
 

Instructions for use

Title Studies on Efficient Index Construction for Multiple and Repetitive Texts

Author(s) 髙木, 拓也

Citation 北海道大学. 博士(情報科学) 甲第13077号

Issue Date 2018-03-22

DOI 10.14943/doctoral.k13077

Doc URL http://hdl.handle.net/2115/70687

Type theses (doctoral)

File Information Takuya_Takagi.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


Studies on Efficient Index Construction for

Multiple and Repetitive Texts

(複数テキストと繰り返しテキストに対する

効率の良い索引構築の研究)

Takuya Takagi

January 2018

Division of Computer Science and Information Technology

Graduate School of Information Science and Technology

Hokkaido University





Abstract

Text indexing problem is one of the fundamental problems in computer science and

the aim is to construct an efficient data structure that answers queries such as text

pattern matching. For the last decades, there has been an increasing amount of multiple

texts such as data generated from multiple sensors and repetitive texts such as genome

sequence collections. For example, the GeoLife Project collects trajectories from GPS

loggers that have a variety of sampling rates. These trajectories were recorded every

1 to 5 seconds or every 5 to 10 meters per point. For another example, the 1000

Genomes Project collects the human genomes from various groups. Since each genome

information is similar to each other, the same substructures appear repeatedly in this

genome database. These projects are aiming at data analysis, information retrieval, and

data mining for text information. For pattern matching, which is the most fundamental

query for texts, we can answer queries by using basic text pattern matching algorithms

such as Knuth-Morris-Pratt (KMP) algorithm and Boyer-Moore (BM) algorithm. Since

these algorithms scan the texts for each query, it requires at least linear time for

database size in one query. In order to quickly process these data, preprocessing and

indexing are important. For example, the suffix tree, one of the basic text indexes,

can support pattern matching in linear time for pattern length. Therefore, building an

efficient index structure is the key to processing these large amounts of text information.

In this thesis, we show efficient index construction algorithms for text data.

For multiple texts and repetitive texts, there are several problems with indexing.
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Since data grow constantly for multiple sensor data such as GPS trajectories, it is

necessary for the index to support online construction for multiple texts. For repetitive

texts that is similar text collection such as genome sequences, we should be able to build

an index with a more compressed size. In order to solve these problems, we propose

several new index structures and construction algorithms. In particular, this thesis

deals with speeding up construction and operations of indexes, online construction of

indexes for multiple texts, and construction of compressed indexes for texts including

long repetitions.

In Chapter 3, we propose a faster version of labeled trees (compact tries) called

packed compact tries , by using a bit-parallel method. By doing this, we show faster

construction of text indexes such as suffix trees and faster various operations like prefix

search, insertion, and deletion. Since the compact trie is a widely used data structure,

we can speed up some algorithms by using packed compact tries. In particular, we

show that LZ-double factorization which is one kind of text compression algorithm is

speeded up.

In Chapter 4, we first defined a fully-online construction problem, which is a setting

that allows a new input symbol can be added an arbitrary string of the set of input

strings. To solve this problem, we first showed a fully-online construction algorithm

of a DAG index called the directed acyclic word graph (DAWG). We also proposed a

fully-online construction algorithm for the suffix tree using similarity between DAWGs

and suffix trees.

In Chapter 5, we proposed a self-indexing method by combining an index called the

compact directed acyclic word graph (CDAWG) with grammar compression, which is

one of the compression methods. When the input text is compressible, the index can

be held with a size smaller than the original text.

In Chapter 6, we give conclusions and future work. Overall, we studied efficient

algorithms for text index construction in this thesis.
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Chapter 1

Introduction

1.1 Background

For the last decades, there has been an increasing amount of unstructured data such

as genetic data, logging data, and Web and SNS texts, which have been coined as big

data. Most of these unstructured data are available in the form of text information.

Therefore, there are demands for algorithms and data structure that can efficiently

handle these big unstructured data. Multiple growing texts and repetitive texts are one

of the features of text data such as logging data and genetic data.

Multiple growing texts are a text set that can be appended a new symbol at the

end of a text in the set. There are many text data with this feature in the real world.

For example, due to the rapid development of network and sensor technologies, various

and enormous stream data are generated from multiple source such as GPS trajectory

data [72], sensor and Twitter streams. These are represented as multiple texts or

multiple sequences that are constantly growing.

Another feature of textual big data is called repetitiveness [56]. It means a kind of

text sets consisting of similar texts. For example, genome sequences [21] and versioned

document collections such as software repositories are one of the highly repetitive texts .
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These data contain many long repetitions in the text.

1.2 Research goals

In order to use big data, it is necessary to perform various queries such as data mining

and information retrieval. However, because of the massive amount of data, even simple

queries such as text pattern matching take too much time. One of the solutions is to

preprocess those data and create an index that supports the query in order to answer

quickly. Among indexes for texts, those indexes that have all substring information of

each text supports the most diverse queries.

In this thesis, we study efficient index construction for multiple texts and repetitive

texts. There are the following demands for construction of indexes with these text

data. First, in order to process a large amount of data at high speed, we want an index

that supports fast queries. Second, in order to construct an index for multiple growing

texts, we need an index that enables online construction for multiple texts. Finally, to

store a large amount of data, it must be small in its size.

1.3 Summary of the results

In this thesis, there are three main results to text indexing as follows. In Chapter 2,

we introduce notations and definitions of some data structures.

In Chapter 3, we study acceleration of compact tries using the packed string tech-

nique. The dynamic compact trie [42,65] is a fundamental data structure for storing a

set of variable-length strings. It can store a set of k strings over an alphabet Σ with

total size n in O(n log n) bits of space. we propose packed compact tries that support

faster prefix search queries and update operations of compact tries on the standard

word RAM model. It still keeps n log σ + O(k log n) bits of space.
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In Chapter 4, we study fully-online construction of DAWG and suffix trees for

multiple texts. Let T = {T1, . . . , TK} be a collection of texts. By fully-online, we

mean that a new character can be appended to any text in T at any time. This is

a natural generalization of semi-online construction of indexing data structures for

multiple texts in which, after a new character is appended to the k-th text Tk, then

its previous texts T1, . . . , Tk−1 will remain static. We propose fully-online algorithms

which construct the directed acyclic word graph (DAWG) [14], and the generalized

suffix tree (GST ) [42] for T in O(n log σ) time and O(n) words of space, where n and

σ denote the total length of texts in T and the alphabet size, respectively.

In Chapter 5, we study a compressed index combining CDAWGs and grammar

compression. Recent studies have shown that the compact directed acyclic word graphs

(CDAWG) [15] topology achieves the compressed size for repeated strings. However,

there is no known method for supporting high-speed search with the compressed size

without having the original input string. Linear-size CDAWG proposed in this thesis

achieves the compressed size while supporting search time similar to original CDAWG.

In Chapter 6, we give the summary of this thesis, and then discuss possible future

researches.

1.4 Contributions of this thesis

We studied three fundamental problems which are necessary when we construct the

index that can efficiently handle a massive amount of text data. A versatile text

index has three features: high speed queries, fully-online construction, and, small space

complexity. Each result of this thesis shows an index which achieves one of the three

features. First, as a basis of efficient text indexes allowing high speed query processing,

we proposed an improved data structure supporting high speed construction and queries

by using bit-parallel methods. Secondly, for multiple growing texts like stream data
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from multiple sensors, we proposed construction algorithm of an index in fully-online

manner. Thirdly, for texts that contain many repetitive structures, we proposed an

index that can capture the repeating structure and store it in compressed size. Overall,

we studied efficient algorithms for text index construction which are a basis to achieve

an index with the three features.
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Chapter 2

Preliminaries

In this chapter, we introduce basic definitions and notations in strings, suffix tries,

suffix trees, directed acyclic word graphs, and compact directed acyclic word graphs

according to [24–26,42].

2.1 Notations on Strings

Let Σ be an ordered alphabet. Any element of Σ∗ is called a string. For any string T ,

let |T | denote its length. Let ε be the empty string, namely, |ε| = 0. If T = XY Z,

then X, Y , and Z are called a prefix, a substring, and a suffix of T , respectively. For

any 1 ≤ i ≤ j ≤ |T |, let T [i..j] denote the substring of T that begins at position i

and ends at position j in T . For any 1 ≤ i ≤ |T |, let T [i] denote the ith character

of T . For any string T , let Suffix (T ) denote the set of suffixes of T , and for any

set T of strings, let Suffix (T ) denote the set of suffixes of all strings in T . Namely,

Suffix (T ) =
∪

T∈T Suffix (T ). For any string T , let T denote the reversed string of T ,

i.e., T = T [|T |] · · ·T [1].

Let T = {T1, . . . , TK} be a collection of K texts. For any 1 ≤ k ≤ K, let lrsT (Tk)

be the longest repeating suffix of Tk that occurs at least twice in T . For any strings
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X, Y , LCP(X,Y ) denotes the longest common prefix of X and Y .

Throughout this thesis, the base of the logarithms will be 2, unless otherwise stated.

For any integers i ≤ j, [i, j] denotes the interval {i, i+ 1, . . . , j}. Our model of compu-

tation is the standard word RAM of word size w = log n bits. For simplicity, we assume

that w is a multiple of log σ, so α = logσ n letters are packed in a single word. Since

we can read w bits in constant time, we can read and process α consecutive letters in

constant time.

2.2 Notations on graphical indexes

All index structures dealt with in this thesis, such as suffix tries, suffix trees, CDAWGs,

linear-size suffix tries (LSTries), and linear-size CDAWGs (L-CDAWGs), are graphical

indexes in the sense that an index is a pointer-based structure built on an underlying

DAG GL = (V (L), E(L)) with a root r ∈ V (L) and mapping lab : E(L) → Σ+ that

assign a label idlab(e) to each edge e ∈ E(L). For an edge e = (u, v) ∈ E(L), we

denote its end points by e.hi := u and e.lo := v, respectively. The label string of e

is idlab(e) ∈ Σ+. The string length of e is idslen(e) := |idlab(e)| ≥ 1. An edge is

called atomic if idslen(e) = 1, and thus, idlab(e) ∈ Σ. For a path p = (e1, . . . , ek) of

length k ≥ 1, we extend its end points, label string, and string length by p.hi := e1.hi,

p.lo := ek.lo, idlab(p) := idlab(e1) . . . idlab(ek) ∈ Σ+, and idslen(p) := idslen(e1) +

· · ·+ idslen(ek) ≥ 1, respectively.

2.3 Suffix tries

The suffix trie for a text collection T = {T1, . . . , TK}, denoted STrie(T ), is a trie

which represents Suffix (T ). The size of STrie(T ) is O(n2), where n is the total length

of texts in T . We identify each node v of STrie(T ) with the string that v represents.

12



Suffix Tree

a

a

a

c

a b

c

a

c

a

b

b

b

Suffix Trie

a

c

a

c

a

c

c

a

a

a

a

c

a b

c

a

c

a

b

b

b

a

c

a

c

a

c

c

a

a

a

b

a
b

c

c

a

c a

b

a

c

a

c

CDAWG

Path compaction Minimization a

a

b

c
c

a

b

a

c

a

DAWG

b

a

Path compactionMinimization

Figure 2.1: Illustration of STrie(T ), STree(T ), DAWG(T ), and CDAWG(T ) with
T = ababaac. The solid arrows and broken arrows represent the edges and the suffix
links of each data structure, respectively.

A substring x of a text in T is said to be branching in T , if there exist two distinct

characters a, b ∈ Σ such that both xa and xb are substrings of some texts in T . Clearly,

node x of STrie(T ) is branching iff x is branching in T .

For each node av of STrie(T ) with a ∈ Σ and v ∈ Σ∗, let slink(av) = v. This

auxiliary edge slink(av) = v from av to v is called a suffix link. We define the reversed

suffix link Wa(v) = av iff slink(av) = v. For any node v and a ∈ Σ, if av is not a

substring of the texts in T , then Wa(v) is undefined. By definition, the reversed suffix

links on STrie(T ) form a rooted tree which coincides with STrie(T ), the suffix trie for

the collection T = {T1, . . . , TK} of the reversed texts.
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2.4 Suffix trees

The suffix tree [68] for a text collection T , denoted STree(T ), is a “compacted trie”

which represents Suffix (T ). STree(T ) is obtained by compacting every path of STrie(T )

which consists of non-branching internal nodes (see Fig. 2.1). Since every internal node

of STree(T ) is branching, and since there are at most n leaves in STree(T ), the numbers

of edges and nodes are O(n). The edge labels of STree(T ) are non-empty substrings

of some text in T . By representing each edge label x with a triple ⟨k, i, j⟩ of integers

s.t. x = Tk[i..j], STree(T ) can be stored with O(n) space. We say that any branch-

ing (resp. non-branching) substring of T is an explicit node (resp. implicit node) of

STree(T ). An implicit node x is represented by a triple (v, a, ℓ), called a reference to

x, such that v is an explicit ancestor of x, a is the first character of the path from v to

x, and ℓ is the length of the path from v to x. A reference (v, a, ℓ) to node x is called

canonical if v is the lowest explicit ancestor of x.

For each explicit node av of STree(T ) with a ∈ Σ and v ∈ Σ∗, let slink(av) = v.

For each explicit node v and a ∈ Σ, we also define the reversed suffix linkWa(v) = avx

where x ∈ Σ∗ is the shortest string such that avx is an explicit node of STree(T ).

Wa(v) is undefined if av is not a substring of texts in T . These reversed suffix links

are also called as Weiner links (or W-link in short) in the literature [16]. A W-link

Wa(v) = avx is said to be hard if x = ε, and soft if x ∈ Σ+. Let w be a Boolean

function such that for any explicit node v and a ∈ Σ, wa(v) = 1 iff (soft or hard)

W-link Wa(v) exists. Notice that if wa(v) = 1 for a node v and a ∈ Σ, then wa(u) = 1

for every ancestor of v.

2.5 Directed acyclic word graphs (DAWGs)

The directed acyclic word graph (DAWG in short) [14,15] of a text collection T , denoted

DAWG(T ), is a smallest DAG which represents Suffix (T ). DAWG(T ) is obtained by
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merging identical subtrees of STrie(T ) connected by the suffix links (see Fig. 2.1).

Hence, the label of every edge of DAWG(T ) is a single character. The numbers of

nodes and edges of DAWG(T ) are O(n) [15], and hence DAWG(T ) can be stored

with O(n) space. DAWG(T ) can be defined formally as follows: For any string x, let

EposT (x) be the set of ending positions of x in the texts in T , i.e.,

EposT (x) = {(k, j) | x = Tk[j − |x|+ 1..j], 1 ≤ j ≤ |Tk|, 1 ≤ k ≤ K}.

Consider an equivalence relation ≡T on substrings x, y of texts in T such that x ≡T y

iff EposT (x) = EposT (y). For any substring x of texts of T , let [x]T denote the

equivalence class w.r.t. ≡T . There is a one-to-one correspondence between each node

v of DAWG(T ) and each equivalence class [x]T , and hence we will identify each node

v of DAWG(T ) with its corresponding equivalence class [x]T . Let long([x]T ) denote

the longest member of [x]T . By the definition of equivalence classes, long([x]T ) is

unique for each [x]T and every member of [x]T is a suffix of long([x]T ). If x, xa are

substrings of some text in T with x ∈ Σ∗ and a ∈ Σ, then there exists an edge labeled

with character a ∈ Σ from node [x]T to node [xa]T . This edge is called primary if

|long([x]T )|+ 1 = |long([xa]T )|, and is called secondary otherwise. For each node [x]T

of DAWG(T ) with |x| ≥ 1, let slink([x]T ) = y, where y is the longest suffix of long([x]T )

which does not belong to [x]T . In the example of Fig. 2.1, [aaab]T = {aaab, aab}. The

edge labeled with b from node [aaa]T to node [aaab]T is primary, while the edge labeled

with b from [aa]T to node [aaab]T is secondary. slink([aaab]T ) = [ab]T .

2.6 Duality of suffix trees and DAWGs

There exists a nice duality between suffix trees and DAWGs. To observe this, it is

convenient to consider the collection T of the reversed texts each of which begins with

a special marker $i, i.e., T = {$1T1, . . . , $KTK}. For ease of notation, let Sk = Tk for
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1 ≤ k ≤ K and S = {$1S1, . . . , $KSK} = T . Then, it is known (c.f. [14, 15, 25]) that

the reversed suffix links of DAWG(S) coincide with the suffix tree STree(T ) for the

original text collection T . This fact can also be observed from the other direction.

Namely, the hard (resp. soft) W-links of STree(T ) coincide with the primary (resp.

secondary) edges of DAWG(S).

Intuitively, this duality holds because

(1) The reversed suffix links of STrie(S) form STrie(T ) (and vice versa), and

(2) When we construct DAWG(S) from STrie(S), we merge isomorphic subtrees

that are connected by suffix links. During this merging process, the reversed

suffix links get compacted and the resulting compacted links form the edges of

STree(T ).

Using this duality, we can immediately show that the total number of hard and soft

W-links is linear in the total text length n, since the number of edges of the DAWG is

linear in n. This also means that we can easily maintain the Boolean indicator w with

O(n) space, so that wa(v) for a given node v and a ∈ Σ can be answered in O(log σ)

time (e.g., at each node v we can maintain a BST storing only the characters c s.t.

wc(v) = 1.)

2.7 Compact directed acyclic word graphs (CDAWGs)

The compact directed acyclic word graph [15, 26] for a text T , denoted CDAWG(T ),

is the minimal compact automaton which represents Suffix (T ). CDAWG(T ) can be

obtained from STree(T$) by merging isomorphic subtrees and deleting associated end-

marker $ ̸∈ Σ. Since CDAWG(T ) is an edge-labeled DAG, we represent a directed

edge from node u to v with label string x ∈ Σ+ by a triple f = (u, x, v). For any node

u, the label strings of out-going edges from u start with mutually distinct characters.
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Formally, CDAWG(T ) is defined as follows. For any strings x, y, we denote x ≡L y

(resp. x ≡R y) iff the beginning positions (resp. ending positions) of x and y in T

are equal. Let [x]L (resp. [x]R) denote the equivalence class of strings w.r.t. ≡L (resp.

≡R). All strings that are not substrings of T form a single equivalence class, and in the

sequel we will consider only the substrings of T . Let −→x (resp. ←−x ) denote the longest

member of the equivalence class [x]L (resp. [x]R). Notice that each member of [x]L

(resp. [x]R) is a prefix of −→x (resp. a suffix of ←−x ). Let ←→x =
←−−
(−→x ) =

−−→
(←−x ). We denote

x ≡ y iff ←→x = ←→y , and let [x] denote the equivalence class w.r.t. ≡. The longest

member of [x] is ←→x and we will also denote it by value([x]). We define CDAWG(T )

as an edge-labeled DAG (V,E) such that V = {[−→x ]R | x is a substring of T} and E =

{([−→x ]R, α, [
−→x α]R) | α ∈ Σ+,−→x ̸≡ −→x α}. The −→· operator corresponds to compacting

non-branching edges (like conversion from STrie(T ) to STree(T )) and the [·]R operator

corresponds to merging isomorphic subtrees of STree(T ). For simplicity, we abuse

notation so that when we refer to a node of CDAWG(T ) as [x], this implies x = −→x

and [x] = [−→x ]R.

Let [x] be any node of CDAWG(T ) and consider the suffixes of value([x]) which

correspond to the suffix tree nodes that are merged when transformed into the CDAWG.

We define the suffix link of node [x] by slink([x]) = [y], iff y is the longest suffix of

value([x]) that does not belong to [x].

