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H*°-calculus for the Stokes operator on L,-spaces
André Noll Jiirgen Saal

Abstract

It is proved that the Stokes operator on a bounded domain, an exterior domain, or a
perturbed half-space © admits a bounded H*-calculus on L,(Q2) if ¢ € (1, 00).

1 Introduction

Let Aq be the Stokes operator in the Banach space Ly »(€) of all g-integrable solenoidal vector
fields on a domain Q C R"™. In this article we show that Aq admits a bounded H*°-calculus
for a fairly large class of domains Q2 and for all ¢ € (1,00). For an arbitrary Banach space X,
the class H>°(X) of all operators admitting a bounded H*-calculus has been studied by many
authors [McI86], [CDMY96], [DS97] [Fr698], [DHP]. Since it is contained in BIP(X), the class of
all operators having bounded imaginary powers, it enjoys all properties of this larger class. For
further information in this direction see [PS93], [MP97] and [DV87]. For instance, the domain of
fractional powers can be determined in terms of a complex interpolation space. Another reason is
the maximal L,-regularity of the associated evolution equation u; + Au(t) = f(¢). This property
was proved by Solonnikov for the Stokes operator in L, ,(£2) by direct methods, see [Sol77]. More
recently, Frohlich proved maximal regularity of the Stokes operator in certain weighted L;JJ(Q)
spaces [Fro01]. However, there are also useful properties which do not hold true for operators
in BIP(X) but which are valid for operators belonging to H*°(X). Among those let us mention
that BIP(X) is not stable under small perturbations. In fact, there seem to be only restrictive
perturbation results known, [PS93]. However, there is a perturbation result for the class H*(X),
whose assumptions can be verified in the particular case of the Stokes operator.

In 1981 Giga [Gig81] investigated the analyticity of the Stokes semigroup. In a subsequent paper
[Gig85] he considered domains of fractional powers of the Stokes operator and proved that the
Stokes operator on a bounded C'*°-domain has bounded imaginary powers. Consequently, it has
maximal L,-regularity. In [GS91], it has been shown, that one can also obtain global in time
L, — L; estimates. The paper in hand extends the results of [Gig85] in several ways. By checking
the details in Giga’s proof one realizes that it is possible to generalize that result to the H*°-case.
This leads to a proof for the bounded H *°-calculus for such domains. Giga’s proof makes use of
pseudodifferential operators and Seeley’s theory on the descripton of fractional powers of an elliptic
system [See71l]. Our approach, however, is different as it relies on perturbation methods of the
class H*°(X). Moreover, it includes unbounded domains which might be of independent interest
as well as domains with merely C* boundary. More precisely, exterior domains and perturbed
half-spaces can be handled.

One can also treat the problem of extending the property of having bounded imaginary powers to
the allegedly stronger property of admitting a bounded H“°-calculus by purely functional analytic
methods. This has recently be carried out by Kalton and Weis [KW].

It is known that the class of all operators admitting a bounded H°°-calculus coincides with the
(a priori smaller) class of all operators admitting an R-bounded H®°-calculus if the underlying



Banach space has property (a), see [KWO01] and [CAPSWO00]. Since the space Lg ,(2) is known to
enjoy this property for any domain  and any ¢ € [1, 00], we can immediately conclude that Agq
even admits an R-bounded H*°-calculus for the domains treated in Section 3. This is relevant for
perturbations of the Stokes operator for the following reason: The classical theorem of Dore and
Venni [DV87] yields closedness of the operator sum A + B if X is a UMD space, both A and B
belong to BIP(X), the resolvents of A and B commute and the sum of the power angles is less
than 7. Recently, Kalton and Weis [KW] proved an “assymetric” version of this theorem, where
A is merely assumed to be sectorial, but B admits an R-bounded H *°-calculus.

Our strategy of proving that the Stokes operator Ag admits a bounded H*-calculus in L, ,(2) is
to apply the perturbation result for the bounded H*°-calculus to the Stokes operator on the bent
half-space. Then we localize the original problem on Q: Cover {2 by finitely many balls and treat
each ball separately. Those balls which are entirely contained in €2 turn out to be easy to handle
by transforming the problem to R™. On the other hand, if a ball meets the boundary of €2, it is
possible to reduce the problem to the bent half-space case. It is therefore enough to know that the
Stokes operator on the bent half-space admits a bounded H“°-calculus. Since it is already known
[DHPO1] that the Stokes operator on the half-space R} admits a bounded H*-calculus it is quite
natural to introduce an invertible transformation which maps the bent half-space onto R"} . This
change of coordinates leads to a transformation Ap of the corresponding Stokes operator. By
choosing the radii of the aforementioned balls small enough, the bending function is as close to
zero as we please. This implies that also A7 is close to Ar» in the sense of a perturbation result
for H°-calculus due to Priiss. Therefore A7 must also have a bounded H*°-calculus which yields
the result.

The article is organized as follows. In Section 2 we fix notation and recall some auxillary tools on
Stokes operators, interpolation theory and H*°-calculus that will be needed in subsequent sections.
Section 3 contains our main results. We start in Section 3.1 by explaining the transition from the
Stokes operator on the bent half-space to the operator A7 mentioned above. The subsequent
sections contain the proof of the bounded H*°-calculus for the Stokes operator on the bent half-
space, the bounded domain and the perturbed half-space respectively. Finally, we provide two
appendices on regularity properties of the Helmholtz projection and on the domain of fractional
powers of the Stokes operator. These appendices contain auxillary material which seems not to
be contained in the standard literature.

Acknowlegments: The authors would like to thank Jan Priiss and Matthias Hieber, Andreas
Frohlich and Reinhard Farwig for stimulating discussions which helped to improve this article.

2 Preliminaries

2.1 Notation

Throughout the article we assume that n > 3. Let @ C R™ be an open set, and let m €
N. By C™(f2) we denote the space of all m-times continuously differentiable functions and by
C™(Q) its subspace consisting of all functions in C™ () which are compactly supported. Further,
let C(Q) := {u lo: u € CX(R")}, and denote by Ci"(f2) the Banach space of all m-times
continuously differentiable functions whose derivatives up to order m are bounded. For ¢ € [1, o],
L,(92) denotes the usual Lebesgue space of all g-integrable functions and for s € R, W*?(Q) is the
Sobolev space of order s. If s =m € N and ¢ € (1, 00), the norm in W#7(Q) is given by ||u||m,q :=

. 1/q .
(Z;nzo Jo IV? u|’1dm) , where V7 is the vector of all possible j-th order differentials. Moreover,
Wy (Q2) denotes the closure of C2°(Q) in W#7(Q2). We shall further need the homogenous Sobolev



space W14(Q) consisting of all functions v having finite Dirichlet energy Jo IVu|?dz, modulo
constants. It becomes a Banach space when equipped with the norm

1/q
||u||W1>q(Q) = </Q |Vu|ngn> .

Its dual space (W4(Q))’ will occur frequently and is denoted by W17 (), where ¢’ is the Holder
conjugated exponent given by 1/¢+1/¢' =1 and || - ||-1,, always denotes the norm in this space.
Recall that W17 does not join familar properties of W14, For example, it does not contain
C°(Q) in general. For further properties of these spaces, in particular for the proof of the density
of C(Q) in W4(Q), we refer to [FS94]. If &N is smooth enough, the trace operator defined by
v(u) := u [pq maps W*4(Q) continuously into W*=/%:9(9Q) for s > 1/¢. If s > 1 then its kernel
is exactly the space W*4(Q) N Wy ?(Q). See [AdaT78], p. 215. For u € L,(Q) and v € Ly () we
use the standard notation (u,v)q := [, uvdz.

Let us remark that we will use the same notations for the corresponding spaces of vector fields on
Q. For a domain Q@ C R" denote by L, () the space of all g-integrable solenoidal vector fields
on Q. For the class of domains treated in this article (see Section 2.2 for the precise definition) is
well-known that there is a compatible family (Pq q)se(1,00) Of continuous projections from L, ()
onto L, () such that Pq o is orthogonal. For the proofs, see [FM77], [McC81], [Miy82], [BM88],
[ST98]. The operator Py, is called the Helmholtz projection. Since we restrict ourselves to those
values of ¢ and ¢ remains fixed throughout the article, we shall write P for short. Clearly, the
range G4 () := (1 — Pa)(Ly()) is also a closed subspace of L, ().

If X and Y are Banach spaces, the space of all bounded linear operators from X to Y is denoted
by £(X,Y), and £(X) is an abbreviation for £(X, X ). For any closed operator A in X, its domain
and range are denoted by dom(A) and ran(A) respectively. Its resolvent set is denoted by p(A)
and its spectrum by o (A).

Finally, Aq denotes the Dirichlet Laplacian in L, (), defined on Wy %(Q) N W24(Q), and Ag =
—PoAq is the Stokes operator in L, , (), defined on Wy'?(2) N W24(Q) N L, ,(2). For details
on the Stokes operator and on the Navier-Stokes equation we refer to the textbooks [Gal98] and
[SohO01].

2.2 A priori estimates for the generalized Stokes resolvent problem

We will frequently make use of an inequality for the solution (u,p) of the generalized Stokes
resolvent problem
Au—Au+Vp = f on Q
(SRP)}, Viu = g on 9,
yu = 0,
where Q is a C®-domain which is either bounded, exterior, R?, a bent half-space or a perturbed
half-space. In [FS94], Farwig and Sohr proved the following theorem.

