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Abstract

This thesis introduces two projects applying machine learning methods to the realm of

bioinformatics. In Chapter 1, we look at a regression problem involving the parameter values

associated with the SEIR epidemiological model while in Chapter 2 we explore viral host

classification.

Chapter 1 - To estimate and predict the transmission dynamics of respiratory viruses,

the estimation of the basic reproduction number, R0, is essential. Recently, approximate

Bayesian computation methods have been used as likelihood free methods to estimate

epidemiological model parameters, particularly R0. In this paper, we explore various machine

learning approaches, the multi-layer perceptron, convolutional neural network, and long-short

term memory, to learn and estimate the parameters. Further, we compare the accuracy of

the estimates and time requirements for machine learning and the approximate Bayesian

computation methods on both simulated and real-world epidemiological data from outbreaks

of influenza A(H1N1)pdm09, mumps, and measles. We find that the machine learning

approaches can be verified and tested faster than the approximate Bayesian computation

method, but that the approximate Bayesian computation method is more robust across

different datasets.
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Abstract

Chapter 2 - Infectious diseases which transfer between species are particularly difficult

to manage. Knowing the natural host for an infectious agent makes it easier to prevent

interspecies transmissions. However, with new and re-emerging disease, it can be difficult to

know what the reservoir host is. In the second half of this thesis, we conducted a principal

component analysis using data from the fruit bat and wild duck, along with a selection of

single-stranded RNA viruses found in each animal. Historically, the virus-host relationship

has often been examined using two components, that is, the G+C content of the genomes

and the rate ratio of CpG in the genome. However, numerous data discrepancies exist which

cannot be explained with mathematical models built from this technique. In this study, we

found several alternative components that could be used to infer the host animal species of

RNA viruses. Using these alternative components, we may be able to build a mathematical

model that more closely simulates the virus-host genetic relationship. With this information,

we may be able to identify genetic signatures in viruses which can uniquely identify the

natural host species. In future, this information could help identify the animal source of a

new outbreak.

iv



Acknowledgements

I would like to acknowledge the many people who have supported me over the years and

encouraged me to keep moving forward.

First, I would like to thank Professor Ryosuke Omori for the many hours of discussion in

person, over email, and via Skype. Your patience, support, and high standards ensured the

success of our many projects and my eventual graduation.

Next, I would like to appreciate Professor Kimihito Ito for encouraging me to find a topic

I was sincerely interested in.

Thank you to Elizabeth Tasker, Bongkot Soonthornsata, Wallaya Phongphaew, Wessam

Mohamed, and Gabriel Gonzalez for your friendship and advice. I enjoyed the many hours

we spent in discussion and the encouragement I received from all of you.

I am grateful to my wonderful friends in Korea: Serim Jang, Lenin Gurung, and Ceyda

Cinarel. Thank you for our many adventures and all the wonderful times we had.

My thanks go to the members of the Division of Bioinformatics at Hokkaido University

and the members of the Biointelligence Laboratory at Seoul National University. It has been

a pleasure working with all of you.

v



Acknowledgements

I would like to thank Greg Kipe for encouraging me to ’go for it’ all those years ago.

I am also grateful to Professor Michael Wick for his inspired lectures and enthusiasm for

the field of computer science which has maintained my excitement in the field these past 18

years. To my teachers Randal Meinen and Kay Ziegahn who inspired me to work hard and

challenge myself in any pursuit. I would also like to acknowledge Tracy Irving for her years

of friendship and support.

Finally, I would like to thank my family for their love and support over the years.

vi



Abbreviations

ABC: approximate Bayesian computation
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ML: machine learning
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Preface

Machine learning has emerged as an effective tool for the analysis of complex, non-linear

data. In this thesis, I explored both regression and classification problems in machine

learning, as well as supervised and unsupervised learning methods. In chapter 1, I explore a

supervised, regression problem which attempts to estimate the parameter values involved in a

Susceptible-Exposed-Infectious-Removed (SEIR) epidemiological model. Chapter 2 explores

unsupervised learning where we use principal component analysis to find relationships in the

genomic data of hosts and their viruses.
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Chapter 1

A comparative study of likelihood-free

methods for the estimation of

epidemiological dynamics of respiratory

viruses

1.1 Introduction

Prediction of infectious disease epidemics is essential to their control, but also a difficult

process. This is because the epidemiological dynamics, i.e., the time evolution of the

number of infected individuals, are nonlinear, with the probability of a susceptible individual

acquiring infection depending on the number of infected individuals. Previous studies have

constructed mathematical models describing the transmission dynamics of infectious disease,
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Chapter 1

known as the Susceptible-Infectious-Removed (SIR) model, and fit the model to the time

series data of the number of infected individuals [4]. Conventional statistical methods, e.g.,

maximum likelihood estimation, require explicit solution of the time series data of the number

of infected individuals from the SIR model. However, an explicit solution is difficult to

obtain due to the nonlinearity of the model. Therefore several approximations are required

to fit the SIR model with the epidemiological data of infectious diseases. Furthermore, the

transmission of infectious disease is a stochastic event. A mathematical model taking into

account stochasticity is required to estimate parameters.

One common property of transmission dynamics is the threshold for outbreak: an outbreak

occurs only if the basic reproduction number, R0, exceeds unity. In a biological sense, R0 is

the expected number of secondary infections by an infected individual when a population is

fully susceptible [11]. Estimation of R0 helps to predict the outbreak potential, final epidemic

size, timing of the epidemic peak, and vaccination coverage required to prevent an outbreak.

To estimate R0, a common method is to fit the SIR model to epidemiological data. The

simplest SIR model has only this one parameter, R0, by scaling the unit time in the SIR

model. In this paper, we use a Susceptible – Exposed – Infectious – Removed (SEIR) model,

a variation of the SIR model. The SEIR model is comprised of additional parameters and

follows more complex epidemiological dynamics, which reflect realistic disease dynamics.

Due to the importance of estimating R0, numerous methods have been developed [31].

The accuracy of the estimates depends on both the estimation method and the data. For

example, in one approach R0 can be estimated from the slope of the time series data of

infected individuals at the initial phase of an epidemic [33]. This method approximates the
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1.1 Introduction

epidemiological dynamics at the initial phase as an exponential growth. The accuracy of this

method is sensitive to the period of epidemiological data available. An alternative approach

estimates R0 from the final epidemic size, i.e., the total number of infected individuals

[46]. Because the relationship between the final epidemic size and R0 cannot be described

explicitly, the likelihood function of R0 with an arbitrary final epidemic size cannot be

described in an explicit form. Consequently numerical solutions or approximations are

required to construct the likelihood function.

Recently a likelihood-free method has been proposed: approximate Bayesian computa-

tion (ABC) [40, 36]. This method approximates the posterior distribution using a rejection

algorithm with the numerical integration of the SEIR model. This method is easy to imple-

ment, however several limitations remain. Some issues include a) parameter estimation takes

a long time, particularly as the epidemiological model complexity increases and b) the ABC

method accuracy is dependent on both the summary statistic and the accept/reject decision

threshold, but there are no fixed rules for the selection of either.

A second likelihood-free approach has recently emerged in the form of machine learning

(ML). The field of machine learning has grown rapidly with a large expansion of theories,

applications, and algorithms. Problems can be categorized as either supervised or unsuper-

vised and as classification or regression [3]. A supervised learning problem has a dataset

and an answer, for example the pixels making up a photograph of a number can be a dataset

and the numerical representation of the number is the answer (e.g., the number ’7’). These

two pieces of information are passed to the ML model during training so the model learns

to recognize pixels of the type given as the answers it receives. Once the model is trained,
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Chapter 1

a separate, new dataset is given which contains only the pixel information. The model is

then asked to predict the answer based on the data it had previously seen. This example of

supervised learning is also an example of a classification problem. The number problem can

be split into ten discrete categories (the whole numbers ’0’ to ’9’), and the machine learns

to classify the results into these categories. A regression problem, on the other hand, seeks

to find a continuous value answer to the input it receives. Predicting housing prices is a

common example of a regression problem, where, given a set of information about properties,

the ML model can predict a continuous, numerical value estimate for the cost of the property.

Supervised ML models combine linear regression, gradient descent, maximum likelihood,

and least squares functions to develop weight matrices and comparison functions to predict

and estimate parameter outputs based on the historical knowledge of input/output pairs

[3]. With the expansion of the field of ML, new models continue to be developed and

improved, connecting the building blocks of ML in new ways to uncover hidden connections

in data. Some methods, such as convolutional neural networks (CNN) are well suited for

two-dimensional image analysis [25], while other methods, like long-short term memory

models (LSTM), specialize in handling time series data [18].

In this study, we propose a ML approach to estimate the R0 of a respiratory virus from a

time series of incidences of the disease as a supervised regression problem. Additionally, we

seek to estimate other parameters associated with the SEIR model and time series generation.

As mentioned above, R0 is highly dependent on the mathematical model. Our final goal is a

likelihood-free estimation of R0, as well as other model parameters. The ML methods used

in this study are two separate multi-layer perceptrons (MLP), a CNN, and a LSTM model.

