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Visualizing Web Images Using Fisher Discriminant Locality
Preserving Canonical Correlation Analysis

Kohei TATENO†a), Nonmember, Takahiro OGAWA†b), and Miki HASEYAMA†c), Members

SUMMARY A novel dimensionality reduction method, Fisher Dis-
criminant Locality Preserving Canonical Correlation Analysis (FDLP-
CCA), for visualizing Web images is presented in this paper. FDLP-CCA
can integrate two modalities and discriminate target items in terms of their
semantics by considering unique characteristics of the two modalities. In
this paper, we focus on Web images with text uploaded on Social Network-
ing Services for these two modalities. Specifically, text features have high
discriminate power in terms of semantics. On the other hand, visual fea-
tures of images give their perceptual relationships. In order to consider
both of the above unique characteristics of these two modalities, FDLP-
CCA estimates the correlation between the text and visual features with
consideration of the cluster structure based on the text features and the local
structures based on the visual features. Thus, FDLP-CCA can integrate the
different modalities and provide separated manifolds to organize enhanced
compactness within each natural cluster.
key words: dimensionality reduction, visualization, Fisher discriminant
analysis, canonical correlation analysis, locality preserving approach

1. Introduction

With the explosive growth of social media, a massive vol-
ume of multimedia data such as images and videos are cre-
ated and shared online everyday. A representative example
is Flickr∗, which hosted over 10 billion images in 2015 [1].
Since it is difficult for users to search for desired data from
the enormous volume of data, techniques that enable effi-
cient exploration of multimedia data are needed [2].

Browsing and exploring data require methods for visu-
alizing items to make clear both the content of individual
items and any relationships between these items. One ap-
proach is to map the items into a low-dimensional (2-D or 3-
D) space based on data similarities [3]. In this paper, “items”
denote original data and “data points” denote the results of
their mapping into the low-dimensional space. Users can
perceive a set of items that has the same semantic relation-
ships if their data points are presented close to each other in
the visualization results.

In most existing visualization methods, only one type
of multimedia data, e.g., images or videos, is consid-
ered [4], [5]. However, target multimedia data often contain
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multiple data descriptions (so-called modalities). For exam-
ple, in Social Networking Services (SNSs) such as Flickr
and Facebook∗∗, uploaded multimedia data often contain
different modalities, e.g., images, sounds, tags, comments
and geo-information. Thus, visualization methods can uti-
lize several modalities to provide more semantic relation-
ships of items.

Dimensionality reduction is widely used for data visu-
alization [6], [7]. Data visualizations lay out items so similar
items appear close to one another while very different items
will be further apart. These differ in how they perform di-
mensionality reduction to map the distribution of items from
the high-dimensional space to a low-dimensional space. In
recent years, many dimensionality reduction methods have
been proposed [8]–[10]. They are very popular due to their
relative simplicity and effectiveness. However, when these
methods are applied to multimedia data that contain sev-
eral modalities, most of them use a high-dimensional fea-
ture vector obtained by concatenating multiple features ex-
tracted from these modalities and cannot effectively con-
sider the characteristics of each modality. It has been re-
ported in [11], [12] that a scheme that can consider the char-
acteristics of each modality provides better performance for
multimedia analysis than does a scheme utilizing only one
modality. In order to provide better visualization for multi-
media data, dimensionality reduction methods need to inte-
grate several kinds of features.

The challenge in multimodal dimensionality reduction
is to obtain a more informative projection by considering the
complementarities and redundancies of all available modal-
ities. Although some dimensionality reduction methods
that can integrate different types of features have been pro-
posed [13]–[15], they cannot consider unique characteristics
of each modality.

A new dimensionality reduction method that can con-
sider the unique characteristics of each modality is presented
in this paper. In this paper, we focus on multimedia data rep-
resented by two typical modalities, text and image, that are
commonly used in almost all SNSs. We regard the multime-
dia data as items and project them into a low-dimensional
space by using the dimensionality reduction method. We
can use text features to group images into semantic clus-
ters since the text features have high discriminative power
in terms of semantics of images [16]. Therefore, we use the

∗https://www.flickr.com/
∗∗https://www.facebook.com/
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Fig. 1 Unique characteristics of visualization realized by the proposed
dimensionality reduction method.

text features to group images into semantic clusters. On the
other hand, in order to perform visualization that is suitable
for visual perception of humans, visual information of im-
ages is also taken into consideration since the visual infor-
mation gives perceptual relationships between items for hu-
mans [17]. Therefore, we can additionally use the visual fea-
tures of images to represent the visual relationships among
items in a low-dimensional space.

Our dimensionality reduction method is modeled for
the goal of grouping items containing the same seman-
tics in the low-dimensional space. Specifically, our
method is a hybrid version of two dimensionality reduc-
tion methods, Locality Preserving Canonical Correlation
Analysis (LPCCA) [18] and Fisher Discriminant Analysis
(FDA) [19], and we thus call our hybrid method “Fisher Dis-
criminant Locality Preserving Canonical Correlation Analy-
sis” (FDLP-CCA). We formulate the optimization problem
of FDLP-CCA by combining those of LPCCA and FDA.
This procedure allows us to maintain the computational effi-
ciency and reliability of LPCCA and FDA. LPCCA is a mul-
tivariate analysis method that extracts latent features based
on the correlation between different features with consid-
eration of the local structures of data. Thus, our method
adopts LPCCA, which focuses on local structures based on
visual features, and this contributes to the representation of
visual relationships and the integration of the two modali-
ties. Since FDA is a supervised dimensionality reduction
method for discriminating different classes, our method can
preserve the cluster structure based on the text features. In
this way, FDLP-CCA can integrate multiple features and
discriminate items in terms of semantics. Therefore, visual-
ization via FDLP-CCA can group items containing the same
semantics in the low-dimensional space.

