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A new trial wave function is proposed for nuclear cluster physics, in which an exact solution
to the long-standing center-of-mass problem is given. In the new approach, the widths of the
single-nucleon Gaussian wave packets and the widths of the relative Gaussian wave functions
describing correlations of nucleons or clusters are treated as variables in the explicit intrinsic
wave function of the nuclear system. As an example, this new wave function was applied to
study the typical 20Ne (α+16O) cluster system. By removing exactly the spurious center-of-mass
effect in a very simple way, the energy curve of 20Ne was obtained by variational calculations
with the width of the α cluster, the width of the 16O cluster, and the size parameter of the nucleus.
These are considered the three crucial variational variables in describing the 20Ne (α+16O) cluster
system. This shows that the new wave function can be a very interesting new tool for studying
many-body and cluster effects in nuclear physics.
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The many-body problem in quantum physics is one of the great challenges in various fields, e.g.,
quantum chemistry [1], condensed matter physics [2], and nuclear physics [3], in which the non-
negligible correlations are encoded in the extreme complexity of the many-body wave function. In
many-body theory [4–6], a good trial wave function is a key ingredient for describing a physical
system. However, the construction of a suitable many-body trial wave function has never been easy.
The accumulating evidence strongly suggests that a good many-body trial wave function should
not only have clear physical significance but also should possess a quite suitable form for practical
massive calculations.

The nuclear system is a natural laboratory for the quantum many-body problem. In recent years, a
variety of true quantum many-body wave functions were proposed for the study of nuclear dynamics,
most of which are represented as Slater determinants but employ different degrees of freedom for the
dynamical evolution of nuclear systems [7]. Antisymmetrized molecular dynamics (AMD) [8–10]
is one representative of many-nucleon wave functions, in which the spatial part of the single-particle
basis is expressed by the Gaussian packet exp[−(ri−Z i)

2/(2b2)] with a common harmonic oscillator
width b and different position variables {Z i}. By superposing many Slater determinants with the
obtained optimum values {Z i}, correlations of nucleons can be obtained and the clustering and mean-
field effects in light nuclei are studied well in the framework of AMD [11]. Fermionic molecular
dynamics (FMD) [12,13] is another more sophisticated many-body wave function. In FMD, not only
the Gaussian wave packet centers {Z i} but also the widths {bi} become dynamical variables rather
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than a constant parameter. The importance of dynamic wave packet widths has been discussed in
many works [14–17]. For example, this nonclassical degree of freedom {bi} plays an important role
in the description of phenomena like evaporation, heavy-ion collisions, and fusion (see details in
Refs. [18,19]).

Due to the introduction of width variables {bi} in FMD, one prominent problem is that the spurious
center-of-mass effects cannot be treated well, especially in the time-dependent version of FMD [19].
Also, the conventional approximate center-of-mass projection technique takes too much numerical
effort. Take the two-nucleon system as a simple example. This problem can serve as an example of
how to factorize the following expression in the total center-of-mass motion (X cm = (X 1 + X 2)/2)
part and the relative motion (X rel = X 2 − X 1) part:

exp[−X 2
1 /(2b2

1) − X 2
2 /(2b2

2)] (1)

= exp[−α X 2
cm] exp[γ X cm·X rel] exp[−α/4 X 2

rel], (2)

where α = (1/b2
1 +1/b2

2)/2 and γ = (1/b2
1 −1/b2

2)/2. Clearly, it seems that the only way to remove
the spurious center-of-mass cross term exp[γ X cm·X rel] is to let the widths b1 = b2, which is just the
traditional view for this center-of-mass problem. Kiderlen and Danielewicz [20] introduced a width
matrix to fix this problem but the antisymmetrization was not treated properly in their method. Indeed,
not only is FMD, the single-particle basis with the width variable, widely used in nuclear physics but
the nontrivial center-of-mass problem is always a dilemma for the many-body trial wave function
(e.g., see Refs. [19,21]). In shell-model calculations, to remove spurious center-of-mass states, many
specific methods [22–24] have been proposed based on the character of the harmonic oscillator basis.
For example, Lawson’s method [25] has conventionally been used in shell-model calculations; this
introduces a shifted center-of-mass Hamiltonian multiplied by a constant parameter. This method
does not require explicit construction of spurious states; nevertheless, it cannot be generalized to
deal with other many-body wave functions.

