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Abstract

Itis well known that phonon modes become sensitive to the geometry of an object when the phonon
wavelengths are comparable to the objects physical length scale. In contrast, the sensitivity of phonon
modes toward topology is much less explored and understood. In this paper we discuss the effects of
topology on phonon modes using a finite thickness Mobius band of centerline radius a as the model
system. The phonon modes are derived using the xyz algorithm based on Riemannian geometry. From
the boundary conditions and parity we identify two sets of modes with wave numbers g = n/2a
described by odd and even integers n. Modes characterized by odd integers have flexural vibrations
whereas those characterized by even integers exhibit dilatational and shear/torsional motion. While
the phonon dispersion at large wave numbers agrees with that of structures having simple topology
(rings and wires), atlow frequencies and wave numbers the Mobius topology introduces significant
differences. Uniquely, we find three of the four phonon branches do not go to zero frequency with
decreasing wave number, but converge on a finite frequency. We identify a new form of vibrational
pattern resembling incomplete breathing modes and discuss the ramifications of the modified
spectrum, including alocal increase in the density of states and the existence of a phonon band gap.

1. Introduction

Mobius strip topology has fascinated artists and scientists since the middle of the nineteenth century when the
structure was first identified by Listing and Mobius [ 1-4]. The mechanical properties, equilibrium shape and
surface geometry of this unique one-sided, single-boundary structure have been studied extensively [5, 6]. In
addition, a rich variety of research associated with the topology has been reported, including the stability of soap
films [7], novel light polarization schemes [8], numerical calculations of Laplace-Beltrami eigenfunctions [9],
and birdcage resonators that show half-integer harmonic behavior when configured as a Mbius strip [10].
Techniques have been developed to fabricate three-dimensional nanostructures with nontrivial topology
[11-14] and the effects of topology on electron transport behavior [15-18] discussed. More generally, the
consequence of topology, and the concept of topological order, has been the subject of extensive research on
correlated electron systems, such as the fractional quantum Hall effect [ 19] and topological insulators [20, 21].

Atthe nanoscale, geometric constraints give rise to phenomena related to phonon confinement, such as
specific heat anomalies [22—24], the quantization of thermal conductance [25, 26], and modifications to the
Raman spectra of nano-crystalline materials [27]. The importance of low-frequency flexural modes on the
thermal and mechanical properties of graphene sheets has been comprehensively studied [28], and tuning the
flexural mode by modifying the geometry of graphene nano-ribbons has been considered as a means to control
transport properties [29]. Also, the thermal conductivity has been shown to depend on topology, with Mébius
strips displaying a lower conductivity than rings or ribbons; a result attributed to increased phonon-phonon
scattering and localization [30].

In this paper we address the effect of topology on phonon modes in the elastic continuum regime. We derive
the vibrational spectra of a finite thickness Mobius strip modeled as a rectangular cross-section bar that is twisted

© 2018 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Mébius band and Coordinate system.

axially by 7 radians and is formed into a continuous structure by linking the ends. The centerline of the structure
is assumed to be a perfect circle of radius a. For clarity, we term this model structure a Mobius band for the
remainder of the paper. We do not consider chirality because it does not play a role in the phonon properties of
individual, isolated M6bius bands. We first set up the model for the band and derive related structural
parameters, such as the metric tensors and Christoffel symbols based on Riemannian geometry. We consider the
parity and boundary conditions for phonon modes specific to a Mobius band, and find an unusual coexistence
of two classes of phonon mode with allowed wavelengths of 27ra divided by either integers or halfintegers.
Following previous work [31], the phonon modes are derived using the xyz-algorithm [32] reformulated in
terms of Riemann geometry. We introduce a set of basis functions satisfying the boundary conditions in order to
express the phonon mode displacements. A critical consideration is the need for displacement vector matching
imposed by the 7 radian twist of a Mobius band. Comparing the calculated modes to those of a wire and a ring,
we find the lowest frequency dispersion branches close to the zone center for a Mobius band have strikingly
different characteristics. In the case of a wire (ring), four (two) branches converge to a frequency w = 0 as the
wave number approaches zero. We show that for a Mobius band, one branch has w = 0 at the zone center while
three branches converge around a finite frequency w, at zero wave vector. The density of states is enhanced
around w, below which the spectral density becomes very low, giving rise to a phonon band gap not found in
other closed structures, for example rings. Details of the phonon spectra close to the zone center are shown to be
sensitive to elasticity, but insensitive to geometry. We discuss these sensitivities and conclude that topology
rather than geometry is the dominant factor determining the low-frequency phonon spectrum of a

Mobius band.

