<table>
<thead>
<tr>
<th>Title</th>
<th>Origin of positive fixed charge at insulator/AlGaN interfaces and its control by AlGaN composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Matys, M.; Stoklas, R.; Blaho, M.; Adamowicz, B.</td>
</tr>
<tr>
<td>Citation</td>
<td>Applied physics letters, 110(24), 243505</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2017-06-15</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/70734</td>
</tr>
</tbody>
</table>

This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Applied Physics Letters, 243505 (2017) and may be found at http://aip.scitation.org/doi/10.1063/1.4986482.
Origin of positive fixed charge at insulator/AlGaN interfaces and its control by AlGaN composition

M. Matys, R. Stoklas, M. Blaho, and B. Adamowicz

Citation: Appl. Phys. Lett. 110, 243505 (2017); doi: 10.1063/1.4986482
View online: https://doi.org/10.1063/1.4986482
View Table of Contents: http://aip.scitation.org/toc/apl/110/24
Published by the American Institute of Physics

Articles you may be interested in

Trap state analysis in AlGaN/GaN/AlGaN double heterostructure high electron mobility transistors at high temperatures
Applied Physics Letters 110, 252102 (2017); 10.1063/1.4986776

Improved interface properties of GaN-based metal-oxide-semiconductor devices with thin Ga-oxide interlayers
Applied Physics Letters 110, 261603 (2017); 10.1063/1.4990689

Thickness engineering of atomic layer deposited Al2O3 films to suppress interfacial reaction and diffusion of Ni/Au gate metal in AlGaN/GaN HEMTs up to 600 °C in air
Applied Physics Letters 110, 253505 (2017); 10.1063/1.4986910

Design and control of interface reaction between Al-based dielectrics and AlGaN layer in AlGaN/GaN metal-oxide-semiconductor structures

On the physical operation and optimization of the p-GaN gate in normally-off GaN HEMT devices
Applied Physics Letters 110, 123502 (2017); 10.1063/1.4978690

On the origin of interface states at oxide/III-nitride heterojunction interfaces
Journal of Applied Physics 120, 225305 (2016); 10.1063/1.4971409
Origin of positive fixed charge at insulator/AlGaN interfaces and its control by AlGaN composition

M. Matys, 1,2 R. Stoklas, 3 M. Blaho, 3 and B. Adamowicz 2

1Research Center for Integrated Quantum Electronics, Hokkaido University, Kita-13 Nishi-8, Kita-ku, 060-8628 Sapporo, Japan
2Surface Physics and Nanostructures Department, Institute of Physics - CSE, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
3Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravská cesta 9, 841 04 Bratislava, Slovak Republic

(Received 10 March 2017; accepted 5 June 2017; published online 15 June 2017)

The key feature for the precise tuning of V_{th} in GaN-based metal-insulator-semiconductor (MIS) high electron mobility transistors is the control of the positive fixed charge (Q_f) at the insulator/III-N interfaces, whose amount is often comparable to the negative surface polarization charge (Q_{pol}^{-}). In order to clarify the origin of Q_f, we carried out a comprehensive capacitance-voltage (C-V) characterization of SiO$_2$/Al$_{x}$Ga$_{1-x}$N/GaN and SiN/Al$_{x}$Ga$_{1-x}$N/GaN structures with Al composition (x) varying from 0.15 to 0.4. For both types of structures, we observed a significant V_{th} shift in C-V curves towards the positive gate voltage with increasing x. On the contrary, the Schottky gate structures exhibited V_{th} shift towards the more negative biases. From the numerical simulations of C-V curves using the Poisson’s equation supported by the analytical calculations of V_{th}, we showed that the V_{th} shift in the examined MIS structures is due to a significant decrease in the positive Q_f with rising x. Finally, we examined this result with respect to various hypotheses developed in the literature to explain the origin of the positive Q_f at insulator/III-N interfaces. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4986482]

