
 

Instructions for use

Title Phonon modes in a Möbius band

Author(s) Nishiguchi, Norihiko; Wybourne, Martin

Citation Journal of Physics Communications, 2(8), 85002
https://doi.org/10.1088/2399-6528/aad49b

Issue Date 2018-08-01

Doc URL http://hdl.handle.net/2115/71261

Rights(URL) https://creativecommons.org/licenses/by/3.0/

Type article

File Information Nishiguchi_2018_J._Phys._Commun._2_085002.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


Journal of Physics Communications

PAPER • OPEN ACCESS

Phonon modes in a Möbius band
To cite this article: Norihiko Nishiguchi and Martin N Wybourne 2018 J. Phys. Commun. 2 085002

 

View the article online for updates and enhancements.

This content was downloaded by nishiguchi from IP address 133.87.123.217 on 02/08/2018 at 01:08

https://doi.org/10.1088/2399-6528/aad49b


J. Phys. Commun. 2 (2018) 085002 https://doi.org/10.1088/2399-6528/aad49b

PAPER

Phononmodes in aMöbius band

NorihikoNishiguchi1,3 andMartinNWybourne2

1 Division of Applied Physics, HokkaidoUniversity, Sapporo 060-8628, Japan
2 Department of Physics andAstronomy,DartmouthCollege,Hanover, NH03755,United States of America
3 Author towhomany correspondence should be addressed.

E-mail: nn@eng.hokudai.ac.jp andmartin.n.wybourne@dartmouth.edu

Keywords: phononmodes,Möbius strip, topology

Abstract
It is well known that phononmodes become sensitive to the geometry of an object when the phonon
wavelengths are comparable to the objects physical length scale. In contrast, the sensitivity of phonon
modes toward topology ismuch less explored and understood. In this paper we discuss the effects of
topology on phononmodes using afinite thicknessMöbius band of centerline radius a as themodel
system. The phononmodes are derived using the xyz algorithmbased onRiemannian geometry. From
the boundary conditions and paritywe identify two sets ofmodes withwave numbers q n a2=
described by odd and even integers n.Modes characterized by odd integers haveflexural vibrations
whereas those characterized by even integers exhibit dilatational and shear/torsionalmotion.While
the phonon dispersion at large wave numbers agrees with that of structures having simple topology
(rings andwires), at low frequencies andwave numbers theMöbius topology introduces significant
differences. Uniquely, wefind three of the four phonon branches do not go to zero frequencywith
decreasingwave number, but converge on afinite frequency.We identify a new formof vibrational
pattern resembling incomplete breathingmodes and discuss the ramifications of themodified
spectrum, including a local increase in the density of states and the existence of a phonon band gap.

1. Introduction

Möbius strip topology has fascinated artists and scientists since themiddle of the nineteenth centurywhen the
structure wasfirst identified by Listing andMöbius [1–4]. Themechanical properties, equilibrium shape and
surface geometry of this unique one-sided, single-boundary structure have been studied extensively [5, 6]. In
addition, a rich variety of research associatedwith the topology has been reported, including the stability of soap
films [7], novel light polarization schemes [8], numerical calculations of Laplace-Beltrami eigenfunctions [9],
and birdcage resonators that showhalf-integer harmonic behaviorwhen configured as aMöbius strip [10].
Techniques have been developed to fabricate three-dimensional nanostructures with nontrivial topology
[11–14] and the effects of topology on electron transport behavior [15–18] discussed.More generally, the
consequence of topology, and the concept of topological order, has been the subject of extensive research on
correlated electron systems, such as the fractional quantumHall effect [19] and topological insulators [20, 21].

At the nanoscale, geometric constraints give rise to phenomena related to phonon confinement, such as
specific heat anomalies [22–24], the quantization of thermal conductance [25, 26], andmodifications to the
Raman spectra of nano-crystallinematerials [27]. The importance of low-frequency flexuralmodes on the
thermal andmechanical properties of graphene sheets has been comprehensively studied [28], and tuning the
flexuralmode bymodifying the geometry of graphene nano-ribbons has been considered as ameans to control
transport properties [29]. Also, the thermal conductivity has been shown to depend on topology, withMöbius
strips displaying a lower conductivity than rings or ribbons; a result attributed to increased phonon-phonon
scattering and localization [30].