It is shown that all nodes of CDAWG(T ) except the sink correspond to the maximal

repeats of T . Actually, value([x]) is a maximal repeat in T [58]. Following this fact,

one can easily see that the numbers of edges of CDAWG(T ) and CDAWG(T ) coincide

with the numbers erT and eℓT of right- and left- extensions of maximal repeats of T ,

respectively [9, 58].

By representing each edge label α with pairs (i, j) of integers such that T [i..j] = α,

CDAWG(T ) can be stored in O(erT log n + n log σ) bits of space.
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Chapter 3

Packed Compact Tries

In this chapter, we present a new data structure called the packed compact trie (packed

c-trie) which stores a set S of k strings of total length n in n log σ + O(k log n) bits of

space and supports fast pattern matching queries and updates, where σ is the alphabet

size. Assume that α = logσ n letters are packed in a single machine word on the

standard word RAM model, and let f(k, n) denote the query and update times of the

dynamic predecessor/successor data structure of our choice which stores k integers from

universe [1, n] in O(k log n) bits of space. Then, given a string of length m, our packed

c-tries support pattern matching queries and insert/delete operations in O(m
α
f(k, n))

worst-case time and in O(m
α

+ f(k, n)) expected time. Our experiments show that

our packed c-tries are faster than the standard compact tries (a.k.a. Patricia trees)

on real data sets. As an application of our packed c-trie, we show that the sparse

suffix tree for a string of length n over prefix codes with k sampled positions, such

as evenly-spaced and word delimited sparse suffix trees, for a set of k word suffixes

can be constructed online in O((n
α

+ k)f(k, n)) worst-case time and O(n
α

+ kf(k, n))

expected time with n log σ + O(k log n) bits of space. When k = O(n
α

), by using the

state-of-the-art dynamic predecessor/successor data structures, we obtain sub-linear

time construction algorithms using only O(n
α

) bits of space in both cases. We also
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discuss an application of our packed c-tries to online LZD factorization.

3.1 Background

The trie for a set S of strings of total length n is a classical data structure which occupies

O(n log n+n log σ) bits of space and allows for prefix search and insertion/deletion for

a given string of length m in O(m log σ) time, where σ is the alphabet size. The

compact trie for S is a path-compressed trie where the edges in every non-branching

path are merged into a single edge [53]. By representing each edge label by a pair of

positions in a string in S, the compact trie can be stored in n log σ + O(k log n) bits

of space, where k is the number of strings in S, retaining the same time efficiency for

prefix search and insertion/deletion for a given string. Thus, compact tries have widely

been used in numerous applications such as dynamic dictionary matching [44], suffix

trees [68], sparse suffix trees [47], external string indexes [30], and grammar-based text

compression [39].

In this chapter, we show how to accelerate prefix search queries and update op-

erations of compact tries on the standard word RAM model with machine word size

w = log n, still keeping n log σ + O(k log n)-bit space usage. A basic idea is to use the

packed string matching approach [12], where α = logσ n consecutive letters are packed

in a single word and can be manipulated in O(1) time. In this setting, we can read a

given pattern P of length m in O(m
α

) time, but, during the traversal of P over a com-

pact trie, there can be at most m branching nodes. Thus, a näıve implementation of a

compact trie takes O( m
logσ n

+ m log σ) = O(m log σ) time even in the packed matching

setting.

To overcome the above difficulty, we propose how to quickly process long non-

branching paths using bit manipulations, and how to quickly process dense branching

subtrees using fast predecessor/successor queries and dictionary look-ups. As a result,
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we obtain a new compact trie called the packed compact trie (packed c-trie) for a

dynamic set S of strings with the following efficiency:

Theorem 1 (main result) Let f(k, n) be the query/update times of an arbitrary dy-

namic predecessor/successor data structure using O(k log n) bits of space for a dynamic

set of k integers from the universe [1, n]. Our packed c-trie stores a set S of k strings

of total length n in n log σ + O(k log n) bits of space and supports prefix search and

insertion/deletion for a given string of length m in O(m
α
f(k, n)) worst-case time or in

O(m
α

+ f(k, n)) expected time.

Using Beame and Fich’s data structure [6] or Willard’s y-fast trie [70] as the dynamic

predecessor/successor data structure, we obtain the following corollary:

Corollary 2 There exists a packed c-trie for a dynamic set S of strings which uses

n log σ+O(k log n) bits of space, and supports prefix search and insert/delete operations

for a given string of length m in O(m
α
· log log k log logn

log log logn
) worst-case time or in O(m

α
+

log log n) expected time.

Unlike most other (compact) tries, our packed c-trie does not maintain a dictio-

nary or a search structure for the children of each node. Instead, we partition our

c-trie into ⌈h/α⌉ levels, where h is the length of the longest string in S. Then each

subtree of height α, called a micro c-trie, maintains a predecessor/successor dictionary

that processes prefix search inside the micro c-trie. A reduction from prefix search

to predecessor/successor queries was already considered in an earlier work by Cole et

al. [19], however, their data structure is static. On the other hand, our micro c-tries

are dynamic. A similar technique to our packed c-trie was used in the linked dynamic

uncompacted trie by Jansson et al. [46].

Our experiments show that our packed c-tries are faster than Patricia trees for both

construction and prefix search in almost all data sets we tested.
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We show that our packed c-tries can be applied to efficient online construction of

evenly sparse suffix trees [47], word suffix trees [45] and its extension [64]. Also, packed

c-tries can be used for online computation of the LZ-Double factorization [39] (LZDF ),

a state-of-the-art online grammar-based text compressor.

We also show two applications to our packed c-tries. The first application is on-

line construction of evenly sparse suffix trees [47], word suffix trees [45] and its exten-

sion [64]. The existing algorithms for these sparse suffix trees take O(n log σ) worst-case

time using n log σ + O(k log n) bits of where k is the number of suffixes stored in the

output sparse suffix tree. Using our packed c-tries, we achieve O((n
α

+ k) log log k log logn
log log logn

)

worst-case construction time and O(n
α

+ k log log n) expected construction time. The

former is sublinear in n when k = O(n
α

) and σ = polylog(n), the latter is sublinear in

n when k = o( n
log logn

) and σ = polylog(n). To achieve these results, we show that in

our packed c-trie, prefix searches and insertion operations can be started not only from

the root but from any node. This capability is necessary for online sparse suffix tree

construction, since during the suffix link traversal we have to insert new leaves from

non-root internal nodes.

The second application is online computation of the LZ-Double factorization [39]

(LZDF ), a state-of-the-art online grammar-based text compressor. Goto et al. [39]

presented a Patricia-tree based algorithm which computes the LZDF of a given string

T of length n in O(k(M + min{k,M} log σ)) worst-case time using O(n log σ) bits

of space, where k ≤ n is the number of factors and M ≤ n is the length of the

longest factor. Using our packed c-tries, we achieve a good expected performance with

O(k(M
α

+ f(k, n))) time for LZDF.

3.1.1 Related work

Belazzougui et al. [7] proposed a randomized compact trie called the signed dynamic

z-fast trie, which stores a dynamic set S of k strings in n log σ + O(k log n) bits of
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space. Given a string of length m, the signed dynamic z-fast trie supports prefix search

in O(m
α

+ logm) worst-case time only with high probability, and supports insert/delete

operations in O(m
α

+ logm) expected time only with high probability.1 On the other

hand, our packed c-trie always return the correct answer for prefix search, and al-

ways insert/delete a given string correctly, in the bounds stated in Theorem 1 and

Corollary 2.

Andersson and Thorup [3] proposed the exponential search tree which uses n log σ+

O(k log n) bits of space, and supports prefix search and insert/delete operations in

O(m +
√

log k
log log k

) worst-case time. Each node v of the exponential search tree stores

a constant-time look-up dictionary for some children of v and a dynamic predeces-

sor/successor data structure for the other children of v. This implies that given a

string of length m, at most m nodes in the search path for the string must be pro-

cessed one by one, and hence packing α = logσ n letters in a single word does not seem

to speed-up the exponential search tree.

Fischer and Gawrychowski’s wexponential search tree [33] proposed uses n log σ +

O(k log n) bits of space, and supports prefix search and insert/delete operations in

O(m + (log log σ)2

log log log σ
) worst-case time. When σ = polylog(n), our packed c-trie achieves

O(m log σ log log k log logn
logn log log logn

) = O(m (log logn)2

logn log log logn
) = O(o(1)m) worst-case time, while the

wexponential search tree requires O(m + (log log logn)2

log log log logn
) time2.

1The O(logm) expected bound for insertion/deletion stated in [7] assumes that the prefix search
for the string has already been performed.

2For sufficiently long patterns of length m = Θ(n), our packed c-trie achieves worst-case sublinear
o(n) time while the wexponential search tree requires O(n) time.
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3.2 Preliminaries

3.2.1 Compact tries

Let S = {X1, . . . , Xk} be a set of k non-empty strings of total length n. We consider

dynamic data structures for S allowing for fast prefix searches of given patterns over

strings in S, and fast insertion/deletion of strings to/from S.

Suppose S is prefix-free. The trie of S is a tree s.t. each edge is labeled by a single

letter, the labels of the out edges of each node are distinct, and for each Xi ∈ S there

is a unique leaf ℓi s.t. the path from the root to ℓi spells out Xi.

The compact trie TS of S is a path-compressed trie obtained by contracting non-

branching paths into single edges. Namely, in TS, each edge is labeled by a non-empty

substring of T , each internal node has at least two children, the out-going edges from

each node begin with distinct letters, and each edge label x is encoded by a triple

⟨i, a, b⟩ such that x = Xi[a..b] for some 1 ≤ i ≤ k and 1 ≤ a ≤ b ≤ |Xi|. The length of

an edge e, denoted |e|, is the length of its label string. Let root(TS) denote the root of

the compact trie TS. For any node v, let parent(v) denotes its parent. For convenience,

let ⊥ be an auxiliary node s.t. parent(root(TS)) = ⊥. We assume the edge from ⊥

to root(TS) is labeled by an arbitrary letter. For any node v, let str(v) denotes the

string obtained by concatenating the edge labels from the root to v. Each node v stores

|str(v)|.

Let s be a prefix of any string in S. Let v be the shallowest node of TS such that s

is a suffix of str(v) (notice s can be equal to str(v)), and let u = parent(v). The locus

of string s in TS is a pair ϕ = (e, h), where e is the edge from u to v and h is the offset

from u, namely, h = |s| − |str(u)|.3 We extend the str function to locus ϕ, so that

str(ϕ) = s. The string depth of locus ϕ is d(ϕ) = |str(ϕ)|. A string P is recognized by

3In the literature the locus is represented by (u, c, h) where c is the first letter of the label of e.
Since our packed c-trie does not maintain a search structure for branches, we represent the locus
directly on e.
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TS iff there is a locus ϕ with str(ϕ) = P .

We consider the following query and operations on dynamic compact tries.

LPS(ϕ, P ): Given a locus in TS and a pattern string P , it returns the locus ϕ̂ of string

str(ϕ)Q in TS, where Q is the longest prefix of P for which str(ϕ)Q is recognized by

TS. When ϕ = ((⊥, root(TS)), 1), then the query is known as the longest prefix search

for the pattern P in the compact trie.

Insert(ϕ,X): Given a locus ϕ in TS and a string X, it inserts a new leaf which cor-

responds to a new string str(ϕ)X ∈ S into the compact trie, from the given locus ϕ.

When there is no node at the locus ϕ̂ = LPS(ϕ,X), then a new node is created at ϕ̂ as

the parent of the leaf. When ϕ = ((⊥, root(TS)), 1), then this is standard insertion of

string X to TS.

Delete(Xi): Given a string Xi ∈ S, it deletes the leaf ℓi. If the out-degree of the parent

v of ℓi becomes 1 after the deletion of ℓi, then the in-coming and out-going edges of v

are merged into a single edge, and v is also deleted.

3.2.2 Dynamic predecessor data structures.

For a dynamic set I ⊆ [1, n] of k integers of w = log n bits each, dynamic predeces-

sor data structures (e.g., [6, 7, 71]) efficiently support predecessor query Pred(X) =

max({Y ∈ I | Y ≤ X} ∪ {0}), successor query Succ(X) = min({Y ∈ I | Y ≤

X} ∪ {n + 1}), and insert/delete operations for I.

Theorem 3 Let f(k, n) be the time complexity of for predecessor/successor queries and

insert/delete operations of an arbitrary dynamic predecessor/successor data structure

which occupies O(k log n) bits of space. Beame and Fich’s data structure [6] achieves

f(k, n) = O( (log log k)(log logn)
log log logn

) worst-case time.

Theorem 4 Let f(k, n) be the time complexity of for predecessor/successor queries and

insert/delete operations of an arbitrary dynamic predecessor/successor data structure
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which occupies O(k log n) bits of space. Willard’s Y-fast trie [70] achieves f(k, n) =

O(log log n) expected time.

3.3 Packed dynamic compact tries

This section presents our new dynamic compact tries called the packed dynamic compact

tries (packed c-tries) for a dynamic set S = {X1, . . . , Xk} of k strings of total length n,

which achieves the main result in Theorem 1. In the sequel, a string X ∈ Σ∗ is called

short if |X| ≤ α = logσ n, and is called long if |X| > α.

3.3.1 Micro dynamic compact tries for short strings.

In this subsection, we present our data structure storing short strings. Our input is a

dynamic set S = {X1, . . . , Xk} of k strings of total length n, such that |Xi| ≤ α = logσ n

for every 1 ≤ i ≤ k. Hence it holds that k ≤ σα = n. For simplicity, we assume for

now that |Xi| = α for every 1 ≤ i ≤ k. The general case where S contains strings

shorter than α will be explained later in Remark 1.

The dynamic data structure for short strings, called a micro c-trie and denoted

MT S, consists of the following: (i) A dynamic compact trie of height exactly α storing

the set S. Let N be the set of internal nodes, and let L = {ℓ1, . . . , ℓk} be the set of

k leaves such that ℓi corresponds to Xi for 1 ≤ i ≤ k. Since every internal node is

branching, |N | ≤ k−1. Every node v ofMT S corresponds to the string str(v) of log n

bits. Overall, this compact trie requires n log σ + O(k log n) bits of space (including

S). (ii) A dynamic predecessor/successor data structure D which stores the set S =

{X1, . . . , Xk} of strings in O(k log n) bits of space, where each Xi is regarded as a log n-

bit integer. D supports predecessor/successor queries and insert/delete operations in

f(k, n) time each. Clearly MT S requires n log σ + O(k log n) bits of total space.

The next lemma shows how to support in O(1) time LCP queries for strings repre-
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sented by two given nodes on the dynamic micro c-trie MT S. This is related to the

labeling scheme (e.g., see [1]) which assigns a short label to each node so that later,

given the labels of two nodes, the label of the LCA of the nodes can be answered in

O(1) time. Although the static tree is considered in the labeling scheme, our micro

c-trie is dynamic. Also, our algorithm is much simpler than applying the dynamic LCA

data structure [20] to our micro c-tries.

Lemma 1 For any nodes u and v of the dynamic micro c-trieMT S, we can compute

LCP(str(u), str(v)) in O(1) time.

Proof 1 We pad str(u) and/or str(v) with an arbitrary letter c so they become α long

each, namely, let P = str(u)cα−|str(u)| and Q = str(v)cα−|str(v)|. We compute the most

significant bit (msb) of the XOR of the bit representations of P and Q. Let b the bit

position of the msb, and let z = (b − 1)/ log σ. W.l.o.g. assume |str(u)| ≤ |str(v)|.

(1) If z < str(u), then str(u)[1, z] = LCP(str(u), str(v)). In this case, there exists

a branching node y such that str(y) = str(u)[1, z], and hence LCP(str(u), str(v)) =

str(y). (2) If z ≥ str(u), then str(u) = LCP(str(u), str(v)), and hence str(u) =

LCP(str(u), str(v)).

Since each of P and Q is stored in a single machine word, we can compute the XOR

of P and Q in O(1) time. The msb can be computed in O(1) time using the technique

of Fredman and Willard [35]. This completes the proof.

On micro c-tries, prefix searches and insertion operations can be started not only

from the root but from any node. This is necessary for online sparse suffix tree con-

struction based on Ukkonen’s algorithm [65], since during the suffix link traversal we

have to insert new leaves from non-root internal nodes.

Theorem 5 The micro c-trieMT S supports LPS(ϕ,X) queries in O(f(k, n)) time.
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Proof 2 Let P be the prefix of str(ϕ)X of length α, i.e., P = str(ϕ)X[1..α− d(phi)].

The case where P is represented by a leaf is easy, and thus, in what follows we focus

on the case where P is not represented by a leaf.

First, we compute the string depth d = d(ϕ) ∈ [0, α]. Observe that d = max{|LCP(P,Pred(P ))|,

|LCP(P, Succ(P ))|}. Given P , we compute Pred(P ) and Succ(P ) in O(f(k, n)) time.

Then, we can compute |LCP(P,Pred(P ))| in O(1) time by computing the msb of the

XOR of the bit representations of P and Pred(P ), as in Lemma 1. |LCP(P, Succ(P ))|

can be computed analogously, and thus, d = d(ϕ) can be computed in O(f(k, n)) time.

Second, we locate e = (u, v). See also Fig. 3.1. Let Z = P [1, d]. Let LB = Zc
α−|Z|
1

and UB = Zc
α−|Z|
σ be the lexicographically least and greatest strings of length α with

prefix Z, respectively. To locate u in MT S, we find the leftmost and rightmost leaves

XL and XR below ϕ by XL = Succ(LB) and XR = Pred(UB). Then, the longer

one of LCP(XL−1, XL) and LCP(XR, XR+1) corresponds to the origin node u of e,

and LCP(XL, XR) corresponds to the destination node v of e. These LCPs can be

computed in O(1) time by Lemma 1. What remains is how to access the nodes u and v

representing these strings. In so doing, let $ be a special character that does not appear

in any strings in S. For each string Y represented by an internal node of MT S, we

pad $ at the end of Y so its length becomes exactly α, namely, we obtain Y $α−|Y |. We

insert this padded string into a dynamic dictionary dedicated only for internal nodes

(here we use a predecessor/successor data structure). Now, given a string represented

by an internal node, we can access the corresponding node in O(f(k, n)) time. Finally

we obtain ϕ = ((u, v), d− |str(u)|) in overall O(f(k, n)) time.

It follows from the proof of Theorem 5 that a dynamic predecessor/successor data

structure is enough to support pattern matching queries on our dynamic micro c-tire.

This implies that we do not have to store (the triples for) the edge labels in the micro

c-trie. This observation is important when we consider delete operations on the set S,

as we will see in the next lemma.
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φ = root

LCA(lL-1, l
L
)

LCA(lR, lR+1)

φ^

lL-1 lL lR lR+1XL XR

micro c-trie

X[1..d]

Figure 3.1: Given the initial locus ϕ (which is on the root in this figure) and query
pattern P = 01011010110, the algorithm of Theorem 5 answers the LPS(ϕ, P ) query
on the micro c-trie as in this figure. The answer to the query is the locus ϕ̂ for
P [1..5] = 01011.

Lemma 2 The micro c-trie MT S supports Insert(ϕ,X) and Delete(X) operations in

O(f(k, n)) time. We assume that d(ϕ) + |X| ≤ α so that the height of the micro

compact trie will always be kept within α.