4



1.2 Materials and Methods

For reference and comparison, we also use the ABC approach to estimate the same values

using the same datasets. We compare not only the accuracy of the two methods, with credible

and confidence intervals, but also the time required by each approach to reach its answer. Of

the four ML methods tested, the MLP with time model was the most robust as well as being

significantly faster than the more complex CNN and LSTM models.

1.2 Materials and Methods

This study can be broken into five main parts. The first is the development of an individual-

based (IBM) SEIR epidemiological model for generating data; the second is the ABC

method used for estimating parameters; the third is the learning by MLP, CNN, and LSTM

machine learning models, again to estimate parameters; the fourth is the dataset creation and

bootstrapping of the real-world and test data to create confidence intervals on the machine

learning solutions; and finally calculation of the time it took for each method to obtain its

estimates.

The ML models were trained on 100000 datasets, validated on 1000 datasets, and tested

on 1000 datasets. ABC was run on 1000 sample datasets and compared against a total of

100000 comparison datasets. The ABC sample and ML test datasets were the same and the

ABC comparison and ML training datasets were the same. An explanation of these datasets

is in the following section. We evaluate the accuracy of estimation by two measurements,

the average error and the width of the credible interval for ABC and confidence intervals for

ML. Each parameter range was divided into ten subranges. The errors among parameters
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Chapter 1

in each subrange were then averaged to create the‘average error’. The average width of

credible/confidence intervals is the average difference between the lower and upper bound of

the interval.

1.2.1 Terminology

As the different likelihood-free methods used in this paper (ABC and ML) each have their own

standard vocabularies, we first clarify terminology in this paper to make a direct comparison

of methods possible.

ML typically uses three datasets. The ’training’ set is a large dataset which is given to the

ML model during the learning phase. The ’test’ set is a completely new and unseen dataset

which the ML method passes through the trained model to estimate the posterior parameter

values. The‘validation’ or‘development’ dataset, like the‘test’ set is a new and

unseen dataset used as an interim test. That is, this dataset is used to verify the model is

learning, check accuracy of estimates, and when running trials of different hyperparameter

sets. In ABC there is no dataset equivalent to ML’s validation set.

According to the notation used by [40] we use the symbols D for the data in question,

either real-world observed data or generated‘test’ data, and D̂ for comparison data. In

ABC, D̂ would normally be the Markov chain Monte Carlo generated data presented to the

rejection algorithm. The rejection algorithm takes a set of generated data and compares it

to the data in question, D. In ABC, the summary statistic is used to calculate the distance

between D̂ and D, and the parameters are accepted or rejected if the estimated distance falls

beneath an accept/reject threshold. Our summary statistic for ABC is the Euclidean distance

6



1.2 Materials and Methods

between the dataset D and the simulated dataset D̂:

√
∑(D− D̂)2

Comparing the ML and ABC terminology, datasets comprising D would be the test set in

ML, while a dataset comprising D̂ is given to an ML algorithm as a training set. To compare

the ABC and ML methods we use the same pre-generated datasets for both methods.

1.2.2 SEIR Epidemiological Model

The SEIR model is an expansion of the SIR model, which describes the time evolution

of the number of infected individuals during a disease outbreak. The host population is

classified by their health status, susceptible (S), exposed (E), infectious (I), and removed (R)

(recovered or deceased). Transmission events happen via contact of S and E with constant

rate β . The SEIR model can be expressed mathematically through the following simple

equations [4, 31, 10]:

N = S(t)+E(t)+ I(t)+R(t),

dS
dt

=−βS
I
N
,

dE
dt

= βS
I
N
− εE,

dI
dt

= εE − γI,

dR
dt

= γI.

7
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Here N describes the total host population size. In this model, R0 is given by:

R0 =
β

γ
.

This is a deterministic model and S, E, I and R are continuous. To fit the model with the

data, it is required to expand this model to a stochastic one with discrete S, E, I and R. An

individual-based SEIR model describes the stochastic process of transmission dynamics at

the individual level. Let Hx be the health state of the x-th individual.

Hx ∈ {S,E, I,R}

The probability of transition between each health state can be written by:

Pr(Hx(t) = S → Hx(t +∆t) = E) = β I(t)∆t,

Pr(Hx(t) = E → Hx(t +∆t) = I) = ε∆t,

Pr(Hx(t) = I → Hx(t +∆t) = R) = γ∆t.

We simulate this model to create data which can be used to learn the different parameter

sets of R0, ε , and γ . ε is the latent period, or the rate at which exposed individuals become

infectious. γ is the recovery rate, the rate individuals move from state I to state R. The host

population size for the general study, N=2225. For the real-world comparisons, N=500 for

mumps [39], N=343 for measles [32], and N=2225 for influenza A(H1N1)pdm09 [27]. We

8
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set S(0) = N − I(0), E(0) = 0, I(0) = 22 and R(0) = 0 as the initial conditions, which were

parameterized based on the epidemiological data of [27]. Time series data of incidence were

created by IBM model with randomly chosen parameter sets to consist of 100000 training,

1000 validation, and 1000 test samples. Throughout this study we set ∆t = 1/10 day, meaning

the SEIR model parameters were updated ten times each day, with each change in time (∆t)

equal to 1/10 day.

1.2.3 Approximate Bayesian Computation

We use ABC to estimate the parameters R0, ε , and γ , the parameter values associated with

the SEIR epidemiological model. For our ABC calculations, we used simulated datasets for

D̂, calculating the distances between each D dataset and D̂ datasets. The Euclidean distance

was used as the summary statistic to calculate distances between datasets, and multiple

acceptance thresholds were established. An acceptance threshold of 60 was used for the

figures 1.1, 1.3, 1.4, here as it was large enough to produce accepted posterior parameter sets

for each of the D datasets and have enough samples to create credible intervals, but small

enough to generally discriminate between similar and dissimilar datasets.

The Euclidean distance between the dataset D and simulated dataset D̂ is:

√
∑(D− D̂)2

9
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1.2.4 Machine Learning

Three separate machine learning models and one variation were implemented and run with

early-stopping manually executed by comparing the loss at each epoch, stopping when the

loss no longer decreased (for 10 or 20 epochs), and using the weights from the best epoch,

i.e. the epoch with the smallest loss. The learning rate for all models was 0.0001. The ML

models in this study were implemented in Python using Lasagne and Theano [1] libraries.

For all ML models, numerous hyperparameters for the number of hidden layers, number

of hidden units, learning rate, activation functions, and number of training samples were

explored and the hyperparameters which routinely yielded the best results were selected. For

example, we ran an MLP model with 2, 3, 4, 5, 6, and 7 hidden layers and found that there

was little benefit in models deeper than three hidden layers, yet two hidden layers learned

poorly. For this reason, three hidden layers were used in the final model.

Multi-Layer Perceptron

The first model selected for this paper was a simple MLP where the entire time series

dataset was passed in as a single input array and the parameters were estimated from learned

relationships in that dataset. Small changes in parameter values have a large impact on the

shape and behavior of the time series graph, so it was important for the MLP to see all of the

data with equal importance, which is why the time series was passed in as a single input.

The MLP model accepted the time series information for the number of incidences of

infection per day as created by the IBM model as input for learning. This input was given to

the model as a single entity consisting of the number of newly infected individuals at each

10
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timestep. It also received the ’answers’ of the R0, γ , and ε model parameters which were

used to generate the time series data. The model was asked to learn these answer parameters

in a supervised manner given the time series of incidences. The MLP model was created

with three hidden layers having 400 hidden units per layer. The hidden layers used rectified

linear units [30] for their activation functions, with a linear activation function in the final

output layer.

Multi-Layer Perceptron with Time

A second MLP model was constructed to incorporate the concept of ’time’ into the time

series information. In a standard MLP, the sequence of values passed in has no connection

and there is no concept of order in the analysis and training. This second model added a time

element by creating a tuple consisting of the day and the number of new incidences that day.

This simple method created a model which understands time as an individual value, though

unlike LSTM described later, it does not have any kind of memory mechanism to compare

previous and future datapoints.

This MLP also had three hidden layers, though with 400, 200, and 100 hidden units per

layer, in that order. Again, the hidden layers used rectified linear units for their activation

functions with a linear activation function in the final output layer. The addition of the time

element changed the input to the model from a one-dimensional array to a two-dimensional

matrix.

11
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Convolutional Neural Network

While the CNN is not a traditional choice for problems involving time series data, it was

selected in this case due to the complex nature of the SEIR modeling data. The mathematical

models being simulated are highly non-linear, nearly chaotic at times. As CNNs are known

to be capable of modeling very complex behavior [25], they were tested in this problem

space for comparison.

The CNN model was constructed of two one-dimensional convolutional layers and two

pooling layers, with a single dense hidden layer prior to the output. The convolutional and

hidden layers all used rectified linear units for their activation functions, while the output

layer again used a linear activation function.

Long-Short Term Memory

A recurrent neural network (RNN) approach, LSTM models are designed for analysis of time

series data [18], like that found in this study. The memory aspect is built into the model using

a memory cell and gates (input, output, and forget) to control the data in the model. These

components ensure continuity in the data of the LSTM model and accept the time order as an

important feature of the data.

The LSTM model implemented for this study consists of two LSTM layers with 16

hidden units and gradient clipping at 100 (to prevent exploding gradients). No activation

function is applied in the LSTM layers, however a linear activation function is applied on the

output layer.

