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Applied Physics Express

Controlling the Rashba spin-orbit interaction in quantum wells
by adding a symmetric potential

Yoshiyuki Egami and Hiroshi Akera

Division of Applied Physics, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan

Incorporating a symmetric electrostatic potential into quantum wells (QWs) is proposed as a method to

modify the coefficient α of the Rashba spin-orbit interaction. In a symmetric QW for which α = asoEz with

Ez the perpendicular electric field, the constant aso can be controlled by the symmetric potential. The sign

reversal of aso with increasing the strength of the symmetric potential is demonstrated in (001)-oriented

GaAs/AlGaAs QWs by a tight-binding model. The present findings can be used to realize structures with

vanishing α in nonzero Ez.

The Rashba spin-orbit interaction (SOI)1–4) is the origin of the intrinsic spin Hall effect

predicted in a two-dimensional electron system (2DES),5) and plays a key role in the action

of many spintronic devices.6) It has been experimentally shown in quantum wells (QWs)

that the Rashba SOI can be controlled by the perpendicular electric field.7–9) The rate at

which the Rashba SOI changes with the electric field is determined by materials constituting

each QW.10) Therefore modifying the rate through material parameters is also effective in

controlling the Rashba SOI. To be more precise, the Rashba SOI is written as, for an electron

with in-plane wave vector (kx, ky) in the ground subband of the conduction band of a QW,

ĤR
so = α(σxky − σykx), (1)

where σx and σy are the Pauli spin matrices. In a QW with the structural inversion symmetry,

the Rashba SOI is induced by the perpendicular electric field Ez and α is given by α = asoEz

at small enough Ez. The proportionality constant aso depends on materials. In this paper we

explore controlling the Rashba SOI through aso.

Controlling α by aso is, in some cases, more convenient than by Ez. Reversing the sign

of α is employed in various spintronic devices proposed recently, such as a triple-barrier spin

filter consisting of two parallel 2DESs (formed by two QWs) with different signs of α11) [Fig.

1(a)]. Such proposals considered producing positive and negative α by changing the direction

of Ez. However, it is also possible to reverse the sign of α by changing the sign of aso. This
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method has the advantage that it works in a uniform Ez (in a triple-barrier spin filter formed

by two QWs with different signs of aso, increasing the magnitude of uniform Ez gives the

matching of spin-up levels in two QWs and that of spin-down levels in a sequential order, by

making widths of two QWs different).

The vanishing of α is required in some phenomena and devices. The persistent spin helix,

confirmed in recent experiments,12–15) has been originally predicted16) to occur in the case of

α = 0 in (110)-oriented QWs in addition to the case of α = β in (001)-oriented QWs, where β

is the coupling constant of the Dresselhaus SOI17) in the 2DES. The spin-lifetime field-effect

transistor proposed recently18) operates by switching α on and off. This proposal switches α

by varying the electric field Ez from a large value to zero. However, it will be more flexible

in application if α vanishes even in the presence of Ez by realizing aso = 0. For example,

consider two parallel 2DESs with aso = 0 in one 2DES and aso , 0 in the other [Fig. 1(b)],

which are formed in a double QW. In this structure we can switch α on and off by moving

electrons from one 2DES to the other by the action of Ez in which Ez changes the relative

position of energy levels in two QWs. Such a device has the advantage that it does not require

a fine tuning of Ez, while a precise tuning is necessary when we switch α off by setting Ez to

zero.19)

Reversing the sign of aso can be implemented by varying band offsets between well and

barrier layers in a QW structure as has been theoretically shown in our previous paper.20)

However the sign reversal of aso with band offsets has a restriction in materials forming

QWs: most QWs including a typical GaAs/AlGaAs QW have the type-I alignment giving

only positive values of aso.

In this paper we propose another method for the sign reversal of aso, which combines a

symmetric electrostatic potential with the potential induced by band offsets. The band-offset-

induced potential [Fig. 1(c)], which changes discontinuously at interfaces, has different values

at the conduction-band minimum, the maximum of the heavy-hole plus light-hole bands, and

that of the split-off band. The symmetric electrostatic potential [Fig. 1(c)], denoted by U(z),

is the same in all bands and symmetric with respect to the well center z = 0. We demonstrate,

employing a tight-binding model in (001)-oriented GaAs/AlGaAs QWs, that aso success-

fully converts its sign from positive to negative owing to the symmetric electrostatic potential

when it is lower in the well as in Fig. 1(c). Generation of an electrostatic potential in het-

erostructures has been experimentally demonstrated by introducing a microscopic capacitor

consisting of donor (Si) and acceptor (Be) doped thin layers in each side of a GaAs/AlGaAs

interface, which produce a doping interface dipole.21) It has been achieved by the δ-doping
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Fig. 1. (a) Two 2DESs with different signs of α because of different signs of aso.

