するとき，\(l = l_{arb} \)は

\[
l_{arb} = -\frac{\tau_{\Sigma x}}{\omega_{\Sigma y}} \quad (4.29)
\]

である。

\(\omega_{\Sigma} \)が常に 0 であり，\(B(l) \)が特定の\(l = l_{arb} \)にて 0 となる場合，速度ベクトルの制約は

\[
\begin{cases}
\omega_{\Sigma y} = 0 \\
\tau_{\Sigma x} = 0
\end{cases}
\quad (4.30)
\]

となる。これが成立するとき，\(l = l_{arb} \)は

\[
l_{arb} = -\frac{\tau_{\Sigma x}}{\omega_{\Sigma y}}
\quad (4.31)
\]

である。

\(\omega_{\Sigma} \)が常に 0 であり，\(A(l) \)が特定の\(l = l_{arb} \)にて 0 となる場合，速度ベクトルの制約は

\[
\begin{cases}
\omega_{\Sigma x} = 0 \\
\tau_{\Sigma y} = 0
\end{cases}
\quad (4.32)
\]

となる。これが成立するとき，\(l = l_{arb} \)は

\[
l_{arb} = -\frac{\tau_{\Sigma y}}{\omega_{\Sigma x}}
\quad (4.33)
\]

である。上記のいずれかが成立する時，\(l = l_{arb} \)では工具掃引条件式は次のようになる。

\[
\omega \tau_{\Sigma x} = 0
\quad (4.34)
\]

工具掃引条件は，\(\tau_{\Sigma x} \)の値による。

\(\tau_{\Sigma x} = 0 \)であるとき，変数\(\rho \)の値にかかわらず工具掃引条件が成立するため，\(l = l_{arb} \)の工具断面を表す境界全体が工具掃引形状となる。また，\(l \neq l_{arb} \)では\(A(l)^2 + B(l)^2 \neq 0 \)となる。このとき，工具掃引条件の解は

\[
\sin(\rho + \mu(l)) = 0
\quad (4.35)
\]

によって決まる。三角関数\(\sin \)の解は，常に 2 つ存在する。そのため，\(l \neq l_{arb} \)の各工具断面には，工具掃引条件を満たす点が 2 つ存在する。以上より，工具掃引形状は，\(l_{arb} \)の値によって
定まる。円錐形状の工具におけるlの範囲を$l_{\text{min}} \leq l \leq l_{\text{max}}$とする。

$l_{\text{arb}} < l_{\text{min}}$又は$l_{\text{max}} < l_{\text{arb}}$であるとき、図4.4(a)に示すように、全ての工具断面に存在する2点の工具掃引点を結び得られる2本の線が、工具掃引条件を満たし工具掃引形状となる。（Two curves）

$l_{\text{min}} < l_{\text{arb}} < l_{\text{max}}$であるとき、図4.4(b)に示すように、$l = l_{\text{arb}}$の工具断面を表す境界である円と、$l \neq l_{\text{arb}}$の工具断面上の2点を結ぶ2本の線が、工具掃引条件を満たし工具掃引形状となる。（Two curves and a circle）この場合の工具運動の例として、工具軸と垂直に交わる軸回りの回転が挙げられる。

$a_{zz} \neq 0$であるとき、工具掃引形状分類のため、工具掃引条件式を変形し次式を得る。

\[
\sin(\rho + \mu(l)) = -\frac{C(l)}{\sqrt{A(l)^2 + B(l)^2}} = G(l)
\] (4.36)

ここで、$|\sin(\rho + \mu(l))| \leq 1$であるため、次式を得る。

\[
\left|\frac{C(l)}{\sqrt{A(l)^2 + B(l)^2}}\right| \leq 1
\] (4.37)

両辺を2乗し、次式を得る。

\[
A(l)^2 + B(l)^2 - C(l)^2 \geq 0
\] (4.38)

この式において、$A(l)^2 + B(l)^2 - C(l)^2$が0以上となるとき、工具掃引条件が満たされる。これに全ての値を代入し整理することで次式を得る。この式の解析は、次に述べる手順と同じであるため、まとめて記述する。

両辺を2乗し、次式を得る。

\[
A(l)^2 + B(l)^2 - C(l)^2 \geq 0
\] (4.38)

この式において、$A(l)^2 + B(l)^2 - C(l)^2$が0以上となるとき、工具掃引条件が満たされる。これに全ての値を代入し整理することで次式を得る。この式の解析は、次に述べる手順と同じであるため、まとめて記述する。

図4.4 円錐工具の工具掃引形状 (特定のlにおいてA(l), B(l)が0となる場合)
4章 工具掃引条件式の解析的な解導出による工具掃引形状導出

(3) A(l), B(l)が同時に0とならない場合

前述の全ての条件を満たさない場合、全ての工具高さlでA(l)^2 + B(l)^2 ≠ 0である。このとき、工具掃引条件式を次のように変形し、G(l)を定義する。

\[\sin(\rho + \mu(l)) = -\frac{C(l)}{\sqrt{A(l)^2 + B(l)^2}} = G(l) \] (4.39)

ここで、|\sin(\rho + \mu(l))| ≤ 1であるため、次式を得る。

\[\left| \frac{C(l)}{\sqrt{A(l)^2 + B(l)^2}} \right| ≤ 1 \] (4.40)

両辺を2乗し、次式を得る。

\[A(l)^2 + B(l)^2 - C(l)^2 ≥ 0 \] (4.41)

この式において、A(l)^2 + B(l)^2 - C(l)^2が0以上となるとき、工具掃引条件が満たされる。これに全ての値を代入し整理することで次式を得る。

\[d_2 l^2 + d_1 l + d_0 ≥ 0 \] (4.42)

\[
\begin{align*}
 d_2 &= (\omega_{\Sigma}^2 + \omega_{\Sigma y}^2)(u - f_1 w)^2, \\
 d_1 &= 2[-\omega_{\Sigma y}\tau_{\Sigma u} u + f_0 \omega_{\Sigma y}^2 w + \omega_{\Sigma x}(\tau_{\Sigma y} u + f_0 \omega_{\Sigma x} w)](u - f_1 w), \\
 d_0 &= \omega_{\Sigma x}^2 u^2 + \tau_{\Sigma y}^2 u^2 - 2f_0 \omega_{\Sigma x} \tau_{\Sigma y} u w + 2f_0 \omega_{\Sigma x} \tau_{\Sigma y} u w + f_0^2 (\omega_{\Sigma x}^2 + \omega_{\Sigma y}^2) - \tau_{\Sigma x}^2 w^2
\end{align*}
\] (4.43)

なお、u - f_1 w ≠ 0である。この式は、d_2の値によって、次に示す2つのパターン(d_2 = 0, d_2 ≠ 0)によって、変数lの次数が決まる。

◆ d_2 = 0 となる場合

式(4.42)にて、式(4.44)を満たす場合、d_2 = 0となる。また、同様にd_1 = 0となり、式(4.42)は式(4.45)となる。

\[\omega_{\Sigma x} = \omega_{\Sigma y} = 0 \] (4.44)

\[d_0 ≥ 0 \] (4.45)

よって、式(4.45)はd_0の値によって定まる。

d_0 > 0のとき、G(l) < 1となり、全ての工具断面に工具掃引条件を満たす点が2つ存在する。そのため、図4.5(a)に示すように、それらを結ぶ2本の線が工具掃引形状となる。(Two curves)

d_0 = 0のとき、G(l) = 1となり、全ての工具断面に工具掃引条件を満たす点が1つ存在する。
そのため、図4.5(b)に示すように、それらを結ぶ1本の線が工具掃引形状となる。(A straight line) この場合の工具運動の例として、工具形状の母線方向への並進移動が挙げられる。

$d_0 < 0$のとき、$G(l) > 1$となり、全ての工具断面に工具掃引条件を満たす領域が存在しない。そのため、図4.5(c)に示すように、工具表面上に工具掃引形状は存在しない。(Not swept)

◆ $d_2 \neq 0$となる場合

式(4.42)にて、$d_2 \neq 0$である場合、式(4.42)は変数lに関する2次不等式となる。この式では、不等式の値が0以上となるlの範囲に工具掃引形状が存在する。ここで、$d_2 \neq 0$であり、式(4.43)より$d_2 > 0$であるため、式(4.42)は下に凸の曲線となる。この曲線の解は、この曲線を表す2次方程式$d_2 l^2 + d_1 l + d_0 = 0$の判別式(4.46)の値によって判別できる。

$$K = d_2^2 - 4d_0d_2 \quad (4.46)$$

2次方程式の解は、$K < 0, K = 0, K > 0$の3状態で異なるため、以降、それぞれの場合における工具掃引形状を整理する。

(a) Two curves (b) A straight line (c) Not swept

図4.5 円錐工具の工具掃引形状 $(A(l), B(l)$が同時に0とならない場合、$d_2 = 0$)
第4章 工具掃引条件式の解析的な解導出による工具掃引形状導出

・K < 0 となる場合
このとき, $d_2 l^2 + d_1 l + d_0 = 0$ の解は存在せず, 変数 l によらず常に $d_2 l^2 + d_1 l + d_0 > 0$ である. このとき, 全ての工具断面に工具掃引条件を満たす点が 2 つ存在する. そのため, 図 4.6 に示すように, それらを結ぶ 2 本の線が工具掃引形状となる. (Two curves)

・K = 0 となる場合
このとき, $d_2 l^2 + d_1 l + d_0 = 0$ の解は 1 つ存在する. このとき, $d_2 l^2 + d_1 l + d_0 = 0$ の解 l_{ans} は次式となる.

$$l_{\text{ans}} = -\frac{d_1}{d_2}$$ (4.47)

ここで, $l = l_{\text{ans}}$ の工具断面に工具掃引条件を満たす点が 1 つ存在する. また, $l \neq l_{\text{ans}}$ の工具断面に工具掃引条件を満たす点が 2 つ存在する. 工具形状における工具長さ方向の範囲 $l_{\text{min}}, l_{\text{max}}, (l_{\text{min}} < l_{\text{max}})$ とする.

$l_{\text{min}} \leq l_{\text{ans}} \leq l_{\text{max}}$ である場合, 図 4.7(a) に示すように, 交差する 2 本の曲線が工具掃引形状となる. (Two crossing curves)

$l_{\text{ans}} < l_{\text{min}}$ または $l_{\text{max}} < l_{\text{ans}}$ である場合, 図 4.7(b) に示すように, 2 本の線が工具掃引形状となる. (Two curves)

・K > 0 となる場合
このとき, $d_2 l^2 + d_1 l + d_0 = 0$ の解は 2 つ存在する. このとき, $d_2 l^2 + d_1 l + d_0 = 0$ の解 $l_{\text{ans}1}, l_{\text{ans}2}, (l_{\text{ans}1} < l_{\text{ans}2})$ は次式となる.

$$l_{\text{ans}1}, l_{\text{ans}2} = \frac{-d_1 \pm \sqrt{d_1^2 - 4d_0d_2}}{2d_2}$$ (4.48)

ここで, 図 4.8 に示すように, $l = l_{\text{ans}1}, l_{\text{ans}2}$ の工具断面に工具掃引条件を満たす点が 1 つ存在し, $l < l_{\text{ans}1}, l_{\text{ans}2} < l$ の工具断面に工具掃引条件を満たす点が 2 つ存在する. また, $l_{\text{ans}1} < l < l_{\text{ans}2}$ の工具断面には工具掃引条件を満たす領域が存在しない. よって, 工具形状における工具長さ方向の範囲 $l_{\text{min}}, l_{\text{max}}, (l_{\text{min}} < l_{\text{max}})$ と, $l_{\text{ans}1}, l_{\text{ans}2}, (l_{\text{ans}1} < l_{\text{ans}2})$ の値によって, 工具掃引形状が定まる.
図 4.6 Two curves — 円錐工具の工具取り出し形状（$A(l)$, $B(l)$が同時に0とならない場合, $K < 0$）

図 4.7 円錐工具の工具取り出し形状（$A(l)$, $B(l)$が同時に0とならない場合, $K = 0$）
第 4 章 工具掃引条件式の解析的解導出による工具掃引形状導出

図 4.8 式(4.48)における解の存在範囲

$l_{\text{max}} < l_{\text{ans1}}$ または $l_{\text{ans2}} < l_{\text{min}}$ である場合、図 4.9 (a)に示すように、工具の範囲 $l_{\text{min}} \leq l \leq l_{\text{max}}$ の各工具断面に工具掃引条件を満たす点が 2 つ存在し、それらを結ぶ 2 本の曲線が工具掃引形状となる。（Two curves）

$l_{\text{min}} < l_{\text{an}}$ かつ $l_{\text{max}} > l_{\text{ans2}}$ である場合、図 4.9 (b)に示すように、工具の範囲 $l_{\text{min}} \leq l < l_{\text{ans1}}$ の各工具断面には工具掃引条件を満たす点が 2 つ存在し、$l = l_{\text{ans1}}$ の工具断面には工具掃引条件を満たす点が 1 つ存在する。また、$l_{\text{ans1}} < l \leq l_{\text{max}}$ の範囲の工具断面には工具掃引条件を満たす領域が存在しない。それらの点列を結ぶ 1 本の下に凸の曲線が工具掃引形状となる。（Concave downward curve）

$l_{\text{ans1}} < l_{\text{min}} < l_{\text{ans2}}$ かつ $l_{\text{ans2}} \leq l_{\text{max}}$ である場合、図 4.9 (c)に示すように、工具の範囲 $l_{\text{ans2}} < l \leq l_{\text{max}}$ の各工具断面には工具掃引条件を満たす点が 2 つ存在し、$l = l_{\text{ans2}}$ の工具断面には工具掃引条件を満たす点が 1 つ存在する。また、$l_{\text{min}} < l \leq l_{\text{an}}$ の範囲の工具断面には工具掃引条件を満たす領域が存在しない。それらの点列を結ぶ 1 本の上に凸の曲線が工具掃引形状となる。（Concave upward curve）