12
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1.2.5 Datasets

The datasets for this study come from two sources. The first, generated data, is a set of SEIR

epidemiological model datasets generated using individual-based, Monte Carlo simulations,

as described in the Epidemiological Model section. The second source comes from time

series sets of incidences from published papers by [27], [39], and [32]. We estimate R0 for

these time series datasets and compare our estimates against the general or estimated value

from the papers.

The data in these datasets are comprised of two parts. The first part is a time series of the

number of newly infected individuals per day over the course of an outbreak. The second

piece of information is the parameter set of R0, γ , and ε used in the simulation to generate the

time series. The time series is the information the ML model trains on, while the parameter

set is the answer it is trying to achieve. In ABC, the time series is the dataset D̂, and the

parameter set is the answer it is estimating.

Bootstrap Resampling

To date, machine learning has most often been used in classification problems with discrete

correct answers and myriad ways to determine the performance of any given model, such as

accuracy, precision/recall, F-score, and receiver operator characteristic (ROC) [38]. Regres-

sion problems, by contrast, have few methods to explore the quality of the output. To address

this issue, we created a novel method to build confidence intervals for the outputs of the ML

model.
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We started by creating a standard machine learning test set of 1000 datasets. Running this

time series dataset through the trained model gives estimates for the parameter values, but

there is no indication on the quality of the estimates - no certainty or confidence associated

with the values. Next, we created 1000 bootstrap-resampled datasets for each test dataset, for

a total of one million tests. For bootstrap resampling of the time series data of incidence, the

time series data of incidence can be interpreted as the set of emergence times. For example,

the data when incidence at t = 1 is 1 and incidence at t = 2 is 2 is equivalent to a set of

emergence times, {t = 1, t = 2, t = 2}. We resampled the emergence times by bootstrap

resampling from this set of times, and converted them back into time series data of incidence.

For the estimates returned for the 1000 resamples of each dataset, we calculated the mean,

median, mode, and 95% confidence intervals. This method provides a measure of credibility

for each estimated output parameter.

1.2.6 Time Calculations

The ABC computations were conducted on a server with 2.80 GHz processors and 1 TB of

memory. The computations were run across multiple CPUs and the time calculated is the

combined time to run all scripts. The ML computations were conducted on a server with

3.50 GHz processors, 64 GB memory, and a GeForce GTX 1080 Ti ® graphics card for

GPU processing. Typically between four and eight processes were run simultaneously on the

graphics card.

The time to complete each method is shown in table 1.1. For ABC, the time to verify

its results by comparison of the distances between 1000 D datasets with 100000 D̂ datasets
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was measured, including time to split by thresholds and create credible intervals for accepted

datasets. The time for a single comparison against 100000 D̂ datasets was then measured

for the test comparison. For the ML models, the time included the bootstrapping of the test

dataset, training of the learning model, and computation of the confidence intervals. The test

was then run by obtaining the estimates for a single bootstrapped sample, that is, running

1000 samples from one set of parameters through a trained ML model and collating the

results.

1.2.7 Experiments on Real-World Datasets

For experiments, we used an SEIR model dataset with three parameters: R0, γ , ε , calculating

distances with ABC and comparing at various acceptance thresholds, and training CNN,

LSTM, and two MLP models, then running a test dataset through the trained model. Finally,

we tested our trained and verified models against three real-world datasets: 1) an outbreak of

mumps [39], 2) an outbreak of measles [32], and 3) an outbreak of influenza A(H1N1)pdm09

[27] to see if we could accurately estimate the parameter R0 with both our ABC and ML

models.

For ABC, the time series of infectives is set as D and compared against the D̂ generated

data used throughout this paper. The required accept/reject threshold was 300, 20, and 20 for

the influenza, measles, and mumps datasets, respectively. The accept/reject thresholds were

selected where there were enough accepted datasets for the calculation of credible intervals.

The parameters were then estimated from the accepted datasets. To construct confidence

intervals of the estimates by ML, the real-world time series of incidence was resampled
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using the bootstrap resampling method discussed in the Bootstrap Resampling section. The

set containing the original and bootstrap resampled time series are given to the model, the

parameters are estimated, and finally the confidence intervals are calculated from the ML

model outputs.

1.3 Results

1.3.1 Comparisons of Average Errors

Figure 1.1 shows the average errors compared to the actual parameter values associated with

each method. The average errors of estimates made with ABC and ML are most similar

for R0. ABC and MLP with time show nearly identical patterns, consisting of low errors

when R0 is less than 3.0 and then increasing with increasing values of R0. ABC has slightly

lower average error than MLP with time for all values of R0. For R0 below 2.25, MLP

performs as well as ABC and MLP with time. For R0 greater than 2.25 the average error

from MLP estimates increases greatly, until R0 reaches 5.0, at which point the error from

MLP is approximately twice the error from ABC. CNN has a nearly constant average error

of 0.2 for R0 less than 3.8. For R0 greater than 3.8, the average error on CNN estimates

increases linearly to approximately 0.7 at R0 = 5.0. Finally, LSTM shows erratic behavior in

R0 estimation. Until R0 reaches 3.0, LSTM has the worst estimates among the methods tested,

with an error reaching nearly 0.6. From 2.8 to 3.8, the average error by LSTM decreases,

becoming smaller than all but CNN. From R0 = 3.8 to 5.0, the error by LSTM increases

again, with behavior similar to ABC, CNN, and MLP with time for this range of R0.
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Fig. 1.1 Average error for ABC (solid line), CNN (long dashed line), MLP (dotted line), MLP
with time (dashed line), and LSTM (dashed and dotted) estimates against actual parameter
values for an SEIR model with three parameters, on 100,000 training datasets.

The patterns for average error for the parameters γ and ε are similar to one another. ABC

follows one pattern while the ML solutions follow a different pattern. For ABC, the average

error increases with increasing values of the parameters, γ and ε . For γ less than 2.0 days−1

and ε less than about 7.5 days−1, the ABC average error is smaller than the average error for

all ML estimates. For γ more than 2.0 days−1 and ε more than 7.5 days−1, the average error

for ABC is larger than the average error of all ML estimates. When the number of training

samples is increased to one million, the point at which ML becomes more accurate than ABC

is 1.6 days−1 for γ and approximately 6.5 days−1 for ε (see Supplemental Data). The ML

approaches maintained a nearly consistent average error for all γ of 0.6 days−1 until γ = 3.9

days−1, when they increased to average errors of approximately 0.6 days−1. From γ = 3.9

to 5.0 days−1, MLP increased much more quickly to approximately 1.1 days−1, the same

as ABC. All four ML models behaved the same for ε , with average errors decreasing with

increasing ε until ε = 11 days−1, at which point they increased with increasing ε at a rate

similar to ABC, but approximately 3 days−1 smaller.
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Fig. 1.2 Average error for ABC (solid line), CNN (long dashed line), MLP (dotted line), MLP
with time (dashed line), and LSTM (dashed and dotted) estimates against actual parameter
values for an SEIR model with three parameters, for one million training datasets.

1.3.2 Comparisons of Credible / Confidence Intervals

The credible intervals for the estimates for ABC and confidence intervals for ML are shown

in figure 1.3. CNN has a constant size confidence interval for R0. MLP and MLP with time

have a confidence interval similar in shape to ABC’s credible intervals for R0, though their

confidence intervals are larger. These three methods start with small credible/confidence

intervals for small R0, increasing with R0 until R0 = 2.6 to 4.0 and then decreasing slightly.

LSTM’s confidence interval increases until R0 reaches approximately 2.25, then decreases

with increasing R0. The credible/confidence intervals for both the ABC and ML models

decrease as γ increases. CNN has the smallest confidence interval for γ , followed by LSTM,

MLP with time, ABC, and MLP. In ABC, the credible intervals for ε remain mostly constant

at about 16.0 day−1 for all values of ε . For the ML models, the confidence intervals decrease

with increasing ε , increasing slightly around ε = 15.0 days−1 and then decreasing again.

Again, CNN has the smallest confidence interval for ε , followed by LSTM, MLP with time,

MLP (for ε greater than 5 days−1), and ABC.
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Fig. 1.3 Average credible/confidence interval width for ABC (solid line), CNN (long dashed
line), MLP (dotted line), MLP with time (dashed line), and LSTM (dashed and dotted)
estimates against actual parameter values for an SEIR model with three parameters, on
100,000 training datasets.

1.3.3 Comparisons of Estimated and Actual Values

Figure 1.4 shows the estimated parameter values compared to the actual values for each

method. ABC estimates agree closely with the actual values for R0 less than 3.0, with

increasing error as R0 grows beyond 3.0. MLP also estimates R0 close to the actual values for

R0 less than 3.0. After R0 = 3.0, however, the estimate by MLP is nearly constant at a little

less than 3.0. CNN estimates R0 close to the actual values while R0 is less than 4.0. MLP

with time’s trend is similar to ABC, with estimates near actual values for R0 less than 3.0.

LSTM shows close estimation for R0 less than 2.0, then overestimates from 2.0 to 4.0, then

underestimates for R0 greater than 4.0. Overall, the ML methods appear to underestimate R0

values, whereas ABC shows equal over- and underestimates. The ML methods show larger

over- and underestimation than ABC for low R0.

