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Image inpainting based on sparse
representations with a perceptual metric
Takahiro Ogawa* and Miki Haseyama

Abstract

This paper presents an image inpainting method based on sparse representations optimized with respect to a

perceptual metric. In the proposed method, the structural similarity (SSIM) index is utilized as a criterion to optimize

the representation performance of image data. Specifically, the proposed method enables the formulation of two

important procedures in the sparse representation problem, ‘estimation of sparse representation coefficients’ and

‘update of the dictionary’, based on the SSIM index. Then, using the generated dictionary, approximation of target

patches including missing areas via the SSIM-based sparse representation becomes feasible. Consequently, image

inpainting for which procedures are totally derived from the SSIM index is realized. Experimental results show that the

proposed method enables successful inpainting of missing areas.

1 Introduction
In the field of image processing, there exist many studies

on image restoration/enhancement such as image denois-

ing [1-3], image deblurring [4,5], and image inpainting [6].

Furthermore, it is well known that the performance of

these studies has been rapidly improved in recent years

[1,2,4]. Missing area reconstruction is one of the most

attractive topics for study in the field of image restoration

since it has a number of applications. Unnecessary object

removal, missing block reconstruction in an error-prone

environment in wireless communication, and restoration

of corrupted old films are representative applications.

Since missing area reconstruction can be used in many

applications, it has various names including inpainting,

image completion, error concealment, and blotch and

scratch removal. In this paper, we use ‘inpainting’ since

this is one of the most common names in this research

field.

Many inpainting methods for the above applications

have been proposed [7-45]. Most methods are broadly

classified into two categories: missing structure recon-

struction [7-18] and missing texture reconstruction

[21-45]. In addition, there have been proposed several

inpainting methods which adopt the combined use of the

structure and texture reconstruction approaches [20,42].
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Variational image inpainting methods which aim at

successful structure component reconstruction have tra-

ditionally been studied. Variational image inpainting is

performed based on the continuity of the geometrical

structure of images. Most variational inpainting meth-

ods solve partial differential equations (PDEs). One of

the pioneering works was proposed by Masnou et al. [7].

Furthermore, Bertalmio et al. proposed a representative

image inpainting technique which is based on PDEs. Not

only the above methods but also several improved meth-

ods have recently been proposed [12-15]. Although these

variational image inpainting methods enable successful

reconstruction of the structure components, images also

include other different important components, i.e., tex-

ture components, and alternative methods tend to output

better results. The remainder of this paper focuses on the

reconstruction of textures with discussion of its details.

Results of pioneering work based on texture synthe-

sis were reported by Efros et al. [21]. Their method is

based on the Markov random field model, and inpainting

is realized by copying known pixels within a target image.

It is well known that successful inpainting of pure tex-

ture images can be realized using their method. In recent

years, their ideas have been improved bymany researchers

[22-30].

Drori et al. [23] and Criminisi et al. [24] developed

more accurate inpainting techniques. Drori et al. pro-

posed a fragment-based image completion algorithm that

© 2013 Ogawa and Haseyama; licensee Springer. This is an Open Access article distributed under the terms of the Creative

Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and

reproduction in any medium, provided the original work is properly cited.
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can preserve not only textures but also structures within

target images. Criminisi et al. proposed an exemplar-

based inpainting method, and it became a benchmarking

method in this study field. Their method adopts a patch-

based greedy sampling algorithm, and faster and simpler

inpainting becomes feasible. Recently, many improved

versions of the above exemplar-based inpainting method

[25-29] have intensively been proposed. Specifically, Meur

et al. proposed multiresolution analysis-based inpaint-

ing approaches using the exemplar-based method [28,29].

Kwok et al. proposed a much faster inpainting method

in which useful schemes for calculating patch similarities

in exemplar-based inpainting were introduced [30]. They

also reported that their method provided better results

than those of the previously reported methods in some

cases.

The above existing methods based on texture synthesis

and exemplar-based inpainting generally copy pixel values

to missing areas directly. Thus, if target images contain

uniform and simple textures, the methods can perform

accurate inpainting. However, if the above conditions are

not satisfied, it becomes difficult to approximate miss-

ing textures by only the best matched examples. There-

fore, many inpainting methods that approximate patches

including missing areas using subspaces generated from

known areas within target images have been proposed. In

thesemethods, target patches are generally represented by

linear combinations of bases that span the obtained sub-

spaces. The performance of inpainting therefore depends

on the generated subspaces and linear coefficients for cal-

culating the linear combination. Amano et al. proposed a

principal component analysis (PCA)-based missing area

inpainting method using back projection for lost pixels

[31]. They utilized an eigenspace that enabled derivation

of inverse projection for the inpainting. Several inpaint-

ing methods in which kernel methods are introduced into

PCA-based subspace construction have also been pro-

posed [32-35]. Based on nonlinear eigenspaces, successful

representation of image data becomes feasible, i.e., the

methods are suitable for approximating nonlinear struc-

tures in images.

Recently, sparse representation for image inpainting has

been intensively studied. Sparse representation enables

adaptive selection of optimal bases suitable for approx-

imating target images [36,37]. This means subspaces

utilized for the inpainting can be adaptively provided.

Therefore, several inpainting methods using sparse rep-

resentation have been proposed [38-42]. Furthermore,

Xu et al. have shown the effective use of sparse rep-

resentation for realizing image inpainting [41]. Specifi-

cally, in their method, new modeling of patch priority

and patch representation, which are two crucial steps

for patch propagation in an exemplar-based inpainting

approach, based on sparsity is adopted. In similar ideas,

several inpainting methods based on neighbor embed-

ding approaches are proposed [43,44]. These methods

are derived from the aspect of the manifold learn-

ing and provide good results. Furthermore, inpainting

methods based on rank minimization have also been

proposed [45].

The above-described existing methods are based on

least squares approximation for inpainting. This means

that inpainting minimizing the mean square error (MSE)

of intensities, which is the most popular metric, is per-

formed. However, several works [46,47] show that MSE

optimal algorithms cannot provide high visual quality.

Thus, it may not be appropriate to use MSE as a qual-

ity measure for the inpainting. It should be noted that

using kernel PCA (KPCA) [32,33], methods such as those

shown in [34] and [35] try to approximate nonlinear image

features. These methods perform least squares approxi-

mation in high-dimensional nonlinear feature spaces, and

it has been reported that improvement in performance

was achieved in some cases.

Recently, image quality assessment has become popu-

lar in overcoming the problem of MSE and its variants.

Criteria such as noise quality measure [48], informa-

tion fidelity criterion [49], and visual information fidelity

[50] are well known as perceptual distortion measures,

and their performances have been evaluated in detail

[51]. The structural similarity (SSIM) index [52] is uti-

lized as one of the most representative quality measures

in many fields of image processing. Since its formu-

lation is simple and easy to analyze, the SSIM index

can be applied to not only image quality assessment

but also design of linear equalizers [53]. Therefore, suc-

cessful inpainting based on this quality measure can be

expected.

In this paper, we present an inpainting method based

on sparse representations optimized with respect to a

perceptual metric. In order to perform inpainting using

sparse representation, the SSIM index is used for a crite-

rion to optimize the representation performance.

Specifically, the proposed method introduces the SSIM-

based criterion into two important procedures in the

sparse representation problem, i.e., ‘estimation of the

sparse representation coefficients’ and ‘update of the

dictionary’. This is the biggest difference between the pro-

posed method and existing methods. Then, by deriving

the sparse representation of target patches includingmiss-

ing areas based on the generated dictionary, inpainting

based on the SSIM index is realized. Note that in the

above approach, since optimization problems maximiz-

ing the SSIM index are nonconvex, the computation

scheme in [53] is adopted, and nonconvex optimiza-

tion problems are reformulated as quasi-convex problems.

In the proposed method, the optimal subspace can be

adaptively provided for each target patch using sparse
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representation. Furthermore, since the SSIM index, which

is a better perceptual criterion than the traditional MSE

and its variants, is used, successful inpainting can be

expected.

A similar approach has also been proposed by Rehman

et al. for realizing noise removal and super-resolution [54].

On the other hand, we present a new scheme for realiz-

ing inpainting in this paper, and the target application is

different from those in [54]. Basically, in our method, the

algorithms for estimation of sparse representation coeffi-

cients and generation of the dictionary are different from

those in the method of Rehman et al. Furthermore, the

biggest difference between our method and the method

in [54] is generation of the dictionary. Specifically, in

the existing method [54], the dictionary is obtained by

directly using the K-SVD algorithm [36], which is based

on theMSE-based criterion, where SVD represents singu-

lar value decomposition. On the other hand, the proposed

method tries to obtain the dictionary based on the SSIM-

based criterion, and all of the procedures are based on the

SSIM index.

This paper is organized as follows. First, in Section 2,

we briefly explain sparse representation and the SSIM

index, which are used in the proposed method, as pre-

liminaries. Next, in Section 3, we explain the overview of

the proposed method. An inpainting method via sparse

representation based on the SSIM index is proposed in

Section 4. Experimental results that verify the perfor-

mance of the proposed method are shown in Section 5.

Finally, conclusions are given in Section 6.

2 Preliminaries
In this section, we briefly explain sparse representation

and the SSIM index used in the proposed method as pre-

liminaries. They are presented in Sections 2.1 and 2.2,

respectively.