$l_{\text{min}} < l_{\text{ans1}}$ かつ $l_{\text{ans2}} < l_{\text{max}}$ である場合、図 4.9 (d)に示すように、工具の範囲 $l_{\text{min}} \leq l < l_{\text{ans1}}$ の各工具断面には工具掃引条件を満たす点が 2 つ存在し、$l = l_{\text{ans1}}$ の工具断面には工具掃引条件を満たす点が 1 つ存在する。また、$l_{\text{ans1}} < l \leq l_{\text{ans2}}$ の範囲の工具断面には工具掃引条件を満たす領域が存在しない。それらの点列を結ぶ 1 本の上に凸の曲線と、1 本の下に凸の曲線が工具掃引形状となる。（Concave upward and downward curves）
誤差を伴う多軸加工シミュレーションのための工具掃引体導出に関する研究　　荒井　航

$l_{ans1} < l_{min}$ かつ $l_{max} < l_{ans2}$ である場合、図 4.9 (e) に示すように、工具断面には工具掃引条件を満たす領域が存在しない。（Not swept）

以上より、円錐工具の工具掃引形状は図 4.10 に示すように、

- All region （図 4.10 (a))
- Two curves （図 4.10 (b))
- Two curves and a circle （図 4.10 (c))
- A straight line （図 4.10 (d))
- Two crossing curves （図 4.10 (e))
- Concave downward curve （図 4.10 (f))
- Concave upward curve （図 4.10 (g))
- Concave upward and downward curve （図 4.10 (h))
- Not swept （図 4.10 (i))

の計 9 つ存在する。

56
第4章 工具掃引条件式の解析的な解導出による工具掃引形状導出

図4.9 円錐工具の工具掃引形状 (A(I), B(I)が同時に0とならない場合, K < 0)
図4.10 円錐工具の工具掃引形状
第4章 工具掃引条件式の解析的な解導出による工具掃引形状導出

4.4 トーラス工具の工具掃引形状導出

工具掃引条件式の変数は、コーナーラジアス円弧方向の\(\phi \)と、工具軸周りの角度\(\rho \)である。ここで、工具掃引条件式を変形する。

\[
A(\phi) \cos \rho + B(\phi) \sin \rho = \sqrt{A(\phi)^2 + B(\phi)^2} \sin(\rho + \mu(\phi)) + C(\phi) = 0
\] (4.49)

\[
\begin{align*}
A(\phi) &= (\tau_{\Sigma x} - H\omega_{\Sigma y}) \cos \phi + E\omega_{\Sigma y} \sin \phi \\
B(\phi) &= (\tau_{\Sigma y} + H\omega_{\Sigma x}) \cos \phi - E\omega_{\Sigma x} \sin \phi \\
C(\phi) &= -E\tau_{\Sigma x} \sin \phi \\
\mu(\phi) &= \tan^{-1} \frac{A(\phi)}{B(\phi)}
\end{align*}
\] (4.50)

この式は、次の3つの条件で成立する。

(1) どのような\(\phi \)においても\(A(\phi)^2 + B(\phi)^2 = 0 \)の場合
(2) 特定の\(\phi \)において\(A(\phi)^2 + B(\phi)^2 = 0 \)となる場合
(3) どのような\(\phi \)においても\(A(\phi)^2 + B(\phi)^2 \neq 0 \)となる場合

これ以降、(1)～(3)の場合における解析的な解導出について述べる。

(1) どのような\(\phi \)においても\(A(\phi)^2 + B(\phi)^2 = 0 \)の場合

これは、速度ベクトルを表す成分が次を満たす場合、工具掃引条件式はどのようなる\(\phi \)においても\(A(\phi)^2 + B(\phi)^2 = 0 \)となる。

\[
\begin{align*}
\tau_{\Sigma x} &= 0 \\
\tau_{\Sigma y} &= 0 \\
\omega_{\Sigma x} &= 0 \\
\omega_{\Sigma y} &= 0
\end{align*}
\] (4.51)

このとき、工具掃引条件式は次式となる。

\[-E\tau_{\Sigma x} \sin \phi = 0 \] (4.52)

ここで、\(0 < \phi < \frac{\pi}{2} \)より、\(\sin \phi \neq 0 \)より、工具掃引条件式は\(\tau_{\Sigma x} \)の値による。

\(\tau_{\Sigma x} = 0 \)であるとき、工具掃引条件は変数\(\phi, \rho \)の値に関わらず成立するため、図 4.11(a)に示すように、工具側面全体が工具掃引形状となり、工具掃引面を生成する。（All region）この場合の工具運動の例として、工具軸周りの回転があげられる。

\(\tau_{\Sigma x} \neq 0 \)であるとき、工具掃引条件は変数\(\phi, \rho \)の値に関わらず成立しない。そのため、図 4.11
(b)に示すように、工具側面に工具掃引条件を満たす領域は存在しない。この場合の工具運動の例として、工具軸方向の並進移動が挙げられる。

図 4.11 トーラス工具の工具掃引形状 (A(l), B(l)が常に 0 となる場合)

(2) 特定のφにおいて \(A(\phi)^2 + B(\phi)^2 = 0\) となる場合
これは、特定の \(\phi = \phi_{arb}\) において、\(A(\phi) = 0\) と \(B(\phi) = 0\) が同時に成立することでもある。\(A(\phi) = 0\) が特定の \(\phi = \phi_{arb}\) にて成立する条件は

\[
(\tau_{\Sigma x} - H\omega_{\Sigma y}) \cos \phi_{arb} + E\omega_{\Sigma y} \sin \phi_{arb} = 0
\]

(4.53)

である。このとき、\(\phi\) に関して次式を得る。

\[
\tan \phi_{arb} = -\frac{\tau_{\Sigma x} - H\omega_{\Sigma y}}{E\omega_{\Sigma y}}
\]

(4.54)

また同様に、\(B(\phi) = 0\) が特定 \(\phi = \phi_{arb}\) にて成立する条件は

\[
\omega_{\Sigma x} \neq 0
\]

(4.55)

である。このとき、\(\phi\) に関して次式を得る。

\[
\tan \phi_{arb} = \frac{\tau_{\Sigma y} + H\omega_{\Sigma x}}{E\omega_{\Sigma x}}
\]

(4.56)

ここで、式(4.54), 式(4.55)の連立方程式より次式を得る。

\[
\omega_{\Sigma x} \tau_{\Sigma x} + \omega_{\Sigma y} \tau_{\Sigma y} = 0
\]

(4.57)
これが成立するとき，次式を満たす \(\phi_{\text{arb}} \) で，\(A(\phi)^2 + B(\phi)^2 = 0 \)となる。

\[
\tan \phi_{\text{arb}} = -\frac{\tau_{\Sigma x} - H\omega_{\Sigma y}}{E\omega_{\Sigma x}} = \frac{\tau_{\Sigma y} + H\omega_{\Sigma x}}{E\omega_{\Sigma x}}
\]

(4.58)

なお，\(\omega_{\Sigma x} \)と\(\omega_{\Sigma y} \)が同時に0となることはない. このとき，\(\phi = \phi_{\text{arb}} \)における工具掃引条件の解は

\[
-\tau_{\Sigma x}\sin\phi = 0
\]

(4.59)

によって決まる. \(0 < \phi < \frac{\pi}{2} \)の範囲では，\(\sin\phi \neq 0 \)のため，工具掃引条件式の解分布，\(\tau_{\Sigma x} \)の値によって決まる.

\(\tau_{\Sigma x} = 0 \)であるとき，\(\phi = \phi_{\text{arb}} \)の工具断面では，変数\(\rho \)の値にかかわらず工具掃引条件が成立するため，\(\phi = \phi_{\text{arb}} \)の工具断面を表す境界全体が工具掃引形状となる. また，\(\phi \neq \phi_{\text{arb}} \)では，\(A(\phi)^2 + B(\phi)^2 \neq 0 \)であり，各工具断面には工具掃引条件を満たす点が2つ存在する. ここで，工具形状における\(\phi \)の範囲を\(\phi_{\text{begin}} \leq \phi \leq \phi_{\text{end}} \)としたとき，工具掃引形状は，\(\phi_{\text{begin}}, \phi_{\text{end}}, \phi_{\text{arb}} \)の値によって決まる.

\(\phi_{\text{arb}} \leq \phi_{\text{begin}} \)または\(\phi_{\text{end}} < \phi_{\text{arb}} \)であるとき，図4.12(a)に示すように，工具断面上の2点を結ぶ2本の線が，工具掃引条件を満たし工具掃引形状となる. (Two curves)

\(\phi_{\text{begin}} \leq \phi_{\text{arb}} \leq \phi_{\text{end}} \)であるとき，図4.12(b)に示すように，\(\phi = \phi_{\text{arb}} \)の工具断面を表す境界である円と，\(\phi \neq \phi_{\text{arb}} \)の工具断面上の2点を結ぶ2本の線が，工具掃引条件を満たし工具掃引形状となる. (Two curves and a circle) この場合の工具運動の例として，工具軸と垂直に交わる軸回りの回転が挙げられる.

\(\tau_{\Sigma x} \neq 0 \)であるとき，工具掃引条件式を次のように変形する.

\[
\sin(\rho + \mu(\phi)) = -\frac{C(\phi)}{\sqrt{A(\phi)^2 + B(\phi)^2}}
\]

(4.60)

ここで，\(|\sin(\rho + \mu(\phi))| \leq 1 \)であるため，次式を得る.

\[
\left| \frac{C(\phi)}{\sqrt{A(\phi)^2 + B(\phi)^2}} \right| \leq 1
\]

(4.61)

両辺を2乗し，次式を得る.

\[
A(\phi)^2 + B(\phi)^2 - C(\phi)^2 \geq 0
\]

(4.62)
この式において，\(A(\phi)^2 + B(\phi)^2 - C(\phi)^2 \geq 0\) となるとき，工具掃引条件が満たされる。これに全ての値を代入し整理することで次式を得る。この式の解析は，次に述べる手順と同じであるため，まとめて記述する。

(3) \(A(\phi), B(\phi)\) が同時に 0 とならない場合

前述の全ての条件を満たさない場合，全ての \(\phi\) において，\(A(\phi), B(\phi)\) が同時に 0 とはならない。このとき，工具掃引条件式の解の分布は，\(0 < \phi < \frac{\pi}{2}\) の範囲では \(\sin \phi \neq 0\) であるため，\(\tau_{\Sigma z}\) の値によって異なる。

\(\tau_{\Sigma z} = 0\) であるとき，工具掃引条件式は次のようになる。

\[
\sqrt{A(\phi)^2 + B(\phi)^2 \sin(\rho + \mu(\phi))} = 0
\] \hspace{1cm} (4.63)

\(A(\phi)^2 + B(\phi)^2 \neq 0\) であるため，全ての \(\phi\) における工具切面に工具掃引条件を満たす点が 2 つ存在する。よって，図 4.13 に示すように，それらを結ぶ 2 本の線が工具掃引形状となる。（Two curves）
第4章 工具挿引条件式の解析的な解導出による工具挿引形態導出

\[
\tau_{\Sigma z} \neq 0
\]
であるとき，工具挿引形状を解析するため，工具挿引条件式を次のように変形する。

\[
\sin(\rho + \mu(\phi)) = -\frac{C(\phi)}{\sqrt{A(\phi)^2 + B(\phi)^2}} \quad (4.64)
\]

ここで，\(|\sin(\rho + \mu(\phi))| \leq 1\)であるため，次式を得る。

\[
\left| \frac{C(\phi)}{\sqrt{A(\phi)^2 + B(\phi)^2}} \right| \leq 1 \quad (4.65)
\]

両辺を2乗し，次式を得る。

\[
A(\phi)^2 + B(\phi)^2 - C(\phi)^2 \geq 0 \quad (4.66)
\]

この式における左辺を展開し，\(s = \tan\frac{\phi}{2}, 0 < s < 1\)の変数変換を行い，次式を得る。

\[
D_p(s) = (s^2 - G_a s - 1)^2 + \{-(G_a^2 - 4G_b)\} s^2 \quad (4.67)
\]

\[
\begin{align*}
G_a &= \frac{-2E\left[\omega_{\Sigma x}^2 + \omega_{\Sigma y}^2 + \omega_{\Sigma x} \tau_{\Sigma y} - \omega_{\Sigma y} \tau_{\Sigma x}\right]}{(\tau_{\Sigma y} + H \omega_{\Sigma x})^2 + (\tau_{\Sigma y} + H \omega_{\Sigma y})^2} \\
G_b &= \frac{-E^2(\omega_{\Sigma x}^2 + \omega_{\Sigma y}^2) - \tau_{\Sigma x}^2}{(\tau_{\Sigma y} + H \omega_{\Sigma x})^2 + (\tau_{\Sigma y} + H \omega_{\Sigma y})^2} \quad (4.68)
\end{align*}
\]

なお，変数\(s\)と\(\phi\)には，次に示す関係がある。

\[
\phi = \tan^{-1}\frac{\sin\phi}{\cos\phi} = \tan^{-1}\frac{2s}{1 - s^2} \quad (4.69)
\]