GaN-based metal-insulator-semiconductor high electron mobility transistors (MISHEMTs) become very attractive for applications in energy-efficient power switching devices. However, achieving normally-off or enhancement mode transistors with the positive threshold voltage (V_{th}), which exhibit good performance, still remains a major challenge. The key feature of the precise tuning of V_{th} in GaN-based MISHEMTs is the control of the positive fixed charge (Q_f) at the insulator/III-N interfaces. The positive Q_f was reported for Al$_2$O$_3$/Al$_{x}$Ga$_{1-x}$N, SiO$_2$/Al$_{x}$Ga$_{1-x}$N, and SiN/Al$_{x}$Ga$_{1-x}$N interfaces. Furthermore, it was well demonstrated by many groups that the amount of Q_f is often comparable to the negative polarization charge (Q_{pol}^{-}) at the insulator/III-N interfaces. In spite of that, the nature and location of Q_f is still not clear.

To get a deep insight into this problem, we performed, in this report, a comprehensive capacitance-voltage (C-V) characterization of SiO$_2$/Al$_{x}$Ga$_{1-x}$N/GaN and SiN/Al$_{x}$Ga$_{1-x}$N/GaN metal-insulator-semiconductor (MIS) structures with Al composition (x) varying in a broad range, from 0.15 to 0.4. For both structures, we observed a significant V_{th} shift in C-V curves towards the positive voltage with increasing x. On the contrary, from the comparative measurements performed for the Schottky gate structures, we observed an opposite trend, i.e., the V_{th} shift towards the negative gate voltage due to increasing x. From the numerical simulations of C-V curves using Poisson’s equation supported by the analytical calculations of V_{th}, we showed that V_{th} shift in the examined MIS structures is due to a marked decrease in the positive Q_f with rising x. Finally, we examined the obtained dependencies of Q_f vs. x in terms of the different hypotheses proposed in the literature to explain the origin of the positive Q_f.

In our studies, we used AlGaN/GaN MIS structures, as shown schematically in Fig. 1, which consist of 22 nm thick (d_l) SiO$_2$ and SiNx passivation layers and 25 nm thick (d_B) modulation doped Al$_{x}$Ga$_{1-x}$N barrier layers ($x=$ 0.15, 0.26, 0.40). We applied plasma-enhanced chemical vapor deposition (PECVD) and electron cyclotron resonance chemical vapor deposition (ECR CVD) techniques for the fabrication of SiO$_2$ and SiN layers, respectively. All heterojunction samples were cleaned with a HF solution before the insulator deposition in order to mitigate native oxides at the air-exposed AlGaN surfaces. Ohmic contacts were ring-shaped Ti/Al/Ti/Au multilayers, and gate contacts were either Al/Au or Ni/Au circles with diameters from 200 to 500 μm. An ohmic annealing was carried out at 830°C for 2 min in N$_2$.

Figure 2 shows the experimental C-V curves of the SiO$_2$/Al$_{x}$Ga$_{1-x}$N/GaN and SiN/Al$_{x}$Ga$_{1-x}$N/GaN structures.
obtained at 1 MHz and at RT using an HP4192 impedance analyzer. The bias voltage was changed from −20 V to +4 V for the SiO2/AlGa1−xN/GaN structures and from −15 V to +4 V for the SiN2/AlGa1−xN/GaN structures. In the case of both types of structures, we observed a significant Vth shift in C-V curves towards the more positive gate voltage with increasing x. In particular, for SiO2/AlGa1−xN/GaN structures, an increase of x from 0.15 to 0.4 caused the Vth shift from −17 to −7.5 V and for SiN/AlGa1−xN/GaN structures from −9.5 to −5 V. Due to such a large shift, we could observe typical of MISH structures two-step C-V curves for the SiO2/Al0.4Ga0.6N/SiN/GaN structures. In the inset, for comparison, shown measured C-V curves of the Schottky gate structures. One can note that Vth in this case exhibits an opposite behavior, i.e., the shift towards the more negative gate voltage with increasing x.