In this paperwe address the effect of topology on phononmodes in the elastic continuum regime.We derive
the vibrational spectra of afinite thicknessMöbius stripmodeled as a rectangular cross-section bar that is twisted
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axially byπ radians and is formed into a continuous structure by linking the ends. The centerline of the structure
is assumed to be a perfect circle of radius a. For clarity, we term thismodel structure aMöbius band for the
remainder of the paper.We do not consider chirality because it does not play a role in the phonon properties of
individual, isolatedMöbius bands.Wefirst set up themodel for the band and derive related structural
parameters, such as themetric tensors andChristoffel symbols based onRiemannian geometry.We consider the
parity and boundary conditions for phononmodes specific to aMöbius band, and find an unusual coexistence
of two classes of phononmodewith allowedwavelengths of 2πa divided by either integers or half integers.
Following previous work [31], the phononmodes are derived using the xyz-algorithm [32] reformulated in
terms of Riemann geometry.We introduce a set of basis functions satisfying the boundary conditions in order to
express the phononmode displacements. A critical consideration is the need for displacement vectormatching
imposed by theπ radian twist of aMöbius band. Comparing the calculatedmodes to those of awire and a ring,
wefind the lowest frequency dispersion branches close to the zone center for aMöbius band have strikingly
different characteristics. In the case of awire (ring), four (two) branches converge to a frequencyω=0 as the
wave number approaches zero.We show that for aMöbius band, one branch hasω=0 at the zone center while
three branches converge around afinite frequencyωg at zerowave vector. The density of states is enhanced
aroundωg belowwhich the spectral density becomes very low, giving rise to a phonon band gap not found in
other closed structures, for example rings. Details of the phonon spectra close to the zone center are shown to be
sensitive to elasticity, but insensitive to geometry.We discuss these sensitivities and conclude that topology
rather than geometry is the dominant factor determining the low-frequency phonon spectrumof a
Möbius band.

2.Möbius band and coordinate system

Weconsider aMöbius bandmodeled as a rectangular cross-section bar of single crystal that is twisted axially by
π radians and is formed into a continuous structure by linking the ends as shownfigure 1. The center lineC
denoted by the dashed line is assumed to be a perfect circle of radius a.

Wefirst introduce a coordinate systemwhich rotates alongC.X denotes a position onC and s is a length
between the position and prescribed origin onC. t,n and b are the tangential unit vector alongC, the normal
vector defined below, and the unit vector perpendicular to t andn.κ is the curvature and τ is the torsion. All of
these are defined and related by the following Frenet-Serrete formulae;
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n indicates the center of circle and the curvature becomesκ=1/a. b indicates the direction normal to the circle,
independent of s, so that τ=0.

Figure 1.Möbius band andCoordinate system.
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Usingn andb, we introduce a frame comprised of e0≡t and two unit vectors e1 and e2 which rotate with
increasing s alongC. Assuming a constant rate of rotation of the frame and putting θ=s/2a, we define the unit
vectors rotatingwith increasing s by

e
e

n
b

cos sin
sin cos

. 21

2

q q
q q

= -( )( ) ( ) ( )

Supposing that theMöbius band ismade ofmaterial having a cubic crystal structure, for example copper or gold,
the unit vectors e0, e1 and e2 are set to be parallel to each crystal axis.

To describe the structure and equation ofmotion of elasticity in terms of Riemannian geometry, the position
in theMöbius band is given by

x x x x xr X e e 30 1
1

0 2
2

0= + +( ) ( ) ( ) ( )

Following the usual convention, superscript of x j indicates the jth component of the contravariant vector,
where x0≡s. The subscript of xj denotes the jth component of the covariant vector. Considering the
rectangular cross section of w h2 2´ connected to the rotating frame as shown infigure 1, the variable ranges
are

w x w h x h x a, , 0 2 . 41 2 0      p- - ( )
For the system to be physically feasible, the half-widew and half-height h should satisfy the condi-
tion w hmax , 1k <( ) .