Figure 1 shows the goal of the visualization via FDLP-
CCA. Specifically, successful visualization results need to
represent the semantics in the datasets. However, one sin-
gle image contains various semantics at multiple semantic
levels [20]. We therefore evaluate the visualization in terms
of hierarchical image semantics with the same way in [21].
As shown in examples in Fig. 1, visualization representing
each of the semantics (horse, jaguar, lion, apple, orange,
peach) and similar semantics categories (animals or fruits),

is realized, i.e., the visualization results reflect the semantic
hierarchy.

2. Related Work

In this section, we provide a brief review of dimension-
ality reduction methods. Dimensionality reduction gener-
ally converts high-dimensional data into low-dimensional
data with preservation of their intrinsic structures. Tra-
ditional methods such as Principle Components Analysis
(PCA) [22] and Multidimensional Scaling (MDS) [23] are
linear techniques. For high-dimensional data that lies on a
non-linear manifold, it is usually more important to keep
similar data points close together, which is usually not pos-
sible with linear mapping. Modern dimensionality reduc-
tion methods use non-linear projections to project the data
into a low-dimensional space. Some methods, such as
Stochastic Neighbor Embedding (SNE) [24], t-distributed
Stochastic Neighbor Embedding (t-SNE) [10] and Barnes-
Hut SNE (BH-SNE) [25], attempt to match probability dis-
tributions induced by pairwise data dissimilarities in the
high-dimensional space. Other methods use local linear re-
lationships to measure the local structure, as in Local Linear
Embedding (LLE) [26] and Locality Preserving Projection
(LPP) [9]. The above dimensionality reduction methods are
often used in data visualization [4]. However, it has been re-
ported in [10] that despite the strong performance of these
methods for artificial datasets, they are often not successful
for visualization of multimedia datasets.

As mentioned in the previous section, recent multime-
dia data contain several modalities. It has been reported in
[27] and [28] that a scheme that utilizes several kinds of fea-
tures provides better performance for multimedia analysis
than does a scheme that utilizes only one feature. However,
since the above dimensionality reduction methods can uti-
lize only one kind of feature, it is difficult for these methods
to use several kinds of modalities effectively when they are
applied to multimedia data. In [13] and [14], dimensionality
reduction methods that can integrate multiple features have
been proposed. Lin et al. proposed Multiple Kernel Learn-
ing for Dimensionality Reduction (MKL-DR) [13]. MKL-
DR introduces multiple kernel learning into the training pro-
cess of dimensionality reduction methods. It works with
multiple base kernels and fuses the descriptors in the do-
main of kernel matrices. In [14], Yun et al. proposed Multi-
set Canonical Correlations using Globality-preserving Pro-
jections (MCC-GP), which can perform joint dimensional-
ity reduction for high-dimensional data. MCC-GP repre-
sents the correlations of any pair of feature sets in the low-
dimensional space. Although these methods integrate dif-
ferent kinds of features for realizing dimensionality reduc-
tion, they cannot consider the unique characteristics of each
modality. In [27], it has been reported that considering the
characteristics of target modalities is necessary for success-
ful multimodal data analysis.
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3. Dimensionality Reduction via Fisher Discriminant
Locality Preserving Canonical Correlation Analysis

In this section, we present a novel dimensionality reduc-
tion method based on FDLP-CCA. By considering the
unique characteristics of the text and visual features, FDLP-
CCA can not only integrate multiple features maximizing
their correlation but also discriminate items as semantics.
Specifically, this dimensionality reduction is based on a
hybrid version of two dimensionality reduction methods:
LPCCA [18] and FDA [19].

This section is organized as follows. We first explain
the unique characteristics of each modality that are useful
for dimensionality reduction and show the goal of FDLP-
CCA in 3.1. Next, we show the model formulation of FDLP-
CCA in 3.2. Finally, detailed explanations of implementa-
tions of FDLP-CCA are shown in 3.3.

3.1 Unique Characteristics of Each Modality and Goal of
FDLP-CCA

In SNSs, when uploading images, users often attach text to
the images. In this paper, since we use Web images with
text, they have two modalities (i.e., text and image). As
described in the previous section, dimensionality reduction
should be performed with consideration of the characteris-
tics of their modalities.

Since text that is manually assigned represents the se-
mantics of images, text features have high discriminative
power in terms of semantics [16]. Therefore, we use the text
features to group images into semantic clusters. On the other
hand, visual information of images should also be taken into
consideration to improve the projection since the visual in-
formation gives perceptual relationships between images for
humans. Specifically, it has been reported in [17] that se-
mantic is the knowledge of human perception and that 80%
of human cognition comes from visual information. It is
reasonable that visual information generate the knowledge
about semantic relationships. Therefore, simple use of text
is not a reliable and reasonable solution, and visual infor-
mation of images should also be taken into consideration to
improve the representation of semantic relationships.

