Classification
Biological Sciences, Microbiology

Title
Dendritic transport of tick-borne flavivirus RNA by neuronal granule affects development of the neurological disease.

Short title
Hijacking of mRNA transport in dendrites by TBEV

Authors
Minato Hirano, Memi Muto, Mizuki Sakai, Hirofumi Kondo, Shintaro Kobayashi, Hiroaki Kariwa and Kentaro Yoshii *

Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University

*Corresponding author
Kentaro Yoshii, PhD., DVM.
Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University.
kita-18 nishi-9, kita-ku, Sapporo, Hokkaido 060-0818, Japan
Tel/fax: +81-11-706-5212
E-mail: kyoshii@vetmed.hokudai.ac.jp

Author contributions
Conceived and designed the experiments: K.Y. and M.H. Performed the experiments: M.H., M.M., M.S., H.Kondo, S.K. and K.Y. Analyzed the data: M.H., M.M., and S.K. Wrote the paper: M.H., S.K., H. Kariwa and K.Y. All authors reviewed the manuscript.

Keywords
Tick-borne encephalitis virus, Flavivirus, Neuropathogenicity, Neuronal granule, Dendritic mRNA
Abstract

Neurological diseases caused by encephalitic flaviviruses are severe and associated with high levels of mortality. However, little is known about the detailed mechanisms of viral replication and pathogenicity in the brain. Previously, we reported that the genomic RNA of tick-borne encephalitis virus (TBEV), a member of genus *Flavivirus*, is transported and replicated in the dendrites of neurons. In the present study, we analyzed the transport mechanism of the viral genome to dendrites. We identified specific sequences of the 5′ untranslated region of TBEV genomic RNA that act as a *cis*-acting element for RNA transport. Mutated TBEV with impaired RNA transport in dendrites caused a reduction in neurological symptoms in infected mice. We showed that neuronal granules, which regulate the transport and local translation of dendritic mRNAs, are involved in TBEV genomic RNA transport. TBEV genomic RNA bound a RNA-binding protein of neuronal granules and disturbed the transport of dendritic mRNAs. This is the first report of a neuropathogenic virus hijacking the neuronal granule system for the transport of viral genomic RNA in dendrites, resulting in severe neurological disease.

Significance statement

Flaviviruses represent a significant threat to public health worldwide, and several flaviviruses cause severe neurological disease in humans and animals. However, no specific treatment has been developed due to the lack of information about the detailed pathogenic mechanisms. In current study, we revealed that the transport of the viral RNA of tick-borne flavivirus in neuronal dendrites was involved in the development of the neurological disease. The virus hijacked the transport system of host mRNA in dendrites, which is important for neuronal functions, such as neurogenesis and the plasticity of the synaptic communication. Our findings of this unique virus-host interaction will promote the study of neurodegenerative diseases caused by disruption of dendritic mRNA transport and development of their treatment.
Introduction

Flavivirus is a genus in the family *Flaviviridae* and has a single-stranded RNA with positive polarity serving as an mRNA for translation (1). The genome encodes one polyprotein, which is post-translationally cleaved into three structural and seven non-structural (NS) proteins, within a single long coding sequence (CDS). The structural and NS proteins form a virus particle and a viral replication complex, respectively. The 5′ and 3′ untranslated regions (UTRs) are involved in the stability, translation, and replication of the genomic RNA (2, 3). The genus *Flavivirus* contains more than 70 members, many of which are arthropod-borne pathogens distributed all over the world (4). Many outbreaks have been reported, and flaviviruses have been attracting global attention as emerging or re-emerging infectious diseases (5, 6).