ある\(\phi\)の工具断面における工具挿引条件を満たす領域は，\(\phi\)を代入した\(D_p\)の値によって判別することができる。\(D_p(s) = 0\)であるとき工具挿引条件を満たす1つの点，\(D_p(s) > 0\)であるとき工具挿引条件を満たす2つの点が存在する。\(D_p(s) < 0\)であるとき工具挿引条件を満たす領域は存在しない。式(4.67)における第1項の\((s^2 - G_a s - 1)^2\)は常に0以上の値となるため，第2項の係数を\(G_{12} = -(G_a^2 - 4G_b)\)として定義するとき，\(G_{12} > 0, G_{12} = 0, G_{12} < 0\)の3つの場合で工具挿引条件を満たす解の分布が異なる。なお，前述の”特定の\(l\)において\(A(\phi)^2 + B(\phi)^2 = 0\)となる場合”において，”\(\tau_{\Sigma z} \neq 0\)であるとき”は，\(G_{12} < 0\)となる。
◆ $G_{12} > 0$であるとき
この場合、全てのϕにて常に$D_0(s) > 0$となる。そのため、全ての工具断面に工具掃引条件を満たす点が2つ存在する。以上より、図4.14に示すように、工具断面上の2点を結ぶ2本の線が、工具掃引条件を満たし工具掃引形状となる。（Two curves）

◆ $G_{12} = 0$であるとき
この場合、第1項$(s^2 - G_a s - 1)^2$における、$s^2 - G_a s - 1 = 0$の解$s = s_{one}$では、$D_0(s) = 0$となり、工具断面には工具掃引条件を満たす点が1つ存在する。また、それ以外のsでは、$D_0(s) > 0$となり、工具断面には工具掃引条件を満たす点が2つ存在する。ここで、工具形状におけるϕの範囲を$\phi_{begin} \leq \phi \leq \phi_{end}$としたとき、工具掃引形状は$\phi_{one}$と$\phi_{begin}$、$\phi_{end}$の値による。

$\phi_{one} < \phi_{begin}$または$\phi_{end} < \phi_{one}$であるとき、全ての工具断面には工具掃引条件を満たす点が2つ存在する。このとき、図4.15(a)に示すように、それらの点列を結ぶ2本の曲線が工具掃引形状となる。（Two curves）

$\phi_{begin} < \phi_{one} < \phi_{end}$であるとき、$\phi = \phi_{one}$工具断面には工具掃引条件を満たす点が1つ、それ以外の工具断面には工具掃引条件を満たす点が2つ存在する。このとき、図4.15(b)に示すように、それらの点列を結ぶ交差する2本の曲線が工具掃引形状となる。（Two crossing curves）

$\phi_{begin} = \phi_{one}$かつ$\phi_{one} < \phi_{end}$であるとき、$\phi = \phi_{one}$工具断面には工具掃引条件を満たす点が1つ、それ以外の工具断面には工具掃引条件を満たす点が2つ存在する。このとき、図4.15(c)に示すように、それらの点列を結ぶ上に凸の曲線が工具掃引形状となる。（Concave upward curve）

$\phi_{begin} < \phi_{one}$かつ$\phi_{one} = \phi_{end}$であるとき、$\phi = \phi_{one}$工具断面には工具掃引条件を満たす点が1つ、それ以外の工具断面には工具掃引条件を満たす点が2つ存在する。このとき、図4.15(d)に示すように、それらの点列を結ぶ下に凸の曲線が工具掃引形状となる。（Concave downward curve）

図4.14 Two curves – トーラス工具の工具掃引形状 (A(ф), B(ф)が同時に0とならない場合, $G_{12} > 0$)
第4章 工具掃引条件式の解析的な解導出による工具掃引形状導出

図4.15 トーラス工具の工具掃引形状 (A(ϕ), B(ϕ) が同時に 0 とならない場合, G_{12} = 0)

◆ G_{12} < 0 であるとき
この場合, 式(4.67)を2次式D₁(s), D₂(s)の積として, 次式のように表現する。

\[
D_p(s) = D_1(s) \cdot D_2(s) \\
= \left\{ (s^2 - G_a s - 1) + \sqrt{G_a^2 - 4G_p s} \right\} \left\{ (s^2 - G_a s - 1) - \sqrt{G_a^2 - 4G_p s} \right\}
\]

(4.70)

なお, D₁(s), D₂(s)は下に凸であり, 0 < s < 1においてD₁(s) < D₂(s)である. またどちらも s = 0 にて値が−1となるため, D₁(s) = 0, D₂(s) = 0の解はs < 0とs > 0の領域にそれぞれ1つずつ存在する. ここで, s > 0におけるD₁(s) = 0の解をs_{ans1}, D₂(s) = 0の解をs_{ans2}とする. また, s_{ans1}, s_{ans2}を式(4.69)へ代入したときの値を, ϕ_{ans1}, ϕ_{ans2}とする. ϕ, s, D₁(s), D₂(s), D_p(s)と工具掃引点の関係を表4.1に示す.
表 4.1 φの範囲$0 < φ < \frac{\pi}{2}$での各工具断面における工具掃引条件を満たす点数

<table>
<thead>
<tr>
<th>$φ$</th>
<th>s</th>
<th>s_{ans1}</th>
<th>s_{ans2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_1(s)$</td>
<td>-1</td>
<td>< 0</td>
<td>$= 0$</td>
</tr>
<tr>
<td>$D_2(s)$</td>
<td>-1</td>
<td>< 0</td>
<td>< 0</td>
</tr>
<tr>
<td>$D_3(s)$</td>
<td>1</td>
<td>> 0</td>
<td>$= 0$</td>
</tr>
</tbody>
</table>

Number of point satisfies tangency condition

2 2 1 0 1 2

$D_1(s)$は$s = s_{ans1}$を境に，$D_2(s)$は$s = s_{ans2}$を境に，値が負から正となる。これらより，$0 \leq s < s_{ans1}$にて$D_1(s) > 0$, $s = s_{ans1}$にて$D_1(s) = 0$, $s_{ans1} < s < s_{ans2}$にて$D_1(s) < 0$, $s = s_{ans2}$にて$D_1(s) = 0$, $s > s_{ans2}$にて$D_1(s) > 0$となる。よって，工具断面における工具掃引点の数は，sの増加に伴い，2, 1, 0, 1, 2の順に変化する。以上より，工具掃引条件は，ϕ_{begin}，ϕ_{ans1}，ϕ_{ans2}の大小関係で定まる。

$\phi_{end} < \phi_{ans1}$または$\phi_{begin} > \phi_{ans2}$であるとき，$\phi_{begin} \leq \phi \leq \phi_{end}$では$D_2(s) > 0$となり，全ての工具断面に2点の工具掃引点が存在する。これより，図4.16(a)に示すように，それらの工具掃引点をつなぐ2本の曲線が工具掃引線となる。（Two curves）

$\phi_{begin} \leq \phi_{ans1}$かつ$\phi_{ans2} \leq \phi_{end}$であるとき，$\phi_{begin} < \phi < \phi_{ans1}$，$\phi_{ans1} < \phi < \phi_{ans2}$，$\phi < \phi_{end}$では$D_3(s) > 0$となりため工具断面上に2点の工具掃引点が存在し，$\phi = \phi_{ans1}$，$\phi_{ans2}$では$D_3(s) = 0$となるため工具断面上に1点の工具掃引点が存在する。また，$\phi_{ans1} < \phi < \phi_{ans2}$では$D_3(s) < 0$となるため掃引されない。これより，図4.16(b)に示すように，上下に2点の曲線が工具掃引線となる。（Concave upward and downward curves）

$\phi_{begin} \leq \phi_{ans1}$かつ$\phi_{end} < \phi_{ans2}$であるとき，$\phi_{begin} < \phi < \phi_{ans1}$では$D_3(s) > 0$となるため工具断面上に2点の工具掃引点が存在し，$\phi = \phi_{ans1}$では$D_3(s_{ans1}) = 0$となるため工具断面上に1点の工具掃引点が存在する。また，$\phi_{ans1} < \phi \leq \phi_{end}$では$D_3(s) < 0$となり掃引されない。これより，図4.16(c)に示すように，下に凸の曲線が工具掃引線となる。（Concave downward curve）

$\phi_{ans1} < \phi_{begin}$かつ$\phi_{end} < \phi_{ans2}$であるとき，$\phi_{ans1} < \phi < \phi_{end}$では$D_3(s) < 0$となるため工具断面上に2点の工具掃引点が存在し，$\phi = \phi_{ans2}$では$D_3(s_{ans2}) = 0$となるため工具断面上に1点の工具掃引点が存在する。また，$\phi_{begin} \leq \phi < \phi_{ans2}$では$D_3(s) < 0$となり掃引されない。これより，図4.16(d)に示すように，上に凸の曲線が工具掃引線となる。（Concave upward curve）

$\phi_{ans1} < \phi_{begin}$かつ$\phi_{end} < \phi_{ans2}$であるとき，$\phi_{begin} \leq \phi < \phi_{end}$では$D_3(s) < 0$となる。これより，図4.16(e)に示すように，工具断面には工具掃引条件を満たす領域が存在しない。（Not swept）
第4章 工具掃引条件式の解析的解導出による工具掃引形状導出

図4.16 トーラス工具の工具掃引形状（A(φ), B(φ)が同時に0とならない場合, G_{12} < 0）
以上より、トーラス工具の工具掃引形状は図4.17に示すように、

- All region（図4.17(a)）
- Two curves（図4.17(b)）
- Two curves and a circle（図4.17(c)）
- Two crossing curves（図4.17(d)）
- Concave upward curve（図4.17(e)）
- Concave downward curve（図4.17(f)）
- Concave upward and downward curve（図4.17(g)）
- Not swept（図4.17(h)）

の計8つ存在する

図4.17 トーラス工具の工具掃引形状
第4章 工具掃引条件式の解析的な解導出による工具掃引形状導出

4.5 工具底面の工具掃引形状導出

工具掃引条件式の変数は、工具底面半径を表すc_fと、工具軸周りの角度$
ho$である。この式は、次の3つの条件で成立する。

(1) どのようなc_fにおいても$\cos \rho, \sin \rho$の係数が常に0となる場合
(2) どのようなc_fにおいても$\cos \rho, \sin \rho$の係数が同時に0とはならない場合

これ以降、(1), (2)の場合における解析的な導出について述べる。

(1) どのようなc_fにおいても$\cos \rho, \sin \rho$の係数が常に0となる場合

これは、速度ベクトルを表す成分が次を満たす場合、工具掃引条件式においてどのようなc_fにおいても$\cos \rho, \sin \rho$の係数が常に0となる。

\[
\begin{align*}
\omega_{\Sigma x} &= 0 \\
\omega_{\Sigma y} &= 0
\end{align*}
\] \tag{4.71}

このとき、工具掃引条件式は次式となる。

\[
-\tau_{\Sigma z} = 0
\] \tag{4.72}

ここで、工具掃引条件式は$\tau_{\Sigma z}$の値による。

$\tau_{\Sigma z} = 0$であるとき、変数c_fによらず工具底面全ての位置で工具掃引条件が成立する。このとき、図4.18(a)に示すように、工具底面全体が工具掃引形状となり、工具掃引面を生成する。工具掃引条件式は工具軸周りの角度$
ho$の値によって工具底面全ての位置で工具掃引条件が成立する。そのため、図4.18(a)に示すように、工具底面に工具掃引条件を満たす領域は存在しない。（Not swept）この場合の工具運動の例として、工具軸方向の並進移動が挙げられる。

(2) どのようなc_fにおいても$\cos \rho, \sin \rho$の係数が同時に0とはならない場合

これは、速度ベクトルを表す成分が式(4.71)を満たさない場合に起る。このとき、次式的変数変換を行い、式(4.74)を得る。

\[
\begin{align*}
x &= c_f \cos \rho \\
y &= c_f \sin \rho \\
z &= -L
\end{align*}
\] \tag{4.73}

\[
x\omega_{\Sigma y} - y\omega_{\Sigma x} - \tau_{\Sigma z} = 0
\] \tag{4.74}

式(4.74)は、$x - y$平面で定義される工具底面にて工具掃引条件を満たす領域を表す。工具底面の境界線は、工具底面の半径Eの円によって定義される。そのため、工具掃引条件式(4.74)で表される直線と工具中心点の距離dの値によって、工具掃引形状が決まる。距離dは式で求めら
誤差を伴う多軸加工シミュレーションのための工具掃引体導出に関する研究

荒井 航

\[
d = \frac{|\tau_{\Sigma x}|}{\sqrt{\omega_{\Sigma x}^2 + \omega_{\Sigma y}^2}} \quad (4.75)
\]

\(d > E \)であるとき，図 4.18(b)に示すように，工具底面上に工具掃引形状は存在しない．（Not swept）

\(d \leq E \)であるとき，図 4.18(c)に示すように，工具底面上の直線が工具掃引形状となり，工具掃引面を生成する．（A straight line）

以上より，工具底面の工具掃引形状は

- All region （図 4.18(a)
- Not swept （図 4.18(b)
- A straight line （図 4.18(c)

の計 3 つ存在する．

図 4.18 工具底面の工具掃引形状

(a) All region (b) Not swept (c) A straight line
第4章 工具掃引条件式の解析的な解導出による工具掃引形状導出

4.6 不連続領域の工具掃引形状導出

工具表面にて、工具表面の法線ベクトルが不連続となる面の接続領域を、不連続領域とする。この不連続領域を、微小円弧として考える。これにより、トーラス工具の解析結果を利用することができる。

トーラス工具の工具掃引形状は、次の9つである。
- All region
- Two curves
- Two curves and a circle
- Two crossing curves
- Concave upward curve
- Concave downward curve
- Concave upward and downward curve
- Not swept