Theorem 2.1 Let 1< q<o00,0<8 <7, n>20>0. Let f € L,(Q), g€ WH(Q)nW~14(Q)
if Q is unbounded or g € WH9(QQ) with fQ gdx = 0 if Q is bounded. Then there is a unique solution

(u,p) € dom(Ag) x Wh1(Q) of (SRP)%Q and some constant C = C(Q,q,0,0) > 0 such that
ully +[1V2ully +11Vpllg < CUIFllg + 1Vallg + [1Agll-1,4) (1)

and
IAullg + 1| = Au+ Vplly < C([|fllg + [[Agll-1,4)

forall A\ € ¥, :={z€ C\{0}:|argz| <7 — 0} with |\| > 0. The constant C in inequality (1)
is independent of 0 if one of the following conditions is satisfied:



1. Q is bounded, Q = R"*, or 2 = R%,

2. Q is an exterior domain or a perturbed half-space, n >3 and 1 < g <n/2.

2.3 An interpolation property for the domain of the Dirichlet Laplacian

We will frequently make use of the following interpolation property for the Dirichlet Laplacian in
L,(2): If1<qg<00,0<a<1/2¢and Q is as in Section 2.2, then

[Lq(2), dom(Aq)]a = W*1(Q), (2)

where [-,-]o denotes complex interpolation of order «. This can be seen as follows: It is
well-known, see [Tri78], that [Ly(Q), WS4 (Q)]y = WY(Q) for all s > 0 with s # 1/(6q)
and [L,(Q),W1(Q)]y = W(Q) for all § € [0,1] and all s > 0. The obvious inclusion
W (Q) € dom(Agq) C W24(Q) therefore implies

Wo(Q) = [Lq(), W (D12 C [Ly(),dom(Aa)]1/2 C [Lg(Q), W (D))o = WH(Q).

In particular, the norm in [L,(Q2),dom(Aq)];/> is equivalent to || - [l14. By [Tri78], Theo-
rem 1.9.3/1 (c), dom(Agq) is dense in [L,(92),dom(Ag)]; /2. Therefore we also have

lIll1,q

[Lq(),dom(Aq)) 2 = dOm(AQ_)||'||[Lq(m.dom(Am11/2 :7d0m(AQ)”.”1’qCiwol’q(ﬂ)
= Wo'(@),

i.e., we have [L,(Q2),dom(Aq)]i/> = Wy?(Q). The reiteration property, [Tri78] Remark 1.9.3/1,
gives us

[Lq(©), dom(Ag)]a = [Ly (), [L4(9), dom(Aq)]i 2]z = [Lq(2), Wy (Q)]z2a = W™ (9),

but W24(Q) = We*?(Q) by our assumption on «, see again [Tri78], Theorem 4.3.2/1 (a).

2.4 Operators with bounded H*-calculus

Recall that a closed operator A on a complex Banach space X is called sectorial, if it satisfies the
following two conditions:
(i) A is densely defined, injective and has dense range,

(i) (—o00,0) C p(A) and there is some M > 0 such that ||[A(A + A)7!|| < M for all XA > 0.

In this case there is some ¢ € [0, 7) such that the sector
Trg:={2€C\{0}:|argz| <7 — ¢}

is contained in p(—A), and sup{|[A(A + A)7'[| : X € £;_4} < co. The infimum of all such ¢ is
called the spectral angle of A and is denoted by ¢4. Oberserve that o(4) \ {0} C X4,. Moreover,
if A is sectorial, and ¢4 < 7, it generates a bounded and holomorphic Cy-semigroup on X. For
instance, the Stokes operator in L, ,(£2) generates a bounded and holomorphic semigroup for all

domains treated in this article.

A special class of sectorial operators on which we will focus throughout the article is the set of



operators which admit a bounded H*°-calculus. Before we can introduce these operators we need
to define for ¢ € (0,7) the space

H*®(Ey) :={h: Xy — C: h is holomorphic and bounded}

as well as its subspace H3°(X4) given by

HP (Eg) :={h € H®(Zy) : |h(2)| < C% for some C' > 0,s > 0}. (3)

+ |z

Let A be a sectorial operator on X with spectral angle ¢4, and let ¢ € (¢pa,7) and 0 € (4, @).
The path .

—te?? [t <0,

''R-=C, TI@k):= { te—if 1> 0 (4)

stays in the resolvent set of A with the only possible exception at ¢ = 0. In view of Cauchy’s
integral formula, for h € H§°(X4), we may define h(A) by the Bochner integral

1
h(A) == =— [ h(A)(A — 4)~"dA
()= 3= [ Y- 47, )
which exists according to (3). A is said to admit a bounded H*>-calculus, if there is some C > 0
with
1h(A)z]| < Cllhllss ||l (6)

for all h € H3°(Xy4) and all 2 € X. The infimum of all possible ¢ for which inequality (6) holds is
called the H*-angle of A and is denoted by ¢%. Clearly, we always have ¢ > ¢4. We denote
by H°(X) the class of all sectorial operators that admit a bounded H°-calculus. If A € H*>(X),
we may define h(A) for arbitrary h € H>(Z4) by the following method. Put g(z) = z(1 + z) 2
and let

h) = 5o ([ B = 70 ) (L 4747 = (g)(A)g)

initially defined on the dense subspace dom(A) Nran(A4) of X. It is known that inequality (6) is
still valid for those h. Consequently, h(A) extends to a unique element in £(X), again denoted by
h(A). Moreover, it is easy to see that this definition of h(A) is compatible with the definition (5)
in the case h € HE*(Xy).

The following classes of operators are known to admit a bounded H *°-calculus: Bounded operators,
normal sectorial operators in Hilbert spaces (in particular self-adjoint operators) and negative
generators of positive contraction semigroups in Lj-spaces. For details see the survey article
[DHP]. In [DHPOI1], it has been proved that also the Stokes operator in L, ,(R?}) admits a
bounded H*°-calculus if 1 < g < oo.

Remark 2.2 For Banach spaces X, Y, a densely defined linear operator A : dom(A) — X and a
continuous isomorhism J : X — Y the following easy statements are well-known. For details see
e.g. [DHP], Proposition 2.11.

(i) A generates a bounded holomorphic Cy-semigroup on X, if and only if JAJ~! generates a
bounded holomorphic Cy-semigroup on Y.

(i) A € H>®(X) if and only if JAJ~" € H*>°(Y). In that case we also have ¢ = ¢5°, ;.

(iii) A € H>°(X) if and only if A= € H°°(X). If this is true, then ¢% = ¢%,.



3 The main result

This section contains our main result which reads as follows.

Theorem 3.1 Let n > 3 and let Q C R™ be a C3-domain which is either bounded, exterior, or
a perturbed half-space. Then the Stokes operator Aq admits a bounded H™-calculus in Ly () if
1<g<oo.

As already mentioned in the introduction, we get the following slightly stronger assertion for free,
because for 1 < ¢ < 00, L, »(£2) is a Banach space with property («). For details on R-boundedness
and Banach spaces with property (a) we refer to [CAPSWO00] and to [DJT95].

Theorem 3.2 Under the assumptions of Theorem 3.1, Aq admits an R-bounded H -calculus in
L,s(Q) ifl < q<o0.

We shall prove Theorem 3.1 in several steps. First of all, we may assume that ¢ < 2, the general
case follows by taking adjoints. The Stokes operator Ag, on the bent half-space H, associated
with w is introduced in Section 3.1. It is shown that Ag, is similar to some perturbation Az of
the Stokes operator Ag» on the half-space R . In view of Remark 2.2 (ii) Ax, admits a bounded
H*>-calculus if this is true for Ap, which is proved in Section 3.2. In Sections 3.3 and 3.4 the
general case is proved by reducing the problem to the cases already treated before.

3.1 The Stokes operator on bent half-spaces

Given a three times continuously differentiable and compactly supported function w : R*~! —
[0, 00), let
H,:={z=(2",2,) € R" : z,, > w(z)}

be the bent half-space determined by w,

H see Figure 1. The transformation ¢ :

® R" — R" defined by ¢(z', xy,) := (z', 2 —

o (X) N—=1 w(z')) maps H, onto the half-space R? =

i R {(«',2,) € R* : z,, > 0} and satisfies

det ¢'(z) = 1 for all z € R". Therefore we

may define ®(u) := uo ¢! for any func-

tion defined on H,. Clearly, ® is a continuous isomorphism from W*7(H,) to W*9(R}) and

also from Wy'(H,,) to W§"(R%) for s € [0,3]. In what follows, we shall omit the subscript € if
QN =Ry}, ie weset P= Pmr, A= ARi and A = Amr.

Figure 1: The bent half-space determined by w

Let A € C. Tt is easy to see that a pair (u,p) is a solution of the Stokes resolvent problem
A=Ag)u+Vp=f, V-u=0
on L,(H,) if and only if (@,p) := (uo ¢~ po¢d~') solves the equations
A= (A+R))a+(V+R)p=fogp !, (V+Ry) a=0 (7)
on Ly(R% ), where Ry, Ry are given by
Ry = |V'w?02 — 2(V'w,0) - (VO,) — (A'w)d,, Rs = —0,(V'w,0). (8)

Since
®(Ly(Hy)) = ®(Ly0(Hy)) © (G4 (Hy))



it is natural to introduce the spaces

C% o) = {u€C®(RY):(V+Ry) u=0}
n Ao raile

L, (RY) = @(Ly,(Ho)) = C p(RY)
as well as the projection Pru = ®Py,®~' which maps L,(R?) continuously onto L[ (R%).
In terms of this modified Helmholtz projection equation (7) may be rephrased as the operator
equation (A + Ag)ii = f o ¢!, where Ag = —Pgr(A + Ry), defined on W>7(R?) N W, (R?) N
LE (R?).

g,0 (Bt

One problem in comparing Ag and ARi is that these operators act in the different Banach spaces

LE (R}) and L, , (R} ). To overcome this problem we introduce the bounded linear operator T
in Ly(R%) by Tu(z) = (¢~ 1) (z)u(z) = (I — S)u(z) with

Su=(0,...,0,(V'w,0) - u)

and I being the identity in L,(R? ). Note that T is invertible with T~' = I +.S. Moreover, since
we C}R* '), T maps LY (R} ) continuously onto L, ,(R%}) as well as dom(Ag) continuously
onto dom(A). Hence our smoothness assumption on w is due to the introduction of T'. Note,
however, that assuming w € C3(R*~!) allows us to treat domains with C*-boundary only.

