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We report on experiments that consist of deforming a collection of monodisperse droplets
produced by a microfluidic chip through a flow-focusing device. We show that a proper
numerical modeling of the flow is necessary to access the stress applied by the latter on the
droplet along its trajectory through the chip. This crucial step enables the full integration
of the differential equation governing the dynamical deformation, and consequently the
robust measurement of the interfacial tension by fitting the experiments with the calculated
deformation. Our study thus demonstrates the feasibility of quantitative in situ rheology in
microfluidic flows involving, e.g., droplets, capsules, or cells.

DOI: 10.1103/PhysRevFluids.3.053603

I. INTRODUCTION

Droplet-based microfluidics enables the fragmentation of compounds (chemicals, cells, etc.) into
nanoliters. Such microdroplets can be further protected by a thin elastic shell realized through several
microencapsulation techniques. The inner phase of such capsules can then be easily transported and
delivered into specific places [1–5]. At the microscale, the deformation of droplets or capsules is
controlled by a balance between the driving forces which deform the objects (shear, elongation, etc.)
and the restoring ones which result from their interfacial properties: the interfacial tension in the
case of droplets or the interfacial elasticity in the case of capsules, as well as the bulk and interfacial
viscosities. Measuring the interfacial properties in situ in a microfluidic channel is particularly
relevant as it can give insights into the dynamical composition, stability, and rheology of such
interfaces (including encapsulation membranes), which is crucial to understand and optimize their
behavior.

For simple droplets, different approaches have been investigated in the past to measure interfacial
tension by shear deformation. The first quantitative experiments of droplet deformation under viscous
stress were performed by Taylor in 1934 [6], using the four-roller apparatus. Therein, the fluid arrives
in a two-dimensional (2D) cross-shaped location from two opposite sides and leaves on the two
orthogonal others. The droplet is thus sheared and deformed. The steady shape in that case results
from a balance between the driving viscous stress and the restoring interfacial tension. Consequently,
the knowledge of the viscous shear stress at the interface and the measurement of the deformation
lead to a measurement of the interfacial tension.

Lee et al. [7] and Deschamps et al. [8] miniaturized Taylor’s experiment on a microfluidic chip
to measure interfacial properties of microdroplets and vesicles. More recently, Xie et al. [9] used
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similar geometry to characterize the interfacial rheological properties of microcapsules. Hudson et al.
further integrated this device into a microfluidic channel by using a convergent and then divergent
channel profile [10,11]. That device generates a gradient of velocity in the main direction of the flow,
leading to shear stress and thus droplet deformation. This in-flow process then allows researchers to
perform measurements on a large number of droplets, and hence enables a statistical treatment of
the data, which enhances the accuracy of the results. The previous setup has been further adapted by
Brosseau et al. [12] in order to deform capsules, which require a stronger stress. This last geometry
is composed of an alternating succession of narrow channels, in which the capsules are confined by
the walls, and wide chambers, where they only interact with the viscous flow. The transition between
two parts is sharp in the latter geometry.

Hudson et al. have shown that the droplets in the in-flow device are in a transient regime [10,11].
In specific conditions (geometry, viscosity contrast), the authors have succeeded in extracting the
interfacial tension by dynamically analyzing the shape of drops but their approach relies on a
derivative of the experimental data, which can induce large errors. However, the evolution of such
nonstationary shapes has been described theoretically by Barthes-Biesel et al. [13], which could in
principle be used to get interfacial tension in any configuration. Up to now, the precise evolution of
the shape of a droplet in any geometry and its fitting to theoretical predictions has not been performed.

In the present study, we perform experiments that consist of deforming a collection of
monodisperse droplets produced by a microfluidic chip through a flow-focusing device. We show
that a proper numerical modeling of the flow is necessary to access the stress applied by the latter on
the droplet along its trajectory through the chip. This crucial step enables the full integration of the
differential equation governing the dynamical deformation, and consequently the robust measurement
of the interfacial tension by fitting the experiments with the calculated deformation.