Some of the pathogenic flaviviruses, such as Japanese encephalitis virus, West Nile virus (WNV), and tick-borne encephalitis virus (TBEV), are neurotropic and cause encephalitic disease (4). The encephalitic flaviviruses histologically induce typical nonsuppurative encephalitis (4, 7). However, differences in neurological symptoms were observed in the flaviviruses, and neurologic manifestations such as photophobia, irritability, and sleep disorders are characteristically observed following TBEV infection (8, 9). These differences in the symptoms have suggested that the pathogenic mechanism in neurons may differ in the encephalitic flaviviruses. Previously, we reported that the genomic RNA of TBEV was specifically transported from the cell body to dendrites and replicated locally in dendrites in primary cultures of mouse neurons (10). Genomic RNA transport and local replication are thought to be important in the pathogenesis of neurological diseases that are result of TBEV infection, although their detailed mechanism are not well understood.

It has been reported that mRNAs are transported and locally translated in neuronal dendrites (11). Specific mRNAs form a complex, called a neuronal granule, with several RNA-binding proteins (RBPs), and are transported along microtubules to dendrites in a kinesin-dependent manner. Transport of the mRNA and local translation in neuronal dendrites have been shown to be important for neurogenesis and the plasticity of the synaptic communication (12, 13). Furthermore, disruption of the neuronal granule system has been shown to be involved in mental retardation and neurodegenerative diseases, such as fragile X syndrome (14), autism...
spectrum disorder (15), and Alzheimer’s disease (16). We hypothesized that the genomic RNA of TBEV is also transported by neuronal granules, resulting in the severe neurological symptoms caused by TBEV infection.

In this study, we investigated the mechanism of the transport of TBEV genomic RNA transport to the dendrites in neurons. We identified a cis-acting element in the viral genomic RNA important for transport. Genomic RNA transport contributed to the development of neurological symptoms following TBEV infection. TBEV genomic RNA interacted with an RBP of neuronal granules and disturbed the transport dendritic mRNAs using neuronal granules for dendritic transport.

Results

1. 5’ UTR of TBEV is a cis-acting element important for RNA transport to neurites.

PC12 cells differentiate into neuronal phenotype and form neurites in the presence of neuronal growth factors. To examine whether the genomic RNA of TBEV is transported to neurites in differentiated PC12 cells, as observed in primary neurons (10, 17), the PC12 cells were infected with TBEV. Accumulations of viral antigen and fluorescent in-situ hybridization (FISH) signal for TBEV genomic RNA were observed in the neurites (Fig. S1), as seen in the dendrites of the primary neurons.

To analyze the RNA region required for transport, plasmids expressing RNA for a luciferase CDS fused with partial sequences of the TBEV were constructed (Fig. 1A). Expressed RNA with TBEV UTRs was detected in neurites, but those with any of the CDS for the viral proteins were not (Fig. 1B and C), indicating that the UTRs of TBEV, but not viral proteins, were important for the transport of mRNA to neurites.

In our previous study, we observed the viral antigen accumulations in dendrites of cells infected with tick-borne flaviviruses, but not in those infected with mosquito-borne WNV (10). We hypothesized that this difference could be caused by differences in the UTRs and constructed plasmids expressing luciferase mRNA with the UTRs of TBEV or WNV (Fig. 1D). The mRNAs expressed with the 5’ UTR of TBEV were localized to neurites, while those with the 5’ UTR of WNV were not, regardless of the 3’ UTR sequences (Fig. 1E and F). Complete deletion of the 3’ UTR drastically reduced the expression of the RNAs in reporter assay,
indicating that the 3′ UTR was involved in the stability of the RNAs (Fig. S2A). These data suggest that the 5′ UTR of TBEV contains a motif required for the transport of mRNA to neurites.

There are two stem-loop (SL) structures (SL-1, nucleotide (nt) 4–103 and SL-2, nt 107–128) predicted in the 5′ UTR of TBEV (18) (Figs. 2A and S3). A plasmid with deletion of SL-1 or SL-2 in the 5′ UTR was constructed to analyze the importance of these structures in transport (Fig. 2A). The mRNA with deletion of SL-1 was still detected in the neurites, while deletion of SL-2 abolished the localization (Fig. 2B and C). These data indicated that the SL-2 region of TBEV 5′ UTR is required for mRNA transport.