Geometric parameters such as themetric tensors gij andChristoffel symbolsΓijk are given by

g r r 5ij i jº ¶ ¶· ( )

g g g
1

2
, 6ijk k ij j ki i jkG º ¶ + ¶ - ¶( ) ( )

which are summarized in appendix.

3. XYZ algorithm

The xyz algorithmdeveloped byVisscher [32] is a powerfulmethod to numerically obtain vibrationalmodes of a
free-standing object. That work showed that the equation ofmotion of vibrations for a free-standing object
becomes the same as thewave equation in a bulkmaterial and that the exact solution automatically satisfies the
boundary condition for a free surface. In the present work, we apply themethod to aMöbius band. Since the
methodwas originally developed in terms of Euclidean geometry, we reformulate themethod using Riemannian
geometry [33] .

To begin, we introduce contravariant and covariant displacement vectors u i and uiwhich are related by

u g u . 7i ij
j= ( )

The strain tensor εij is defined by

u u
1

2
, 8ij j i i je =  + ( ) ( )

where uj i means covariant derivative of uiwith respect to x
j estimated by

u u u . 9j i j i ji
k

k = ¶ - G ( )

AssumingHooke’s law, the stress tensorσ ij is associatedwith εij via the stiffness tensorC
ijkl as

C C u . 10ij ijkl
kl

ijkl
k ls e= =  ( )

Using the strain and stress tensors, the Lagrangian of aMöbius band yields

L
u u u

g dx dx dx
2 2

, 11i
i

i j
ij

0 1 2ò
r s

= -
⎛

⎝⎜
⎞
⎠⎟

˙ ˙ ( )

where g represents the Jacobian and g gij= ∣ ∣. From the variational principle and boundary condition for a
free surface, we have the following equation for a phononmodewith frequencyω

u 0. 12i
j

ij2rw s+  = ( )

Weexpress the displacement vector, using a series of basesΦλ;

u x x x, , , 13i i 0 1 2å c= F
l

l l( ) ( )
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where

x x x
x
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andλ stands forλ={l,m, q} (l,m�0). In order to set up an equation to obtain the coefficients icl, wefirst
substitute equations (13) into (12) andmultiply by the complex conjugate of Fl¢. Integrating over the volume,
we have

g g C g

g dx dx dx 0. 15
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Definingmatrix elements Ei j;l l¢ and Fi j;l l¢ as

E g g dx dx dx 16i j
V

ij;
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F g C g g dx dx dx , 17i j
V

ik l kli
klmn

jm n mnj;
0 1 2* *òº ¶F + G F ¶ F + G Fl l l l l l¢ ¢ ¢( ) ( ) ( )

Equation (15) is reformulated to be the following secular equation

E F . 18i j
j

i j
j2

; ;å åw c c=
l

l l l
l

l l l¢ ¢ ( )

Numerically solving equation (18), we obtain phonon spectra ofMöbius bands and corresponding displacement
vectors.

4. Parity and boundary condition

Each phononmode component has a certain parity for inversion of coordinates x1 and x2 associatedwith
structural symmetries. Because of theπ radian twist in aMöbius band, the parity will also depend onmatching
the displacement vectors around the band. Since bases are closely related to the parity, we examine the boundary
condition to choose a suitable set of bases.

As x0 changes from0 to 4πa along the centerlineC, the frame rotates axially around e0 by 2π radians and
returns to the original orientation. Then the displacement vectormatches itself at the original position, in other
words all the phononmodes have a period of 4πa;

u x x u a x x0, , 4 , , . 19i i1 2 1 2p=( ) ( ) ( )

In addition, since the frame rotates byπ radianswhen x0 increases from0 to 2πa, the displacement vector at
x x x0, ,0 1 2=( ) coincides with that at x a x x2 , ,0 1 2p= - -( ). The frame rotation also inverts displacement
components u1 and u2. Putting these things together, we have the following boundary conditions for
displacement components;

u x x u a x x0, , 2 , , 200 1 2 0 1 2p= - -( ) ( ) ( )

u x x u a x x0, , 2 , , 211 1 2 1 1 2p= - - -( ) ( ) ( )

u x x u a x x0, , 2 , , . 222 1 2 2 1 2p= - - -( ) ( ) ( )