In nuclear cluster physics, the same center-of-mass problem arises because of the width vari-
ables; actually it is a long-standing problem [26]. Firstly, as we know, in the old resonating group
method (RGM) [27,28], the trial wave function is expressed in terms of the translationally invariant
coordinates and the width variables can be naturally included without the center-of-mass problem.
Nevertheless, it is just because of this kind of construction that the practical evaluation is becoming
very tedious. This disadvantage is partly overcome within the generator coordinate method (GCM), in
which the many-body wave function can be expressed as the superposition of the Slater determinants.
However, when dealing with different width problems, the center-of-mass part cannot be separated
in the traditional Brink wave function [29] and other microscopic cluster wave functions [30]. The
double Fourier transformation [14,26,31] from GCM to RGM is a main solution for this width prob-
lem. This kind of method is still very complicated and not so practical for calculations. Therefore,
in most present GCM calculations, the widths of the single-particle basis from different clusters are
always assumed to have the same values in order to factorize exactly the total center-of-mass motion
part; this has been addressed in numerous papers [32].

Quite recently, originating from the THSR (Tohsaki–Horiuchi–Schuck–Röpke) wave function
[33,34], a new container picture [35–37] was proposed for the description of cluster structure in light
nuclei. The essential point of the container picture is that a completely new dimension or degree
of freedom was clarified, i.e., the size variable {Bi} or the width variable of the relative Gaussian
wave function. It was found that, from the typical nα nuclei [38] and neutron-rich nuclei [39,40]
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to hypernuclei [37,41,42], the size variable {Bi} can be considered as a true dynamical quantity for
describing the correlations of nucleons or clusters, going beyond the traditional inter-cluster distance
variable [37]. This introduced size variable {Bi} is the degree of freedom of the center-of-mass of
clusters and this kind of correlation can only be activated by superposing more Slater determinants.
Therefore, the width {Bi} is found to be a new dimension for cluster correlations and it can be
considered as a comparatively independent degree of freedom compared with {Z i} and {bi} in the
many-body wave function.

In this letter, I will introduce a new many-body wave function, in which the degrees of freedom
{bi} and {Bi} as well as {Z i} will be employed in a very simple way. Most importantly, the key
center-of-mass problem can be solved exactly in the new framework.

I begin with an antisymmetric A-nucleon Slater determinant wave function:

�0(r) = 1√
A!A[φ1(r1) · · · φA(rA)]. (3)

Here, the notation r = {r1, . . . , rA} is used. The single-nucleon wave function φi(ri) can be described
by a Gaussian wave packet with different widths bi, spins χσi , and isospins χτi variables:

φi(ri) =
(

1

πb2
i

)3/4

e
− r2

i
2b2

i ⊗ χτi ⊗ χσi . (4)

The nucleons can be distributed into different positions from the origin by a shift operator ̂D defined
as ̂D(R)�0(r) = �0(r − R). The obtained �0(r − R) is nothing new but just the many-body FMD
nucleon wave function [13]. It is convenient to treat �0(r −R) as a general cluster wave function for
discussing the nucleon wave function and the cluster wave function in a unified way. In this case, the
A nucleons can be classified into n groups or clusters and the corresponding generator coordinates
are R = {R1, . . . , Rn} (1 ≤ n ≤ A). The Ai nucleons belonging to the ith cluster have the same
width bi and they are centered around Ri. The nucleon wave function can be included when all the
clusters become single nucleons in this general cluster wave function. It should be noted that the
single-nucleon wave function φi(ri) can also be the higher harmonic oscillator shell-model wave
function in Eq. (3).

