
 

Instructions for use

Title Liquid temperature dependence of kinetic boundary condition at vapor‒liquid interface

Author(s) Kon, Misaki; Kobayashi, Kazumichi; Watanabe, Masao

Citation International Journal of Heat and Mass Transfer, 99, 317-326
https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.088

Issue Date 2016-08

Doc URL http://hdl.handle.net/2115/71131

Rights © 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/

Rights(URL) http://creativecommons.org/licenses/by-nc-nd/4.0/

Type article (author version)

File Information Liquid_temperature_dependence_of_kinetic_boundary_condition_at_vapor_liquid_interface.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


Liquid temperature dependence of kinetic boundary condition at

vapor–liquid interface

Misaki Kon1, Kazumichi Kobayashi1,∗, Masao Watanabe1

Division of Mechanical and Space Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi
8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan

Abstract

For the accurate description of heat and mass transfer through a vapor–liquid interface,
the appropriate modeling of the interface during nonequilibrium phase change (net evapo-
ration/condensation) is a crucial issue. The aim of this study is to propose a microscopic
interfacial model which should be imposed at the interface as the kinetic boundary condition
for the Boltzmann equation. In this study, we constructed the kinetic boundary condition
for monoatomic molecules over a wide range of liquid temperature based on mean field ki-
netic theory, and we validated the accuracy of the constructed kinetic boundary condition by
solving the boundary value problem of the Boltzmann equation. These results showed that
we can impose the kinetic boundary condition at the interface by simply specifying liquid
temperature and simulate the complex vapor–liquid two-phase flow induced by net evapo-
ration/condensation. Furthermore, we applied the constructed kinetic boundary condition
to the boundary condition for the fluid-dynamic-type equations. This application enables
us to deal with a large spatio-temporal scale of the interfacial dynamics in the vapor–liquid
two-phase system with net evaporation/condensation.

Keywords: kinetic boundary condition, evaporation and condensation, vapor–liquid
interface, kinetic theory of gases

1. Introduction

Heat and mass transfer through a vapor–liquid interface induced by nonequilibrium phase
change (net evaporation/condensation) plays an important role in dynamics of the vapor–
liquid two-phase flows, such as Leidenfrost effect[1, 2, 3] and cavitation bubble collapse
[4, 5, 6]. In recent years, furthermore, with the progression of micro/nanofluidic devices,
the precise investigation of transport phenomena during net evaporation/condensation has
been required[7].
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Since net evaporation/condensation originates from the motion of molecules in the vicin-
ity of the interface, the vapor in contact with the interface is in nonequilibrium in which
the conventional continuum description is not appropriate, and the analysis of the Boltz-
mann equation based on kinetic theory of gases (molecular gas dynamics) is essential[8].
The Boltzmann equation governs the spatio-temporal development of the molecular velocity
distribution function, f(x, ξ, t), defined as dN = (1/m)f(x, ξ, t)dxdξ, where x = (x, y, z) is
position, ξ = (ξx, ξy, ξz) is molecular velocity, dxdξ = dxdydzdξxdξydξz is an infinitesimal
volume element in the six-dimensional phase space, dN is the number of molecules in dxdξ,
and m is the mass of a molecule. Once the velocity distribution function f is obtained as
the solution of the Boltzmann equation, the macroscopic variables, such as density, velocity,
and temperature, are obtained from its moments

ρ =

∫ ∞

−∞
fdξ, vi =

1

ρ

∫ ∞

−∞
ξifdξ, T =

1

3ρR

∫ ∞

−∞
(ξi − vi)

2fdξ, (1)

where ρ is density, vi = (vx, vy, vz) is velocity, T is temperature, R is the gas constant and∫∞
−∞ dξ =

∫∞
−∞ dξx

∫∞
−∞ dξy

∫∞
−∞ dξz.

In this analysis, we have to specify a molecular velocity distribution function composed
of molecules outgoing from the liquid into the vapor phase, fout, which should be imposed at
the interface as the kinetic boundary condition (KBC) for the Boltzmann equation. Since it
has been found that the KBC significantly affects the macroscopic variables obtained from
Eq. (1)[8, 9] during net evaporation and condensation, the proper specification of the KBC
at the interface is critical. One of the most conventional forms of the KBC is shown as
follows:

fout =
[
αeρ

∗(TL) + (1− αc)σ
]
f̂ , ξz > 0, (2)

where ρ∗ is the saturated vapor density, αe and αc are evaporation and condensation coef-
ficients, respectively, ξz is the molecular velocity in the direction normal to the interface;
ξz > 0 denotes the direction of molecular velocity outgoing from the liquid into the va-
por phase, and f̂ is a normalized molecular velocity distribution function; the normalized
Maxwellian distribution at liquid temperature, TL,

f̂ =
1

(
√
2πRTL)3

exp

(
− ξ2i
2RTL

)
(3)

is assumed conventionally. σ is related to a molecular velocity distribution function com-
posed of molecules colliding onto the liquid from the vapor phase (ξz < 0), fcoll. Its definition
is

σ

√
RTL

2π
= −

∫
ξz<0

ξzfcolldξ = Jcoll, (4)

where Jcoll is the molecular mass flux colliding onto the liquid from the vapor phase and∫
ξz<0

dξ =
∫∞
−∞ dξx

∫∞
−∞ dξy

∫ 0

−∞ dξz. fcoll at each time is obtained by solving the initial

boundary value problem of the Boltzmann equation[8]; σ has a unit of density and is equal
to ρ∗ in the vapor–liquid equilibrium.
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One of the most important issues in the construction of the KBC during net evap-
oration/condensation lies in the determination of the evaporation coefficient αe and the
condensation coefficient αc. As for the definitions of αe and αc, some different models were
proposed[10, 11, 12, 13, 14]. We adopt the following definitions of αe and αc as a widely-used
model[12, 15, 16, 17, 18, 19, 20].

αe =
Jevap
J∗
out

, αc =
Jcond
Jcoll

, (5)

where Jevap is evaporation molecular mass flux, Jcond is condensation molecular mass flux,
and Jout is molecular mass flux outgoing from the liquid into the vapor phase; star (*) super-
scripts denote quantities at the vapor–liquid equilibrium and J∗

out = J∗
coll = ρ∗

√
(RTL/2π).

The relations of each molecular mass flux are as follows:

Jout = Jevap + Jref , Jcoll = Jcond + Jref , (6)

where Jref is molecular mass flux reflecting to the vapor phase (reflection molecular mass
flux). The next task is to distinguish between Jevap and Jref to estimate these molecular
mass fluxes and then to determine αe and αc.