Supposing an asymptotic case of extremely large radius in comparisonwithwavelengthλ/a=1, the
phononmodes of aMöbius bandwill closely resemble those of a rectangular wire as understood from
equation (18), which in the limit of a  ¥ reduces to the secular equation for phononmodes in a rectangular
wire [31]. A rectangular wire supports four kinds of phononmodes; a dilatationalmode referred to asmode I,
twoflexuralmodes referred to asmodes II and III, and shear/torsionalmodes referred to asmode IV. The shear
and torsionalmodes are clearly separated only for a square wire, but aremixed for a rectangular wire. The
displacement components of thesemodes are given by

u
x

w

x

h
e , 23j

s t
stn

j
s l t m

iqx
M

, 0
M;

1 2 2 2
0


å c=

+ +⎛
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⎛
⎝⎜

⎞
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where l andm are 0 or 1, giving spatial symmetry of each displacement component. The combinations (l,m) for
phononmodes are summarized in table 1.Herewe apply the boundary conditions on the phononmodes in a
rectangular wire. Putting equations (23) into (19), we have a condition forwave number q as

aq n4 2 , 24p p= ( )
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where n is an integer. Thewave number q is discretized to be an integermultiple of a1 2

q
n

a2
. 25= ( )

Since u i changes its sign only for an odd nwhen x0 changes from0 to 2πa, we have the parity for change in x0 as

u x x u a x x0, , 1 2 , , . 26i n i1 2 1 2p= -( ) ( ) ( ) ( )

Considering inversions of x1 and x2, we have

u a x x u a x x2 , , 1 2 , , . 27i l m i1 2 1 2p p= - - -+( ) ( ) ( ) ( )

Putting equations (27) into (26), we have the following relationship of the displacement;

u x x u a x x0, , 1 2 , , . 28i l m n i1 2 1 2p= - - -+ +( ) ( ) ( ) ( )

Comparing equation (28)with equations (20)–(22), it is found that the sumof powersN=l+m+n for each
componentmust satisfy

N ueven for 290= ( )

N uodd for 301= ( )

N uodd for . 312= ( )

When n is an odd number(nodd), l+m becomes odd for u0 and even for u1 and u2, and vice versa. As seen from
table 1,modes II and III satisfy (29)–(31) only for nodd, andmodes I and IV satisfy the conditions only when n is
an even number (neven) including 0.

From the relationship between thewave number andwavelength q 2p l= and equation (25), the
wavelength is given by the circumference 2πa divided by n/2 as

a

n

2

2
. 32l

p
= ( )

When n=0, thewavelength becomes infinite and the vibrations become uniformmotions. Considering both
nodd and neven are possible for phononmodes inMöbius bands,modes II and III have awavelength of the
circumference divided by a half-integer whilemodes I and IV have that divided by an integer. It is unusual that
thewavelength ofmodes II and III becomes a non-integermultiple of length for closed(ring-like) structures and
that two different sets of phononmodes alternate as thewave number changes by 1/2a. These unusual properties
are specific to phononmodes ofMöbius bands.

As the ratioλ/a increases, the curvature and torsion of aMöbius bandwill graduallymodify or couple the
phononmodes.Modifications of phononmodes from those of wirewill bemost important in the low frequency
region near the zone center when thewavelengths become comparable to, or larger than, the circumference of a
Möbius band, as shown below.

5. Phononmodes in aMöbius band

5.1. Phonon spectra
Numerically solving the secular equation (18), we illustrate infigure 2 the phonon spectra of aMöbius band
of copperwhose cross sectional dimensions are w a h a2 2 0.1 0.2´ = ´( ) ( ) . The solid circles denote the
spectra of phononmodes composed ofmodes I and IV at q n a2even= , and open circles indicate the spectra
of phononmodes composed ofmodes II and III at q n a2odd= . The solid lines are the dispersion relations of
phononmodes I, II, III and IV in a rectangular wire of the same cross-section, which are distinguished by colors.
At high frequencies, theMöbius band phonon spectra show substantial agreementwith the optical4 and acoustic

Table 1. Spatial symmetry (l,m) of phonon
modes.