これらの形状が、微小円弧に集約されるとすると、それぞれは
- All region → All region (工具断面を表す円)
- Two curves → Two areas (工具断面を表す境界円上の2つの領域)
- Two curves and a circle → All region (工具断面を表す円)
- Two crossing curves → One area (工具断面を表す境界円上の1つの領域)
- Concave upward curve → One area (工具断面を表す境界円上の1つの領域)
- Concave downward curve → One area (工具断面を表す境界円上の1つの領域)
- Concave upward and downward curve → One area (工具断面を表す境界円上の1つの領域)

または Two areas (工具断面を表す境界円上の2つの領域)
- Not swept → Not swept

となる。

以上より、不連続領域の工具掃引形状は、図4.19に示すように、
- All region (図4.19 (a))
- One area (図4.19 (b))
- Two areas (図4.19 (c))
- Not swept (図4.19 (d))

の計4つ存在する。

71
4.7 本章の結論

本章で得られた結論は以下のとおりである。

- 工具形状として、円柱、円錐、テーパ、工具先端を表す平面、法線ベクトルの不連続な面同士の接続領域を対象に、導出された工具掃引条件式を解析的に解き、得られた解に基づき工具掃引形状を明らかにした。
- 円柱形状の工具は3種類の工具掃引形状が存在することを明らかにした。
- 円錐形状の工具は9種類の工具掃引形状が存在することを明らかにした。
- テーパ形状の工具は8種類の工具掃引形状が存在することを明らかにした。
- 工具先端を表す平面は3種類の工具掃引形状が存在することを明らかにした。
- 法線ベクトルの不連続な面同士の接続領域は4種類の工具掃引形状が存在することを明らかにした。
第5章 工具の自己交差運動を含む多軸加工に対応した工具掃引体の算出

5.1 要求精度を満たす工具掃引体算出の概要

本章では、工具掃引形状に合わせた工具掃引体算出方法について述べる。

工具掃引体は、2章で述べたように、工具パスの初期位置・終了位置における工具表面と、工具掃引によって生成される工具掃引面から構成される。加工面に生じる微小な加工誤差までを正確に表現するには、工具掃引体表面はパラメトリックに表現されることが望ましい。しかし、パラメトリックに表現された工具掃引面、工具パスの初期位置・終了位置における工具表面は、互いに交差する場合があり、それらの面から、パラメトリックに表現された工具掃引体の最外面を算出することは困難である。そこで本研究では、工具掃引体表面上の点を算出し、それらの点を用い三角形メッシュとして工具掃引体を算出する。また、算出される工具掃引体は、工具掃引形状に要求される近似精度を満たすよう工具掃引体を算出する必要がある。以上より、図5.1に示す手順によって、工具掃引体を導出する。

はじめに、工具運動、工具形状より、工具掃引形状を判別する。次に、工具運動、工具形状を用い、工具掃引体に対し要求される近似精度を満たす工具掃引面を、判別された工具掃引形状に対し適切な方法で算出する。また、工具パスの初期位置・終了位置における工具表面を、要求される近似精度を満たすよう算出する。その後、算出した工具掃引面と、工具パス初期位置・終了位置における工具表面を接続し、工具掃引体を算出する。この手順により、要求近似精度を満たす工具掃引体を得る。

工具掃引体は、工具掃引形状によって適切な構築方法が異なる。また、工具掃引形状は、工具パスによって対応が異なる。そこで本章では初めに、本論文で対象とする工具パスと工具掃引形状について述べる。その後、形状に対し要求される近似精度を満たす工具掃引形状、工具掃引面、工具パスの初期位置・終了位置における工具形状の算出方法について述べる。最後に、導出される各面を用いた工具掃引体導出方法について述べる。
図5.1 提案する工具掃引体導出方法

5.2 本論文で対象とする工具パスと工具掃引形状
本研究では、工具掃引形状に対し適切な方法で工具掃引体を生成する。第4章により、一般的な工具形状である円柱、円錐、トーラス、工具先端の平面、また、法線ベクトルの不連続な面の接続領域の工具掃引形状を明らかにした。合計すると、次の工具掃引形状が存在することが明らかになった。

- All region (円柱、円錐、トーラス、平面、不連続領域)
- Two curves (円柱、円錐、トーラス、不連続領域)
- Two curves and a circle (円柱、円錐、トーラス)
- A straight line (円錐、平面)
- Two crossing curves (円錐、トーラス)
- Concave upward curve (円錐、トーラス)
- Concave downward curve (円錐、トーラス)
- Concave upward and downward curves (円錐、トーラス)
- One curve (不連続領域)
- Not swept (円錐、トーラス、平面、不連続領域)
第5章 工具の自己交差運動を含む多軸加工に対応した工具掃引体の算出

それぞれに対し, 適切な工具掃引体導出方法が必要である。

工具掃引形状は, 工具パスによって対応するものが異なる。工具掃引形状と工具パスの関係は, 図5.2に示すように, 一つの工具パスにて, 工具掃引形状が変化するものと, 変化しないものの, 2つがある。

■ 一つの工具パスで工具掃引形状が変化する場合
この場合, 例えば, 図5.2 (a)に示すように, 工具掃引形状がtwo curvesで始まり, 途中でtwo crossing curvesとなり, また, two curvesとなる工具パスが挙げられる。このとき, 工具掃引形状が変化する位置で工具パスを分割し, それぞれの工具掃引形状で工具掃引体を生成する。これに該当する工具掃引形状を次に挙げる:
- Two crossing curves

■ 一つの工具パスで工具掃引形状が変化しない場合
この場合, 例えば図5.2 (b)に示すように, 一つの工具パスにおいて工具掃引形状がTwo curvesの状態であり続ける。このとき, このパス全体で一つの工具掃引体を生成する。該当する工具掃引形状は, 図5.3に示すように, 工具掃引形状が交差しない複数の曲線となる場合, 交差する複数の曲線となる場合, 面となる場合, の3つの場合が挙げられる。
- 工具掃引形状が交差しない複数の曲線となる
 - Two curves
 - Concave upward curve
 - Concave downward curve
 - Concave upward and downward curves
 - A straight line
 - One curve

- 工具掃引形状が交差する複数の曲線となる
 - Two curves and a circle

- 工具掃引形状が面となる
 - All region

本論文ではこれ以降, 工具掃引形状が変化しない工具パスを対象とし, 工具掃引形状が“互いに交差しない複数の曲線”となる場合の工具掃引体導出方法を提案する。その他については, 今後の課題である。
（a）一つの工具パスで工具掃引形状が変化

（b）一つの工具パスで工具掃引形状が一定

図 5.2 工具パスと工具掃引形状の変化の関係

互いに交差しない曲線

• A straight line
• Two curves
• Concave downward curve
• Concave upward curve
• Concave upward and downward curve

交差する曲線

Two curves and a circle

面

Surface

図 5.3 工具パスに対応する工具掃引形状
第5章 工具の自己交差運動を含む多軸加工に対応した工具掃引体の算出

5.3 要求精度を満たす工具掃引面の生成

5.3.1 要求精度を満たす工具掃引面生成の概要

本研究で提案する工具掃引面生成手順を、図5.4に示す。はじめに工具パスを分割し、工具
掃引形状算出位置を決定する。次に、決定した各位置で要求近似精度を満たす工具掃引形状を
算出する。その後、それらの工具掃引形状を用い工具掃引面を構築する。この際、要求近似精
度を満たすよう、必要に応じ新しく工具掃引形状を追加する。これ以降、それぞれの手順につ
いて述べる

図5.4 工具掃引面算出手順
5.3.2 要求近似精度を満たす工具掃引形状の生成

要求近似精度を満たす工具掃引形状は，工具掃引形状の分類別に算出する．これ以降，それぞれのグループにおける工具掃引形状算出について述べる．

■ 工具掃引形状が交差しない複数の曲線となる場合
この場合，工具掃引形状を複数の頂点で表現する．図 5.5に示す手順によって必要な頂点を算出し，工具掃引形状頂点リストへ追加する．これ以降，それぞれの手順について述べる．

1：処理する工具掃引形状を決定し，必要に応じ領域を分割する
工具掃引形状が“concave upward curve”，“concave downward curve”，の場合，工具掃引形状において最も高い点，または，低い点を用い，図 5.6(a)に示すように，工具掃引形状を2つに分割する．なお，“concave upward and downward curves”の場合，それぞれの領域を2つに分割するため，計4領域を処理する．工具掃引形状が上記以外の場合，図 5.6(b)に示すように，そのまま領域を処理する．

2：対象の工具掃引形状における端点を定義し，工具掃引形状頂点リストへ追加する
工具掃引形状頂点リストへは，一方の端点から，もう一方の端点へ向かうよう頂点を格納する．例えば，工具掃引形状が上に凸の曲線である場合，図 5.7に示すように，最も高い点を基準に分割した領域が処理の対象となり，工具掃引形状頂点リストは，端点のうち一つと，最も高い点の2つである．

Step 1:
- 工具掃引形状の端点を算出
- 上・下に凸の形状である場合
 形状を2つに分割

Step 2:
点P₁と点P₁⁺の間の点P_{middle}を
算出

Step 3:
P_{middle}と，P₁とP₁⁺を結ぶ直線の距離Dを求める

Step 4:
Step 2からStep 3を繰り返し，要求近似精度を満たす工具掃引形状を算出

Step 5:
Step 1からStep 4までを繰り返し，要求近似精度を満たす工具掃引形状をすべて算出

図 5.5 工具掃引形状算出手順
第5章 工具の自己交差運動を含む多軸加工に対応した工具掃引体の算出

図5.6 工具掃引形状の分割

図5.7 工具掃引形状における端点の定義

3: 工具掃引形状頂点リストの先頭に注目する
注目する頂点番号をiとする時、注目する頂点をP_iとする。

4: 注目している点と、それに隣接する点の近似誤差を求める
注目点がP_iである場合、隣接する頂点をP_{i+1}とする。
4-1: 図5.8(a)に示すように、P_iとP_{i+1}で直線$L_{i,i+1}$を定義する
4-2: 図5.8(b)に示すように、P_iとP_{i+1}の中間の点P_mを定義する
4-3: 図5.8(c)に示すように、$L_{i,i+1}$とP_mの距離を算出する

図5.9 に示すように、直線$L_{i,i+1}$の長さを$|L_{i,i+1}|$とし、P_iからP_{i+1}へのベクトルを
$\vec{P_iP_{i+1}}$とする。また、P_iとP_mを結ぶ直線$L_{i,m}$の長さを$|L_{i,m}|$とし、P_iからP_mへのベクトルを
$\vec{P_iP_m}$とする。これらを用いることで、直線$L_{i,i+1}$とP_mの最短距離D
は次の式で求められる。

79
誤差を伴う多軸加工シミュレーションのための工具掃引体導出に関する研究　荒井 航

\[D = \frac{[\vec{P}_i \vec{P}_{i+1} \times \vec{P}_i \vec{P}_m]}{L_{i,i+1}} \] 　(5.1)

デッドのベクトル \(\vec{P}_i \vec{P}_{i+1} \times \vec{P}_i \vec{P}_m \) は、ベクトル \(\vec{P}_i \vec{P}_{i+1}, \vec{P}_i \vec{P}_m \) による平行四辺形の面積を表す。平行四辺形の面積は底辺×高さで求めることができるため、\([\vec{P}_i \vec{P}_{i+1} \times \vec{P}_i \vec{P}_m] \) を底辺に値する \(L_{i,i+1} \) で割ることで、\(L_{i,i+1} \) と \(\vec{P}_m \) 最短距離に値する平行四辺形の高さが求められる。

5: 算出した距離を評価する
要求精度を満たさない場合、工具掃引形状頂点リストにおける \(\vec{P}_i \) と \(\vec{P}_{i+1} \) の間に \(\vec{P}_m \) を挿入する。
要求精度を満たす場合、注目する頂点番号を一つインクリメントする。

6: 次のステップで注目する頂点番号について評価する
次のステップで注目する頂点番号が、工具掃引形状頂点リストの最終点でない場合、ステップ 4 へ。
次のステップで注目する頂点番号が、工具掃引形状頂点リストの最終点であるとき、ステップ 7 へ。

7: 未処理の工具掃引形状が存在するか確認する
未処理の工具掃引形状が存在しない場合、ステップ 8 へ。
未処理の工具掃引形状が存在する場合、ステップ 2 へ戻り、引き続き、残りの工具掃引形状を処理する。例えば、図 5.10 に示すように、工具掃引形状が上に凸である場合、工具掃引形状上の最も高い点を基準に 2 つの領域に分割している。工具掃引形状の片側を処理し終わったら、もう片方の工具掃引形状を処理する。

8: 算出した全ての工具掃引形状を接続
1 つの工具掃引形状を分割して算出する場合、分割に利用した頂点を基に複数の形状を接続することで、工具掃引形状を算出する。例えば、図 5.11 に示すように工具掃引形状が“concave upward curve”であるとき、分割にはその領域で最も高さの高い点が用いられる。分割した 2 領域に必要な頂点を算出した後、最も高さの高い点を基準に 2 領域を接続し、1 つの工具掃引形状を得る。必要な整理が終了したら、要求近似精度を満たした工具掃引形状が得られる。