To further analyze the role of SL-2, we introduced mutations in the SL-2 region of pCMV-Luc (5′ TBEV/3′ TBEV). The mutations of SL-2 loop G-U and C-U were designed without affecting formation of the stem structure. The mutations of SL-2 stem were designed to dissociate the stem structure (Fig. 2D). After transfection of PC12 cells, the mutation of SL-2 loop G-U or SL-2 stem slightly decreased the signals in the neurites. However, the mRNAs with the mutation was still detected in the neurites, and showed no significant difference from those of TBEV wild-type (wt). The mRNAs with the SL-2 loop C-U mutation were not detected in the neurites completely (Fig. 2E and F). These indicated that C at nt position 120 in SL-2 is the most important in the transport of mRNA to neurites.

2. Mutation-impeding genome transport to dendrites attenuated the neurological symptom of TBEV

To construct a mutant TBEV lacking the ability to transport the genome in dendrites, a C-to-U mutation at nt position 120 in the 5′ UTR was introduced into the infectious clone of TBEV. The recovered mutant virus (SL-2 loop C-U) grew relatively slower until 24 h post-infection (h.p.i.), but caught up with that of TBEV wt by 48 h.p.i. in primary cultures of mouse neurons (Fig. S4). Viral genomic RNA was detected in the dendrites infected with TBEV wt, but the signal in dendrites was weak in SL-2 loop C-U-infected cells (Fig. 3A). Number of the viral antigen accumulation in the dendrites also decreased significantly in cells infected with SL-2 loop C-U (Fig. 3A and B), indicating that the C-U mutation of the SL-2 loop significantly decreased the transport of genomic RNA to dendrites.

To evaluate the effects of TBEV genome transport on the pathogenesis in mice, C57BL/6 mice were
inoculated with TBEV wt or SL-2 loop C-U intracerebrally. No differences in morbidity or mortality were observed between the two groups (Fig. 3C). Slightly prolonged survival time (TBEV wt, 7.9 ± 0.46 d post-infection (d.p.i.); SL-2 loop C-U, 8.9 ± 0.68 d.p.i.; p < 0.02) were observed in the mice infected with SL-2 loop C-U. The number of mice showing severe neurological symptoms was reduced (TBEV wt, 70%; SL-2 loop C-U, 30%), and the level of cerebellar ataxia of infected mice was scored and was found to be significantly lower from 5 to 7 d.p.i. in mice infected with SL-2 loop C-U (Fig. 3D). The virus titer was lower in the brain infected with SL-2 loop C-U at 3 d.p.i., but caught up with TBEV wt at 6 d.p.i. (Fig. 3E). No reversion or compensatory mutation in the 5′ UTR was found in the mice infected with SL-2 loop C-U. Thus, preventing the transport of the genome did not affect the lethality after viral multiplication, but attenuated the neurological symptoms of TBEV in mice.

3. Role of neuronal granules in viral genome transport

Neuronal granules have been shown to regulate the transport of mRNAs and local protein translation in neuronal dendrites (11). We hypothesized that neuronal granules are involved in the transport of TBEV genomic RNA and local viral replication. Colocalization of viral proteins and RNA to RBPs in neuronal granules, such as, fragile X mental retardation protein (FMRP), RNA granule protein 105 (RNG105), and Staufen, was analyzed in primary neurons infected with TBEV wt or SL-2 loop C-U. Viral antigen accumulation, viral RNA and the RBPs were detected in the same neurites infected with TBEV wt (Figs. 4, S5 and S6), suggesting that TBEV genomic RNA was transported via the neuronal granule. However, their detailed localizations varied. FMRP colocalized with viral antigen and was recruited into the site of the viral antigen in the dendrites. Signals of FMRP in the neurites increased significantly in the neuron infected with TBEV wt (Figs. 4 and S5). In contrast, RNG105 surrounded the accumulation of viral antigen, but did not completely colocalize with the viral protein. (Figs. 4 and S5).