(b) One 2DES with α = 0 (aso = 0) and one with α , 0 (aso , 0) .

(c) Band-edge energies of the conduction band and the valence bands in a GaAs/AlGaAs quantum well, and a

symmetric electrostatic potential U(z).

method22) that the width of doped layer reduces23, 24) to 10 Å and the doping areal density

reaches24) 1018 m−2 which produces the electric field of 109 V/m between two plates of the

microscopic capacitor.

Our QW structure consists of GaAs in the well layer and AlxGa1−xAs in the barrier layer.

The interfaces, placed on an As atomic layer, are parallel to the (001) plane of the zinc-blende

structure. We apply the periodic boundary condition between sample boundaries placed in
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the left and right barrier layers in calculating wave functions and energy levels. The barrier

layer (AlxGa1−xAs)140 with width 70a = 396 Å (a = 5.65Å is the lattice constant of GaAs

since AlGaAs is lattice-matched to GaAs) is thick enough that the wave function decays to a

negligible value at the boundaries.

We describe the symmetric electrostatic potential U(z) by a model potential with in-plane

translational symmetry. Our model potential is illustrated in Fig. 1(c) and given by U(z) =

0 (0 < z < z1), U(z) = UH(z − z1)/(z2 − z1) (z1 < z < z2), and U(z) = UH (z2 < z)

with U(−z) = U(z). The positions z1 and z2 are placed on Ga and AlxGa1−x atomic layers,

respectively, which are at the same distance from the interface [the position of the interface

becomes zI = (z1 + z2)/2]. We denote the well width 2zI by W and the thickness of the region

with the variation of U(z), z2 − z1, by dU .

Actual systems with δ doping have two points which are not described by U(z): (i) atomic

energy levels in a donor (and similarly in an acceptor) are different from those of the host

atom and (ii) the potential depends on x and y. However we focus on the effect of U(z)

on α because of the following reasons. With regard to the first point, we consider that the

influence of the difference in atomic energy levels between donor and host atoms is small

since the donor ionization energies of Si, Ge, and Sn in GaAs deviate only 4% from the

effective Rydberg constant.25, 26) For the second point, the x and y dependence of the poten-

tial induces the level broadening ℏ/τ with τ the lifetime due to scatterings. However such

scatterings depend on impurity distribution which we do not know precisely. In addition we

expect that the ideal δ doping with a uniform impurity distribution can be realized in the

future (a potential calculation for such ideal δ doping has already been performed27)). For

such reasons, many calculations on δ doping have been performed assuming the uniformity

of potential along the xy plane.22, 28, 29) According to these previous studies, we describe the

potential by U(z). In the following we explain limited information on the level broadening.

(1) Quantum oscillations of the magnetoresistance, observed28) in 2DESs formed by δ doping,

have revealed a well-defined subband structure in agreement with the calculation assuming

the in-plane translational symmetry, and suggested that the level broadening is less than a

few meV. (2) In the lowest-order perturbation theory, the level broadening is determined by∣∣∣∣⟨k′xk′y ∣∣∣Uimp(x, y, z)
∣∣∣ kxky

⟩∣∣∣∣2 ∝ ∣∣∣Ũimp(qx, qy, z)
∣∣∣2 where Uimp(x, y, z) is the potential due to im-

purities, Ũimp(qx, qy, z) is its two-dimensional Fourier transform, and (kx, ky) and (k′x, k
′
y) are

wave vectors of initial and final states. The wavelength corresponding to (qx, qy) is larger than

10 nm for the small values of kx, ky and k′x, k
′
y considered in the present paper. Such long-

wavelength component of the potential is suppressed by making the impurity distribution
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uniform. Therefore the crystal-growth technique, which enhances the uniformity of impurity

distribution, will reduce the level broadening.

The SOI acting on an electron in the ground subband of the conduction band in a (001)-

oriented QW is expressed by the in-plane effective magnetic field, Beff
x and Beff

y , as Ĥso =

Beff
x σx + Beff

y σy where the x and y axes are along [100] and [010] crystal axes, respectively. At

small wave numbers kx and ky, Beff
x and Beff

y are expressed by the Rashba term (coefficient α)

and the linear Dresselhaus term (β):

Beff
x = αky + βkx, Beff

y = −αkx − βky. (2)

The coefficients α and β can be obtained30) from Beff
x and Beff

y at (kx, ky) = (0, k) through

α = Beff
x /k and β = −Beff

y /k, respectively. The components Beff
x and Beff

y are calculated31)

by Beff
x = −∆k ⟨σx⟩k /2 and Beff

y = −∆k

⟨
σy

⟩
k
/2, respectively, where ∆k is the spin splitting

between energy levels at (kx, ky) = (0, k) in the ground subband of the conduction band and

⟨σx⟩k (
⟨
σy

⟩
k
) is the expectation value of σx (σy) for the lower of the split levels.