II. MATERIAL AND METHODS

A. Materials

The droplets consist of mineral oil (Sigma Aldrich, mineral oil rotational viscosity standard of
29.04 mPa s at 25.00 ◦C) flowing in a polymer solution [poly(methacrylic acid), PMAA, provided
by Polysciences] at 1 wt% adjusted at pH 3. The droplets are produced and characterized in the same
polymer solution (PMAA 1 wt%, pH 3). They are produced in microfluidics using a standard flow-
focusing device made of poly(dimethyl siloxane) (PDMS). Such a setup provides a very monodisperse
collection of droplets ranging from 50 to 70 μm in diameter. The characterization chips are realized
with a photosensitive adhesive provided by Norland (NOA 81). This microfabrication technique
allows one to build nondeformable channels confined between two glass surfaces, which is able to
sustain large flow rates without being deformed [14]. The inlet is connected to the droplet-production
chip by a silicon tubing (Tygon) of inner diameter 800 μm, coated with a solution of bovine serum
albumine (BSA) provided by Sigma Aldrich, to prevent adhesion of the droplets inside the tubing
(incubation at 1 wt% solution during 12 h at room temperature). The outlet is connected to a Peek
tubing of inner diameter 125 μm.

B. Methods

1. Observation of the deformation

The characterization chip consists of a sharp transition between a narrow channel (of width
W = 40 μm) and a wide chamber (of width 3W ), similar to the chip used by Polenz et al. [15].
Such a geometry imposes a divergent flow near the entrance of the wide chamber, as illustrated by
fluorescent tracers in Fig. 1(a) (picture realized in a channel of width W = 80 μm). The height in the
z direction is constant and equals 100 μm, which prevents the droplets from being confined in the
z direction.

The divergent flow at the entrance of the wide chamber generates a viscous stress on the droplets,
which tends to elongate them perpendicularly to the flow direction. We note that the convergent flow
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FIG. 1. (a) Characterization chip. Streamlines (from left to right) are visible due to fluorescent tracers and
show the divergent flow at the entrance of the wide chamber. Scale bar is 100 μm. (b) Droplet entering the wide
chamber. The droplet is first elongated along y and then relaxes toward a spherical shape (stack of 3 images).
The deformation of a few percent is barely visible by eye. (c) Schematics showing the parameters a and b

describing the droplet shape. This configuration corresponds to a positive deformation of the droplet.

at the exit of the wide chamber could also be used to deform the droplets. However, the narrow
channel better aligns the droplets with the center of the wide chamber at its entrance than at its
exit—especially when the droplets are laterally confined in the narrow channel, which is the case in
our experiments. As a consequence, for more reproducible results, observations and measurements
are performed only at the entrance of the wide chamber. The flow is controlled by a pressure controller
(Fluigent).

Observation is performed along the z direction through a Leica inverted microscope with a 10×
objective. A Photron Fastcam-SA camera mounted on the microscope allows us to record the droplet
deformation at high acquisition frequency (typically 10 000 fps). Pictures similar to the ones presented
in Fig. 1(b) are recorded every 0.1 ms during 2 s. The different steps of the image processing needed
to get the deformation measurement as a function of position in the wide chamber are detailed in the
Appendix.

2. Governing equation

To relate the measured deformation to interfacial tension, Taylor developed a theoretical model
[6], which was generalized by Barthes-Biesel et al. [13,16] and summarized by Rallison [17]. This
model has been used by Hudson et al.[10] in order to extract interfacial tension values.

The model of Taylor [6] considers a droplet of viscosityηdroplet placed in a fluid medium of viscosity
ηmedium. The radius of the droplet at rest is r , and the interfacial tension with the surrounding fluid is
γ . In Taylor’s model, the latter fluid undergoes a hyperbolic flow in the (x,y) plane with a velocity
field that reads u = (ux,uy) = C (x,−y), where C is a constant fixed by the flux. The extension
rate ε̇ along x is thus related to the gradient of velocity of the fluid along x, through ε̇ = dux

dx
= C.

In this configuration, ε̇ does not depend on the position, and the steady deformation DsteadyTaylor
(see
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definition of the deformation D in Appendix) of the droplet is directly proportional to ε̇ [6], as

DsteadyTaylor
= 19λ + 16

16λ + 16

ηmedium r

γ
ε̇, (1)

where λ = ηdroplet

ηmedium
is the viscosity ratio between the droplet and the fluid medium.