3.2 H>-calculus for the Stokes operator on bent half-spaces
In this section we use the notation of the previous section. Our aim is to prove the following:

Theorem 3.3 Let 1 < q < oo and let w : R* 1 — [0,00) be three times differentiable and
compactly supported. The Stokes operator Ap, admits a bounded H*-calculus on L, ,(H,) if
l|w|lcr is sufficiently small.

This result will proved in several steps. We shall use the fact that the Stokes operator ARi admits
a bounded H °-calculus which has been proved by Desch, Hieber and Priiss, [DHPO01], by utilizing
the symmetry of R to obtain an explicit expression for the resolvent of AR1 . We shall apply a
recent perturbation result due to Priiss [DDH'02] to show that ARi may be perturbed by a purely
second order differential operator without destroying this property, provided the perturbation is
relativly bounded with small enough bound. The main ingredients for the treatment of the lower
order terms are the inequalities for the generalized Stokes resovent problem that have been stated
in Theorem 2.1. We start by recalling the perturbation theorem.

Theorem 3.4 (Priiss): Let X be a UMD space and let A be a linear operator in X which admits
a bounded H -calculus. Let B be a closed linear operator in X satisfying the following conditions.

(i) dom(A) C dom(B) and ||Bz|| < k||Az|| for all x € dom(A) and some constant k < 1,
(ii) there is some o € (0,1) such that B(dom(A'*®)) C dom(A%),
(iii) There is a constant C such that ||A®Bz|| < C||A*%z|| for all z € dom(A'+?).
Then A + B admits a bounded H -calculus provided that k is small enough.
Recall that a Banach space X is a UMD space, if and only if the Hilbert transform acts boundedly

in Ly(R, X) for all € (1,00) and note that every L,(Q) space with ¢ € (1,00) and Q being an open
subset of R™ has this property. In order to apply Theorem 3.4 with A being the Stokes operator



in R? we define Ap := TART ™" on dom(A) as well as B := Ap — A. From Remark 2.2 (ii) we
get that Ap, admits a bounded H®°-calculus if and only if this is true for A7. However, we can
not apply Theorem 3.4 directly to A and B because the inequality ||Bu|| < k||Aul|| does not hold
since Bu contains lower order derivatives. Therefore we decompose B as B = B; + By where By
is purely of second order. First note that on dom(B)

With e, = (0, ...

and

RT 'u

This yields

where

BQU

and

B = TART'-A

= —TPr(A+R)(I+S)+T(I+S)PA
= —TPrR,T ' —T(Pr— P)A+TSPA —TPrAS.

,0,1) € R* we get for u € W>4(R?)
ASu = e, A(V'w-u')

n—1n-1
n (V'A'w cu' 4+ 2 Z Z(ajakw)(?kuj +Vw- Au') (9)

j=1 k=1

R1U + R15'u
|V'w|?0%u — A'wdpu — 2(V'w,0) - 8, Vu
+en ([V'w|?02V'w - u' — AwdpV'w -1’ —2(V'w,0) - 0,VV'w - u')
|V'w|?02u — A'wdpu — 2(V'w,0) - 8, Vu

n—1
+en | [V'wlOiV'w-u' — Awd,V'w-u' —2(V'w,0)- Y (V'0jw)0nu?
1

J

n—1n—1

=23 " (9jw)(Orw) akanuJ) : (10)

j=1 k=1

B =B; + B

—T(Pr — P)A +TSPA —TPg (|V'w]?0iu + 2(V'w,0) - 8,Vu)

n—1ln—1

—T Pre,, (V'w AU — V'w]PV'w - 02u' + 2 Z Z w) (Opw akc’)nuj)

j=1 k=1

B1 =B — BQ.
Since Bsu contains only second order derivatives of u we may write
By = —T(Pr— P)A+TSPA+TPg Y anD* (11)
|o|=2

with certain matrices a, € C2(R"~1)"*". Similarly,

B, = TPxr Z b0y + T Prc
k=1

with by € CH(R"™1)"*" and ¢ € C.(R*~')"*". Due to (9) and (10) we get for lwllezmn-1y <1

Y llaallss < Cllwllo@n-1y,s (12)

|a]=2



Z Ibklloo < Cllwllcz@mn-1y, (13)
k=1

llelloo < Cllwllep@n-1)- (14)
In what follows, we will apply the perturbation Theorem 3.4 only to B, whereas B; will be treated
directly. To estimate the first term in (11) we need the following lemma.
Lemma 3.5 It holds
|(Pr = P)ully < ClIV'w|loo]lullg
for all w € L,(R7}).

Proof. As is well known, see [Gal98] p. 107, we have Pu = u — Vp with p € Wl’q(]Rﬁ) being the
unique solution of the weak Neumann problem

(Vp, Vo) = (u, V), @€ WhHi(R?), (15)

where (-,-) denotes dual pairing. Similarly, Pru = u — (V + R2)pr, where pg solves the following
problem: N
((V + Ra)pr, (V + Ra)p) = (u, (V + Ra)p), ¢ € WHT (RY}) (16)

observe that VAV Ld(R7) = PE Lyioc(RY): (V+ Ray)p € Ly 1oc(R? modulo constants, since
+ q, -+ a, +
V+Rs)-||; and ||V - ||, are equivalent norms on W' (R7)). From (16) we conclude
H( q q +

(Vpr, Vo) = (u,(V+ Ra)p) — (Repr, Vo) + (VDR, Rag) + (Ropr, Ra))
= (u,Vep)+ (u,Rap) — ((V + R2)pr, Rop) — (Rapr, Vo). (17)

Subtracting (15) from (17) yields
(Vpr = Vp, Vo) = (u,Rap) — ((V + R2)pr, Rap) — (R2pr, Vo).

Since Vpgr,Vp € G, and G = G, we get

IVpr — Vbl
= sup  |[(Vpr—Vp,9)|=  sup |(Vpr — Vp, Vo)
PEG 1,9l =1 pEWL ||Vl =1
< ~ sup (lullg[[R2llgr +1(V + Ra)prllgl| Raplly + || Raprllql[Vells)
PEWLA ||Vl =1
< ~sup IV'lloo (lullglOnplly + IV + R2)prllollOnsplly + 10nprllqVelly)
PeEWLY ||Vpl| =1
< IV'wlleo (lullg + 1(V + R2)prlly + 10nprIlq) -
Since
10npEllq < CII(V + Ra2)prllq = Cll(1 = Pr)ully < Cllullq
we obtain the desired estimate. O

With this lemma at hand it is not difficult to verify the first condition of Theorem 3.4.

Proposition 3.6 Condition (i) of Theorem 3./ holds true for A being the Stokes operator in
Ly (R}) and By defined by identity (11), provided that [|w||c1@n-1) is small enough.



Proof. First note that dom(B) = dom(A) by the definition of B. We will treat the three different
terms in (11) separately. Let u € dom(A). By the preceeding lemma and Proposition B.1 (b) with
k = 2, the first term can be estimated as follows.

|7 (Pr — P)Aully < ClIV'wllsollAully < ClIV'wllol| Aull,-
The corresponding inequality for the second term is trivial:
|TSPAully < Cl|V'wlloo|| Aully-

In view of inequality (12) and Proposition B.1, the third expression in (11) has the following upper
bound:
ITPr Y aaDully <C Y llaallcollDully < Cllwllep el Aully.

lo|=2 |o|=2
These inequalities together immediately prove the assertion. a

In order to verify the second and the third hypothesis of the perturbation theorem we need the
following lemma which follows easily from Sobolev’s inequality. Recall that Sobolev’s inequality
states that for n € N and ¢ € (1,n)

lullL,. @ < ClVullp,@ny, u€WHI(R?),
where ¢* is the Sobolev-conjugated exponent given by 1/¢* =1/q — 1/n.
Lemma 3.7 Let n > 3, ¢ € (1,n — 1). For any a € C}(R"™') with compact support there is a

constant C' > 0 such that
IV(aw)l|L,@y) < ClIVullL,@n)
for allu € Wl’q(]Rﬁ). On the LHS, a has to be regarded as a function of n variables in the obvious

way.

Proof. Since V(au) = aVu+uVa it is enough to prove that [[ud;al|r,®r) < C||Vullr,®n). With
K := supp(a) we get

o0

ludjallf, gy = / (-, 20859, go-1ydn = / lu 2a)3a() 12 dan

o0
C/o lu( 217, (reyden-

IN

Denoting by ¢* the Sobolev-conjugated exponent, the calculation continues and Sobolev’s inequal-
ity yields

@yl gy < C [ Ml odan < C [ uC.mlf gamsdas

IN

o0
C [ IVul, @a)llg, ge-nydzn = ClIVully gn)-
0 ! o

For fixed A > 0 and any function u defined on R} we set
(Jau)(z) = u(Ax).