工具掃引形状が分割されていない場合、要求近似精度を満たした工具掃引形状が得られたため、処理を終了する。

80
第5章 工具の自己交差運動を含む多軸加工に対応した工具掃引体の算出

(a) 直線$L_{i,i+1}$の定義 (b) P_iとP_{i+1}の中間点P_mの定義 (c) $L_{i,i+1}$とP_mの距離の計算

図5.8 要求形状近似精度を満たすための工具掃引形状を表す点の算出

図5.9 P_iとP_{i+1}を結ぶ直線$L_{i,i+1}$とP_iとP_{i+1}の中間点P_mの距離Dの算出

次のステップで処理される
工具掃引形状の一部

すでに処理された
工 具 掃 引 形 状 の 一 部

Concave upward curve

図5.10 工具掃引形状が上に凸の曲線となる場合
要求近似精度を満たす工具掃引面の生成

要求近似精度を満たす工具掃引面算出手順は、次に述べるとおりである。この中で、工具掃引形状によって手順が異なるのは、隣り合う2つの工具掃引形状からの工具掃引面構築である。はじめに工具掃引形状で共通である手順について記述した後、工具掃引形状別に隣り合う2つの工具掃引形状からの工具掃引面構築方法について述べる。

■ 工具掃引形状で共通の工具掃引面構築手順

工具掃引形状で共通の工具掃引面構築手順を図5.12に示す。以降、それぞれの処理について述べる。

1: 工具パス上に算出された工具掃引形状を、工具掃引形状リストに追加する

工具掃引形状リストへ、工具パスの始点から終点に向かうよう工具掃引形状を格納する。

2: 工具掃引形状リストの先頭に注目する

注目する工具掃引形状番号を1とする場合、注目する工具掃引形状をA_1とする

3 : 注目している工具掃引形状と、それに隣接する工具掃引形状の近似誤差を求める

注目する工具掃引形状がA_iの場合、それに隣接する工具掃引形状をA_{i+1}とする

3-1: 図5.12に示すように、A_iとA_{i+1}で工具掃引面S_{li+1}を構築する。工具掃引面の構築方法が、工具掃引形状によって異なるため、後に記述する。

3-2: 図5.12に示すように、A_iとA_{i+1}の中間の工具掃引形状A_mを算出する

3-3: 工具掃引面S_{li+1}と工具掃引形状A_mを表現する頂点列の距離を算出し、近似誤差とする

ここで、図5.13に示すように、工具掃引形状A_mを表現するある頂点を$P_i = (P_{ix}, P_{iy}, P_{iz})$とし、工具掃引面$S_{li+1}$を表現する三角形メッシュのうち1つを$T_i$とする。なお、三角形メッシュ
第5章 工具の自己交差運動を含む多軸加工に対応した工具掃引体の算出

νT_i の法線ベクトルを $n_{T_i} = (n_{T_{i1}}$, $n_{T_{i1}}$, $n_{T_{i2}})$, 3 つの構成頂点をそれぞれ $P_{T_{i0}} = (P_{T_{i0x}}$, $P_{T_{i0y}}$, $P_{T_{i0z}})$, $P_{T_{i1}} = (P_{T_{i1x}}$, $P_{T_{i1y}}$, $P_{T_{i1z}})$, $P_{T_{i2}} = (P_{T_{i2x}}$, $P_{T_{i2y}}$, $P_{T_{i2z}})$ とする。このとき、三角形メッシュ T_i の存在する平面 PL_{T_i} は、次式で表現できる。

$$n_{T_{i1x}}x + n_{T_{i1y}}y + n_{T_{i2z}}z + d = 0 \quad (5.2)$$

$$d = -\left(n_{T_{i1x}}P_{T_{i0x}} + n_{T_{i1y}}P_{T_{i0y}} + n_{T_{i2z}}P_{T_{i0z}}\right) \quad (5.3)$$

Step 1:
工具掃引形状 A_i とそれに隣接する工具掃引形状 A_{i+1} より、三角形メッシュ面を構築

Step 2:
工具掃引形状 A_i と A_{i+1} の中間にある工具掃引形状 A_{middle} を算出

Step 3:
工具掃引形状 A_{middle} と、工具掃引形状 A_i と A_{i+1} から得られた三角形メッシュ面の距離を算出

Step 4:
Step1 から Step3 を繰り返し、要求近似精度を満たす三角形メッシュ面を構築

Step 5:
Step1 から Step4 を繰り返し、全ての工具掃引形状から三角形メッシュ面を構築

図 5.12 工具掃引形状で共通の工具掃引面構築手順
図 5.13 工具掃引形状 A_{m} の頂点 P_i と工具掃引面 S_{i+1} を表現する三角形メッシュ T_i

以上を用い, P_i と PL_{T_i} の最短距離 D は次式で得られる.

$$D = \frac{n_{T_{i1}} P_{ix} + n_{T_{i2}} P_{iy} + n_{T_{i2}} P_{iz} + d}{\sqrt{n_{T_{i1}}^2 + n_{T_{i1}}^2 + n_{T_{i2}}^2}}$$ (5.4)

なお, 最短距離 D は, P_i を通過し PL_{T_i} の法線ベクトル n_{T_i} の傾きを持つ直線と PL_{T_i} の交点 C と, P_i を結ぶベクトル $P_i C$ の長さ $|P_i C|$ である. ここで, C は次の式で求められる.

$$C = P_i - \frac{(n_{T_{i1}} P_{ix} + n_{T_{i2}} P_{iy} + n_{T_{i2}} P_{iz} + d)}{n_{T_{i1}}^2 + n_{T_{i1}}^2 + n_{T_{i2}}^2} n_{T_i}$$ (5.5)

ここで, C が T_i 内部に存在するか確認する. これは, T_i の構成頂点 $P_{T_{i0}}, P_{T_{i1}}, P_{T_{i2}}$ と, C を用い作成する 3 つの三角形 $\Delta P_{T_{i0}} P_{T_{i1}} C, \Delta P_{T_{i1}} P_{T_{i2}} C, \Delta P_{T_{i2}} P_{T_{i0}} C$ の面積和と, $\Delta P_{T_{i0}} P_{T_{i1}} P_{T_{i2}}$ の面積を比較することで評価することができる. 図 5.14(a)に示すように, C が T_i の内部に存在するとき, 面積は一致する. また, 図 5.14(b)に示すように, C が T_i の外部に存在するとき, 面積は一致しない. なお, 三角形の面積 S は, 三角形の 3 辺の長さをそれぞれ L_1, L_2, L_3 とするとき, ヘロンの公式から得られる次式で求ることができる.

$$S = \sqrt{s(s - L_1)(s - L_2)(s - L_3)}$$ (5.6)

$$s = \frac{L_1 + L_2 + L_3}{2}$$ (5.7)
第5章 工具の自己交差運動を含む多軸加工に対応した工具掃引体の算出

Cが内部に存在するとき、CとP_iの距離Dを、三角形メッシュT_iと工具掃引形状A_mを表現する
頂点P_iの距離とする。一つの頂点に対し、全ての工具掃引面と距離を計算し、もっとも距離の
短い三角形との距離を、頂点P_iにおける近似誤差とする。
これを工具掃引形状A_mの全ての頂点に対し実施し、各点における近似誤差を求める。求めた
近似誤差の中で最も値の大きいものを、工具掃引面S_{i+1}と工具掃引形状A_mの近似誤差とする。

4: 算出した近似誤差を評価する
要求近似精度を満たさない場合、工具掃引形状リストにおけるA_iとA_{i+1}の間にA_mを追加す
る。
要求精度を満たす場合、注目する工具掃引形状番号を一つインクリメントする。

5: 次に評価する工具掃引形状番号について評価する
次のステップで注目する工具掃引形状番号が、工具掃引形状リストの最終位置でない場合、
ステップ3へすすむ。
次のステップで注目する工具掃引形状番号が、工具掃引形状リストの最終位置でない場合、
要求近似精度を満たす工具掃引面を得られたため、処理を終了する。

図5.14 三角形メッシュT_iにおける頂点Cの内部判定
次に、工具掃引形状別の工具掃引面構築方法について述べる。

■ 隣り合う2つの工具掃引形状からの工具掃引面構築方法

工具掃引形状が交差しない複数の曲線となる場合:
この場合、前後の工具掃引形状を構成する頂点の数で構築方法が異なる。これ以降、工具パスの初期位置に近い側の工具掃引形状をA₁、もう片方の工具掃引形状をA₁⁺とする。また、それぞれの工具掃引形状を構成する頂点を、P_{A₁_j}, P_{A₁⁺_{j+1}}とする。なお、jは、各工具掃引形状における頂点番号である。

前後の工具掃引形状を表現する点列の数が同じ
このとき、図5.15に示すように、工具掃引形状を構成する頂点を、リストの先頭から結ぶことで、三角形メッシュを定義する。

図5.15 前後の工具掃引形状を表現する点列の数が同じ場合の工具掃引面構築
第5章 工具の自己交差運動を含む多軸加工に対応した工具掃引体の算出

● 前後の工具掃引形状を表現する点列の数が異なる

 Guatemalaと偶数の組み合わせ

ここで、工具の掃引形状を構成する頂点数をjMAX、工具の掃引形状をkMAXとする。このとき、図5.16に示すように工具掃引面を構築する。

まず、頂点$P_{A_i,j\text{MAX}-1}$、$P_{A_i,j\text{MAX}}$、$P_{A_{i+1},k\text{MAX}-1}$、$P_{A_{i+1},k\text{MAX}}$を用い、中央に2枚の三角形メッシュを構築する。

次に、頂点数の少ない工具掃引形状を基準に、残りの三角形メッシュを構築する。図5.16に示す例では、工具掃引形状を基準に、まず、工具掃引形状の右側の領域の三角形メッシュを作成を行う。$P_{A_{i+1},k\text{MAX}}$から$P_{A_{i+1},k\text{MAX}-1}$までの頂点と、$P_{A_{i+1},j\text{MAX}-1}$から同じだけの頂点を使い、三角形メッシュを構築する。より頂点数の多いA側の頂点が残るので、$P_{A_{i+1},k\text{MAX}-1}$を用い、三角形メッシュを作成し、右領域全ての三角形メッシュを作成する。次に、工具掃引形状の左側の領域の三角形メッシュを作成を行う。右側のメッシュ作成とほぼ同じ手順で完了する。$P_{A_{i+1},k\text{MAX}-1}$から$P_{A_{i+1},k\text{MAX}}$までの頂点と、$P_{A_{i},j\text{MAX}-1}$から同じだけの頂点を使い、三角形メッシュを構築する。より頂点数の多いA側の頂点が残るので、$P_{A_{i+1},k\text{MAX}-1}$を用い、三角形メッシュを作成し、左領域全ての三角形メッシュを作成する。

図5.16 前後の点列の数が異なり偶数同士となる場合の工具掃引面構築

87
奇数と奇数の組み合わせ
ここで、工具掃引形状Aを構成する頂点数をjMAX、工具掃引形状A+1を構成する頂点数をkMAXとする。このとき、図5.17に示すように工具掃引面を構築する。

頂点数の少ない工具掃引形状を基準に、残りの三角形メッシュを構築する。図5.17に示す例では、工具掃引形状A+1の頂点数が少ないので、Aiを基準にする。

まず、工具掃引形状右側の三角形メッシュを構築する。PAi+1,kMAXからPAi+1,kMAX-1までの頂点と、PAi,jMAXから同じだけの頂点を使い、三角形メッシュを構築する。より頂点数の多いAi側の頂点が残るので、PAi+1,jMAXから同じだけの頂点を使い、三角形メッシュを構築する。より頂点数の多いAi側の頂点が残るので、PAi+1,jMAXを用い、三角形メッシュを作成し、左領域全ての三角形メッシュを作成する。

図5.17 前後の列の数が異なり奇数同士となる場合の工具掃引面構築
第5章 工具の自己交差運動を含む多軸加工に対応した工具掃引体の算出

☑ 偶数と奇数の組み合わせ

ここで、工具掃引形状Aを構成する頂点数をjMAX、工具掃引形状A_{i+1}を構成する頂点数をkMAXとする。このとき、図5.18に示すように工具掃引面を構築する。

頂点数の少ないと工具掃引形状を基準に、残りの三角形メッシュを構築する。図5.18に示す例では、工具掃引形状A_{i+1}の頂点数が少ないのので、A_{i+1}を基準にする。

まず、中央の三角形メッシュを作成し、偶数側の工具掃引形状を表現する中央の頂点

\[P_{Ai,j}^{MAX} - 1, P_{Ai,j}^{MAX/2} \]

と、奇数側の工具掃引形状を表現する中央の頂点

\[P_{Ai+1,j+1}^{kMAX/2} \]

を用い、三角形メッシュを作成する。

次に、工具掃引形状右側の三角形メッシュを構築する。P_{Ai+1,j+1}^{kMAX/2}からP_{Ai+1,kMAX-1}までの頂点と、P_{Ai,j}^{MAX}から同じだけの頂点を用い、三角形メッシュを構築する。より頂点数の多いAi側の頂点が残るので、P_{Ai+1,kMAX-1}を用い、三角形メッシュを作成し、右領域全ての三角形メッシュを作成する。

次に、工具掃引形状左側の三角形メッシュを構築する。P_{Ai+1,j+1}^{kMAX/2}からP_{Ai+1,0}までの頂点と、

\[P_{Ai,j}^{MAX/2} - 1, P_{Ai,j}^{MAX/2} \]

から同じだけの頂点を用い、三角形メッシュを構築する。より頂点数の多いAi側の頂点が残るので、P_{Ai+1,0}を用い、三角形メッシュを作成し、左領域全ての三角形メッシュを作成する。

図5.18 偶数と奇数の組み合わせとなる場合の工具掃引面構築

89
5.4 工具パスの初期位置・終了位置における工具掃引形状の算出と工具

掃引面との統合

工具パスの初期位置・終了位置における工具掃引形状算出と、工具掃引面との統合手順を、図 5.19 に示す。工具パスの初期位置・終了位置における工具形状は、工具形状と、工具パスのそれぞれの位置への同次変換行列から得ることができる。得られたそれぞれの工具形状と、算出済みの工具掃引面を統合することで、一つの工具パスに関する工具掃引体を得る。それぞれの手順について以降で詳細に述べる。