First, to deal with the center-of-mass problem from the width variables, I construct a many-body
integral operator:

̂Gn(β0) =
∫

d3R1 · · · d3Rnexp

[
−

n∑
i=1

AiR2
i

β2
0 − 2b2

i

]
̂D(R). (5)

With the auxiliary generator coordinate R, this ̂Gn(β0) operator can perform a simple integral trans-
formation for exactly separating the center-of-mass part from a many-body wave function with or
without antisymmetrization. Taking a simple two-cluster example, essentially, the wave function of
the center-of-mass motion of the two clusters can be factored out as

̂G2(β0) exp[−A1X 2
1 /(2b2

1) − A2X 2
2 /(2b2

2)] (6)

∝ exp

[
− A

β2
0

X 2
cm

]
exp

[
−A1A2

Aβ2
0

X 2
rel

]
, (7)

where the center-of-mass X cm = (A1X 1 + A2X 2)/A and the relative dynamics coordinate
X rel = X 2 − X 1. X 1 and X 2 are the center-of-mass coordinates of the two clusters, respectively.
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Next, to extend the spirit of the container picture to a description of general nuclear systems, a
correlation operator can be created:

̂Ln−1(β) =
∫

d3T̃1 · · · d3T̃n−1exp

[
−

n−1∑
i=1

T̃ 2
i

β2
i

]
̂D(T). (8)

Here, the similar notions β = {β1, . . . , βn−1}, T = {T1, . . . , Tn}, and T̃ = {T̃1, . . . , T̃n−1} are used.
It should be noted that T̃ is the Jacobi coordinate of T :

T̃ k = T k+1 −
k∑

i=1

AiT i/

k∑
i=1

Ai. (9)

The total center-of-mass coordinate of the generator coordinate T is set to zero. In practical inte-
grations, T can be expressed by T̃ using the substitution of the variable. The correlation operator in
Eq. (8) provides us with a very simple way to unfreeze the conventional fixed width variable of the
Gaussian relative wave function.

Finally, complete with the necessary building blocks, a new many-body wave function is
constructed as

�new = ̂Ln−1(β)̂Gn(β0)̂D(Z)�0(r) (10)

=
∫

d3T̃1 · · · d3T̃n−1exp

[
−

n−1∑
i=1

T̃ 2
i

β2
i

]∫
d3R1 · · · d3Rn (11)

× exp

[
−

n∑
i=1

(
Ai

β2
0 − 2b2

i

)
(Ri − Z i − T i)

2

]
�0(r − R) (12)

= n0 exp

[
− A

β2
0

X 2
cm

]
A
{

n−1∏
i=1

exp

[
− 1

2B2
i

(ξ i − Si)
2

]
n∏

i=1

φint
i (bi)

}
. (13)

Here n0 is the trivial coefficient factor. X cm is the total center-of-mass dynamical coordinate. The
center-of-mass coordinate of the generator coordinates Z is set to zero. ξ and S are the Jacobi
coordinates of the dynamic coordinate X i and the generator coordinate Z i, respectively. φint

i (bi) is
the ith-cluster intrinsic wave function with the width variable bi; the spin and isospin variables are
also included in it. Bk is the width of the Gaussian relative wave function:

B2
k = 1

2

[
k+1∑
i=1

Ai/

(
Ak+1

k∑
i=1

Ai

)]
β2

0 + 1

2
β2

k . (14)

From the mathematical formulas in Eqs. (10)–(13) and the corresponding illustrative diagram for
a four-cluster system in Fig. 1, this new wave function is characterized by three important features.