Proof 3 We show how to support Insert(ϕ,X) in O(f(k, n)) time. Initially S = ∅,

the micro compact trie MT S consists only of root(MT S), and predecessor/successor

dictionary D contains no elements. When the first string X is inserted to S, then

we create a leaf below the root and insert X to D. Suppose that the data structure

maintains a string set S with |S| ≥ 1. To insert a string X from the given locus ϕ,

we first conduct the LPS(ϕ,X) query of Theorem 5, and let ϕ̂ = (e, h) be the answer to

the query. If h = |e|, then we simply insert a new leaf ℓ from the destination node of

e. Otherwise, we split e at ϕ̂ and create a new node v there as the parent of the new

leaf, such that str(v) = str(ϕ̂). The rest is the same as in the former case. After the

new leaf is inserted, we insert str(ϕ)X to D in O(f(k, n)) time.

We consider Delete(X). Recall that each edge of the micro c-trie does not store
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Figure 3.2: Micro-trie decomposition: The packed c-trie is decomposed into a number
of micro c-tries (gray rectangles) each of which is of height α = logσ n. Each micro-trie
is equipped with a dynamic predecessor/successor data structure.

the triple representing its string label. Thanks to this property, we need not consider

updates of the labels of the edges in the path from the root to the deleted leaf (which

usually becomes problematic in compact tries). Thus, we can support Delete(X) in a

similar way to Insert(ϕ,X), in O(f(k, n)) time.

Remark 1 When d(ϕ) + |X| < α, then we can support Insert(ϕ,X) and LPS(ϕ,X) as

follows. When inserting X, we pad X with a special letter $ which does not appear in S.

Namely, we perform Insert(ϕ,X) operation with X ′ = X$α−d(ϕ)−|X|. When computing

LPS(ϕ,X), we pad X with another special letter # ̸= $ which does not appear in S.

Namely, we perform LPS(ϕ,X ′′) query with X ′ = X#α−d(ϕ)−|X|. This gives us the

correct locus for LPS(ϕ,X).

3.3.2 Packed dynamic compact tries for long strings.

In this subsection, we present the packed dynamic compact trie (packed c-trie) PT S

for a set S of variable-length strings of length at most O(2w) = O(n).
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3.3.3 Micro trie decomposition.

We decompose PT S into a number of micro c-tries. See also Fig. 3.2. Let h > α be the

length of the longest string in S. We categorize the nodes of PT S into ⌈h/α⌉+1 levels:

We say that a node of PT S is at level i (0 ≤ i ≤ ⌈h/α⌉) iff |str(v)| ∈ [iα, (i+ 1)α− 1].

The level of a node v is denoted by level(v). A locus ϕ of PT S is called a boundary

iff d(ϕ) is a multiple of α. Consider any path from root(PT S) to a leaf, and assume

that there is no node at some boundary kα on this path. We create an auxiliary node

at that boundary on this path, iff there is at least one non-auxiliary (i.e., original)

node at level i − 1 or i + 1 on this path. Let BN denote the set of nodes at the

boundaries, called the boundary nodes. For each boundary node v ∈ BN , we create a

micro compact trieMT whose root root(MT ) is v, internal nodes are all descendants

u of v with level(u) = level(v), and leaves are all boundary descendants ℓ of v with

level(ℓ) = level(v) + 1. Notice that each boundary node is the root of a micro c-trie

at its level and is also a leaf of a micro c-trie at the previous level. An edge is said to

be a long edge iff its label is at least α long. We store the label of each long edge by a

triple of integers. Recall that, on the other hand, we do not store (encodings) of the

edge labels in the micro c-tries.

Lemma 3 The packed c-trie PT S for a prefix-free set S of k strings requires n log σ+

O(k log n) bits of space.

Proof 4 Firstly, we show the number of auxiliary boundary nodes in PT S. At most

2 auxiliary boundary nodes are created on each original edge of PT S. Since there are

at most 2k − 2 original edges, the total number of auxiliary boundary nodes is at most

4k − 4.

Since there are at most 2k− 1 original nodes in PT S, the total number of nodes in

PT S is at most 6k − 5. Clearly, the total number of short strings of length at most α

maintained by the micro c-tries is no more than the number of all nodes in PT S. The
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number of long edges in PT S is no more than the number of its nodes. Overall, the

total space of PT S is n log σ + O(k log n) bits.

For any locus ϕ on PT S, ld(ϕ) denotes the local string depth of ϕ in the micro

c-trie MT that contains ϕ. Namely, if root(MT ) = v, the parent of u in PT S is u,

and e = (u, v), then ld(ϕ) = d(ϕ) − d((e, |e|)). Prefix search queries and insert/delete

operations can be supported by our packed c-trie, as follows.

Lemma 4 The packed c-trie PT S supports LPS(ϕ, P ) query in O(m
α
f(k, n)) worst-case

time, where m = |P | > α.

Proof 5 If m + ld(ϕ) ≤ α, the bound immediately follows from Theorem 5. Assume

m + ld(ϕ) > α, and let q = α − ld(ϕ) + 1. We factorize P into h + 1 blocks as

p0 = P [1, q − 1], p1 = P [q, q + α − 1], . . . , ph−1 = P [q + (h − 1)α, q + hα − 1], and

ph = P [q + hα,m], where 1 ≤ |p0| ≤ α, |pi| = α for 1 ≤ i ≤ h − 1, and 1 ≤ |ph| ≤ α.

Each block can be computed in O(1) time by standard bit operations. If there is a

mismatch in p0, we are done. Otherwise, for each i in increasing order from 1 to h, we

perform LPS(γ, pi) query from the root γ of the corresponding micro c-trie at each level

of the corresponding path starting from ϕ. This continues until we find either the first

mismatch for some i or complete matches for all i’s. Each LPS query with each micro

c-trie takes O(f(k, n)) time by Theorem 5. Since h = O(m
α

), it takes O(m
α
f(k, n)) total

time.

Lemma 5 The packed c-trie PT S supports Insert(ϕ,X) and Delete(Xi) operations in

O(m
α
f(k, n)) worst-case time, where m = |X| > α.

Proof 6 Insert(ϕ,X): we first perform LPS(ϕ,X) in O(m
α
f(k, n)) time (Lemma 4).

Let x0, . . . , xh be the factorization of X w.r.t. ϕ, and let xj be the block of the factor-

ization containing the first mismatch. Then, we conduct Insert(γ, xj) operation on the

corresponding micro c-trie, where γ is its root. It takes O(f(k, n)) time (Lemma 2).

32



If j = h (xj is the last block in the factorization of X), then we are done. Otherwise,

we create a new edge with label x′
jxj+1 · · · xk, where x′

j is the suffix of Xj which be-

gins at the mismatched position, leading to the new leaf ℓ. We create a new boundary

node if necessary. These operations take O(1) time each. Hence, Insert(ϕ,X) takes

O(m
α
f(k, n)) total time.

Delete(Xi): Let Q be the path from the root r of PT S to leaf ℓi. If ℓi is a child of the

root of PT S, then we simply delete the single edge in Q. Otherwise, for each sub-path

of Q that belongs to a micro c-trie, we perform Delete operation of Lemma 2 in this

micro c-trie. Since the path Q spans at most m
α
micro c-tries, the delete operations on

these micro c-tries take O(m
α
f(k, n)) total time. For each long edge in Q whose label

refers to Xi, let ⟨i, a, b⟩ be the triple representing the label. We replace the triple with

⟨i′, a′, b′⟩, where Xi′ is the predecessor of Xi in S and Xi′ [a
′..b′] = X[a..b] (if Xi does

not have a predecessor, then we can use the successor of S instead). We can find Xi′

as follows. First, we compute ϕ = LPS(r,Xi) = LCA(ℓi′ , ℓi). Then, we can find ℓi′

by traversing the right-most path from ϕ that is to the left of the sub-path of Q from

ϕ to ℓi. This can be done in O(m
α
f(k, n)) time. The positions a′ and b′ in Xi′ can be

computed by simple arithmetics, since we know the total length of the labels in the path

from ϕ to ℓi′. Since the path Q contains less than m
α
long edges, the triples for all long

edges in Q can be updated in O(m
α

) time.

3.3.4 Speeding-up with hashing.

By augmenting each micro c-trie with a hash table storing the short strings, we achieve

a good expected performance, as follows:

Lemma 6 The packed c-trie PT S augmented with hashing supports LPS(ϕ,X) query,

Insert(ϕ,X) and Delete(X) operations in O(m
α

+ f(k, n)) expected time.

Proof 7 Let MT be any micro c-trie in the packed c-trie PT S, and M the set of
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strings maintained by MT each being of length at most α. We store all strings of M

in a hash table associated toMT , which supports look-ups, insertions and deletions in

O(1) expected time.

Let x0, . . . , xh be the factorization of X w.r.t. ϕ. To perform LPS(ϕ,X), we ask if

str(ϕ)x0 is in the hash table of the corresponding micro c-trie. If the answer is no, the

first mismatch occurs in x0, and the rest is the same as in Lemma 4. If the answer

is yes, then for each i from 1 to h in increasing order, we ask if xi is in the hash

table of the corresponding micro c-trie, until we receive the first no with some i or we

receive yes for all i’s. In the latter case, we are done. In the former case, we perform

LPS query with xi from the root of the corresponding micro c-trie. Since we perform at

most one LPS query and O(m
α

) look-ups for hash tables, it takes O(m
α

+f(k, n)) expected

time. O(m
α

+ f(k, n)) expected time bounds for Insert(ϕ,X) and Delete(X) immediately

follow from the above arguments.

3.4 Applications to online string processing

Sparse suffix trees. The suffix tree [68] of a string T of length n is a compact trie

which stores all n suffixes of T . A sparse suffix tree for a set K ⊆ [1, n] of sampled

positions of T is a compact trie which stores only the subset S = {T [i..n] | i ∈ K} of

the suffixes of T beginning at the sampled positions in K. It is known that if the set

K of sampled positions satisfy some properties (e.g., every r positions for some fixed

r > 1 or the positions immediately after the word delimiters), the sparse suffix tree can

be constructed in an online manner in O(n log σ) time and n log σ + O(n log n) bits of

space [45,47,64].

Packed c-tries can speed up online construction and pattern matching for these

sparse suffix trees: Here each input string X to Insert is given as a pair (i, j) of positions

in T s.t. X = T [i..j]. As Lemma 7 states, Insert operation in such a case can be
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processed more quickly than in Lemma 4.

Lemma 7 Given a pair (i, j) of positions in T s.t. X = T [i..j], we can support

Insert(ϕ,X) in O( q
α
f(k, n)) worst-case time or O( q

α
+ f(k, n)) expected time, where q

is the length of the longest prefix of X that can be spelled out from ϕ.

Theorem 6 Using packed c-tries, we can construct in an online manner the sparse

suffix trees of [45,47,64] for a given text T of length n in O((n
α

+ k)f(k, n)) worst-case

time or in O(n
α

+ kf(k, n)) expected time with n log σ + O(k log n) bits of space, where

k is the number of sampled positions. At any moment during the construction, pattern

matching queries take O(m
α
f(k, n)) worst-case time or in O(m

α
+f(k, n)) expected time,

where m is the the pattern length.

Proof 8 We explain how we can buid the sparse suffix trees of [47] efficiently. For

an integer parameter r > 1, Kärkkäinen and Ukkonen’s algorithm (KU-algorithm, in

short) [47] constructs the r-evenly sparse suffix tree of the input string T . KU-algorithm

differs from Ukkonen’s online suffix tree construction algorithm in that KU-algorithm

uses r-letter suffix links, such that the suffix link of each node v is a pointer to the

node u such that str(u) = str(v)[r+1..|str(v)|], but otherwise is the same as Ukkonen’s

algorithm. This results in a compact trie which stores the evenly-spaced ⌈n/r⌉ suffixes

T [1, n], T [1 + r, n], . . . , T [⌈n/r⌉, n] of T .

KU-algorithm scans the input string T from left to right, and when the algorithm

processes the ith letter of T , the r-evenly sparse suffix tree of T [1, i] is maintained.

This is done by inserting the leaves into the current compact trie in increasing order

of the positions the leaves correspond to. Assume that while processing the ith letter

of T , the algorithm has just inserted the jth leaf ℓj for sampled position 1 + (j − 1)r

of T . If the suffix T [1 + jr, i] of T [1, i] is not recognized by the current compact trie,

then the algorithm inserts the (j + 1)th leaf ℓj+1 for the next sampled position 1 + jr.

This can be done as follows: For any node v, let slr(v) denotes the r-letter suffix link of
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v. Let vj be the nearest ancestor of ℓj for which slr(vj) is already defined (vj is either

parent(ℓj) or parent(parent(ℓj))). We follow the suffix link and let uj+1 = slr(vj). Let

ϕj+1 be the locus of str(uj+1), namely ϕj+1 = (e, |e|) with e = (parent(uj+1), uj+1). Let

Xj+1 = T [i − h + 1, i], where h = |T [j + 1, i]| − |str(ϕj+1)| = i − j − |str(ϕj+1)|. The

leaf ℓj+1 can be added to the compact trie by inserting the string Xj+1 from the locus

ϕj+1.

We apply our micro-trie decomposition to the sparse suffix tree, and use our tech-

niques in Section 5.3 and in Lemma 7. Then, the total time complexity to construct

the r-evenly sparse suffix tree of T is propotinal to the amount of work of the Insert

operations of Lemma 7 for all leaves. For each 1 ≤ j ≤ k let qj be the length of

the longest prefix of Xj that can be spelled out from ϕj. Now we estimate
∑k

j=1
qj
α
.

Each time we traverse an r-letter skipping suffix link, the string depth decreases by

r. Since k = ⌈n/r⌉ and we traverse r-letter suffix links exactly k − 1 times, we can

colcude that
∑k

j=1 qj = O(n), which implies that
∑k

j=1
qj
α

= O(n/α). Since we perform

Insert operations exactly k times, the r-evenly sparse suffix tree can be constructed in

O((n
α

+ k)f(k, n)) worst-case time or in O(n
α

+ kf(k, n)) expected time.

The bounds for word suffix trees of Inenaga and Takeda [45] and those of suffix trees

on variable-length codes of Uemura and Arimura [64] can be obtained similarly.

LZ-Double factorization. LZ-Double factorization (LZDF ) [39] is a generalization

of Lempel-Ziv 78 factorization [73]. The ith factor gi = gi1gi2 of the LZDF of a string

T of length n is the concatenation of previous factors gi1 and gi2 s.t. gi1 is the longest

prefix of T [1 +
∑i−1

j=1 |gj|, n] that is a previous factor (one of {g1, . . . , gi−1}∪Σ), and gi2

is the longest prefix of T [1+|gi1 |+
∑i−1

j=1 |gj|, n] that is a previous factor. Goto et al. [39]

proposed a Patricia-tree based algorithm which computes the LZDF of a given string T

of length n in O(k(M+min{k,M} log σ)) worst-case time4 with O(k log n) = O(n log σ)

4Since kM ≥ n always hods, the n term is hidden in the time complexity.
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bits of space5, where k is the number of factors and M is the length of the longest factor.

With packed c-tries, we can achieve a good expected performance:

Theorem 7 Using our packed c-trie, we can compute the LZDF of string T in O(k(M
α

+

f(k, n))) expected time with O(n log σ) bits of space.

Proof 9 Suppose we have computed the first j− 1 factors g1, . . . , gj−1 and we are now

computing the jth factor gj. We store the previous factors g1, . . . , gj−1 in our packed

c-trie. In addition, there is no leaf or branching node which represents some previous

factor gi (1 ≤ i < j), then we add an internal non-branching node for gi into the packed

trie. We mark only and all nodes which represent previous factors. To compute the

jth factor gj = gj1gj2, we perform LPS(r, Tj) query where r is the locus for the root and

Tj = T [1 +
∑j−1

i |gi|, n]. Let ϕ̂ be the answer to the query. Note that ϕ̂ can be deeper

than the locus for gj1, but it is always in the subtree rooted at gj1. Hence, the nearest

marked ancestor (NMA) of ϕ̂ is gj1. We can compute gj2 similarly. After we computed

gj, we perform Insert(r, gj) operation and then mark the node which represents gj.

The depth of the locus ϕ̂ is bounded by the length M of the longest factor. Hence

we can reach the locus ϕ̂ in O(M
α

+ f(k, n)) expected time using our packed c-trie. We

repeat the above procedure k times. Using the semi-dynamic NMA data structure of

Westbrook [69] that supports NMA queries, inserting new nodes, and marking unmarked

nodes in amortized O(1) time each, we obtain the desired bound.

3.5 Preliminary experiments

This section shows some preliminary experimental results which compare our imple-

mentations of packed c-tries against that of the classical c-trie (Patricia tree). Ta-

ble 3.1 shows the datasets and their statistics used in our experiments, where the first

5Since all the factors of the LZDF are distinct, k = O( n
logσ n ) holds [73].
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Table 3.1: Description of the datasets we used in our experiments.

Dataset
Original

alhpabet size
Actual

alphabet size
Total size

(bytes)
Number of

strings
Ave. string
length (bits)

DNA 4 2 52,428,800 337 1,244,600.59
DBLP 128 2 52,428,800 3,229,589 129.87
english 128 2 52,428,800 9,400,185 44.62
pitches 128 2 52,428,800 93,354 4,492.90
proteins 20 2 52,428,800 186,914 2,243.98
sources 128 2 52,428,800 5,998,228 69.93
urls 128 2 52,010,031 707,658 587.97
jawiki ≥ 216 2 30,414,297 1,643,827 148.02

six datasets are from Pizza&Chili Corpus6, the seventh consists of URLs in uk do-

main7, and the eighth consists of all titles from Japanese Wikipedia8. The datasets

were treated as binary strings.

We tested three implementations of c-tries by the authors: an implementation CT of

classical c-tries, and two simplified implementations PCTxor and PCThash of our packed

c-tries in Section 5.3 as a proof-of-concept versions. CT uses unordered map in the

C++/STL library to maintain the branching out-going edges of its nodes. For our

implementations of packed c-tries, we set α = 32. The first implementation PCTxor

only uses the XOR-based technique of Theorem 4 to quickly process long edges, while

branching out-going edges are processed as in CT. The second implementation PCThash

is a simplified version of our packed c-tries of Lemma 6 using XOR and hashing. Each

micro c-trie in PCThash is equipped with a hash table for α-bit integers. We again used

unordered map in the C++/STL library for hash tables on micro c-tries. For simplicity,

each micro c-trie is not equipped with a predecessor/successor data structure.

We compiled all programs with gcc 4.9.3 using -O3 option, and ran all experiments

on a PC (2.8GHz Intel Core i7 processor, register size 64 bits, 16GB of memory)

6Pizza&Chili Corpus, http://pizzachili.dcc.uchile.cl
7Laboratory for webalgorithmics, uk-2005.urls.gz,

http://law.di.unimi.it/datasets.php
8jawiki, https://dumps.wikimedia.org/jawiki/
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Table 3.2: Summary of our experimental results.
Tree size (# of nodes) Const. time (msec) Query time (msec)

Dataset CT PCTxor PCThash CT PCTxor PCThash CT PCTxor PCThash

DNA 674 674 985 14,494 15,270 18,596 6,690 7,381 5,342
DBLP 1,059,656 1,059,656 1,204,651 16,662 16,987 14,139 8,083 8,905 7,209
english 448,379 448,379 532,750 17,496 16,944 18,197 9,127 9,916 10,452
pitches 86,205 86,205 121,943 18,816 16,571 16,520 7,022 9,009 6,053
proteins 310,392 310,392 437,768 17,957 15,733 18,673 8,511 8,851 6,749
sources 1,314,571 1,314,571 1,616,872 17,398 15,929 16,892 8,111 8,444 7,852
urls 1,341,200 1,341,200 1,357,730 14,038 13,422 13,585 6,939 6,903 5,918
jawiki 2,365,821 2,365,821 3,043,817 9,440 9,116 10,107 4,477 4,661 3,962

running on MacOS X 10.10.5, where consecutive α = 32 bits of strings were packed

into a machine word.