2.Mobius band and coordinate system

We consider a Mobius band modeled as a rectangular cross-section bar of single crystal that is twisted axially by
mradians and is formed into a continuous structure by linking the ends as shown figure 1. The center line C
denoted by the dashed line is assumed to be a perfect circle of radius a.

We first introduce a coordinate system which rotates along C. X denotes a position on Cand sis alength
between the position and prescribed origin on C. t, n and b are the tangential unit vector along C, the normal
vector defined below, and the unit vector perpendicular to tand n.  is the curvature and 7 is the torsion. All of
these are defined and related by the following Frenet-Serrete formulae;

s

d

t = eOZEX(s)
dt

— = —ep = KN
ds ds

K = ‘it = ie
9 Tlds | | ds (D
b = txn
dn

— = —kt + 7b
= K T
db

— = —7n

ds

n indicates the center of circle and the curvature becomes x = 1/a. b indicates the direction normal to the circle,
independent of s, so that 7 = 0.
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Using n and b, we introduce a frame comprised of ey = tand two unit vectors e; and e, which rotate with
increasing s along C. Assuming a constant rate of rotation of the frame and putting § = s/2a, we define the unit

vectors rotating with increasing s by
€ cosf) —sinf\(n
= . 2
(32) (sin@ cosd )(b) @

Supposing that the Mobius band is made of material having a cubic crystal structure, for example copper or gold,
the unit vectors e, e; and e, are set to be parallel to each crystal axis.

To describe the structure and equation of motion of elasticity in terms of Riemannian geometry, the position
in the Mobius band is given by

r = X(x% + x'e;(x?) + x2e5(x0) 3)
Following the usual convention, superscript of x’ indicates the j th component of the contravariant vector,
where x” = 5. The subscript of xjdenotes the j th component of the covariant vector. Considering the

rectangular cross section of 2w x 2h connected to the rotating frame as shown in figure 1, the variable ranges
are

—w<xt<w, —h<x2<h 0<x%< 2ma. 4)
For the system to be physically feasible, the half-wide w and half-height  should satisfy the condi-
tion Kk max(w, h) < 1.
Geometric parameters such as the metric tensors g;; and Christoffel symbols I'; are given by
gij = 8,<r . 8]'1' (5)

1
i = E(akgij + 0igi; — 8igjk)’ ©)

which are summarized in appendix.

3.XYZ algorithm

The xyz algorithm developed by Visscher [32] is a powerful method to numerically obtain vibrational modes of a
free-standing object. That work showed that the equation of motion of vibrations for a free-standing object
becomes the same as the wave equation in a bulk material and that the exact solution automatically satisfies the
boundary condition for a free surface. In the present work, we apply the method to a Mobius band. Since the
method was originally developed in terms of Euclidean geometry, we reformulate the method using Riemannian
geometry [33].

To begin, we introduce contravariant and covariant displacement vectors 1 and u; which are related by

ui =g ul. ™
The strain tensor ¢;;is defined by
1
€ij = E(vj”i + Viuj), ®)
where V;u; means covariant derivative of u; with respect to x’ estimated by
Vju,- = 8ju,- — F’;iuk. (9)
Assuming Hooke’s law, the stress tensor o 7 is associated with g;;via the stiffness tensor C M as
ol = CiMgy = CiMu,, (10)
Using the strain and stress tensors, the Lagrangian of a Mobius band yields
wt Vol
L= f(pT - = |Veddtata? (11)

where /g represents the Jacobian and g = |g|. From the variational principle and boundary condition fora
free surface, we have the following equation for a phonon mode with frequency w

pwiu' + Vol = 0. (12)
We express the displacement vector, using a series of bases P »;

w =" X\ ¢, X, x2), (13)
A
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where
PAUETALIE
o (22 o
w h

and Astands for A = {I,m, q} (I, m > 0).In order to set up an equation to obtain the coefficients Xi\, we first
substitute equations (13) into (12) and multiply by the complex conjugate of ®y. Integrating over the volume,
we have