工具形状は、要求近似精度を満たすように算出する。本研究では、工具形状を、工具座標系の X−Y 平面上で定義した工具形状の母線を工具軸に一致する工具座標系の Z 軸中心に回転することで得られる回転体として表現している。ここで、一般的な工具形状を、円柱、円錐、トーラス、工具先端を表す平面で構成するとき、母線は直線で表現可能なものと、円弧で表現されるものの 2 種類に分類される。

母線が直線で表現されるとき、工具形状は工具軸周りの角度の分割量によって定まる。円錐のように、工具の上下で工具半径が異なる場合、より半径の大きい半径を利用し、角度分割量を決める。半径を R_L、要求近似精度を Δρ とするとき、工具軸周りの 1 分割あたりの角度 Δρ は次式より求められる。

図 5.19 工具パスの初期位置・終了位置における工具掃引形状算出と工具掃引面との統合手順
第5章 工具の自己交差運動を含む多軸加工に対応した工具掃引体の算出

\[R_L - R_L \cos \Delta \rho > a_p \]
\[R_L (1 - \cos \Delta \rho) > a_p \]
\[1 - \cos \Delta \rho > \frac{a_p}{R_L} \]
\[\cos \Delta \rho > 1 - \frac{a_p}{R_L} \]
\[\Delta \rho = \cos^{-1} \left(1 - \frac{a_p}{R_L} \right) \] (5.8)

上式より求められる\(\Delta \rho \)を用い、工具上下の境界を表す円を分割し、得られる点列を用いることで、工具形状を定義する。

母線が円弧で表現されるとき、工具形状は円弧中心点周りの角度分割量と、工具軸周りの角度の分割量によって定まる。円弧半径を\(R_{tc} \)、要求近似精度を\(a_p \)とするとき、円弧中心点周りの1分割あたりの角度\(\Delta \phi \)は次式より求められる。

\[R_{tc} - R_{tc} \cos \Delta \phi > a_p \]
\[R_{tc} (1 - \cos \Delta \phi) > a_p \]
\[1 - \cos \Delta \phi > \frac{a_p}{R_{tc}} \] (5.9)
\[\cos \Delta \phi > 1 - \frac{a_p}{R_{tc}} \]
\[\Delta \phi = \cos^{-1} \left(1 - \frac{a_p}{R_{tc}} \right) \]

上式より求められる\(\Delta \phi \)を用い、工具の母線を表す円弧を分割する。また、工具母線が直線となる場合と同様の手順で得られる工具軸周りの角度分割量\(\Delta \rho \)を用い、各工具端面における境界を表す円を分割する。これらの手順で得られる点列を用い、工具形状を定義する。

工具掃引面との統合は次の手順で行う。
1. 工具掃引面、工具パスの初期位置・終了位置における工具形状をそれぞれstl形式で出力する
2. モデリングソフトウェアであるBlenderを用い、各面同士の交差計算とメッシュの再構成を行う
3. メッシュを通過する無限長のレイ直線を用い、各三角形の内外判定を行う
4. 最外面を構成する三角形メッシュのみを取り出す
上記の手順により、工具掃引体を構成する三角形メッシュを得る。
5.5 工具掃引体算出

図 5.20 に示すテーパ工具を対象に、工具先端の軌跡 \(r_{t\ell} \) と工具姿勢 \(r_{pst} \) は、変数 \(t \) を用い式 (5.10), (5.11) として定義する際の工具掃引体を算出する。

\[
\begin{align*}
 r_{t\ell}(t) &= \begin{bmatrix}
 0 \\
 10t \cos \left(\frac{2t\pi}{9} \right) + (80 - 20(3 + t)) \sin \left(\frac{2t\pi}{9} \right) \\
 (60 - 80 + 20t) \cos \left(\frac{2t\pi}{9} \right) + 10t \sin \left(\frac{2t\pi}{9} \right)
\end{bmatrix} \\
 r_{pst}(t) &= \begin{bmatrix}
 0 \\
 -\sin \left(\frac{2t\pi}{9} \right) \\
 \cos \left(\frac{2t\pi}{9} \right)
\end{bmatrix}
\end{align*}
\]

なお、工具形状は、\(R = 15 \text{ mm}, L = 40 \text{ mm}, \beta = 1 \text{ deg} \) としている。この工具運動により、工具は自己交差運動を行う。この時の工具運動を図 5.21 に示す。

この時、要求近似精度を 0.01 mm としたとき、工具掃引体は図 5.22 に示すように算出される。

ここで、要求精度を 0.01 mm, 0.001 mm とし、工具掃引体を算出した結果を図 5.23 に示す。なお、図 5.23 (b), (d) は、両者の工具掃引体表面において、図 5.23 (a), (c) にて黒枠で示した同一位置の領域を拡大した結果である。

なお、0.01 mm の場合、三角形メッシュ数は 19639 枚であり算出には 20 秒ほどを要した。また、0.001 mm の場合、三角形メッシュ数は 385605 枚であり、算出には 200 秒ほどを要した。結果を表 5.1 にまとめる。提案方法では、要求精度を 0.001 mm まで下げた場合でも、約 3 分という比較的短い計算時間で工具掃引体を算出可能であることがわかった。

<table>
<thead>
<tr>
<th>要求形状近似精度</th>
<th>三角形メッシュ数</th>
<th>計算時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01 mm</td>
<td>19639</td>
<td>About 20 second</td>
</tr>
<tr>
<td>0.001 mm</td>
<td>385605</td>
<td>About 200 second</td>
</tr>
</tbody>
</table>

以上より、既存の工具掃引体生成方法では算出できなかった工具の自己交差運動において、形状に対する要求近似精度に基づき、工具掃引形状、工具掃引面、工具パス初期位置・終了位置における工具表面を算出し、その結果を用い工具掃引体を三角形メッシュモデルとして算出可能であることを示した。また、要求近似精度を変更する事で、算出される工具掃引体を構成する三角形メッシュ数と計算時間の違いについて確認した。
第5章 工具の自己交差運動を含む多軸加工に対応した工具掃引体の算出

図 5.20 ケーススタディにおけるテーパ工具形状

図 5.21 ケーススタディにおける工具の自己交差運動
図 5.22 要求近似精度 0.01 mm における工具掃引体
第5章 工具の自己交差運動を含む多軸加工に対応した工具掃引体の算出

図5.23 要求近似精度 0.01mm と 0.001mm における工具掃引体算出結果の比較
5.6 本章の結論

本章では、以下の結論を得た。

工具掃引体は、工具パスの初期位置・終了位置における工具表面と、工具掃引によって生成される工具掃引面から構成される。加工面に生じる微小な加工誤差までを正確に表現するには、工具掃引体表面はパラメトリックに表現されることが望ましいが、工具掃引面、工具パスの初期位置・終了位置における工具表面は、互いに交差する場合があり、それらの面から、パラメトリックに表現された工具掃引体の最外面を算出することは困難である。また、工具掃引体の算出方法は、工具掃引形状によって適切な方法が異なる。以上より本研究では、第4章で明らかにした工具掃引形状に対し、適切な手段によって、工具掃引体表面上の点を算出し、それらの点を用い三角形メッシュとして工具掃引体を算出する方法を提案した。

工具掃引形状が“交差しない複数の曲線”となる場合、必要に応じ工具掃引形状を構成する点列や、工具掃引面を構成する工具掃引形状を追加することで、工具掃引体が要求される近似誤差を満たすよう生成されるようにした。

ケーススタディにより、提案方法によって、既存の工具掃引体生成方法では算出できなかった工具の自己交差運動における工具掃引体を、要求近似精度に合わせメッシュサイズを変更し、算出可能であることを示した。

なお、1区間の工具パスの途中で工具掃引形状が変化する場合、1区間の工具パスで工具掃引形状が変化しない場合における“工具掃引形状が工具表面全体”、“2本の曲線と円”となる場合、の工具掃引体導出方法を確立する必要がある。
第6章 高精度部品加工を支援する加工システムへの工具掃引体導出方法の応用

6.1 高精度部品加工を支援する加工システムへの工具掃引体導出方法

の応用に関する概要

本章では、提案する工具掃引体導出方法を、高精度な部品加工を支援する加工システムに応用する方法として、工具掃引体を用いた加工面に生じる加工誤差の表現方法と、加工誤差表現に基づく作業方法の評価方法について述べる。

提案する工具掃引体導出方法へ、第3章で述べた形状創成理論に基づく工作機械の誤差を含む運動機構表現を組み込むことで、工具掃引体を算出可能となる。これより本研究では、図6.1に示すように、工作機械の誤差を考慮しない理想的な状況での工具掃引体と（ノミナル工具掃引体）、工作機械の幾何学的誤差による影響を組み込んだ状況での誤差を含む工具掃引体（誤差工具掃引体）について、それぞれの工具掃引体表面を結ぶベクトルを算出することによって、加工面に生じる加工誤差を定量的に表現できると考えた。そこで、本研究では、加工面に生じる加工誤差を、工具掃引体を比較することで得られる誤差ベクトルによって表現することとし、本章にて誤差ベクトルの算出方法について述べる。

高精度部品加工を支援する加工システムへの応用を考え、本研究では、図6.2に示すように、複数の作業方法候補から算出される加工誤差を表す誤差ベクトルを、本研究で提案する方法によって比較・評価可能し、評価結果に基づき高精度な部品加工を実現する作業方法を決定可能とする。加工面に生じる加工誤差を表す誤差ベクトルの評価方法として、次に述べる方法を提案する。誤差のない工具運動では、作業方法が異なっていても工具運動が共通であれば算出される工具掃引体は同一の形状となる。そこで、複数の作業方法によって算出される誤差ベクトルを誤差のない工具掃引体上に定義し、ある工具掃引体上に複数の誤差ベクトル算出結果をまとめて、誤差ベクトルをベクトルの向きや長さといった定量的な値に基づき評価可能となる。この結果に基づき作業方法を評価し、最適な作業方法を決定する方法を提案する。
誤差を伴う多軸加工シミュレーションのための工具掃引体導出に関する研究

図 6.1 誤差ベクトル算出の概要

図 6.2 誤差ベクトルの評価に基づく最適な作業方法決定の概要
第6章 高精度部品加工を支援する加工システムへの工具掃引体導出方法の応用

6.2 工具掃引体を用いた加工面の加工誤差を表す誤差ベクトルの算出

本研究では、加工面に生じる加工誤差を、図6.1に示すように、工作機械の理想的な工具運動（ノミナル工具運動）による工具掃引体（ノミナル工具掃引体）と、工作機械の誤差特性による影響を受けた工具運動（誤差工具運動）による工具掃引体（誤差工具掃引体）の差を表す誤差ベクトルとして表現する。

誤差ベクトルの始点はノミナル工具掃引体を構成する頂点とし、終点は誤差工具掃引体表面上の点とする。ノミナル工具掃引体を構成するある頂点の誤差ベクトルは、次の手順で算出する。

1. ノミナル工具掃引体を構成する頂点リストから頂点を一つ取り出す

取り出した頂点を \(\textbf{P}_{\text{look}} = (P_{\text{look}_x}, P_{\text{look}_y}, P_{\text{look}_z}) \) とする

2. 取り出した頂点 \(\textbf{P}_{\text{look}} \) に対し、誤差工具掃引体全ての三角形メッシュとの距離を算出する

（ア）誤差工具掃引体を構成する三角形メッシュリストから三角形メッシュを一つ取り出す、取り出した三角形メッシュを \(\textbf{T}_{\text{look}} \) とする。 \(\textbf{T}_{\text{look}} \) は、3つの頂点 \(\textbf{P}_{\text{look}_0} = (P_{\text{look}_0x}, P_{\text{look}_0y}, P_{\text{look}_0z}), \textbf{P}_{\text{look}_1} = (P_{\text{look}_1x}, P_{\text{look}_1y}, P_{\text{look}_1z}) \), \(\textbf{P}_{\text{look}_2} = (P_{\text{look}_2x}, P_{\text{look}_2y}, P_{\text{look}_2z}) \) から構成されるものとし、法線ベクトルは \(\textbf{n}_{\text{look}} = (n_{\text{look}_x}, n_{\text{look}_y}, n_{\text{look}_z}) \) であるとする。三角形メッシュ \(\textbf{T}_{\text{look}} \) と頂点 \(\textbf{P}_{\text{look}} \) を図6.3に示す。

図6.3 三角形メッシュ \(\textbf{T}_{\text{look}} \) と頂点 \(\textbf{P}_{\text{look}} \)
(イ) \mathbf{P}_{look} と \mathbf{T}_{look} の距離 D を計算する
① \mathbf{P}_{look} を通り \mathbf{n}_{look} の傾きをもつ直線 L_{look} を定義する
② L_{look} と \mathbf{T}_{look} が存在する平面との交点 C を求める

$$C = \mathbf{P}_{\text{look}} - \frac{n_{\text{look}}x^{P}_{\text{look}} + n_{\text{look}}y^{P}_{\text{look}} + n_{\text{look}}z^{P}_{\text{look}} + d}{n_{\text{look}}x^2 + n_{\text{look}}y^2 + n_{\text{look}}z^2} \mathbf{n}_{\text{look}}$$ (6.1)

$$d = -\left(n_{\text{look}}x^{c}_{\text{look}} + n_{\text{look}}y^{c}_{\text{look}} + n_{\text{look}}z^{c}_{\text{look}}\right)$$ (6.2)