To further analyze the interaction of the neuronal granule RBPs and viral genomic RNA, binding of FMRP to the genomic RNA of TBEV was examined. In vitro synthesized RNAs of the full-length TBEV genome were mixed with Flag-tagged FMRP expressed in human embryonic kidney cells 293T. RNAs that
coimmunoprecipitated with FMRP were detected by reverse transcription (RT-) PCR. RNAs for TBEV wt coimmunoprecipitated with FMRP, while RNAs with C-to-U mutation at nt 120 in the SL-2 region showed decreased binding (Fig. 5A). A missense mutation (I304N) was identified in the second K homology domain of the FMRP gene of a fragile X syndrome patient and shown to be involved in altered RNA binding and transport (19, 20). This mutation was found to drastically reduce the binding of FMRP to TBEV genomic RNA (Fig. 5B). These results indicated that SL-2 region of TBEV 5′ UTR, important for the transport, is also critical for binding to an RBP of neuronal granule, FMRP. It was also shown that the transported TBEV genomic RNA altered the distribution of bound FMRP in neuronal granules.

To evaluate the effect of TBEV genome transport on neuronal function, the distribution and expression of host mRNAs for Arc, brain-derived neurotrophic factor (BDNF), and Ca^2+/calmodulin-dependent protein kinase II α (CaMKIIα) were examined in primary neurons infected with TBEV wt or SL-2 loop C-U. The mRNA signals in dendrites, especially the mRNA of BDNF, decreased significantly in neurons infected with TBEV wt but not in those infected with SL-2 loop C-U (Fig. 6). The expression of the mRNAs was reduced more by infection of TBEV wt than SL-2 Loop C-U (Fig. S7). These results indicate that the transport of TBEV genomic RNA disturbed that of host dendritic mRNAs.

Discussion

The transport of TBEV genomic RNA occurred independently of viral proteins and differed from that of other neurotropic viruses. Dendritic and axonal transport of viral genomes has been reported in several neurotropic DNA and RNA viruses (21). The genomic DNA of herpes simplex virus type 1 and 2 (Herpesviridae) undergo anterograde or retrograde transport through the binding of viral proteins with host motor proteins (22). Virions of poliovirus (Picornaviridae) are known to be incorporated into synaptic vesicles during anterograde transport (23). Complexes of nucleoprotein and genomic RNA of rabies virus (Rhabdoviridae) are transferred via retrograde processes (24). The genomes of these viruses require their viral proteins for transport, while our data showed that the transport of TBEV genomic RNA in dendrites occurs independently of the viral proteins and is regulated by the UTR of the genomic RNA itself (Figs. 1 and 2).
Besides, the viral genome of reported neurotropic viruses usually replicated in the neuronal cell body. However, transported TBEV genomes replicate locally in the dendrites, which has not been reported in other neurotropic viruses.

The 5′ UTR of TBEV was demonstrated to have a function in RNA transport, in addition to protein translation and genome replication. The UTRs of flavivirus are important for many functions in viral multiplication. The complementary sequences in the 5′ and 3′ UTRs cyclize the viral genome, which is essential for viral genome replication (2, 3, 18). SL-1 in the 5′ UTR is thought to recruit the nonstructural protein 5 (NS5) protein for genome replication (3, 25). The loop C-U mutation introduced to the recombinant TBEV overlapped with the cyclization sequences and therefore may affect genome cyclization, resulting in delayed viral growth and decreased neurological symptoms (Figs. 3D, 3E and S4). However, RNA with the TBEV 5′ UTR and WNV 3′ UTR, which could not cyclize the RNA, was efficiently transported to the neurite, indicating that transport was independent of the TBEV 3′ UTR and genome cyclization (Fig. 1D–F). In addition, reporter assay revealed that, regardless of the transport of the genome, the mutations introduced to 5′ UTR did not affect RNA stability or translation efficiency, but the deletion of 3′ UTR drastically reduced the stability (Fig. S2). These results suggest that genome transport via the SL-2 region is independent of other known functions of 5′ UTR, and that the TBEV 3′ UTR was not directly involved in the transport although it stabilized the RNA.