In Table 3.2, we show our experimental results. First, we consider the first groups of

columns for the tree sizes. We observe that the number of nodes of PCThash increases

from both of CT and PCTxor. The gain varies from 101.3% on urls to 146.1% on

DNA. This comes from the addition of boundary nodes. Next, we consider the second

groups of columns for the construction times. We observe that PCTxor is slightly faster

than the classical CT in most case. The construction time of PCThash is slightly faster

against CT for DBLP, pitches, sources and urls, and slower for DNA, english, proteins

and jawiki. Yet, the construction time of PCThash per node is faster than CT for

all datasets. We, however, do not observe clear advantage of PCThash over PCTxor.

We guess that the inconsistency is due to the balance of utility and the overhead for

creating the boundary nodes. Finally, we consider the third groups of columns for query

times. In these experiments, we used all strings from the dataset as query patterns,

and searched them on each c-trie. The table shows the total times for all the pattern

searches. Among all the datasets except english, PCThash is clearly faster than CT,

where the former achieved 5% to 20% speed-up over the latter. This indicates that

PCThash is superior to the classic c-tries in prefix searches.
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3.6 Conclusions of Chapter 3

In this chapter, we presented a faster version of compact tries, called the packed compact

trie (packed c-trie), which stores a set S of k strings of total length n in n log σ +

O(k log n) bits of space, where σ is the size of an alphabet. The packed c-trie supports

pattern matching and insert/delete operations in O(m
α
f(k, n)) worst-case time and in

O(m
α

+ f(k, n)) expected time, where m is the length of a pattern and f(k, n) is a time

complexity of a predecessor dictionary. We also showed applications of our packed

c-tries. One of applications is faster construction of sparse suffix trees. Another one is

speeding-up LZD factorization.
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Chapter 4

Fully-online Construction of Suffix

trees for Multiple Texts

In this chapter, we consider the construction of the suffix tree and the directed acyclic

word graph (DAWG) indexing data structures for a collection of texts T , where a

new symbol may be appended to any text in T = {T1, . . . , TK} at any time. This

fully-online scenario, that arises when dynamically indexing multi-sensor data, is a

natural generalization of the long solved semi-online problem, where texts T1, . . . , Tk−1

are permanently fixed before the next text Tk is processed. We present fully-online

algorithms that constructs the suffix tree and the DAWG for T in O(n log σ) time and

O(n) space, where n is the total lengths of the strings in T and σ is their alphabet

size. The standard explicit representation of the suffix tree and the DAWG edges must

be relaxed in the fully-online scenario, since too many updates might be required, and

instead, we provide access to the frequently updated suffix tree leaf edge labels and the

DAWG re-directable edges via auxiliary data structures, in O(log σ) time.
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4.1 Background

Text indexing is a fundamental problem in computer science, which plays important

roles in many applications including text retrieval, molecular biology, signal process-

ing, and sensor data analysis. In this chapter, we focus on indexing a collection of

multiple texts, so that subsequent pattern matching queries can be answered quickly.

In particular, we study online indexing for a collection T of multiple texts, where a

new character can be appended to each text at any time. Such fully-online indexing

for multiple growing texts has potential applications to continuous processing of data

streams, where a number of symbolic events or data items are produced from multiple,

rapid, time-varying, and unbounded data streams [4, 48]. For example, motif mining

system tries to discover characteristic or interesting collective behaviors, such as fre-

quent path or anomalies, from data streams generated by a collection of moving objects

or sensors [48, 67].

Many of the existing suffix tree and DAWG construction algorithms [14, 15, 22, 25,

42, 65, 68] for a single text also work within the same O(n log σ) time and O(n) space

bounds for a collection of growing texts in the semi-online setting, where only the

last inserted text can be extended. However, special attention is needed in the fully-

online setting. When using a direct explicit representation of the DAWG edges, up

to Θ(nmin(K,
√
n)) or Θ(n1.5) DAWG edge re-directions may be required, while the

open-ended suffix tree leaf edge label representation, the cornerstone of Ukkonen’s [65]

on-line suffix tree algorithm, may have to update the association between the numerous

suffix tree leaf edge labels and the various texts up to Θ(n2) times. Thus, if we wish

to stay within the O(n log σ) time bounds in the fully-online setting, the DAWG edges

and the suffix tree leaf edge labels cannot be directly explicitly maintained.

We propose how the DAWG and the suffix tree can be incrementally constructed

for a fully-online text collection. First, we observe that Blumer et al.’s construction [15]

for DAWGs and Weiner’s right-to-left construction [68] for suffix trees can readily be
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adapted to solve this problem. Hence, at any moment during the fully-online growth of

the texts, we can find all occ occurrences of a given pattern of length m in the current

text collection in O(m log σ + occ) time.

Our next goal is to extend Ukkonen’s construction [65] to fully-online left-to-right

construction of suffix trees for multiple texts. A motivation of this goal is that a

growing suffix tree can be enhanced with powerful semi-dynamic tree data structures

such as those for nearest marked ancestor (NMA) queries [69], lowest common ancestor

(LCA) queries [20], and level ancestor (LA) queries [2]. Note that these data structures

cannot be applied to DAWGs, and that the same query results cannot be obtained on

the suffix tree maintained in a Weiner-like right-to-left online manner since the suffix

tree obtained in this manner inherently indexes the reversed texts in the collection.

However, it turns out that this goal is a big algorithmic challenge, because: (A) In

Ukkonen’s algorithm, a pointer called the active point keeps track of the insertion points

of suffixes in decreasing order of length. The efficiency of Ukkonen’s algorithm is due

to the monotonicity of the tracking path of the active point. However, unfortunately

this monotonicity does not hold in the fully-online setting for multiple texts. (B) Due

to the non-monotonicity mentioned above, Ukkonen’s technique to amortize the cost

to track the suffix insertion points does not work in our case. (C) Ukkonen’s “open

edge” technique to maintain the leaves does not work in our case, either. In Section 4.4

we will explain in more details why and how these problems arise in our fully-online

setting. In this chapter, we present a number of new novel techniques to overcome all

the difficulties above. As a final result, we propose the first optimal O(n log σ)-time

O(n)-space fully-online left-to-right construction algorithm for a suffix tree of multiple

texts over a general ordered alphabet of size σ, where n is the final total length of the

texts.
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4.1.1 Related work

We note that we can obtain fully-online text index for multiple texts using existing more

general dynamic text indices as follows. To use the index of Ferragina and Grossi [29]

which permits character-wise updates, we build a text $1 · · · $K which initially consists

only of K delimiters. Then, appending a character a to the kth text in the collec-

tion reduces to prepending a to the kth delimiter $k. Using this approach, the index

of Ferragina and Grossi [29] takes O(n log n) total time to be constructed, requires

O(n log n) space, and allows pattern matching in O(m + log n + n logm + occ) time.

Using the compressed index for a dynamic text collection of Chan et al. [17], we can

append a new character a to the kth text Tk by removing Tk and then adding Tka in

O(|Tk|) time. This yields a fully-online index with O(n2 log n) construction time and

O(n) bits of space (or O(n/ log n) words of space assuming Θ(log n)-bit machine word),

supporting pattern matching in O(m log n + occ log2 n) time.

4.2 Preliminaries

4.2.1 Suffix trees and DAWGs for multiple texts

The suffix trie for a text collection T = {T1, . . . , TK}, denoted STrie(T ), is a trie which

represents Suffix (T ). The size of STrie(T ) is O(N2), where N is the total length of

texts in T . We identify each node v of STrie(T ) with the string that v represents.

A substring x of a text in T is said to be branching in T , if there exist two distinct

characters a, b ∈ Σ such that both xa and xb are substrings of some texts in T . Clearly,

node x of STrie(T ) is branching iff x is branching in T . For each node av of STrie(T )

with a ∈ Σ and v ∈ Σ∗, let slink(av) = v. This auxiliary edge slink(av) = v from av

to v is called a suffix link.

The suffix tree [68] for a text collection T , denoted STree(T ), is a “compacted
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Figure 4.1: Illustration for STrie(T ), STree(T ), and DAWG(T ) with T = {T1 =
aaab, T2 = ababc, T3 = bab}. The solid arrows and broken arrows represent the edges
and the suffix links of each data structure, respectively. The number k (k = 1, 2, 3)
beside each node indicates that the node represents a suffix of Tk. The nodes [ab]T and
[b]T are separated in DAWG(T ) since the node bab in STrie(T ) is represents a suffix
of T3, while the node abab does not (see also the subtrees rooted at nodes ab and b in
STrie(T )).

trie” which represents Suffix (T ). STree(T ) is obtained by compacting every path of

STrie(T ) which consists of non-branching internal nodes (see Fig. 4.1). Since every in-

ternal node of STree(T ) is branching, and since there are at most N leaves in STree(T ),

the numbers of edges and nodes are O(N). The edge labels of STree(T ) are non-empty

substrings of some text in T . By representing each edge label x with a triple ⟨k, i, j⟩

of integers s.t. x = Tk[i..j], STree(T ) can be stored with O(N) space. We say that

any branching (resp. non-branching) substring of T is an explicit node (resp. implicit

node) of STree(T ). An implicit node x is represented by a triple (v, a, ℓ), called a

reference to x, such that v is an explicit ancestor of x, a is the first character of the

path from v to x, and ℓ is the length of the path from v to x. A reference (v, a, ℓ) to

node x is called canonical if v is the lowest explicit ancestor of x. For each node av of

STree(T ) with a ∈ Σ and v ∈ Σ∗, let slink(av) = v.

The directed acyclic word graph [14,15] of a text collection T , denoted DAWG(T ),

is a smallest DAG which represents Suffix (T ). DAWG(T ) is obtained by merging

identical subtrees of STrie(T ) connected by the suffix links (see Fig. 4.1). Hence, the
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label of every edge of DAWG(T ) is a single character. The numbers of nodes and

edges of DAWG(T ) are O(N) [15], and hence DAWG(T ) can be stored with O(N)

space. DAWG(T ) can be defined formally as follows: For any string x, let EposT (x)

be the set of ending positions of x in the texts in T , i.e., EposT (x) = {(k, j) | x =

Tk[j − |x| + 1..j], 1 ≤ j ≤ |Tk|, 1 ≤ k ≤ K}. Consider an equivalence relation ≡T

on substrings x, y of texts in T such that x ≡T y iff EposT (x) = EposT (y). For any

substring x of texts of T , let [x]T denote the equivalence class w.r.t. ≡T . There is

a one-to-one correspondence between each node v of DAWG(T ) and each equivalence

class [x]T , and hence we will identify each node v of DAWG(T ) with its corresponding

equivalence class [x]T . Let long([x]T ) denote the longest member of [x]T . By the

definition of equivalence classes, long([x]T ) is unique for each [x]T and every member

of [x]T is a suffix of long([x]T ). If x, xa are substrings of some text in T with x ∈ Σ∗

and a ∈ Σ, then there exists an edge labeled with character a ∈ Σ from node [x]T

to node [xa]T . This edge is called primary if |long([x]T )| + 1 = |long([xa]T )|, and

is called secondary otherwise. For each node [x]T of DAWG(T ) with |x| ≥ 1, let

slink([x]T ) = y, where y is the longest suffix of long([x]T ) which does not belong to

[x]T . In the example of Fig. 4.1, [aaab]T = {aaab, aab}. The edge labeled with b from

node [aaa]T to node [aaab]T is primary, while the edge labeled with b from [aa]T to

node [aaab]T is secondary. slink([aaab]T ) = [ab]T .

The following fact follows from the definition of branching substrings:

Fact 1 For any substring x of texts in T , node x is branching (explicit) in STree(T )

iff node [x]T is branching in DAWG(T ).

4.2.2 Fully-online text collection

We consider a collection {T1, . . . , TK} of K growing texts, where each text Tk (1 ≤ k ≤

K) is initially the empty string ε. Given a pair (k, a) of a text id k and a character a ∈ Σ

which we call an update operator, the character a is appended to the k-th text of the col-
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lection. For a sequence U of update operators, let U [1..i] denote the sequence of the first

i update operators in U with 0 ≤ i ≤ |U |. Also, for 0 ≤ i ≤ |U | let TU [1..i] denote the col-

lection of texts which have been updated according to the first i update operators of U .

For instance, consider a text collection of three texts which grow according to the follow-

ing sequence U = (1, a), (2, b), (2, a), (3, a), (1, a), (3, c), (3, b), (2, b), (1, a), (1, b), (3, c), (3, b), (1, c), (3, b),

(2, c) of 15 update operators. Then,

TU [1..0] =


ε

ε

ε

 , . . . , TU [1..14] =


1

a
5

a
9

a
10

b
13

c
2

b
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a
8

b
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a
6

c
7

b
11

c
12

b
14

b

 , TU [1..15] =


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
where the superscript i over each character a in the k-th text implies that U [i] = (k, a).

For instance, U [15] = (2, c) and hence c was appended to the 2nd text T2 = bab in

TU [1..14], yielding T2 = babc in TU [1..15].

If there is no restriction on U like the one in the example above, then U is called

fully-online. If there is a restriction on U such that once a new character is appended

to the k-th text, then no characters will be appended to its previous k−1 texts, then U

is called semi-online. Hence, any semi-online sequence of update operators is of form

(1, T1[1]), . . . , (1, T1[|T1|]), . . . , (K,TK [1]), . . . , (K,TK [|TK |]).

Section 4.3 reviews previous algorithms which incrementally construct the DAWG

and the suffix tree for a growing text collection in the semi-online setting. Section 4.4

proposes our new algorithm which incrementally construct the suffix tree for a text

collection in the fully-online setting, respectively.

47



4.3 Fully-online version of DAWG andWeiner’s suf-

fix tree algorithm

Blumer et. al. [14, 15] and Crochemore [22] introduced the DAWG, also called suffix

automaton, and gave a DAWG construction algorithm for a collection of semi-online

texts. Their DAWG construction algorithm is very closely related to Weiner’s reverse

right-to-left suffix tree construction algorithm [25, 42, 50, 68]. In fact, both algorithm

build dual structures and each exposes different parts of these structures, where the

collection of semi-online left-to-right text inputs to the DAWG algorithm can be per-

ceived as the same texts reversed right-to-left inputs to Weiner’s suffix tree algorithm.

Blumer et al.’s algorithm does not require a terminating $ symbol and it was noted

that the set of nodes of the DAWG and the reverse string’s suffix tree coincide if the

terminator symbols are present in both sets of inputs.

4.3.1 Semi-online construction of Weiner’s suffix trees and

DAWGs

We briefly explain how the suffix tree of a collection of semi-online right-to-left texts

can be built by using Weiner’s algorithm. For convenience, we assume that there is an

auxiliary node ⊥ that is the parent of the root r. We also assume that the edge from ⊥

to r is labeled with any character c from Σ,Wc(⊥) = r, and slink(r) =⊥. Assume that

we have constructed STree({T1$1, . . . , TK−1$K−1}) in which all the hard W-links have

been constructed and the Boolean indicator w have been appropriately maintained.

Now we process the k-th and extend it from right-to-left. Since the end-marker $k is

a unique character, a new leaf representing $k is created. Suppose we have inserted

the leaves for the suffixes of Tk$k with Tk ∈ Σ∗. The leaf that represents the k-th

text Tk$k is called the handle leaf for Tk$k. Now we are to prepend a new character

a and insert the extended text aTk$k to the tree. We begin with the handle leaf ℓ
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for Tk$k. We walk up from the handle leaf ℓ until finding the lowest explicit ancestor

u′ of ℓ which has hard W-link Wa(u
′) defined for the added character a. Also, let u

be the lowest explicit ancestor of ℓ such that wau = 1. Note that u is a descendant

of u′. Let b be the first character of the path label from u′ to ℓ. We move to the

node v′ = au′ using the hard W-link Wa(u
′), and let v′′ = au′by be the child of v′

below the edge whose label begins with b, where y ∈ Σ∗. There are two cases: (1)

If |v′′| − |v′| = |au′by| − |au′| = |by| > |u| − |u′|, then we create a new explicit node

v = v′′[1..|u| + 1] and set Wa(u) = v. (2) Otherwise (|by| = |u| − |u′|), then there

already exists an explicit node v′′[1..|u| + 1] and let v be this node. In both cases, we

insert a new leaf ℓ′ representing aTk$k as a child of v, and create a new hard W-link

Wa(ℓ) = ℓ′. This insertion point v for ℓ′ represents the longest prefix of aTk$k that

appears at least twice in the updated text collection, and hence, v is sometimes called

as the longest repeating prefix of aTk$k. Let s be any node in the path from u to ℓ such

that s ̸= u (if any). In the suffix tree before the text Tk$k was extended with a, we had

wa(s) = 0. Now in the updated suffix tree, we update wa(s) = 1 due to the insertion

of the new handle leaf ℓ′ which represents aTk$k. Also, node s gets a new soft W-link

Wa(s) = ℓ′. These updates are common to both of Cases (1) and (2). There can be

further updates in Case (1): Let s′ be any node in the path from u′ to u such that

s′ ̸= u′ and s′ ̸= u (if any). In the suffix tree before the text Tk$k was extended with

a, node s′ had a soft W-link Wa(s
′) = v′′. Now in the updated suffix tree, this soft

W-link is redirected as Wa(s
′) = v. Also, the soft W-link Wa(u) = v′′ in the previous

suffix tree gets redirected and becomes the hard W-link Wa(u) = v in the updated

suffix tree. See Figure 4.2 for illustration.

Weiner’s original algorithm is designed for a single right-to-left text, and for each

prepended character a to the text T$, the number of internal explicit nodes from the

leaf for T to its lowest ancestor u′ for which hard W-linkWa(u
′) exists can be amortized

constant. This amortization argument is based on the fact that the depth of the path
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Figure 4.2: Extending the text Tk$k to aTk$k. Soft W-links are shown short-dashed and
hard W-links are shown long-dashed. (a) relevant existing W-links before extending. (b) New
W-links pointing to aTk$k are created from all nodes on the path between Tk$k up to u. (c)
Existing W-links pointing to v′′ from all nodes on the path between u up to u′ are redirected
to point to v instead of v′′. The new hard W-link Wa(Tk$k) = aTk$k and redirected hard
W-link Wa(u) = v have corresponding nodes on the path to aTk$k, while all the other new
soft W-links involved point to aTk$k and the redirected soft W-links involved point to v. The
new node v also adopts all the outgoing W-links from v′′ (not shown).

from the root to the handle leaf ℓ′ representing the extended text aT$ is by at most

one larger than that of the path from the root to the handle leaf ℓ representing T$.

This property holds also in the semi-online setting, since while the kth text Tk$k is

being extended from right to left, other texts remain static and thus do not change the

topology of the suffix tree. Hence, we can build STree(T ) for a collection of semi-online

left-to-right texts in O(n log σ) time and O(n) space.

Blumer et al. [14] showed how the DAWG for a collection S of semi-online left-to-

right texts can be built in O(n log σ) time. Recall that each DAWG node represents

an equivalence class of substrings which have the same ending positions in the texts.