When the flow is less regular than the hyperbolic flow described by Taylor, Barthes-Biesel et al.
[13] state that for moderated shear stress and hence deformation, the flow in the vicinity of the droplet
can be approximated to the first order in deformation and described by a deformation-rate tensor
independent of position. In these conditions, the steady deformation must be calculated with the
eigenvalues e1 and e2 of the deformation-rate tensor [see definition in Eq. (8)], through

Dsteady = 19λ + 16

16λ + 16

ηmedium r

γ
(e1 − e2). (2)

Furthermore, Barthes-Biesel et al. [13] describe the transient regime as a first-order relaxation toward
the steady state of Eq. (2). In this framework, the deformation D(t) satisfies

dD

dt
= 1

τca
(Dsteady − D), (3)

with a relaxation time τca defined as

τca = 2

5
(2λ + 3)

19λ + 16

16λ + 16

ηmedium r

γ
. (4)

The droplet-medium interfacial tensionγ can thus be obtained by fitting the experimental deformation
D(t) of the droplet using Eqs. (3) and (4). The only requirement is to know precisely the position-
dependent steady deformation Dsteady of the droplet in the considered geometry.

3. Calculation of the steady deformation

Our geometry is described in Sec. II B 1. In the absence of any symmetry, and including further
a moving droplet, it is not straightforward to know precisely the viscous stress exerted by the
surrounding fluid on the droplet. Performing finite-element numerical simulations is a robust way to
access this information, in order to further calculate the position-dependent steady deformationDsteady

of the droplets. The flow field and the associated velocity gradient are extracted from such simulations
(using the software COMSOL MULTIPHYSICS), and analyzed to calculate the steady deformation of the
droplets.

Framework of the simulations. The simulated geometry consists of a fixed hard sphere placed at
the position (x,0,0) near the entrance of a wide chamber three times larger (in y) than the incoming
narrow channel, but with identical height (in z). The hard-sphere idealization is justified by the tiny
experimental deformations that alter the flow only marginally. Calibration experiments are performed
with tracers (of diameter 5 μm) in order to know precisely the relative speed between the medium and
the droplet. It appears that at a distance x = 150 μm, the droplet is nearly spherical and its velocity
is similar to the medium speed. Consequently, in each experiment, we determine the rest diameter
of the droplet in the far field (where the drop is not deformed), and its velocity in this region gives
access to the flow velocity and thus the flow rate of the surrounding fluid everywhere in the channel.
Therefore, in each simulation, the droplet diameter and the flow rate can be set to mimic precisely a
given experiment. To analyze a given experiment, simulations are made for different positions of the
droplet (typically 10 points between x = 20 μm and x = 120 μm). In such simulations, the droplet
does not move by design, as we only consider steady states in this part of the modeling.

Boundary conditions. We assume a no-slip condition at the walls, which implies u = 0 there
since the walls are not permeable and/or deformable. That assumption is valid, since the typical
length scales of our microfluidic device are much larger than the slip length in a waterlike solution
near a glassy wall, as the latter slip length seldom exceeds 100 nm, according to Lauga et al. [18].
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In contrast, the boundary condition at the droplet surface is not straightforward. First, we assume
that there is no slip between the medium and the droplet and that there is no velocity in the droplet
fluid at the droplet surface. These assumptions are motivated by our high viscosity ratio λ = 30,
together with the slow dynamics of the polymers at the interface. Eggleton et al. [19] showed
that a no-slip boundary condition at the interface is obtained when the viscous drag which tends
to cause polymer concentration gradients is compensated by a Marangoni flow in the opposite
direction, resulting in zero tangential velocity. According to Ref. [19], even very small surface
tension gradients can compensate viscous drag. Moreover, the Peclet number which represents the
ratio of convective motion over diffusive motion is large in our experiment, Pe = ||u|| R

Ddiffusion
∼ 105, where

Ddiffusion ∼ 10−11 m/s2 is the diffusion constant of a polymer chain in the solvent. As the polymers
cannot rearrange by diffusion at the interface in such a short experimental timescale (around 1 ms),
any small surface tension gradient will be maintained and the no-slip condition justified. Second,
we neglect the deformability of the droplet at leading order, as already explained. Third, the hard
sphere is fixed in the simulations, whereas we need to determine the stress on a moving droplet.
However, because inertia is negligible (Reynolds number of ∼0.1), the fluid velocity field at time t

only depends on the boundary condition at the same time t . Thus, for each position x of the fixed
model hard sphere in the channel, the proper flow boundary condition is an effective slip boundary
condition with a nonzero medium velocity u(�) on the sphere-medium interface �, matching the
actual experimental droplet velocity:

u(�) = dx

dt
ex, (5)

where ex is the unit vector along the x axis.
Analysis of the simulation data. The analysis of the raw simulation data is performed with MATLAB.