Mode:M u0 u1 u2

I (0, 0) (1, 0) (0, 1)
II (0, 1) (1, 1) (0, 0)
III (1, 0) (0, 0) (1, 1)
IV (1, 1) (0, 1) (1, 0)

4
The optical branches are analogous to confined opticalmodes found in thin sheets, nanowires, and nanocrystals, which have beenwidely

explored by Raman spectroscopy.We note the associated Brillouin zone-center band gaps depend on physical dimensions.
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phonon dispersion branches of awire. In contrast, and of primary interest, at low frequency andwave number
the acoustic phonon branches disagreemarkedly with the dispersion relations of a wire.

Figure 3 is amagnified region offigure 2 revealing the detailed spectral distribution of the acoustic branches
in the low frequency region near the zone center, and introduces four characteristic frequenciesωa,ωb,ωc and
ωd. A noticeable feature is that the frequencies of the two lowest branches associatedwithmodes II and III for
qa<10 deviate significantly from the parabolic dispersion relations of a wire and havefinitemagnitudes of the
characteristic frequencies (figure 3)ωb andωc, which are comparable to v ag tw » at small wave numbers. Here

vt is the sound velocity of transverse waves defined by v Ct 44 r= . The frequenciesωb andωc at qa= 0.5 can be

Figure 2.Phonon frequencies versuswavenumberof a copperMöbiusbandwith cross sectional dimensions w a h a2 2´ =( ) ( )
0.1 0.2´ . The solid circles andopen circles indicate phonon spectra atwavenumberqof an integer andhalf-integermultiple of 1/a,
respectively. The solid lines are thedispersion relationsof phononmodes in a rectangularwire of copperwith the samecross sectionarea as
Möbiusband. Fourdifferent kindsofmodes referred to as I, II, III and IVaredistinguishedby colors.Vibrational patterns at four points
labelledA,B,C, andDare examinedbelow.Theusedmaterial parameters areρ=8.94 g/cm3,C11=168.4 GPa,C12=121.4 GPa,
C44=75.4 GPa [].

Figure 3.Phonon spectra of a copperMöbius band in the low frequency region near the zone center offigure 2. Points labelled a, b, c
and d indicate characteristic frequencies ofMöbius band. See the text.
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shown to be C a2b 11
2w r= and C a O2 1c

w h

a11
2

2 2

2w r= - +[ ( )]by solving the secular equation (18)
including only the relevant acoustic phononmodes.We note that because C C211 44» for copper,ωg andωb,c

coincide accidentally.
The spectra associatedwithmode IV also deviate from the linear dispersion relation of a wire and the

frequencies become larger than those ofmode I, where the frequencyωa at q=0 is estimated as

C a2a 11
2w r= . On the other hand, the spectra associatedwithmode I almost coincidewith the linear

dispersion relation of awire and the frequency at qa=1 is estimated as Y ad
2w r= whereY is Young’s

modulus, which is given by Y C C C C211 12
2

11 12= - +( ) for cubicmaterials. For copper,ωc is theminimumof
these frequencies, and as there are nomodes with a lowerfinite frequency a band gap of characteristic frequency
ωc occurs.