Z Xij; [szgij@f@A - (gikal@f/ —+ Fkli(bj’)cklmn(gmjan(p)\ + me@)\)]
A

x Jgdx’dx'dx* = 0. (15)
Defining matrix elements E; AiiA and Fj;j) as
Ei/\’;jA = f ng @;‘f@)\ ﬁdxodxldxz (16)
v
Fiyvijn = fv (g, 09% + Fkli@j/)cklm”(gjman% + L ®y) (/g dxdx'dx?, (17)

Equation (15) is reformulated to be the following secular equation
w23 Epvin X = D Fvipn X (18)
A A

Numerically solving equation (18), we obtain phonon spectra of Mébius bands and corresponding displacement
vectors.

4. Parity and boundary condition

Each phonon mode component has a certain parity for inversion of coordinates x' and x* associated with
structural symmetries. Because of the 7 radian twist in a Mébius band, the parity will also depend on matching
the displacement vectors around the band. Since bases are closely related to the parity, we examine the boundary
condition to choose a suitable set of bases.

As x° changes from 0 to 47a along the centerline C, the frame rotates axially around e, by 27 radians and
returns to the original orientation. Then the displacement vector matches itself at the original position, in other
words all the phonon modes have a period of 47a;

1 (0, x\, x?) = u'(4ma, x', x2). (19)

In addition, since the frame rotates by 7 radians when x” increases from 0 to 27a, the displacement vector at
(x® = 0, x!, x?) coincides with thatat (x* = 27a, —x!, —x2). The frame rotation also inverts displacement
components ' and «°. Putting these things together, we have the following boundary conditions for
displacement components;

u°(0, x1, x?) = u’(Q2ma, —x', —x2) (20)
10, x!, x2) = —u'2ma, —x!, —x?) 21
u?(0, x', x?) = —u?(Q2ma, —x!, —x?). (22)

Supposing an asymptotic case of extremely large radius in comparison with wavelength \/a < 1, the
phonon modes of a Mobius band will closely resemble those of a rectangular wire as understood from
equation (18), which in thelimitof @ — oo reduces to the secular equation for phonon modes in a rectangular
wire [31]. A rectangular wire supports four kinds of phonon modes; a dilatational mode referred to as mode I,
two flexural modes referred to as modes II and II1, and shear /torsional modes referred to as mode IV. The shear
and torsional modes are clearly separated only for a square wire, but are mixed for a rectangular wire. The
displacement components of these modes are given by

) xl 2s+1 xz 2t+m
i i X fal igx"
Uy = Z XM;sm( ) ( L ) e, (23)
50 w

where [and mare 0 or 1, giving spatial symmetry of each displacement component. The combinations (I, m) for
phonon modes are summarized in table 1. Here we apply the boundary conditions on the phonon modes in a
rectangular wire. Putting equations (23) into (19), we have a condition for wave number g as

4maq = 2n, (24)
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Table 1. Spatial symmetry (I, m) of phonon

modes.
Mode:M u° u' w?
I (0,0) (1,0) 0,1)

II 0,1) 1,1 (0,0)
111 (1,0) (0,0) (1, 1)
v 1,1 0, 1) (1,0)

where nis an integer. The wave number g is discretized to be an integer multiple of 1,/2a

n
= —, 25
1= (25)

Since u' changes its sign only for an odd n when x° changes from 0 to 27a, we have the parity for change in x° as
1 (0, x', x?) = (= 1)"u'2ma, x, x2). (26)
Considering inversions of x' and x*, we have
u'2ma, x\, x2) = (= D"l 2mwa, —x1, —x2). 27)
Putting equations (27) into (26), we have the following relationship of the displacement;
u' (0, x%, x2) = (=Dt Qra, —x!, —x2). (28)