All ML methods generally overestimate all values for γ . LSTM, MLP with time, and CNN

estimates were close for all γ , while MLP again began estimating a constant, approximately

3.0 days−1 for γ greater than 3.0 days−1. ABC closely estimates γ values less than 2.0

days−1 and ε values less than 5.0 days−1. ABC, and to a lesser extent MLP with time and
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Fig. 1.4 The estimated and actual parameter values from ABC, MLP, CNN, MLP with time,
and LSTM.
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LSTM, appear to estimate ε somewhat closely for ε less than 5.0 days−1, but for values

greater than 5.0 days−1 the results for all methods are nearly random.

1.3.4 Run Times

The time to complete each method is shown in table 1.1. The ABC method took 410 minutes

to calculate the distances and accept/reject 1000 test datasets from 100000 training datasets.

The time for a single dataset to be compared against 100000 training datasets was 0.65

minutes. The fastest ML model, MLP, took 68 minutes to train while the slowest, LSTM,

took 364 minutes. MLP with time and CNN took 71 and 184 minutes to train, respectively.

This makes training of the ML models between 1.1 and 6.0 times faster than the time to

verify a similar ABC method on 100000 training datasets. Testing on a single dataset for the

ML models took 0.03, 0.03, 0.05, and 0.06 minutes for MLP, MLP with time, CNN, and

LSTM, respectively. These times are between 10.8 and 21.7 times faster than the estimate

calculation for a single sample via ABC. When the size of the training set is increased from

100000 to one million, the time required to estimate the parameters for a single ABC test set

scales linearly with the number of comparisons, however the estimation via machine learning

remains constant regardless of the number of samples used to train the data (table 1.2).

Table 1.1 The time required to train 100,000 samples and test on a single sample for the
ABC, MLP, CNN, and LSTM methods.

Method Train Test
ABC 410 min 0.65 min
MLP 68 min 0.03 min
MLP with time 71 min 0.03 min
CNN 184 min 0.05 min
LSTM 364min 0.06 min
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Table 1.2 The time required to train one million samples and test on a single sample for the
ABC, MLP, CNN, and LSTM methods.

Method Train Test
ABC 3962 min 4.75 min
MLP 420 min 0.03 min
MLP with time 531 min 0.03 min
CNN 747 min 0.05 min
LSTM 784 min 0.06 min

1.3.5 Application to Real-World Epidemiological Data

We also compared ABC and ML with epidemiological data for mumps, measles and influenza.

R0 for mumps has been estimated between 3.6 and 4.5 [15]. Table 1.3 shows the

comparison of ML and ABC estimations of R0 with the typical real-world values. MLP,

MLP with time, and CNN estimated R0 at approximately 4.0 using the data from [39] for

an outbreak in Centerville, OH, USA. ABC estimated R0 as slightly lower at 3.74, while

LSTM greatly underestimated R0 at 2.71. These values were created based on an estimation

of the effective reproductive number and the vaccine coverage of students within the school

of 72.7%.

Table 1.3 The estimation results for R0 from previous published research on mumps and ABC,
two MLP, CNN, and LSTM models. Estimates shown include the 95% credible/confidence
intervals.

Methods R0 for Mumps
Previous study 3.6-4.5 (Edmunds [15])
ABC 3.74 (1.21, 12.09)
MLP 4.07 (1.10, 9.08)
MLP with time 3.92 (3.41, 4.25)
CNN 4.21 (2.53, 4.76)
LSTM 2.71 (1.83, 4.54)

For an outbreak of measles at Wincrange, Luxembourg [32], the effective reproductive

number was estimated as 1.5 (95% CI: 0.9, 2.2). Table 1.4 shows the comparison of ML
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and ABC estimations with the effective reproductive number estimated for the outbreak. All

five of our methods underestimated the effective reproductive number of measles, but their

estimates fell within the 95% CI estimated by the previous study.

Table 1.4 The estimation results for effective reproduction number from previous published
research on measles and ABC, two MLP, CNN, and LSTM models. Estimates shown include
the 95% credible/confidence intervals.

Methods Effective Reproduction Number of Measles
Previous study 1.5 (Mossong [32])
ABC 1.16 (0.59, 4.88)
MLP 1.00 (0.63, 1.88)
MLP with time 0.91 (0.69, 1.07)
CNN 0.96 (0.19, 1.26)
LSTM 1.08 (0.80, 1.52)

The estimated R0 of an outbreak of influenza at a high school in New York during the

2009 influenza pandemic was 1.23 [27]. Table 1.5 shows the comparison of ML and ABC

estimations of R0 with the effective reproductive number estimated for the outbreak. ABC

estimated R0 nearly exactly at 1.24. MLP with time slightly underestimated the value at 1.06

(95% CI: 0.86, 1.30). Standard MLP greatly underestimated R0 at 0.40, while CNN and

LSTM greatly overestimated the R0 at 2.84 and 1.84, respectively.

Table 1.5 The estimation results for R0 from previous published research on influenza
and ABC, two MLP, CNN, and LSTM models. Estimates shown include the 95% credi-
ble/confidence intervals.

Methods R0 for Influenza
Previous study 1.23 (Lessler [27])
ABC 1.24 (0.96, 1.74)
MLP 0.40 (0.00, 0.79)
MLP with time 1.06 (0.86, 1.30)
CNN 2.84 (2.08, 3.35)
LSTM 1.84 (1.38, 3.54)
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Based on the general analysis for various R0 values shown in figures 1 to 3, most of

the results above agree. For the mumps outbreak, the effective reproductive numbers were

estimated around 1.0 to 1.2. At this low range of R0, based on Figure 1, the average error

for all methods is relatively low, though LSTM and ABC have higher average errors than

the other methods and also exhibit a small tendency to underestimate R0 for values near 1.0.

All five methods also underestimated the effective reproduction number for measles, which

was estimated at 1.5. With the exception of MLP with time, the methods contained 1.5 in

their 95% CI intervals. However, the estimates for all five methods were within the 95% CI

of the previous study. Finally, for the flu estimates, CNN and LSTM greatly overestimate

R0 as 2.84 and 1.84, respectively. LSTM both over- and underestimates values around R0 =

1.2. The estimation of 2.84 by CNN is not robust with expected values, as though CNN does

tend to overestimate more than underestimate at R0 = 1.2, an R0 of 2.84 is outside its average

error window.

1.4 Discussion

In this study we applied ML methods to estimate the epidemiological parameters of infec-

tious diseases, and compared their accuracy and speed with ABC. In general, the width of

confidence intervals estimated by ML are smaller than the credible intervals estimated by

ABC. The average error of ML estimates are similar to ABC for R0, and larger for small

values, but smaller for large values of γ and ε . Furthermore, the ML models were faster to

train than ABC.

24



1.4 Discussion

ABC was more robust to changes in the data, as shown in tables 1.3, 1.4, and 1.5. MLP

with time was the most robust of the ML methods, with a tendency to underestimate R0.

Given the difference in calculation times between ABC and MLP with time (410 minutes for

ABC compared to 71 minutes for MLP to train 100000 samples and 3962 minutes for ABC

compared to 531 minutes for MLP on one million samples), it is worth exploring methods

which can reduce the underestimation of R0 in the MLP with time solution. Possibilities

include increasing the amount of training data, hyperparameter tuning, increasing the depth

of the model, and other general ML tuning methods which may be applied [3]. The ML

methods estimated γ well, but with an obvious overestimation bias which can be observed in

Figure 1.4, which may also be corrected by applying the previously mentioned approaches.

Interestingly, the point at which ABC is better than ML shifts with increasing sample

size for γ and ε . When trained on one million datasets, this point decreased from less than

2.0 to 1.6 days−1 for γ and from less than 7.5 to 6.5 days−1 for ε . CNN and MLP with time

showed similar estimation capability with ABC for R0, with average errors around 0.2 for R0

less than 3.0 and increasing with increasing R0. The MLP and LSTM approaches showed

poor estimation ability for R0.

While the ML models were faster to train than ABC was to verify, it should be noted that

ABC verification of varying parameter values is not required, but ML training on all parameter

values is necessary [34]. That is, an ABC test estimate can be made in approximately less

than one minute without thorough verification of the general efficacy of the method, while the

ML models must be fully trained before calculating a test estimate. However, once trained,
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the ML models do not need to be retrained unless there is a large amount of new data or

some other reason arises to retrain the model [3].

The problem of parameter estimation explored in this paper can be classified as a ML

regression problem where the values of the estimates are continuous. The vast majority of

ML research is on classification problems with discrete solutions and therefore‘right’ and

‘wrong’ answers [13]. In bioinformatics and medicine, another characteristic of a large

amount of ML solutions is the use of 2-dimensional images, again typically for classification,

for example identifying breast cancer or analyzing MRIs [25, 7, 35]. One example of ML

being used for regression comes from the European Space Agency (ESA) [44, 5], where

neural networks and regression methods were explored for use in analyzing the large quantity

of data being returned by the Sentinal-2 and Sentinel-3 satellites searching for life on far

planets. Overall, the application of ML methods on regression problems requires further

analysis to improve accuracy.