Observe that Jy is an isomorphism in each of the spaces W*4(R"} ), s > 0, ¢ > 1 with It = Ji/x-
Moreover, it is also an isomorphism in L, (R’ ) and in dom(A®) with a > 0 because .Jx commutes

10



with the Helmholtz projection P. For any bounded operator K in Ly (R} ), define K\ € L(L4(R}))
by Ky := J;lKJA. Because of

vk =M VE keN,
we have for u € Wk’q(]RQ‘_)

k
| Txullig = A0 N[V ull,. (18)

=0

This gives us for k£ = 0 the inequality
1K ully = 115 K Tvully = XK Tyully < XK 2ng@nnlIvulls = 1K e, mlulla-
By symmetry we also get ||Kul|, < ||K>\||£(Lq(R1))||u||q. Hence we even have

BN 2n,@n)) = 1Kl (z,mn))- (19)

We shall further need an expression for the commutator between Jy and fractional powers of
(A + p), where p € p(—A). Commuting Jy with the Stokes operator yields

(A+p) Iy = (=PA+p)Jx = (=NPILA + p) = N A+ p),
which implies
(A+ ) = (WA +p)~h

By induction we deduce
(A+ kI = INVA+ p)F

for all k € Z and A > 0. Since A admits a bounded H*-calculus, so does rA for r > 0, see [DHP].
By this fact we obtain the same equality for 0 < a < 1:

1
— [ (p+2)"%z— A" ' Ndz
21 T

1
= — [(p+2)"T(z—NA)dz
21 T

= HOCA+p),

(A+p)~%J\

where T is the contour defined in (4). Writing s € Rass =k —a withk € Zand 0 < a <1 it
follows

(A+p) Iy = (A+ WA+ p) I = LOZA+ )" V2A+p) ™ = JhA(N2A + p)* (20)
for arbitrary s € R, A > 0 and p € p(—A).

With the aid of Lemma 3.7 we can prove the following proposition which establishes the key-
estimate for verifying the remaining assumptions of the perturbation Theorem 3.4.

Proposition 3.8 Let A > 0 be fized and let 1 < ¢ <n — 1. Define By ) := J;lB2J>\ on dom(A).
Then By x(dom(A)) C Ly-(R%}) and

(a) | B2A(A+ 1) ully < CXlully, u € Ly o (RY),
(0) 1Box (A + 1) ullig < ONlullaom(arrz), u € dom(A/?).

The constant C' does not depend on A.

11



Proof. We first rewrite By as
B, = —T(Pr—P)A+TSPA+TPg Y aaD*=TPp(-A+ Y aaD®) +T(I+S)PA
|o|=2 |o|=2
= TPr(-A+ Y a,D*) - A
lo|=2
From the last line it can be read off that By )(dom(A)) C L, ,(R?}).
(a) According to (19) we get for u € Ly ,(R"})
IBoa(A+ D)7 ully, = I HTPr(=A+ Y aaD®) = A)Jr(A+ 1) ull,
lo|=2
< |IN'TPrINT P ATA(A +1) |,
I TP Y aadady "D IA(A + 1),

lo=2

H I PPINT AT (A + 1) ],

< c (2||JA1AJA(A+1>—1u||q+ > ||JA1D“JA<A+1>—1u||q)
|o|=2
< oxX (llA(A+1)1U||q+ > ||DQ(A+1)1U||q)
lo|=2
< C>\2||U||q-

(b) Since ¢ € (1,n — 1) we may apply Lemma 3.7 to obtain for u € W7(R? )
IVTully < [[Vully +[[VSully < IVully + Cl[Vull, < Cl[Vull,.
The same argument applied to a, gives us

IV > aaDull, < C|[V3ull,,  ueWHI(RY).

|| =2

Because ||(V + R») - ||; and ||V - ||, are equivalent norms on W ¢(R% ), it is easy to see that the
regularity, proved for Py_ in Appendix A.3, holds also true for P = ®Py_® . This implies
together with the above two inequalities

IVBan(A+ 1) tull, = [IVIT(TPr(-A+ ) aaDY) — A)Jr(A+1) ",
|o|=2
= A\ Y V(T Pr(-A @) -1
= R(—A+ Y aaD*) — A)N(A+1) "l
|a|=2

< ATHn/a <||VTPRAJ>\(A + 1) tul,

+HIVTPr Y aaD*Ir(A+ 1)l

|a]=2

+||[VPAJN(A + 1)—1u||q>

< ONTHa3|VE TN (A + 1)t

CXFF9)| 1, V3 (A 4 1)L,
= CN|IV*(A+ 1) ull,.

12



In view of Proposition B.1, we can further estimate this last expression and obtain
[VBax(A+ 1) ull, < CN|AY2(A + 1) )|, = ON2||A(A + 1) LAY 20|, < ON2[|AY 4,
This together with part (a) implies the assertion of (b). O

Proposition 3.9 Let 1 < g < n—1and let 0 < a < 21—q. Then conditions (i) and (iii) of

Theorem 3.4 hold true for A being the Stokes operator in L, ,(R") and B = Bs.
Proof. Since A admits a bounded H*-calculus it obviously has bounded imaginary powers which
implies by [Tri78], Theorem 1.15.3 that

dom(A?®) = [Lg,s (R} ),dom(A)]4,

where [-,-]o denotes complex interpolation of order a. By general properties of interpolation
functors (see [Tri78], Theorem 1.17.1.1) we have

[Lg,0(RY),dom(A)]n = [Lq,(,(]Ri),dom(Al/Q)]m = [Lg(R} ), dom(A)]o N Lg,r (RY ).

The interpolation space on the right hand side is known to be Wza’q(]R’_f_) by our assumption
I0<a< %, see Section 2.3. Therefore we have

dom(A%) = W?™9(R) N Ly - (R} ).
By similar arguments we see that
[Lgo(RE), WH(RY) N Ly o (R )]2a = W?*(RY) N Lg,o (R} ) = dom(4%).

Proposition 3.8 implies that B x(A + 1)~! is a bounded operator in L, ,(R}) and also from
dom(A'Y/?) to Wh(R?) := WH9(R? )N Ly,» (R ). Again, by interpolation it is also bounded from
[Lq,0 (RY),dom(A"/?)]q to [Lg,r (R), WE(RY )]z, ie.

Boa(A+ 1) ! € £(dom(A%))
with
1B2A(A + 1) 7| (dom(a=))

IN

1B2A(A+ D7 2, Ly 1B2a (A4 DTS e e,

C\2.

IN

By putting A = 1 we see that
Bs(dom (A ) = By 1 (dom(A'™*)) = By 1 (A + 1) ' (dom(A*)) C dom(A%),
proving that condition (ii) of Theorem 3.4 is satisfied. For the proof of condition (iii), we use the
scaling method introduced in [McC81] and [BM88]. For u € dom(A!*%) let v = (A+1)u. By using
the fact that [|[(A+1)%-[|; and || - [|gom(a~) are equivalent norms on dom(A%), see Proposition B.1,
we get
1(A+1)"Bapull, = [I(A+1)*Ben(A +1)"0lly < ClIB2a (A + 1) 0llaom(a=)
< OX[ullaom(as)y < CX[[(A+1)%0]lg = CX*[|(A + 1) ],

Next, for arbitrary w € dom(A), define u € dom(A®) by u = J; 'w. Then

I(A+X)*Bawlly = NXTIITH AT A+ 1) Bawl

= N9 (A + 1) T BaJy Ty bl

APeTm[(A+ 1) Bayullg
OXTMIR22| (4 4 1)+,
= Oa/rRaz)| (g 4 )bt oy,
CA™/aT202 || JEH A2 A 4 1),
CIA+2 (=24 4 1) *oul],
= COll(A+X)*wl,.

IN
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Passing to the limit A — 0 yields

149 By, < CllAM wll,,
i.e., condition (iii) of Theorem 3.4 is verified. O
Proposition 3.6 und 3.9 now immediately imply the following.

Corollary 3.10 Let 1 < g < n — 1. The operator A + By admits a bounded H®> -calculus on
Lgo(RY) if lwllpmn-1y s sufficiently small.

Proof. (of Theorem 3.3). Of course we want to apply Corollary 3.10 and Theorem 2.1.
Therefore we first assume 1 < ¢ < min{n — 1,n/2} = n/2, because n > 3. Let ¢ € (¢, 7), and
fix 6 € (¢, ¢). By I'; r we denote the contour

T,.r={se’ :se[rR}U{se ?:s¢c[r,R]}
for 0 <r < R < co. Now we write

1 1 1
— [ (AN —-A-B)td\ = — (M)A —A—B) td\ + — h(AN)(A—A—B) *dx
57 | O S A g L )

and start by examining the latter integral on the RHS which turns out to be easy to handle: By
the resolvent identity we get

A—A-B) ' =A-A-B) ' +(A-A-By)"'Bi{(A-A-B)"".

It is easily seen that Gagliardo-Nirenberg’s inequality (see [Fri69] and Appendix A.2) implies
together with Theorem 2.1 that

V(N = Am) ery., (1)1, < CIATH2.

Therefore
A=A = Bs)™'BiA = A = B) g, (1) 1y (1)) < CIA7/2

for all A € C\ £y, with |A| > 1. Therefore we obtain

1

2mi

S COlbllscllfllz @z, f € Lyo(RE), h € H?(Eg).

/ h(A)(A — A — B)™! fdx
T

Lo(RY)

This gives us

‘ 1 /Fl’w ROV — A )= fdA

2mi < C“h“oon”Lq(Hw)

Lq(He)

for all f € L, ,(H,) and all h € H*(Z,) since we may write Ay, = ® T (A + B)T®, where
T and @ are isomorphisms.