In order to explain the above results, we carried out the theoretical calculations of C-V curves based on solving a Poisson’s equation. The details of calculations can be found in Refs. 15 and 19. In the calculations, we took into account the following charges, shown schematically in Fig. 3(a): (i) net positive polarization charge (Qpol) at the AlGaN/GaN interface originating from the spontaneous polarization of AlGaN and GaN as well as piezoelectric polarization of AlGaN, (ii) interface state charge (Qit) at the insulator/AlGaN interface related to the interface state density distribution (Dit(E)) and (iii) net fixed charge (Qfr) at the insulator/AlGaN interface, which includes Qf and the negative polarization charge, Qpol, originating from the spontaneous and piezoelectric polarization of AlGaN. We did not take into account the bulk charge in SiO2 because we showed recently13 from the photo-assisted C-V measurements that this charge can be negligible in the case of the investigated structures. In addition, based on our recent studies of the surface photovoltage effect,20 we also neglected the bulk charge in SiN. It was possible because in the case of the SiN/GaN structure, we observed a very fast recovery time of the surface photovoltage after turn-off of the ultraviolet light, which indicated the lack of the charge trapping effects in the SiN bulk. The values of Qpol and Qfr for different x were taken from Ref. 21 and summarized in Table I.

Furthermore, in the calculations, we assumed that the metal barrier height (φm) for Al/SiO2 and Al/SiN was 3.7 eV (Ref. 22) and 2 eV (Ref. 22), respectively. The other parameters used in the calculations, i.e., the conduction band (CB) off-sets for the insulator/AlGa1−xN interfaces [ΔEC1(x)] and AlGa1−xN/GaN [ΔEC2(x)] are listed in Tables II and III, respectively. The value of ΔEC1(x) was estimated from the following relationship:22 ΔEC1(x) = ΔEC3(x) − ΔEC2(x), where ΔEC3 is the conduction-band off-set for the insulator/GaN junction [ΔEC3 for SiO2/GaN is 3.6 eV (Ref. 22) and for SiN/GaN is 1.2 eV (Ref. 22)].

The solutions were obtained with: (i) Neumann type boundary conditions at the insulator/AlGaN and AlGaN/GaN interfaces, (ii) Dirichlet type boundary conditions at the Al/SiO2 and Al/SiN interfaces, and (iii) zero boundary conditions at the AlGaN/SiN/GaN interfaces.

<table>
<thead>
<tr>
<th>Interface</th>
<th>ΔEC1(x) (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2/Al0.15Ga0.85N</td>
<td>3.28</td>
</tr>
<tr>
<td>SiO2/Al0.26Ga0.74N</td>
<td>3.11</td>
</tr>
<tr>
<td>SiO2/Al0.4Ga0.6N</td>
<td>2.88</td>
</tr>
<tr>
<td>SiN/Al0.15Ga0.85N</td>
<td>0.87</td>
</tr>
<tr>
<td>SiN/Al0.26Ga0.74N</td>
<td>0.72</td>
</tr>
<tr>
<td>SiN/Al0.4Ga0.6N</td>
<td>0.48</td>
</tr>
</tbody>
</table>

TABLE I. The values of Qpol and Qfr used in calculations.

<table>
<thead>
<tr>
<th>x</th>
<th>Qpol (C/m²)</th>
<th>Qfr (C/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>0.015</td>
<td>−0.035</td>
</tr>
<tr>
<td>0.26</td>
<td>0.022</td>
<td>−0.044</td>
</tr>
<tr>
<td>0.4</td>
<td>0.035</td>
<td>−0.06</td>
</tr>
</tbody>
</table>

FIG. 2. Experimental (black points limited by the vertical dashed line) and theoretical (solid lines) C-V characteristics of the SiO2/AlGa1−xN/GaN and SiN/AlGa1−xN/GaN structures. In the inset, for comparison, shown measured C-V curves of the Schottky gate structures. C is the insulator capacitance (for SiO2, C1 = 130 nF/cm², and for SiN, C1 = 240 nF/cm²). The solid lines calculated assuming Dit(E) from Figs. 3(b) and 3(c).