Note that the R0 value of 1.2 cited from the paper by [27] is the estimate made over

the entire course of the outbreak. This value agrees with existing genetic analysis of the

virus, as well as additional epidemiological studies which estimated the R0 value of influenza

A(H1N1)pdm09 between 1.4 and 1.6 [16].

Several disadvantages of ML for estimation of epidemiological parameters were found.

First, ML approaches are highly sensitive to the size of parameter ranges [29]. As parameter

ranges increase, accuracy of the estimates decreases. In additional tests, we used normal-

ization and standardization to try to reduce the impact of range size on model estimatibility,

with limited success [19]. Moreover, ML is not robust to changes in the initial condition of
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the model [24], even outside the parameters of interest, though ABC, too, showed sensitivity

to initial conditions. This sensitivity may be reducible with larger datasets, deeper models, or

the introduction of pruning algorithms and may be explored in later papers [2].

In this paper, we have explored a single set of continuous time data, capturing parameters

as constant values in a mathematical model. The transmission process of infectious disease

does not strictly follow mathematical models and parameters can change values over time.

Two approaches for future work which would partially address these issues are 1) a“discrete

time analysis” to observe changes in parameter values over time and 2) testing the robustness

of our estimates by checking values from different epidemiological models. “Discrete time

analysis” is a discretization of the time component of our model with the assumption that the

parameter values are constant between time intervals to observe changes in parameter values

over time. To check the robustness of our estimates, but still using simulated data, we could

create multiple datasets from the Susceptible-Exposed-Infectious-Removed-Susceptible

(SEIRS) [9] epidemiological model and use this much more complex data to test a model

trained from simpler SIR or SEIR model data. This would check the robustness of the systems

to changes in unknown parameters and allow us to observe and estimate the sensitivity of

our systems. Furthermore, using an SEIRS data model for data generation would allow for

analysis of longer and recurring epidemics [9] and the efficacy of ML and ABC in estimating

more complex disease dynamics.

In conclusion, we have confirmed that both ABC and ML can estimate SEIR model

parameters, with ABC and MLP with time being the most robust methods for different

SEIR models and parameters. ML models learn more quickly than ABC can be verified,
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however ABC verification is highly parallelizable, i.e. the problem can be broken into several

processes and estimated concurrently, while the learning time for ML models is more difficult

to reduce. A key benefit of ML is the speed with which new datasets can be analyzed. A

single, new sample can be analyzed in a few seconds, compared to several minutes by ABC,

and is constant regardless of the number of datasets used for training. This means a trained

ML model would be helpful when estimating large batches of new data.

28



Chapter 2

The Search for Host-Specific Signatures

in Viral Genomes

2.1 Introduction

In recent years, between 60% and 75% of emerging and re-emerging diseases worldwide

have been zoonotic in nature [45]. Zoonoses are diseases which transfer from animals to

humans and include both viruses and bacteria. Examples of viral zoonoses are influenza,

Ebola virus disease, West Nile virus disease, Severe Acute Respiratory Syndrome (SARS),

and Middle East Respiratory Syndrome (MERS). In recent years, these diseases have had a

large negative impact on human health and society.

A key aspect to understanding and controlling zoonotic disease is identification of the

disease’s natural reservoir host. Having an understanding of which species carry viruses,

we can establish appropriate care and contact procedures, ensure separation between certain
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animals and humans, or otherwise control human-to-animal contact. When the species of

origin for a disease is unknown, as is the case with the recent Ebola virus outbreak in western

Africa, we cannot pinpoint the outbreak location or take steps to prevent re-infection from

the origin species. This prevents us from actively eliminating likely sources of infection and

re-emergence of the disease.

Existing research suggests that viruses have a mechanism which allows them to adapt

their genomes to that of their hosts [17, 14]. One observed example is the basic A+U (i.e. the

number of A or U bases) content analysis of the H3N2 influenza A virus in humans. Earlier

analysis by this group looked at the percentage of A and U bases in a genome and identified

changing patterns over time. Since its most recent re-introduction to humans was in 1968, the

A+U content in the human H3N2 viral genome has been decreasing, becoming more similar

to the genomic content of humans than its original (reservoir) host, the wild duck. Through

our research, we have re-confirmed this trend in nucleotide composition change and also that

the same trend is not observed in the genomes of viruses which have remained in the duck

species. That is, it is a phenomenon observed only in the non-reservoir host, indicating an

adaptation of the virus to humans.

The existence of this relatively easily observable viral adaptation provides us with

evidence that it may be possible to identify the specific host species from the virus genomes

alone by comparing the content patterns of the viral genome to the content patterns of

a variety of potential host species. Increased similarity between virus and potential host

genomes is expected to suggest closer relationship-potential and possibly identification of a

single host species or family.
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The purpose of this research is to clarify the relationships between host and viral genomes,

as related to the adaption of a virus to ensure its continued survival in a given host. To achieve

this goal, we aim to develop a system which, given a viral genome, can detect the original

viral host. Some keys to viral host identification include multiple host and viral genome

content analysis (k-mer analysis, including single, di-, tri-, and etc. nucleotide composition

analysis), the mapping of key similarities and differences between reservoir hosts, non-

reservoir hosts, and the viruses, and changes in the viral genome in a host over time. By first

obtaining these intermediary results and identifying signatures unique to a virus and reservoir

host relationship, a system which can infer the original viral host may be developed. Once

the original or reservoir host for a virus is identified, treatment and prevention of diseases

caused by these viruses can be improved, and transmission to humans can be reduced,

even eliminated. However, for many viruses, these benefits cannot be seen until we have

definitively identified the virus’ origin.

As noted by Duffy, et al. (2008) [14], single-stranded RNA viruses tend to be smaller, have

higher replication speed, and be more likely to be transmitted directly than double-stranded

DNA viruses. These factors affect the mutation and substitution rates in viruses, making

single-stranded RNA viruses more likely to contain more easily distinguished host-identifying

modifications. For this reason and the fact that previous research [17, 42, 20, 28, 8, 22] has

focused more on single-stranded RNA viruses, this current research also looks at single-

stranded RNA viruses initially, with a goal of moving to larger, more complex viruses over

time.
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Fruit bats and wild ducks were selected for this research for two separate reasons. First,

as wild ducks are the accepted reservoir host for the influenza A virus [21], this seemed

an obvious first choice, as the influenza A virus can be transmitted to both humans and

swine making it a good species for analysis purposes. Additionally, any analysis conducted

must find and accept this previously verified connection to be considered valid, making the

relationships between the host wild duck and influenza A virus a good validation test for any

future approaches. The fruit bat was selected as it is a suspected carrier of numerous zoonotic

diseases, though some viruses, such as the Zaire Ebola virus, have not been proven to have

originated from the fruit bat [6, 26]. Evidence also exists suggesting that bats may not be the

natural reservoir and this research, upon completion, could help confirm or exonerate fruit

bats as the natural hosts of several viral infections.

2.2 Materials and Methods

The nucleotide sequences used in this research were obtained from the National Center for

Biotechnology Information (NCBI) databases, including the NCBI GenBank and Influenza

Database, and were obtained via either direct download or scripted data pulls. The full

genomes for the fruit bat and mallard duck were downloaded by accession number from

the NCBI databases. A selection of single-stranded RNA viruses for both wild ducks and

bats were downloaded. A full list of accession numbers has been included in the Accession

Number section.
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Once obtained, the sequences were screened for bad data (i.e. any character which was

not a nucleotide was removed), converted to single-line reads (all new-lines, carriage returns,

etc. were removed from the reads), and joined into a single file. Table 2.1 shows the numbers

of sequences examined for each group and the total number of nucleotides used.

Table 2.1 The nucleotide sequences of bat, bat virus, duck and duck viruses used in this
study.

Gene Set Number of nucleotide sequences Total number of nucleotides (bp)
Bat genes 703 1,902,985,556
Bat virus genes 45 220,453
Duck genes 154 101,898,546
Duck virus genes 27 242,847

Next, the organized data was analyzed for single and dinucleotide content, including pure

numerical counts, percentage of each single and di- nucleotide, percentage of A-or-U and

C-or-G, and a ratio for each dinucleotide. This ratio was calculated as the quantity of the

dinucleotide observed in the read divided by the product of the percentage of each of the

individual nucleotides.

These values, single and di- nucleotide percentages, overall A+U and G+C percentages,

and ratios, were then used in a principal component analysis (PCA) in R. The PCA was run

and graphed against different combinations of the data, for example all duck data graphed

against all bat data, virus data grouped against host data, host against host, and virus (by

host) against virus.

This method can be used on any species or family of hosts, but as the original analysis by

Greenbaum, et al. [17] showed effectiveness solely with single-stranded RNA viruses, these

calculations were also conducted on single-stranded RNA viruses only. Once signatures have

33



Chapter 2

been identified, we can broaden the scope of viruses under review to investigate whether the

signatures are universal or restricted to a subset of viruses.

2.3 Results

Table 2.2 shows the frequency of each dinucleotide in the genomes of the bat and duck as

well as the overall frequency of each dinucleotide in the set of single-stranded RNA viruses

for each host species.