Note that the relationships among visual features are
not generally linear. Therefore, dimensionality reduction
should preserve the locality of visual features for repre-
senting such a non-linearity. In addition, when using the
two modalities, we need to project items from the original
two feature spaces to a lower-dimensional space. In order
to combine text and visual features, our dimensionality re-
duction has to estimate the correlation between the text and
visual features. By considering the above characteristics,
FDLP-CCA can integrate multiple features and discriminate
items in terms of semantics.

3.2 Model Formulation of FDLP-CCA

We explain the model formulation of FDLP-CCA in this
subsection. Given items In (n = 1, 2, . . . ,N; N being
the total number of items), two kinds of feature vectors
xm1,n ∈ Rdm1 and xm2,n ∈ Rdm2 are extracted from a pair of
the two modalities (m1,m2) of item In, respectively, where
dm1 and dm2 represent the dimensions of xm1,n and xm2,n, re-
spectively. In addition, each item belongs to a class, and
the class to which it belongs is denoted as ln(∈ {1, 2, . . . ,K};
K being the total number of classes). Furthermore, we de-
fine Xm1 = [xm1,1, . . . , xm1,N], Xm2 = [xm2,1, . . . , xm2,N] and
assume that these matrices are centered for convenience.
FDLP-CCA seeks a set of projections wm1 ∈ Rdm1 and
wm2 ∈ Rdm2 , and its details are shown below.

The basic idea of FDLP-CCA is to integrate the two
features and discriminate different semantics in a low-
dimensional space. Thus, we try to obtain latent features
by considering the correlation between the two kinds of fea-
tures and discriminating items that have different seman-
tics with consideration of the non-linear structures. Then
we focus on LPCCA and FDA to formulate the optimiza-
tion problem of FDLP-CCA. LPCCA is a locally linear
multivariate analysis method and has the effect of globally
non-linear dimensionality reduction. By this method, lo-
cal structure information is preserved, and the correlation
between the two features is also obtained. On the other
hand, FDA is a supervised dimensionality reduction method.
FDA can project the original high-dimensional data onto
the low-dimensional space, where all classes are separated
well by maximizing the ratio of between-class scatter ma-
trix to within-class scatter matrix. We formulate the ob-
jective function of FDLP-CCA by combining the objective
functions of FDA and LPCCA. This allows us to main-
tain the computational efficiency and reliability of FDA and
LPCCA. Therefore, FDLP-CCA has the advantages of the
above two methods and can be regarded as a hybrid version
of LPCCA and FDA.

When considering LPCCA, the following optimization
problem is provided:

arg max
wm1wm2

w�m1
Xm1 Gm1,m2 Xm2

�wm2 ,

subject to w�m1
Xm1 Gm1,m1 Xm1

�wm1 = 1,

w�m2
Xm2 Gm2,m2 Xm2

�wm2 = 1, (1)

where Gm1,m2 = Dm1,m2 − Sm1 ◦ Sm2 is called the Laplacian
matrix. Furthermore, Sm1 ◦ Sm2 is the Hadamard product
of the similarity matrices Sm1 and Sm2 , Dm1,m2 is a diagonal
matrix of size N × N, and its i th diagonal entry equals the
sum of the entries in the i th row of the matrix Sm1 ◦ Sm2 .
Given the affinity Am(i, j)(m ∈ {m1,m2}) between xm,i and
xm, j as

Am(i, j) = exp
(
−||xm,i − xm, j||2

txm

)
, (2)
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the similarity matrices Sm(m ∈ {m1,m2}) are obtained as

Sm(i, j) =

⎧⎪⎪⎨⎪⎪⎩
Am(i, j), if I j ∈ LN(Ii) or Ii ∈ LN(I j)

0 otherwise
.

(3)

Let LN (Ii) be an item set that comprises the local neighbors
of item Ii, and the parameter txm be generally taken as the
mean square distance

∑N
i=1

∑N
j=1 2||xm,i − xm, j||2/(N(N − 1)).

Note that Gm1,m1 , Gm2,m2 in Eq. (1) and Gm2,m1 can be com-
puted in the same manner as Gm1,m2 . The solutions of Eq. (1)
are obtained by solving the following generalized eigen-
value decomposition problem:

C
LPCCA

(
wm1

wm2

)
= λCLPCCA

(
wm1

wm2

)
, (4)

where C
LPCCA

and CLPCCA are defined as

C
LPCCA

=

(
0 Xm1 Gm1,m2 Xm2

�
Xm2 Gm2,m1 Xm1

� 0

)
, (5)

CLPCCA =

(
Xm1 Gm1,m1 Xm1

� 0
0 Xm2 Gm2,m2 Xm2

�
)
. (6)

On the other hand, when considering FDA, the follow-
ing optimization problem is provided:

arg max
w
w�SBw subject to w�SWw = 1, (7)

where SB and SW are the between-class scatter matrix and
the within-class scatter matrix, respectively, and are defined
as

SB =

K∑
k=1

Nk(µk − µ)(µk − µ)�, (8)

SW =

K∑
k=1

∑
n:ln=k

(xn − µk)(xn − µk)�, (9)

where µk = 1
Nk

∑
n:ln=k xn, µ = 1

N

∑N
n=1 xn, xn =

[xm1,n
�, xm2,n

�]�, w = [w�m1
,w�m2

]�, and Nk is the total num-
ber of items belonging to class k. The solutions of Eq. (7) are
obtained by solving the following generalized eigenvalue
decomposition problem:

SBw = λSWw. (10)

As mentioned above, FDLP-CCA can be regarded as
a hybrid version of LPCCA and FDA. Therefore, the com-
bined optimization problem is defined. We derive the fol-
lowing Lagrange multiplier approach in FDLP-CCA:

L = α
{
w�m1

Xm1 Gm1,m2 Xm2
�wm2

− λ
2

(w�m1
Xm1 Gm1,m1 Xm1

�wm1 − 1)

− λ
2

(w�m2
Xm2 Gm2,m2 Xm2

�wm2 − 1)
}

+ (1 − α)
{
w�SBw − λ(w�SWw − 1)

}
, (11)

where α(∈ [0, 1]) is a trade-off parameter. In order to obtain
the optimal vectors wm1 and wm2 from Eq. (11), we calculate
∂L
∂wm1
= 0 and ∂L

∂wm2
= 0, and then the following generalized

eigenvalue problem can be derived:

CPw = λCPw, (12)

where CP and CP are defined as

CP = αC
LPCCA

+ (1 − α)SB, (13)

CP = αCLPCCA + (1 − α)SW. (14)

By solving Eq. (12), the optimal vectors wm1 and wm2 are
obtained. The solutions of this dimensionality reduction can
be computed in the same way as FDA or LPCCA.

Compared to LPCCA, FDLP-CCA has the following
advantage: the projection enables discrimination based on
classes. On the other hand, compared to FDA, FDLP-CCA
has the following advantage: the projection considers the
correlation between the two kinds of feature vectors and the
local structure of items. In this way, this dimensionality re-
duction can integrate the two kinds of features and discrim-
inate items based on the classes. By applying FDLP-CCA
to multimedia data that include image and text data, the vi-
sualization that groups items into similar semantics in the
low-dimensional space becomes feasible. The details are
shown in the following subsection.

3.3 Implementation of FDLP-CCA for Dimensionality
Reduction

In this subsection, we explain the implementation of FDLP-
CCA for dimensionality reduction. First, we explain the de-
tails of the items and modalities. In this paper, we use Web
images with text that have two modalities (i.e., text and im-
age) as the items and extract text features and visual features
from the text and images, respectively. We calculate the text
feature vector xt,n and the visual feature vector xv,n. Then
xt,n and xv,n correspond to xm1,n and xm2,n in the previous
subsection, respectively.

Next, we explain the way to obtain the class label that
is used in FDLP-CCA. As described in 3.1, text often has a
cluster structure that represents semantics [16]. Therefore,
clustering based on the text features can divide items into
clusters. In order to attach each image to class ln, we sim-
ply apply k-means clustering to the text features. We also
explain the similarity of items and define the similarity ma-
trices of Eq. (3). As described above, detailed similarity re-
lationships can be represented by visual similarity. There-
fore, we define the item set LN (Ii) that comprises the local
neighbors of item Ii in terms of visual feature vectors xv,i

based on their Euclidean distances.
Finally, we show the algorithm of FDLP-CCA for di-

mensionality reduction in Algorithm 1.
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Algorithm 1 : Algorithm of Fisher Discriminant Canonical Cor-
relation Analysis for Dimensionality Reduction.
Input: Text and visual feature vectors xt,n and xv,n(n = 1, 2, · · · ,N).
Output: Low-dimensional representations Y ∈ Rd×N that are coordinates in d-
dimensional space.
1: Apply k-means clustering to xn and obtain the class labels ln(∈ {1, 2, . . . ,K}).
2: Compute the between-class scatter matrix (SB), within-class scatter matrix (SW)

and the matrices (C
LPCCA

and CLPCCA).

3: Obtain the matrices CP and CP from Eqs. (13) and (14).

4: Solve the eigenvalue problem CPw = λCPw in Eq. (12).
5: Sort eigenvalues with descending order and obtain the top d largest positive eigen-

values λ1 ≥ λ2 ≥ · · · ≥ λd .
6: Compute the eigenvectors w1,w2, · · · ,wd corresponding to the top d largest posi-

tive eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd , respectively.
7: Compute the representation from Y =W�X using

W = [w1,w2, · · · ,wd], where X = [Xv
�, Xt

�]�.
8: Return Y.

4. Experimental Results

In this section, we show experimental results obtained by
using real data to validate our method. The datasets con-
tain images with text collected from Flickr. We explain ex-
perimental settings in Sect. 4.1 and then show the results
of the dimensionality reduction in Sect. 4.2. Moreover, in
Sect. 4.3, we also investigate the impact of different param-
eters in the our method.

4.1 Experimental Settings

In this subsection, we explain the goal of our experiments,
the datasets, the comparison methods and the evaluation
measures.

4.1.1 Goal of Our Experiments

The goal of our experiments is to show the effectiveness
of visualization via the proposed dimensionality reduction
method. It is a challenging problem for dimensionality re-
duction to realize visualization that represents semantic re-
lationships. Since a single image contains various seman-
tics at multiple semantic levels [29], we evaluate the results
in terms of hierarchical image semantics (i.e., “concept”,
“category” and “higher category”). Specifically, the concept
corresponds to object level, and the category represents the
relationship between similar concepts like hypernymy. The
higher category represents the relationships between similar
categories. Figure 2 shows an example of hierarchical image
semantics. The concepts in the same category do not always
co-occur in an image but instead are correlated compared to
the concepts of other categories.