2.1 Sparse representation
Sparse representation of signals is explained in this sub-

section. The basic algorithm for sparse representation

and the K-SVD algorithm [36], which is closely related to

the proposed method, are shown in this subsection. Thus,

we briefly explain their ideas.

Given an overcomplete dictionary D∈Rn×K whose

columns are prototype signal-atoms dj ∈ Rn( j = 1,

2, . . . ,K), a target signal y ∈ Rn can be represented as a

sparse linear combination of these atomsa. Specifically, y
is approximated as y ∼= Dx (x ∈ RK ), where x is a vector

containing the representation coefficients of signal y, and
it satisfies ||y − Dx||p ≤ ε. In this subsection, we assume

p = 2.

If n < K and D is a full-rank matrix, an infinite num-

ber of solutions are available for the above representation

problem. Thus, a new constraint is introduced into this

problem, and the solution is obtained by solving

minx
∣∣∣∣y − Dx

∣∣∣∣2
2

subject to ||x||0 ≤ T , (1)

where ||·||0 represents the l0-norm. Furthermore,T deter-

mines the sparsity of the signals. The above equation

represents the optimal representation coefficient vector x
minimizing the distance ||y − Dx||22 which is calculated

under the constraint that the number of the nonzero ele-

ments in x is T or less. For example, Figure 1a shows an

example of the sparse representation of the target vector y,
where in this example, ||x||0 = 6. Therefore, the number

of the nonzero elements in x is six. By limiting the number

of the nonzero elements, we can obtain the solution of the

above linear combination. It is well known that calculation

of the optimal solution is a nondeterministic polynomial-

time hard (NP-hard) problem [55]. Thus, several methods

that approximately provide solutions of the above problem

have been proposed, and the simplest ones are matching

pursuit (MP) [56] and orthogonal MP (OMP) algorithms

[57-59]. The basis pursuit algorithm is also a represen-

tative algorithm solving the problems by replacing the

l0-norm with an l1-norm [60]. The focal underdeter-

mined system solver is a similar algorithm using lp-norm
(p ≤ 1) [61].

Next, given a set of signal vectors yi(i = 1, 2, . . . ,N),

there exist dictionary matrices providing the sparse solu-

tion xi. The K-SVD algorithm [36] can provide the optimal

dictionary matrix D and coefficient vectors xi(i = 1,

2, . . . ,N) by solving

min
D,X

{||Y − DX||2F
}

subject to ∀i, ||xi||0 ≤ T , (2)

where X = [x1, x2, . . . , xN ] and Y = [y1, y2, . . . , yN ], and
|| · ||F represents the Frobenius norm. In Equation 2, this

problem is to obtain the optimal dictionary matrix D and

representation coefficient vectors xi(i = 1, 2, . . . ,N) min-

imizing the sum of ||yi − Dxi||2(i = 1, 2, . . . ,N) under

the constraint that the number of the nonzero elements

in xi(i = 1, 2, . . . ,N) is T or less. Figure 1b shows the

relationship between Y and DX, where the number of the

nonzero values in each xi of X is six in this example. The

K-SVD algorithm approximately calculates the optimal

solution of Equation 2 by iterating calculation of xi(i = 1,

2, . . . ,N) based on the OMP algorithm and update of

the atoms dj(j = 1, 2, . . . ,K) in the dictionary matrix

D using singular value decomposition (SVD). Specifically,

the representation coefficient vector xi(i = 1, 2, . . . ,N) is

estimated one by one, and each atom dj(j = 1, 2, . . . ,K)

in the dictionary matrix D is also updated one by one.

As described above, for updating dj(j = 1, 2, . . . ,K), SVD

is adopted for effectively providing the approximately

optimal solution.
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b

a

Figure 1 Brief overview of the sparse representation. (a) Sparse linear combination Dx approximating y, where ||x||0 = 6 and (b) two matrices
D and X calculated in K-SVD algorithm [36] from Y, where D is a dictionary matrix, X is a matrix including representation coefficient vectors, and Y is
a matrix including target signals.

2.2 Structural similarity index
The SSIM index represents the similarity between two sig-
nal vectors y1 and y2(∈ Rn), and its specific definition is
as follows:

SSIM(y1, y2) = [
l(y1, y2)

]α × [
c(y1, y2)

]β × [
s(y1, y2)

]γ
, (3)

where the terms l(y1, y2) and c(y1, y2) respectively com-

pare the mean and variance of the two signal vectors.

Furthermore, s(y1, y2) measures their structural correla-

tion. Therefore, from Equation 3, the similarity between

two signal vectors is obtained from the three similarities of

their luminance, contrast, and structure components, i.e.,

l(y1, y2), c(y1, y2), and s(y1, y2), which are closely related

to the human visual system (HVS), where their details are

shown below. Note that the parameters α > 0,β > 0,

and γ > 0 determine the relative importance of the

three components in Equation 3. Next, the three terms,

l(y1, y2), c(y1, y2), and s(y1, y2), are obtained as

l(y1, y2) = 2μy1μy2 + C1

μ2y1 + μ2y2 + C1
, (4)

c(y1, y2) = 2σy1σy2 + C2

σ 2y1 + σ 2y2 + C2
, (5)

s(y1, y2) = σy1,y2 + C3

σy1σy2 + C3
. (6)
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In the above equations, μy1 and μy2 are the means of

y1 and y2, σ 2
y1 and σ 2

y2 are the variances of y1 and y2,
and σy1,y2 is the cross covariance between y1 and y2. The
constants C1,C2, and C3 are necessary to avoid instability

when the denominators are very close to zero.

As shown in [52], the parameters are set as α = β =
γ = 1 and C3 = C2

2 , and formulation of the SSIM index is

simplified by

SSIM(y1, y2) =
(
2μy1μy2 + C1

) (
2σy1,y2 + C2

)
(
μ2y1 + μ2y2 + C1

) (
σ 2y1 + σ 2y2 + C2

) . (7)

Note that in the proposed method shown in Section 4,

C1 = (K1Imax) and C2 = (K2Imax), where Imax = 255,

K1 = 0.01, and K2 = 0.03. Thus, α,β , γ ,C1,C2, and C3

are set to the values shown in [52].

In [47] and [52], the effectiveness of the SSIM index as

a quality measure, its superiority to MSE, and its vari-

ants are presented in detail. Generally, MSE cannot reflect

perceptual distortions, and its value becomes higher for

images altered with some distortions such as mean lumi-

nance shift, contrast stretch, spatial shift, spatial scaling,

and rotation but with negligible loss of subjective image

quality. Furthermore, blurring severely deteriorates image

quality, but its MSE becomes lower than those of the

above alterations. On the other hand, the SSIM index

is defined by separately calculating three similarities in

terms of luminance, variance, and structure, which are

derived on the basis of the HVS not accounted for by

MSE. Therefore, it becomes a better quality measure pro-

viding a solution to the above problem, and this is also

confirmed in [47]. We can therefore expect that the use

of this similarity for inpainting will provide successful

results.

Note that moment invariants take not only image fea-

tures, such as means and variance, but also image degra-

dations, such as translation, scaling, and rotation, into

accounts to generate some invariants and to properly

match images without setting any constant. Therefore, in

the rest of this subsection, we show some discussions of

advantage and disadvantage of the use of the SSIM index

by comparing with moment invariants.

2.2.1 Advantage
In the proposed method, we use the SSIM index to rep-

resent the visual quality of inpainting results. The SSIM

index is defined based on several characteristics in the

HVS. As shown in Equations 3 to 7, the SSIM index is

related to luminance and contrast masking and the corre-

lation. This means that the SSIM index is obtained from

the three elements, i.e., Equations 4 to 6. Specifically, the

first term defined in Equation 4 is consistent withWeber’s

law, which states that the HVS is sensitive to the rela-

tive luminance change, and not to the absolute luminance

change. The second term defined in Equation 5 is derived

based on the contrast masking characteristic that the con-

trast change is less sensitive when there is a high base

contrast than there is a low base contrast. Then, in the

third term defined in Equation 6, the structure compari-

son is conducted after luminance subtraction and contrast

normalization. If we ignore C3, it is equivalent to calculat-

ing the correlation coefficient. In this way, it can be seen

that the SSIM index is derived by a bottom-up scheme

according to the HVS. This means the proposed method

using the SSIM index can perform the inpainting with

consideration of the sensitivity to the HVS.

2.2.2 Disadvantage
It is known that the SSIM index tends to be robust to

translation, scaling, and rotation. However, as those gaps

become larger, it also becomes difficult to provide accu-

rate visual quality using the SSIM index due to its defini-

tion. On the other hand, moment invariants can output

several useful criteria which are invariant under transla-

tion, scaling, and rotation. Therefore, if a new visual qual-

ity measure can be derived from these moment invariants,

successful inpainting based on the derivedmeasure can be

also expected. Furthermore, the SSIM index has several

parameters compared to the moment invariants.

Note that when comparing with the MSE and its vari-

ants, the SSIM index can only be calculated from some

areas. This means the SSIM index is calculated in a block-

wise scheme, not in a pixel-wise scheme. Therefore, to

realize the use of the SSIM index for inpainting, we have

to adopt the block-wise procedures.