③ C が \mathbf{T}_{look} の内部に存在するか調べる
5.3.3 にて述べたように、ある点がある三角形の内部に存在するかを調べるために、三角形を構成する頂点のうち 2 つと内外判定したい点で作られる 3 つの三角形の面積和と、三角形の面積を比較し、両者が一致するとき C が \mathbf{T}_{look} の内部に存在する、C が \mathbf{T}_{look} の内部に存在するとき、\mathbf{P}_{look} と C の距離を、\mathbf{P}_{look} と \mathbf{T}_{look} の距離 D とする。この時、\mathbf{P}_{look} と C を結ぶベクトルを誤差ベクトルの候補とする。

(ウ) 誤差工具掃引体を構成する三角形メッシュリストから全ての三角形メッシュがなくなるまで誤差ベクトル候補の計算を繰り返す

3. 誤差ベクトル候補から最も距離の短いベクトルを \mathbf{P}_{look} の誤差ベクトルとする

上記の手順を、ノミナル工具掃引体を構成する全ての頂点に対し行うことで、加工面に生じる加工誤差を表す誤差ベクトルを得る。加工面に生じる加工誤差を、誤差ベクトルとして表現することで、例えば、誤差ベクトルの長さや方向といった定量的な値による評価が可能となる。

6.3 誤差ベクトルに基づく作業方法の評価

加工面に生じる加工誤差は、前述の方法により、ノミナル工具掃引体と誤差工具掃引体から得られる誤差ベクトルによって、定量的に表現可能となる。

ここで、ノミナル工具掃引体の形状は、例えば、工具進行方向や、加工開始位置といった作業方法を変更しても、工具運動が共通であれば、得られる形状は同一である。そのため、異なる加工方法により得られるノミナル工具掃引体表面上の誤差ベクトルを、一つのノミナル工具掃引体上に集めることで、それぞれの作業方法において加工面に生じる加工誤差の違いを、例えばベクトルの長さや方向といった定量的な値で比較することが可能となる。評価手順を図6.4に示す。

1. 異なる作業方法によるノミナル工具掃引体と誤差ベクトルを、それぞれ算出する
2. 算出された結果から、基準とするノミナル工具掃引体を一つ決定する
3. 基準となる工具掃引体表面と一致するよう、算出結果におけるその他のノミナル工具掃引体から実際の誤差を算出する
第6章 高精度部品加工を支援する加工システムへの工具掃引体導出方法の応用

引体を移動するための座標変換行列を求める

作業方法の違いが、工具パスの開始位置の違いであるとき、基準となる工具掃引体の工具パス開始位置と、そのほかの作業位置の差を算出することで、平行移動の座標変換行列を求めることができる。

4. 導出した座標変換行列を用い、ノミナル工具掃引体形状が一致するよう座標変換する

上記の手順により、基準となるノミナル工具掃引体表面に、複数の誤差ベクトル算出結果を定義し、比較・評価可能となる。

図6.4 異なる作業方法による誤差ベクトル算出結果の評価方法
6.4 誤差ベクトルの算出例

図 6.5 に示すテーパ工具を対象に、表 6.1 に示す幾何学的誤差を持つ CAYXZ 型 5 軸工作機械を用い、誤差ベクトルの算出を行う。なお、誤差ベクトルの値を大きくするため、本来の誤差のオーダーと比較し、各誤差の値は大きいものを設定した。

工具先端の軌跡 \(\mathbf{r}_{\text{trj}} \) と工具姿勢 \(\mathbf{r}_{\text{pst}} \) は、変数 \(t \) を用い式(6.3), (6.4)として定義する。

\[
\mathbf{r}_{\text{trj}}(t) = \begin{bmatrix}
0 \\
10t \cos\left(\frac{2t\pi}{9}\right) + (80 - 20(3 + t)) \sin\left(\frac{2t\pi}{9}\right) \\
(60 - 80 + 20t) \cos\left(\frac{2t\pi}{9}\right) + 10t \sin\left(\frac{2t\pi}{9}\right)
\end{bmatrix}
\] (6.3)

\[
\mathbf{r}_{\text{pst}}(t) = \begin{bmatrix}
0 \\
-\sin\left(\frac{2t\pi}{9}\right) \\
\cos\left(\frac{2t\pi}{9}\right)
\end{bmatrix}
\] (6.4)

(a) 工具断面図 (b) 要求近似精度 0.01 mm における工具形状

図 6.5 ケーススタディにおけるテーパ工具形状
第6章 高精度部品加工を支援する加工システムへの工具掃引体導出方法の応用

表6.1 ケーススタディにおける幾何学的誤差

<table>
<thead>
<tr>
<th>Driving axis \ Error</th>
<th>α deg</th>
<th>β deg</th>
<th>γ deg</th>
<th>δx mm</th>
<th>δy mm</th>
<th>δz mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (Rotate around X axis)</td>
<td>0.5</td>
<td>0.7</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C (Rotate around Z axis)</td>
<td>0.6</td>
<td>0.7</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A-C (Between A and C axis)</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
</tr>
</tbody>
</table>

図6.6 作機械テーブルにおける工具パス開始位置

ここで、作機械テーブルの作機械テーブル上における工具パスの開始位置 \((x, y)\) を、図6.6に示すよう4箇所設定することで、複数の加工方法を設定する。このとき、それぞれの加工方法を実施するときの加工面に生じる加工誤差を、誤差ベクトルとして算出する。

算出された誤差ベクトルを図に示す。加工位置1の結果を図6.7(a)、加工位置2の結果を図6.7(b)、加工位置3の結果を図6.7(c)、加工位置4の結果を図6.7(d)に示す。なお、それぞれにおける誤差ベクトル長さの平均値は、表6.2に示すとおりとなった。
図6.7 誤差ベクトル算出結果

(a) 加工位置1の算出結果

(b) 加工位置2の算出結果

(c) 加工位置3の算出結果

(d) 加工位置4の算出結果
第6章 高精度部品加工を支援する加工システムへの工具掃引体導出方法の応用

表6.2 誤差ベクトル平均値

<table>
<thead>
<tr>
<th>加工位置</th>
<th>誤差ベクトル平均値</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.56 mm</td>
</tr>
<tr>
<td>2</td>
<td>1.45 mm</td>
</tr>
<tr>
<td>3</td>
<td>1.33 mm</td>
</tr>
<tr>
<td>4</td>
<td>1.43 mm</td>
</tr>
</tbody>
</table>

次に、4つの算出結果を、一つのノミナル工具掃引体上に描画した結果を、図6.8に示す。結果より、作業方法1,3では誤差ベクトルは向かって右側に、作業方法2,4では誤差ベクトルは向かって左側に算出したことがわかる。本実行結果を用いる場合、加工位置の違いによって誤差ベクトルの発生方向が異なることを確認可能であり、これに基づく加工位置の決定により、誤差ベクトルの発生方向をコントロール可能となる事がわかる。これより、提案する工具掃引体導出方法と加工誤差表現方法から得られる誤差ベクトルを基準に、実施する加工内容に対し、誤差の発生方向とその平均値に基づいた加工方法の決定が可能となったことを示すことができた。

6.5 本章の結論

本章では、得られた結論は、以下のとおりである。

- 提案する工具掃引体導出方法を、高精度な部品加工を支援する加工システムに応用する方法として、工具掃引体を用いた加工面に生じる加工誤差の表現方法と、その評価方法について提案した。
- 工具掃引体を用いた加工面に生じる加工誤差の表現方法として、工具の自己交差運動を含む多軸加工に対応した工具掃引体導出方法を用い、理想的な工具運動による工具掃引体(ノミナル工具掃引体)と誤差を伴う工具運動(誤差工具掃引体)を算出し、両者の面上の点を結ぶベクトルを算出し誤差ベクトルとすることで、加工面に生じる加工誤差を定量的に表現する方法を提案した。
- 工具掃引体を用いた加工面に生じる加工誤差の評価方法として、作業方法、例えば工具パス開始位置や進行方向を変更しても、共通の工具運動によるノミナル工具掃引体の形状は変化しない、ということから、複数の作業方法による誤差ベクトル算出結果を、単一のノミナル工具掃引体表面上に移動することで、異なる複数の誤差ベクトルを同時に行う比較・評価可能とする方法を提案した。
- ケーススタディにて、提案する誤差ベクトルによる加工誤差表現方法・評価方法を用い、工具の自己交差運動に対し複数の作業位置を定義し、誤差ベクトルを算出し、基準とするノミナル工具掃引体表面上に全ての誤差ベクトル算出結果を移動し、算出された誤差ベクトルの違いをベクトルの長さや方向といった定量的な情報として表現・評価可能であることを示した。これより、本研究で提案する加工誤差に基づく作業方法の評価方法の有効性を示した。
図 6.8 複数の作業方法における誤差ベクトルの比較結果
第7章 結論

7.1 本論文の結論

近年、製造業の競争力を高めるために、より高機能な部品を低コストに生産することの重要性はますます高まってきている。生産加工システムに対する要求としては、航空機のインペラに代表される複雑な形状を加工すること、一度の段取りによる加工の効率化を図ることがあげられ、それを実現できる多軸加工が注目されている。多軸工作機械は、並進駆動軸だけではなく回転駆動軸も組み合わせた複雑な軸構成を持つ。そのため、加工運動は複雑となり、3軸工作機械と比較して、工作機械の組立誤差といった幾何学的誤差、加工プロセス中に生じる熱や振動、切削力等による誤差、といった工作機械の誤差特性による加工誤差の低下が起こりやすく、加工形状に加工誤差が生じやすい、という問題がある。したがって、複雑な工具運動を確認し、工具運動の結果である加工形状や加工誤差を検証する加工シミュレーションシステムの確立は、生産システムの発展において非常に重要である。そこで本研究では、形状を表す数式に基づくため、高精度にしかも高速に加工形状を導出できる可能性がある工具掃引体によって加工形状を含む加工面のシミュレーションを行うこととし、工具の自己交差運動を含む多軸加工に対応した工具掃引体導出方法を提案した。また、提案する工具掃引体導出方法を、高精度な部品加工を支援する加工システムに応用する方法を提案した。これらより、各章において、以下の結論を得た。

第2章では、多軸加工シミュレーションシステムを実現する方法の現状と問題点について調査した。関連研究における問題点を以下に示す。

- 従来の加工シミュレーション技術は、複雑な工具運動における、工作機械や工具との干渉判定を行うことを重点に置き、ボクセル等の微小立方体で素材や空間を分割し、加工形状が表現されてきた。従来の表現方法は、加工形状導出のアルゴリズムの実装は容易であるが、ある程度の大きさの部品に対する微小な加工誤差を、現状のコンピュータのメモリ使用量かつ実行可能な計算時間で表現することができない、という問題がある。
- 既存のシミュレーション方法に対し、形状モデルやコンピュータグラフィックスの分野では、物体が運動した際の掃引形状を定義するための研究が行われており、CADシステムで利用されている。掃引体の利用は、従来の加工シミュレーション方法と比較し、微小な加工誤差を含む加工面を、低メモリかつ実行可能な時間で導出できる。
- 既存の多く研究により、一般的に、Wangらによって提案されている、工具表面上の法線ベクトルと速度ベクトルの直交関係を表す工具掃引条件に基づいた工具掃引体導出方法が提案されてきた。しかし、工具掃引条件を表す式である工具掃引条件式を解析的に解くことが困難なため、工具の自己交差運動を含む多軸加工における工具掃引体を導
誤差を伴う多軸加工シミュレーションのための工具掃引体導出に関する研究

荒井 航

出できないという問題がある。

これに対し, Lee らは, 円柱形状の工具を対象に, 工具表面上の点への位置ベクトルを工具軸方向のベクトルと, 法線方向のベクトルの和として表現し, 工具座標系で工具掃引条件式を導出することで, 工具掃引条件式を簡便化し, 解析的に解くことを可能とした。これにより, 円柱形状の工具について, 工具の自己交差運動を含む多軸加工における工具掃引体を導出可能とした。しかし, 多軸加工で一般的な, 円錐, トーラスといった工具形状には対応していない。

既存の工具掃引体に関する研究の調査より, 工具掃引体導出における課題は, 多軸加工で一般的な工具形状に対し, 3 次元空間での任意の工具運動に対応した工具掃引体導出方法を提案することである。

誤差特性の工作機械の加工精度への影響については, 工作機械の加工精度がどの程度であるかを工具中心や工具姿勢, 半径, トーラス, 工具先端を表す平面を組み合わせ表現することとした。これにより, 多軸加工にて一般的な工具形状を表現可能となった。

工作機械の運動機構表現について, 例として, 形状再生理論に基づいた工作機械の同次座標変換行列を提案した。得られた結論は以下のとおりである。

第 3 章では, 第 2 章で明らかにした工具掃引体導出における問題点を解決するため, 工具掃引体導出の基本的な考え方について提案した。得られた結論は以下のとおりである。

対象とする工具形状を定義した。工具形状は, 回転体として表現し, 円柱, 円錐, テーラス, 工具先端を表す平面を組み合わせ表現することとした。これにより, 多軸加工にて一般的な工具形状を表現可能となった。

工具運動を 3 次元の速度ベクトルとして一般化表現した。なお, 本論文では, 工具運動を表す速度ベクトルを, 工作機械の同次座標変換行列から導出する方法について述べた。速度ベクトルとして一般化表現することで, 本論文で述べた方法と異なる方法で定義される工具運動であっても, 速度ベクトルとして表現可能であれば, そのまま利用できるという利点がある。