SL-2 in the 5′ UTR of TBEV genomic RNA was shown to be a unique viral cis-acting element important for the transport of mRNA. Mutant RNA that cannot form the stem structure (SL-2 stem) was still transported to dendrites (Fig. 2D–F). The mutation in the SL-2 loop region that reduced transport also resulted in reduced binding to an RBP in neuronal granules (Fig. 5A). These results indicated that the transport signal may be regulated by the intact sequence of the SL-2 region via the binding to RBPs. Several studies have reported signals of transport and recognition by RBP(s) of some dendritic mRNAs, such as CaMKIIα (26), postsynaptic density protein 95 (PSD-95) (27), and BDNF (28). However, the consensus sequence or motif for mRNA transport has not been elucidated, and the SL-2 sequence does not contain sequences similar to known transport signals. The transport of TBEV genomic RNA reduced the transport of dendritic mRNA, especially...
BDNF mRNA (Fig. 6). The genomic RNA of TBEV and dendritic mRNA may share competing RNA
sequences or structures required for transport. This information regarding the viral signal element will
contribute to further understanding of the transport mechanism of dendritic mRNA which is important for
neuronal functions.

RBPs, such as FMRP (14, 29), Staufen (12), and RNG105 (13), are primary components of the neuronal
granule and regulate RNA transport and local translation. Our data showed that FMRP interacted with the
genomic RNA of TBEV and accumulated at the site of local TBEV replication (Figs. 4, 5, S5 and S6), while
Staufen and RNG105 did not. It is possible that this unusual localization of FMRP disrupted the local
translation of host dendritic mRNAs bound to FMRP in dendrites, resulting in the development of
neurological disease.

The neurological symptoms of TBEV in mice were exacerbated by genome transport and local
replication in dendrites. The defect of the transport of the TBEV genomic RNA did not affect the lethality
following to viral encephalitis, but was involved in the attenuation of neurological symptoms (Fig. 3).
Neurological symptoms caused by the RNA transport might be somehow independent of the lethality by
encephalitis. Recent studies have shown that disruption of the transport and local translation of dendritic
mRNAs is involved in many neurodegenerative disorders. In fragile X syndrome, mutations and silencing of
the FMRP gene caused dysregulation of the local translation of the dendritic mRNAs, such as the
metabotropic glutamate receptor (mGluR), and CaMKIIα, resulting in abnormalities of morphology and
dendritic function (14, 29). BDNF mRNA and its signaling pathway in dendrites has been shown to be
involved in Alzheimer’s disease (30). In this study, we showed that TBEV infection caused the unusual
localization of FMRP in dendrites (Fig. 4) and that TBEV genomic RNA transport reduced the expression and
transport of host dendritic mRNAs by neuronal granules (Figs. 6 and S7). It was reported that neuronal RNA
granules and FMRP were involved in mRNA stability (31). It is possible that TBEV genomic RNA disturbed
binding of FMRP to dendritic mRNAs, and that the unbound RNAs were not transported by neuronal granule,
resulting in their degradation. These data indicated that the disturbed transport of host dendritic mRNA by
TBEV caused neuronal dysfunction, exacerbating the neurological symptoms in TBEV infected mice. Our
previous report (10) showed that the local replication of TBEV altered the membrane structure in dendrites, suggesting that dendritic degeneration caused by this membrane alteration may also be involved in neuronal dysfunction.

The sequence of the SL-2 region is completely conserved among tick-borne flaviviruses, but not among mosquito-borne viruses (Fig. S8). Our previous study showed that various tick-borne flaviviruses replicate locally in the dendrites (10). In the transmission cycle of tick-borne flaviviruses, ticks get infected through blood suckling of viremic mammals or co-feeding of infected ticks. Viral infection and replication in the central nervous system of mammals are considered non-essential processes for transmission (4). A recent study showed that the UTR sequence that regulates the innate immune system was important for the epidemiological fitness of Dengue virus in a human epidemic (32). It has also been suggested that the tick FMRP ortholog is involved in the tick RNAi pathway (33). Binding of the SL-2 to the tick FMRP or related protein might be important for tick-borne flaviviruses to evade RNAi pathway, resulting in conservation of the sequences.