The case |A| < 1 is more involved. Here we reduce the bent half-space problem to problems on
a half-space and a bounded domain through a localization. Let R > 0 such that H, \ Br(0) =
R% \ Br(0). We choose a cut-off function ny € C2°(R") satisfying 0 < 1y < 1, 79 = 1 on Bg(0)
and supp(no) C B2g(0) and set ny := 1 — no. Further, we put Q; := R’} and choose a bounded
domain Q¢ C H, with Bor(0)NH,, C Qo and such that 9Qq is C3. See Figure 2 for an illustration
of this construction. For f € L, ,(H,), let (u,p) € dom(Ag,) x Wh4(H,) be the unique solution
of the Stokes resolvent problem (SRP);{B’. It is easy to see that the pair (nju,n;p) solves the

generalized Stokes resolvent problem (SRP)%" g;0 Where fj =n;f —2Vu-Vn; — ulAn; +pVn; and
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R

Figure 2: Resolution of the unity subordinate Qq,

g; = uVn;. In order to apply previous results on the Stokes operator Ag; we have to split the
solutions (u;,p;) of the above problems in the following way:

(nju,njp) = (vj,p}) + (wj,py),
with (v;,p}), (wj,p}’) being the unique solutions of (SRP)%J_ 45,0 and (SRP)%_PQj)fhgj, respec-

tively. Since (I — Po;)f; € G¢(Q;), it can be written as the gradient of a function ¢ € Wha(Q;),
ie.
(I — Po,)fj = Vg;-

Hence, w; can also be regarded as the unique flow of the problem (SRP)X"QJ_ with pressure p}’ —g;.
For this reason we have to look at the two integrals on the right hand side of

MO)nudh = [ hNodh+ [ h(Nw;d\,  j=0,1. (21)
Lo To,1 Lo

We begin with the case j = 0. Clearly, fo satisfies the estimate
1follzg@0) < C (I lley ) + IVulle, () + lullz o) + 1Pl (00)) -
Since u € W' (H,), it follows from Sobolev’s inequality
lullLy20) < CllullL,.(20) < Cllullr,. ., < ClIVullL,a.,)

and by Poincaré’s inequality
PNz, 20) < ClIVDPIL, (00

because we may assume fQo p(z)dez = 0. In view of Theorem 2.1 we get the estimate

1
follL,20) < C (IfllL o) + IVullymoy + VDI, (1)) <C (2 + —> Wz, )

VIl

for all A € C\ X,, with |[A|] < 1. Hence, having in mind that 0 € p(Aq,), we know that
II(A = Aq,) Y| < C/(1+ |A]). Therefore we obtain for the first integral in (21)

I g h(NvodM[L, @0 = |l g RN\ = Aqg) ™ Pag fodllL, 20
0,1 0,1
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1
1
< e [ gy olands
< ol / L (1 LY asis
> = Jo Jsei + 1] NG SWTLg(H.y)
< Clbllsoll il

for all f € Lq,o(Hy,) and all h € H*(Zy). For wy we have according to Theorem 2.1 and again
Sobolev’s inequality the estimate

C
llwollz,(20) < Cllgoll-1.4 < CllgollL,0) < Cllullz,. o) < CllVullL,m,) < WIIfIILq(Hw)- (22)

This implies for the second integral in (21)

| g h(NwodAllL, o) < CllhllollFllL, (s
0,1
for all f € Ly,(Hy,) and all h € H>®(Zy).

In the second case, j = 1, we have to treat the terms of f; separately. For each q € (1, 00) there
exists a € (0,1) and ¢1 € (1, q) satisfying

1 1 2 1 2 1
—=al———)+(1-a)—=——+—.

q Qo n Q1 n Q1

Therefore we may apply Gagliardo-Nirenberg’s inequality, see [Fri69], Theorem 9.3 for the R"
case and Appendix A.2 for the half-space case. Using the fact that P is bounded in each L,(R7} ),
1 < r < 00, we obtain

A = A P(Vu - Vi)l e
< CIIVPA = 7T P(Vu- Vi)lig,, @y A = A7 P(Vu - Vi)l (g
S CIN*HIVu- VL, @)
Because of suppVm C Qg we further get
IVu - Vinllz,, @ < ClVullp, @) < ClIVullL,. @0 < CIVullL,@m)- (23)

Consequently,
1A= A7 P(Vu - Vi)llp,@n) < CNETHIFlle, ) (24)

for all A € C\ ¥,, with |A] < 1. For the terms (A — A) "' P(ulAn), (A — A)~'P(pVn) one gets
in a completely analogous way an inequality like (24). This time, instead of (23), one has to use

luAm L, @) < Cllullg,.. ) < ClIVullL,. ) < ClIVullL, ), (25)
which we can get by applying Sobolev’s inequality on H,, (see Appendix A.1) and
Iz, 20) < ClIVDIL, (90

respectively. With these preparations we obtain

L[ hn e = [ RO - A PR )
o1 To1

< . h(/\)(/\_A)_lp(nlf)dA”Lq(Rﬁr)
0,1

+ h(A)(A — A)"P(2Vu - Vi + uAn, +pVn)dA|z, =)
To1

1
< ¢ (nhnoonfnL,,(Hw) Tl / sa—ldsnfnLq(Hw))
< Ol il
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for all f € L, ,(H,) and all h € H*(X,). The estimate of the w;-term is completely analogous
to the case 7 = 0.

Summarizing, we obtain

| g RO = Am) " fdMlp,zy = |l g h(NudAl| L, (m.,)

Sl / B\ nudAll i
j=0 I'o
Cllllooll 1l it

for all f € Ly,»(H,) and all h € H>°(X4). This proves the assertion for ¢ € (1,n/2). By taking
adjoints it also follows for ¢ € (n/(n — 2),00). The general case then follows by interpolation. O

IN

IN

3.3 H®-calculus for the Stokes operator on bounded domains

Let Q be a bounded C®-domain. It is well known that in this case 0 € p(Aq), which immediately
implies

1
2mi

for all h € H§(Xy) and some ¢ € (0,7/2). Hence it suffices to consider the case |A| > 1 to which
we want to apply the following localization method which is described in more detail in [SS]. For
some d > 0 to be fixed later, consider the open covering of 9 consisting of all open balls Bs(z)
of radius 4, centered at x € 9. By assumption, 0€) is compact, so we have

/F RO — Ag) |2z, o < Clibllso (26)

N
o0 C U Bg(:l?j)

j=1

for some N = N(0) € N and certain zy,...,zxy € 0. Choose an open subset {2 of Q such that
Qo C Qand Q C QUUY, Bs(z;). Put Q; := Bas(z;) N Q, j=1,...,N, and let 1, € C(R"),
j =1,...,N, be such that n; = 1 on Bs(z;) and supp(n;) C Bas(z;) as well as o = 1 on
and supp(n) C Q. Next, for given f € L, (), let (u,p) € dom(Ag) x WH1(Q) be the unique

o(X)
R R

Figure 3: The localization method
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solution of the Stokes resolvent problem (SRP)%O. We get the localized equations

Anju—Anju+Vnp = f; on
(SRP)f] 0 V-nu = g; on
ymjw = 0,

j=0,...,N, where f; =n;f —2Vu-Vn; —uln; +pVn; and g; = uVn;, which shall be reduced
either to the bent half-space case (j = 1,...,N) or to the R” case (j = 0). To do so we have to
rotate and translate the localized problems. However, it is easy to see that such transformations
lead to an equivalent Stokes resolvent problem. For example, if U and P solve the Stokes resolvent
problem (SRP)%G on some open subset Q C R” and z := V& := OZ+x9, where O is an orthogonal

transformation, then U (%) := O*U(V#) and P(i) := P(V#) solve the equivalent Stokes resolvent
problem (SRP)V QonvV- 'Q where F(z) := O'F (Vi) and G (&) := G(V&). Thus, for simplicity,
we shall omit thls kind of transformations in the sequel.

Since 892 € C? we can, by choosing § small enough, for each j = 1,..., N find a function w; €
C3(R™ ') such that (with H; = H,,,)

Qj C Hj, BQ&(J}j)ﬁ@QC@Hj

and ||wjl|¢cr < k with & as in Theorem 3.3. Thus, by extending the localized functions by 0 we can
regard every localized equation as Stokes resolvent problem on Hj;, where Hp := R*. We cannot
apply Theorem 3.3 directly, because divnju = g; # 0 in general. Therefore let L be the solution
operator of the problem

1-Aw+Vp?Y = 0 on H,
V-w = g on H, (27)
yw = 0,

where H may be any domain in R" satisfying the assumptions of Theorem 2.1. According to
[FS94] Corollary 1.5 the operator

LW S(H)NWY(H) - W2I(H) N W, ‘(H)
if H is unbounded or with Ly o(H) := {u € Ly(H) : [, udz = 0}
L:Lyo(H)yNWY(H) = W>I(H)NW, ' (H)
if H is bounded is continuous and satisfies in any case both of the following estimates:
ILgll, < Cligh-14  and  |[glley < C(llgll- 10 + I¥gll,) (28)

for all g € dom(L). Now we set w; := Lg; and v; := nju — wj, i.e., we write n;u as

n;ju = vj + wy, j=1,...,N.
The v;’s satisfy the equations

A=A +V(p—p*7) = fi+(1-=Nw,
= Pu;(fj + (1 = Nw;) + (I — Pu;)(fj + (1 = Nwy).