We perform the sp3s∗ empirical tight-binding calculation32) of energy levels and corre-

sponding wave functions to obtain ∆k and ⟨σx⟩k. The wave function in the sp3s∗ tight-binding

method is given by a linear combination of atomic orbitals, s, px, py, pz, and s∗ orbitals (s∗

is an excited s state), in each of cation and anion atoms (Ga and As, respectively, in the

case of GaAs) in well and barrier layers. Each orbital gives two bases corresponding to two

spin states, for example, |px ↑⟩ and |px ↓⟩. Matrix elements of the Hamiltonian are obtained

using tight-binding parameters, which are adjusted to reproduce the bulk band structure in

each of well and barrier semiconductors. The spin-orbit interaction is taken into account by

intra-atomic matrix elements between p-orbitals within each of cation and anion atoms and

is expressed by tight-binding parameters, ∆c and ∆a, which are the spin-orbit splitting of p-

levels in cation and anion atoms, respectively. The symmetric electrostatic potential U(z) and

the electric-field-induced potential, eEzz (−e is the electron charge and e > 0), are taken into

account in diagonal matrix elements.

We employ the tight-binding parameters presented in Ref. 33 for GaAs and AlAs and

obtain parameters for AlxGa1−xAs from the linear interpolation between those of GaAs and

AlAs, according to Ref. 33. These parameters accurately reproduce33) the experimental val-

ues34) of the conduction-band effective mass, the band gap and the valence-band spin-orbit

splitting of GaAs, AlAs, and AlxGa1−xAs (0 ≤ x ≤ 0.3). We employ values obtained from

Ref. 34 of the band offset in heavy-hole plus light-hole bands of AlxGa1−xAs relative to GaAs,

∆Ev[eV] = −0.53x. We set intra-atomic tight-binding parameters of As atoms at each inter-
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face equal to the average of those in GaAs and in AlxGa1−xAs.
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Fig. 2. Coefficient α of the Rashba SOI in a GaAs/AlxGa1−xAs QW with a symmetric electrostatic

potential. (a) The x component of the effective magnetic field Beff
x as a function of ky at kx = 0. (b) The Ez

dependence of α calculated from Beff
x at ky = 0.001(2π/a) = 0.001 Å−1 through α = Beff

x /ky. The inset presents

the Ez dependence of β, the coefficient of the Dresselhaus SOI, calculated from Beff
y by β = −Beff

y /ky.

Figure 2(a) presents calculated Beff
x as a function of ky at kx = 0 for several values of

Ez in a symmetric electrostatic potential with UH = 0.7 eV and dU = 7a/2 = 19.8 Å

in a GaAs/AlxGa1−xAs QW with x = 0.1 and the well layer consisting of (GaAs)36 (W =

36a/2 =102 Å). Each line shows that Beff
x is linear in ky when ky < 0.01(2π/a) = 0.01 Å−1.

The slope of each line is α. Figure 2(b) presents α as a function of Ez for several values of

UH at a fixed value of dU = 19.8 Å in the same QW, showing that α is linear in Ez at small

values of Ez. Then we calculate the coefficient aso by aso = α/Ez. Figure 3(a) presents aso

as a function of UH for several values of the Al fraction x. The value of aso decreases with

increasing UH and with decreasing x. The sign of aso is positive at UH = 0 (x ≥ 0.1) and
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converts to negative at UH = 0.8 eV for x = 0.1 and at a larger value of UH with increasing x.

Figure 3(b) and (c) show that, as we increase dU or decrease W, aso increases (UH > 0.6 eV),

resulting in a shift of the aso-vanishing point to a larger UH.

The calculated coefficient of the Dresselhaus SOI, β, is also presented in Fig. 2(b) as

a function of Ez for several values of UH, which shows that β depends only weakly on Ez

and increases with increasing UH. Such dependences can be understood by the formula35)

β = γ
⟨
k̂2

z

⟩
where γ is the Dresselhaus SOI constant of GaAs,

⟨
k̂2

z

⟩
is the expectation value of

k̂2
z with respect to the ground-subband wave function, and k̂z = −i∂/∂z, since

⟨
k̂2

z

⟩
has a weak

dependence on Ez and increases as the confinement becomes stronger. The calculated value

of β = 8 meV·Å at UH = 1.2 eV in Fig. 2(b) is close to the estimate of β = γ
⟨
k̂2

z

⟩
= 7 meV·Å

which uses the sp3s∗ tight-binding value36) of γ = 10 eV ·Å3 and the value of
⟨
k̂2

z

⟩
from the

present tight-binding calculation.