In the vapor–liquid equilibrium, αe is equal to αc from the definition of Eq. (5), and
that is confirmed based on molecular dynamics[12, 17, 18]. On the other hand, during
net evaporation/condensation, several studies to determine αe and αc based on molecular
dynamics have been proposed to date[15, 16, 19, 20]. For instance, Ishiyama et al.[19, 20]
proposed a concept of spontaneous evaporation to avoid the ambiguities of assigning Jevap and
Jref . They showed that αe and αc for monoatomic (argon) molecules take almost the same
value during net evaporation/condensation. Meland et al.[15] distinguished these molecular
mass fluxes by using interphase boundary and pointed out that αe and αc for monoatomic
(argon) molecules vary with the increase in the Mach number of vapor far from the interface.
Kryukov et al.[16] also found the increase in αc by accounting for monoatomic (argon and
helium) molecules.

Neither αe nor αc has been indisputably determined after all, even though each of different
coefficients had been derived from the same definition (Eq. (5)) with the use of simple
monoatomic molecules. In other words, the distinction between Jevap and Jref has still
remained ambiguity. Furthermore, these studies[15, 16, 19, 20] investigated only a few cases
of liquid temperature. It would be advantageous that the molecular dynamics simulations
can deal with practical monoatomic and polyatomic molecules; however, it is extremely hard
to conduct a systematic investigation of the KBC in consideration of the liquid temperature
dependence because of its high computational cost.

In contrast to these studies, the authors[21] have proposed a novel method of deter-
mining the KBC for the monoatomic (hard-sphere) molecules based on mean field kinetic
theory[22, 23]. This method can construct the KBC without distinguishing each molecular
mass flux. The constructed KBC can describe accurate macroscopic variables, such as vapor
density, velocity, and temperature, in the case of liquid temperature near the triple point.

3



Furthermore, incorporating mean field kinetic theory, we can succeed to reduce the compu-
tational cost compared with the molecular dynamics simulations. However, any dependence
of the KBC constructed by this method with liquid temperature has yet to be explored.

In this study, we conduct a systematic investigation of the KBC during net evapora-
tion/condensation by considering the liquid temperature dependence. First, we construct
the KBC during net evaporation/condensation by using this method over a wide range of
liquid temperatures (Sec. 3.2). Then, we validate the accuracy of the constructed KBC
by solving the boundary value problem of the Boltzmann equation (Sec. 3.3). Finally, we
comment on the application of the constructed KBC to the boundary condition for the
fluid-dynamic-type equations (Sec. 3.4).

2. Method

2.1. Numerical simulation of the Enskog–Vlasov equation

In this study, we utilize a DSMC-based numerical scheme employing the Enskog–Vlasov
equation to construct the KBC. This numerical scheme provides the reasonable description
of the vapor–liquid two-phase flow.

The Enskog–Vlasov equation[22, 23] is a kinetic equation based on mean field kinetic the-
ory, which describes the hard-sphere fluid interaction by Sutherland potential, ϕ(r), defined
as

ϕ(r) =

{
+∞ (r < a)

−ϕa

(
r
a

)−γ
(r ≥ a),

(7)

where r is intermolecular distance, a is a molecular diameter, ϕa and γ are constants; γ is
set as six to follow the attractive tail of the 12–6 Lennard–Jones intermolecular potential.
In terms of a one-particle velocity distribution function, the Enskog–Vlasov equation is
expressed as

∂f

∂t
+ ξi

∂f

∂xi

+
Fi(xi, t)

m

∂f

∂ξi
= CE, (8)

CE = a2
∫

{Y [n(xi +
a

2
Ki, t)]f(xi + aKi, ξ

′
1i, t)f(xi, ξ

′
i, t)− Y [n(xi −

a

2
Ki, t)]

×f(xi − aKi, ξ1i, t)f(xi, ξi, t)}H(ξriKi)(ξriKi)dξ1d
2K,

where t is time, xi is position (x, y, and z), Y is a pair correlation function, n is number
density, Ki is the unit vector defined as Ki = (x1i − xi)/(∥x1i − xi∥), H is the Heaviside
function, ξi and ξ1i denote the molecular velocity of two colliding molecules; prime (′) su-
perscripts denote quantities of post-collisional molecules, ξri denotes the relative velocity
ξri = ξi − ξ1i, and Fi is a self-consistent force field determined from Eq. (7)[24]

Fi(xi, t) =

∫
∥x1i−xi∥>a

dϕ

dr

x1i − xi

∥x1i − xi∥
n(x1i, t)dx1i, (9)

where xi and x1i denote the molecular position of two colliding molecules.
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As for the equation of state for hard-sphere molecules, we utilized Carnahan and Stirling
approximation[25]. According to this equation of state, the critical temperature of hard-
sphere molecules is given as follows[24]:

Tc = 0.094329
4γ

γ − 3

ϕa

k
, (10)

where k is the Boltzmann constant. We estimate the saturated vapor density, ρ∗, of hard-
sphere molecules from the Clausius–Clapeyron equation obtained from the vapor–liquid
equilibrium simulation[21]

ρ∗(TL)

ρc
= 79.72

Tc

TL

exp

(
−5.279

Tc

TL

)
, (11)

where ρc is critical density.
To solve the Enskog–Vlasov equation, we utilized a DSMC-based numerical scheme (EV-

DSMC)[24, 26]; the DSMC method is one of the particle schemes for solving the kinetic
equation[27, 28]. The great advantage of using this method is its capability to deal with
the larger number of particles than the molecular dynamics simulations[29], which enable
us to obtain precise macroscopic variables in the vapor–liquid two-phase flow. Furthermore,
several studies have confirmed that macroscopic variables obtained from the EV-DSMC sim-
ulation show similar tendencies with those obtained from the molecular dynamics simulation
for monoatomic molecules[21, 24, 30, 31].

2.2. Simulation system

We considered a one-dimensional physical space (z-direction) and three-dimensional
molecular velocity space in the system that is composed of hard-sphere vapor and its con-
densed phase (liquid). Note that to assume a one-dimensional physical space, the vapor–
liquid interface has to be planar; the interface having a curvature should be considered as a
two- or three-dimensional physical space. On the other hand, the characteristic length scale
of evaporation/condensation is molecular diameter order. In this length scale, the vapor–
liquid interface is approximately planar even though it has a curvature in the macroscopic
scale.