FIG. 3. Scheme of the charge distribution in AlGaN/GaN MIS structures (a), D(E) at SiO2/AlGa1−xN interfaces (Ref. 15) (b) and D(E) at SiN/AlGa1−xN interfaces (c) used in the calculations of C-V curves. In the case of SiO2/AlGa1−xN, Qpol (C/m²) is 2.1 × 10−8, 6.3 × 10−8, and 2 × 10−8 for x = 0.15, 0.26, and 0.4, respectively, and in the case of SiN/AlGa1−xN, Qpol (C/m²) is 1.1 × 10−3, 1.9 × 10−3, and 4.8 × 10−3 for x = 0.15, 0.26, and 0.4, respectively.

TABLE II. Conduction band off-sets, ΔEC1(x), at insulator/AlGa1−xN interfaces.
The positive polarization charge Q_p is the fraction of the charge neutrality level, and Q_{f} is the Fermi-Dirac function.

In the calculations, we used $D_{E}(E)$ at SiO$_2$/Al$_{1-x}$Ga$_x$N interfaces from our recent paper15 [shown in Fig. 3(b)]. In the case of SiN/Al$_{1-x}$Ga$_x$N interfaces, $D_{E}(E)$ was determined from the photo-assisted C-V method1,15 and then summarized in Fig. 3(c). The details of the measurements can be found in Refs. 2, 3, and 15. As a light source, we used a xenon lamp and a set of band-pass filters (the passing photon frequency measurement).

While the shift of V_{th} in the Schottky structures towards the negative gate voltage with increasing x (Fig. 2) is obviously due to an increase of the positive Q_p, the shift of V_{th} in MIS AlGaN/GaN structures towards the positive voltage with x can be due to either an increase of the negative Q_{pol} and Q_{f} or a decrease of the positive Q_f. Therefore, to determine which of these factors can be responsible for the V_{th} shift, first we calculated the C-V curves for the SiO$_2$/Al$_{1-x}$Ga$_x$N/GaN and SiN/Al$_{1-x}$Ga$_x$N/GaN structures with $x = 0.15$ and 0.4 calculated assuming, for both x, the same Q_f value equal to $Q_f(x) = 0.15$ (see Table I) and $d_{th} = d_i = 30$ nm (a); dependencies of Q_f vs. x, determined from fitting of the experimental C-V curves (see Fig. 2) (b).

SiO$_2$/Al$_{1-x}$Ga$_x$N interfaces and summarized them in Fig. 4(b) and Table IV. We found that in the case of SiO$_2$/Al$_{1-x}$Ga$_x$N/GaN, an increase of x from 0.15 to 0.4 caused reducing Q_f from 0.04 to 0.022 C/m2 and in the case of SiN/Al$_{1-x}$Ga$_x$N/GaN, from 0.038 to 0.016 C/m2. In addition, it should be noted that the theoretical calculations of C-V curves for the examined structures with $x = 0.26$ and 0.4 indicate that the second step at these curves should occur much beyond the measured gate voltage range (see Fig. 2). This confirms that the lack of observation of the second step of C-V curves for these structures is due to the large shift of C-V curves towards the positive gate voltage with x but not due to high $D_{th}(E)$. Moreover, as one can note from Fig. 2, the second step of C-V curves in the case of the structures with $x = 0.15$, was well reproduced using $D_{th}(E)$ from Figs. 3(b) and 3(c). This gives an additional independent support for $D_{th}(E)$ determined from the photo-assisted C-V method.

It should be stressed that the values of Q_f obtained from the simulations of C-V curves can be confirmed through the analytical calculations of V_{th} using the model proposed by Tapajna and Kuzmik23 Namely, within this model, V_{th} can be expressed as follows:

\[
\begin{align*}
\epsilon_0 \epsilon_R E_B - \epsilon_0 \epsilon_I E_I &= Q_0 + Q_{net}, \quad (1) \\
Q_p &= q \int_{E_1}^{E_{CNL}} D_{E}(E)(1 - f_{th})dE - q \int_{E_{CNL}}^{E_C} D_{E}(E)f_{th}dE, \quad (2)
\end{align*}
\]

where E_B and E_I is the electric field intensity in AlGaN and insulator, respectively, ϵ_R and ϵ_I is the relative AlGaN and insulator permittivity, respectively ($\epsilon_R = 10.3$, for SiO$_2$ $\epsilon_I = 3.9$ and for SiN $\epsilon_I = 7$); Q_0 can be expressed as follows:

\[
Q_0 = q \int_{E_1}^{E_{CNL}} D_{E}(E)(1 - f_{th})dE - q \int_{E_{CNL}}^{E_C} D_{E}(E)f_{th}dE.
\]