In this study, we revealed the mechanism of transport of TBEV genomic RNA in neuronal dendrites and demonstrated the involvement of this transport in the development of neurological disease caused by TBEV infection. We propose a model of viral replication and neuronal dysfunction in dendrites caused by TBEV infection (Fig. S9). The genomic RNA of TBEV is transported with RBPs in a neuronal granule. Transport of the viral RNA disturbed that of the host dendritic mRNAs and disrupts the distribution of the components of neuronal granules, such as FMRP. Local replication of the viral genomic RNA in dendrites causes degeneration of the dendrites as shown in our previous study (10). The transport and local replication of the viral RNA may result in neuronal dysfunction leading to the neurological symptoms observed with TBEV infection. To our knowledge, this is the first report showing the hijacking of the neuronal granule system by a neuropathogenic virus for the transport of viral genomic RNA in dendrites. The description of this unique virus-host interaction will improve further understanding of the molecular mechanisms of viral replication and the pathogenicity of neurotropic viruses. It will also promote the study of neurodegenerative diseases caused by disruption of dendritic mRNA transport and could lead to the development of treatment options with
virus-based vectors that can transport and express target genes locally in dendrites.

Methods

Localization analysis

Differentiated PC12 cells or primary neuronal cultures of mouse embryo were infected with TBEV or transfected with RNA expression plasmids. The localizations of the RNAs and proteins were analyzed by indirect immunofluorescence assay and FISH.

Animal model

C57/BL6 mice were inoculated with 100 plaque forming units of TBEV. Surviving mice were monitored for 14 days, and levels of paralysis and neurological symptoms were evaluated. The President of Hokkaido University approved all animal experiments after review by the Animal Care and Use Committee of Hokkaido University (approval no. 13025).

RNA-binding assay

In-vitro synthesized RNAs for TBEV genome were mixed with Flag-FMRP expressed in 293T cells. Following immunoprecipitation with anti-Flag antibody, co-precipitated TBEV RNA was detected by RT-PCR.

Method details were described in supplemental methods.

Acknowledgements

We would like to thank Dr. T. Igarashi (Kyoto University, Kyoto, Japan) and Dr. N. Shiina (National Institute for Basic Biology, Okazaki, Japan) for kindly providing us the plasmid expressing TBEV replicon RNA and providing us the antibodies against RNG105, respectively. We are grateful to Ms. M. Ishizuka for technical assistance in the experiments.

This work is supported by Grants-in-Aid for Scientific Research (24780293, 25304040, 25304040, 26660220, 15J00686, 15K19069, 16J00854 and 16K15032) from the Ministry of Education, Culture, Sports, Sciences and Technology of Japan, The Research Program on Emerging and Re-emerging Infectious Diseases...
from Japan Agency for Medical Research and development, AMED, Grants-in-Aid for Regional R&D Proposal-Based Program from Northern Advancement Center for Science & Technology of Hokkaido Japan, Grants-in-Aid for Medical Research from Takeda Science Foundation, and the grand provided by The Ichiro Kanehara Foundation. M. H. and M.M. were supported by a JSPS Grant for Young Scientists.

References

Figure Legends

Figure 1. 5' untranslated region (UTR) of tick-borne encephalitis virus (TBEV) functions as a signal of RNA transport to the neurites of PC12 cells.