Figure 1 (above) shows a schematic of the simulation system. Liquids at temperatures
TLh and TLl (TLh > TLl) are confined to the regions around the left and right edges, re-
spectively. The kinetic boundary, which is synonymous with the interface, is defined as the
position where the KBC is imposed[21, 32]. The net mass flux, ρvz, is induced in the di-
rection outgoing from the liquid into the vapor phase at the kinetic boundary at TLh (net
evaporation), and that is also induced in the direction colliding onto the liquid from the
vapor phase at the kinetic boundary at TLl (net condensation). The relation of each molec-
ular mass flux (Eq. (6)) in the simulation setting of this study is shown in the enlarged
views of Fig. 1 (above). ρvz is obtained as the difference between Jout and Jcoll at each
kinetic boundary. Note that net evaporation and condensation never occur simultaneously
at the same kinetic boundary, whereas evaporation, reflection and condensation in a sense
of molecular motions always occur at the same kinetic boundary.
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Figure 1 (below) shows the density field and the various net fluxes obtained from the
EV-DSMC simulation[24, 26]. A thin solid line is the density field, a bold solid line is the net
mass flux in vapor, a dashed line is the net heat flux in vapor, and a dotted line is the net
energy flux in vapor. TLh and TLl normalized by the critical temperature, Tc, are set as 0.68
and 0.60, respectively. In Fig. 1 (below), the high density regions around the left and right
edges of the system are liquids, and the low density region around the center of the system
is vapor. The smooth density transition layers are formed between vapor and each liquid.
The fluxes in vapor are induced by the liquid temperature difference between TLh and TLl;
the net mass and net energy fluxes in vapor take positive value in the z-direction, whereas
the net heat flux in vapor takes negative value in the z-direction. This negative net heat flux
is caused by the positive temperature gradient in vapor which is called inverted temperature
gradient [8]. Note that several studies[33, 34, 35] have indicated that the negative mass flux
is also caused by the inverted temperature gradient; we could not observe the negative mass
flux because the occurrence of this phenomenon is highly unlikely indicated by the necessary
and sufficient criteria[34, 35]. We further discuss the inverted temperature gradient and the
negative heat flux in Sec. 3.1.

It is important that the net mass flux in vapor becomes uniform and constant as a
consequence of steady net evaporation/condensation. To obtain steady net evaporation
and condensation, we applied velocity-scaling and particle-shifting methods [21, 36]. The
velocity-scaling method modifies molecular velocity in bulk liquid at each time step, keeping
the constant liquid temperature, where the boundary of the bulk liquid is defined as 3a away
from the center of the 10–90 thickness density transition layer, Zm. The particle-shifting
method modifies the position of molecules in whole simulation system, fixing the position of
the kinetic boundary. To estimate ρvz in the various cases of the degree of net evaporation
and condensation, we varied the temperature difference of the two liquid slabs. Detailed
settings of the liquid temperature differences are shown in Sec. 2.3.

2.3. Method of constructing the KBC

The method of constructing the KBC proposed in our recent study[21] is explained in
the following. First, to eliminate Jref in Eq. (6), we utilized the conservation law of the
molecular mass flux at the kinetic boundary:

ρvz = Jout − Jcoll = (Jevap + Jref)− (Jcond + Jref) = Jevap − Jcond. (12)

If we assume the normalized velocity distribution function f̂ in Eq. (2) to be the normalized
Maxwellian distribution (Eq. (3)), the above equation can be rewritten as

ρvz =
[
αeρ

∗(TL)− αcσ
]√RTL

2π
. (13)

Note that there has been some arguments about the assumption of the normalized Maxwellian
distribution during stronger net evaporation/condensation[19, 20, 30]; hence, in our recent
study, we examined the applicability of the above assumption over a wide range of liquid
temperature[21, 32].
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Second, we rewrote the KBC (Eq. (2)) by using the net mass flux ρvz. Substitution of
Eq. (13) in Eq. (2) leads to

fout =

[
ρvz

√
2π
RTL

+ σ
]

(
√
2πRTL)3

exp

(
− ξ2i
2RTL

)
, for ξz > 0. (14)

If ρvz is uniquely specified, σ is estimated as a part of the solution of the Boltzmann equation
by using Eq. (4).

Third, to estimate ρvz in the various cases of the degree of net evaporation and conden-
sation, we simulated the system of two liquid slabs at different temperatures as explained
in Sec. 2.2. The formulated mass flux relations can be obtained by using the procedure
proposed in our recent study[21]. We set the reference liquid temperature normalized by its
critical value, TL/Tc, as 0.60; this temperature is near the triple point temperature of argon
molecules (83.8 K). As a result of our recent study, the mass flux relation at the kinetic
boundary during net evaporation is as follows:

ρvz
J∗
out

= 0.871

(
1− Jcoll

J∗
coll

)
= 0.871

(
1− σ

ρ∗(TL)

)
, (15)

and that for net condensation is as follows:

ρvz
J∗
out

= 0.928

(
1− σ

ρ∗(TL)

)
. (16)

Each equation was constructed by using the linear regression analysis; the coefficient of
determination, R2, in this linear regression analysis was more than 0.999. Here, we defined
the ratio of Jcoll to J∗

coll as the index of the degree of net evaporation and condensation at
the kinetic boundary; Jcoll/J

∗
coll = σ/ρ∗ in the vapor–liquid equilibrium is unity, while that

in net evaporation and condensation are smaller and larger than unity, respectively. From
this linear regression analysis, we confirmed that a linear mass flux relation indeed exists at
TL/Tc = 0.60.

Finally, to specify the KBCs at the kinetic boundaries during net evaporation and conden-
sation, we substitute the linear mass flux relation (Eqs. (15) or (16)) to the KBC rewritten
by ρvz (Eq. (14)). In addition, when Jcoll in Eq. (15) is set as zero, αe according to the
concept of spontaneous evaporation[12, 19] can be obtained as

αe = 0.871. (17)

Furthermore, with the use of Eqs. (15) and (17), αc at the kinetic boundary during net
evaporation is

αc = αe = 0.871. (18)

In the same way, with the use of Eqs. (16) and (17), αc at the kinetic boundary during net
condensation is

αc =
ρ∗(TL)

σ
(αe − 0.928) + 0.928, (19)
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These results showed that in the case of TL/Tc = 0.60, αe and αc are identical and constant
when the kinecit boudary is in net evaporation, on the other hand, αc increases with the
increase in σ/ρ∗ when that is in net condensation.

It is the most striking finding in our recent study[21] that ρvz is well described as a
linear function of σ/ρ∗, but it is not obvious that the existence of this linear mass flux
relation at other liquid temperature. Thus, to construct the KBCs by using this method
in consideration of the liquid temperature dependence, we have to confirm the existence
of the linear mass flux relation at a given liquid temperature. Hereafter, for more general
expression, we replace 0.871 and 0.928 in Eqs. (15) and (16) as βne and βnc, respectively.
Obviously, the existence of the linear mass flux relation indicates that βne and βnc are
constants and depend only on liquid temperature. In this study, we formulate the mass flux
relation between ρvz and σ/ρ∗ over a wide range of liquid temperature and then construct
the KBC in consideration of the liquid temperature dependence.