Comparing equation (28) with equations (20)—(22), it is found that the sum of powers N = [ + m + n for each
component must satisfy

N = even for u° (29)
N = odd for u! (30)
N = odd for u> (31)

When 7 is an odd number(11,4q), | + 7 becomes odd for 4° and even for 1! and 12, and vice versa. As seen from
table 1, modes II and I satisfy (29)—(31) only for 11,44, and modes I and IV satisfy the conditions only when n is
an even number (#eye,,) including 0.

From the relationship between the wave number and wavelength ¢ = 27/ and equation (25), the
wavelength is given by the circumference 27a divided by /2 as

= Zﬂ. (32)
n/2

When n = 0, the wavelength becomes infinite and the vibrations become uniform motions. Considering both
1544 and ey, are possible for phonon modes in M6bius bands, modes IT and I1I have a wavelength of the
circumference divided by a half-integer while modes I and IV have that divided by an integer. It is unusual that
the wavelength of modes I and IIT becomes a non-integer multiple of length for closed(ring-like) structures and
that two different sets of phonon modes alternate as the wave number changes by 1/2a. These unusual properties
are specific to phonon modes of Mobius bands.

As the ratio \/a increases, the curvature and torsion of a Mébius band will gradually modify or couple the
phonon modes. Modifications of phonon modes from those of wire will be most important in the low frequency
region near the zone center when the wavelengths become comparable to, or larger than, the circumference of a
Mobius band, as shown below.

5. Phonon modes in a Mobius band

5.1.Phonon spectra

Numerically solving the secular equation (18), we illustrate in figure 2 the phonon spectra of a M¢bius band

of copper whose cross sectional dimensions are 2w/a) x (2h/a) = 0.1 x 0.2. The solid circles denote the
spectra of phonon modes composed of modes Tand IV at ¢ = #ieyen /24, and open circles indicate the spectra

of phonon modes composed of modes I[Tand Il at g = #,4q /2a. The solid lines are the dispersion relations of
phonon modes I, II, IIT and IV in a rectangular wire of the same cross-section, which are distinguished by colors.
At high frequencies, the M6bius band phonon spectra show substantial agreement with the optical* and acoustic

* The optical branches are analogous to confined optical modes found in thin sheets, nanowires, and nanocrystals, which have been widely
explored by Raman spectroscopy. We note the associated Brillouin zone-center band gaps depend on physical dimensions.
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Cys = 754 GPa[].

wa /vy

Mobius band of Cu

5 10 15 20
qa

30

Figure 2. Phonon frequencies versus wave number of a copper Mobius band with cross sectional dimensions 2w/a) x (2h/a) =

0.1 x 0.2. Thesolid circles and open circles indicate phonon spectra at wave number g of an integer and half-integer multiple of 1/a,
respectively. The solid lines are the dispersion relations of phonon modes in a rectangular wire of copper with the same cross section area as
Mébius band. Four different kinds of modes referred to as I, II, IIl and IV are distinguished by colors. Vibrational patterns at four points
labelled A, B, C, and D are examined below. The used material parameters are p = 8.94 g/ em’, C;; = 168.4 GPa, C;, = 121.4 GPa,

wa /vy

Mobius band of Cu
—1

—1II
— 11
— IV

o
o f¢

qa

Figure 3. Phonon spectra of a copper Mgbius band in the low frequency region near the zone center of figure 2. Points labelled a, b, ¢
and d indicate characteristic frequencies of Mobius band. See the text.

phonon dispersion branches of a wire. In contrast, and of primary interest, at low frequency and wave number
the acoustic phonon branches disagree markedly with the dispersion relations of a wire.