Simulations provide as an output the velocity gradient for every point M:

grad u =

⎡
⎢⎣

uxx uxy uxz

uyx uyy uyz

uzx uzy uzz

⎤
⎥⎦, (6)

where uxy is the derivative of the x component of the velocity field u with respect to the y coordinate.
For every location x of the hard-sphere center, an arbitrary neighboring layer around the hard sphere
is defined, with a thickness equal to 5% of the sphere diameter. All the analysis is performed in
this layer and we checked that a variation of the layer thickness does not influence our results. The
deformation-rate tensor d is defined as the symmetric component of the previous velocity gradient:

d = 1
2 [grad u + (grad u)�]. (7)

In our specific geometry, we can reasonably assume that the stress is mostly in the (x,y) plane.
Consequently, we in fact only consider the associated bidimensional block d

2D
of the deformation-

rate tensor, defined as follows:

d
2D

=
[

uxx
1
2 (uxy + uyx)

1
2 (uyx + uxy) uyy

]
. (8)

Diagonalization of d
2D

gives two eigenvalues e1(M) and e2(M) for each point M . Both eigenvalues
e1(M) and e2(M) are then averaged for every M in the boundary layer. We would like to note that
in the description by Barthes-Biesel et al. [13], a development of the flow in the vicinity of the
droplet is considered and only the linear term is kept, where by construction the coefficient of the
deformation rate tensor and hence the eigenvalues are constant. On the contrary, in our description,
by diagonalizing locally, we get eigenvalues which depend on the position M along the deformed
object. We measure a relative standard deviation of the eigenvalues close to 1, which quantifies the
stress inhomogeneity observed in Fig. 3(a). By averaging these values for every M in the boundary
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layer, we get rid of the fluctuations and recover the previous description. Those averaged values, 〈e1〉
and 〈e2〉, obtained for a given droplet position x, can finally be used in Eq. (2), in order to specify
the position-dependent steady deformation Dsteady at stake.

III. RESULTS AND DISCUSSION

A. Validation of the simulations

As a preliminary check, our numerical procedure to extract the position-dependent steady
deformation Dsteady is tested for a known geometry (different from ours) of the literature. Specifically,
we consider the setup of Hudson et al. [10,11,20]. In their geometry, the transition between the narrow
channel and the wide chamber is much smoother than ours. In addition, their droplet diameter is
smaller than the width (and height) of the narrow channel. Note also that, all along this test, we
use a modified viscosity ratio that actually matches the one of our experiments (λ = 30). As will
be clear below, this specific choice enables the obtention of a second piece of information from our
test (besides checking our numerical procedure): It allows us to demonstrate that Hudson et al.’s
simplified approach is not valid for our experiments.

The position-dependent steady deformation calculated by Hudson et al. [10] is based on Taylor’s
equation (1) together with the following assumption:

ε̇ = dvdroplet

dx
, (9)

where vdroplet is the droplet velocity along the x axis. Indeed, these authors assume that the droplet
only acts as a tracer, i.e., it has the exact same speed as the surrounding fluid and does not modify the
flow. This assumption is motivated by both the small size of their droplets compared to the length
scales of their microfluidic setup and their low viscosity ratio (λ < 1).

We perform two simulations for Hudson et al.’s geometry: one for the case of a tracer, i.e., without
any actual droplet (in practice we calculate the stress on a phantom sphere), and one with a droplet (in
practice we calculate the stress on a hard sphere with no slip, see Sec. II B 3). Figure 2 represents the
comparison between the result of each of these two simulations and the model proposed by Hudson
et al. In the tracer case [Fig. 2(a)], there is a good agreement between our simulation and the model
proposed by Hudson et al., without any adjustable parameter. This self-consistency check indicates
that our procedure calculates correctly Dsteady for a tracer. In contrast, in the no-slip hard-sphere case
[Fig. 2(b)], there is a clear discrepancy between our simulation and the model proposed by Hudson
et al. Since we are confident in the mathematical validity of our code thanks to the self-consistency
check above, we conclude that even in a nonconfined and smooth geometry such as the one of
Hudson et al., a very viscous droplet (λ = 30 here) actually modifies largely the flow field around.
The model proposed by Hudson et al. does not apply in our case, and one therefore needs to perform
a numerical simulation to know precisely Dsteady. It is interesting to note that Taylor [6] also observed
a discrepancy between his experiments and theoretical predictions when the viscosity ratio λ became
significantly higher than 1.