SiO$_2$/Al$_{1-x}$Ga$_x$N interfaces and summarized them in Fig. 4(b) and Table IV. We found that in the case of SiO$_2$/Al$_{1-x}$Ga$_x$N/GaN, an increase of x from 0.15 to 0.4 caused reducing Q_f from 0.04 to 0.022 C/m2 and in the case of SiN/Al$_{1-x}$Ga$_x$N/GaN, from 0.038 to 0.016 C/m2. In addition, it should be noted that the theoretical calculations of C-V curves for the examined structures with $x = 0.26$ and 0.4 indicate that the second step at these curves should occur much beyond the measured gate voltage range (see Fig. 2). This confirms that the lack of observation of the second step of C-V curves for these structures is due to the large shift of C-V curves towards the positive gate voltage with x but not due to high $D_{th}(E)$. Moreover, as one can note from Fig. 2, the second step of C-V curves in the case of the structures with $x = 0.15$, was well reproduced using $D_{th}(E)$ from Figs. 3(b) and 3(c). This gives an additional independent support for $D_{th}(E)$ determined from the photo-assisted C-V method.

It should be stressed that the values of Q_f obtained from the simulations of C-V curves can be confirmed through the analytical calculations of V_{th} using the model proposed by Tapajna and Kuzmik23 Namely, within this model, V_{th} can be expressed as follows:

\[
\begin{align*}
\epsilon_0 \epsilon_R E_B - \epsilon_0 \epsilon_I E_I &= Q_0 + Q_{net}, \quad (1) \\
Q_p &= q \int_{E_1}^{E_{CNL}} D_{E}(E)(1 - f_{th})dE - q \int_{E_{CNL}}^{E_C} D_{E}(E)f_{th}dE, \quad (2)
\end{align*}
\]
where ϕ_f is the Fermi potential in the GaN bulk (~0.2 eV), Q_{b}^{bulk} is the insulator bulk charge, and Q_f^{r} is the charge corresponding to the “frozen” interface states, between E_{CNL} and 0.8 eV from E_C ($Q_{f}^{r} \approx q \int_{E_{CNL}}^{0.8\text{eV}} D_{i}(E) dE$). The values of Q_f^{r} are given in the caption of Fig. 3.

For our structures, Q_{b}^{bulk} can be neglected (as mentioned before); therefore, from Eq. (3), we can estimate Q_f as follows:

$$Q_f \approx \frac{d_l}{d_l} \left(\frac{\phi_b}{q} - \frac{\Delta E_C}{q} - \frac{\phi_f}{q} \right) - V_{th} - (Q_{pol}^-) - \frac{d_l}{d_l} \left(Q_f^{r} + Q_{fr}^{b} + Q_{fr}^{i} \right). \quad (5)$$

After substituting into Eq. (4) the values from Tables I to III as well as the values of Q_f^{r} (see the caption of Fig. 3) and V_{th}, we calculated Q_f, as shown in Table IV. It is clear from this table that we obtained a good agreement with the values determined from the fitting of C-V curves.