As was mentioned, we varied the temperature differences of the two liquid slabs to es-
timate ρvz in the various cases of σ/ρ∗; one of the liquid temperatures is fixed as reference
liquid temperature TL, and the other liquid temperature is varied. We set the normalized ref-
erence liquid temperature TL/Tc as 0.60, 0.62, 0.64, 0.66, 0.68, 0.70, and 0.72. For instance,
in the case of TL/Tc = 0.64, TLl/Tc is varied in the range of 0.56–0.63 with the increments of
0.01 if TLh/Tc is fixed to 0.64 (net evaporation cases), while TLh/Tc is varied in the range of
0.65–0.80 with the increments of 0.01 if TLl/Tc is fixed to 0.64 (net condensation cases). In
this manner, we performed the numerical simulations in 160 cases of the liquid temperature
differences (Tables 1–7). The cell size, ∆z/a, and the time-step size, ∆t/(a/

√
2RTc), are set

as 0.2 and 0.001, respectively.

3. Results and discussion

3.1. Macroscopic variables obtained from the EV-DSMC simulations

Figure 2 shows the density, velocity, and temperature fields obtained from the EV-DSMC
simulation in the cases of the normalized reference liquid temperature TL/Tc = 0.60 and 0.64;
typical examples of the kinetic boundary at the reference liquid temperature during weak net
condensation (Fig. 2(a) and (c)) with the small liquid temperature difference and that during
strong net condensation (Fig. 2(b) and (d)) with the large liquid temperature difference are
presented.

In each case of Fig. 2, the high density regions around the left and right edges of the
system are liquids, and the low density region around the center of the system is vapor.
The smooth density transition layers are formed between vapor and each liquid. As can be
seen, a positive vapor velocity in the z-direction is induced by net evaporation/condensation
in all cases. We found that the vapor velocity increases with the increase in the liquid
temperature difference in the both cases of the normalized reference liquid temperature.
Note that temperature at the kinetic boundary differs from that of bulk liquid, which is
called temperature jump [13, 14, 15, 19, 37, 38, 39]. As shown in Fig. 2, the temperature
jump increases with the increase in the liquid temperature difference in the both cases
of the normalized reference liquid temperature; this increase in the temperature jump is
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related to the increase in the velocity in the direction normal to the kinetic boundary[40].
Furthermore, in this system consisting of two liquid slabs at different temperatures, well-
known characteristic phenomenon inverted temperature gradient[8, 41, 42, 43, 44] occurs in
the bulk vapor as a consequence of the temperature jump. We verified the occurrence of
the inverted temperature gradient by using the EV-DSMC simulation. As can be seen in
enlarged views of Fig. 2, the temperature gradient at the center of vapor becomes positive
in all cases. As a consequence of this inverted temperature gradient, the direction of the
net heat flux in vapor is negative as shown in Fig. 1. Several studies[36, 45, 46] have also
verified the inverted temperature gradient by using experimental and molecular dynamics-
based approaches; Hermans and Beenakker[44] have proved that the inverted temperature
gradient does not violate the second law of thermodynamics.

3.2. Formulation of the mass flux relation and construction of the KBC

Figure 3 shows the mass flux relation between the net mass flux ρvz and the degree of
net evaporation/condensation σ/ρ∗, at the kinetic boundary of each reference liquid tem-
perature. In the discussion given below, for convenience, we set ρvz > 0 and ρvz < 0 at
the kinetic boundary during net evaporation and net condensation, respectively (see Fig. 3).
Each closed circle is obtained from the EV-DSMC simulation, and each solid line is obtained
from the linear regression analysis; the coefficients of determination during net evaporation,
R2

ne, and net condensation, R2
nc, at each reference liquid temperature are shown in Fig. 3.

It should be emphasized that each closed circle in Fig. 3 corresponds to each case of the
liquid temperature difference shown in Table 1–7. When the liquid temperature difference
becomes larger, the deviation of σ/ρ∗ from unity increases because of stronger net evapo-
ration/condensation. As was mentioned in Sec. 2.3, several studies[19, 20, 30] have been
proposed that f̂ in the KBC deviate from the normalized Maxwellian distribution during
stronger net evaporation/condensation. In our recent study[21, 32], we confirmed that this
deviation becomes prominent with the increase in σ/ρ∗. We also determined that the range
of σ/ρ∗ in which f̂ can be assumed to be the normalized Maxwellian distribution is from
0.5 to 2.3. Thus, the linear regression analysis can be applied in this range of σ/ρ∗. The
detailed values of ρvz and σ/ρ∗ in all 160 cases are shown in Tables 1–7.

Figure 3 clearly shows that a linear relation between ρvz and σ/ρ∗ is obtained at each
liquid temperature. In other words, since the slopes βne and βnc are constant, we succeeded
to confirm that these parameters are constant at each liquid temperature. The values of
βne and βnc are shown in Tables 1–7, and a relation between these parameters and liquid
temperature are shown in Fig. 4. As can be observed, βne and βnc decrease with the increase
in liquid temperature, and βnc is larger than βne at each liquid temperature. With the use
of these results, we can rewritten Eqs. (15) and (16) as

ρvz
J∗
out

= βne(TL)

(
1− σ

ρ∗(TL)

)
, (20)

ρvz
J∗
out

= βnc(TL)

(
1− σ

ρ∗(TL)

)
, (21)
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Above equations showed that the change of ρvz with the increase in σ/ρ∗ during net con-
densation is larger than that for net evaporation. Note that with the use of Eqs. (20) and
(21), we can derive general expressions of Eqs. (17)–(19); that is the relations between the
evaporation coefficient αe and the condensation coefficient αc defined by Eq. (5) and βne or
βnc. A general expression of αe during net evaporation/condensation (Eq. (17)) is

αe = βne(TL). (22)

Furthermore, a general expression of αc during net evaporation (Eq. (18)) is

αc = αe = βne(TL), (23)

and that of αc during net condensation (Eq. (19)) is

αc =
ρ∗(TL)

σ
(αe − βnc(TL)) + βnc =

ρ∗(TL)

σ
(βne(TL)− βnc(TL)) + βnc. (24)

From Eqs. (23) and (24), we can confirm that αe and αc are equal to βne in the vapor–liquid
equilibrium (σ = ρ∗).