First and most importantly, despite taking the widths of the Gaussian {bi} as variables, by using
the operator ̂Gn(β0) the obtained wave function exactly factorizes to a product of a spurious total
center-of-mass wave function and a translation-invariant intrinsic wave function. This fact came as
a surprise. There is no doubt that this kind of exact separation in Eq. (12) is the best solution for
the center-of-mass problem at present and it breaks the bottleneck for studying many-body effects
in nuclear physics, taking the width parameters as dynamical variables.
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Fig. 1. Illustrative diagram for the inter-cluster distance variables {S1, S2, S3}, widths of cluster variables
{b1, b2, b3, b4}, and widths of Gaussian relative wave functions {B1, B2, B3} in the new wave function for a
four-cluster system.

Secondly, by using the correlation operator ̂Ln−1(β), the widths of the Gaussian relative wave
functions {Bi} between clusters are treated as variables rather than keeping them at fixed values.
After the exact separation of the center-of-mass part, the explicit relative Gaussian wave function
exp[−(ξ i − Si)

2/(2B2
i )] is clearly manifest, which is the key to explore the correlations of the

nuclear system. Besides the inter-cluster distance variables {Si} (or {Z i}), other more important
width variables {Bi} are also included, which is one unique feature for this new many-body wave
function compared with the FMD and AMD. As mentioned, it is found that in the THSR [33,34]
or container picture [36], the widths of Gaussian relative wave functions, rather than the traditional
inter-cluster distance parameter, are the true dynamical variables for the description of clusters.

Thirdly, the calculations of matrix elements from this trial wave function are based on the Slater
determinant and analytical integration techniques. The introduced variables in Eq. (13) have clear
physical meanings, as we discussed above. Nevertheless, it is known that direct calculation of this
kind of antisymmetrical wave function is not realistic. The strategy is that we can firstly obtain
the analytical kernels of the wave function �0(r − R), which have been studied for many years
[26,43–45]. Then, by the meanings of the created integral formula in Eqs. (11)–(12) multiplying a
constructed Gaussian-form factor, high-dimensional integrals can be performed analytically, so that
no accuracy is lost. This kind of analytical integration method can be found in Refs. [37,46,47]. Some
standard many-body techniques [3] like the angular-momentum and parity projection and GCM can
be directly applied for this wave function. It should be noted that, for some heavier nuclei like the
40Ca+α system or a larger-number cluster system like the 5α system, similar to the THSR wave
function, this will become a time-consuming computation due to the treatment of huge analytical
expressions. To overcome this point, the Monte Carlo technique [39,48] is one possible way to
approach the numerical treatment of the matrix elements for this trial wave function in the future.
Moreover, two simplified versions of this general wave function should be emphasized here. Without
considering the correlation operator, ̂Gn(β0)̂D(Z)�0(r) is an interesting FMD-type wave function but
the center-of-mass can be removed and the total size of the nucleus is characterized by the parameter
β0, while, without adopting traditional inter-cluster distance variables, the ̂Ln−1(β)̂Gn(β0)�0(r)
characterized nonlocalized clustering will be another quite interesting THSR-type wave function.
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To test the practicality of the new wave function, as a first step, I will apply this many-body
wave function to a cluster system; the nucleus 20Ne(α+16O) is chosen as a good touchstone. As
we know, 20Ne has a very typical α+16O cluster structure and it has been studied for almost half a
century [36,49,50]. However, there still exists no effective and simple solution [26,43] for the serious
center-of-mass problem even in this two-cluster system with different widths. This is the reason for
which we also used the same width variable for the α and 16O clusters in our recent THSR study
for 20Ne [35]. In this case, we indeed assumed that the nucleons belonging to the α cluster and the
16O cluster have the same Gaussian wave packets, which is clearly not realistic considering the very
different r.m.s. radii of the matter distributions of the α and 16O clusters [51]. Now, only by using
the ̂G2(β0) operator, the widths of the α cluster and the 16O cluster can be easily treated as variables
and some general features are expected to be obtained in the new framework.