The first principal component, shown in Figure 2.1, is the overall G+C content of the

genome. The following principal components are most closely related to the rate ratio of TpC

(T preceding C), the observed and rate ratio of GpA, and the observed GpT dinucleotides.

Table 2.3 shows the percentage of the variance in the data that can be described by each

principal component. While it takes 14 components to explain 99% of the variance, the first

six principal components explain nearly 80% of the variance. A total of 38 components were

analyzed, though not all uniquely described the data (for example, both the A+U and G+C

percentages were included as components, and combined describe the x-axis of the PCA

analysis (i.e. the first principal component)).

2.4 Discussion

Previous research has used the %G+C and CpG to define distinction between viruses and

their hosts [17, 42, 20, 28, 8, 22]. However, the PCA results from this research suggest that

CpG is not a good component for identifying the host species of a given virus.
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Table 2.2 Frequency of dinucleotides in bat, bat viruses, duck, and duck viruses.

Dinucleotide Bat genes Bat virus genes Duck genes Duck virus genes
AA Frequency 10.1% 8.5% 9.6% 10.1%

Rate Ratio 1.12 1.05 1.16 1.01
AC Frequency 5.0% 5.9% 5.2% 5.9%

Rate Ratio 0.84 1.04 0.85 0.91
AG Frequency 6.9% 6.3% 7.3% 7.8%

Rate Ratio 1.15 1.01 1.19 1.03
AT Frequency 8.1% 7.7% 6.8% 7.8%

Rate Ratio 0.89 0.91 0.82 1.03
CA Frequency 6.9% 6.9% 7.6% 8.2%

Rate Ratio 1.15 0.78 1.25 1.26
CC Frequency 4.9% 4.1% 5.1% 4.5%

Rate Ratio 1.24 1.05 1.12 1.07
CG Frequency 1.2% 2.3% 1.3% 2.2%

Rate Ratio 0.31 0.51 0.28 0.45
CT Frequency 6.9% 6.5% 7.3% 5.7%

Rate Ratio 1.15 1.11 1.19 1.15
GA Frequency 6.0% 6.4% 5.8% 8.7%

Rate Ratio 1.01 1.02 0.95 1.16
GC Frequency 3.9% 4.4% 5.2% 4.5%

Rate Ratio 1.00 1.01 1.15 0.92
GG Frequency 4.9% 4.9% 5.1% 6.2%

Rate Ratio 1.24 1.01 1.13 1.09
GT Frequency 5.0% 6.3% 5.1% 4.4%

Rate Ratio 0.84 0.97 0.85 0.77
TA Frequency 7.1% 6.6% 5.8% 4.6%

Rate Ratio 0.78 0.78 0.70 0.61
TC Frequency 6.0% 5.4% 5.8% 5.6%

Rate Ratio 1.01 0.92 0.95 1.14
TG Frequency 6.9% 8.5% 7.6% 7.6%

Rate Ratio 1.15 1.30 1.25 1.33
TT Frequency 10.2% 9.1% 9.5% 6.1%

Rate Ratio 1.12 1.03 1.16 1.06
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Fig. 2.1 The principal component analysis has been conducted on all of the bat and duck
genes and viruses, and the results displayed separated into the‘Duck’ group (dark blue)
and the‘Bat’ group (light blue), with ellipses around the corresponding groups.

As shown in Figure 2.1, the duck and bat data overlaps by a large degree, however there

is also some group separation based on the ellipses. This suggests alternative principal

components may be successful in identifying host-specific signatures within viral genomes.

Continuing with principal component analysis and expanding into discriminant analysis

and additional host and viral species has the potential to uncover unique signatures in viral

genomes. The separation of the ellipses, though incomplete, suggests that by maximizing the
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Table 2.3 Percentages of variance explained by the principal components over all reads (bat,
duck, and all bat and duck viruses).

Principal Components Percentage of variance (%) Cumulative Percentage of variance (%)
PC1 38.4 38.4
PC2 11.0 39.4
PC3 9.2 58.6
PC4 8.1 66.7
PC5 7.0 73.7
PC6 5.9 79.7
PC7 4.3 84.0
PC8 3.7 87.7
PC9 2.9 90.6
PC10 2.6 93.2
PC11 2.5 95.8
PC12 1.6 97.4
PC13 1.4 98.7
PC14 0.2 99.0

differences between the bat and duck data using discriminant analysis, we may discover the

signatures we are looking for.

Previous research has typically chosen the ratio of observed CpG dinucleotides to the

expected value following random distribution (described here as a‘rate ratio’, but in other

documents as an‘odds ratio’) as a principal component when describing virus and host

genetic similarities [17, 20, 28, 8, 22, 42]. Due to the unique nature of the CpG dinucleotide

in vertebrate and other organisms, this has been a good point to begin analysis of virus and

host similarities and differences. However, the technique has also led to some unexplained

anomalies, such as the TpA dinucleotide, which does not follow the mathematical model

predictions when the focus is on the CpG dinucleotide [41]. Using principal component

analysis to automatically determine the components of primary interest, we may be able to

produce a model in the future without the currently observed anomalies.

37



Chapter 2

Several theoretical studies have been conducted to determine to what extent the machinery

of host cells affect the characteristics of both hosts and pathogens. Karlin, et al. [23]

constructed a mathematical model investigating codon frequencies and choices/biases in

coding regions in the human genome. The research of Shackelton, et al. [37] focuses on large

DNA viruses, while van Hemert, et al. [43] investigate large retroviral RNA viruses. Early

research by Karlin, et al. [22] suggested that CpG content in small eukaryotic organisms

was suppressed, but not in larger ones. Supposing we find host-identifying signatures, it

would be interesting in future studies to see if those signatures hold with large DNA and

more complicated RNA viruses. Additionally, if the CpG content is not suppressed in these

larger viruses, finding the signature mechanism, or principal components, may also give us

a better understanding of how these diseases change over time. Finally, we would like to

investigate if codon usage biases within the host affect the viral genome and if they do, to

uncover the characteristics of the affect. If we can discover a set of signatures, we may be

able to answer some interesting questions on virus-host interactions and adaptation.

2.5 Conclusion

This research suggests that there may be new techniques that can be used to analyze the

nucleotide composition of viruses and their hosts which may provide more accurate and

robust models of similarities. Further research in this area may yield a set of‘signatures’

between viruses and their hosts, allowing us to determine a virus’s host strictly from viral

genomic information.
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2.6 Accession Numbers

Bat Accession Numbers: NW_006494508.1, NW_006494469.1, NW_006492022.1, NW_006438879.1,

NW_006442107.1, NW_006443131.1, NW_006439192.1, NW_006489824.1, NW_006440629.1,

NW_006436284.1, NW_006441953.1, NW_006442110.1, NW_006492112.1, NW_006431044.1,

NW_006442489.1, NW_006434844.1, NW_006494608.1, NW_006436285.1, NW_006491054.1,

NW_006430115.1, NW_006429662.1, NW_006494078.1, NW_006441895.1, NW_006439191.1,

NW_006439568.1, NW_006431382.1, NW_006434839.1, NW_006443124.1, NW_006431388.1,

NW_006431912.1, NW_006472930.1, NW_006434645.1, NW_006440128.1, NW_006440150.1,

NW_006494520.1, NW_006431911.1, NW_006435335.1, NW_006429308.1, NW_006488774.1,

NW_006429654.1, NW_006431288.1, NW_006433224.1, NW_006480049.1, NW_006436811.1,

NW_006429637.1, NW_006484720.1, NW_006440135.1, NW_006441061.1, NW_006434865.1,

NW_006430503.1, NW_006494573.1, NW_006493778.1, NW_006482907.1, NW_006435702.1,

NW_006491762.1, NW_006494554.1, NW_006432945.1, NW_006485340.1, NW_006481969.1,

NW_006440149.1, NW_006440643.1, NC_026465.1, NW_006492782.1, NW_006443570.1,

NW_006436278.1, NW_006432224.1, NW_006492344.1, NW_006439487.1, NW_006429600.1,

NW_006494491.1, NW_006436830.1, NW_006438163.1, NW_006438311.1, NW_006494164.1,

NW_006493879.1, NW_006431916.1, NW_006442487.1, NW_006436007.1, NW_006429596.1,

NW_006433940.1, NW_006436757.1, NW_006439280.1, NW_006437767.1, NW_006481078.1,

NW_006441105.1, NW_006435764.1, NW_006435763.1, NW_006437465.1, NW_006440137.1,

NW_006432447.1, NW_006432669.1, NW_006439722.1, NW_006440644.1, NW_006441449.1,

NW_006436696.1, NW_006434858.1, NW_006494030.1, NW_006433390.1, NW_006440624.1,

NW_006441138.1, NW_006494148.1, NW_006432227.1, NW_006437392.1, NW_006430831.1,
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NW_006440619.1, NW_006443225.1, NW_006441946.1, NW_006494516.1, NW_006491884.1,