3 Overview of our proposed framework
This section presents the overview of the proposed frame-

work. First, we show the outline of the proposed method

in Figure 2. As shown in this figure, the proposed method

consists of two algorithms, ‘generation of dictionary’

and ‘inpainting of missing areas’. This means these two

algorithms respectively correspond to training and test

phases.

3.1 Generation of dictionary
First, in the generation of the dictionary, we clip known

patches not including any missing areas from the target

image, and the dictionary matrixD shown in Section 2.1 is

calculated from these patches. In the same manner as the

traditional sparse representation problems, we iteratively

perform two procedures, ‘calculation of the representa-

tion coefficients’ and ‘update of the atoms included in the

dictionary matrix D’. The procedures are similar to those

of the traditional method (K-SVD algorithm [36]). The

contribution of the proposed method, i.e., the difference
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Figure 2 Block diagram of the proposedmethod. The proposed method consists of two parts ‘Generation of dictionary’ and ‘Inpainting of
missing areas’, respectively, shown in Sections 4.1 and 4.2.

from the traditional method, is the introduction of the

SSIM index. Specifically, the representation coefficients

and the atoms of the dictionary matrix are calculated in

such a way that the SSIM-based approximation perfor-

mance becomes the highest. This means that the cost

function ||Y − DX||2F in Equation 2 is replaced with that

of the SSIM index. Note that in the calculation of the

representation coefficients, the maximization problem of

the SSIM index is a nonconvex problem, and thus, it is

reformulated as a quasi-convex problem using the com-

putation scheme in [53]. On the other hand, in the update

of the atoms of the dictionary matrix, we use a sim-

ple steepest ascent algorithm since the introduction of

the computation scheme in [53] needs high computation

costs. In K-SVD algorithm [36], the atoms can be effec-

tively updated using SVD, but this scheme is based on

the least-square approximation, and therefore, we use the

simple steepest ascent algorithm.

3.2 Inpainting of missing areas
In the inpainting of missing areas, we first clip a patch

including missing areas from the target image. Note that

we have to determine which patch should be first selected

for the inpainting. In the proposed method, we calculate

the patch priority for determining the inpainting order

based on the method in [24]. Therefore, the patch maxi-

mizing the patch priority is selected, and its missing areas

are reconstructed in the proposed method.
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For the selected patch (denoted as the target patch)

including missing areas, the inpainting procedures are

performed. Specifically, the proposed method performs

the sparse representation of the target patch to estimate

the missing intensities. Note that the cost function in

Equation 1 is replaced with an SSIM version. Thus, this

is the difference from the traditional sparse representa-

tion approach and the biggest contribution in ourmethod.

The sparse representation of the target patch maximizing

the SSIM index is then performed, where this nonconvex

maximization problem is also reformulated as a quasi-

convex problem using the computation scheme in [53].

In Figure 2, the specific procedures for calculating the

sparse representation are shown. Their details are shown

in the following section. From the approximation results

obtained by the above sparse representation, the pro-

posedmethod outputs the estimated intensities within the

missing areas of the target patch.

By iterating the patch selection based on the patch pri-

ority and its SSIM-based missing area reconstruction, we

can inpaint the whole missing areas within the target

image.

4 Image inpainting via SSIM-based sparse
representation

The inpainting method via SSIM-based sparse represen-

tation is presented in this section. As described in the

previous section, the proposed method is divided into

two algorithms, generation of a dictionary and inpainting

algorithm. In the first algorithm, the dictionary is gener-

ated from known patches fi (i = 1, 2, . . . ,N) within the

target image, where N is the number of known patches,

and their size is w × h pixels. It should be noted that

the proposed method performs calculation of the dictio-

nary based on the new perceptually optimized criterion,

i.e., the SSIM index. The details of this calculation are

shown in Section 4.1. In the second algorithm, the pro-

posedmethod clips a patch f includingmissing areas from

the target image and estimates their unknown intensi-

ties. In this algorithm, sparse representation based on the

SSIM index is introduced into the inpainting. Its details

are shown in Section 4.2. For the following explanation,

we denote unknown and known areas within f as � and

�̄, respectively.

4.1 Generation of the dictionary
In this subsection, the algorithm for generating the dictio-

nary is presented. In the proposed method, we calculate

the dictionary matrix D in Equation 2 for reconstructing

the missing areas within the target image. Note that the

difference from Equation 2 is the use of the SSIM index.

In contrast to Equation 2 in minimizing the MSE of the

approximation results, the proposed method maximizes

the SSIM index of the approximation results by the sparse

representation. Similar to K-SVD algorithm [36], since it

is difficult to simultaneously obtain the dictionary matrix

and the representation coefficients, we iteratively update

these two. Specifically, for the calculation of the repre-

sentation coefficients optimal in terms of the SSIM index,

we use their simple estimation scheme similar to some

matching pursuit algorithms. Furthermore, its nonconvex

optimization problem is reformulated as a quasi-convex

problem using the calculation scheme in [53]. On the

other hand, each atom of the dictionary matrix is updated

one by one by a simple steepest ascent algorithm. The

details are shown below.

As described above, known patches fi(i = 1, 2, . . . ,N)

with sizes ofw×h pixels are clipped from the target image

in the same interval. This means that the patches fi for
generating the dictionary are selected from known parts,

which are not damaged, of the target image. Next, for each

patch fi, we define a vector yi ∈ Rwh, whose elements are

its raster-scanned intensities. Using an overcomplete dic-

tionary matrix D ∈ Rwh×K containing K prototype atoms

dj ∈ Rwh(j = 1, 2, . . . ,K), each vector yi is represented as a
sparse linear combination of these atoms, yi ∼= Dxi, where
it satisfies SSIM (yi,Dxi) ≥ η for a fixed value η that cor-

responds to ε in the previous section. The vector xi ∈ RK

contains the representation coefficients of yi.
If wh < K and D is a full-rank matrix, an infinite

number of solutions are available for the representation

problems. Therefore, in the same manner as Equation 1,

the proposed method adopts the solution of

maxxi
SSIM (yi,Dxi) subject to ‖xi‖0 ≤ T . (8)

This means that the optimal vector of xi is obtained by

maximizing the SSIM index between yi andDxi under the
constraint that the number of the nonzero elements in xi
is T or less. The optimal representation coefficients can

then be obtained by solving the above equation.

In addition, according to Equation 2 in the K-SVD

algorithm [36], the optimal dictionary matrix D can be

obtained by solving the following maximization problem:

max
D,xi(i=1,2,...,N)

N∑
i=1

SSIM (yi,Dxi) subject to ∀i,

||xi||0 ≤ T .

(9)

This means that we calculate the dictionary matrix D
maximizing the approximation performance of all yi(i =
1, 2, . . . ,N) in terms of the SSIM index under the con-

straint that the number of the nonzero elements in xi(i =
1, 2, . . . ,N) is T or less. In the proposed method, the

optimal dictionary matrix D is estimated using a scheme

similar to the K-SVD algorithm [36], where the procedures

are based on the SSIM index. Specifically, this scheme is

divided into two procedures, calculation of the optimal
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vector xi(i = 1, 2, . . . ,N) and update of the dictionary

matrix D, and they are iteratively performed. We show

each of the procedures below.

4.1.1 Calculation of the optimal vector xi

By fixing the dictionary matrix D, the optimal vector

xi is calculated for each yi. Specifically, xi can be cal-

culated on the basis of Equation 8. In this optimization

problem, we select T optimal atoms that provide the

optimal linear combination based on the SSIM index.

Therefore, we adopt the simplest algorithm that selects

the optimal atoms one by one, and it is similar to sev-

eral matching pursuit algorithms [56-59]. Specifically, for

each yi(i = 1, 2, . . . ,N), we first search one atom which

provides its optimal approximation, maximizing the SSIM

index. Furthermore, by adding another atom to the previ-

ously selected atoms, we calculate their SSIM-based linear

combination approximating each yi, and then, the opti-

mal atom maximizing the SSIM index with the previously

selected atoms is selected. Then, by iterating this pro-

cedure T times, the T optimal atoms can be selected

for each yi. Therefore, the procedures are quite simple.

In each iteration, we simply select one atom in such a

way that the linear combination of this atom and the

previously selected atoms maximizes the SSIM index for

approximating each yi(i = 1, 2, . . . ,N).

The details of the tth (t = 1, 2, . . . ,T) optimal atom

selection are shown below.

In the tth optimal atom selection for yi, the following

vector is first defined:

y(t)
i,j =

[
D(t−1)

i dj
] [x(t)

i
xj

]

= D(t)
i,j x(t)

i,j (j = 1, 2, . . . ,K), (10)

where D(t−1)
i is a wh × (t − 1) matrix containing t − 1

atoms previously selected from dj(j = 1, 2, . . . ,K) in t − 1

iterations. In addition,

D(t)
i,j =

[
D(t−1)

i dj
]
, (11)

and

x(t)
i,j =

[
x(t)
i
xj

] (∈ Rt) (12)

is a coefficient vector for calculating y(t)
i,j . The vector x(t)

i
contains representation coefficients that respectively cor-

respond to the atoms in D(t−1)
i , and xj is that correspond-

ing to dj. Here, we show the specific definitions of x(t)
i,j , y(t)

i,j ,

and D(t)
i,j . First, x(t)

i,j is the sparse representation coefficient

vector for representing yi with the atom dj selected to

be appended at iteration t, and y(t)
i,j is the corresponding

approximation of yi. Next, D(t)
i,j is a matrix including t − 1

atoms previously selected in t − 1 iterations and the atom

dj at iteration t which are used for representing yi. The
proposed method estimates the optimal vector ŷ(t)

i,j of y(t)
i,j

(j = 1, 2, . . . ,K) that provides the optimal representation

performance. Then the optimal atom dj is selected to

maximize the SSIM index for the representation of yi by
itself together with the atoms selected in the previous t−1

iterations.