In order to consider the details of the band gapwe note thatωa,ωb andωc depend onC11, but onlyωd

depends onYoung’smodulus suggesting thatωd could possibly be lower thanωa,ωb andωc formaterials other
than copper. To parametrize the posibility of a band gap, we introduce the ratio ofωd andωb

f
C

C C C
2

4
. 33d

b

12
2

11 11 12

1 2
w
w

º = -
+

⎡
⎣⎢

⎤
⎦⎥( )

( )

Formaterials with f�1 a phonon band gap exists withmodes II, III, and IVproviding a high density of states
aroundωb andωc, belowwhich the spectral density is low. Formaterials with f<1,mode I becomes the lowest
non-zero energy state, somewhat analogous to having a state in the gap. Althoughωcwould be better thanωb for
the definition of f, we useωb instead ofωc since it is too complicated to expressωc in a compact form. Aside from
the case thatωd falls betweenωb andωc like copper, f is a useful parameter to judge the occurrence of a phonon
frequency gap.With f=1.05 for aluminumand 1.18 for diamond, we have confirmed the frequency gaps
numerically, as shown infigure 4(a) for diamond.On the other hand, gold ( f=0.82)has amodewithfinite
frequency belowωd as shown infigure 4(b).

Here wemention the dependence of these characteristic frequencies on theMöbius band thickness and
width. The frequenciesωa,ωb,ωc andωd are tolerant to changes of the cross sectional dimensions, although at
higherwavenumbers the slopes of spectra ofmodes II and III depend strongly on thickness. It is apparent,
therefore, that the fundamental properties of the frequency gap do not changewith the geometry, suggesting
they are characteristic of the topology.

Furthermore, we note that the frequency gap does not appear for other closed structures such as rings.
Phononmodes of rings are derived by using the boundary condition u x x u a x x0, , 2 , ,i i1 2 1 2p=( ) ( ). Although

Figure 4.Phonon spectra of (a) diamond and (b) goldMöbius bands in the low frequency region near the zone center. The cross
sectional dimensions are the same as those of a copperMöbius band. The solid lines are the dispersion relations of a rectangular wire of
diamond and gold, respectively. Points labelled a, b, c and d indicate characteristic frequencies ofMöbius bands. Thematerial
parameters of diamond are ρ=3.53 g/cm3,C11=1075.0 GPa,C12=139.3 GPa,C44=567.2 GPa and those of gold are
ρ=19.49 g/cm3,C11=201.6 GPa,C12=169.7 GPa,C44=45.4 GPa [34].
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the highwave number phonon spectra of a ring agree well with the dispersion relations of wires, similar to the
case for theMöbius bands, the ring spectra deviate from those of wire in the low frequency region.However,
unlike theMöbius band the ring does not have a frequency gap since the spectra of the two lowest branches are
almost the same asmodes II and III of wires and tend toω=0with decreasing wave number, as shown in
figure 5 [35, 36]. This further supports the conclusion that the frequency gap is a phenomenon characterisitc of
theMöbius band topology.

5.2. Vibrational patterns
From thefinding that the phonon spectra of aMöbius bandmatch the dispersion relations of wires at high
frequencies or largewave numbers, we expect that the vibrational patterns ofMöbius bandswill also resemble
those of wires. Figure 6 shows vibrational patterns at points A, B, C andDdenoted infigure 2. It is apparent that
they exhibit dilatational(A), torsional(D) andflexuralmotions(B andC) corresponding to those in the
rectangular wire [31]. Herewe pay attention to B andCwhosewavelengths areλ=2πa/(19/2).Wemay say
that the twisted structure ofMöbius bands absorbs or compensates for the phase difference caused by the half of
wavelength,making such awavelength realizable.

Vibrationalmotions ofmodes at low frequencies aremore specific to theMöbius band. Figure 7 shows
vibrational patterns formodes (a) at q=0, (b) and (c) at qa=1/2 and (d) at qa=1 denoted infigures 3 and 4.
Because of gentle spatial variations of displacement vectors for small wave numbers, the arrows express the
dynamicalmotions.Mode (a) exhibits uniform axial-torsion along the circumference. Although themotion is
common to the torsionalmode of wire, the frequencyωa isfinite, as is the case for phononmodes in a ring
referred to as ‘torsionalmodes’ in reference [36] (see figure 8(a)).Mode (d) is longitudinal waveswhose
wavelengthmatches the circumferenceλ=2πa, and leads to amodewithω=0 at q=0. Thus themotion as
well as the spectra coincidewithmode I of wires.We note that a ring does not support such amode leading to
ω=0. The vibrational patterns ofmodes (b) and (c) at qa=1/2withλ=4πa shownew forms of vibration
that resemble incomplete breathingmotions, which are in contrast to the breathingmode of a ring shown in
figure 8(b).