We discuss the above calculated results of α using the k · p approximation generalized

to heterostructures.10, 37) Retaining terms to the lowest order in kP/Eg, where k is the wave

number, P is the Kane matrix element,38) and Eg is the band gap, the coefficient α of the

Rashba SOI in the ground subband of the conduction band is given by

α = (P2/3) ⟨0 |(∇zGv − ∇zGs)| 0⟩ , (3)

where ⟨z|0⟩ = φ0(z) is the ground-subband wave function and ∇z = ∂/∂z. For the value of

P we use that of the well material GaAs. Functions Gv(z) and Gs(z) are defined by Gv(z) =

[E − Ev(z) − Ves(z)]−1 and Gs(z) = [E − Es(z) − Ves(z)]−1 where the electron energy E is at

the energy of the state |0⟩ and Ev(z) [Es(z)] is the energy at the maximum of the heavy-hole

plus light-hole bands [the split-off band]: Ev(z) = EW
v [Es(z) = EW

s ] in the well layer and

Ev(z) = EB
v [Es(z) = EB

s ] in the barrier layer. The total electrostatic potential Ves(z) is given

by Ves(z) = eEzz + U(z). Then we have

α =
⟨
0
∣∣∣ηes(z)(eEz + ∇zU) + ηv

bo∇zEv − ηs
bo∇zEs

∣∣∣ 0⟩ , (4)

with

ηes =
P2

3
(G2

v −G2
s ), ηv

bo =
P2

3
GW

v GB
v , η

s
bo =

P2

3
GW

s GB
s , (5)

where GW
v = [E − EW

v − U(zI)]−1, GB
v = [E − EB

v − U(zI)]−1, and GW
s and GB

s are similarly

defined. At small values of Ez, we have α = asoEz with

aso=

∫ [
eηesρ0 +

(
ηes∇zU + ηv

bo∇zEv − ηs
bo∇zEs

) ρ1

Ez

]
dz, (6)

where ρ0 = [ρ(z) + ρ(−z)]/2 > 0 and ρ1 = [ρ(z) − ρ(−z)]/2 with ρ(z) = |φ0(z)|2. Here we
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have neglected the Ez dependence of ηes and used that U(z), Ev(z), and Es(z) are symmetric

with respect to the well center, z = 0. Equation (6) shows that aso > 0 when UH = 0 and that

aso < 0 when UH becomes large enough, since ηes > 0, ηv
bo > η

s
bo > 0, ρ1/Ez < 0 (z > 0),

∇zU > 0 (z > 0) in our model, and ∇zEv ≈ ∇zEs < 0 (z > 0) in GaAs/AlGaAs QWs. With

increasing the Al fraction x, the value of |∇zEv| ≈ |∇zEs| increases and then aso increases.

Such qualitative dependences on UH and x of aso are in agreement with the tight-binding

calculation presented in Fig. 3(a). Quantitatively the k · p approximation to the lowest order

in kP/Eg deviates from the tight-binding calculation at large values of UH, as demonstrated

in Fig. 3(b).

The dU dependence of aso at larger values of UH can be understood by considering the

contribution to the integral IU =
∫
ηes(∇zU)(ρ1/Ez)dz in Eq.(6) from the region zI < z < z2

with a larger ηes [because of a larger U(z)]. As dU decreases (the region with nonzero ∇zU

becomes thinner), the penetration of the wave function (and |ρ1(z)|) into the region with larger

ηes increases. This increased penetration leads to the increase of |IU | and then to a negative

shift of aso because IU < 0. The W dependence, unfortunately, can not be explained by Eq.(6),

since the correction to the present k · p approximation has a large W dependence.

In conclusion we have calculated the coefficient α of the Rashba SOI in (001)-oriented

GaAs/AlGaAs QWs with a symmetric electrostatic potential by a tight-binding model, and

found that the constant aso, which is defined by α = asoEz with Ez the perpendicular electric

field, changes its sign with increasing the strength of the symmetric potential. Therefore the

symmetric electrostatic potential can be used to eliminate α in nonzero Ez.
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Fig. 3. Proportionality constant aso (calculated from aso = α/Ez at Ez = 0.01 mV/Å) of the Rashba SOI in a

GaAs/AlxGa1−xAs QW with a symmetric electrostatic potential. (a) The x dependence of aso as a function of

UH. (b) The dU dependence of aso as a function of UH, with the k · p result corresponding to dU = 0. (c) The

well width W dependence of aso as a function of UH.
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