Appending a new character a to the currently processed text $kSk can affect some

equivalence class under the current text collection. This can cause splitting an existing

node into two nodes. Let w be the node that gets split and w′ be the copy of this node

w. The original node w will contains longer substrings than the copy w′. The longest

element belonging to w′ is the longest repeating suffix X of $kSka in the updated text

collection, and any element of w that is shorter than X will belong to w′. Eventually,
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any element of w that is longer than X remains in w. This node split operation can be

done by redirecting corresponding in-coming edges from w to w′. The key argument

in the time analysis of Blumer et al.’s algorithm is that this cost of redirecting in-

coming edges can also be amortized constant per added character a. Observe that this

update is exactly the same as the above-mentioned update of the suffix tree for the

corresponding right-to-left text collection. For instance, the longest repeating suffix of

$kSka for the current left-to-right text collection is the reverse of the longest repeating

prefix of aTk$k for the corresponding right-to-left text collection. Also, redirecting

those in-coming edges in the DAWG are exactly the same as updating a soft W-link

to a hard one and redirecting soft W-links, in the suffix tree of the corresponding

right-to-left texts (recall Case (1) above). Consequently, we can build the DAWG for

a collection of semi-online left-to-right texts in O(n log σ) time and O(n) space as well.

4.3.2 Fully-online construction of Weiner’s suffix trees and

DAWGs

In this subsection, we consider how to maintain the suffix tree for a collection of K

texts which grow from right to left in a fully-online manner. This means that we will

have to maintain K handle leaves for the K texts simultaneously. We also consider

how to maintain the DAWG for a collection of K texts which grow from left to right

in a fully-online manner.

Unfortunately, the identical amortization argument in both algorithms does not

carry over in the fully-online setting. However, we will show next that Weiner’s al-

gorithm can be modified to work within the desired O(n log σ) time and O(n) space

bounds with the aid of σ nearest marked ancestor (NMA) data structures of total size

O(n), where σ denotes the number of all distinct characters appearing in the texts in

the collection. Moreover, the same data structures can provide access to the DAWG

edges, which cannot be maintained explicitly within our bounds, in O(log σ) time per
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edge query.

We will use the following NMA data structure as a building block of our algorithm.

Lemma 8 ( [69]) There exists an NMA data structure for a growing rooted tree, which

supports the following operations in amortized O(1) time each: 1) find the NMA of a

given node; 2) insert an unmarked node; 3) mark an unmarked node. This NMA data

structure requires linear space in the size of the tree.

Suppose that we have STree(TU [1..i−1]) for a fully-online right-to-left text collection

TU [1..i−1] and assume U [i] = (k, a), i.e., the kth text Tk$k gets extended with a new

character a being prepended to it. As in the case with the semi-online texts, some

new soft and hard W-links are created in the updated STree(TU [1..i]). Fortunately, the

number of such newly created W-links are bounded by the size of the resulting suffix

tree, which is O(n). However, the number of redirected soft W-links, which are the

same as the number of DAWG edges to be redirected, can be too numerous to be done

within our desired bounds as the next lemma shows.

Lemma 9 Weiner’s suffix tree algorithm takes Θ(nmin(K,
√
n)) time in the fully-

online setting, where n is the total length of the K texts. Hence, for K = Θ(
√
n) it

also takes Θ(n
√
n) time to explicitly maintain the soft W-links (equivalently, the DAWG

secondary edges) in the fully-online setting. The lower bound holds for a constant

alphabet.

Proof 10 To show that these bounds hold for constant alphabets, we here assume that

each text in the collection terminates with the same end-marker $. However, in our

collection of texts each text will be distinct, so that each Tk$ will be represented by a

unique handle leaf.

First, we consider a lower bound. Consider the following K right-to-left texts T =

{Tk = ak$ | 1 ≤ k ≤ K} where a ∈ Σ and each text terminates with a common end-
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marker $. Suppose we have constructed the suffix tree of T in any order. Then, we

prepend a new character c ∈ Σ, such that c ̸= a, to each text Tk = ak$ in decreasing

order of their length, k = K, . . . , 1. Since we process each text in decreasing order of

k, there are Ω(k) explicit nodes in the path from the handle leaf for Tk = ak$ to its

lowest ancestor r = ε (the root) for which hard W-linkWc(r) is defined. Hence, it takes

Ω(k) time to näıvely walk up this path. Also, with the exception of the first longest text

TK that introduces Ω(k) new soft W-links, for all other k < K, there are Ω(k) soft

W-links to be redirected along the way. Thus, there are Ω(K2) edge re-directions in

total, for all k’s. We then repeat the above procedure several times. At each repetition

i (i > 1), for each k in decreasing order it again takes Ω(k) time to walk up from the

handle leaf for ci−1ak$ until reaching its lowest ancestor r for which hard W-link Wc(r)

is defined. Also, there are Ω(k) soft W-links to be redirected along the way. Thus, at

each repetition i, it takes a total of Ω(K2) time for all k’s, too,

Let n be the total length of the texts in the collection after performing the above

procedure several times. The initial total length of the text collection T = {ak$ | 1 ≤

k ≤ K} is K(K+3)
2

. We then append c’s to each of the K texts, and the text collection

of total length finally becomes n. Hence, the number of iterations is (n− K(K+3)
2

)/K =

Θ(n/K − K), which is Θ(n/K) in the case where K < α
√
n with some constant α.

Since each iteration requires re-directions of Ω(K2) soft W-links, it takes a total of

Ω(nK) time in this case. Now consider the case where K > α
√
n. In this case, we can

apply the same procedure as above only to α
√
n texts in the collection, and the other

K − α
√
n texts remain empty. This leads to Ω(n

√
n) total work for re-directing soft

W-links. Combining these two, we obtain an Ω(nmin(K,
√
n)) lower bound.

To see that this lower bound actually gives rise to the worse case in Weiner’s algo-

rithm, we can focus only on the time required for soft W-link re-redirection, since new

edge insertions and node insertions are always accounted globally to be the total size of

the the suffix tree, which is O(n).
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Recall that the number of soft W-link re-directions when appending a symbol a to

text Tk$ is no larger than the suffix tree depth of the handle leaf representing Tk$, which

is in turn smaller than the length of Tk$. Also, the depth of the new leaf aTk$ is at

most one more than the depth of leaf Tk$ minus the number of edge re-directions that

reduce depth of the current handle leaf associated with each of the K text, while the

depth of all current handle leaves Ti$, i ̸= k, may also increase by at most one while

updating Tk$, by the insertion of the internal node off which the leaf Tk$ is hanging

above the handle leaf of Ti. Thus, each of the O(n) symbols may increase by at most

one the depth of all the K handle leaves. This depth increase was not an issue in the

semi-online setting since previous Tk$ are no longer updated and their handle leaves

were no longer used. In the fully-online setting, this depth increase is problematic.

The depth reduction argument gives an obvious O(n) upper bound on the soft W-link

re-directions while updating each of the K texts, which adds up to O(Kn) overall upper

bound.

The analysis will separate those short texts Tk$, such that |Tk$k| ≤
√
n from the

longer texts. For the short texts, each time a symbol is prepended to a text Tk$, the

number of soft W-link edge re-directions is bounded by the length of each short text,

which is at most
√
n, totaling at most O(n

√
n) such re-directions. For the long texts,

we observe that there are at most O(
√
n) such long texts, and for each specific text,

the total number of soft W-link edge re-directions is at most O(n), totaling at most

O(Kn) ⊆ O(n
√
n). Combining these bounds, we get the desired Θ(nmin(K,

√
n)) tight

bound.

Remark 2 To show that the bounds hold for a constant alphabet, we used the same

end-marker $ for all the texts in the proof of Lemma 9. We remark that the same

arguments hold for the case where each text Tk is terminated with a unique end-marker

$k, as we assume elsewhere in this chapter, since also in this case each text Tk$k is

represented by a unique handle text. We then use K + 2 characters in the lower bound
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Figure 4.3: Extending the text Tk$k to aTk$k. Soft W-links are shown short-dashed
and hard W-links are shown long-dashed. Gray nodes of NMA data structures mean
marked nodes. Nodes with new hard W-link (of added character a) in the suffix tree
are added to the NMA as marked nodes. Nodes with new soft W-link (of a) are added
to the NMA as normal nodes.

example (the alphabet is {a, b, $1, . . . , $K}).

To avoid the above-stated super-linear cost in Lemma 9, we shall only maintain

hard W-links and will not explicitly maintain soft W-links. Instead of soft W-links we

will maintain only the Boolean indicator wa(v) that tells us whether a (soft or hard)

W-link Wa(v) is defined or not. Once wa(v) is set to 1, it remains 1 and does not need

to be updated even when the corresponding soft W-link would have to be redirected.

Like in the semi-online setting, we here also go up from the leaf ℓ representing Tk$k

to its lowest ancestor u′ for which Wa(u
′) is defined. The cost for walking up to the

lowest ancestor u of ℓ for which wa(u) = 1 can be charged to the cost for creating new

soft W-links (or equivalently, that for creating new corresponding DAWG edges), which

is amortized constant per added character a. One problem remains: We would like to

skip all explicit nodes s′ in the path from node u to u′, since näıvely walking up this

path can be as costly as redirecting W-links Wa(s
′) for all such nodes s′. In so doing,

we shall also maintain for each character σ an NMA data structure of Lemma 8 on the

subtree of the suffix tree which consists of the two following disjoint sets of nodes: (1)

the set of unmarked nodes v such that wa(v) = 1 and Wa(v) is a soft W-link, and (2)
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the set of marked nodes v such that Wa(v) is a hard W-link. Our version of Weiner’s

algorithm will näıvely walk up the suffix tree from the leaf ℓ representing Tk$k until the

lowest node u such that wa(u) = 1, and from there it will jump to u′ using the NMA

data structure for the prepended character a. In what follows, we will denote this as

the a-NMA data structure.

Theorem 8 Given a fully-online sequence U of n update operators for a collection of

K right-to-left texts T , our version of Weiner’s algorithm can update the suffix tree in

a total of O(n log σ) time and O(n) space.

Proof 11 The correctness of our algorithm should be clear from the above discussion.

Let us analyze the time complexity. The algorithm will now still climb up the suffix

tree from the currently focused leaf ℓ up to its lowest ancestor u with wa(u) = 1.

From there, it would jump to its nearest ancestor u′ of u having hard W-link Wa(u
′)

defined in constant amortized time using an NMA query on the a-NMA data structure.

Now we update the a-NMA data structure. If the insertion point v for the new leaf ℓ′

representing Tk$k is newly created (see Case (1) in the previous sub-section), then the

soft W-linkWa(u) becomes hard. Hence, we mark node u in the a-NMA data structure.

Otherwise, the W-link Wa(u) is already hard and hence u is already marked in the a-

NMA data structure. Recall that each node s between the leaf ℓ and u obtain new soft

W-links and hence wa(s) is now set to 1. Hence, we insert an unmarked node for each s

in the a-NMA data structure. Since the NMA data structure allows us to insert a new

leaf in amortized constant time, we insert these unmarked nodes in increasing order

of depth, from the child of u to the parent of ℓ contained in the path. We also spend

O(log σ) time at each visited node for searching the appropriate NMA data structure.

Overall, it takes a total of O(n log σ) time to construct the suffix tree for fully-online

Let us now analyze the space complexity. For each character c ∈ Σ, each marked

node u in the c-NMA data structure corresponds to a unique hard W-link Wc(u). Also,
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each unmarked node s in the c-NMA data structure corresponds to a unique soft W-

link Wc(s). Since the total number of hard and soft W-links for all characters c ∈ Σ

is O(n), the total size of the c-NMA data structures for all characters c ∈ Σ is O(n).

Now we turn our attention to construction of the DAWG for a fully-online left-

to-right text collection S. Since our version of Weiner’s algorithm does not explicitly

maintain soft W-links, we do not have explicit representation of secondary edges of the

DAWG for the left-to-right texts. However, the Weiner’s suffix tree augmented with

the NMA data structures indeed is implicit representation of the DAWG secondary

edges:

Lemma 10 Using Weiner’s suffix tree augmented with the NMA data structures, we

can simulate each soft W-link per query in amortized O(log σ) time.

Proof 12 A given node u has soft W-link Wa(u) for a given character a iff wau = 1

and Wa(u) is not a hard W-link. Suppose u has soft W-link Wa(u). We query the

NMA u′ of u in the a-NMA data structure. Let b be the first character of the path

label from u′ to u. We follow the hard W-link Wa(u
′) = v′, and find the out-going

edge of v′ whose edge label begins with b. Then, the child v′′ of v′ below this edge is

the destination of the soft W-link Wa(u). The time for the NMA query is amortized to

O(1) and finding the appropriate a-NMA data structure and the appropriate out-going

edge of v′ takes O(log σ) time each.

The next corollary immediately follows from Theorem 8 and Lemma 10.

Corollary 9 Given a fully-online sequence U of n update operators for a collection of

K left-to-right texts, the DAWG can be maintained in a total of O(n log σ) time and

O(n) space with O(log σ) query time for an out-going DAWG edge.

57



4.4 Fully-online version of Ukkonen’s suffix tree al-

gorithm

Ukkonen’s algorithm [65] constructs the suffix tree of a given text in an online manner,

from left to right. In this section, we show how Ukkonen’s algorithm can be extended

to maintain the suffix tree for a fully-online left-to-right text collection. We will do so

by first explaining that Ukkonen’s algorithm can readily be extended to the semi-online

setting. Then, we will describe some difficulties in extending Ukkonen’s algorithm to

our fully-online setting, and finally we will present how to overcome these difficulties

achieving O(n log σ)-time algorithm.

4.4.1 Semi-online left-to-right suffix tree construction

Ukkonen’s algorithm [65] can easily be extended to incrementally construct the suffix

tree for multiple texts in the semi-online setting.

Let U be a semi-online sequence of n update operators such that the last update

operator for each k (1 ≤ k ≤ K) is (k,#k), where #k is a special end-marker for the kth

text in the collection. Also, assume that we have already constructed STree(SU [1..i−1])

and that the next update operator is U [i] = (k, a). Thus a new character a is appended

to the text Sk and it becomes Ska.

In updating STree(SU [1..i−1]) to STree(SU [1..i]), we have to assure that all suffixes

of the extended text Ska will be represented by STree(SU [1..i]). These suffixes are

categorized to three different types:

Type-1 The suffixes of Ska that are longer than lrsSU [1..i−1]
(Sk)a.

Type-2 The suffixes of Ska that are not longer than lrsSU [1..i−1]
(Sk)a and are longer

than lrsSU [1..i](Ska).

Type-3 The suffixes of Ska that are not longer than lrsSU [1..i]
(Ska).
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The suffixes of Ska are inserted in decreasing order of length.

The Type-1 suffixes are maintained as follows. Let s be any suffix of Sk which

is represented by a leaf of STree(SU [1..i−1]). Since s is a non-repeating suffix of Sk in

SU [1..i−1], sa is a non-repeating suffix of Ska in SU [1..i], which implies that sa will also

be a leaf of STree(SU [1..i]). Based on this observation, the label of the in-coming edge

of the leaf is represented by a pair ⟨k, b⟩ called an open edge, where b is the beginning

position of the label of the in-coming edge in the kth text. We can retrieve the ending

position of the edge label in constant time by looking at the current length of the kth

text. This way, every existing leaf will then be “automatically” extended.

Hence, updating STree(SU [1..i−1]) to STree(SU [1..i]) reduces to inserting the Type-

2 suffixes of Ska (note that the Type-3 suffixes of Ska already exists in the suffix

tree). For this sake, the algorithm maintains an invariant which indicates the locus of

x = lrsSU [1..i]
(Sk) on STree(SU [1..i−1]) called the active point. Since x can be an implicit

node, the algorithm maintains the canonical reference (v, c, ℓ) to x. For convenience,

if x is an explicit node, then let its canonical reference be (x, ε, 0). The update starts

from the current active point x represented by its canonical reference pair, and the

Type-2 suffixes of Ska are inserted in decreasing order of length, by using the chain of

(virtual) suffix links. There are two cases:

I. If it is possible to go down from x with character a, then no updates to the tree

topology are needed. The new active point is xa, and the reference to xa is made

canonical if necessary. The update ends.

II. If it is impossible to go down from x with character a, then we create a new leaf.

Let j be the beginning position of the suffix of Ska which corresponds to this new

leaf. The following procedure is repeated until Case I happens.

(a) If the active point x is on an explicit node, then a new leaf node s is created

as a new child of x, with its incoming edge labeled by ⟨k, b⟩, where b =
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|Ska| − |x|+ 1. The active point x is updated to slink(x).

(b) If the active point x is on an implicit node, then x becomes explicit in this

step. A new leaf node s is created as a new child of x with its incoming

edge labeled by ⟨k, b⟩. Since the suffix link of the new explicit node x does

not yet exist, we simulate the suffix link traversal as follows: Let (vj, cj, ℓj)

be the canonical reference to x. First, we follow the suffix link slink(vj) of

vj, and then go down along the path of length ℓj from slink(vj) starting

with character cj. Let this locus be x′. Let vj+1 be the longest explicit node

in this path. (i) If |vj+1| = |x′|, then we firstly create the new suffix link

slink(x) = vj+1 for the new explicit node x. The active point x is updated to

x′ and is represented by canonical reference (vj+1, ε, 0). (ii) If |vj+1| < |x′|,

then the next active point is implicit. The active point x is updated to x′

and is represented by canonical reference (vj+1, cj+1, ℓj+1). The suffix link

of x will be set to x′ when x′ becomes explicit in the next step.

The most expensive case is II-b-(ii). Since the path from vj+1 to x′ contains at most

ℓj − ℓj+1 explicit nodes, it takes O((ℓj − ℓj+1 + 1) log σ) time to locate the next active

point x′ (note ℓj − ℓj+1 ≥ 0 holds). All the other operations take O(log σ) time.

Hence, the total cost to insert all leaves (suffixes) for the kth text is O(
∑nk

j=1(ℓj −

ℓj+1 + 1) log σ) = O(nk log σ), where nk is the final length of the kth text. Thus the

amortized time cost for each leaf (suffix) for the kth text is O(log σ). Overall, it takes a

total of O(n log σ) time to construct STree(SU) for a semi-online sequence U of update

operators. The space requirement is O(n).
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4.4.2 Difficulties in fully-online left-to-right suffix tree con-

struction

The following observations suggest that it does not seem easy to extend Ukkonen’s

algorithm to our left-to-right fully-online setting:

A. [Keeping track of active points] Let U [i] = (k, a) which updates the current

kth text Sk to Ska, and assume that we have just constructed STree(SU [1..i]).

Recall that we defined the initial locus of the active point for Ska on STree(SU [1..i])

to be the longest repeating suffix of Tka in SU [1..i]. However, since U is fully-online,

any other text Th (h ̸= k) in the collection would be updated by following update

operators U [r] with r > i. Then, the longest repeating suffix of Ska in SU [1..r] can

be much longer than that of Ska in SU [1..i]. In other words, some Type-1 suffixes

of Ska in SU [1..i] can become of Type-2 in SU [1..r]. What is worse, updating Sh

can affect the longest repeating suffix of any other text in the collection as well.

B. [Canonization of active points] Even if we somehow manage to efficiently

maintain the active point for each text in the collection, there remains another

difficulty. Let j be the beginning position of the longest repeating suffix of Ska

in SU [1..i], and let (vj, cj, ℓj) be the canonical reference to this suffix. Let U [i′] =

(k, a′) be the first update operator in U which updates the kth text after U [i] =

(k, a). Let (v′j, c
′
j, ℓ

′
j) be the canonical reference to the longest repeating suffix

of Ska in SU [1..i′], which is the “real” initial active point where insertion of the

Type-2 suffixes should start at this i′th step. By the property of suffix trees

ℓ′j ≥ ℓj holds, and what is worse, this length ℓ′j is unbounded by the number

of Type-2 suffixes inserted at this i′th step. Thus, it is not clear whether the

amortization technique we used for the semi-online construction works in our

fully-online setting.