4.1.2 Datasets

Our experiments were conducted by using four datasets
(Datasets 1, 2, 3 and 4) crawled on the Web and the pub-
lic NUS-WIDE [30] dataset. Datasets 1, 2, 3 and 4 con-
sist of images that were collected from Flickr. Specifically,

Fig. 2 Example of hierarchical image semantics.

Table 1 Query keywords used for obtaining each dataset.

Dataset Query keywords
Dataset 1 cow, horse, jaguar, lion, panda, rabbit, wolf,

apple, orange, peach, pineapple, strawberry
Dataset 2 bluebell, crocus, daisy, rose, sunflower,

airplane, bicycle, bus, helicopter, motorcycle, train
Dataset 3 tables, chair, rack, shelf, sofa,

dolphin, shark, starfish, jellyfish, fish, turtle
Dataset 4 cow, horse, jaguar, lion, panda, rabbit, wolf,

apple, orange, peach, pineapple, strawberry,
bluebell, crocus, daisy, rose, sunflower,

airplane, bicycle, bus, helicopter, motorcycle, train,
tables, chair, rack, shelf, sofa,

dolphin, shark, starfish, jellyfish, fish, turtle

we collected images with text from the keyword search re-
sults. Note that we used tags provided by Flickr as text in
this experiment. Table 1 shows the query keywords in each
dataset. The number of images in datasets 1, 2 and 3 is 1000
per keyword, and that in dataset 4 is 300 per keyword. In
these datasets, we extracted text features and visual features
from the text and image, respectively. We calculated inher-
ent topics in the text by using probabilistic latent semantic
analysis (PLSA) [31] as text features. Next, we used hue
saturation (HS) histogram, scale invariant feature transform
(SIFT) [32] and histogram of oriented gradients (HOG) [33]
to describe the visual features. Note that we obtained
SIFT features by applying the BoF approach [34] to 128-
dimensional SIFT descriptors. We used 4276-dimensional
visual features (HS: 360, SIFT: 1000, HOG: 2916) and 150-
dimensional text features in datasets 1-4. NUS-WIDE [30]
is a popular social image benchmark dataset. The images
are manually categorized into 81 classes and represented as
low-level features such as SIFT, color histogram, wavelet
texture and bags of text tags. In this experiment, we selected
a subset of NUS-WIDE in order to reduce computational
quantity. We selected 30 classes, which included more than
500 images, in alphabetical order and randomly used 500
images per class. Specifically, we used “airport, animal,
beach, birds, bridge, buildings, cat, clouds, dog, fire, fish,
flowers, food, garden, grass, horses, house, military, ocean,
police, protest, reflection, sign, sky, snow, sports, street, sun,
sunset and temple”. We used 933-dimensional visual fea-
tures (SIFT: 500, Color histogram: 64, Color correlogram:
144, Block-wide color moments: 225) and 954-dimensional
text features in the NUS-WIDE dataset.

As mentioned above, each image contains various
meanings at multiple semantic levels, and we thus attached
evaluation labels based on hierarchical image semantics to
each image. The hierarchical image semantics of each query
keyword are shown in Table 2. Datasets 1-3 consist of im-
ages that belong to either of two categories, and dataset 4
consists of images that belong to one of three higher cat-
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Table 2 Query keywords used for obtaining each dataset and the hierar-
chical image semantics.

Query keywords (= Concept) Category Higher Category
cow, horse, jaguar, land animals animals

lion, panda, rabbit, wolf,
dolphin, shark, starfish, sea animals

jellyfish, fish, turtle
apple, orange, peach, fruits plants
pineapple, strawberry
bluebell, crocus, daisy, flower

rose, sunflower,
airplane, bicycle, bus, vehicle artifacts

helicopter, motorcycle, train
tables, chair, rack, furniture

shelf, sofa,

egories (animals, plants and artifacts). Therefore, when we
used datasets 1, 2 and 3, we evaluated the dimensionality re-
duction methods based on the concept and category levels.
When we used dataset 4, we performed evaluation based on
the concept, category and higher category levels. On the
other hand, when we used NUS-WIDE, we performed eval-
uation based on the concept level that represents 30 classes.

4.1.3 Comparison Methods

We compared our proposed method (i.e., FDLP-CCA)
with seven other dimensionality reduction methods as
comparison methods: LPCCA [18], FDA [19], MDS [23],
Isomap [8], t-SNE [10], BH-SNE [25] and m-SNE [15].
Since FDLP-CCA is a hybrid version of LPCCA and FDA,
LPCCA and FDA correspond to FDLP-CCA of α = 1 and
α = 0, respectively. Therefore, we used LPCCA and FDA
as comparative methods. MDS is a traditional linear di-
mensionality reduction method and is often used for visu-
alization. Isomap and t-SNE are benchmarking non-linear
dimensionality reduction methods for visualization. BH-
SNE is a state-of-the-art dimensionality reduction method
for visualization. We perform the visualization via the above
methods by concatenating the text feature vector and the vi-
sual feature vector. On the other hand, m-SNE is a state-
of-the-art multimodal dimensionality reduction method that
can integrate heterogeneous features. By applying these
methods and comparing their results with the results of our
method, we verified the validity of our contributions.