Now (I — Py, )(fj + (1 — M)wj) is a gradient field, so it can be written in the form
(I = Pp;)(fj + (1 = Mw;) = Vg,

for some q; € Wha(H i), i=1,. . Thus v; can also be regarded as the Stokes ﬁow of the unique
solution (vj,n;p — p* — ¢;) of the generahzed Stokes resolvent problem (SRP) o (31— A wy),0°
Consequently

vj = (A, + N7 P, (5 + (1= Mwy)
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The identity
)\(AHJ. + )\)_IPHJ.’LU]' = PHJ.wj — AHJ. (AH]. + )\)_IPHJ.’LU]'

gives us the following formula for n;u
nju = vj +wj
= (}\ + AHj)ilij f]' + (/\ + AHj)ilij’LUj + AHJ- (/\ + AHj)il.PHj’LUj + (]. - PHJ- )wj,
(29)

Jj=1,...,N. We treat these four addends separately and begin with the second one. Since Vn;
is compactly supported, we get by (28) and Poincaré’s inequality

losllosmy = 1Lgslla < Cllgsll 10 = Cllu- Vgll 1.4
= sup / uVn;tp dz
YEWLa' (Hj;),|| V| =1 |/ supp(n;)NQ
< C  sup lwllz ) 1¥] L, supp(ns)ne)
wewl,q’(Hj)7||V¢Hq/:1
< Cllullny@ < CINT I Ly @)-

This implies

_ 1 1 1
X+ Am;) ' Paywill,my) < CWIIPHJ-U’J'IILQ(HJ-) < CW““’J'“L,,(H]-) < CWIIfIILq(Q)a

for A € ¥4, |A| > 1. Hence

1
||% ; h()\)()\—AHj)_lij’wjd)\HLq(Hj) = h()\)((—)\)+AHj)_1Pijjd)\||Lq(Hj)

Ly
27T Fl,oo

ClIhllsoll fll ., (2) (30)

IN

for all h € HP(Zy), j =1,...,N.

The remaining three addends are more involved. For the first one of (29) we need the following
preparations. For a bounded domain G C R" we use the following identification of the homogenous
Sobolev space

WhH(G) = WHI(G) N Lyo(Q).

We want to remark that for an arbitrary Q@ C R" and G C 2 for every p € Wl’q(ﬂ) it is always
possible to choose a constant ¢ = ¢(G, p) such that pg = p+ ¢ € Ly o(G). The next lemma states
an extra decay in A of the pressure of the Stokes resolvent problem.

Lemma 3.11 Let 0 € (7/2,7), 1 < g < o0, @ CR" as in Theorem 2.1 and (u,p) € dom(Ag) x
W4 the unique solution of the Stokes resolvent problem (SRP)%O, where f € Ly (). Then, for
each a € (0, QLq,) and for every bounded domain G C Q of class C*' we have

lpcllz, o < CINT*fllz,. @) AEXy, [A[>1
with some constant C = C(G, a) > 0 independent of X and f.

Proof. It is easy to see that (L, o(G)) = Ly o(G). We estimate (pa,¢)a = [, pay for an
arbitrary ¢ € Ly o(G). According to [Bog79], [Bog80] or [Gal98], for every ¢ € Ly o(G) there is

a solution ¢ € W, A (@) of the divergence problem

V¢ = ¢ ongG,
¢ = 0 on0G,
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with
lollwre () < Cllellz, o) (31)

Since ¢ € W, ?(G) we may regard ¢ also as an element in W19(Q). Using
Vpa(x) = (I — Po)Au(x), x €,

which can be obtained by recalling Vpg = Vp and applying (I — Pq) to the first line of (SRP)%O,
we may calculate

(pG,(P)G = (pG) V- ¢)G = _(VpG) QS)G = _(VPG; ¢)Q
= —((I = Po)Aqu,9)a = (=Aqu, (I — Po)g)a-

Since —Agq has bounded imarinary powers, (see e.g. [PS93]) we get by the interpolation property
proved in Section 2.3 that

dom((~Aq)®) = [L,(), dom(~Aq)]a = W**(Q)
for ¢ € (1,00) and a € [0, 5.). Since Po € LW (1)), see [Fra00], we have
(I —Po)p € WhHe () € W27 () = dom((—Aq)®).
Hence, the above calculation yields together with inequality (31)

((pa P)al = ((=A)'*u, (~A)*(I — Pa)é)al

< (=A) Ul @ I(=A0)* (I = Po)¢llL,, ()
< Oll(=20) Ul @ (T = Pa)dllwra (o)

< Oll(=20) ullz,@llellwre @

< Oll(=2e) " ullz, @l o@)-

To estimate the term (—Ag)!~“u we write u in the form u = (A — Ag) }(f — Vpe) and obtain
by a simple interpolation argument and Theorem 2.1

1(=2e)' ullL,@) = [(=2a)' (A = Aa) ' (f = Vpa)llL,@) < CIN*[IfllL,@
for all A € Xy, || > 1. This gives us
|(pa, p)a| < CIA I flle @ lell, o)

for all p € Ly o(G). Consequently,

|(pc, ¢)al o
lpcllz, 0@ = sup o < CINT N fllng )
©EL 1 5(G),p#0 ||<P||Lq,,0(G)

and the lemma is proved. a

With the above lemma it is easy to verify the desired estimate for the first addend of (29). We
have
(A= Am,) "' P, fi = (A = Amy) " P (0 f = 2Vu - Vi — wln; + pVi;).

We may set p = pg since p € Wl’q(ﬂ), where G C € shall be a bounded domain of class C?
satisfying @ Nsupp(Vn;) C G for all j =0,..., N (in the situation here we can choose G = 2).
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By using the bounded H*-calculus of Ag;, j =0,...,N, Theorem 2.1 and Lemma 3.11 we may
estimate

1 _
== / RO — Ag) P, £z a1

Iy,

1 _
< g [ OO = Am) 7 Pa N,

II% /F AN (X = Ap,) ™' Pu, (—2Vu - Vig; — uln; + pVn;)d\ |z, ;)

<1 /1 1 1
< (Inllelllgor +1le [~ 3 (34 5 + ) Iy
< Cllblll e (32)
for all h € H§°(3¢), j =0,..., N, and any fixed o € (0, 5 L.

For the third addend of (29) we write w; as
w; = LMVW’U,

where My, u := Vn; - u. The estimate for the operator K; := LMy, stated in the next lemma
will be useful.

Lemma 3.12 Let 1 < q < oo, Hj, K; and G C Q defined as above. Then for some constant
C = C(Q) it holds
||Kju||W1’f1(Hj) < CHUHLQ(G)

for allu € Ly(G) and all j =0,...,N.

Proof. Set G, := Q NsuppVyn,. For ¢p € Wh¢ (H;) N C®(H;) with fG]_ dz = 0 we have by
Poincaré’s inequality

IVn 8l () < CIVEILL () < CIVILL,, 1) (33)

This yields

Mgy, ul sup 'fo(“'v"j)¢dx'
Vn; i —1,q . =
) vecem) IVl
_ sup |fG an d1'| ”vnﬂ/}”qu (G5)
vecem) IVIitllwie @ IVYlL, @

IN

Cllulliwr.o ()

, !
for all w € Wh4(G) C (Wl’q (G)) ,J=0,...,N. Together with (28) this leads to

1Kjulle, )y = NLMvnulle, ) < CllMen;ullyy-vacm,)
< Ollullwre @)y
and
IKullweayy < C (IM9nullyp-au,) + IV Mwyullz, 1,))
< O (llullwray + IV(Vn; - w)lle, ;)
< Cllullwiea)
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, !
for all u € WH4(G), 7 = 0,...,N. Since Wh4(G) is a dense subspace of (leq (G)) the first

inequality above implies that K; can be extended to a bounded operator from (W4 (G)
to L,(H;). From the second one we get that K; is also bounded from W4(G) to W24(H;).

, !
By interpolation, K; is also bounded from L,(G) = {(leq (G)) ,leq(G)] to Whi(H;) =

1/2
[Ly(Hj), W>1(H;)]; /5 for j =0,..., N, which yields the assertion. O
Using the fact that Py, € L(W"?(H;)) and again the identity
1
dom(Afy)) = [Lg,o (Hj), dom(Ap,)la = W**(Hj), a €0, 2

(see also, [Tri78] and [Fra00]), we deduce, if we set o := 41—q, say,

Prw; € WH(Hj) C W29 (Hj) = dom(Ag,).

By a simple interpolation argument and Lemma 3.12 we get

|l As; (X = Amy) " Payw;lle, ;) [ AG (N = Amy) Ay, Pryw;l| ;)

< CIN*AS, Prywjllp, i) < CIN™*1Prywillweasa )
< O P willwram;) < CIN™*wjllwam,)
= CYKjullwraa,) < CIA™ullz, @)
< OIS lpy @)
for |A| > 1. It follows
1 _
H2_7Ti/r h(N)Am; (A — Ap,) ™ Payw;idX| o, cay) < Cllbllsoll £ 1], e (34)
1,00

for all h € HE(Sy), j=1,...,N.

The estimate for the fourth addend of (29) will follow from Lemma 3.13 below. Because we will
need a similar estimate in the next section, we state this lemma, just as we did with Lemma 3.11,
in a more general form as is needed here. Let 2 C R” be a domain which fulfills the assumptions
of Theorem 2.1. For f € L, (), let (u, p) the unique solution of (SRP)%O which exists according
to this theorem. Further, let ¢ : R — R be a smooth function such that V¢ has compact support,
suppVe N Q # (), and let @ C R” be a (possibly unbounded) domain such that Q NsuppVy C Q
and 02 NsuppVy C 9Q.