Differentiated PC12 cells were transfected with the plasmids expressing the RNA of luciferase with TBEV sequences (A-C) or with TBEV/West Nile virus (WNV) UTRs (D–F). Following fixation, the cells were hybridized with a fluorescent RNA probe for the *luciferase* gene (green), and stained with DAPI (blue) and antibodies against microtubule-associated protein 2 (MAP2; magenta). Fluorescent in-situ hybridization (FISH) signal in the neurites was analyzed from the Z-stack images from five independent microscopic fields. (A) A coding sequence (CDS) for *luciferase* (gray square) was cloned with or without the partial sequence for TBEV replicon RNA. (B, E) Fluorescence images and (C, F) fluorescence intensity in the PC12 neurites. (D) A CDS for luciferase was cloned with/without the 5' and 3' UTRs of TBEV (black line) and WNV (striped line). Scale bars indicate 5 μm in length. White arrows indicate the FISH signal for luciferase RNA in the neurites. Error bars represent standard error (SEM); **p < 0.02 and *p < 0.05.

Figure 2. Analysis of the roles of the stem-loop structure of TBEV 5' UTR in genome transport.

Differentiated PC12 cells were transfected with the plasmids expressing the mRNA of luciferase with the UTRs of TBEV with deletion (A−C) or the mutation (D–F) of 5' UTR. Following fixation, the cells were hybridized with a fluorescent RNA probe for the *luciferase* gene (green), and stained with DAPI (blue) and antibodies against MAP2 protein (magenta). FISH signal in the neurites was analyzed from the Z-stack images from five independent microscopic fields. (A) Schematic diagram of the predicted RNA-secondary structure (upper) and the constructs expressing mRNA with a deletion (lower) are shown. The 5' UTR has a predicted branched stem loop (SL-) structures (SL-1) and single SL-structure (SL-2). The SL-1 or the SL-2
regions were deleted in pCMV-Luc (5' TBEV/3' TBEV). (B, E) Fluorescence images and (C, F) fluorescence intensity in the PC12 neurites. (D) Schematic diagram of the sequence and RNA secondary structure of the TBEV SL-2 and the constructs used to analyze the role of SL-2 in transport. G-to-U, C-to-U in loop, or four mutations in stem were introduced in pCMV (5' TBEV/3' TBEV). Scale bars indicate 5 μm in length. White arrows indicate the FISH signal for luciferase RNA in the neurites. Error bars represent SEM; **p < 0.02 and *p < 0.05.

Figure 3. Mutation impeding genome transport to dendrites attenuated the neurological symptoms caused by TBEV infection.
(A, B) Primary mouse neurons were infected with TBEV wild-type (wt; black squares with continuous lines) or SL-2 loop C-U (white circles with broken lines) at a multiplicity of infection (MOI) of 0.1. (A) The cells were fixed at 48 h.p.i. and the viral proteins and viral genomic RNAs were stained with IFA (upper panels, magenta) and FISH (lower panels, green), respectively. (B) Viral antigen accumulation was counted at 24, 48, or 72 h.p.i. in five independent microscopic fields. White scale bars indicate 5 μm in length. White arrows indicate viral antigen accumulation or the viral genome in dendrites. (C–E) Five-week-old male C57BL/6 mice were inoculated with 100 plaque forming units of TBEV wt or SL-2 loop C-U intracerebrally. (C) The Kaplan–Meier survival estimate was calculated (n = 10). (D) The neurological score of the mice (n = 5) was examined until 8 d post-infection (d.p.i.). (E) The mice were sacrificed at 3 or 6 d.p.i. (n = 3), and the viral titer in the brain were analyzed. Continuous and broken lines indicate the average of viral titer in the brain infected with TBEV wt and SL-2 loop C-U, respectively. Error bars represent SEM; **p < 0.02 and *p < 0.05.

Figure 4. Localization of the RNA-binding proteins (RBPs) of neuronal granule in neuron infected with TBEV.
Primary mouse neurons were uninfected or infected with TBEV wt or SL-2 loop C-U at an MOI of 0.1. The cells were fixed at 48 h.p.i and stained with antibodies against fragile X mental retardation protein (FMRP), RNA granule protein 105 (RNG105), or Staufen (green), and antibodies against viral proteins (magenta). (A) Fluorescent images of the neurons. (B) The signals of RBPs in the cell body or neurites were analyzed in Z-Stack images of five microscopic fields. Error bars represent SEM; **p < 0.02 and *p < 0.05.