Based on the proposed new wave function, the 20Ne wave function can be written directly:

�Ne(β0, bα , b16O) =
∫

d3R1d3R2 exp

[
− 4R2

1

β2
0 − 2b2

α

− 16R2
2

β2
0 − 2b2

16O

]
�B

Ne(R1, R2) (15)

∝ exp

[
−20

β2
0

X 2
cm

]
A
{

exp

[
− 16

5β2
0

X 2
rel

]
φint

α (bα)φint
16O(b16O)

}
. (16)

�B
Ne(R1, R2) ∝ A

{
exp

[
− 2

b2
α

(X 1 − R1)
2 − 8

b2
16O

(X 2 − R2)
2

]
φint

α (bα)φint
16O(b16O)

}
. (17)

Here X cm = (4X 1 + 16X 2)/20 and X rel = X 2 − X 1. X 1 and X 2 are the center-of-mass coordinate
of the α cluster and the 16O cluster, respectively. bα and b16O are the width parameters or the size
parameters of the α cluster and the 16O cluster, respectively. It should be noted that �B

Ne(R1, R2) is a
generalized Brink wave function [29,44] for the 20Ne system with different width variables. Again,
in the traditional Brink wave function, the widths of different clusters usually are fixed at the same
values, i.e., bα = b16O in Eq. (17), to avoid the center-of-mass problem. The same Hamiltonian as in
Ref. [35,36] is used here. For clarity and brevity, we here only focus on the intrinsic states of 20Ne.
Due to the successful separation of the total center-of-mass part and internal wave function part in
Eq. (17), the matrix elements are all obtained analytically in practical calculations.

It is interesting to compare the present THSR-type wave function for 20Ne with other microscopic
cluster wave functions. There are three important variables, the width of α, the width of 16O, and the
size parameter β0 in Eq. (15). The size parameter β0 is a new dimensional variable for the description
of the correlation of clusters compared with a traditional cluster model like the Brink cluster model.
By studying the inversion doublet bands in 20Ne, the single THSR wave functions with this key
size parameter are almost 100% equivalent [35,52] to the corresponding full solution GCM wave
functions of 20Ne. This gives strong support to the idea that the real dynamical variable for describing
the correlations of clusters is the size parameter rather than the conventional inter-cluster distance
parameter. In RGM, GCM, and other microscopic cluster methods, in principle, the relative wave
functions of clusters can be solved exactly but it is not easy to discuss the correlations of clusters
because of the complex intrinsic wave functions. In the present wave function in Eq. (16), based on
a simple and explicit intrinsic wave function, we have a clear container picture [36] for clarifying
the correlations of clusters.

Another practical advantage of this new wave function is the computation performance. Compared
with our previous THSR wave function [52] for 20Ne, i.e., the widths of α and 16O take the same
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Fig. 2. Variational energy calculations for 20Ne in three-parameter space, the width variable of α, the width
variable of 16O, and the size parameter β0, by using Eq. (15). It should be noted that the width lines are not
smooth due to the choice of the adopted 0.01 fm meshpoints.

value, the change in Eq. (15) is just one more integral for the generator coordinate R. From the point
of view of computation, the Slater determinant-based calculation is very straightforward, particularly
when compared with the other models and approaches. In RGM, some methods [43,51] for the 20Ne
cluster system have been investigated for a long time and they are still very tedious today, especially
for the different width case. One developed practical method is the double Fourier transformation
for analytical GCM kernels. In Ref. [44], Tohsaki introduced a new eliminating procedure for the
spurious center-of-mass motion, which was based on the use of multiple integration, some recurrence
formulas, and a specially designed algorithm. In Ref. [53], Kruglanski and Baye performed GCM
calculations for the α+16O cluster system with different widths by using multiple integrals of the
GCM matrix elements. Some similar transformation methods [54–56] were also developed by other
groups. Most methods are actually closed related to RGM, in which multiple integration and some
other extra treatment for the matrix elements are usually necessary, while, in the present method, a
simple and explicit intrinsic wave function can be exactly separated by only performing the integral
of the real generator coordinates without integrating out the center-of-mass wave function and other
complex RGM-based techniques.