Since we have confirmed the existence of the linear mass flux relation (Eqs. (20) and
(21)) in consideration of the liquid temperature dependence, we can construct the KBCs by
using the method as explained in Sec. 2.3. Substitution of Eq. (20) or (21) in Eq. (14) leads
to

fout =

[
βne(TL)(ρ

∗(TL)− σ) + σ
]

(
√
2πRTL)3

exp

(
− ξ2i
2RTL

)
, for ξz > 0, (25)

fout =

[
βnc(TL)(ρ

∗(TL)− σ) + σ
]

(
√
2πRTL)3

exp

(
− ξ2i
2RTL

)
, for ξz > 0. (26)

If the kinetic boundary is in net evaporation, we impose Eq. (25) as the KBC. Similarly, if
the kinetic boundary is in net condensation, we impose Eq. (26) as the KBC. To distinguish
between net evaporation and condensation, we have to examine whether the degree of net
evaporation and condensation σ/ρ∗ is larger of smaller than unity. It should be empha-
sized that the process of distinguishing net evaporation/condensation based on σ/ρ∗ can be
easily implemented to the algorithm to solve the Boltzmann equation because σ is a part
of solution of the Boltzmann equation. Furthermore, if we consider the system that is in
only net evaporation or condensation, such as cavitation bubble nucleation and shock tube
experiment[47], we can make the algorithm simpler. It is important result of this study that
we do not have to use the values of αe and αc depending on the index of the degree of net
evaporation/condensation, such as the Mach number of vapor far from the interface[14, 15].

In Eqs. (25) and (26), saturated vapor density ρ∗ is the function of liquid temperature,
βne and βnc are also the function of the liquid temperature (Fig. 4), and σ is estimated as
a part of solution of the Boltzmann equation by using Eq. (4); simulating the vapor–liquid
two-phase flow with net evaporation/condensation is possible if only liquid temperature is
specified. Needless to say, we can impose the KBCs (Eqs. (25) and (26)) more easily than
the previous ones because the liquid temperature dependence is explicitly clarified.
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3.3. Validation of the constructed KBC

As a prerequisite for the validation, we confirmed whether Eqs. (25) and (26) satisfy the
conditions that should be satisfied in the KBC at the vapor–liquid interface[8]. The general
form of the KBC at the vapor–liquid interface is expressed in terms of a scattering kernel,
KI, as

fout = gI(x, ξ, t) +

∫
ξ̃z<0

KI(x, ξ, ξ̃, t)fcoll(x, ξ̃, t)dξ̃, for ξz > 0, (27)

where ξ̃ denotes the molecular velocity colliding onto the interface (ξ̃z < 0) and gI, indepen-
dent of fcoll, corresponds to the term including the saturated vapor density ρ∗ in Eqs. (25)
and (26). As for the KBC at the vapor–liquid interface, gI and KI are required to satisfy
the following three conditions.

The first condition is that gI should be non-negative function for ξz > 0. As for the
constructed KBCs (Eqs. (25) and (26)), each of gI is given by

gI(ξ) =
βne(TL)ρ

∗(TL)

(
√
2πRTL)3

exp

(
− ξ2i
2RTL

)
, (28)

gI(ξ) =
βnc(TL)ρ

∗(TL)

(
√
2πRTL)3

exp

(
− ξ2i
2RTL

)
. (29)

where βne and βnc are non-negative as shown in Figs. 3 and 4; thus, each of gI is non-negative
function.

The second condition is that KI should be non-negative function for ξz > 0 and ξ̃z < 0.
As for the constructed KBCs (Eqs. (25) and (26)), each of KI is given by

KI(ξ, ξ̃) = (1− βne)
−1

2π(RTL)2
ξ̃z exp

(
− ξ2i
2RTL

)
, (30)

KI(ξ, ξ̃) = (1− βnc)
−1

2π(RTL)2
ξ̃z exp

(
− ξ2i
2RTL

)
. (31)

where βne and βnc are smaller than unity as shown in Fig. 4; thus, each of KI is non-negative
function.

The third condition is that KI should satisfy the following relation when the vapor–liquid
equilibrium,

f ∗
out(ξ) = gI(ξ) +

∫
ξz<0

KI(ξ, ξ̃)f
∗
coll(ξ̃)dξ̃, for ξz > 0, (32)

where

f ∗
out =

ρ∗(TL)

(
√
2πRTL)3

exp

(
− ξ2i
2RTL

)
. (33)

Note that the sum of f ∗
out and f ∗

coll is equal to the equilibrium solution of the Boltzmann
equation; that is the Maxwellian distribution. Eqs. (32) and (33) are the result of the local
property of KI, and the natural requirement that the vapor–liquid equilibrium at liquid
temperature TL and saturated vapor density at liquid temperature ρ∗(TL) is established in
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the system. As for the constructed KBCs (Eqs. (25) and (26)), σ is equal to ρ∗ in the
vapor–liquid equilibrium; therefore, Eqs. (25) and (26) becomes Eq. (33). On the basis of
the above discussion, we confirmed that the constructed KBCs (Eqs (25) and (26)) satisfy
the conditions that should be satisfied in the KBC at the vapor–liquid interface.

Then, to validate the accuracy of the constructed KBCs (Eqs. (25) and (26)), we com-
pared the macroscopic variables, such as vapor velocity and temperature, obtained from the
numerical simulation of the Boltzmann equation and those obtained from the EV-DSMC
simulation. The macroscopic variables in vapor strongly depend on the KBC; hence, the
KBC is validated if and only if the macroscopic variables obtained from these two simula-
tions agree with the high degree of accuracy. Note that the validation method same as this
study has been performed based on molecular dynamics[46].

In the simulation of the Boltzmann equation, we considered a one-dimensional physical
space (z-direction) and three-dimensional molecular velocity space in the system that is
composed of hard-sphere vapor between two boundaries; one of the boundaries is the vapor–
liquid interface (kinetic boundary), and the other is an arbitrary vapor boundary. At the
kinetic boundary, we prescribed the constructed KBC (Eqs. (25) or (26)), while at the vapor
boundary, we prescribed the velocity distribution function, fVB, as follows:

fVB =
νρ∗(TL)

(
√
2πRνTL)3

exp

(
− ξ2i
2RνTL

)
for ξz < 0, (34)

where ν is a constant parameter (ν > 0) and is set at 0.5 and 1.5. The system is in net
evaporation in the case of ν = 0.5, while that is in net condensation in the case of ν = 1.5.
To set the Prandtl number of hard-sphere molecules as 0.66[8], we utilize the ES-BGK model
Boltzmann equation (ES-BGK equation)[48] which is one of the models of the Boltzmann
equation. The finite difference method is used for the numerical scheme. After the velocity
distribution function f in vapor is obtained from the numerical simulation of the ES-BGK
equation, the macroscopic variables, such as vapor velocity and temperature, are estimated
by Eq. (1). A more detailed explanation of the ES-BGK equation and the numerical scheme
can be found in the literature[48, 49].