C. [Maintaining leaf ownerships] The phenomenon mentioned in Difficulty A
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also causes a problem of how to represent the labels of the in-coming edges to

the leaves. Assume that we created a new leaf w.r.t. an update operator (k, a),

and let ⟨k, bk⟩ be the pair representing the label of the in-coming edge to the leaf,

where bk is the beginning position of the edge label in the kth text. We say that

the kth text Sk is the owner of the leaf. It corresponds to a Type-1 suffix of the

kth text, but the leaf can later be extended by another growing text Sh. Namely,

Sh can overtake the ownership of the leaf from Sk. After this happens, then the

pair ⟨k, bk⟩ has to be updated to ⟨h, bh⟩, where bh is the beginning position of the

edge label in the hth text. Notice that this update may happen repeatedly.

4.4.3 Fully-online left-to-right suffix tree algorithms

Let us now consider how to construct the suffix tree for a fully-online left-to-right text

collection. Our fully-online version of Ukkonen’s algorithm works with the aid of the

fully-online version of Weiner’s algorithm proposed in Section 4.3. Namely, for a fully-

online left-to-right text collection S with K texts, we build STree(S) in tandem with

STree(T ), where T is the set of reversed texts from S (i.e., T = S). Since we use

the fully-online version of Weiner’s algorithm, as in Section 4.3, we assume that each

text in T terminates with a special symbol $k, namely, T = {T1$1, . . . , TK$K}. This in

turn implies that each text in S begins with $k, namely, S = {$1S1, . . . , $KSK}, where

Si = Ti for 1 ≤ i ≤ K.

In what follows, we will propose two alternative approaches. Suppose we have con-

structed STree(SU [1..i−1]). Given the ith update operator U [i] = (k, a), the first one

called the forward approach traverses a chain of (virtual) suffix links in a forward man-

ner and inserts new leaves of the updated text $kSka in decreasing order of the lengths

of the suffixes of $kSka. This forward approach is a direct extension of Ukkonen’s

original algorithm. The second one called the backward approach traverses a chain of

(virtual) suffix links in a backward manner and inserts new leaves in increasing order of
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the lengths of the suffixes of $kSka. This backward approach can be seen an extension

of Breslauer and Italiano’s algorithm [16] which was originally proposed for real-time

suffix tree construction for a single left-to-right text.

Forward approach

In this subsection, we present our forward approach to update STree(SU [1..i−1]) to

STree(SU [1..i]). The key notions in this forward approach are swapping active points

and tight connections between active points and leaf ownerships. In what follows we

will explain these notions in full details.

Let us first consider maintaining active points (Point A). This is indeed closely

related to maintaining leaf ownerships (Point C). We will for now put it aside the cost

for maintaining leaf ownerships, and will focus on describing how active points can

affect ownerships of leaves.

For a single right-to-left online text, the suffix links of the leaves form a single path

from the longest leaf to the shortest one. On top of them we also consider a virtual

suffix link from the shortest leaf to the active point.

We generalize the above notion to our fully-online text collection S. Unlike the

single text case, a leaf can represent a suffix of multiple texts in our fully-online setting.

This implies that the suffix links of STree(S) form a forest. Let FS denote this forest.

This forest is only conceptual, namely, in our algorithms to follow we will not explicitly

maintain it. However, the forest gives us more insights into Points A and C. Formally,

the forest FS is a set of maximal trees such that each maximal tree SLT in FS satisfies:

• the root of SLT is the locus (an implicit or an explicit internal node) of the active

point of a text,

• the other nodes of SLT are leaves of STree(S), and

• the (reversed) edges of SLT are suffix links of STree(S) (if the root of SLT is an

implicit node, then the (reversed) edges from the root to its children are virtual
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suffix links from the children).

Since a leaf of STree(S) can be a suffix of multiple texts, there are multiple choices

for the owner of each leaf. Our choice of the owner of a leaf is either

(R1) the text that created the leaf, or

(R2) the last text whose active point has extended the leaf.

Regarding Rule (R2) above, we will soon describe in more details how the active point

of a text can extend an existing leaf.

Suppose that we have constructed STree(SU [1..i−1]) and that we are given an update

operator U [i] = (k, a) which appends new character a to text $kSk.

If the active point of $kSk is not on a leaf of STree(SU [1..i−1]), then the suffix tree

is updated as in the semi-online setting and there are no changes on the ownerships of

the leaves. Hence, in what follows we consider the case where the active point of $kSk

is on a leaf of STree(SU [1..i−1]).

Let s be the leaf of STree(SU [1..i−1]) where the active point of the text $kSk lies. Let

SLT denote the suffix link tree in FSU [1..i−1]
that contains this node s, and let Pi be the

path from s to the root of SLT . Also, let Oi be the set of texts which are the owners

of the suffix tree leaves in Pi. Finally, let Li be the list of all nodes u in the path from

the parent of s to the root of SLT such that the active point of some text in Oi lies on

u. For each 1 ≤ x ≤ m = |Li|, let ux = Li[x]. For convenience, let u0 = s. For each

1 ≤ x ≤ m, let kx denote the text id of the owner of ux. Then, due to the way how the

ownerships of leaves are defined by Rules (R1) and (R2) above, for every 1 ≤ j < m

the owner of every leaf between uj−1 and uj is the kjth text in the collection. See also

the left diagram of Figure 4.4 for illustration.

Now we describe how the ownerships of leaves and the active points of texts can

change when a new character is appended to a text in the fully-online setting. We

begin with the first node u1 = s in the list Li whose current owner is text $k1Sk1 . See
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also the left diagram of Figure 4.4. Since $kSk now gets extended to $kSka, the active

point of this text extends the suffix tree leaf u1. Then, the extended leaf u1 no more

represents a suffix of its original owner $k1Sk1 . This implies that the new owner of this

suffix tree leaf u1 is $kSka. The same happens to all leaves in the path up to u1. Then,

we swap the active points of texts $kSk and $k1Sk1 . We continue the same procedure

recursively for the other nodes u2, . . . , um in the list Li, and finally the new owner of

each leaf in the path Pi becomes the updated kth text $kSka. After reaching the root

of SLT , we possibly create new edges labeled with a following virtual suffix links, and

finally arrive at the new locus of the active point for the updated kth text $kSka. This

operation may split the original suffix link tree SLT into some smaller suffix link trees

(see also Figure 4.4).

Lemma 11 The above procedure correctly maintains the active points of texts and the

leaf ownerships under Rules (R1) and (R2).

Proof 13 It is clear that the above procedure correctly maintains the leaf ownerships

under Rules (R1) and (R2).

Let $kjSkj be any text in Oi. After swapping the active points of $kSka and those

texts in Oi, the locus of the active point of $kjSkj is one character above the suffix tree

leaf (say u) that has just been extended by $kSka. By the definition of list Li, this leaf

u before extension was the longest leaf whose previous owner was $kjSkj . Hence, the

string depth of the new active point of $kjSkj is at least |u|−1. Also, it cannot be larger

than |u| − 1, since otherwise it contradicts with the definitions of Oi and Li (see also

Figure 4.4). Hence, the above procedure of swapping active points correctly maintains

the active points of the texts in the collection.

Now we wish to maintain leaf ownerships as described above. However, the next

lemma shows that it requires super-linear cost to explicitly maintain leaf ownerships.
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Figure 4.4: The left diagram depicts a suffix link tree in the forest before the ith update
with update operator U [i] = (k, a), where the solid and broken arrows respectively
represent suffix tree edges and suffix links, and the white and black circles respectively
represent suffix tree leaves and active points. The dotted circle represents the root
of the suffix link tree (which is an implicit node in this case). The suffix link path
Pi of interest is shown with bold broken arrows, where the staring node is s = u0.
The integers kj below each leaf shows the current owner of the leaf, and hence Oi =
{$kSk, $k1Sk1 , $k2Sk2 , $k3Sk3}. The integer kj in each black circle implies that it is the
active point for text $kjSkj . The black circles without text id’s are the active points of
texts which are not in Oi. The right diagram shows how it looks after the text $kSk

has been extended to $kSka with a new character a. Since its active point has extended
the leaf u0 with a, text $kSk becomes the new owner of every leaf in the path Pi. In
the meantime, we swap the active point for text $kSka with the active points of texts
in Oi, in the order they appear in the path Pi. After the active point of text $kSka and
that of the last text in the path (which in this figure is $k3Sk3) have been swapped, we
possibly create new leaves (in this figure we create just one new leaf), and eventually
we find the new locus for the active point for the updated text $kSka. Since all the
leaves in the path Pi have been extended by the new character a, this path breaks
away from the original suffix link tree. As a result, we obtain several smaller suffix link
trees.

Lemma 12 There is a left-to-right fully-online collection of K texts of total length n

for which explicitly maintaining leaf ownerships requires Ω(n
2

K
) time.

Proof 14 Consider an initial text collection S = {$1, . . . , $K}. We will update this text

collection in i rounds so that in each jth round the same character aj is appended to each

text. The order of the texts to which aj is appended is arbitrary in each round. Thus,

after the jth round, the text collection becomes of form {$1a1 · · · aj, . . . , $Ka1 · · · aj}.

We also assume that aj ̸= ah for any 1 ≤ j ̸= h ≤ i. This implies that in each jth
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round, we will have j leaves representing common suffixes a1 · · · aj, a2 · · · aj, . . . , aj.

Notice that during the jth round, the ownership of each such leaf has to be updated

K times since each such leaf is shared by the K texts. Therefore, the total number of

updates for the leaf ownership after the final ith round is at least

K(1 + 2 + · · ·+ i) =
Ki(i + 1)

2
. (4.1)

Since n is the total length of the resulting text collection after the ith round, we get

n = K(i+ 1). Hence, i = Θ( n
K

). Plugging this into equation 4.1, we obtain the desired

lower bound Ω(n
2

K
).

The above Ω(n
2

K
) lower bound requires us a super-linear cost for explicit leaf own-

ership maintenance when K = o(n). Indeed, K = o(n) is the only meaningful case in

our fully-online problem: If K = Θ(n), then each of the K texts is of constant size and

hence a näıve algorithm would update the suffix tree in constant time per each text no

matter how they are updated, resulting in an O(n)-time construction anyway. Hence,

in what follows, we will only consider the case where K = o(n).

Due to Lemma 12, we shall not explicitly maintain leaf ownerships in our fully-

online algorithm. However, when swapping the active point of the kth text with those

of the texts in the set Oi, we need to know the owner of the leaf that has just been

extended by the active point of the kth text. We also need to know the set Oi of

texts which are the owners of the leaves in the path Pi, and need to know the list

Li of leaves where those active points currently lie. For this sake we use the aid of

our version of Weiner’s algorithm for fully-online right-to-left construction. Namely,

we build STree(SU [1..i]) in tandem with STree(TU [1..i]) for each increasing i = 1, . . . , n.

For simplicity, we will call the left-to-right fully-online suffix tree STree(SU [1..i]) as the

Ukkonen tree and the right-to-left fully-online suffix tree STree(TU [1..i]) as the Weiner

tree.
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Below we show key observations that connect our versions of Weiner’s algorithm

and Ukkonen’s algorithm in the fully-online setting. For each node v of the Weiner tree,

let w deg(v) denote the number of (soft or hard) W-links from v, namely, w deg(v) =

|{c ∈ Σ | wc(v) = 1}|.

Lemma 13 Let u be any leaf in the list Li of the Ukkonen tree STree(SU [1..i−1]). Then,

there exists an explicit node v of the Weiner tree STree(TU [1..i−1]) such that (1) v = u,

(2) v is in the path from the root to the leaf representing Tk$k, and (3) w deg(v) = 0.

Proof 15 Since u is a leaf of the Ukkonen tree STree(SU [1..i−1]), it is a suffix of the

text $kSk to which a new character a will be appended. Hence v = u is a prefix of

the reversed text Tk$k, and is located on the path from the root to the leaf Tk$k in the

Weiner tree STree(TU [1..i−1]). By the definition of the list Li, the active point of some

other text (say $hSh, with h ̸= k) lies on the leaf u in the Ukkonen tree, which implies

that u is the longest suffix of $hSh that occurs at least twice in the left-to-right collection.

Since each left-to-right text begins with a distinct $ symbol, there must be at least two

distinct characters that immediately precede occurrences of u. This in turn implies

that there are at least two distinct characters that immediately follow occurrences of

v = u in the right-to-left text collection, and hence v = u is an explicit node in the

Weiner tree. To prove (3) assume on the contrary that w deg(v) > 0, and let c be any

character such that wc(v) = 1. Since cv = cu is a substring of some text in the right-

to-left collection TU [1..i−1], uc is a substring of some text in the left-to-right collection

SU [1..i−1]. However, this contradicts that u is a leaf of the Ukkonen tree STree(SU [1..i−1]).

Hence w deg(v) = 0.

As was shown in Section 4.3, when we update the Weiner tree STree(TU [1..i−1]) to

STree(TU [1..i]) with update operator U [i] = (k, a) which prepends character a to text

Tk$k, we walk up from the leaf Tk$k until finding the first node with a (soft or hard)

W-link w.r.t. a defined. Since the total cost of walking up these paths for all characters
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prepended to the right-to-left texts is linear in the final total length n of all texts, the

number of nodes in the list Li for 1 ≤ i ≤ n is also linear in n.

Notice that not every explicit node v with w deg(v) = 0 in the path from the leaf

Tk$k to the root of the Weiner tree corresponds to a leaf in the list Li on the Ukkonen

tree. However, as was shown above, we can afford to check each such explicit node v

in total linear time.

The next lemma shows how to maintain correspondence between these nodes in the

Weiner tree and the Ukkonen tree.

Lemma 14 We can maintain correspondence between each node v of the Weiner tree

with w deg(v) = 0 and its corresponding leaf u in the Ukkonen tree in O(n log σ) total

time.

Proof 16 Let v be any node of the Weiner tree STree(TU [1..i−1]) with w deg(v) = 0.

Suppose we have maintained correspondence between v and its corresponding leaf u in

the Ukkonen tree STree(SU [1..i−1]). This correspondence is maintained by bidirectional

links between the two trees.

Now suppose we are given an update operator U [i] = (k, a) which appends a new

character a to $kSk and prepends a to Tk$k. There are three cases to consider.

(a) If the active point of the kth left-to-right text extends a leaf of the Ukkonen tree:

In this case, as was described previously and was illustrated in Figure 4.4, the

leaves in the path Pi get extended by the new character a that was appended

to the kth left-to-right text $kSk. This implies that v in the updated Weiner

tree STree(TU [1..i]) does not correspond to a leaf in the updated Ukkonen tree

STree(SU [1..i]). Thus, we remove the bidirectional link that connects v and the

corresponding leaf in the Ukkonen tree.

(b) If the active point of the kth text catches up a leaf u of the Ukkonen tree: Since

u is a leaf whose current owner is another text $hSh with h ̸= k, u is a suffix
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of at least two distinct left-to-right texts in the updated collection SU [1..i]. Hence,

u is a prefix of at least two distinct right-to-left texts in the updated collection

TU [1..i], and hence is represented by an explicit node in the updated Weiner tree

STree(TU [1..i]). Let v be this explicit node. Moreover, since u is the locus of the

active point of $kSka, u is the longest repeating suffix of $kSka and hence v = u

is the longest repeating prefix of aTk$k. This node v is exactly the insertion point

of the new leaf aTk$k in the Weiner tree. Hence, we can find the locus of v = u

during the updates of the Weiner tree and can easily create a bidirectional link

between v and u.

(c) Otherwise, there are no changes in the correspondence and hence no maintenance

of bidirectional links is needed.

In both cases (a) and (b), the costs can be charged to the construction of the Weiner

tree which takes total O(n log σ) time.

In Lemmas 13 and 14 we have shown how to efficiently find those suffix tree leaves

in the list Li of the Ukkonen tree with the aid of the Weiner tree. What remains is how

to find each text in the set Oi of owners of the leaves in the list Li. The next lemma

shows yet another application of the Weiner tree for this purpose.

Lemma 15 With the aid of the Weiner tree, we can find the owner of each leaf in the

list Li in total O(n log σ) time for all 1 ≤ i ≤ n.

Proof 17 In each internal explicit node of the Weiner tree, we store the id of the text

which created the oldest leaf in the subtree rooted at this internal explicit node. This

can be easily maintained in O(1) time per node: When we split an edge and create a

new internal node, then we simply copy the text id stored in its unique child.

Consider any update operator U [i] = (k, a). Let u be any leaf in the list Li of the

Ukkonen tree and let v be its corresponding node in the Weiner tree (hence v = u and
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it is an explicit node due to Lemma 13). Then, if the text id stored in v is h, then the

hth text is the current owner of the leaf u in the Ukkonen tree. This is true in either

case where the leaf u was created by the hth text and has never been extended by an

active point, or the leaf u was last extended by the hth text. In both cases, the subtree

rooted at v = u in the Weiner tree may contain leaves which correspond to suffixes of

some other texts than the hth text, but in the Ukkonen tree the active points of these

texts only caught up with the leaf u. Hence none of these texts is the one which created

the leaf u, or the last one that has extended u. Therefore, the hth text is the current

owner of u.

A careful consideration is required when the leaf u gets extended by the active point

of text $kSk. Now the extended leaf represents the extended string ua and its new owner

is the kth text $kSka. As was shown in the proof for Lemma 14, in the Weiner tree the

reversed extended string au is represented by a new, different locus than the locus for

u. It is also possible that au is on an implicit node in the Weiner tree at this stage,

but it will become explicit when the active point of another text catches up the leaf ua

in the Ukkonen tree. Thus, we will be able to return the text id k as the correct answer

for a leaf ownership query when the active point of another text extends the leaf ua in

future.

In the above arguments we have shown that Difficulties A and C can be efficiently

resolved by swapping active points and by neglecting explicit maintenance of leaf own-

erships.

Meanwhile, this lazy maintenance of leaf ownership causes two more issues; Suppose

that the active point of some text $iSi lies on an edge that leads to a leaf u, and that

a new character a has been appended to this text. Let x be the string represented by

the active point.

• The first question is how we can determine whether the active point can step

forward along this edge by character a, or a new explicit node must be created
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at the locus of x together with a new edge labeled with a. Since we do not

know the owner of the leaf u, we are not able to answer the above question by a

simple character comparison. However, this can be answered again by the aid of

the Weiner tree. Recall that there is an explicit node representing the reversed

string x in the Weiner tree and we know its locus through the updates of the

Weiner tree. Now, the active point can step forward with character a if and only

if the node x has a (soft or hard) W-link for character a. Hence, we can answer

the above question in O(log σ) time. In case where we cannot step forward with

character a, then we need to create a new edge leading to a new leaf. Instead of

explicitly maintaining the owner of the leaf, we only maintain the first character

a of this edge label. If the locus of the active point is on an edge, then we create

a new explicit node u representing x in the Ukkonen tree. Now u has two out-

going edges both leading to leaves, one of which is labeled with a as was described

above. Since x was on an edge, there was a unique character, say b, such that

b ̸= a and the W-link of node x for character b is defined in the Weiner tree.

Thus the other out-going edge of u is labeled with b in the Ukkonen tree. Also,

by storing the string depth in each active point, the whole label of the edge from

the parent of u to u can be easily determined in constant time. Thus, we are able

to eagerly maintain the whole label of every edge leading to an internal explicit

node.

• The second question is how we can know that the active point catches up the leaf.