In order to understand the obtained dependencies of Q_f vs. x [Fig. 4(b)], we examined the different hypotheses proposed in the literature to explain the origin of the positive Q_f at the insulator/III-N interfaces, which are schematically illustrated in Fig. 5. At first, we considered the hypothesis developed by Ganguly et al.,12,13 denoted here as hypothesis A. According to this hypothesis, Q_f is related to the Al-O bonds at the interface. On the other hand, it should be noted that it was observed experimentally that the density of Al-O bonds at the AlGaN surface increases with x due to the enhancement of the chemical affinity of aluminum to oxygen.14 Therefore, from hypothesis A it follows that one should expect an increase of Q_f vs. x, which is in contradiction with our observation. Another hypothesis, introduced by Hayashi et al.25 and Tapajna and Kuzmik23 (hypothesis B) suggests that Q_f is linked to the ionized donor-like surface defects formed during the growth on the III-N heterostructure. Furthermore, it was shown by Gordon et al.26 that the concentration of donor-like surface defects increases with increasing x; thus within hypothesis B, one should also observe, contrary to our results, an enlargement of Q_f vs. x.

The next hypothesis, developed by Bakerooret al.17 (hypothesis C), assigned Q_f to the gate insulator border trap. Concerning this hypothesis, one should consider two cases: (i) when the border trap responsible for Q_f is located close to the insulator/AlGaN interface inside the disordered interface region, and (ii) when the border trap is located far from the interface. In the case (i), the border trap density (D_{BT}) should increase with x like $D_{BT}(E)$ at the SiO$_2$/AlGaN and SiN/AlGaN interfaces [Figs. 3(b) and 3(c)]. On the contrary, in the case (ii), D_{BT} should depend weakly on x. Therefore, according to hypothesis C, Q_f can increase or can be rather independent on x, against to our finding. The last hypothesis proposed by Espostoet al.13 (hypothesis D), postulates that Q_f originates from the energy states between CB bottom of the AlGaN and insulator layer. Only this hypothesis is able to explain the observed variations of Q_f vs. x. Namely, if we assume the continuous distribution of the above states, then it is evident that Q_f can be approximately expressed by the following relationship (see Fig. 5):

$$Q_f \approx q D_{CB} \Delta E_{C1}(x), \quad (6)$$

where D_{CB} is the average density of states between the edge of CB of an insulator and AlGaN.

Because $\Delta E_{C1}(x)$ at the SiO$_2$/Al$_{x}$Ga$_{1-x}$N and SiN/Al$_{x}$Ga$_{1-x}$N interfaces decreases with increasing x (see Table II), thus from Eq. (5), it follows that Q_f should also increase with x. Moreover, the independent support for the hypothesis D comes from our recent studies based on the photo-assisted C-V measurements.15 Namely, we showed that the states between CB of SiO$_2$ and AlGaN can be fully ionized and thus they can behave like the fixed charge.

Finally, it is worth to highlight the important finding of our work that Q_f can be precisely controlled by the barrier composition [as in Fig. 4(b)]. In particular, Figs. 2 and 4(b) suggest that by using an appropriate high x, in the case of SiO$_2$/AlGaN/GaN and SiN/AlGaN/GaN structures, one can obtain a reduced Q_f to the negligible value and, as a result, shifting V_{th} to the region of the positive gate voltage, which ensures normally off operation.2

In conclusion, we found that the positive fixed charge Q_f at the insulator/Al$_{x}$Ga$_{1-x}$N interfaces exhibits a significant decrease with increasing x, which results in the V_{th} shift towards the positive gate voltage. We examined this result with respect to the various hypotheses developed in the literature to explain the origin of the positive Q_f at insulator/III-N interfaces. We showed that the hypothesis proposing that Q_f originates from the energy states between the CB bottom of an insulator and AlGaN is the most suitable for the explanation of our data. We believe that the revealed dependence of Q_f on x can be useful for the tuning V_{th} in AlGaN/GaN MISHEMTs.2

One of the authors, M.M., thanks RCIQE, Hokkaido University, Sapporo (Japan), for the postdoctoral fellowship. The authors’ gratitude is also addressed to Professor Tamotsu Hashizume for his generous support and valuable discussions and to Mr. Kenya Nishiguchi for his contribution.
to the calculations. The work was realized within the SAFEMOST project, Visegrad Group (V4)—Japan Joint Research Program on Advanced Materials (in Poland, the NCRD Project, No. 14/990/PNN16/0072).