Figure 3 is a magnified region of figure 2 revealing the detailed spectral distribution of the acoustic branches
in the low frequency region near the zone center, and introduces four characteristic frequencies w,, wy,, w.and
w,. A noticeable feature is that the frequencies of the two lowest branches associated with modes IT and I11 for
qa < 10 deviate significantly from the parabolic dispersion relations of a wire and have finite magnitudes of the
characteristic frequencies (figure 3) w, and w,, which are comparable to w, ~ v, /a at small wave numbers. Here

v,1s the sound velocity of transverse waves defined by v, = |/ Cy4/p. The frequencies wj and w.at ga = 0.5 can be

6
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(a) Mobius band of Diarnond/ (b) Mobius band of Au
—1

— 1
— I
v

wa /vy

qa

Figure 4. Phonon spectra of (a) diamond and (b) gold M6bius bands in the low frequency region near the zone center. The cross
sectional dimensions are the same as those of a copper M6bius band. The solid lines are the dispersion relations of a rectangular wire of
diamond and gold, respectively. Points labelled a, b, c and d indicate characteristic frequencies of Mébius bands. The material
parameters of diamond are p = 3.53 g/cm?, C;; = 1075.0 GPa, C;, = 139.3 GPa, Cy4 = 567.2 GPaand those of gold are

p = 19.49 g/cm’, Cy; = 201.6 GPa, Cy, = 169.7 GPa, Cyy = 45.4 GPa[34].

showntobe wy, = /Ci1/2pa? and w. = /C1/2pa’[1 — O( WZ; h )] by solving the secular equation (18)
including only the relevant acoustic phonon modes. We note that because G, ~ 2Cy, for copper, wyand wy,
coincide accidentally.

The spectra associated with mode IV also deviate from the linear dispersion relation of a wire and the
frequencies become larger than those of mode I, where the frequency w, atg = 0 is estimated as

w, = +/Ci1/2pa?. On the other hand, the spectra associated with mode I almost coincide with the linear

dispersion relation of a wire and the frequency at ga = 1is estimated as w; = +/Y/pa® where Yis Young’s
modulus, whichis givenby Y = C;; — 2C5 /(Ci; + Cp5) for cubic materials. For copper, w, is the minimum of
these frequencies, and as there are no modes with a lower finite frequency a band gap of characteristic frequency
W, occurs.

In order to consider the details of the band gap we note that w,, w, and w. depend on C; 1, but only wy
depends on Young’s modulus suggesting that w, could possibly be lower than w,, w, and w, for materials other
than copper. To parametrize the posibility of a band gap, we introduce the ratio of wand wy,

2 1/2
fE_d:[z_ L] . (33)
Wp GG + Go)

For materials with f > 1 a phonon band gap exists with modes II, III, and IV providing a high density of states
around wy, and w,, below which the spectral density is low. For materials with f < 1, mode I becomes the lowest
non-zero energy state, somewhat analogous to having a state in the gap. Although w, would be better than wj, for
the definition of f, we use wj, instead of w, since it is too complicated to express w, in a compact form. Aside from
the case that w, falls between wy, and w, like copper, fis a useful parameter to judge the occurrence of a phonon
frequency gap. With f = 1.05 for aluminum and 1.18 for diamond, we have confirmed the frequency gaps
numerically, as shown in figure 4(a) for diamond. On the other hand, gold (f = 0.82) has a mode with finite
frequency below w, as shown in figure 4(b).

Here we mention the dependence of these characteristic frequencies on the Mobius band thickness and
width. The frequencies w,, wy, w.and w, are tolerant to changes of the cross sectional dimensions, although at
higher wavenumbers the slopes of spectra of modes I and III depend strongly on thickness. It is apparent,
therefore, that the fundamental properties of the frequency gap do not change with the geometry, suggesting
they are characteristic of the topology.

Furthermore, we note that the frequency gap does not appear for other closed structures such as rings.
Phonon modes of rings are derived by using the boundary condition (0, x!, x?) = u/(27a, x', x?). Although

7
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Figure 5. Phonon spectra of a copper ring with the same cross sectional dimensions as the M6bius band. The solid circles indicate
frequencies versus wave number and only have an integer multiples of 1 /a.

the high wave number phonon spectra of a ring agree well with the dispersion relations of wires, similar to the
case for the Mbius bands, the ring spectra deviate from those of wire in the low frequency region. However,
unlike the M6bius band the ring does not have a frequency gap since the spectra of the two lowest branches are
almost the same as modes Il and Il of wires and tend to w = 0 with decreasing wave number, as shown in
figure 5 [35, 36]. This further supports the conclusion that the frequency gap is a phenomenon characterisitc of
the Mobius band topology.