In order to calculate ŷ(t)
i,j , the optimal coefficient vector

x̂(t)
i,j in the following equation must be estimated:

ŷ(t)
i,j = D(t)

i,j x̂(t)
i,j . (13)

Thus, we have to solve

x̂(t)
i,j = argmax

x(t)
i,j

SSIM
(
yi, y(t)

i,j

)
, (14)

where SSIM
(
yi, y(t)

i,j

)
is defined as

SSIM
(
yi, y(t)

i,j

)
=
⎛
⎜⎝ 2μyiμy(t)

i,j
+ C1

μ2yi + μ2

y(t)
i,j

+ C1

⎞
⎟⎠
⎛
⎜⎝ 2σyi ,y(t)

i,j
+ C2

σ 2yi + σ 2

y(t)
i,j

+ C2

⎞
⎟⎠ .(15)

In this equation,μyi(= 1
wh1′yi) and σ 2

yi(= 1
wh ||yi−μyi1||2)

are respectively the mean and variance of yi, where 1 =
[1, 1, . . . , 1]′ is a wh × 1 vector, and the vector/matrix

transpose is denoted by the superscript ′ in this paper.

Similarly, μy(t)
i,j

and σ 2

y(t)
i,j

are the mean and variance of y(t)
i,j ,

respectively, and are obtained as follows:

μy(t)
i,j

= 1

wh1
′y(t)
i,j

= 1

wh1
′D(t)

i,j x(t)
i,j

= μD(t)
i,j

′x(t)
i,j , (16)

σy(t)
i,j

= 1

wh

(
y(t)
i,j − μy(t)

i,j
1
)′ (

y(t)
i,j − μy(t)

i,j
1
)

= 1

wh

(
D(t)

i,j x(t)
i,j − 1

wh11
′D(t)

i,j x(t)
i,j

)′

×
(
D(t)

i,j x(t)
i,j − 1

wh11
′D(t)

i,j x(t)
i,j

)

= 1

whx
(t)
i,j

′D(t)
i,j

′ (I − 1

wh11
′
)(

I − 1

wh11
′
)
D(t)

i,j x(t)
i,j

= 1

whx
(t)
i,j

′D(t)
i,j

′H′HD(t)
i,j x(t)

i,j

= x(t)
i,j

′K(t)
i,j x(t)

i,j , (17)

where

μD(t)
i,j

= 1

whD
(t)
i,j

′1. (18)

Furthermore,

H = I − 1

wh11
′ (19)
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is a centering matrix, where H = H′ and H2 = H are

satisfied, and I is the identity matrix. In addition,

K(t)
i,j = 1

whD
(t)
i,j

′HD(t)
i,j . (20)

In Equation 15, σyi,y(t)
i,j

is the cross covariance between yi
and y(t)

i,j and is defined as

σyi ,y(t)
i,j

= 1

wh
(yi − μyi1

)′ (y(t)
i,j − μy(t)

i,j
1
)

= 1

wh

(
yi − 1

wh11
′yi
)′ (

D(t)
i,j x(t)

i,j − 1

wh11
′D(t)

i,j x(t)
i,j

)

= 1

whyi
′H′HD(t)

i,j x(t)
i,j

= k(t)
i,j

′x(t)
i,j , (21)

where

k(t)
i,j = 1

whD
(t)
i,j

′Hyi. (22)

Then, Equation 15 is rewritten as

SSIM
(
yi, y(t)

i,j

)
=

⎡
⎢⎢⎢⎣

2μyi

(
μD(t)

i,j
′x(t)

i,j

)
+ C1

μ2yi +
(

μD(t)
i,j

′x(t)
i,j

)2

+ C1

⎤
⎥⎥⎥⎦

×
⎡
⎣ 2k(t)

i,j
′x(t)

i,j + C2

σ 2yi + x(t)
i,j

′K(t)
i,j x(t)

i,j + C2

⎤
⎦ .

(23)

It should be noted that the criterion in Equation 23 is a

nonconvex function of x(t)
i,j , and it is difficult to obtain the

global optimal solution. Thus, we introduce the calcula-

tion scheme used in [53] into the estimation of the optimal

vector x̂(t)
i,j . Specifically, the nonconvex problem is trans-

formed into a quasi-convex formulation. The main idea

of this scheme is shown as follows. By fixing the mean of

y(t)
i,j (= μD(t)

i,j
′x(t)

i,j ), we can focus only on the second term

in Equation 23. Therefore, the maximization problem can

be simplified.

First, we note that the first term in Equation 23 is a func-

tion only of μD(t)
i,j

′x(t)
i,j

(
= ρ

(t)
i,j

)
. Thus, Equation 23 can be

rewritten as

SSIM
(
yi, y(t)

i,j

)
=
⎡
⎢⎣ 2μyiρ

(t)
i,j + C1

μ2yi +
(
ρ

(t)
i,j

)2 + C1

⎤
⎥⎦

×
⎡
⎣ 2k(t)

i,j
′x(t)

i,j + C2

σ 2yi + x(t)
i,j

′K(t)
i,j x(t)

i,j + C2

⎤
⎦ .

(24)

Therefore, it can be seen that the first term of the above

equation can be fixed by fixing ρ
(t)
i,j since μyi is a constant.

Then, by constrainingμD(t)
i,j

′x(t)
i,j = ρ

(t)
i,j , the optimization

problem can be simplified to find

x̂(t)
i,j

(
ρ

(t)
i,j

)
= arg max

x(t)
i,j ∈Rt

⎛
⎝ 2k(t)

i,j
′x(t)

i,j + C2

σ 2yi + x(t)
i,j

′K(t)
i,j x(t)

i,j + C2

⎞
⎠

subject to μD(t)
i,j

′x(t)
i,j = ρ

(t)
i,j .

(25)

Thus, the cost function becomes more simple, i.e., we can

focus only on the second term of the SSIM index under

the constraint fixing μD(t)
i,j

′x(t)
i,j = ρ

(t)
i,j .

Therefore, the overall problem is to find the highest

SSIM index by searching over a range of ρ
(t)
i,j . Further-

more, the above problem can be rewritten as

min : τ

subject to⎡
⎣min :

[
τ
(
σ 2
yi + x(t)

i,j
′K(t)

i,j x(t)
i,j + C2

)
−
(
2k(t)

i,j
′x(t)

i,j + C2

)]
≥ 0

subject to μD(t)
i,j

′x(t)
i,j = ρ

(t)
i,j

⎤
⎦ ,

(26)

and, in the proposed method, the following simple

Lagrangemultiplier approach is utilized for estimating the

optimal vector of x(t)
i,j :

∇x(t)
i,j

{
τ
(
σ 2
yi + x(t)

i,j
′K(t)

i,j x(t)
i,j + C2

)
−
(
2k(t)

i,j
′x(t)

i,j + C2

)

+ λ

(
μD(t)

i,j
′x(t)

i,j − ρ
(t)
i,j

)}
= 0,

(27)

where the first and second terms correspond to the cost

function and the third term corresponds to the constraint.

The specific derivations of the above equations are shown

in the Appendix. We can then estimate the optimal value

of τ using a standard bisection procedure, and the opti-

mal vectors x̂(t)
i,j

(
ρ

(t)
i,j

)
are calculated for several values of

ρ
(t)
i,j (= μyi − Rδ, . . . ,μyi − 2δ,μyi − δ,μyi ,μyi + δ,μyi +

2δ, . . . ,μyi + Rδ) to select x̂(t)
i,j maximizing Equation 15.

Note that δ is the searching interval, and R determines

the searching range. Their specific values are shown in

Section 5.1. The detailed procedures for estimating τ in

the proposed method are as follows:

(i) An initial value of τ (say τ0) is determined between

zero to one. Furthermore, Uτ = 1.0 and Lτ = τ0,

where Uτ and Lτ respectively represent the upper

limit and the lower limit of τ . In this paper, we set

τ0 = 0.2.

(ii) The optimization problem in Equation 28 is solved

using τ .
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(iii) Two criteria Sτ and Dτ are calculated as

Sτ = τ
(
σ 2
yi + x(t)

i,j
′K(t)

i,j x(t)
i,j + C2

)
−
(
2k(t)

i,j
′x(t)

i,j + C2

)
,

Dτ = Uτ − Lτ .

(iv) According to the obtained criteria Sτ and Dτ , the

following steps are operated:

(a) If Sτ ≥ 0 and Dτ < ε, the final optimal

solution of τ is output, where ε = 0.05.

(b) If Sτ ≥ 0 but Dτ ≥ ε, τ = Uτ +Lτ

2 andUτ = τ .

(c) Otherwise, τ = Uτ +Lτ

2 and Lτ = τ .

(v) Procedures (ii) to (iv) are iterated.

4.1.2 Update of dictionarymatrix D
From the calculated optimal vectors xi (i = 1, 2, . . . ,N),

the proposed method updates the dictionary matrix D.