By making variational calculations for width bα , b16O, and β0 variables, the energy curve of 20Ne
and the variation of width variables can be obtained. Figure 2 shows the variational energy curve
of 20Ne along with the obtained optimum widths bα and b16O using the intrinsic wave function in
Eq. (15). Generally, it can be seen that with the increase of the size parameter β0, indicating expansion
of the cluster system, the gap between bα and b16O becomes larger and larger. In other words, imagine
a situation where the stable double-closed-shell nuclei α and 16O are approaching each other to form
a stable nuclear state (the ground state of 20Ne); in the process Fig. 2 tells us that 16O is slightly
shrinking while the α nucleus is becoming more loosely bound. It is known that the ground state of
20Ne has a very compact cluster state. In this case, the obtained minimum energy for the ground state
is −159.74 MeV. The corresponding wave function is characterized by a rather small value of the
size parameter β0 = 4.2 fm and slightly different values of widths bα = 1.45 fm and b16O = 1.46
fm. As a comparison, by using the traditional angular-momentum projected Brink wave function in
a variational calculation with the common width parameter and inter-cluster distance parameter R,
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the minimum energy E(bα = b16O = 1.47 fm, R = 3.0 fm) = −158.43 MeV is obtained. This is
more than 1 MeV higher than the optimum energy obtained by our new intrinsic wave function.

When β0 is very small (<3 fm), the obtained values of bα and b16O reach exactly the same ones
as in Fig. 2. In this case, it can be proved strictly [36,57] that when β0 → √

2bα = √
2b16O, the

limit wave function is nothing but the SU(3) shell-model wave function. In the other limit, when the
size parameter β0 becomes very large (e.g., more than 20 fm), indicating that there are hardly any
correlations between clusters, the obtained optimum values of widths, namely bα = 1.38 fm and
b16O = 1.49 fm, almost correspond to the widths of free clusters. Most states of 20Ne including the
ground state are between the two limits. Originating from the formation of clustering, the differences
in the sizes of various nucleons or clusters can be considered as a general feature in light nuclei. To
give a more accurate description of the α+16O cluster structure, the size parameters bα , b16O, and β0

can be treated as three generator coordinates in a general GCM calculation. While this is not easy to
deal with in the traditional cluster models, e.g., in RGM, the widths of clusters can be different but
they usually cannot be superposed as variables. Moreover, because the effect of the breathing mode
of clusters can also be described, the effective nucleon–nucleon interactions should be considered
carefully. A detailed study of 20Ne in this new framework will be shown in a forthcoming paper.

Generally, with the evolution of light nuclear systems, from shell-model states to gas-like cluster
states, the formation of clustering breaks the smooth conventional mean field in nuclei. Roughly
speaking, in a well developed cluster system, the clusters can cause nonlocalized motion in a
cluster-type mean field characterized by the width parameter of the relative Gaussian wave func-
tion. Simultaneously, the developed clusters are relatively independent in the nuclear system and
nucleons belonging to different clusters can also be restricted by another different mean field inside
their clusters, which are characterized as the width variables of clusters. Therefore, not only the size
parameter for the relative motion of clusters but also the width of the cluster plays an important role
in the description of the light nuclear system. Without considering the width variables, many physical
quantities like radius, differential cross section, and phase shift actually cannot be well reproduced;
this point has been discussed for a long time in the RGM approach [27,28,58].

In summary, a new type of many-body wave function in nuclear physics has been proposed in
this letter. The widths and positions of Gaussian packets for the single nucleons and also the widths
of Gaussian relative wave functions can all be treated as variables in this general wave function,
in which the long-standing center-of-mass problem has been solved in an exact way. As a nuclear
cluster wave function, the gas-like cluster structure, halo nuclei, and the distortion effects of clusters
in light nuclei are very likely to be investigated in a more realistic way in this new framework.
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