In the EV-DSMC simulation, we considered a one-dimensional physical space (z-direction)
and three-dimensional molecular velocity space in the system that is composed of hard-sphere
vapor and its condensed phase (liquid). A schematic of this simulation is shown in Fig. 5
(above). We prescribed Eq. (34) at the vapor boundary in the same way as the simulation
of the ES-BGK equation. The cell and time-step sizes are the same as already explained
in Sec. 2.3. Since the liquid slab deminishes/grows due to net evaporation/condensation,
we utilized a sampling window (Fig. 5 (above)) which moves in accordance with following
coordinate, z′′:

z′′ = z − ρvz
ρL

t, (35)

where ρL is liquid density. Note that in this simulation settings, the length between the
right end of the sampling window and system end, Ze, is smaller than the mean free path of
hard-sphere molecules. Thus, we can regard the velocity distribution function at the right
end of the sampling window as Eq. (34).
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Figure 5 (below) shows the comparison between the vapor velocity and temperature
fields obtained from the numerical simulation of the ES-BGK equation and the EV-DSMC
simulation, where dashed lines are the results of the ES-BGK equation, and solid lines are
those of the EV-DSMC simulation. As can be observed, in the case of TL/Tc = 0.60 (Fig. 5(a)
and 5(b)), the vapor velocity and temperature fields obtained from the numerical simulation
of the ES-BGK equation and the EV-DSMC simulation are in excellent agreement. In
the case of TL/Tc = 0.68 (Fig. 5(c) and 5(d)), these macroscopic variables are also in
excellent agreement except for the vapor temperature fields in the vicinity of the kinetic
boundary during net evaporation (Fig. 5(d)); however, the maximum deviation of the vapor
temperature fields obtained from these two simulations is less than 5%. Based on these
results, we conclude that the deviation of the macroscopic variables obtained from these two
simulations is sufficiently small; hence, the KBC constructed in this study is guaranteed to
be accurate.

3.4. Application for the fluid-dynamic-type equations

With the use of the constructed KBCs (Eqs. (25) and (26)), we can derive the boundary
conditions during net evaporation and condensation for the fluid-dynamic-type equations;
the derivation is shown in the literature[8, 40, 50]. The boundary conditions of vapor
pressure, p, and temperature, T , during net evaporation (vz > 0) are as follows:

p− p∗(TL)

p∗(TL)
=

(
C∗

4 − 2
√
π
1− βne(TL)

βne(TL)

)
vz√
2RTL

,

T − TL

TL

= d∗4
vz√
2RTL

,

(36)

where p∗ is the saturated vapor pressure, and C∗
4 and d∗4 are the slip coefficients determined

by specifying the molecular model[8]. Similarly, that for net condensation (vz < 0) is as
follows:

p− p∗

p∗
=

(
C∗

4 − 2
√
π
1− βnc(TL)

βnc(TL)

)
vz√
2RTL

,

T − TL

TL

= d∗4
vz√
2RTL

.

(37)

It should be emphasized that βne and βnc are functions of liquid temperature as shown in
Fig. 4; thus, we can determine the boundary conditions for the fluid-dynamic-type equa-
tions by simply specifying liquid temperature. This enables us to deal with a larger spatio-
temporal scale of interfacial dynamics in the vapor–liquid two-phase system with net evapo-
ration/condensation, such as Leidenfrost effect[1, 2, 3] and cavitation bubble collapse[4, 5, 6].

4. Conclusion

In this paper, we conducted a systematic investigation of the kinetic boundary condition
(KBC) for hard–sphere molecules during steady net evaporation/condensation over a wide

13



range of liquid temperature. First, we constructed the KBC in the case of the normalized
liquid temperature, TL/Tc, from 0.60 to 0.72 by the numerical simulation based on mean
field kinetic theory. The results showed that the parameters including in the KBCs, βne and
βnc, to be constants at each liquid temperature; thus, we can prescribe the KBCs during net
evaporation/condensation by simply specifying liquid temperature. Then, we validated the
constructed KBC by comparing the macroscopic variables in vapor obtained from molecular
gas dynamics and mean field kinetic theory. The macroscopic variables in vapor obtained
from these theories agree with the high degree of accuracy, indicating that the constructed
KBC can be guaranteed to be accurate for the analysis of vapor–liquid two-phase system
with net evaporation/condensation. Finally, to deal with a large spatio-temporal scale of
interfacial dynamics, we discussed the application of the constructed KBC to the boundary
condition for the fluid-dynamic-type equations.

On the based on the results of this study, we constructed the KBC for hard-sphere
molecules in consideration of the liquid temperature dependence during steady net evapo-
ration and condensation; however, the application of the KBC during unsteady net evapo-
ration/condensation is extremely important. In general, the unsteady molecular simulation
requires the larger number of samples than the steady one. In contrast, we can probably
simulate the unsteady problem precisely by using the EV-DSMC simulation. Furthermore,
we now need to estimate βne and βnc for other substances, such as water, to construct a KBC
of more practical use. The values of evaporation and condensation coefficients of water is
proposed from 10−3 up to 1[51]. On the other hand, our previous experimental study[47] has
proposed that a linear mass flux relation exists for water and methanol, implying that βne

and βnc for other substance can be determined in accordance with this study by adopting a
more practical potential, namely Lennard–Jones intermolecular potential. The investigation
of the liquid temperature dependence of βne and βnc for other substances remains a subject
for future work.
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Figure 1: (above) Schematic of the simulation system for constructing the KBC and the mass flux relations
at each kinetic boundary. (below) Density field, ρ, the net mass flux, ρvz, the net heat flux, qz, and the net
energy flux, ez, obtained from the EV-DSMC simulation at TLh/Tc = 0.68 and TLl/Tc = 0.60; the abscissa
is normalized by the molecular diameter, a, and each ordinate is normalized by its critical values, ρc and Tc.