We update each dictionary element, i.e., each atom, one by

one in a greedy fashion. Specifically, we choose one atom

and update it in such a way that the representation per-

formance, i.e., the sum of the SSIM index, becomes the

highest. We perform the update of each atom dj (j =
1, 2, . . . ,K) by solving the following problem:

max
dj

∑
i|xi(j) 
=0

SSIM
(yi, xi(j)dj) , (28)

where xi(j) is a jth element of xi.
In the above equation, we try to maximize the approx-

imation performance of yi (i = {1, 2, . . . ,N |xi(j) 
= 0})
by xi(j)dj, i.e., by the target atom dj and its correspond-

ing representation coefficient xi(j). Note that it is difficult

to maximize Equation 28 in the same way as the calcu-

lation of the optimal vector xi (i = 1, 2, . . . ,N) since

the optimization problem is too complex. Thus, using

the well-known steepest ascent algorithm, the proposed

method updates each atom dj (j = 1, 2, . . . ,K). Specif-

ically, the proposed method performs an update of the

dictionary matrix D by the following procedures:

Step 1. Select one atom dj (j = 1, 2, . . . ,K ).

Step 2. Update the selected atom dj by iterating the
following equation:

dj ← dj + ζ
∑

i|xi(j) 
=0

∂ SSIM
(yi, xi(j)dj)
∂dj

, (29)

where ζ is a fixed small parameter.

Step 3. Replace the selected atom dj with the vector

obtained by step 2. Note that a new dictionary

matrix, whose j th column, i.e., dj, is only updated,
is obtained.

Step 4. Repeat steps 1 to 3 for all atoms d1,d2, . . . ,dK
within the dictionary matrix D.

Using the above procedures, the proposed method can

update the dictionary matrix D.

Finally, we clarify the relationship between the K-SVD

algorithm [36] and our SSIM-based algorithm. First, the

biggest difference between the proposed method and the

K-SVD algorithm is the use of different quality metrics.

The K-SVD algorithm tries to minimize the MSE for

performing sparse representation and dictionary genera-

tion. On the other hand, the proposed method tries to

maximize the SSIM index for them. Specifically, for the

calculation of sparse representation coefficients, we adopt

an algorithm similar to the OMP algorithm, but the qual-

ity measure is the SSIM index, not the MSE. Therefore,

representation coefficients are obtained to maximize the

SSIM index which is used as the representation perfor-

mance. Then, the optimal solution is obtained on the basis

of the algorithm used in [53], which is quite different from

the algorithm based on the MSE. Furthermore, for gen-

eration of the dictionary, the proposed method updates

each atom, and its scheme is also similar to that of the K-

SVD algorithm. However, the proposed method performs

the update of each atom in such a way that the sum of

the SSIM index becomes highest and, thus, SVD is not

used for the calculation. Then, since the update procedure

is too complicated, we simply adopt the steepest ascent

algorithm in our method.

4.2 Inpainting algorithm
In this subsection, the inpainting algorithm of the missing

area � in the target patch f based on the SSIM index is

presented. In the proposed method, the target patch f is

approximated by a sparse linear combination of the atoms

of the dictionary matrix D obtained in the previous sub-

section. In this approach, we introduce the SSIM index

as the approximation performance, and then, the opti-

mal reconstruction results maximizing the SSIM index

can be obtained. Note that to obtain the optimal sparse

linear combination maximizing the SSIM index, we also

introduce the calculation scheme in [53]. Note that differ-

ent from the previous subsection, since we simultaneously

estimate the representation coefficients and the missing

intensities, the calculation scheme in [53] is extended.

Then, the inpainting of the missing area � within the tar-

get patch f can be realized based on the SSIM index. The

details are shown below.

The proposed method tries to estimate the optimal

linear combination

ŷ = Dx̂ (30)

of the unknown vector y of f, where{ŷ, x̂} = argmaxy,x SSIM (y,Dx) subject to Ey = y∗, ‖x‖0 ≤ T .

(31)

Note that E (∈ RN�̄×wh) is a matrix whose diagonal

elements are one or zero, and it extracts only known inten-

sities within y to obtain y∗ (∈ RN�̄ ), where N�̄ is the
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number of known pixels in f. From Equation 31, the pro-

posed method tries to estimate the unknown vector y
approximated by the linear combination of the atoms in

the dictionary matrix D under the constraints that the

known intensities in �̄ are fixed and the number of the

nonzero elements in x is T or less.

Instead of directly calculating the optimal solution in

Equation 31, we first perform the selection of the optimal

T atoms used for approximating y. Specifically, the pro-

posed method selects T optimal atoms from D by solving

the following problem:

α̂ = argmax
α

SSIM
(y∗,EDα

)
subject to ‖α‖0 ≤ T ,

(32)

where its solution can be obtained on the basis of the

same algorithm as the calculation of the optimal vector

xi described in the previous subsection. Then, a matrix D̂
containing atoms whose corresponding coefficients in α̂

are nonzero values is obtained.

Next, from the obtainedmatrix D̂, Equation 31 is rewrit-

ten as

{ŷ, â} = argmaxy,a SSIM
(
y, D̂ a

)
subject to Ey = y∗.

(33)

In the above equation,

SSIM
(
y, D̂a

)
=
[

2μyμD̂a + C1

μ2y + μ2

D̂a + C1

][
2σy,D̂a + C2

σ 2y + σ 2

D̂a + C2

]

=
[

2
(

1
wh1′y) (μD̂

′a)+ C1(
1
wh1′y)2 + (

μD̂
′a)2 + C1

]

×
[

2y′HD̂a + whC2

y′Hy + a′D̂′HD̂a + whC2

]
, (34)

and

μD̂ = 1

wh D̂
′1. (35)

In the proposed method, we estimate ŷ and â, maximiz-

ing Equation 34 under the constraint Ey = y∗ using the

computation scheme in [53] in a similar way shown in the

previous subsection. Note that we have to estimate the

two vectors, and this computation scheme is extended as

follows.

Specifically, Equation 34 is a nonconvex function of y
and a, but the first term in Equation 34 is a function

only of 1
wh1′y (= ρ) and μD̂

′a (= ω) and, thus, we rewrite

Equation 33 in the same way as that in the previous

subsection.

maxy,a

(
2y′HD̂a + whC2

y′Hy + a′D̂′HD̂a + whC2

)
subject to

Ey = y∗, 1

wh1
′y = ρ,μD̂

′a = ω.

(36)

By fixing 1
wh1′y = ρ and μD̂

′a = ω, the first term of the

SSIM index shown in Equation 34 can be fixed, and the

cost function of Equation 33 can be simplified.

Therefore, the overall problem is to find the highest

SSIM index by searching over ranges of ρ and ω as shown

in Figure 2. Note that their search ranges are set to μy∗ −
Rδ, . . . ,μy∗ − 2δ,μy∗ − δ,μy∗ ,μy∗ + δ,μy∗ + 2δ, . . . ,μy∗ +
Rδ, where μy∗ is the mean of y∗. Thus, the solution can

be obtained in the same manner as that shown in the

previous subsection.

Then, the following problem can be obtained:

min : τ

subject to[
min :

[
τ
(y′Hy + a′K1a + whC2

)− (y′K2a + whC2

)] ≥ 0

subject to Ey = y∗, 1
wh1′y = ρ,μD̂

′a = ω

]
,

(37)

where

K1 = D̂′HD̂, (38)

K2 = 2HD̂. (39)

Note that the optimal value of τ can be obtained as shown

in the previous subsection.

Furthermore, the proposed method adopts the

Lagrange multiplier approach to obtain the optimal

vectors of y and a as follows:

∇y,a

{
τ
(y′Hy + a′K1a + whC2

)− (y′K2a + whC2

)+
N�̄∑
k=1

λk

× (vk ′y − y∗
k
)+ ξ1

(
1

wh1
′y−ρ

)
+ξ2

(
μD̂

′a − ω
)}= 0,

(40)

where vk(k = 1, 2, . . . ,N�̄) is a vector satisfying

E = [v1, v2, . . . , vN�̄

]′
, (41)

and y∗
k(k = 1, 2, . . . ,N�̄) satisfies

y∗ =
[
y∗
1, y∗

2, . . . , y∗
N�̄

]′
. (42)

In Equation 40, the first and second terms are from the

cost function, and the third, fourth, and fifth terms are

from the constraints.

Then, by solving the above problem, the proposed

method can calculate the optimal vectors â and ŷ. Finally,
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from the obtained result ŷ, the proposed method outputs

the estimated intensities in the missing area �.

As shown in the above procedures, we can estimate the

missing intensities in � within the target patch f. There-
fore, the proposedmethod clips patches includingmissing

areas and performs inpainting to estimate all missing

intensities. This means that the proposed method grad-

ually reconstructs missing areas patch by patch starting

from the missing boundary. It should be noted that in

order to realize this scheme, we have to determine the

order in which patches along the fill-front ∂� of miss-

ing areas are filled. We call this order ‘patch priority’. In

the proposed method, patch priorities are determined by

the method proposed by Criminisi et al. [24]. Specifically,

given a patch fp centered at pixel p that is in the fill-front

of the missing areas within the target image, its priority

P(p) is defined as follows:

P(p) = C(p) · D(p), (43)

where C(p) and D(p) are called confidence term and data

term, respectively, and they are defined as follows:

C(p) =
∑

q∈fp⋂(I−�) C(q)

area
(
fp
) , (44)

D(p) = |∇I⊥p · np|
Imax

. (45)

In the above equations, I and � are the whole areas

of the target image and whole missing areas, respectively.