Lemma 3.13 Let L be the solution operator of problem (27) on the domain Q). Then, for the
trivial extension of u -V on Q (also denoted by u - Vo) we have u - Vo € dom(L) and

1
5=

3rr [ BOVL G V)Nl ) < Clllel 0
T Jr

for all h € H°(X,) with some constant C that may depend on ¢ but not on f.

Proof. We have u- Vo € W 11(Q) N Wh4(Q) if Q is unbounded, since u - Vi has compact
support. Assume for the moment that f € dom(Aq). Then we may write for h € H§®(Zy)

1 B B 1 [ AN .
31 [ MU Vipdd = Vo h(dn) f = Voo 27ri/pl+>\(/\ Ag) "l dA(1 + Ag) f.

22



By this representation it is easy to see that we also have

L. h(Nu - Vd\ € W19(Q) nWhHi(Q).
r

27

If @ is bounded we use
u-Vo=V-up

to get in view of up [sg= 0 and the Gauss Theorem that
1
-V, — / B\ - Vipd € WH(Q) N Lyo(Q)-
2mi Jr
The continuity of L implies together with (28) that

II—/h (w- Vo)A@ = IIL(Ve-h(Aa)f)lly < ClIVe - h(Aa) fll-1,4-

21

To estimate the norm on the right hand side recall that supp(u Vi) C Q. By (2) and the identity
dom((=A)®) = [Ly (), dom(=Aa)]a = W27 (), a € (0, &), we get for ¥ € C=(Q)

(Voo h(A) f,) o

<V<P'(1+AQ 2%/(— A~ o) fdA, w)ﬂ

1 [ h(\)
= 1-Ag)— [ —L (A= Ag) tdrf, P,
(- 2057 [ 1250 40)ars, o)
L [ hY) - 1
— - —A o A 1—AQ)*F
(557 1250 A0 ™0 )07, 1 = A0)* P )
Completely analogous to (33) we get
VVellwia < ClIVYlL,@-
Thus, as in the proof of Lemma 3.11 we obtain
(1 = Aa)* PoypVellL, @) < CllYVellwia o) < ClIVYIL, @
and
(1= Aa)' (A= Aa) " fll, @ < CIAIT*IfllL, @)
This yields
e 1
(Ve hAa)0g] < il | sl e, @dsI Vol o
< COlfleollfllzy,@ VYL, o)
for all h € Hi(X,). Consequently,
557 [ BOVLG Vo)dNIz,@) < ClIV-A(Aa)fll -1
~ | (Voo h(AQ) £, |
YECT(Q), V#0 IVYllz, @)
< Cfhllssllf (L)
for all h € HF(X4) and the assertion follows. O
Similar to (22) we obtain the estimate
C
[L(uw - Vo)L, ) < WHJCHLQ(Q)
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Thus, setting H; = @ and n; = ¢, j € {0,..., N} we obtain by Lemma 3.13 for the fourth addend
of (29)

57 [ B = Pa gl oy <

1,00

IN

(IIQM/ WA L(u - V) Az, () + Nl 5 Z/ h(/\)L(u-an)d/\HLq(Hj))

1
< C(thoo”f”Lq(Q)+||h||oo/0 IIL(U-an)IILq(Hj)dS>

1
C | ||h]|so hllso — d
<|| ool flly ) + IR /0 \/g”f”Lq(Q) S>
< CllbllsollfllLy @) (35)

IN

for all h € HFP(E4). Combining (30), (34), (32) and (35) we get

I [ B~ o) 0l =l [ HOaN o

Z||2m J. HOmaNl o

IN

< Ellm/ h(N)mjudAl| L, ;)
< C“h”oon”Lq(Q)

for all h € HFP(Ey). In view of (26) we thus have proved the following theorem.

Theorem 3.14 Let 1 < g < 0o and Q C R™ be a bounded domain whose boundary is of class C*.
Then the Stokes operator Aq admits a bounded H™ -calculus in Ly ,(12).

3.4 H%-calculus for the Stokes operator on exterior domains and on
perturbed half-spaces

In this section we consider the Stokes operator Aq, where Q C R" is either an exterior domain,
i.e. the complement of a compact set, or a perturbed half-space by which we mean that there
is a compact set K in R" such that R} \ K = Q\ K, see Figure 4. We will show that the
Stokes operator Ag on such a domain also admits a bounded H *°-calculus. This is more or less a
consequence of the results in Subsections 3.1 and 3.3. Using the same localization as in the proof
of Theorem 3.3 we can reduce the perturbed half-space problem to the case of a bounded domain
and the half-space. If Q is exterior we can reduce the problem to the bounded domain case and
to R™. Instead of repeating large parts of the proofs of Theorem 3.3 and Theorem 3.14, we only
explain the essential steps that differ in this situation.

Theorem 3.15 Let 1 < q < o0 and Q& C R™ be an exterior domain or a perturbed half-space
whose boundary is of class C>. Then the Stokes operator Aq admits a bounded H™-calculus in
L0 ().

Proof. Let Br(0) a ball such that Q\ Br(0) = R} \ Bg(0) if Q is a perturbed half-space or
0\ Br(0) = R™ \ Bg(0) if © is an exterior domain. In both of the two cases we can use the same
construction of Qq,Qy,7m9,71 as in the proof of Theorem 3.3 with the only difference that we set
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R 2R R

Figure 4: Resolution of the identity for the perturbed half-space

Qo = Byr(0) and 2 = R™ if Q is an exterior domain. As before, we split the H* integral into
the two parts [A| < 1 and |A| > 1. For the treatment of the former integral we only have to modify
inequality (25) since we applied Sobolev’s inequality for H,, at this point. The remaining parts
of the proof can be copied verbatim, because nowhere else we have used the special structure of
H, again. To obtain an estimate like (25) if © is a perturbed half-space or an exterior domain
we will apply the following generalization of Poincaré’s inequality on Qq. If @ C R" is a bounded
Lipschitz domain and V is a closed subspace of W1:4(Q), then there are equivalent:

(i) There is some ug € V' and some constant Cy > 0 such that ug + & € V implies |¢| < Cy for
EeR.

(ii) There is a constant C' > 0 such that

lullz,@) < ClIVullL, @), uweV

A proof of that result can be found e.g. in [Alt99]. If S C JQ is not a null set with respect
to the boundary measure it is easy to see, that Wolg(Q) = {u € Wh(Q) : yu [s= 0} is a
closed subspace of W?((Q), which satisfies condition (i) of the above equivalence. Thus, if we set
S := 009 NN, we deduce the validity of Poincaré’s inequality on Wol”g(Qo). This gives us for the
Stokes flow u € dom(Agq) of the solution (u, p) of (SRP)$,, where f € Ly ,(Q),

luAmll L, @) < Cllullz, o) < ClIVUllL, 0, (36)

with g1 asin Theorem 3.3. To see that we may estimate the last term again by Poincaré’s inequality
we have to verify (i) for the subspace

V.=V [Wg;g(ﬂo) N W“(QO)} = {Vv ;v € Wed(Q) N W27q(90)} .

of Wh4(Qy). Clearly, (i) follows if we can show that there is no non-trivial constant function in
V. If w= Vv € V is constant for some v € W(i’g(ﬂo) N W24(Qy), then v(z) = Mz + b, where
M € R™™™ and b € R™. Hence, the set of zeros for v is an affine subspace of R”. But the only
affine subspace that contains S is R", since we may assume that 92 is not an affine subspace of
R™ (otherwise we are in the half-space case). This implies v = 0 which in turn implies w = 0. It
remains to show that V' is closed in W14(€). This can be seen by direct calculation or by the
following argument: We set X := Woly’g(ﬂo) NW24(Qy) and

T:X = Wh(Qp), Tu:=Vu.
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Since T is injective its inverse is well-defined on ran(7') = V. The boundedness of T implies the
closedness of T~!. We will show that 7' is continuous, which immediately yields the closedness
of its domain V. By Poincaré’s inequality on WO1 '4(Qo) we obtain

17"l = T ullay < C (17 ully + [IVT ull1,)
< C(IVT ully + IVT ™ ull1.,)

= Clully +[lulliqe) < Cllully,g = Cllully

for all w € V proving the continuity of T—!. Consequently, Poincaré’s inequality is valid on V
which gives us together with (36)

ludm |z, @) < ClIVullL, ) < ClIVullpy @) < ClIVZullL,@)-
So, replacing (25) by the above line the proof for |A| <1 is finished.

For |A| > 1 we can transfer the proof in Theorem 3.14 for that A’s. Instead of the localization used
there which reduces the problem on 2 to problems on H, and R™, we take the above localization
and reduce it to problems on the bounded domain €y and the unbounded domain ; (which
is either R” or R} ). The localized equations remain unchanged as well as formula (29) for the
localized functions nju, j = 0,1. This allows us to copy the proof of Theorem 3.14 without any
further change. Applying Theorem 3.14 to Ag, and using the bounded H*-calculus of Ag- and
Ag~ complete the proof of Theorem 3.15. O

A Regularity of the Helmholtz projection

Lemma A.1 Letw € CHY(R™™!) and let H,, be the bent half-space associated with w as introduced
in Section 3.1. Further, let 1 < q,q* < oo with q% =1_ % Then the Sobolev inequality is valid

q
for H,, i.e. there is a C > 0 such that
llullg < ClIVullq

for all w e WH1(H,,).