5.2. Vibrational patterns

From the finding that the phonon spectra of a M6bius band match the dispersion relations of wires at high
frequencies or large wave numbers, we expect that the vibrational patterns of Mobius bands will also resemble
those of wires. Figure 6 shows vibrational patterns at points A, B, Cand D denoted in figure 2. It is apparent that
they exhibit dilatational(A), torsional(D) and flexural motions(B and C) corresponding to those in the
rectangular wire [31]. Here we pay attention to B and C whose wavelengths are A = 27a/(19/2). We may say
that the twisted structure of Mobius bands absorbs or compensates for the phase difference caused by the half of
wavelength, making such a wavelength realizable.

Vibrational motions of modes at low frequencies are more specific to the Mobius band. Figure 7 shows
vibrational patterns for modes (a) atg = 0, (b)and (c)atga = 1/2and (d) atqa = 1 denoted in figures 3 and 4.
Because of gentle spatial variations of displacement vectors for small wave numbers, the arrows express the
dynamical motions. Mode (a) exhibits uniform axial-torsion along the circumference. Although the motion is
common to the torsional mode of wire, the frequency w, is finite, as is the case for phonon modes in a ring
referred to as ‘torsional modes’ in reference [36] (see figure 8(a)). Mode (d) is longitudinal waves whose
wavelength matches the circumference A = 27a, and leads to amode with w = 0atg = 0. Thus the motion as
well as the spectra coincide with mode I of wires. We note that a ring does not support such a mode leading to
w = 0. The vibrational patterns of modes (b) and (c) atqa = 1/2 with A\ = 47a show new forms of vibration
that resemble incomplete breathing motions, which are in contrast to the breathing mode of a ring shown in
figure 8(b).

6. Summary and discussions

The phonon modes in a Mbius band with finite thickness have been derived. The Mobius band has been
modeled as a rectangular bar axially twisted by 7 radians whose ends are perfectly linked. The phonon spectra
and corresponding displacement vectors are obtained by means of the xyz-algorithm that we have extended in
terms of Riemannian geometry. As a result of mode parity and boundary conditions, we find that a Mébius band
supports two distinct sets of allowed phonon wavelengths characterized by odd and even integers. The
wavelengths are given by A = 27a/(n/2), with odd integers corresponding to flexural modes I and I1I, and even

8
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Figure 6. Vibrational patterns at A, B, Cand D denoted in figure 2. The wavelengths of Aand D are A\ = 2ma/10 and those of Band C
are A = 2ma/9.5. For vibrational pattern B (C), the displacement occurs primarily in the direction of the longer (shorter) edge of the
cross section. Compared with B, C can be considered to be more like the flexural vibrations of a thin-plate, therefore having a vibration
frequency lower than that of B.

(b)

(c) (d)

Figure 7. Vibrational patterns at (a)—(d) denoted in figures 3 and 4. The arrows indicate the directions of displacement vectors. Modes
(b)and (c) have a period of 47a.

(a) (b)

'

Figure 8. Vibrational patterns of modes in a ring at (a) and (b) denoted in figure 5. The arrows indicate the directions of displacement
vectors, showing (a) a uniform torsional motion and (b) a breathing motion.
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integers to dilatational and shear/torsional modes I and IV. Importantly, this leads to integer and half-integer
wavelength relationships being allowed, with the lowest frequency flexural mode (n = 1) having a wavelength of
twice the center line circumference and the lowest finite frequency dilatational mode (n = 2) having a
wavelength equal to the circumference. It also follows that the nature of the modes alternate as the wave number
changes by 1/2a. A structure that supports modes with integer and half-integer wavelength relationships is
unusual and is a direct consequence of the nontrivial topology.