4.1.4 Evaluation Measures

In order to compare different dimensionality reduction
methods, Pseudo F [35] and k-NN classification accuracy
that quantified the suitability of a particular item placement
were used. The Pseudo F statistic describes the ratio of the
mean sum of squares between classes to the mean sum of
squares within a class. A large value of Pseudo F indi-
cates separated classes. The k-NN classification accuracy
is calculated by performing k-NN classification in the low-
dimensional space. For k-NN evaluation, the results are ob-
tained from all items and their 200 neighbors. A large value
of k-NN classification accuracy indicates that the neighbors
tend to have the same class.

4.2 Results of Dimensionality Reduction

We show the experimental results of visualization via di-
mensionality reduction. We first visualized images and sub-
jectively evaluated the performance of each dimensionality
reduction method. Then we quantitatively evaluated their
performances based on the evaluation measures shown in
the previous subsection. Our paper aims for the visualiza-
tion, so we focus on the number of dimensions d = 2 and 3.
In this experiment, we experimentally determined α. Specif-
ically, the value of α was changed from 0 to 1 increasing by
0.05, and we selected the results when the k-nn classifica-
tion accuracy of the concept level became the highest. In
the case of d = 2, for each dataset, the optimal values of
α are 0.90, 0.75, 0.70, 0.80 and 0.75, respectively. In the
case of d = 3, for each dataset, the optimal values of α are
0.85, 1.0, 0.85, 0.80 and 0.80, respectively. Furthermore, we
experimentally determined K of k-means. Specifically, the
value of K was changed from 5 to 15 increasing by 2, and we
selected the results when the k-nn classification accuracy of
the concept level became the highest. In the case of d = 2,
for each dataset, the optimal values of K are 15, 7, 11, 9 and
15, respectively. In the case of d = 3, for each dataset, the
optimal values of K are 13, 11, 9, 9 and 11, respectively.

First, we compare the results for datasets 1 and 2. Due
to the limitation of space, we only show the 2D visualiza-
tion results for datasets 1 and 2 via FDLP-CCA, Isomap
as a benchmarking dimensionality reduction method, BH-
SNE as a state-of-the-art dimensionality reduction method
in Figs. 3 and 4. In these figures, we also show results by
LPCCA and FDA. In Figs. 3 and 4, each point plus a color
denotes the concept or the category. From the results, we
can find the following advantages of FDLP-CCA.

1. Compared to the comparison methods, FDLP-CCA can
deliver more separated manifolds based on each con-
cept.

2. Compared to the comparison methods, FDLP-CCA can
organize enhanced compactness within each category.

3. Compared to LPCCA and FDA, FDLP-CCA can per-
form the better visualization by considering the char-
acteristics of both LPCCA and FDA.

As shown in Figs. 3 and 4, FDLP-CCA can represent hier-
archical image semantics of each dataset.

Secondly, we compare our method and the other com-
parison methods based on the evaluation measures using
datasets 1, 2, 3 and 4. Tables 3 and 5 respectively show
Pseudo F and k-NN classification accuracy of the obtained
results in d = 2. Tables 4 and 6 respectively show Pseudo
F and k-NN classification accuracy of the obtained results
in d = 3. For Pseudo F and k-NN classification accuracy,
most of the results of FDLP-CCA are larger than those of
the comparison methods in both concept level and category
level for all datasets. The results of FDLP-CCA are also
larger than those of the comparison methods in the higher
category for dataset 4. From the above results, the hierar-
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Fig. 3 Results of visualization via the dimensionality reduction methods using dataset 1.

chical image semantics are more clearly visible in FDLP-
CCA. Since the performances of FDLP-CCA in d = 2 and 3
are better than the other dimensionality reduction methods,
FDLP-CCA is the suitable dimensionality reduction method
for visualization. As shown in this quantitative comparison,
we can see that the proposed method performs better dimen-
sionality reduction than do the comparison methods.

Furthermore, we show experimental results using only
one of the two modalities. Specifically, we show the results
via LPP [9], which is a locality preserving dimensionality
reduction method, obtained by applying it to the visual fea-
ture vector or the text feature vector. Table 7 shows Pseudo
F and k-NN classification accuracy. The results based on the
text features are larger than the results based on the visual
features. By applying it to one of the modalities and com-

paring their results, we confirmed that text features had high
discriminative power in terms of semantics.

From the experiments, we found that FDLP-CCA can
represent more semantic structures in real data than the
comparative dimensionality reduction methods can. Since
the comparative methods utilize a combination of differ-
ent kinds of modalities for realizing dimensionality reduc-
tion, they cannot consider the unique characteristics of each
modality and are often not successful in visualizing real
multimedia data. On the other hand, FDLP-CCA represents
the correlation between text and visual features, the local
structures based on visual features and the cluster structure
based on text features. As shown in Tables 3, 4, 5 and 6, we
can see that the dimensionality reduction method that con-
siders the correlation between two modalities (i.e., LPCCA)
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Fig. 4 Results of visualization via the dimensionality reduction methods using dataset 2.

has better performance than that of the other comparison
methods. From the results, we can verify that the dimen-
sionality reduction method which considers the correlation
gives a good projection in which hierarchical image seman-
tics are well separated. Furthermore, although the dimen-
sionality reduction method that considers the text cluster
structure (i.e., FDA) fails to achieve a projection that rep-
resents hierarchical image semantics, dimensionality reduc-
tion that has the characteristics of LPCCA and FDA (i.e.,
FDLP-CCA) has significantly better dimensionality reduc-
tion performance than that of FDA. Thus, by considering
the text cluster structure, the performance of dimensionality
reduction is improved. From the above results, we can ver-
ify that text cluster structure and the correlation between the
text and visual features concerning the local structures are

effective for visualization. Finally, we can mention here that
FDLP-CCA has significantly better performance in terms of
hierarchical image semantics discrimination than that of all
other comparative methods.