Tempereture

Velocity

Reference liquid

z/a
30100 5 15 20 25 35 40

B
u

lk
 l

iq
u

id
 0
.7
6

B
u

lk
 l

iq
u

id
 0
.6
0

(b)

0

1.0

2.0

3.0

ρ
/ρ
c

v
z/

(2
R
T

c)
1
/2
, 
T

/T
c

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

z/a
30100 5 15 20 25 35 40

z/a
30100 5 15 20 25 35 40

Tempereture

Velocity

Reference liquid

z/a
30100 5 15 20 25 35 40

B
u

lk
 l

iq
u

id
 0
.8
0

B
u

lk
 l

iq
u

id
 0
.6
4

(d)

0

1.0

2.0

3.0

ρ
/ρ
c

v
z/

(2
R
T

c)
1
/2
, 
T

/T
c

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Reference liquid

Tempereture

Velocity

B
u

lk
 l

iq
u

id
 0
.6
8

B
u

lk
 l

iq
u

id
 0
.6
0

(a)

0

1.0

2.0

3.0

ρ
/ρ
c

v
z/

(2
R
T

c)
1
/2
, 
T

/T
c

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Reference liquid

Tempereture

Velocity

B
u

lk
 l

iq
u

id
 0
.7
2

B
u

lk
 l

iq
u

id
 0
.6
4

(c)

0

1.0

2.0

3.0

ρ
/ρ
c

v
z/

(2
R
T

c)
1
/2
, 
T

/T
c

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.615

0.655

0.635

0.640

0.680

0.660

0.655

0.695

0.675

0.680

0.720

0.700

Figure 2: Density, ρ, velocity, vz, and temperature, T , fields obtained from the EV-DSMC method in the
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Figure 5: (above) Schematic of simulation system for validating the constructed KBC. (below) Comparison
of the velocity, vz, and temperature, T , fields in vapor obtained from the EV-DSMC simulation and the
numerical simulation of the ES-BGK equation: (a) TL/Tc = 0.60 and nu = 0.5, (b) TL/Tc = 0.68 and
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Table 1: Results of the EV-DSMC simulation at TL/Tc = 0.60.

# TLh/Tc TLl/Tc LV/a ρvz/J
∗
out σ/ρ∗ βne βnc

1 0.60 0.56 21.2 0.3607 0.5849

0.871

—
2 0.60 0.57 21.0 0.2821 0.6773 —
3 0.60 0.58 20.8 0.1934 0.7782 —
4 0.60 0.59 20.8 0.1014 0.8848 —
5 0.61 0.60 20.4 -0.1086 1.1265 —

0.927

6 0.62 0.60 20.4 -0.2376 1.2561 —
7 0.63 0.60 20.2 -0.3696 1.4021 —
8 0.64 0.60 20.0 -0.5069 1.5526 —
9 0.65 0.60 19.8 -0.6595 1.7157 —
10 0.66 0.60 19.8 -0.8262 1.8909 —
11 0.67 0.60 19.6 -0.9988 2.0747 —
12 0.68 0.60 19.4 -1.1863 2.2715 —
13 0.69 0.60 19.2 -1.3910 2.4828 — —
14 0.70 0.60 19.0 -1.5897 2.6969 — —
15 0.71 0.60 18.8 -1.8177 2.9321 — —
16 0.72 0.60 18.6 -2.0326 3.1667 — —
17 0.73 0.60 18.4 -2.2806 3.4248 — —
18 0.74 0.60 18.2 -2.5354 3.6930 — —
19 0.75 0.60 18.0 -2.8078 3.9771 — —
20 0.76 0.60 17.8 -3.0871 4.2714 — —

Table 2: Results of the EV-DSMC simulation at TL/Tc = 0.62.

# TLh/Tc TLl/Tc LV/a ρvz/J
∗
out σ/ρ∗ βne βnc

21 0.62 0.56 21.0 0.4530 0.4616 — —
22 0.62 0.57 20.8 0.3969 0.5342

0.857

—
23 0.62 0.58 20.6 0.3313 0.6141 —
24 0.62 0.59 20.6 0.2567 0.7015 —
25 0.62 0.60 20.4 0.1770 0.7946 —
26 0.62 0.61 20.2 0.0955 0.8922 —
27 0.63 0.62 20.0 -0.0990 1.1129 —

0.906

28 0.64 0.62 19.8 -0.2068 1.2340 —
29 0.65 0.62 19.8 -0.3282 1.3656 —
30 0.66 0.62 19.6 -0.4490 1.5013 —
31 0.67 0.62 19.4 -0.5800 1.6464 —
32 0.68 0.62 19.2 -0.7273 1.8039 —
33 0.69 0.62 19.0 -0.8780 1.9678 —
34 0.70 0.62 18.8 -1.0339 2.1391 —
35 0.71 0.62 18.6 -1.2006 2.3207 —
36 0.72 0.62 18.4 -1.3852 2.5164 — —
37 0.73 0.62 18.2 -1.5613 2.7127 — —
38 0.74 0.62 18.0 -1.7614 2.9267 — —
39 0.75 0.62 17.8 -1.9713 3.1510 — —
40 0.76 0.62 17.6 -2.1833 3.3819 — —
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Table 3: Results of the EV-DSMC simulation at TL/Tc = 0.64.

# TLh/Tc TLl/Tc LV/a ρvz/J
∗
out σ/ρ∗ βne βnc

41 0.64 0.56 20.6 0.5147 0.3707 — —
42 0.64 0.57 20.4 0.4716 0.4300 — —
43 0.64 0.58 20.2 0.4183 0.4963

0.838

—
44 0.64 0.59 20.2 0.3613 0.5670 —
45 0.64 0.60 20.0 0.3021 0.6416 —
46 0.64 0.61 19.8 0.2378 0.7214 —
47 0.64 0.62 19.8 0.1611 0.8098 —
48 0.64 0.63 19.6 0.0860 0.9008 —
49 0.65 0.64 19.4 -0.0903 1.1043 —

0.886

50 0.66 0.64 19.2 -0.1872 1.2153 —
51 0.67 0.64 19.0 -0.2875 1.3314 —
52 0.68 0.64 18.8 -0.4024 1.4583 —
53 0.69 0.64 18.6 -0.5257 1.5930 —
54 0.70 0.64 18.4 -0.6492 1.7318 —
55 0.71 0.64 18.2 -0.7771 1.8768 —
56 0.72 0.64 18.0 -0.9069 2.0268 —
57 0.73 0.64 17.8 -1.0556 2.1903 —
58 0.74 0.64 17.6 -1.2116 2.3618 —
59 0.75 0.64 17.4 -1.3700 2.5389 — —
60 0.76 0.64 17.2 -1.5420 2.7273 — —
61 0.77 0.64 17.0 -1.7076 2.9158 — —
62 0.78 0.64 16.8 -1.8916 3.1216 — —
63 0.79 0.64 16.6 -2.0797 3.3328 — —
64 0.80 0.64 16.4 -2.2865 3.5559 — —
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Table 4: Results of the EV-DSMC simulation at TL/Tc = 0.66.