We have also shown that phonon modes with wavelengths much shorter than the center-line circumference
coincide with the dilatational, shear/torsional and two flexural modes of a rectangular wire. In this limit the
vibrational patterns closely match those of wires, with the twisted structure of a Mobius band accounting for the
half of wavelength phase difference. Major differences between phonon spectra of the Mébius band, wire and
ring appear in the low frequency region near the zone center. For the Mobius band, three of the four acoustic
branches do not go tow = 0 with decreasing wave number; instead they converge toward a finite frequency
around which the number of states locally increases giving rise to the possibility of a phonon band gap. We have
addressed the robustness if the gap towards geometry and have noted that a gap does not occur in other closed
structures, such as rings that have two branches withw = 0 atq = 0. We have parameterized details of the gap in
terms of characteristic frequencies that depend on the elasticity of the material. Similar to other mechanisms that
modify the phonon spectral distribution, we expect that the distorted spectral distribution resulting from the
topology will give rise to anomalous thermal properties, which will be discussed elsewhere.

Finally, we emphasize that the topology plays a significant role in the phonon modes. The phonon band gap
is one of the significant characteristics caused by the M6bius topology. Finite systems, such as nano particles, also
have phonon spectral gaps. In these cases the band gap is caused by phonon confinement, which is a size
dependent effect [24]. Very interestingly, a ring does not have a phonon band gap in spite of the finite size since
the lowest acoustic branch begins at w = 0 and increases parabolically with respect to wavenumber. The
difference in spectra between the nano particles and rings is caused by the difference in topology, i.e. the
existence of a hole. Likewise, the difference between the Mébius bands and rings is also due to the difference in
topology, i.e. twisted or not-twisted. Thus, topology substantially affects the phonon modes in a finite system
and introduces effects that are comparable with, or larger than, those originating from geometry.
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Appendix. Geometric parameters associated with Mobius band

Using the derivatives of position vector (3) with respect to x’

% =(1-— njxj)eo + xle, — Px’e (A.1)
0
6—; — ¢ (A.2)
Z e (A3)
where
P = —%, (A.4)
gijbecomes
S e P e R 1%
@)= —uw? 10 (A.5)
x! 0
where
x> = (x)* + (x»)? (A.6)
and

v= 1 K. (A7)

10



10P Publishing

J. Phys. Commun. 2 (2018) 085002

The determinant g of geometric tensor is obtained as

N Nishiguchi and M N Wybourne

8= det(gij) =4 (A.8)
and the contravariant metric tensor is derived as follows;
1 P x? — x!
(gij) _ 7—4 w x2 ’Y4 + ,LZ)Z(xZ)Z _wlexz . (A9)
_1/) xl _wale 74 + wZ(xl)Z
For Christoffel symbols of the first kind, we have
Tooo = 2 7v*60 (A.10)
Too1 = Towo = 2¥*61 + ! (A.11)
Tooz = Tooo = 2743, + ¥%? (A.12)
Loo = =276 — ¢! (A.13)
Lo = Tio = =% (A.14)
Do = =296, — ¢p*x? (A.15)
Doy =Tho=1% (A.16)
L =0 otherwise, (A.17)
where 3, is defined by
=107, (A18)
v Ox"
and estimated, respectively, as
el 2
By = P(—kox' + /ﬁx) (A.19)
2(1 — kjx!)
—k
- A.20
A= e (A.20)
Ky
=" A21
R T (A21)
Christoftel symbols of the second kind are derived from
Flmn = glkrkmny (A22)
and we have
TG = 2(Bo — ¥x?B1 + ¢x'B2) (A.23)
%, =1T% =26 (A.24)
% =T% =26, (A.25)
Iy = 2Ux2(By — By + Yx'B) — 248 — ! (A.26)
le = I‘110 = 2¢x*f (A.27)
[y, =Ty = 2¢x?8, — ¢ (A.28)
T = —2ux! (B0 — ¥x261 + ¢x'By) — 2946, — 2 (A.29)
D =T% = —2¢x'By + ¢ (A.30)
onz = Fz20 = —2x'f, (A.31)
Fijk =0 otherwise. (A.32)
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