4.3 Parameter Analysis

Finally, we report the effects of the parameter in FDLPCCA
(i.e., α and K). α(∈ [0, 1]) is the influential parameter
which maintains the computational efficiency and reliability
of FDA and LPCCA. In Fig. 5, we plot the k-NN classifica-
tion accuracy of the proposed method’s performance using
dataset 1. The parameter α is changed from 0 to 1 increas-
ing by 0.05. In Fig. 5, it can be seen that the performance
peaks at large values of α around 0.8. Larger value of α in
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Table 3 Performance comparison of results based on Pseudo F (d = 2).

Hierarchical semantics FDLP-CCA LPCCA FDA MDS Isomap t-SNE BH-SNE m-SNE

Dataset 1 Concept 9.905 × 104 1.280 × 104 1.821 × 104 1.755 × 104 1.449 × 104 1.500 × 104 1.361 × 104 1.600 × 104

Category 3.390 × 104 1.102 × 104 1.402 × 104 1.595 × 104 1.313 × 104 1.340 × 104 1.339 × 104 1.391 × 104

Dataset 2 Concept 2.093 × 104 1.104 × 104 2.252 × 104 2.694 × 104 2.281 × 104 2.528 × 104 2.760 × 104 2.770 × 104

Category 2.597 × 104 1.074 × 104 1.599 × 104 1.931 × 104 1.730 × 104 1.836 × 104 2.046 × 104 2.156 × 104

Dataset 3 Concept 3.219 × 104 1.104×104 1.870 × 104 2.060 × 104 1.987 × 104 2.180 × 104 2.291 × 104 1.610 × 104

Category 2.521 × 104 1.075 × 104 1.080 × 104 1.428 × 104 1.676 × 104 1.765 × 104 1.724 × 104 1.483 × 104

Dataset 4 Concept 1.762 × 104 1.031 × 104 1.492 × 104 1.373 × 104 1.396 × 104 1.684 × 104 1.433 × 104 1.673 × 104

Category 1.252 × 104 1.017 × 104 1.036 × 104 1.316 × 104 1.215 × 104 1.330 × 104 1.291 × 104 1.338 × 104

Higher Category 1.255 × 104 1.075 × 104 1.135 × 104 1.161 × 104 1.058 × 104 1.030 × 104 1.030 × 104 1.026 × 104

NUS-WIDE Concept 3.164 × 104 1.590 × 104 1.509 × 104 1.552 × 104 1.558 × 104 1.500 × 104 1.582 × 104 1.624 × 104

Table 4 Performance comparison of results based on Pseudo F (d = 3).

Hierarchical semantics FDLP-CCA LPCCA FDA MDS Isomap t-SNE BH-SNE m-SNE

Dataset 1 Concept 3.543 × 104 2.312 × 104 1.575 × 104 1.727 × 104 1.503 × 104 1.482 × 104 1.435 × 104 1.435 × 104

Category 1.912 × 104 1.713 × 104 1.213 × 104 1.573 × 104 1.382 × 104 1.334 × 104 1.363 × 104 1.303 × 104

Dataset 2 Concept 2.891 × 104 2.891 × 104 1.228 × 104 1.311 × 104 1.417 × 104 1.095 × 104 1.701 × 104 1.400 × 104

Category 2.070 × 104 2.070 × 104 1.126 × 104 1.137 × 104 1.240 × 104 1.078 × 104 1.593 × 104 1.355 × 104

Dataset 3 Concept 2.624 × 104 2.603 × 104 1.447 × 104 1.340 × 104 1.435 × 104 1.583 × 104 1.554 × 104 1.095 × 104

Category 1.353 × 104 1.414 × 104 1.119 × 104 1.221 × 104 1.233 × 104 1.445 × 104 1.381 × 104 1.076 × 104

Dataset 4 Concept 3.194 × 104 2.162 × 104 1.245 × 104 1.269 × 104 1.187 × 104 1.394 × 104 1.416 × 104 1.415 × 104

Category 2.222 × 104 2.222 × 104 1.285 × 104 1.310 × 104 1.278 × 104 1.245 × 104 1.263 × 104 1.264 × 104

Higher Category 1.386 × 104 1.152 × 104 1.090 × 104 1.058 × 104 1.054 × 104 1.071 × 104 1.032 × 104 1.046 × 104

NUS-WIDE Concept 2.161 × 104 2.161 × 104 1.524 × 104 1.531 × 104 1.572 × 104 1.622 × 104 1.626 × 104 1.615 × 104

Table 5 Performance comparison of results based on k-NN classification accuracy (d = 2).