工作機械の運動機構表現について, 例として, 形状再生理論に基づいた工作機械の同次座標変換行列の定義方法を紹介した。

工具への加工指令の定義方法について述べた。本論文では, 工具中心の軌跡と, 軌跡の各位置に対応する工具姿勢によって, 加工指令を定義する。工作機械の各駆動軸の駆動量は, 形状再生理論に基づき算出したこととした。

Lee らの工具掃引条件式導出に関する考え方を拡張し, Wang らの工具掃引条件に基づき, 対象とする工具形状の工具掃引条件式を導出した。

第 4 章では, 第 3 章で基本的な考え方を示した工具掃引体導出方法において, 対象とする工具形状の工具掃引条件から解析的に解を導出し, その解に基づき工具掃引形状を明らかにした。得られた結論は以下のとおりである。

工具形状として, 円柱, 円錐, テーラス, 工具先端を表す平面, 法線ベクトルの不連続な面同士の接続領域を対象に, 導出した工具掃引条件式を解析的に解き, 得られた解108
7章 結論

に基づき工具掃引形状を明らかにした。

円柱形状の工具は3種類の工具掃引形状が存在することを明らかにした。円錐形状の工具は3種類の工具掃引形状が存在することを明らかにした。テーパ形状の工具は8種類の工具掃引形状が存在することを明らかにした。工具先端を表す平面は3種類の工具掃引形状が存在することを明らかにした。

第5章では、第4章で得られた工具掃引形状に対し、要求される形状の近似精度を満たす工具掃引体生成方法を提案した。得られた結論は以下のとおりである。

工具掃引体は、工具パスの初期位置・終了位置における工具表面と、工具掃引によって生成される工具掃引面から構成される。加工面に生じる微小な加工誤差までを正確に表現するには、工具掃引体表面はパラメトリックに表現されることが望ましいが、工具掃引面、工具パスの初期位置・終了位置における工具表面は、互いに交差する場合があり、それらの面から、パラメトリックに表現された工具掃引体の最外面を算出することは困難である。また、工具掃引体の算出方法は、工具掃引形状によって適切な方法が異なる。以上より本研究では、第4章で明らかにした工具掃引形状に対し、適切な手段によって、工具掃引体表面上の点を算出し、それらの点を用い三角形メッシュとして工具掃引体を算出する方法を提案した。

交差しない複数の曲線となる場合、必要に応じ工具掃引形状を構成する点列や、工具掃引面を構成する工具掃引形状を追加することで、工具掃引体が要求される近似誤差を満たすよう生成されるようにした。

ケーススタディにより、提案方法によって、既存の工具掃引体生成方法では算出できなかった工具の自己交差運動における工具掃引体を、要求近似精度に合わせメッシュサイズを変更し、算出可能であることを示した。

なお、1区間の工具パスの途中で工具掃引形状が変化する場合、1区間の工具パスで工具掃引形状が変化しない場合における“工具掃引形状が工具表面全体”、“2本の曲線と円”なる場合の工具掃引体導出方法を確立する必要がある

第6章では、第3章から第5章で得られた工具の自己交差運動を含む多軸加工に対応した工具掃引体導出方法を、高精度な部品加工を支援する加工システムに応用する方法として、加工面に生じる加工誤差を定量的に表現する方法と、誤差ベクトルに基づく作業方法の評価方法について提案した。得られた結論は以下のとおりである。

提案する工具掃引体導出方法を、高精度な部品加工を支援する加工システムに応用する方法として、工具掃引体を用いた加工面に生じる加工誤差の表現方法と、その評価方法について提案した。

工具掃引体を用いた加工面に生じる加工誤差の表現方法として、工具の自己交差運動を含む多軸加工に対応した工具掃引体導出方法を用い、理想的な工具運動による工具掃引体（ノミナル工具掃引体）と誤差を伴う工具運動（誤差工具掃引体）を算出し、両者の面上の点を結ぶベクトルを算出し誤差ベクトルとすることで、加工面に生じる加工誤差を定量
誤差を伴う多軸加工シミュレーションのための工具掃引体導出に関する研究

荒井 航

的に表現する方法を提案した

● 工具掃引体を用いた加工面に生じる加工誤差の評価方法として、作業方法、例えば工具パス開始位置や進行方向を変更しても、共通の工具運動によるノミナル工具掃引体の形状は変化しない、ということから、複数の作業方法による誤差ベクトル算出結果を、単一のノミナル工具掃引体表面上に移動することで、異なる複数の誤差ベクトルを同時に比較・評価可能とする方法を提案した

● ケーススタディにて、提案する誤差ベクトルによる加工誤差表現方法・評価方法を用い、工具の自己交差運動に対し複数の作業位置を定義し、誤差ベクトルを算出し、基準とするノミナル工具掃引体表面上に全ての誤差ベクトル算出結果を移動し、算出された誤差ベクトルの違いをベクトルの長さや方向といった定量的な情報として表現・評価可能であることを示した。これにより、本研究で提案する加工誤差に基づく作業方法の評価方法の有効性を示した。

以上より、工具の自己交差運動を含む多軸加工に対応した工具掃引体導出方法を用いることで、加工面に生じる加工誤差を、ベクトル長さや方向といった定量化の値として評価可能な誤差ベクトルとして表現可能であることを示した。本研究の新規性、有用性は、以下のとおりである。

新規性:
工具掃引体は、工具表面上における工具掃引形状の集合として表現される。工具掃引形状は、工器具運動によって曲線や面となるため、工具の自己交差運動を含む多軸加工において工具掃引体を導出可能とするには、工具掃引形状と、それに対応する工具運動を導出する必要がある。本論文では、工具掃引条件式より得られる解析的な解より、工具掃引形状の判別式を新たに求め、工具掃引形状のすべての種類を明らかにした。これにより、複雑な工具掃引条件式を解くことなく、工具掃引形状を判別可能となった。これは既存の工具掃引体に関する研究では行われておらず、本論文における独創的な点である。

従来の工具掃引体に関する研究では、多軸加工で一般的な工具形状の工具掃引体導出において、工具の自己交差運動に対応していない。そのため、工器具軸と直交する軸回りの回転運動に代表される工具の自己交差運動とされた、多軸加工で用いられる工具運動による工具掃引体を導出することができない。本論文では、フラットエンドミル側面を表す円柱、テーパエンドミル側面を表す円錐、ラジアスエンドミルのラジアス部分側面を表すトーラス、フラットエンドミル底面を表す平面、工具表面の法線ベクトルが不連続な面の接続領域、の工具掃引形状を明らかにし、工具の自己交差運動を含む多軸加工における工具掃引体を導出可能とした。この点が、本論文における新規的な点である。

有用性:
多軸工作機械の幾何学的誤差といった誤差特性による部品加工への影響は、一般的に工具中心等の軌跡に生じる変化量によって表現されており、工具姿勢の変化などによる加工面への影響を評価することはできない。本研究によって、多軸工作機械の誤差特性の影響を反映した工具運動から工具掃引体を導出可能となる。これにより、多軸工作機械の誤差特性が加工形状に与
第7章 結論

える影響について, 工具掃引体表面の変化量によって表現可能となる.

本研究では, 工具運動によって生成される工具掃引面と工具パスの初期終了位置における工具形状の境界面, の2つの面を三角形メッシュとして導出し, 工具形状の移動領域の総和を表す工具掃引体として表現している. これにより, Voxel やその応用である Octree や Dextel といった形状表現方法と比較して, 高速かつ低いメモリ使用量で高精度な加工形状の表現が可能となる.

7.2 今後の研究課題と展望

本研究において残る研究課題を以下に述べる.

1. 本論文では, 工具掃引形状を, 工具パス中において工具掃引形状形状変化する場合と, 変化しない場合に分類した上で更に, 工具掃引形状変化しない場合における工具掃引形状を, 交差しない複数の曲線, 交差する曲線, 面となる場合, に分類した. 本論文では, 工具掃引形状変化しない場合における, “交差しない複数の曲線” となる場合の工具掃引体生成方法を提案した. 残りの分類に対する工具掃引体生成方法を確立する必要がある.

2. 本論文では, 時間, 工具高さ, 工具軸周り, の3変数で表現される工具掃引条件式について, ある時刻における解の分布を調べることとし, 次元を一つ減らし工具高さと工具軸周りの2変数で表現される工具掃引条件式を用い, 工具掃引形状を明らかにした. この解法では, 時間の変化による工具掃引形状の変化について論じることができない. これを解決するためには, 時間, 工具高さ, 工具軸周りの3変数で表現される工具掃引条件式について, 工具掃引条件の成立条件を解析する必要がある.

本研究の拡張や発展についての展望を以下に述べる.

1. 提案した工具掃引体導出方法は, 前述した課題を解決することで, 工具の自己交差運動といった既存の工具掃引体導出方法で対応していない多軸加工において, 工具掃引体を三角形メッシュモデルとして算出可能となる. これを, 例えば, 三角形メッシュモデル同士の論理を含む算出可能なライブラリ CGAL[CGAL] を用いた加工形状算出アルゴリズムにおいて利用することで, 従来の商用 CAD システム等で算出できなかった工具形状, 工具運動における加工形状を算出できると考えられる.

2. ポケット加工やスロット加工といった一般的な加工形状をテンプレートとして表現する Machining feature という考え方がある. この方法では, 加工形状を表す Machining Feature の形状特徴, 例えばスロット加工であるときスロットの幅や長さを表す Feature attribute によって, 形状を定義する. ここで, Machining feature で定義される加工方法に基づき, 1 にて述べたような方法で提案する工具掃引体導出方法を用い加工形状を得る. 導出した加工形状から, feature attribute の値を抽出し, 定義した値と比較することで, feature attribute に生じた加工誤差を得ることができる. 本研究ではこれに加え, 3 軸加工を対象に, 誤差を含む加工形状の加工面を表す平面から, feature attribute の値を導出し, 定義した値と比較することで加工誤差を導出する方法を提案した. 提案方法の基本的な考え方を基に, 多軸加工における Machining feature を定義し, 各 feature attribute の抽出方法を確立することで, 誤差を伴う多軸加工における加工誤差を導出し評価すること
誤差を伴う多軸加工シミュレーションのための工具掃引体導出に関する研究 荒井 航

が可能となる。
参考文献

[Aoki1966] 青木保雄，大園成夫. 3 点真円度測定法の一展開. 精密機械, 32, 12, 831, 1966

[Ihara2005] 井原之敏, 田中和也. 多軸工作機械での円錐台加工試験に対応したボールバー測定法(第1法)―主軸旋回形5軸MCでのボールバー測定と実加工との比較―. 精密工学会誌, Vol. 71, No. 12, 2005

[Inasaki1997] 稲崎一郎，岸浪建史，坂本重彦，杉村延広，竹内芳美，田中文基. 工作機械の形状創成理論―その基礎と応用―. 養賢堂, 1997
誤差を伴う多軸加工シミュレーションのための工具挿引体導出に関する研究

荒井 航

[NAS979] Uniform cutting tests- NAS series, metal cutting equipment specifications.

2000

[Saito2012]斉藤明德, 近藤和喜. ボールエンドミル加工による加工面の市松模様に基づく5軸マシニングセンタの幾何変位の評価. 日本機械学会論文集(C編), 78 巻, 786 号, 2012

[Sakamoto1997] 坂本重彦, 稲崎一郎, 塚本顕彦, 市来崎哲雄. ボールバーによる五軸マシニングセンタの組立誤差同定法. 日本機械学会論文集(C編), 63 巻, 605 号, 1997

[Tone2012] 登根慎太郎, 加藤教之, 堤正臣. 幾何変位の測定及び補正による5軸制御マシニングセンタの工具経路精度の向上. 日本機械学会論文集(C編), 78 巻, 794 号, 2012

研究業績

1. 学術雑誌に掲載された査読付学会誌等
(第4章の工具掃引条件式の解析的な解導出による工具掃引形状導出に関連)

2. 査読付国際会議プロシーディング
(第3章の工具掃引条件に基づく工具掃引体導出の基本的な考え方, 第4章の工具掃引条件式の解析的な解導出による工具掃引形状導出に関連)
(第3章の工具掃引条件に基づく工具掃引体導出の基本的な考え方, 第4章の工具掃引条件式の解析的な解導出による工具掃引形状導出に関連)
(第3章の工具掃引条件に基づく工具掃引体導出の基本的な考え方, 第4章の工具掃引条件式の解析的な解導出による工具掃引形状導出, 第5章の工具の自己交差運動を含む多軸加工に対応した工具掃引体の算出, 第6章の高精度部品加工を支援する加工システムへの工具掃引体導出方法の応用に関連)
誤差を伴う多軸加工シミュレーションのための工具掃引体導出に関する研究　　荒井 航
謝辞

指導教員であり、本研究論文の主査を引き受けていただいた田中文基准教授には、研究テーマの設定から研究の遂行、本論文の執筆に至るまで、長年に渡り熱心な御指導、御鞭撻、多大な尽力を賜ると共に、常に暖かく広大な心で見守って頂きました。心から御礼を申し上げます。

副査を引き受けていただいた小野里雅彦教授には、研究遂行及び本論文の執筆にあたり、数々の有意義な御指導、御助言をいただき、日々の研究生活を暖かく見守っていただきました。心から御礼を申し上げます。

副査を引き受けていただいた金井理教授には、本論文の執筆にあたり、数々の有意義な御助言をいただきました。心から御礼を申し上げます。

学術講演会や各種セミナールといった様々な場面において、本研究に対し、有意義な御意見を頂いた方々皆様に、心から御礼を申し上げます。

そして、長年の学生生活を、暖かく、そして心房強く見守り、励まし続けて下さった家族、そして友人に、心から感謝の意を表します。
誤差を伴う多軸加工シミュレーションのための工具掃引体導出に関する研究

荒井 航