In the preceding discussions, we only proved that we can find the owner of the leaf

after we know that the active point has caught up the leaf. We observe that the

active point catches up the leaf if and only if the Weiner tree node v representing

ax is of Weiner degree zero, namely, the W-link of node v is undefined for any

character. Hence, this question can also be answered by the aid of the Weiner

tree in constant time.
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The final issue in this forward approach is how to overcome Difficulty B on the cost

for canonizing active points. The next lemma implies that the cost in our fully-online

setting can indeed be amortized by a simple modification to the original amortization

arguments in the semi-online setting.

Lemma 16 The total cost for canonizing the active points for all K texts in a left-to-

right collection S is O(n log σ).

Proof 18 Since we swap active points, the owner of each active point can change

during the construction of the Ukkonen tree. However, our analysis below does not

consider which text is the owner of each active point and hence it will lead us to simple

arguments.

Let A denote any active point and let (uA, cA, ℓA) denote the reference pair of A.

We remark that in our fully-online setting, this reference pair may not be canonical,

since some other text can split the out-going edge of node uA whose label begins with cA.

The potential of the active point A is ℓA of the string that hangs off from the explicit

node uA.

Suppose we have constructed STree(SU [1..i−1]), and that we are given the ith update

operator U [i] = (k, a) which appends new character a to the kth text $kSk. Also,

suppose that A is the active point for $kSk at this stage. Now the algorithm finds the

new locus for the active point A for the updated text $kSka, while possibly swapping

several active points and inserting new leaves. In this event the algorithm traverses

a chain of (virtual) suffix links. When a canonization is conducted after tracing a

virtual suffix link, then the potential ℓA decreases at least one. Also, when the new

locus of the active point A is found on the updated suffix tree STree(SU [1..i]), then the

potential increases exactly by one with the new character a. Hence, the total number

of canonizations performed for all n added characters is at most n.

Each canonization operation requires O(log σ) time to find the out-going edge whose
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label begins with the corresponding character. Hence, the total cost for canonizations

for all n characters is O(n log σ).

Putting the above arguments all together, we have proven the following theorem.

Theorem 10 Given a fully-online sequence U of n update operators for a collection

of K left-to-right texts S, our forward version of Ukkonen’s algorithm can update the

suffix tree in a total of O(n log σ) time and O(n) space.

Example 1 Fig. 4.5 shows a snapshot of left-to-right fully-online suffix tree construc-

tion, where the $i symbols are omitted for simplicity. Recall that we employ lazy main-

tenance of leaf ownership, and hence each character within a box is only imaginary and

is not computed during the updates. Due to lazy representation of leaves, we do nothing

to insert the Type-1 suffixes of S1b. The active point of S1 was on a leaf whose owner

was S2, and then it has extended the leaf. Hence, we swap the active points of S1 and

S2. To start inserting the Type-2 suffixes in decreasing order of length, we first insert

the longest Type-2 suffix abb at the locus of the active point of S1. With the aid of the

Weiner tree, we determine whether the active point can step forward along this edge

by character b. In this case, the active point cannot step forward, and hence create a

new internal node in the middle of this edge. After creating a new leaf from the new

internal node and its in-coming edge with the first character label b, we determine the

label of the in-coming edge of the new internal node using Weiner tree. Then the active

point traces the virtual suffix link from the new internal node ab to node b. This virtual

link can be computed by using the suffix link of node a. The next Type-2 suffix is bb,

and the active point cannot step forward with b. Therefore we create a new internal

node in the middle of this edge. Then the active point traces the virtual suffix link from

the new internal node b to the root. The next shorter suffix b is Type-3, since we can

step forward with character b from the root. Therefore, we move the active point from

the root to node b that represents the longest repeating suffix of S1b, and the reversed

74



suffix link is set from root to the node b. Since we have inserted all the Type-2 suffixes,

the update finishes.

Backward approach

In this subsection, we propose the backward approach which traces a chain of

(virtual) suffix links in the reversed order and inserts new leaves in increasing order of

their string lengths.

Suppose we have constructed STree(SU [1..i−1]) and we are now given an update

operator U [i] = (k, a). Consider the locus of the insertion point of the shortest Type-

2 suffix of the updated text §kSka in the Ukkonen tree STree(SU [1..i−1]). This locus

corresponds to the suffix of $kSka that is exactly one character longer than the longest

Type-3 suffix lrsS[U1..i−1]
($kSka) of $kSka in the text collection SU [1..i−1] before update.

In the backward approach we first find this locus, and insert the Type-2 suffixes of the

updated text $kSka in increasing order of lengths. Since we trace the chain of suffix

links backward, we use the reversed suffix links with character labels. In other words,

we maintain the hard W-links on the Ukkonen tree.

We also remark that we do not need to swap active points in this backward ap-

proach, since we begin with the shortest Type-2 suffix. This somewhat simplifies the

concept of the algorithm and might be an advantage over the forward counterpart

presented in Section 4.4.3.

To find the canonical reference to the locus of the insertion point of the shortest

Type-2 suffix of $kSka, we use the spanning tree of DAWG(TU [1..i]) which consists only

of the primary edges. This tree consists of the longest paths from the source of the

DAWG to its nodes, and hence, it coincides with the tree of the reversed hard W-links

of the Weiner tree (this should not be confused with the hard W-links on the Ukkonen

tree for backward suffix link traversals). For each 1 ≤ i ≤ n, let LPT (SU [1..i]) denote

this tree. By the property of DAWGs (and hence that of the equivalence relation), the

following fact holds.
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Figure 4.5: A snapshot of left-to-right fully-online suffix tree construction in the
forward approach for Example 1. We update STree(S) to STree(S ′) with S = {S1 =
abab, S2 = aabab} and S ′ = {S1b, S2} (here the terminate symbols $1 and $2 are
omitted for simplicity).
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Fact 2 For any 2 ≤ i ≤ n, if an edge e is a primary edge of DAWG(TU [1..i−1]), then e

is a primary edge of DAWG(TU [1..i]).

We also use the following fact in our algorithm.

Fact 3 For any substring x of texts in a left-to-right text collection S, node x is branch-

ing (explicit) in STree(S) iff node [x]S is branching in DAWG(S).

Based on Fact 3, for each 1 ≤ i ≤ n, we will maintain the NMA data structure

LPT (SU [1..i]) and mark its nodes iff they correspond to the branching nodes of STree(SU [1..i−1]).

Note that, due to Fact 2, no edges of LPT (SU [1..i−1]) will be deleted in LPT (SU [1..i])

and only new edges will be added. Hence we can use the NMA data structure on top

of this tree.

The next lemma shows how we can efficiently find the new locus of the active point

for the updated text $kSka in the Ukkonen tree.

Lemma 17 We can compute, in amortized O(log σ) time, the canonical reference to

the locus of the active point of $kSka on the Ukkonen tree, using a data structure which

requires O(n) space.

Proof 19 Suppose we have constructed the Ukkonen tree STree(SU [1..i−1]) in tandem

with the Weiner tree STree(TU [1..i−1]) and LPT (SU [1..i−1]). A node v of LPT (SU [1..i−1])

is marked iff its corresponding node v in the Weiner tree STree(TU [1..i−1]) has at least

two W-links defined, namely, wc(v) = wc′(v) = 1 with at least two distinct characters

c ̸= c′. This in turn implies that the corresponding node of the (implicitly maintained)

DAWG is branching. Every marked node of LPT (SU [1..i−1]) is linked to its correspond-

ing node of the Ukkonen tree STree(SU [1..i−1]) which is also branching by Fact 3 (see

also Figure 4.6). We also maintain an NMA data structure on LPT (SU [1..i−1]).

Given an update operator U [i] = (k, a), we first update the Weiner tree to STree(TU [1..i]).

This introduces at most two new hard W-links, one for the new leaf and one for its par-

ent. This means that these edges are also inserted to LPT (SU [1..i−1]) and we then obtain
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Figure 4.6: Illustration for DAWG(SU [1..14]), LPT (SU [1..14]), and the Ukkonen tree
STree(SU [1..13]) before update, where SU [1..13] = {S1 = aaab, S2 = ababc, S3 = bab}
and SU [1..14] = {S1c, S2, S3}. For simplicity, we here omit the terminate symbols $1,
$2, and $3. The bold solid arrows represent the primary edges of DAWG(SU [1..14]), the
gray nodes are the marked nodes of LPT (SU [1..14]), and the dashed arrows represent
the links between the marked nodes of LPT (SU [1..14]) and the corresponding branching
nodes of STree(SU [1..13]). The longest repeating suffix of S1c in SU [1..14] is abc, and
hence we perform an NMA query from node abc on LPT (SU [1..14]), obtaining node ab.
We then access the suffix tree node ab using the link from LPT (SU [1..14]), and obtain
the canonical reference (ab, c, 1) to abc on the Ukkonen tree STree(SU [1..13]) before
update.

LPT (SU [1..i]). Because of these new edges, at most two DAWG non-branching nodes

can become branching. We mark their corresponding nodes in LPT (SU [1..i−1]), and link

them to the corresponding Ukkonen tree nodes only after we have built the updated Ukko-

nen tree STree(SU [1..i−1]). This is because the corresponding nodes of STree(SU [1..i−1])

before the update are still non-branching (see Fact 3).

Let y be the insertion point of the leaf aTk$k in the Weiner tree which is the longest

repeating prefix of aTk$k in the right-to-left text collection TU [1..i]. By the definition

of LPT (SU [1..i]), there is a node in LPT (SU [1..i]) which represents y. We conduct an

NMA query from y on LPT (SU [1..i]), and let v be the NMA of y. Let ℓ = |y| − |v|,

and let c be the label of the first edge in the path from v to y. We move from v to its

corresponding node x in the Ukkonen tree STree(SU [1..i−1]). Then, (x, c, ℓ) is a reference

to the insertion point of the shortest Type-2 suffix of $kSka. Since v is the NMA of y in

78



LPT (SU [1..i]), and since updating $kSk to $kSka does not explicitly insert any suffix of

$kSka that is shorter than the longest repeating suffix of $kSka in SU [1..i], this reference

is canonical by Fact 3.

Clearly the total size of the above data structures is linear in the total length n of the

texts in the final text collection S. We analyze the time complexity. We can find the

insertion point y of the new leaf in the Weiner tree in amortized O(log σ) time due to

Theorem 8. Using the link from the node y in LPT (SU [1..i]), the corresponding node in

the Ukkonen tree STree(SU [1..i−1]) can be found in O(1) time. Updating LPT (SU [1..i−1])

to LPT (SU [1..i]) takes O(log σ) amortized time. Inserting a new node and querying an

NMA from a given node takes amortized O(1) time. We can link a new marked node

of LPT (SU [1..i]) to the corresponding new branching node of STree(SU1..i) in O(1) time,

since it is easy to remember this new branching node when updating STree(SU [1..i−1]) to

STree(SU [1..i]). Hence, the total amortized bound is O(log σ).

Let w and w′ denote the strings that are represented by the loci of the insertion

points of the shortest and longest new leaves w.r.t. the update operator U [i] = (k, a).

Let q = |w′| − |w| + 1 be the number of new leaves to be inserted in the Ukkonen

tree. Our backward approach terminates the ith update after inserting the qth new

leaf. How do we compute this value q? If (x, c, ℓ) is the canonical reference to the locus

for w, then |w| = |x| + ℓ, and hence what remains is how to compute |w′|. We note

that w′ is the longest suffix of $kSk which has at least one more occurrence in SU [1..i]

immediately followed by another character b ̸= a. This is because any longer suffix of

$kSk is immediately followed only by a, and will thus correspond to existing leaves in

the updated Ukkonen tree. These two occurrences of w′ must be immediately preceded

by distinct characters, say c and d, in the left-to-right text collection SU [1..i] since

otherwise there will be a longer suffix of $kSk which has at least one more occurrence

in SU [1..i], a contradiction. Also, w′c and w′d occur in the right-to-left text collection

TU [1..i−1] before the ith update. Thus, w′ is represented by an explicit node in the

79



Weiner tree STree(TU [1..i−1]). Since this node is on the path from the leaf for Tk$k to

the root of the Weiner tree, and since it is the deepest node with the hard W-link for

character a, we visit this node during the update of the Weiner tree. Hence, we can

compute |w′| in O(log σ) amortized time by the aid of the Weiner tree.

The cost to trace the suffix link chains in this backward approach is exactly the

same as that in the forward approach. Hence, the total cost is for suffix link chain

traversals is O(n log σ) for all 1 ≤ i ≤ n by Lemma 161.

The lower bound of Lemma 12 also applies to this backward approach. Hence, we

do not maintain the leaf ownerships, and we label the edges leading to the leaves only

with their first characters.

We have shown the following:

Theorem 11 Given a fully-online sequence U of n update operators for a collection

of K left-to-right texts S, our backward version of Ukkonen’s algorithm can update the

suffix tree in a total of O(n log σ) time and O(n) space.

4.5 Conclusions of Chapter 4

In this chapter, we presented construction algorithms of suffix trees and DAWGs in

fully-online manner. Firstly, we showed fully-online construction of suffix trees in right-

to-left manner. Secondly, we showed that fully-online construction of DAWGs can be

simulated by the right-to-left fully-online suffix tree construction. Finally, we showed

that we can fully-online construction of suffix trees with the aid of the fully-online

version of DAWGs (right-to-left suffix trees). The time complexity of these algorithms

is amortized O(log σ) time per characters.

1In the preliminary versions [63] of this capter, a simplified version of the suffix tree oracle [33]
was used to obtain the same bound. However, we do not need it any more due to our amortization
argument of Lemma 16.
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Chapter 5

Linear-size Compact Directed

Acyclic Word Graphs

In this chapter, we propose a novel approach to combine compact directed acyclic word

graphs (CDAWGs) and grammar-based compression. This leads us to an efficient

self-index, called Linear-size CDAWGs (L-CDAWGs), which can be represented with

O(ẽT log n) bits of space allowing for O(log n)-time random and O(1)-time sequential

accesses to edge labels, and O(m log σ + occ)-time pattern matching. Here, ẽT is the

number of all extensions of maximal repeats in T , n and m are respectively the lengths

of the text T and a given pattern, σ is the alphabet size, and occ is the number of

occurrences of the pattern in T . The repetitiveness measure ẽT is known to be much

smaller than the text length n for highly repetitive text. For constant alphabets, our

L-CDAWGs achieve O(m+ occ) pattern matching time with O(erT log n) bits of space,

which improves the pattern matching time of Belazzougui et al.’s run-length BWT-

CDAWGs by a factor of log log n, with the same space complexity. Here, erT is the

number of right extensions of maximal repeats in T . As a byproduct, our result gives

a way of constructing a straight-line program (SLP) of size O(ẽT ) for a given text T in

O(n + ẽT log σ) time.
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5.1 Background

Text indexing is a fundamental problem in theoretical computer science, where the

task is to preprocess a given text so that subsequent pattern matching queries can

be answered quickly. It has wide applications such as information retrieval, bioin-

formatics, and big data analytics [49, 57, 59]. There have been a lot of recent re-

search on compressed text indexes [9,18,40,49,52,57,62] that store a text T supporting

extract and find operations in space significantly smaller than the total size n of

texts. Operation extract returns any substring T [i..j] of the text. Operation find

returns the list of all occ occurrences of a given pattern P in T . For instance, Grossi,

Gupta, and Vitter [40] gave a compressed text index based on compressed suffix ar-

rays, which takes s = nHk + O(n log log n log σ/ log n) bits of space and supporting

O(m log σ + polylog(n)) pattern match time, where Hk is the k-th order entropy of T

and m is the length of the pattern P .

Compression measures for highly repetitive text : Recently, there has been an in-

creasing interest in indexed searches for highly repetitive text collections. Typically,

the compression size of such a text can be described in terms of some measure of

repetition. The followings are examples of such repetitiveness measures for T :

• the number gT of rules in a grammar (SLP) representing T ,

• the number zT of phrases in the LZ77 parsing of T ,

• the number rT of runs in the Burrows-Wheeler transform of T , and

• the number ẽT = erT + eℓT of right- and left-extensions of maximal repeats of T .

Belazzougui et al. [9] observed close relationship among these measures. Specifically,

the authors empirically observed that all of them showed similar logarithmic growth

behavior in |T | on a real biological sequence, and also theoretically showed that both zT

and rT are upper bounded by ẽT . These repetitive texts are formed from many repeated
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fragments nearly identical. Therefore, one can expect that compressed index based

on these measures such as gT , zT , rT , and ẽT can effectively capture the redundancy

inherent to these highly repetitive texts than conventional entropy-based compressed

indexes [31,32,34,38,57,60,61] and succinct indexes [5, 41,43,54,66].

Related work There has been extensive research on a family of repetition-aware in-

dexes [8–11, 18, 28, 36, 49, 51, 52] since the seminal work by Claude and Navarro [18].

They proposed the first compressed self-index based on grammars, which takes s =

g log n+O(g log g) bits supporting O((m2+h(m+occ)) log g) pattern match time, where

g = gT and h are respectively the size and height of a grammar. Kreft and Navarro [49]

gave the first compressed self-index based on LZ77, which takes s = 3z log n+5n log σ+

O(z) + o(n) bits supporting O(m2d + (m + occ) log z) pattern match time. Here, d is

the height of the LZ parsing. Makinen, Navarro, Siren, and Valimaki [52] gave a

compressed index based on RLBWT, which takes s = r log σ log(2n/r)(1 + o(1)) +

O(r log σ log log(2n/r)) + O(σ log n) bits supporting O(mf(r log σ, n log σ)) pattern

match time, where f(b, u) is the time for a binary searchable dictionary which is

O((log b)0.5) and o((log log u)2) for example [52].

Previous approaches : Considering the above results, we notice that in compres-

sion ratio, all indexes above achieve good performance depending on the repetitive

measures, while in terms of operation time, most of them except the RLBWT-based

one [52] have quadratic dependency in pattern size m. Hence, a challenge here is

to develop repetition-aware text indexes to achieve good compression ratio for highly

repetitive texts in terms of repetition measures, while supporting faster extract and

find operations. Belazzougui et al. [9] proposed a repetition-aware index which com-

bines CDAWGs [15, 27] and the run-length encoded BWT [52], to which we refer

as RLBWT-CDAWGs. For a given text T of the length n and a pattern P of the

length m, their index uses O(erT log n) bits of space and supports find operation in

O(m log log n + occ) time.
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Main results: In this chaper, we propose a new repetition-aware index based on com-

bination of CDAWGs and grammar-based compression, called the Linear-size CDAWG

(L-CDAWG, for short). The L-CDAWG of a text T of length n is a self-index for T

which can be stored in O(ẽT log n) bits of space, and support O(log n)-time random

access to the text, O(1)-time sequential character access from the beginning of each

edge label, and O(m log σ + occ)-time pattern matching. For constant alphabets, our

L-CDAWGs use O(erT log n) bits of space and support pattern matching in O(m+ occ)

time, hence improving the pattern matching time of Belazzougui et al.’s RLBWT-

CDAWGs by a factor of log log n. We note that RLBWT-CDAWGs use hashing to

retrieve the first character of a given edge label, and hence RLBWT-CDAWGs seem

to require O(m log log n + occ) time for pattern matching even for constant alphabets.

From the context of studies on suffix indices, our L-CDAWGs can be seen as a

successor of the linear-size suffix trie (LSTries) by Crochemore et al. [23]. The LSTrie

is a variant of the suffix tree [26], which need not keep the original text T by elegant

scheme of linear time decoding using suffix links and a set of auxiliary nodes. However,

it is a challenge to generalize their result for the CDAWG because the paths between

a given pair of endpoints are not unique. By combining the idea of LSTries, an SLP-

based compression with direct access [13, 37], we successfully devise a text index of

O(ẽT log n) bits by improving functionalities of LSTries. As a byproduct, our result

gives a way of constructing an SLP of size O(ẽT log ẽT ) bits of space for a text T .