B. Solving the governing equation

As explained in Sec. II B 3, the finite-element simulations allow us to compute the deformation-rate
tensor at the surface of the droplet as a function of the droplet position x in the wide chamber, and thus
the viscous stress it experiences along its trajectory [see Fig. 3(a)]. From the diagonalization of the
deformation-rate tensor, one can precisely calculate Dsteady(x) using Eq. (2) [see Fig. 3(b)]. Finally,
integrating Eq. (3) along the trajectory of a droplet advected by the flow with the first measured
point as an initial condition gives the position-dependent theoretical deformation Dth(x) for a given
interfacial tension.

Figure 4(a) presents different predictions of Dth(x), for the droplet-medium interfacial tension
γ ranging from 20 to 250 mN/m. In all cases, the deformation is initially negative, then it rapidly
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FIG. 2. (a) Steady deformation [see Eq. (2)] as a function of position, as obtained from a finite-element
simulation (see Sec. II B 3) of an experiment in Hudson et al.’s geometry [10] (modified viscosity ratio λ = 30).
The droplet is replaced by a phantom sphere that does not disturb the flow. For comparison, we plot Eq. (1)
using Eq. (9) (DsteadyTaylor + ε̇). (b) Same as panel (a), but when the droplet is actually as a no-slip hard-sphere
obstacle. For comparison, we plot Eq. (1) using Eq. (9) (DsteadyTaylor + ε̇).
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FIG. 3. (a) y component of the steady viscous stress at the surface of the droplet, at both the entrance and in
the middle of the wide chamber, as obtained from finite-element simulations (see Sec. II B 3) of an experiment
in our geometry (viscosity ratio λ = 30). The droplet is modeled as a no-slip hard-sphere obstacle. (b) Resulting
steady deformation [see Eq. (2)] as a function of position. The steady deformation is presented here for a surface
tension chosen equal to 72 mN/m.

becomes positive and reaches a maximum value, before slowly relaxing toward zero. We also observe
that an increase in interfacial tension leads to a smaller value of the maximum deformation and to
a faster overall dynamics. Therefore, thanks to the large influence of the interfacial tension on the
droplet deformation in the transient regime, fitting the experimental data with those predictions
enables a precise measurement of the interfacial tension.
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FIG. 4. (a) Calculated theoretical deformation Dth as a function of droplet position x, for various values of
the droplet-medium interfacial tension γ as indicated and an arbitrary initial condition for illustration. Dth(x) is
obtained by integrating Eq. (3) along the trajectory of a droplet advected by the flow, and invoking the simulated
Dsteady(x) [Fig. 3(b)]. (b) Fit of the experimental data Dexp(x) (dots, collected for 28 droplets) to the calculated
theoretical deformation Dth(x), integrated with the first data point as an initial condition. The best-fit parameter
τca [see Eqs. (3) and (4)] is indicated.
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C. Comparison with experimental data

As it is not possible to produce stable microdroplets without surfactant, we stabilize them with
poly(methacrylic acid) (PMAA) [21]. In contrast to common surfactant molecules, these polymer
chains do not easily desorb and can stabilize droplets, even with a relatively low quantity of molecules
adsorbed. In addition, the fluctuations of the interfacial tension due to local compression or dilatation
of the surface during droplet deformation remain very low with these polymer chains. This is
consistent with our model that assumes a homogeneous and constant droplet-medium interfacial
tension during deformation. We note that, for more complex surface compositions, involving, e.g.,
surface viscoelasticity, Eq. (4) should be modified. This will be the object of another study.

The experimental data shown in Fig. 4(b) exhibits an evolution of the deformation in three main
steps. First, the deformation is negative due to the initial confinement of the droplet in the narrow
channel. Indeed, the latter is 40 μm wide, while the droplet diameter ranges between 50 and 70 μm.
The deformation then increases toward positive values, due to the diverging viscous flow which
elongates the droplet in the y direction. Finally, for larger values of x, when the droplet is further
away from the diverging region, the deformation gradually relaxes to 0 (i.e., a spherical shape) due
to surface tension.

The fitting of the experimental data, for 28 different droplets, to the theoretical prediction is shown
as well in Fig. 4(b). The agreement is good, and the best-fit capillary time [see Eqs. (3) and (4)] is
found to be τca = 2.33 × 10−5 s. From this value, we deduce a droplet-medium interfacial tension
γ = 35 ± 3 mN/m, which is in good agreement with what can be measured using a pendant-drop
apparatus (γ = 40 ± 1 mN/m). Note that the droplet history, size, and viscous-shear conditions are
very different between the two experiments, which could explain the small difference.