Hierarchical semantics FDLP-CCA LPCCA FDA MDS Isomap t-SNE BH-SNE m-SNE

Dataset 1 Concept 0.3503 0.2237 0.2335 0.1624 0.1228 0.1998 0.2236 0.2237

Category 0.7664 0.5973 0.5799 0.6651 0.5777 0.6549 0.6725 0.6735

Dataset 2 Concept 0.2727 0.0095 0.2374 0.2763 0.2443 0.4031 0.4532 0.3930

Category 0.9712 0.5112 0.6523 0.8343 0.7825 0.8360 0.8671 0.8527

Dataset 3 Concept 0.3922 0.1121 0.2846 0.2341 0.2400 0.3366 0.2438 0.3807

Category 0.9578 0.9575 0.6143 0.6888 0.7422 0.7980 0.6982 0.8322

Dataset 4 Concept 0.0984 0.0322 0.0494 0.0618 0.0704 0.1414 0.1149 0.1273

Category 0.3829 0.1760 0.3473 0.4599 0.4065 0.5384 0.4976 0.5693

Higher Category 0.6441 0.3432 0.3872 0.4999 0.5065 0.5684 0.5976 0.5293

NUS-WIDE Concept 0.1058 0.0420 0.0541 0.0376 0.0393 0.0333 0.0456 0.0560

Table 6 Performance comparison of results based on k-NN classification accuracy (d = 3).

Hierarchical semantics FDLP-CCA LPCCA FDA MDS Isomap t-SNE BH-SNE m-SNE

Dataset 1 Concept 0.6828 0.0981 0.1888 0.2003 0.1674 0.2642 0.2940 0.2948

Category 0.9541 0.9193 0.6660 0.7033 0.6476 0.7002 0.7295 0.6543

Dataset 2 Concept 0.5418 0.5418 0.2243 0.2689 0.2801 0.0895 0.3332 0.2748

Category 0.9751 0.9751 0.6831 0.8164 0.8071 0.5027 0.8153 0.7770

Dataset 3 Concept 0.5778 0.3622 0.2187 0.2137 0.2186 0.2461 0.2441 0.1905

Category 0.9734 0.8136 0.6638 0.6746 0.6710 0.2461 0.2441 0.5040

Dataset 4 Concept 0.1766 0.1764 0.1078 0.1122 0.1098 0.1578 0.1548 0.1187

Category 0.4083 0.2108 0.2517 0.3535 0.3361 0.3848 0.3808 0.3393

Higher Category 0.6941 0.6686 0.4175 0.5142 0.4998 0.5326 0.5297 0.4935

NUS-WIDE Concept 0.0943 0.0943 0.0436 0.0414 0.0396 0.0468 0.0468 0.0463

FDLPPCA means that the correlation between two different
modalities is a primary factor of dimensionality reduction
performances. Other datasets get the similar results. In ad-
dition, in the case of d = 3, we confirmed the similar results.

On the other hand, K is the number of clusters for ap-
plying k-means clustering to the text features. In Fig. 6,

we plot the k-NN classification accuracy of the proposed
method’s performance using dataset 1. The number of K
is changed from 5 to 15 increasing by 2. In Fig. 6, it can
be seen that the performance of FDLP-CCA tends not to be
sensitive to K. Other datasets get the similar results. In ad-
dition, in the case of d = 3, we confirmed the similar results.
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Table 7 Results of LPP using the visual features or the text features (d = 2).

Hierarchical semantics LPP (Visual) LPP (Text)

Evaluation measure Psuedo F k-NN Psuedo F k-NN

Dataset 1 Concept 1.395 × 104 0.1207 1.254 × 104 0.7620

Category 1.292 × 104 0.5747 1.013 × 104 0.8787

Dataset 2 Concept 1.416 × 104 0.1746 3.466 × 104 0.4816

Category 1.163 × 104 0.6454 1.583 × 104 0.8939

Dataset 3 Concept 1.329 × 104 0.1326 1.612 × 104 0.7527

Category 1.149 × 104 0.5358 1.186 × 104 0.9069

Dataset 4 Concept 1.209 × 104 0.0424 2.411 × 104 0.1788

Category 1.045 × 104 0.1848 1.135 × 104 0.3412

Higher Category 1.026 × 104 0.3508 1.171 × 104 0.4681

NUS-WIDE Concept 1.569 × 104 0.0374 4.913 × 104 0.3247

Fig. 5 Results based on k-NN classification accuracy of FDLP-CCA using dataset 1 in α (d = 2).

Fig. 6 Results based on k-NN classification accuracy of FDLP-CCA using dataset 1 in K (d = 2).

5. Conclusions

In this paper, we have presented a dimensionality reduc-
tion method for data visualization. We use multimedia data
that are represented by two typical modalities, text and im-
age. The proposed dimensionality reduction method can in-
tegrate text and visual features of images and discriminate
items in terms of the semantics by considering the unique
characteristics of these features. Specifically, we consider
the power of grouping items into semantic clusters based on
the text features and the most perceptual relationships be-
tween items for humans based on the visual features. By
considering the above characteristics, FDLP-CCA can inte-

grate multiple features and discriminate them in terms of se-
mantics. Specifically, our dimensionality reduction method
is a hybrid version of two dimensionality reduction meth-
ods: LPCCA and FDA. Therefore, visualization via FDLP-
CCA can group items containing the same semantics in a
low-dimensional space.
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