Furthermore, area
(
fp
)
(= w × h) represents the num-

ber of pixels included within the target patch fp. Then,
Imax is a normalization factor (e.g., Imax = 255 for a typ-

ical gray scale image), ∇I⊥p is an isophote at pixel p, and
np is a unit vector orthogonal to the fill-front at pixel p.
Note that C(p) is initially set as C(p) = 0∀p ∈ � and

C(p) = 1∀p ∈ (I − �). After performing the inpainting,

C(p) is substituted into those in the inpainted areas for the

following inpainting process.

Note that the confidence term represents the mean reli-

ability of the pixels within the target patch fp. Therefore,
if the target patch fp contains many known intensities,

its value becomes higher. Furthermore, after the inpaint-

ing, the reconstructed pixels have the values less than one,

i.e., the reconstructed pixels have higher reliability than

that of the missing pixels but lower reliability than that

of the original pixels. Furthermore, as shown in Figure 3,

the data term is a function of the strength of isophotes at

the fill front δ� [24]. Therefore, by calculating the inner

product of the isophote ∇I⊥p at pixel p and unit vector np
orthogonal to the fill-front at pixel p, the linear structures
can be reconstructed first. In this way, we can restore all

of the missing areas within the target image according to

the patch priorities in Equation 43.

Figure 3 Overview of the data term calculation. Given the target
patch fp, np is the normal to the contour of the fill front ∂� of the

target missing areas� and ∇ I⊥p is the isophote at pixel p.

5 Experimental results
In this section, we verify the performance of the pro-

posed method in order to confirm its effectiveness. First,

we show results of subjective evaluation of the proposed

method using several test images. Furthermore, results of

quantitative evaluation using peak signal-to-noise ratio

(PSNR) obtained from MSE and the SSIM index are

shown, and the effectiveness of the use of the SSIM index

is also discussed.

In this section, we show the conditions of the experi-

ments in Section 5.1. In this subsection, we mainly explain

the details of the experiments and the comparative meth-

ods. In Section 5.2, subjective and quantitative results are

shown in comparison with those of the existing meth-

ods, and the effectiveness of the proposed method is also

discussed. In Section 5.3, we show some examples by

applying the proposed method to test images including

larger missing areas.

5.1 Conditions of experiments
In this subsection, we explain the conditions of the exper-

iments. In the experiments, we first prepared three test

images, which are shown in Figures 4, 5, and 6. Further-

more, we added text regions to these test images and

obtained corrupted images.

We performed inpainting of the three corrupted test

images using the proposed method and the following

existing methods:

1. Methods based on PCA or KPCA [31,34,35]

These existing methods generate eigenspaces or

nonlinear eigenspaces of patches for inpainting based

on PCA or KPCA. Since it is well known that

eigenspaces can provide least-square approximation

of target data, i.e., eigenspaces are the optimal

subspaces based on MSE, the method in [31] is
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a b c

d e f

g ih
Figure 4 Obtained results of image 1. (a) Original image (480× 360 pixels, 24-bit color levels), (b) corrupted image including text regions (11.9%
loss), (c) results obtained by the proposed method, (d) results obtained by the method in [31], (e) results obtained by the method in [34], (f) results
obtained by the method in [35], (g) results obtained by the method in [24], (h) results obtained by the method in [30], and (i) results obtained by
the method in [41].

suitable for comparison with the proposed method.

Furthermore, the methods in [34] and [35] utilize

nonlinear eigenspaces to perform the approximation

of nonlinear texture features in images, and we

therefore used these methods in the experiments.

2. Exemplar-based inpainting methods [24,30]

Several exemplar-based inpainting methods have

been proposed. The method in [24] is a

representative method, and its improved version was

proposed in [30], both methods being based on

least-square error approaches. In the proposed

method, we determine the patch priority using the

scheme in [24] and, thus, the difference between our

method and [24] is the algorithm for estimating

missing intensities. Therefore, the method in [24] is

suitable in confirming the effectiveness of the

proposed inpainting algorithm, i.e., the missing

intensity estimation algorithm. Furthermore,

although the method in [30] improves on the speed

rather than inpainting performance improvement, it

is reported in their paper that their method improves

the performance of [24] in some cases. Therefore, in

the experiments, we used these methods as

comparative methods.

3. Sparse representation-based inpainting methods [41]

As described above, the method in [41] adopts the

new modeling of patch priority and patch

representation, which are two crucial steps for patch
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a b c

d e f

g h i
Figure 5 Obtained results of image 2. (a) Original image (480× 359 pixels, 24-bit color levels), (b) corrupted image including text regions (8.9%
loss), (c) results obtained by the proposed method, (d) results obtained by the method in [31], (e) results obtained by the method in [34], (f) results
obtained by the method in [35], (g) results obtained by the method in [24], (h) results obtained by the method in [30], and (i) results obtained by
the method in [41].

propagation in the exemplar-based inpainting

approach, based on sparsity. It should be noted that

since this method is based on sparse representation

but uses MSE-based criteria, it is suitable for

comparison.

In this paper, we regard those in [35] and [41] as state-of-

the-art methods.

Furthermore, the method in [41] has improved the

performance in both patch approximation improvement

based on sparse representation and patch priority estima-

tion. Thus, we regard this method as a state-of-the-art

method.

In the experiments, we used the above methods as

comparative methods for evaluation of our method. For

performing inpainting by the proposed method and exist-

ing methods [24,30,41], patch size was fixed to 15 (w =
h = 15). Furthermore, the existing methods in [31,34]

and [35] simply perform inpainting in a raster scanning

order. Then, for some test images, since target patches

contain missing areas in the whole parts, those methods

cannot perform inpainting on those missing areas. Thus,

in the experiments, patch size was set to 30. Note that

much smaller patches were used in some existing meth-

ods in previous studies and that accurate performance

could be achieved. In these experiments, we used such
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a b c

d e f

g h i
Figure 6 Obtained results of image 3. (a) Original image (480× 360 pixels, 24-bit color levels), (b) corrupted image including text regions (8.9%
loss), (c) results obtained by the proposed method, (d) results obtained by the method in [31], (e) results obtained by the method in [34], (f) results
obtained by the method in [35], (g) results obtained by the method in [24], (h) results obtained by the method in [30], and (i) results obtained by
the method in [41].

difficult conditions in order to make the difference in the

performances of the proposed method and the existing

methods clearer. Furthermore, in our method, we simply

determined T = 10, δ = 5, and R = 6.

5.2 Subjective and quantitative evaluations
Based on the experimental conditions shown in the pre-

vious subsection, inpainting was performed using the

proposed method and existing methods. Figures 4, 5,

and 6 show the results obtained by those methods.

For better subjective evaluation, we also show their

zoomed portions in Figures 7, 8, and 9, respectively.

From the obtained results, we can confirm that the

proposed method successfully performs inpainting with-

out suffering from oversmoothness. Some MSE criterion-

based methods also accurately perform inpainting, but

it becomes difficult to simultaneously maintain sharp-

ness in some cases. In some existing methods such as

[24], [30], and [41], the performance becomes worse than

that reported in those papers. As described above, in this

paper, we selected conditions different from those used

in those paper, i.e., larger size patches were used. Since

this comparison scheme was adopted in several papers,

we also used such difficult conditions in order to make

the difference in the performance of the proposed method

and existing methods clearer. Then, the representation
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Figure 7 Zoomed potions of the results shown in Figure 4. (a-i) respectively correspond to the zoomed portions of Figures 4a-i.

abilities of the methods become worse and the obtained

results tend to be blurred. Since the exemplar-basedmeth-

ods in [24] and [30] directly select known patches from the

target image for inpainting, blurring tends to be reduced.

Nevertheless, even in those methods, it is difficult to

perfectly remove degradation. Furthermore, although the

methods in [34] and [35] adopt nonlinear eigenspaces for

inpainting to represent nonlinear texture features, their

representation abilities become worse as the dimension of

the subspace becomes smaller, where the dimension was

set to the same as that of the proposed method.

Generally, natural images contain much more powers in

low-frequency components than those in high-frequency

components. Low-dimensional subspaces obtained from

the MSE-based criteria in the existing methods therefore

tend to represent only such low-frequency components.

ba c

ed f

g ih
Figure 8 Zoomed potions of the results shown in Figure 5. (a-i) respectively correspond to the zoomed portions of Figures 5a-i.
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Figure 9 Zoomed potions of the results shown in Figure 6. (a-i) respectively correspond to the zoomed portions of Figures 6a-i.

Thus, since it becomes difficult to represent high-

frequency components, their results suffer from over-

smoothness. On the other hand, the SSIM index contains

a term comparing components not including average

components, i.e., variances, as shown in Equation 5,

and, thus, subspaces used for inpainting tend to success-

fully represent high-frequency components. Therefore,

the proposedmethod can perform inpainting successfully.