Moreover, since the L-CDAWG of T retains the topology of the original CDAWG for

T , the L-CDAWG is a compact representation of all maximal repeats [58] that appear

in T .
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5.2 Preliminaries

5.2.1 LSTrie

Recently, Crochemore et al. [23] proposed a compact variant of a suffix trie, called

linear-size suffix trie (or LSTrie, for short), denoted LSTrie(T ). It is a compacted tree

with the topology and the size similar to STree(T ), but has no indirect references to

a text T (See Fig. 5.1). LSTrie(T ) is obtained from STree(T ) by adding all nodes v

such that their suffix links slink(v) appear also in STree(T ). Unlike STree(T ), each

edge (u, v) of LSTrie(T ) stores the first character and the length of the corresponding

suffix tree edge label (see Fig. 5.1). Using auxiliary links called the jump pointers the

following theorem is proved.

Proposition 12 (Crochemore et al. [23]) For a text T of length n, the linear-size

suffix trie LSTrie(T ) for T can be stored in O(n log n) bits of space supporting recon-

struction of the label of a given edge in O(ℓ) time, where ℓ is the length of the edge

label.

Crochemore et al.’s method [23] does not regard the order of decoding characters

on an edge label. This implies that LSTrie(T ) needs O(ℓ) worst case time to read

any prefix of an edge label of length ℓ. This may cause troubles in some applications

including pattern matching. In particular, it does not seem straightforward to match a

pattern P against a prefix of the label of an edge e in O(|P |) time when |P | < |idlab(e)|.

We will solve these problems in Section 5.3 later.

5.2.2 Straight-line programs

A straight-line program (SLP) is a context-free grammar (CFG) in the Chomsky nor-

mal form generating a single string. SLPs are often used in grammar compression

algorithms [57].
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Figure 5.1: Illustration of LSTrie(T ) and our index structure L-CDAWG(T ) with
SLP for text T = abcdbcda$. Solid and broken arrows represent the edges and suffix
links, respectively. Underlined and shaded characters attached to each edge are the first
(real) and the following (virtual) characters of the original edge label. The expression
Xi at the edge indicates the i-th variable of the SLP for T .

Consider an SLP R with n variables. Each production rule is either of form X → a

with a ∈ Σ or X → Y Z without loops. Thus an SLP produces a single string. The

phrase of each Xi, denoted F(Xi), is the string that Xi produces. The string defined

by SLP R is F(Xn). We will use the following results.

Proposition 13 (Gasieniec et al. [37]) For an SLP R of size g for a text of length

n, there exist a data structure of O(g log n) bits of space which supports expansion of a

prefix of F(Xi) for any variable Xi in O(1) time per character, and can be constructed

in O(g) time.

Proposition 14 (Bille et al. [13]) For an SLP R of size g representing a text of

length n, there exists a data structure of O(g log n) bits of space which supports to

access consecutive m characters at arbitrary position of F(Xi) for any variable Xi in

O(m + log n) time, and can be constructed in O(g) time.
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5.3 The proposed data structure: L-CDAWG

In this section, we present the Linear-size CDAWG (L-CDAWG, for short). The L-

CDAWG can support CDAWG operations in the same time complexity without holding

the original input text and can reduce the space complexity from O(erT log n+ n log σ)

bits of space to O(ẽT log n) bits of space, where ẽT = erT +eℓT is the number of extensions

of maximal repeats. From now on, we assume that an input text T terminates with a

unique character $ which appears nowhere else in T .

5.3.1 Outline

The Linear-size CDAWG for a text T of length n, denoted L-CDAWG(T ), is a DAG

whose edges are labeled with single characters. L-CDAWG(T ) can be obtained from

CDAWG(T ) by the following modifications. From now on, we refer to the original

nodes appearing in CDAWG(T ) as type-1 nodes, which are always branching except

the sink.

1. First, we add new non-branching nodes, called type-2 nodes to CDAWG(T ). Let

u = value([x]) for any type-1 node [x] of CDAWG(T ). If au is a substring of T

but the path spelling out au ends in the middle of an edge, then we introduce

a type-2 node v representing au. We add the suffix link u = slink(v) as well.

Adding type-2 nodes splits an edge into shorter ones. Note that more than one

type-2 nodes can be inserted into an edge of CDAWG(T ).

2. Let (u, x, v) be any edge after all the type-2 nodes are inserted, where x ∈ Σ+.

We represent this edge by e = (u, c, v) where c is the first character c = x[1] ∈ Σ

of the original label. We also store the original label length idslen(e) = |x|.

3. We will augment L-CDAWG(T ) with a set of SLP production rules whose non-

terminals correspond to edges of L-CDAWG(T ). The definition and construction
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of this SLP will be described later in Section 5.3.3.

If non-branching type-2 nodes are ignored, then the topology of L-CDAWG(T ) is

the same as that of CDAWG(T ). For ease of explanation, we denote by idlab(e) the

original label of edge e. Namely, for any edge e = (u, c, v), idlab(e) = x iff (u, x, v) is

the original edge for e.

The following lemma gives an upper bound of the numbers of nodes and edges in

L-CDAWG(T ). Recall that µT is the number of maximal repeats in T , eℓT and erT

are respectively the number of left- and right-extensions of maximal repeats in T , and

ẽT = eℓT + erT .

Lemma 18 For any string T , let L-CDAWG(T ) = (V,E), then |V | = O(µT +eℓT ) and

|E| = O(ẽT ).

Proof 20 Let CDAWG(T ) = (V0, E0) and CDAWG(T ) = (V0, E0). It is known that

|V0| = |V0| = µT , |E0| = erT and |E0| = eℓT (see [15] and [58]). Let V1 and V2 be the

set of type-1 and type-2 nodes in L-CDAWG(T ), respectively. Clearly, V1 ∩ V2 = ∅,

V = V1 ∪ V2, and V1 = V0. Let [x] ∈ V1 and u = value([x]). Note that u is a

maximal repeat of T . For any character a ∈ Σ such that au is a substring of T ,

clearly au is a left-extension of u. By the definition of L-CDAWG(T ), it always has

a (type-1 or type-2) node which corresponds to au. Hence |V2| ≤ eℓT . This implies

|V | = |V1| + |V2| = O(µT + eℓT ). Since each type-2 node is non-branching, clearly

|E| = O(erT + eℓT ) = O(ẽT ).

Corollary 15 For any string of T over a constant alphabet, |V | = O(µT + erT ) and

|E| = O(erT ), where L-CDAWG(T ) = (V,E).

Proof 21 It clearly holds that µT ≥ eℓT/σ and erT ≥ µT . Thus we have eℓT ≤ σerT . The

corollary follows from Lemma 18 when σ = O(1).
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5.3.2 Constructing type-2 nodes and edge suffix links

Lemma 19 Given CDAWG(T ) for a text T , we can compute all type-2 nodes of

L-CDAWG(T ) in O(ẽT log σ) time.

Proof 22 We create a copy G of CDAWG(T ). For each edge (u, x, v) of CDAWG(T ),

we compute node u′ = slink(u) and the path Q that spells out x from u′. The number

of type-1 nodes in this path Q is equal to the number of type-2 nodes that need to

be inserted on edge (u, x, v), and hence we insert these nodes to G. After the above

operation is done for all edges, G contains all type-2 nodes of L-CDAWG(T ). Since

there always exists such a path Q, to find Q it suffices to check the first characters of

out-going edges. Hence we need only O(log σ) time for each node in Q. Overall, it

takes O(ẽT log σ) time.

The above lemma also indicates the notion of the following edge suffix links in

L-CDAWG(T ) which are virtual links, and will not be actually created in the con-

struction.

Definition 1 (Edge suffix links) For any edge e with idslen(e) ≥ 2, ide-suf(e) =

(e1, . . . , ek) is the path, namely a list of edges, from e1.hi = slink(e.hi) to ek.lo that

can be reachable from e1.hi by scanning idlab(e).

Edge suffix links have the following properties.

Lemma 20 For any edge e such that idslen(e) ≥ 2 and its edge suffix link ide-suf(e) =

(e1, . . . , ek), (1) both e1.hi and ek.lo are type-1 nodes, and (2) all nodes in the path

e1.lo = e2.hi, . . . , ek−1.lo = ek.hi are type-2 nodes.

Proof 23 From the definition of edge suffix links, we have e1.hi = slink(e.hi) and

the path from e1.hi to ek.lo spells out idlab(e). (1) By the definitions of type-2 nodes

and edge suffix links, e1.hi is always of type-1. Hence it suffices to show that ek.lo is of
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type-1. There are two cases: (a) If e.lo is a type-2 node, then by the definition of type-2

nodes, ek.lo must be the node pointed by slink(e.lo). Therefore, ek.lo is a type-1 node.

(b) If e.lo is a type-1 node, then let ax be the shortest string represented by e.hi with

a ∈ Σ and x ∈ Σ∗. Then, string x · idlab(e) is spelled out by a path from the source to

e1.hi, . . . , ek.lo, where either ek.lo = e.lo or ek.lo = slink(e.lo). Since e.lo is of type-1,

slink(e.lo) is also of type-1. (2) If there is a type-1 node u in the path e2.hi, . . . , ek−1.lo,

then there has to be a (type-1 or type-2) node v between e.hi and e.lo, a contradiction.

Lemma 20 says that the label of any edge e = (u, c, v) with idslen(e) ≥ 2 can be

represented by a path p = (e1, . . . , ek) = ide-suf(e). In addition, since the path p

includes type-1 nodes only at the end points and since type-2 nodes are non-branching,

p is uniquely determined by a pair of (slink(u), c). We can compute all edges ei ∈ p

for 1 ≤ i ≤ k in O(k+ log σ) per query, as follows. Firstly, we compute p.hi = slink(u)

and then select the out-going edge e1 starting with the character c in O(log σ) time.

Next, we blindly scan the downward path from e1 while the lower end of the current

edge ei has type-2. This scanning terminates when we reach an edge ek such that ek.lo

is of type-1.

5.3.3 Construction of the SLP for L-CDAWG

We give an SLP of size O(ẽT ) which represents T and all edge labels of L = L-CDAWG(T )

based on the jump links.

Jumping from an edge to a path: First, we define jump links, by which we can jump

from a given edge e with idslen(e) ≥ 2 to the path consisting of at least two edges, and

having the same string label. Although our jump link is based on that of LSTries [23],

we need a new definition since a path in CDAWG(T ) (and hence in L-CDAWG(T ))

cannot be uniquely determined by a pair of nodes, unlike STree(T ) (or LSTrie(T )).
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Definition 2 (Jump links) For an edge e with idslen(e) ≥ 2 and ide-suf(e) =

(e1, . . . , ek), idjump(e) is recursively defined as follows:

1. idjump(e) := idjump(e1) if k = 1 (thus ide-suf(e) = (e1)), and

2. idjump(e) := (e1, . . . , ek) if k ≥ 2.

Note that idlab(e) equals idlab(e1) · · · idlab(ek) for jump(e) = (e1, . . . , ek).

Lemma 21 For any edge e with slen(e) ≥ 2, idjump(e) consists of at least two edges.

Proof 24 Assume on the contrary that idjump(e) = e′ for some edge e′. This implies

idslen(e′) ≥ 2. By definition, e′.hi is a proper suffix of e.hi, namely, there exists an

integer k ≥ 1 such that slinkk(e.hi) = e′.hi. For any character c which appears in

T , there is a (type-1 or type-2) node which represents c as a child of the source of

L-CDAWG(T ). This implies that there is an out-going edge e′′ of length 1 from the

source representing the first character of e.hi. This contradicts that idjump(e) only

contains a single edge e′ with idslen(e′) ≥ 2.

Theorem 16 For a given L-CDAWG(T ), there is an algorithm that computes all jump

links in O(ẽT log σ) time.

Proof 25 We explain how to obtain jump(e) for an edge e with slen(e) ≥ 2. For

all edge e with slen(e) ≥ 2, we manage a pointer to the first edge e′ of jump(e) by

P [e] = e′. We initially set P [e] = ϵ for all e. For all nodes e with slen(e) ≥ 2, let u be

an outgoing edge of slink(e.hi) with the same label character of e. We check whether

P [e] = ϵ and, if so, we recursively compute P [u], and then set P [e] = P [u]. In this

way all P [e] can be computed in O(ẽT log σ) time in total, where the log σ is needed

for selecting the out going edge. From Lemma 20, since there does not exist branching

edge on each jump link, jump(e) can be easily obtained from P [e] by traversing the path

until encountered a type-1 node.
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An SLP for the L-CDAWG : We build an SLP which represents all edge labels in

L-CDAWG(T ) = (V,E) based on jump links. For each edge e, let X(e) denote the

variable which generates the string label idlab(e). Let E = {e1, . . . , es}. For any

ei ∈ E with idslen(ei) = 1, we construct a production X(ei) → c where c ∈ Σ is the

label. For any ei ∈ E with idslen(ei) ≥ 2, let idjump(ei) = (e′1, . . . , e
′
k). We con-

struct productions X(ei) → X(e′1)Y1, Y1 → X(e′2)Y2, . . . , Yk−3 → X(e′k−2)Yk−2, and

Yk−2 → X(e′k−1)X(e′k). We call a production whose left-hand size is Yi an intermediate

production. It is clear that X(ei) generates idlab(e) and we introduced k − 1 produc-

tions. If there is another edge ej (i ̸= j) such that idjump(ej) = (e′1, . . . , e
′
k), then we

construct a new production X(ej)→ X(e′1)Y1 and reuse the other productions. Let p

be the path that spells out the text T . We create productions which generates T using

the same technique as above for this path p. Overall, the total number of intermediate

productions is linear in the number of type-2 nodes in L-CDAWG(T ). Since there are

O(|E|) non-intermediate productions, this SLP consists of O(ẽT ) productions.

Now, we have the main result of this subsection.

Theorem 17 For a given L-CDAWG(T ), there is an algorithm that constructs an

SLP which represents all edge labels in O(ẽT log σ) time.

Proof 26 By the above algorithm, if jump links are computed, we can obtain an SLP

which represents all edge labels in O(ẽT ) time. From Theorem 16, we can compute all

jump links in O(ẽT log σ) times. Overall, the total time of this algorithm is O(ẽT log σ).

Fig. 5.1 shows LSTrie(T ) and L-CDAWG(T ) enhanced with the SLP for string

T = abcdbcda$.

We associate to each edge label the corresponding variable of the SLP. By ap-

plying algorithms of Gasieniec et al. [37] (in Proposition 13) and Bille et al. [13] (in

Proposition 14), we can show the following theorems.
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Theorem 18 For a text T , L-CDAWG(T ) can support pattern matching for a pattern

P of length m in O(m log σ + occ) time.

Proof 27 From Proposition 13, any consecutive m characters from the beginning of

an edge in L-CDAWG(T ) can be sequentially read in O(m) time. CDAWG(T ) can

support pattern matching by traversing the path from the source with P in O(m log σ +

occ) time [15]. Since L-CDAWG(T ) contains the topology of CDAWG(T ), it can also

support pattern matching in O(m log σ + occ) time.

Theorem 19 For a text T of length n, L-CDAWG(T ) has an SLP that derives T . In

addition, we can read any substring T [i..i + m] can be read in O(m + log n) time.

Proof 28 The text T of L-CDAWG(T ) is represented by the longest path p from the

source to the sink. Remembering p makes it possible to read any position of T by using

the Proposition 14.

5.3.4 The main result

It is known that for a given string T of length n over an integer alphabet of size nO(1),

CDAWG(T ) can be constructed in O(n) time [55]. Combining this with the preceding

discussions, we obtain the main result of this chapter.

Theorem 20 For a text T of length n, L-CDAWG(T ) supports pattern matching in

O(m log σ + occ) time for a given pattern of length m and substring extraction in

O(m + log n) time for any substring of length m, and can be stored in O(ẽT log n)

bits of space (or O(ẽT ) words of space). If CDAWG(T ) is already constructed, then

L-CDAWG(T ) can be constructed in O(ẽT log σ) total time. If T is given as input, then

L-CDAWG(T ) can be constructed in O(n + ẽT log σ) total time for integer alphabets

of size nO(1). After L-CDAWG(T ) has been constructed, the input string T can be

discarded.
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5.4 Conclusions of Chapter 5

In this chapter, we presented the Linear-size CDAWG that is a new text index for

repetitive texts. The Linear-size CDAWG for a text T , denoted by L-CDAWG(T ),

can be obtained by combining the CDAWG for T and grammar-based compression.

L-CDAWG(T ) takes O(ẽT log n) bits of space and supports O(m log σ + occ) time pat-

tern matching, where ẽT is the number of right- and left- extensions of maximal repeats

in T , n and m are respectively the lengths of the text T and a given pattern. We also

proposed a construction algorithm of Linear-size CDAWGs in O(n + ẽT log σ) time.
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Chapter 6

Conclusions and Future Work

In this thesis, we studied efficient index construction for multiple and repetitive texts.

In particular, we consider three problems: supporting fast construction and queries,

online construction, and compression of space.

6.1 Summary of the results

We summarize the results of this thesis as follows. In Chapter 3, we presented a new

data structure called the packed compact trie (packed c-trie), which stores a set S of k

strings of total length n in n log σ + O(k log n) bits of space, where σ is the size of an

alphabet. Given a string of length m, we show that our packed c-tries support pattern

matching queries and insert/delete operations in O(m
α
f(k, n)) worst-case time and in

O(m
α

+ f(k, n)) expected time. We discussed applications of packed c-tries to online

sparse suffix tree construction and LZD factorization.

In Chapter 4, the main contribution of this chapter is an O(n log σ)-time algorithm

to maintain the suffix tree for a text collection in the left-to-right fully-online setting,

where n and σ are the total text length and the alphabet size, respectively. We also

propose construction algorithms for suffix trees in right-to-left fully-online setting. It
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coincides with fully-online construction for DAWGs. The key was a non-trivial use of

the right-to-left suffix tree construction algorithm.

In Chapter 5, we presented a new repetition-aware data structure called Linear-

size CDAWGs. L-CDAWG(T ) takes linear space in the number of the left- and right-

extensions of the maximal repeats in T , which is known to be small for highly repetitive

strings. The key idea is using a small SLP induced from edge-suffix links. This SLP

is repetition-aware, i.e., its size is linear in the number of left- and right-extensions of

the maximal repeats in T . We also showed how to efficiently construct L-CDAWG(T ).

Overall, in this thesis, we considered three problems to have an ideal text index for

a massive amount of text data, that is, a fast and small index which can be constructed

in fully-online manner. Firstly, we proposed an index that supports fast queries. Sec-

ondly, we proposed an index for multiple texts which can be constructed in fully-online

manner. Finally, we proposed an index for repetitive texts that can be stored in small

space. These results can improve the utility of suffix data structures such as suffix

trees and CDAWGs, and these are a first step towards an index that has all of three

features.

6.2 Future work

For future work, we would like to combine these results for more efficient indexes.

• One of the interesting challenge is to combine the results of Chapter 4 with the

results of Chapter 5. For fully-online construction algorithms of CDAWGs, it may

be possible by using fully-online construction for suffix trees which we proposed.

More challenging task is to propose online and fully-online construction algorithm

for Linear-size CDAWGs.

• It is also a future work to combine the results of Chapter 3 and Chapter 4 to

propose a faster fully-online construction algorithm. The fully-online algorithm
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of suffix trees relies on NMA queries and traverse of suffix links. However, results

of Chapter 3 is to speed up traverse of tree branches. Therefore, it is difficult to

simply adapt the result of Chapter 3 is to speed up for fully-online construction.
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