NW_006429864.1, NW_006441955.1, NW_006430045.1, NW_006434848.1, NW_006438995.1,

NW_006441062.1, NW_006492911.1, NW_006441606.1, NW_006436047.1, NW_006437741.1,

NW_006436295.1, NW_006434829.1, NW_006430147.1, NW_006489992.1, NW_006435066.1,

NW_006431075.1, NW_006432449.1, NW_006492580.1, NW_006432595.1, NW_006488235.1,

NW_006431923.1, NW_006435780.1, NW_006494408.1, NW_006436493.1, NW_006483737.1,

NW_006494613.1, NW_006430723.1, NW_006436109.1, NW_006429598.1, NW_006484242.1,

NW_006432938.1, NW_006488657.1, NW_006442597.1, NW_006492285.1, NW_006430057.1,

NW_006436668.1, NW_006430472.1, NW_006435787.1, NW_006443566.1, NW_006436543.1,

NW_006433727.1, NW_006438190.1, NW_006438073.1, NW_006431932.1, NW_006493911.1,

NW_006438979.1, NW_006437748.1, NW_006431936.1, NW_006438074.1, NW_006439231.1,

NW_006432468.1, NW_006438865.1, NW_006494544.1, NW_006434373.1, NW_006431922.1,

NW_006438871.1, NW_006492089.1, NW_006436672.1, NW_006431077.1, NW_006494271.1,

NW_006483702.1, NW_006494272.1, NW_006494479.1, NW_006433456.1, NW_006442508.1,

NW_006433384.1, NW_006493560.1, NW_006434156.1, NW_006434897.1, NW_006432943.1,

NW_006440951.1, NW_006431443.1, NW_006434704.1, NW_006477069.1, NW_006439239.1,

NW_006439187.1, NW_006433377.1, NW_006433941.1, NW_006434828.1, NW_006464012.1,

NW_006494323.1, NW_006440205.1, NW_006494159.1, NW_006431171.1, NW_006430061.1,

NW_006434851.1, NW_006431909.1, NW_006431202.1, NW_006437801.1, NW_006442207.1,

NW_006430048.1, NW_006441436.1, NW_006441420.1, NW_006481300.1, NW_006432681.1,

NW_006442509.1, NW_006433072.1, NW_006480467.1, NW_006442113.1, NC_007393.1,

NW_006441398.1, NW_006442117.1, NW_006484765.1, NW_006439247.1, NW_006439816.1,
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NW_006438462.1, NW_006436742.1, NW_006442483.1, NW_006430734.1, NW_006441954.1,

NW_006439205.1, NW_006493299.1, NW_006434441.1, NW_006492751.1, NW_006436291.1,

NW_006491296.1, NW_006442105.1, NW_006493095.1, NW_006436283.1, NW_006443128.1,

NW_006433133.1, NW_006437736.1, NW_006491741.1, NW_006494455.1, NW_006429475.1,

NW_006430224.1, NW_006442112.1, NW_006431558.1, NW_006441387.1, NW_006440657.1,

NW_006438096.1, NW_006431908.1, NW_006437855.1, NW_006494099.1, NW_006434574.1,

NW_006441486.1, NW_006494203.1, NW_006439712.1, NW_006440136.1, NW_006430730.1,

NW_006476801.1, NW_006436281.1, NW_006431915.1, NW_006491138.1, NW_006430461.1,

NW_006436280.1, NW_006431495.1, NW_006489010.1, NW_006429595.1, NW_006430209.1,

NW_006493176.1, NW_006434181.1, NW_006491626.1, NW_006430460.1, NW_006431831.1,

NW_006438113.1, NW_006430724.1, NW_006437999.1, NW_006490348.1, NW_006432940.1,

NW_006436286.1, NW_006429624.1, NW_006493742.1, NW_006440638.1, NW_006437367.1,

NW_006487911.1, NW_006432527.1, NW_006438867.1, NW_006442345.1, NW_006443122.1,

NW_006437738.1, NW_006436814.1, NW_006429350.1, NW_006440654.1, NW_006434719.1,

NW_006441995.1, NW_006442122.1, NW_006440656.1, NW_006440002.1, NW_006489054.1,

NW_006434097.1, NW_006436298.1, NW_006493370.1, NW_006443126.1, NW_006440830.1,

NW_006440649.1, NW_006435781.1, NW_006430561.1, NW_006439249.1, NW_006429440.1,

NW_006438906.1, NW_006430563.1, NW_006429686.1, NW_006434882.1, NW_006443138.1,

NW_006439987.1, NW_006442830.1, NW_006441197.1, NW_006441066.1, NW_006443145.1,

NW_006494260.1, NW_006443564.1, NW_006432372.1, NW_006437739.1, NW_006441399.1,

NW_006430462.1, NW_006436810.1, NW_006434825.1, NW_006438090.1, NW_006486371.1,

NW_006442490.1, NW_006434120.1, NW_006437924.1, NW_006429894.1, NW_006430173.1,
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NW_006493047.1, NW_006493210.1, NW_006442514.1, NW_006429615.1, NW_006437816.1,

NW_006432959.1, NW_006483048.1, NW_006438673.1, NC_002612.1, NW_006486721.1,

NW_006435788.1, NW_006477324.1, NW_006488175.1, NW_006443218.1, NW_006434874.1,

NW_006435777.1, NW_006492497.1, NW_006442592.1, NW_006488127.1, NW_006430534.1,

NW_006430212.1, NW_006442847.1, NW_006441590.1, NW_006437746.1, NW_006429163.1,

NW_006478250.1, NW_006437344.1, NW_006493875.1, NW_006437489.1, NW_006432235.1,

NW_006442835.1, NW_006436671.1, NW_006432491.1, NW_006434709.1, NW_006436666.1,

NW_006482297.1, NW_006440757.1, NW_006437456.1, NW_006486417.1, NW_006441950.1,

NW_006491984.1, NW_006490036.1, NW_006493403.1, NW_006432497.1, NW_006493112.1,

NW_006430738.1, NW_006435916.1, NW_006443204.1, NW_006436664.1, NW_006436289.1,

NW_006432462.1, NW_006435766.1, NW_006435824.1, NW_006490817.1, NW_006438069.1,

NW_006440132.1, NW_006430735.1, NW_006431525.1, NW_006431805.1, NW_006440676.1,

NW_006443129.1, NW_006434863.1, NW_006431924.1, NW_006442493.1, NW_006447515.1,

NW_006438082.1, NW_006491740.1, NW_006437753.1, NW_006438643.1, NW_006429112.1,

NW_006439718.1, NW_006491357.1, NW_006438072.1, NW_006438869.1, NW_006442145.1,

NW_006429634.1, NW_006434834.1, NW_006440655.1, NW_006489004.1, NW_006442158.1,

NW_006433797.1, NW_006437788.1, NW_006440838.1, NW_006494290.1, NW_006430608.1,

NW_006430525.1, NW_006433729.1, NW_006435793.1, NW_006434366.1, NW_006434901.1,

NW_006429782.1, NW_006442484.1, NW_006490505.1, NW_006435778.1, NW_006434002.1,

NW_006435758.1, NW_006431920.1, NW_006440642.1, NW_006431917.1, NW_006433381.1,

NW_006432391.1, NW_006494019.1, NW_006494095.1, NW_006441943.1, NW_006431048.1,

NW_006491746.1, NW_006490161.1, NW_006433953.1, NW_006476394.1, NC_023122.1,
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NW_006441948.1, NW_006430464.1, NW_006491005.1, NW_006442104.1, NW_006433374.1,

NW_006435837.1, NW_006492031.1, NW_006435017.1, NW_006438126.1, NW_006435844.1,

NW_006436299.1, NW_006441386.1, NW_006489654.1, NW_006433716.1, NW_006435283.1,

NW_006493951.1, NW_006438900.1, NW_006436669.1, NW_006436288.1, NW_006440646.1,

NW_006438156.1, NW_006439717.1, NW_006494609.1, NW_006492006.1, NW_006494610.1,

NW_006432451.1, NW_006442520.1, NW_006492654.1, NW_006492247.1, NW_006433527.1,

NW_006442492.1, NW_006493151.1, NW_006442497.1, NW_006430785.1, NW_006494236.1,

NW_006432452.1, NW_006441577.1, NW_006494316.1, NW_006442512.1, NW_006430554.1,

NW_006432008.1, NW_006434516.1, NW_006430459.1, NW_006433947.1, NW_006442126.1,

NW_006431394.1, NW_006491625.1, NW_006433948.1, NW_006438076.1, NW_006455683.1,

NW_006436637.1, NW_006435759.1, NW_006443121.1, NW_006494561.1, NW_006433949.1,

NW_006492718.1, NW_006430090.1, NW_006492919.1, NW_006494172.1, NW_006434832.1,

NW_006431108.1, NW_006489397.1, NW_006429651.1, NW_006439715.1, NW_006437742.1,

NW_006441837.1, NW_006439757.1, NW_006432265.1, NW_006440157.1, NW_006443512.1,

NW_006430739.1, NW_006434904.1, NW_006430458.1, NW_006477065.1, NW_006436300.1,

NW_006438868.1, NW_006494325.1, NW_006441076.1, NW_006436888.1, NW_006433124.1,

NW_006494395.1, NW_006488845.1, NW_006481218.1, NW_006437784.1, NW_006488882.1,

NW_006442109.1, NW_006494612.1, NW_006441394.1, NW_006438088.1, NW_006484309.1,

NW_006431933.1, NW_006433019.1, NW_006443568.1, NW_006484869.1, NW_006434712.1,

NW_006494594.1, NW_006431919.1, NW_006443567.1, NW_006440645.1, NW_006440214.1,

NW_006441063.1, NW_006431074.1, NW_006436613.1, NW_006429611.1, NW_006432309.1,

NW_006432596.1, NW_006431393.1, NW_006433386.1, NW_006443565.1, NW_006494483.1,
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NW_006433879.1, NW_006442531.1, NW_006439199.1, NW_006490563.1, NW_006432699.1,