Furthermore, the proposed method adopts sparse repre-

sentation in addition to the SSIM index. This approach

Image 4 Image 5 Image 6 Image 7

Figure 10 First set of original, corrupted, and resulting images obtained by the proposedmethod. Top row: original images, middle row:
corrupted images including missing areas, and bottom row: results obtained by the proposed method. The sizes of images 4 to 7 are 480× 359,

640× 480, 640× 480, and 640× 480 pixels, respectively. The percentages of missing areas are 10.7%, 6.7%, 5.5%, and 5.4% in images 4 to 7,

respectively.
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Image 8 Image 9 Image 10 Image 11

Figure 11 Second set of original, corrupted, and resulting images obtained by the proposedmethod. Top row: original images, middle row:
corrupted images including missing areas, and bottom row: results obtained by the proposed method. The sizes of images 8 to 11 are 480× 360,

640× 480, 640× 480, and 640× 480 pixels, respectively. The percentages of missing areas are 11.3%, 5.5%, 6.2%, and 6.2% in images 8 to 11,

respectively.

enables adaptive selection of the optimal atoms for each

target patch including missing areas. This means that the

optimal subspace can be provided for each target patch by

our method.

Next, we show results of quantitative evaluation for the

proposed method and the existing methods. Eight test

images shown in Figures 10 and 11 are added to those in

Figures 4, 5, and 6. In these figures, the results of inpaint-

ing by our method are also shown. Tables 1 and 2 show the

results of PSNR (dB), which is calculated from MSE, and

the SSIM index of inpainting results, respectively. Note

that since the inpainting is performed for each patch, the

SSIM index is calculated for the patches, and their average

values are shown in the tables. In addition, the evaluation

Table 1 Performance comparison (PSNR) of the proposedmethod and existingmethods

Image number [31] [34] [35] [24] [30] [41] Proposedmethod

1 (Figure 4) 18.55 18.13 18.75 16.85 16.72 17.51 17.22

2 (Figure 5) 16.51 15.98 17.68 14.26 14.68 15.08 15.51

3 (Figure 6) 19.93 19.48 20.57 18.01 17.86 18.98 18.62

4 (Figure 10, first column) 15.95 16.51 17.86 14.97 15.19 15.97 15.85

5 (Figure 10, second column) 17.06 16.86 17.81 15.70 15.51 16.08 16.14

6 (Figure 10, third column) 14.42 13.81 15.86 11.79 12.20 12.02 13.38

7 (Figure 10, fourth column) 15.93 16.07 16.51 15.22 15.49 15.27 14.05

8 (Figure 11, first column) 12.98 12.74 14.17 11.34 10.92 11.81 12.04

9 (Figure 11, second column) 15.59 15.57 17.79 13.56 13.55 13.42 15.55

10 (Figure 11, third column) 14.38 14.66 16.56 13.42 13.43 13.82 13.86

11 (Figure 11, fourth column) 16.80 17.09 18.68 15.47 15.48 15.98 16.00
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Table 2 Performance comparison (SSIM) of the proposedmethod and existingmethods

Image number [31] [34] [35] [24] [30] [41] Proposedmethod

Image 1 (Figure 4) 0.6355 0.6090 0.6411 0.6822 0.6773 0.7145 0.7811

Image 2 (Figure 5) 0.5130 0.5154 0.5999 0.5077 0.5277 0.5308 0.6454

Image 3 (Figure 6) 0.6248 0.6051 0.6538 0.7318 0.7246 0.7569 0.8156

Image 4 (Figure 10, first column) 0.5833 0.5762 0.6373 0.6563 0.6708 0.7036 0.7806

Image 5 (Figure 10, second column) 0.6419 0.6424 0.6774 0.7298 0.7196 0.7410 0.8049

Image 6 (Figure 10, third column) 0.6460 0.6458 0.7346 0.6750 0.6933 0.6756 0.7619

Image 7 (Figure 10, fourth column) 0.6711 0.6766 0.7134 0.7478 0.7521 0.7402 0.7722

Image 8 (Figure 11, first column) 0.5871 0.5522 0.6282 0.6561 0.6394 0.6840 0.6940

Image 9 (Figure 11, second column) 0.6501 0.6599 0.7645 0.6852 0.6799 0.6700 0.8072

Image 10 (Figure 11, third column) 0.6240 0.6295 0.7185 0.6992 0.6980 0.7060 0.7681

Image 11 (Figure 11, fourth column) 0.6864 0.7069 0.7685 0.7155 0.7108 0.7352 0.8039

values are computed only on the reconstructed pixels. The

results show that several existing methods have higher

PSNR values, i.e., lower MSE values, than that of the pro-

posed method. Specifically, the existing method in [35]

and the proposed method output the best results in terms

of PSNR (MSE) and the SSIM index, respectively.

In recent years, several researchers of image quality

assessment have also pointed out the problem that MSE

and its variants cannot reflect some degradations [46,51].

Therefore, in order to tackle this problem, several crite-

ria for determining image qualities have been proposed,

the SSIM index being a representative criterion. In the

proposed method, we focus on this criterion and realize

inpainting that maximizes the SSIM index. Therefore, it

is natural that the proposed method achieves the high-

est SSIM values. Note that even though the use of the

SSIM index for inpainting is effective, it is difficult to per-

fectly determine the order of inpainting performance that

is the same as the subjective evaluation. This means that

ranking of inpainting performance that perfectly reflects

subjective evaluation is difficult, and further improvement

is necessary in future work.

As quantitative evaluation, we have shown PSNR and

SSIM index of the results by our method and other exist-

ing methods. Next, we focus on the computation cost of

the proposed method. We first compare the computa-

tion times of the proposed method and other multivariate

analysis-based methods in [31] and [35]b. The average

computation time for obtaining the results of images 1

to 11 by our method was about 342.1 s. Then the pro-

posed method is about 0.78 to 3.1 times (1.6 times on

average) slower than the method in [31]. Note that the

ratio smaller than onemeans that the computation time of

the proposed method is shorter. In the method in [31], the

procedure for the inpainting is simple since it only needs

the computation of the eigenvector matrix and the calcu-

lation of the back projection for lost pixels. Therefore, the

fast computation can be realized. On the other hand, the

proposed method is about 1.2 to 4.7 times (2.9 times on

average) faster than the method in [35]. In this method,

the kernel PCA is adopted, and we have to calculate the

projection onto the nonlinear subspace using the ker-

nel trick, i.e., we cannot perform the direct projection.

Furthermore, in this approach, the classification of the tar-

get patch including missing areas is performed, and thus,

the inpainting procedures are performed for all clusters.

Therefore, this needs high computation costs. Further-

more, the computation time of our method is about 4.3

to 12.5 times (7.4 times on average) longer than that of

the exemplar-based method in [24]. Note that the method

in [30] used as the comparative method in the experi-

ments drastically improves the computation costs of [24],

and it also introduces the GPU implementation. The CPU

version improving the computation costs of [24] has also

been proposed by the same authors [62]. In [62], Kwok

et al. reported inpainting that was about 15 to 50 times

faster than that of the method in [24].

In addition, compared with the MSE-based inpainting

approach, which calculates the optimal sparse representa-

tion coefficients based on the MSE, the proposed method

requires complex optimization procedures as shown in

the previous section. In theMSE-based approach, it is well

known that the normal equation can be simply solved, and

it is much simpler than our method. It is therefore neces-

sary to improve the speed of computation by introducing

some alternative approaches into our inpainting method.

This topic will be investigated in subsequent studies.

Note that in the above experiment, we used the diffi-

cult condition, i.e., larger size patches, in order to make

the difference of the inpainting performance between our

method and the existing methods clearer. Next, we show

other different experimental results obtained using condi-

tions which were adopted in each paper. This means that

the conditions of the existing methods were determined
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Figure 12 Relationship between ratio of missing pixels and SSIM index of inpainting results obtained by each method. (a-h) They
respectively show the results obtained from images 4 to 11 shown in Figures 10 and 11.



Ogawa and Haseyama EURASIP Journal on Advances in Signal Processing 2013, 2013:179 Page 21 of 26
http://asp.eurasipjournals.com/content/2013/1/179

a b c
Figure 13 Inpainting example 1 obtained by applying the proposedmethod to larger missing areas. (a) Original image (342× 512 pixels,

11.2% loss), (b) flag image of (a), and (c) results obtained by the proposed method.

according to their papers. In the new experiments, we

used the eight test images shown in Figures 10 and 11 and

randomly addedmissing blocks of size 8×8 pixels with the

changing ratio of the missing pixels. Figure 12 shows the

relationship between the ratio of the missing pixels and

the SSIM index calculated from the reconstructed image.

From these results, we can see that the proposed method

tends to output better results than those of the existing

methods.

5.3 Inpainting of larger missing areas
Finally, in Figures 13, 14, 15, and 16, we show some exam-

ples obtained by performing inpainting for larger missing

areas based on the proposed method. Note that in these

experiments, we performed inpainting of larger missing

areas by the proposed method including one simple addi-

tional procedure. The details are shown as follows. First,

for a target patch selected on the basis of the patch prior-

ity shown in Equation 43, the proposed method performs

the inpainting shown in Section 4.2 and obtains the result

ŷ. Next, as an additional procedure, we search for the opti-

mal known patch, which is best matched to the obtained

result ŷ, using the SSIM index from the target image,

and the selected known patch is used as the final output.

Then, by performing the above procedures for all patches

selected according to patch priority, the whole missing

areas can be reconstructed.