IV. CONCLUSION

The transient deformation of a droplet in the extensional flow following a microfluidic constriction
is a model problem connected to important applications, from encapsulated-drug delivery to cancer-
cell detection [22]. Because of the absence of any symmetry in the associated flow and to the influence
of the droplet itself on the latter, the simple approaches of the literature are not valid in general. Using
finite-element simulations, we have shown that it is possible to predict the shear stress applied on the
droplet and thus the resulting droplet deformation. Our model captures well our experimental data,
performed with a large collection of polymer-stabilized oil microdroplets in water, which enables
the robust statistical measurement of the droplet-medium interfacial tension. This model study opens
the way toward precise in situ microrheology of capsules and cells, with more complex viscoelastic
behaviors.
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APPENDIX

A MATLAB program enables us to process the large number of pictures. For each of them, the
background is subtracted using a reference picture with no droplet, and a threshold is automatically
set to detect the droplet. For every picture containing at least one entire droplet, the position, the
mean radius, and the deformation of the droplet are calculated. The droplet position (x, y) is the
mean position of all the pixels forming the droplet.
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The mean radius r , defined as the radius of the droplet at rest, is calculated with the two semiaxes
a and b, in the directions x and y respectively [see Fig. 1(c)]. For a small deformation, any deviation
from the spherical shape is indeed an ellipsoid at second order in deformation, as noted by Cox [23]
and Rallison [17]. Moreover, due to the flow orientation, the axes of the droplet are along x and y.
By volume conservation, and noting c the semiaxis in the z direction, one gets

4
3πr3 = 4

3πabc. (A1)

We assume that when the shear flow elongates the capsule in one direction, the z direction is
compressed by the same amount as the other compressed direction; i.e., c is equal to the smallest
semiaxis among a and b. Consequently, using Eq. (A1), one has

r = [ab min(a,b)]1/3. (A2)

The deformation D is then defined from the semiaxes a and b, as follows:

D = b − a

b + a
. (A3)

As suggested by Martin et al. [20], in the ellipsoidal approximation justified by Cox [23], it is in fact
more precise to calculate the deformation through the moments of inertia along the x and the y axes,
respectively, Ix and Iy :

D =
√

Iy −
√

Ix√
Iy +

√
Ix

, (A4)

where

Ix =
∑

pixels i

(xi − x)2, (A5)

and

Iy =
∑

pixels i

(yi − y)2, (A6)

where xi and yi are the pixel coordinates [see Fig. 1(c)]. This is the method we employ in our study.
Consequently, the position and deformation of the droplet are known precisely for every picture

containing a droplet. The time lapse between two consecutive pictures is 	t = 0.1 ms and, despite
the high acquisition rate, we have only approximately six pictures per droplet due to the high flow
rate. For every droplet n, the time tn is counted starting from the first picture where the droplet is
recorded. Therefore, tn is always a multiple of 	t . The function tn(x) is fitted by a second-order
polynomial function:

tn = an x2 + bn x + cn. (A7)

All the droplets are finally synchronized using a common time measurement tsync, defined as
tsync = tn − cn, and characterized by tsync(x = 0) = 0. The good droplet monodispersity and the
high acquisition rate of the camera allow us to acquire enough data in a short period of time (2 s),
during which the flow and the thermodynamic conditions remain constant. The measurements for
different droplets can therefore be concatenated to generate one single curve Dexp(x) [see Fig. 4(b)].

053603-11



TRÉGOUËT, SALEZ, MONTEUX, AND REYSSAT

[1] H. C. Shum, J. W. Kim, and D. A. Weitz, Microfluidic fabrication of monodisperse biocompatible and
biodegradable polymersomes with controlled permeability, J. Am. Chem. Soc. 130, 9543 (2008).

[2] R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, Droplet based microfluidics, Rep. Prog. Phys.
75, 16601 (2012).

[3] R. M. Parker, J. Zhang, Y. Zheng, R. J. Coulston, C. A. Smith, A. R. Salmon, Z. Yu, O. A. Scherman,
and C. Abell, Electrostatically directed self-assembly of ultrathin supramolecular polymer microcapsules,
Adv. Funct. Mater. 25, 4091 (2015).