# TLh/Tc TLl/Tc LV/a ρvz/J
∗
out σ/ρ∗ βne βnc

65 0.66 0.56 20.4 0.5587 0.3021 — —
66 0.66 0.57 20.2 0.5219 0.3525 — —
67 0.66 0.58 20.0 0.4822 0.4064 — —
68 0.66 0.59 20.0 0.4343 0.4661 — —
69 0.66 0.60 19.8 0.3889 0.5271

0.827

—
70 0.66 0.61 19.6 0.3348 0.5944 —
71 0.66 0.62 19.6 0.2765 0.6661 —
72 0.66 0.63 19.4 0.2181 0.7406 —
73 0.66 0.64 19.2 0.1480 0.8229 —
74 0.66 0.65 19.0 0.0757 0.9092 —
75 0.67 0.66 18.8 -0.0799 1.0955 —

0.863

76 0.68 0.66 18.6 -0.1687 1.1982 —
77 0.69 0.66 18.4 -0.2632 1.3067 —
78 0.70 0.66 18.2 -0.3588 1.4191 —
79 0.71 0.66 18.0 -0.4603 1.5375 —
80 0.72 0.66 17.8 -0.5728 1.6647 —
81 0.73 0.66 17.6 -0.6879 1.7966 —
82 0.74 0.66 17.4 -0.8071 1.9341 —
83 0.75 0.66 17.2 -0.9313 2.0776 —
84 0.76 0.66 17.0 -1.0640 2.2290 —
85 0.77 0.66 16.8 -1.2030 2.3873 — —
86 0.78 0.66 16.6 -1.3473 2.5521 — —
87 0.79 0.66 16.4 -1.5018 2.7259 — —
88 0.80 0.66 16.2 -1.6550 2.9029 — —

20



Table 5: Results of the EV-DSMC simulation at TL/Tc = 0.68.

# TLh/Tc TLl/Tc LV/a ρvz/J
∗
out σ/ρ∗ βne βnc

89 0.68 0.56 20.0 0.5854 0.2513 — —
90 0.68 0.57 19.8 0.5558 0.2938 — —
91 0.68 0.58 19.6 0.5234 0.3393 — —
92 0.68 0.59 19.6 0.4887 0.3878 — —
93 0.68 0.60 19.4 0.4486 0.4405 — —
94 0.68 0.61 19.4 0.4038 0.4974

0.811

—
95 0.68 0.62 19.2 0.3593 0.5563 —
96 0.68 0.63 19.0 0.3094 0.6198 —
97 0.68 0.64 18.8 0.2553 0.6874 —
98 0.68 0.65 18.6 0.1996 0.7581 —
99 0.68 0.66 18.6 0.1354 0.8352 —
100 0.68 0.67 18.4 0.0715 0.9146 —
101 0.69 0.68 18.0 -0.0745 1.0893 —

0.846

102 0.70 0.68 17.8 -0.1535 1.1834 —
103 0.71 0.68 17.6 -0.2360 1.2820 —
104 0.72 0.68 17.4 -0.3254 1.3867 —
105 0.73 0.68 17.2 -0.4166 1.4951 —
106 0.74 0.68 17.0 -0.5126 1.6088 —
107 0.75 0.68 16.8 -0.6156 1.7289 —
108 0.76 0.68 16.6 -0.7177 1.8516 —
109 0.77 0.68 16.4 -0.8337 1.9842 —
110 0.78 0.68 16.2 -0.9470 2.1187 —
111 0.79 0.68 16.0 -1.0699 2.2612 —
112 0.80 0.68 15.8 -1.1912 2.4062 — —
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Table 6: Results of the EV-DSMC simulation at TL/Tc = 0.70.

# TLh/Tc TLl/Tc LV/a ρvz/J
∗
out σ/ρ∗ βne βnc

113 0.70 0.56 19.6 0.5985 0.2142 — —
114 0.70 0.57 19.4 0.5746 0.2503 — —
115 0.70 0.58 19.2 0.5465 0.2897 — —
116 0.70 0.59 19.0 0.5172 0.3313 — —
117 0.70 0.60 19.0 0.4886 0.3746 — —
118 0.70 0.61 18.8 0.4523 0.4225 — —
119 0.70 0.62 18.8 0.4152 0.4729 — —
120 0.70 0.63 18.6 0.3770 0.5255

0.800

—
121 0.70 0.64 18.4 0.3348 0.5818 —
122 0.70 0.65 18.2 0.2861 0.6429 —
123 0.70 0.66 18.2 0.2340 0.7076 —
124 0.70 0.67 18.2 0.1820 0.7745 —
125 0.70 0.68 17.8 0.1247 0.8458 —
126 0.70 0.69 17.6 0.0654 0.9204 —
127 0.71 0.70 17.2 -0.0656 1.0820 —

0.823

128 0.72 0.70 17.0 -0.1386 1.1696 —
129 0.73 0.70 16.8 -0.2134 1.2607 —
130 0.74 0.70 16.6 -0.2928 1.3564 —
131 0.75 0.70 16.4 -0.3752 1.4561 —
132 0.76 0.70 16.2 -0.4600 1.5595 —
133 0.77 0.70 16.0 -0.5496 1.6679 —
134 0.78 0.70 15.8 -0.6406 1.7796 —
135 0.79 0.70 15.6 -0.7422 1.8992 —
136 0.80 0.70 15.4 -0.8414 2.0203 —
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Table 7: Results of the EV-DSMC simulation at TL/Tc = 0.72.

# TLh/Tc TLl/Tc LV/a ρvz/J
∗
out σ/ρ∗ βne βnc

137 0.72 0.56 19.2 0.6066 0.1855 — —
138 0.72 0.57 19.0 0.5872 0.2165 — —
139 0.72 0.58 18.8 0.5654 0.2499 — —
140 0.72 0.59 18.6 0.5428 0.2850 — —
141 0.72 0.60 18.6 0.5151 0.3237 — —
142 0.72 0.61 18.4 0.4872 0.3640 — —
143 0.72 0.62 18.4 0.4575 0.4068 — —
144 0.72 0.63 18.2 0.4228 0.4531 — —
145 0.72 0.64 18.0 0.3847 0.5025

0.780

—
146 0.72 0.65 17.8 0.3472 0.5535 —
147 0.72 0.66 17.8 0.3063 0.6078 —
148 0.72 0.67 17.6 0.2647 0.6642 —
149 0.72 0.68 17.4 0.2175 0.7248 —
150 0.72 0.69 17.2 0.1648 0.7898 —
151 0.72 0.70 17.0 0.1140 0.8560 —
152 0.72 0.71 16.8 0.0566 0.9271 —
153 0.73 0.72 16.4 -0.0613 1.0769 —

0.805

154 0.74 0.72 16.2 -0.1261 1.1577 —
155 0.75 0.72 16.0 -0.1914 1.2408 —
156 0.76 0.72 15.8 -0.2631 1.3291 —
157 0.77 0.72 15.6 -0.3392 1.4217 —
158 0.78 0.72 15.4 -0.4167 1.5173 —
159 0.79 0.72 15.2 -0.4966 1.6163 —
160 0.80 0.72 15.0 -0.5816 1.7201 —
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