Proof. First recall that R"} is a so-called (g, 00) domain, i.e. there is some £ > 0 with the following
property: For all z,y € R} there is a rectifiable arc v, joining = to y and satisfying L(vy) < %|a: -yl
as well as

|z — z|ly — 2|

|z -yl

d(z) > ¢

Y ZE,Y)

where L(7y) denotes the length of v and d(z) = z,, is the distance from
z to the boundary of R} . This can be easily seen by taking for ~ the
upper half of the circle with diameter being the segment connecting
z and y, see Figure 5. It is known, see [Jon81] for details, that un-
bounded (g, 00) domains are extension domains for the Dirichlet energy
space, i.e. there is a bounded operator £ : WH4(R%) — WHY(R") with
Ef gn=fforall f € WLQ(]RQ). Since ¢(z', ) = (¢, — w(x)) is

Figure 5: The half-space is 5 (C''-diffeomorphism mapping H,, to R’ the assertion follows.
an (g,00) domain

O
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Remark A.2 Actually, it can be shown that one has more general extension operators for un-
bounded (g, 00) domains: If € is a domain of this type, N € N, and qo,...,qn € (1,00), there is
an extension operator

N N
E: (Y Wh(Q) » (WP (RY) with ||V Bully, @ < ClIV7ullL, @
j=0 Jj=0
forall j =1,...,N and all u € ﬂj-vzo W34 (Q). For details concerning extension operators in

Sobolev spaces, see [Chu92]. As an easy consequence, Gagliardo-Nirenberg’s inequality extends
to (g,00) domains. In particular, it holds true for R} and the bent half-space H, with w as in
Lemma A.1.

Let ) be either a bounded domain or 2 = R} . It is well-known that the solution of the Neumann
problem on 2 associated to the Helmholtz projection admits higher regularity. This implies
immediately the regularity of Py, i.e. Po € L(W*?(Q)) for 1 < ¢ < 0o and k € NU{0}. The next
proposition shows that this also holds true for Q = H,,,.

Proposition A.3 Let 1 < ¢ < oo and k € NU {0}. Then the Helmholtz projection Py, is a
bounded operator in W*(H,). In particular, if 1 < q < n, then

IV* P, ully < ClIV ully, u € WHI(H,).

Proof. Let no,n1,Q0,Q; as in Theorem 3.3. The case k& = 0 is well-known, so we only prove
the assertion for k¥ = 1. The general case then follows by induction. We consider the localized
Neumann-Problems

(NP){ A(mjp) = njdive+2Vn; - Vp+pAn; = f; on
%(nﬂ’) = (unj +pVn;) v =:g; on O%Q;

for j = 0,1. From well-known regularity properties for the Neumann problem on R} (see [Fra00])
we get

AN

IV2mpliz,on < C (Millzgn + ltllinseaon,) )

IN

c (||VU||L,,(HW) + [1Pllwa o) + llum +pV771||W1—1/q,q(391)) ;

where W'=1/94(9Q;) is the trace Sobolev space, treated in detail e.g. in [Gal98]. By [Gal98],
Theorem II 8.2, we can estimate the latter term on the right hand side which yields

AN

IV2mplle,@y < C(IVullr, ) + IPlwro@o) + llum + V0 llrao,))

IN

c (HVUHLQ(HM) + ||U||Lq(90) + ”p”Wl’q(Qo)) :

By using regularity properties for the Neumann problem on bounded domains, we can treat the
case 7 = 0 in a similar way which gives us

||v2770p||Lq(Qo) < C(IVullpya) + lulln, o) + 1Pllwraay)) -

It is always possible to choose p such that fQo p(z)dz = 0. From Poincaré’s inequality and
Py, € L(L,(H,)) we therefore obtain

PN, 20) < VDI, 0) S IV, ) < ullz,(m.)-

Hence, the above two estimates imply

IV?*mpllL, @) + 1IV10pllL, (00

HUHWLG(Hw)a

IV?pll, (a1.)

IN A
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which gives us
Pr, lwracm,) < llullwiam,)-

Assume now 1 < ¢ < n. With Lemma A.1 and the boundedness of 5 we may conclude

lullLy(20) < CllullL,.(20) < Cllullr,. ., < ClIVullL, .-

The Helmholtz-Projection P, does not depend on ¢ and is continuous for all 1 < ¢ < co. Together
with Lemma A.1 this leads to

Ipllw.a(e) < NIVPllL,00) < ClIVDIL,. (7, < CllullL,.m,) < ClIVullL,m@,)-
The above two estimates for V27;p and V2nop now imply
IVPu,ullp,my < IVullp, ) + 1V?0llL, ) < ClIVullL, )

for u € WH4(H,). O

B Sobolev estimates for powers of the Stokes operator on
R}

Proposition B.1 Let 1 < ¢ < oo and let A be the Stokes operator in L, , (R ). Then

(a) For each 0 < s <1, the norms [|[(A +1)* - ||, and || - ||gom(as) are equivalent,
(b) for each k € N, the norms ||A*/? - ||, and ||V* - ||, are equivalent.
Proof. To prove (a), note that for r < 0, (A 4 1)" is a bounded operator in L, ,(R} ). From

Remark 2.2 (iii) we know that A= € H* (L, ,(R")) with the same H*°-angle which immediately
implies that also (A™! +1)" is bounded on Lg ,(RY) for r < 0. From

(A+1)" = (A" + 1A,
valid for all r € R, we can therefore conclude

lullaom(asy = llully + | A%l
1A+ A+ D%ully + (A7 +1) 7 (A + 1)7ull,
ClI(A+ 1D%ully

AN

for all u € dom(A®). The converse inequality can be proved by the same arguments:

A +D%ully, = [J(A+1)(A+ 1) ull,
< C(JAMA+ 1) ullg + 1(A+ 1)5 ally)
< C(|ATF(A+1)5 T Aful|g + [fully)

= O(IA™ + 1)t A%ullg + [lully)
CV“u”dom(As)-

IN

To verify (b) we first establish the estimates
lullg < CIIA+1)*2ully < Cllullr,g (37)

for each k € N and all u € dom(A*/?). The equivalence of the norms in question is then obtained
from these estimates by the scaling method which was already used in the proof of Proposition 3.9.
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Since || - [|dom(a) and || - ||2,, are equivalent norms on dom(A), the resolvent (A +1)~" is a bounded
operator from (Ly o (R% ), - ||g) to (dom(A), || - [|2,q). This implies for « € dom(A)

[ull2,g = I(A + )7 (A + Dulla,g < CN(A+ Dully < Cllullaom(ay < Cllullz.q- (38)
Since A € H*°(Lg,»(R})) we know from [Tri78] and [BM88] that
dom(A4'/?) = [Lq,o (R} ),dom(A)]y /2 = [Ly(R? ), dom(A)]y /2 N Ly,o (R7)
= Wy '(R}) N Ly (RY).

In particular, the norms [| - ||qom(a2/2) and || - [|1,4 are equivalent on dom(A'/?). By (a), the norm
Il llaom(a1/2) is also equivalent to [|(A + 1)'/2.|,. This yields

lullrg < CI(A+1)Y2ully < Cllully,g (39)

for all u € dom(A'/?). Consider the Stokes equations on the half-space:

u—Au+Vp = f on R},
V-u = 0 on R}, (40)
yu = 0.
For f € Ly, (R?) this equation has the unique solution u = (A +1) ! f € dom(A) which satisfies

lull2,g < Clifllq» (41)

(see e.g. [FS94] or [Sol77]). Moreover, for k € NU {0} and g € W"4(R?}) we get from [Gal98]
Theorem IV.3.2, that for any solution v of the stationary equation

. -Av+Vp = g on R},
(SSE),} V-v = 0 on RY,
yw = 0,
which satisfies V2v € Lq(R"% ) we have
IV¥*20lly < Cllgllk.q- (42)

Next, let f € Wh4(R?) N Ly,»(RY), u be the solution of (40) and put g = f —u € WH(R}).

Trivially, u is a solution of (SSE)H;% with VZu € Ly(R% ). Hence by (41) and (42) we get that
V3u € Ly(R7) with

IV2ully < Cligllig < CIf Il + llullig) < CllfllL-

By induction over k we obtain that for every k € N and each f € W 2(R? )N L, , (R?) the solution
u of (40) satisfies
lullit2,q < Cllfllk.q-
Since u = (A + 1)~ f, this implies in view of the regularity of the Helmholtz projection (Proposi-
tion A.3) that
lullkt2.q < Cllfllkg = ClI(A + Dullr,g < Cllulriz,g (43)

for all u € dom(A) N Wk¢(R?). We will prove (37) by induction: The inequalities (39) and (38)
yield (37) for k = 1 and k = 2 respectively. Suppose now u € dom(A*+2/2) and that (37) holds
true for all j < k+ 1 € N. This implies (4 + 1)u € dom(A*/2) C Wh4(R?) and with (43) we
obtain

lullirag < CINA+Dulleg < Cll(A+ D2 (A+ Dl
ClI(A + )*F2ul,.
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Conversely, the calculation

I(A+DED 2yl = [I(A+ DM (A + Dl
Cll(A+ Dullk,g < Cllullk+2,q

IN

shows that (37) is valid for all £k € N.

Now let w € dom(A¥/2) and A > 0. As in the proof of Proposition 3.9 we set u = J, 'w = w(% ) €

dom(A*/2).

By equality (20) we get

1(A + X2 2awlly = X4 (A + 1) 2.

Moreover, by (18) we have

k
Nl = NN wlleg = Y AVl
j=0
The above two inequalities imply together with (37) that
k . . k . .
D NV wlly < O[(A+ X)) Pwll, < CY N[V wl],
i=o i=0

for all w € dom(A*/2) and all A > 0 (note that .Jy is an automorphism of this space). Passing to

the limit A — 0 yields the assertion. O
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