[4] D. F. do Nascimento, L. R. Arriaga, M. Eggersdorfer, R. Ziblat, M. de Fatima, V. Marques, F. Reynaud,
S. A. Koehler, and D. A. Weitz, Microfluidic fabrication of pluronic vesicles with controlled permeability,
Langmuir 32, 5350 (2016).

[5] J. Wang, Y. Li, X. Wang, J. Wang, H. Tian, P. Zhao, Y. Tian, Y. Gu, L. Wang, and C. Wang, Droplet
microfluidics for the production of microparticles and nanoparticles, Micromachines 8, 22 (2017).

[6] G. I. Taylor, The formation of emulsions in definable fields of flow, Proc. R. Soc. London, Ser. A 146, 501
(1934).

[7] J. S. Lee, R. Dylla-Spears, N. P. Teclemariam, and S. J. Muller, Microfluidic four-roll mill for all flow
types, Appl. Phys. Lett. 90, 074103 (2007).

[8] J. Deschamps, V. Kantsler, E. Segre, and V. Steinberg, Dynamics of a vesicle in general flow. Proceed.
Nat. Acad. Sci. USA 106, 11444 (2009).

[9] K. Xie, C. de Loubens, F. Dubreuil, D. Z. Gunes, M. Jaeger, and M. Leonetti, Interfacial rheological
properties of self-assembling biopolymer microcapsules, Soft Matter 13, 6208 (2017).

[10] S. D. Hudson, J. T. Cabral, W. J. Goodrum, K. L. Beers, and E. J. Amis, Microfluidic interfacial tensiometry,
Appl. Phys. Lett. 87, 081905 (2005).

[11] J. T. Cabral and S. D. Hudson, Microfluidic approach for rapid multicomponent interfacial tensiometry,
Lab Chip 6, 427 (2006).

[12] Q. Brosseau, J. Vrignon, and J.-C. Baret, Microfluidic dynamic interfacial tensiometry (μDIT), Soft Matter
10, 3066 (2014).

[13] D. Barthes-Biesel and A. Acrivos, Deformation and burst of a liquid droplet freely suspended in a linear
shear field, J. Fluid Mech. 61, 1 (1973).

[14] D. Bartolo, G. Degre, P. Nghe, and V. Studer, Microfluidic stickers, Lab Chip 8, 274 (2008).
[15] I. Polenz, Q. Brosseau, and J.-C. Baret, Monitoring reactive microencapsulation dynamics using

microfluidics, Soft Matter 11, 2916 (2015).
[16] D. Barthes-Biesel and J. M. Rallison, The time-dependent deformation of a capsule freely suspended in a

linear shear flow, J. Fluid Mech. 113, 251 (1981).
[17] J. M. Rallison, The deformation of small viscous drops and bubbles in shear flows, Annu. Rev. Fluid Mech.

16, 45 (1984).
[18] E. Lauga, M. P. Brenner, and H. A. Stone, Microfluidics: The no-slip boundary condition, In Springer

Handbook of Experimental Fluid Mechanics (Springer, Berlin, 2005), Chap. 19, pp. 1219–1240.
[19] C. D. Eggleton, Y. P. Pawar, and K. J. Stebe, Insoluble surfactants on a drop in an extensional flow: A

generalization of the stagnated surface limit to deforming interfaces, J. Fluid Mech. 385, 79 (1999).
[20] J. D. Martin and S. D. Hudson, Mass transfer and interfacial properties in two-phase microchannel flows,

New J. Phys. 11, 115005 (2009).
[21] S. le Tirilly, C. Tregouet, M. Reyssat, S. Bone, C. Geffroy, G. G. Fuller, N. Pantoustier, P. Perrin, and

C. Monteux, Interfacial rheology of hydrogen-bonded polymer multilayers assembled at liquid interfaces:
Influence of anchoring energy and hydrophobic interactions, Langmuir 32, 6089 (2016).

[22] S. Byun, S. Son, D. Amodei, N. Cermak, J. Shaw, J. H. Kang, V. C. Hecht, M. Winslow, T. Jacks, P.
Mallick, and S. R. Manalis, Characterizing deformability and surface friction of cancer cells, Proc. Natl.
Acad. Sci. USA 110, 7580 (2013).

[23] R. G. Cox, The deformation of a drop in a general time-dependent fluid flow, J. Fluid Mech. 37, 601 (1969).