The above scheme is similar to existing methods that

simply select only the best matched examples, but the dif-

ference is shown below. In existing methods using only

the best matched examples, the best matched patch is

selected by monitoring errors in the known neighboring

areas around the missing areas. On the other hand, the

proposed method performs reconstruction of the patches

based on SSIM-based sparse representation, and then,

the examples that are best matched to the reconstructed

patches are selected using the SSIM index, i.e., the best

matched examples are selected from well-approximated

reconstruction patches. This is the biggest difference

between the existing methods and the proposed method.

It should be noted that although the proposed method

can perform accurate reconstruction of patches, the

obtained results tend to include color that is not included

within the target image. This is because the proposed

method does not adopt any specific procedures to avoid

spurious color. Therefore, in the experiments on recon-

struction of larger missing areas, we adopted the above

scheme to avoid the propagation of spurious color.

From the obtained results, we can confirm that the pro-

posed method enables successful inpainting of such large

missing areas. Note that the images shown in Figures 13,

14, 15, and 16 are used as test images in several papers

such as in [23,24,30] and [41]. Furthermore, since the

flag images that correspond to Figures 13b, 14b, 15b, and

16b are generated in each paper, i.e., positions of miss-

ing areas are different from each other in those papers, we

show discussion by comparing the results obtained by our

method shown in Figures 13, 14, 15, and 16 and the results

shown in those papers. From the results shown in these

figures, we can see that the proposed method achieves

comparable performance or some improvements, though

it should be noted that since we do not have ground truth

images for these test images, we perform subjective eval-

uation. Specifically, as shown in Figure 15, the proposed

method and themethods in [23] and [41] can achieve visu-

ally pleasant results. In this test image, since structural

and textural components are simple and the percentage

of missing areas is relatively small, it is easier to achieve
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a

b

c
Figure 14 Inpainting example 2 obtained by applying the
proposedmethod to larger missing areas. (a) Original image
(818× 545 pixels, 24.8% loss), (b) flag image of (a), and (c) results
obtained by the proposed method.

successful inpainting. Similarly, Figure 13 shows that suc-

cessful inpainting could be achieved by our method and

the methods in [24], [30], and [41], and improvement by

our method can be confirmed in some areas. However, it

should be noted that reconstruction of structural compo-

nents, i.e., edges, by [41] can be realized more accurately.

a

b

c
Figure 15 Inpainting example 3 obtained by applying the
proposedmethod to larger missing areas. (a) Original image
(818× 546 pixels, 11.5% loss), (b) flag image of (a), and (c) results
obtained by the proposed method.

The biggest difference between [41] and other works

including our method is priority estimation. Thus, by

introducing an improved priority estimation scheme, the

performance of the proposed method will be improved.

Furthermore, Figure 16 shows that results obtained by our
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Figure 16 Inpainting example 4 obtained by applying the
proposedmethod to larger missing areas. (a) Original image
(480× 362 pixels, 25.2% loss), (b) flag image of (a), and (c) results
obtained by the proposed method.

method are comparable to results in [24] and [30]. Note

that the flag images of this test image are different from

each other in these methods, and we found that perfor-

mance was affected by generation of flag images. This was

also observed in the image shown in Figure 14.

As shown in the above discussion, it becomes difficult

in the proposed method to perform successful struc-

ture reconstruction. In order to understand this prob-

lem easily, we show some examples in Figures 17 and

18. From the two images (512 × 512 pixels) shown

in Figures 17a and 18a, we artificially added missing

blocks (16 × 16 pixels) to obtain the corrupted images

in Figures 17b and 18b. As shown in the results recon-

structed by the proposed method in Figures 17c and 18c,

it can be seen that texture regions and simple structure

regions can be reconstructed successfully. On the other

hand, in some complex structure regions including sev-

eral directional edges simultaneously, it becomes difficult

to perfectly recover those structure components by our

method. This is because the proposed method consid-

ers the structure components only in the patch priority

determination. This means the inpainting algorithm in

the proposed method is optimized only for the texture

reconstruction.

In order to simultaneously reconstruct the structure

and texture regions, several methods have been proposed

[23,25,42]. Themethod in [23] proposed a fragment-based

algorithm which could preserve both structures and tex-

tures. A confidence map is used to determine which pixels

have more surrounding information available. The recon-

struction is performed from more confident pixels and is

proceeded in a multiscale fashion from coarse to fine. Fur-

thermore, a similar image fragment is found and copied

to current unknown location, where a fragment is a circu-

lar neighborhood, and its radius is defined adaptive to its

underlying structure. In contrast to the above advantage,

it is reported in [24,41] that this algorithm is extremely

slow and may introduce blurring artifacts. The fragment

is selected based on the absolute distance, and this tends

to cause the problem, i.e., the blurring artifacts, simi-

lar to that caused when using the MSE-based distance.

The method in [42] introduced a sparse representation

model representing both structure and texture compo-

nents to realize their simultaneous reconstruction. On the

other hand, this method is based on least-square approx-

imation, and the problem of using the MSE may occur.

Therefore, by introducing this simultaneous representa-

tion model into the proposed SSIM-based approach, suc-

cessful reconstruction can be expected. Furthermore, the

method in [25] introduced interactive image editing tools

to realize highly accurate structure reconstruction. Since

the guide for the reconstruction can be provided by users,

this improves the inpainting performance. Although this

approach does not realize the perfectly automatic image
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a b c
Figure 17 Inpainting results obtained by applying the proposedmethod to the test image ‘Lena’. (a) Original image (512× 512 pixels), (b)
corrupted image including missing blocks (16× 16 pixels), and (c) results obtained by the proposed method.

inpainting, it will also improve the performance of the

proposed method by adopting the interactive image edit-

ing tools.

6 Conclusions
In this paper, we have presented an inpainting method

based on sparse representations optimized with respect

to a perceptual metric. Using sparse representation, the

proposed method adaptively provides subspaces opti-

mal for reconstructing target patches including miss-

ing areas. In this approach, the SSIM-based criterion

is introduced into calculation of the dictionary and

inpainting algorithm. This enables perceptually optimized

inpainting, and successful results can be obtained by the

proposed method.

Although the proposed method can reconstruct large

missing regions without blurring artifacts, it has more

computational complexity than other existing approaches

and also generates some artifacts in the output image as

shown in Figure 14. The computation cost and some arti-

facts caused by the proposedmethod should be concerned

and solved in the future work.

Furthermore, extension of the algorithm to reconstruc-

tion of other types of missing image data is desirable for

various applications. These topics will be future works and

results will be presented in subsequent reports.

Endnotes
aIn this paper, signal-atoms are simply referred to as

‘atoms’ hereafter according to [38].

a                                                  b c
Figure 18 Inpainting results obtained by applying the proposedmethod to the test image ‘Barbara’. (a) Original image (512× 512 pixels),

(b) corrupted image including missing blocks (16× 16 pixels), and (c) results obtained by the proposed method.
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bThe experiments were performed on a personal

computer using Intel(R) Core(TM) i7 950 CPU 3.06 GHz

with 8.0 GB RAM. The implementation was performed

using MATLAB.

Appendix
In this appendix, we show the details of the derivations in

Equations 26 and 27. Since the optimization problem in

Equation 25 is still nonconvex, it is converted into a quasi-

convex optimization problem as follows:

x̂(t)
i,j

(
ρ

(t)
i,j

)
= arg max

x(t)
i,j ∈Rt

⎛
⎝ 2k(t)

i,j
′x(t)

i,j + C2

σ 2yi + x(t)
i,j

′K(t)
i,j x(t)

i,j + C2

⎞
⎠

subject to μD(t)
i,j

′x(t)
i,j = ρ

(t)
i,j ,

⇔
min : τ

subject to

⎡
⎢⎢⎣max :

(
2k(t)

i,j
′x(t)

i,j +C2

σ 2yi+x(t)
i,j

′K(t)
i,j x

(t)
i,j +C2

)
≤ τ

subject to μD(t)
i,j

′x(t)
i,j = ρ

(t)
i,j

⎤
⎥⎥⎦ ,

⇔
min : τ

subject to⎡
⎣min :

[
τ
(
σ 2
yi + x(t)

i,j
′K(t)

i,j x(t)
i,j + C2

)
−
(
2k(t)

i,j
′x(t)

i,j + C2

)]
≥ 0

subject to μD(t)
i,j

′x(t)
i,j = ρ

(t)
i,j

⎤
⎦ .

(46)

Since minimization of τ is the same as finding the least

upper bound of Equation 25, the first equivalence rela-

tionship holds. The second equivalence relationship holds

since the denominator in Equation 25 is strictly positive,

allowing us to multiply through and rearrange terms. In

this way, we can derive Equation 26. Then, τ becomes a

true upper bound if

Sτ = τ
(
σ 2
yi + x(t)

i,j
′K(t)

i,j x(t)
i,j + C2

)
−
(
2k(t)

i,j
′x(t)

i,j + C2

)
(47)

optimized in Equation 46 has a nonnegative optimal value,

and the optimal vector x̂(t)
i,j

(
ρ

(t)
i,j

)
in Equation 25 can

be obtained. Thus, by applying the Lagrange multiplier

approach to the above equation under the constraint

μD(t)
i,j

′x(t)
i,j = ρ

(t)
i,j , Equation 27 can be obtained.
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