NW_006429963.1, NW_006494597.1, NW_006443569.1, NW_006442103.1, NW_006493426.1,

NW_006492864.1, NW_006440652.1, NW_006431079.1, NW_006432496.1, NW_006443120.1,

NW_006430726.1, NW_006438644.1, NW_006494576.1, NW_006429330.1, NW_006434369.1,

NW_006440647.1, NW_006494614.1, NW_006440832.1, NW_006433510.1, NW_006442124.1,

NW_006490871.1, NW_006436815.1, NW_006431925.1, NW_006483424.1, NW_006431910.1,

NW_006441068.1, NW_006442482.1, NW_006430465.1, NW_006441564.1, NW_006439919.1,

NW_006436812.1, NW_006435779.1, NW_006430732.1, NW_006440152.1, NW_006436282.1,

NW_006436746.1, NW_006434840.1, NW_006433950.1, NW_006443133.1, NW_006438077.1,

NW_006434824.1, NW_006435909.1, NW_006490674.1, NW_006441441.1, NW_006436809.1,

NW_006430496.1, NW_006441949.1, NW_006494611.1, NW_006491636.1, NW_006434827.1,

NW_006488738.1, NW_006488725.1, NW_006443132.1, NW_006493320.1, NW_006443130.1,

NW_006438086.1, NW_006435762.1, NW_006429388.1, NW_006436294.1, NW_006436301.1,

NW_006430043.1, NW_006439713.1, NW_006492330.1, NW_006440626.1, NW_006434826.1,

NW_006436808.1, NW_006488362.1, NW_006493721.1, NW_006440914.1, NW_006440618.1,

NW_006439189.1, NW_006429381.1, NW_006490708.1, NW_006430240.1, NW_006487246.1,

NW_006492320.1, NW_006494016.1, NW_006441067.1, NW_006443123.1, NW_006491957.1,

NW_006494603.1, NW_006435760.1, NW_006443262.1, NW_006490699.1, NW_006431210.1,

NW_006433385.1, NW_006429773.1, NW_006436813.1, NW_006494429.1, NW_006489710.1,

NW_006492166.1, NW_006440160.1, NW_006440117.1, NW_006474108.1, NW_006431956.1,

NW_006441435.1, NW_006443119.1, NW_006443471.1, NW_006433963.1, NW_006494412.1,

NW_006435775.1, NW_006494447.1, NW_006433378.1, NW_006440461.1, NW_006431396.1,
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NW_006440820.1, NW_006494592.1, NW_006433024.1, NW_006490257.1, NC_002619.1,

NW_006440648.1, NW_006494445.1, NW_006441071.1, NW_006435754.1, NW_006442554.1,

NW_006438873.1, NW_006436292.1, NW_006439219.1, NW_006493340.1, NW_006439194.1,

NW_006484499.1, NW_006434367.1, NW_006437382.1, NW_006435869.1, NW_006480506.1,

NW_006435849.1, NW_006440605.1, NW_006442106.1, NW_006436287.1, NW_006434835.1,

NW_006438291.1, NC_026542.1, NW_006440131.1, NW_006442491.1, NW_006443292.1,

NW_006439296.1, NW_006442564.1, NW_006429097.1, NW_006475342.1, NW_006437828.1,

NW_006440625.1, NW_006492289.1, NW_006441525.1, NW_006431928.1, NW_006431046.1,

NW_006431043.1, NW_006433946.1, NW_006431107.1, NW_006442921.1, NW_006494572.1,

NW_006439190.1, NW_006493387.1, NW_006436373.1, NW_006431918.1

Bat Virus Accession Numbers: EF157976.1, GU170201.1, DQ837641.1, DQ648858.1,

KP100644.1, AF369024.2, KC676792.1, FJ905105.2, Y09762.1, AF081020.2, JF311903.1,

EF614258.1, EF065505.1, GU190215.1, KF636752.1, AF086833.2, EU293108.1, EF203064.1,

EU420137.1, AF326114.2, HQ660129.1, JN899075.1, AF189155.1, AF212302.2, AY274119.3,

JQ001749.1, JF828358.1, HQ595342.1, EF065509.1, NC_001474.2, JQ989270.1, EU420138.1,

EF065513.1, EF157977.2, KF430219.1, EU420139.1, AF285080.1, DQ837641.1, HQ595340.1,

M13215.1, HQ595344.1, DQ648794.1 , CY125942, CY103890, CY103873

Duck Accession Numbers: NW_004677685.1, NW_004676600.1, NW_004677281.1,

NW_004677199.1, NW_004677172.1, NW_004676466.1, NW_004678549.1, NW_004684203.1,

NW_004680828.1, NW_004677515.1, NW_004678089.1, NW_004739530.1, NW_004678473.1,

NW_004677992.1, NW_004725899.1, NW_004676626.1, NW_004677274.1, NW_004676850.1,

NW_004676363.1, NW_004676791.1, NW_004676880.1, NW_004677096.1, NW_004678065.1,
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NW_004677317.1, NW_004676665.1, NW_004678935.1, NW_004677240.1, NC_009684.1,

NW_004676692.1, NW_004683518.1, NW_004677664.1, NW_004690468.1, NW_004678474.1,

NW_004677018.1, NW_004679201.1, NW_004749173.1, NW_004683443.1, NW_004676461.1,

NW_004678414.1, NW_004678670.1, NW_004676471.1, NW_004676730.1, NW_004676473.1,

NW_004679962.1, NW_004678345.1, NW_004678346.1, NW_004739768.1, NW_004677887.1,

NW_004678274.1, NW_004753456.1, NW_004683406.1, NW_004677116.1, NW_004677232.1,

NW_004676459.1, NW_004676775.1, NW_004677537.1, NW_004676891.1, NW_004743681.1,

NW_004678215.1, NW_004677942.1, NW_004676893.1, NW_004754103.1, NW_004676716.1,

NW_004690237.1, NW_004676785.1, NW_004677793.1, NW_004679555.1, NW_004676799.1,

NW_004676963.1, NW_004677565.1, NW_004676436.1, NW_004679106.1, NW_004677015.1,

NW_004676394.1, NW_004676773.1, NW_004676697.1, NW_004677126.1, NW_004676484.1,

NW_004683332.1, NW_004676582.1, NW_004677476.1, NW_004678608.1, NW_004676580.1,

NW_004680899.1, NW_004676800.1, NW_004745641.1, NW_004677132.1, NW_004676817.1,

NW_004678275.1, NW_004676420.1, NW_004684118.1, NW_004689648.1, NW_004683645.1,

NW_004679480.1, NW_004678221.1, NW_004683660.1, NW_004676336.1, NW_004677946.1,

NW_004754515.1, NW_004743731.1, NW_004677373.1, NW_004677287.1, NW_004676696.1,

NW_004682268.1, NW_004677175.1, NW_004676427.1, NW_004676738.1, NW_004679800.1,

NW_004676369.1, NW_004678523.1, NW_004683061.1, NW_004676544.1, NW_004677655.1,

NW_004678225.1, NW_004677068.1, NW_004677318.1, NW_004677184.1, NW_004752942.1,

NW_004676592.1, NW_004676760.1, NW_004677254.1, NW_004677004.1, NW_004677527.1,

NW_004677462.1, NW_004676627.1, NW_004677689.1, NW_004677973.1, NW_004676924.1,

NW_004678318.1, NW_004678181.1, NW_004745447.1, NW_004677906.1, NW_004690505.1,
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NW_004679235.1, NW_004676589.1, NW_004676715.1, NW_004689896.1, NW_004678002.1,

NW_004676500.1, NW_004678462.1, NW_004677049.1, NW_004678279.1, NW_004676955.1,

NW_004678259.1, NW_004678544.1, NW_004677470.1, NW_004677747.1, NW_004676552.1,

NW_004676721.1, NW_004678669.1, NW_004677948.1, NW_004677774.1, NW_004676400.1,

NW_004677091.1

Duck Virus Accession Numbers: EU910942.1, KJ000696.1, KC663628.1, JX987283.1,

DQ226541.1, AY029299.1, CY181373, CY091590, CY012826, CY101938, CY095228,

CY187158, KM244079, CY004539, EU026116, CY137481, CY032205, EU742640, EU743306,

CY012804, EU743167, CY180007, KF424099, EU735790, CY145929, CY180793, KJ764739
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Conclusion

In this thesis, I have explored machine learning methods for the analysis of infectious disease

dynamics and viral host identification. It was found that though regression is difficult, the

time savings of a successful ML solution over the current state-of-the-art solution make it

well worth improvement and application. Additionally, I found that classification is easier

to implement in general, but further research is required to make it useful to the scientific

community in general.
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