053603-12

https://doi.org/10.1021/ja802157y
https://doi.org/10.1021/ja802157y
https://doi.org/10.1021/ja802157y
https://doi.org/10.1021/ja802157y
https://doi.org/10.1088/0034-4885/75/1/016601
https://doi.org/10.1088/0034-4885/75/1/016601
https://doi.org/10.1088/0034-4885/75/1/016601
https://doi.org/10.1088/0034-4885/75/1/016601
https://doi.org/10.1002/adfm.201501079
https://doi.org/10.1002/adfm.201501079
https://doi.org/10.1002/adfm.201501079
https://doi.org/10.1002/adfm.201501079
https://doi.org/10.1021/acs.langmuir.6b01399
https://doi.org/10.1021/acs.langmuir.6b01399
https://doi.org/10.1021/acs.langmuir.6b01399
https://doi.org/10.1021/acs.langmuir.6b01399
https://doi.org/10.3390/mi8010022
https://doi.org/10.3390/mi8010022
https://doi.org/10.3390/mi8010022
https://doi.org/10.3390/mi8010022
https://doi.org/10.1098/rspa.1934.0169
https://doi.org/10.1098/rspa.1934.0169
https://doi.org/10.1098/rspa.1934.0169
https://doi.org/10.1098/rspa.1934.0169
https://doi.org/10.1063/1.2472528
https://doi.org/10.1063/1.2472528
https://doi.org/10.1063/1.2472528
https://doi.org/10.1063/1.2472528
https://doi.org/10.1073/pnas.0902657106
https://doi.org/10.1073/pnas.0902657106
https://doi.org/10.1073/pnas.0902657106
https://doi.org/10.1073/pnas.0902657106
https://doi.org/10.1039/C7SM01377A
https://doi.org/10.1039/C7SM01377A
https://doi.org/10.1039/C7SM01377A
https://doi.org/10.1039/C7SM01377A
https://doi.org/10.1063/1.2034098
https://doi.org/10.1063/1.2034098
https://doi.org/10.1063/1.2034098
https://doi.org/10.1063/1.2034098
https://doi.org/10.1039/b511976f
https://doi.org/10.1039/b511976f
https://doi.org/10.1039/b511976f
https://doi.org/10.1039/b511976f
https://doi.org/10.1039/c3sm52543k
https://doi.org/10.1039/c3sm52543k
https://doi.org/10.1039/c3sm52543k
https://doi.org/10.1039/c3sm52543k
https://doi.org/10.1017/S0022112073000534
https://doi.org/10.1017/S0022112073000534
https://doi.org/10.1017/S0022112073000534
https://doi.org/10.1017/S0022112073000534
https://doi.org/10.1039/B712368J
https://doi.org/10.1039/B712368J
https://doi.org/10.1039/B712368J
https://doi.org/10.1039/B712368J
https://doi.org/10.1039/C5SM00218D
https://doi.org/10.1039/C5SM00218D
https://doi.org/10.1039/C5SM00218D
https://doi.org/10.1039/C5SM00218D
https://doi.org/10.1017/S0022112081003480
https://doi.org/10.1017/S0022112081003480
https://doi.org/10.1017/S0022112081003480
https://doi.org/10.1017/S0022112081003480
https://doi.org/10.1146/annurev.fl.16.010184.000401
https://doi.org/10.1146/annurev.fl.16.010184.000401
https://doi.org/10.1146/annurev.fl.16.010184.000401
https://doi.org/10.1146/annurev.fl.16.010184.000401
https://doi.org/10.1017/S0022112098004054
https://doi.org/10.1017/S0022112098004054
https://doi.org/10.1017/S0022112098004054
https://doi.org/10.1017/S0022112098004054
https://doi.org/10.1088/1367-2630/11/11/115005
https://doi.org/10.1088/1367-2630/11/11/115005
https://doi.org/10.1088/1367-2630/11/11/115005
https://doi.org/10.1088/1367-2630/11/11/115005
https://doi.org/10.1021/acs.langmuir.6b01054
https://doi.org/10.1021/acs.langmuir.6b01054
https://doi.org/10.1021/acs.langmuir.6b01054
https://doi.org/10.1021/acs.langmuir.6b01054
https://doi.org/10.1073/pnas.1218806110
https://doi.org/10.1073/pnas.1218806110
https://doi.org/10.1073/pnas.1218806110
https://doi.org/10.1073/pnas.1218806110
https://doi.org/10.1017/S0022112069000759
https://doi.org/10.1017/S0022112069000759
https://doi.org/10.1017/S0022112069000759
https://doi.org/10.1017/S0022112069000759