Figure 5. Interaction between the RBP of a neuronal granule and the genomic RNA of TBEV.
Full-length RNAs of TBEV wt (wt) or of SL-2 loop C-U (C-U) (A) was mixed with cell lysate expressing Flag-FMRP wt (wt) or I304N (B). The mixture was immuneprecipitated (IP) with beads with anti-Flag antibody (Flag) or beads only (Control), and precipitated protein and RNA were detected by Western blotting.
(WB) and reverse transcription (RT-) PCR, respectively. Right panels show expression of the FMRP wt or I304N in total cell lysate.

Figure 6. TBEV infection and transport of viral RNA disrupted the localization of dendritic mRNAs.

Primary mouse neurons were infected with TBEV wt or SL-2 loop C-U at an MOI of 0.1. (A) The cells were fixed at 48 h.p.i. and mRNA for Arc, brain-derived neurotropic factor (BDNF), or Ca\(^{2+}\)/calmodulin-dependent protein kinase II α (CaMKIIα) was stained by FISH (green). Scale bars indicate 5 μm in length. (B) Fluorescent signal of the mRNA for Arc, BDNF, or CaMKIIα in dendrites were measured in ten areas of interest (AOI). Error bars represent SEM; **p < 0.02 and *p < 0.05.
<table>
<thead>
<tr>
<th></th>
<th>Flag-FMRP</th>
<th>wt</th>
<th>wt</th>
<th>wt</th>
<th>wt</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBEV RNA</td>
<td>Flag</td>
<td>wt</td>
<td>-</td>
<td>C-U</td>
<td>wt</td>
</tr>
<tr>
<td>IP</td>
<td>Flag</td>
<td>Flag</td>
<td>Flag</td>
<td>Flag</td>
<td>Control</td>
</tr>
<tr>
<td>WB (FMRP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Flag-FMRP</th>
<th>wt</th>
<th>I304N</th>
<th>wt</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBEV RNA</td>
<td>-</td>
<td>wt</td>
<td></td>
<td>wt</td>
</tr>
<tr>
<td>IP</td>
<td>Flag</td>
<td>Flag</td>
<td>Flag</td>
<td>Flag</td>
</tr>
<tr>
<td>WB (FMRP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

- Total cell lysate
- WB (Flag)
- Mock wt
- I304N

RT-PCR (TBEV)
A

Uninfected	TBEV wt	SL-2 loop C-U
Arc mRNA | Arc mRNA | Arc mRNA
BDNF mRNA | BDNF mRNA | BDNF mRNA
CaMKIIa mRNA | CaMKIIa mRNA | CaMKIIa mRNA

B

Arc mRNA

<table>
<thead>
<tr>
<th>Condition</th>
<th>FI (Arc) / AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uninfected</td>
<td>6.0 ± 0.5</td>
</tr>
<tr>
<td>TBEV wt</td>
<td>4.0 ± 0.4</td>
</tr>
<tr>
<td>Loop C-U</td>
<td>5.0 ± 0.6</td>
</tr>
</tbody>
</table>

BDNF mRNA

<table>
<thead>
<tr>
<th>Condition</th>
<th>FI (BDNF) / AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uninfected</td>
<td>8.0 ± 0.8</td>
</tr>
<tr>
<td>TBEV wt</td>
<td>2.0 ± 0.2</td>
</tr>
<tr>
<td>Loop C-U</td>
<td>6.0 ± 0.6</td>
</tr>
</tbody>
</table>

CaMKIIa mRNA

<table>
<thead>
<tr>
<th>Condition</th>
<th>FI (CaMKIIa) / AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uninfected</td>
<td>6.0 ± 0.6</td>
</tr>
<tr>
<td>TBEV wt</td>
<td>3.0 ± 0.3</td>
</tr>
<tr>
<td>Loop C-U</td>
<td>5.0 ± 0.5</td>
</tr>
</tbody>
</table>