6. Summary anddiscussions

The phononmodes in aMöbius bandwithfinite thickness have been derived. TheMöbius band has been
modeled as a rectangular bar axially twisted byπ radianswhose ends are perfectly linked. The phonon spectra
and corresponding displacement vectors are obtained bymeans of the xyz-algorithm thatwe have extended in
terms of Riemannian geometry. As a result ofmode parity and boundary conditions, wefind that aMöbius band
supports two distinct sets of allowed phononwavelengths characterized by odd and even integers. The
wavelengths are given byλ=2πa/(n/2), with odd integers corresponding toflexuralmodes II and III, and even

Figure 5.Phonon spectra of a copper ringwith the same cross sectional dimensions as theMöbius band. The solid circles indicate
frequencies versuswave number and only have an integermultiples of 1/a.
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Figure 6.Vibrational patterns at A, B, C andDdenoted infigure 2. Thewavelengths of A andD areλ=2πa/10 and those of B andC
areλ=2πa/9.5. For vibrational pattern B (C), the displacement occurs primarily in the direction of the longer (shorter) edge of the
cross section. Comparedwith B, C can be considered to bemore like the flexural vibrations of a thin-plate, therefore having a vibration
frequency lower than that of B.

Figure 7.Vibrational patterns at (a)–(d) denoted infigures 3 and 4. The arrows indicate the directions of displacement vectors.Modes
(b) and (c) have a period of 4πa.

Figure 8.Vibrational patterns ofmodes in a ring at (a) and (b) denoted infigure 5. The arrows indicate the directions of displacement
vectors, showing (a) a uniform torsionalmotion and (b) a breathingmotion.
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integers to dilatational and shear/torsionalmodes I and IV. Importantly, this leads to integer and half-integer
wavelength relationships being allowed, with the lowest frequency flexuralmode (n= 1) having awavelength of
twice the center line circumference and the lowestfinite frequency dilatationalmode (n= 2) having a
wavelength equal to the circumference. It also follows that the nature of themodes alternate as thewave number
changes by 1/2a. A structure that supportsmodeswith integer and half-integer wavelength relationships is
unusual and is a direct consequence of the nontrivial topology.

We have also shown that phononmodeswithwavelengthsmuch shorter than the center-line circumference
coincidewith the dilatational, shear/torsional and twoflexuralmodes of a rectangular wire. In this limit the
vibrational patterns closelymatch those of wires, with the twisted structure of aMöbius band accounting for the
half of wavelength phase difference.Major differences between phonon spectra of theMöbius band, wire and
ring appear in the low frequency region near the zone center. For theMöbius band, three of the four acoustic
branches do not go toω=0with decreasing wave number; instead they converge toward afinite frequency
aroundwhich the number of states locally increases giving rise to the possibility of a phonon band gap.We have
addressed the robustness if the gap towards geometry and have noted that a gap does not occur in other closed
structures, such as rings that have two branches withω=0 at q=0.We have parameterized details of the gap in
terms of characteristic frequencies that depend on the elasticity of thematerial. Similar to othermechanisms that
modify the phonon spectral distribution, we expect that the distorted spectral distribution resulting from the
topologywill give rise to anomalous thermal properties, whichwill be discussed elsewhere.

Finally, we emphasize that the topology plays a significant role in the phononmodes. The phonon band gap
is one of the significant characteristics caused by theMöbius topology. Finite systems, such as nano particles, also
have phonon spectral gaps. In these cases the band gap is caused by phonon confinement, which is a size
dependent effect [24]. Very interestingly, a ring does not have a phonon band gap in spite of the finite size since
the lowest acoustic branch begins atω=0 and increases parabolically with respect towavenumber. The
difference in spectra between the nano particles and rings is caused by the difference in topology, i.e. the
existence of a hole. Likewise, the difference between theMöbius bands and rings is also due to the difference in
topology, i.e. twisted or not-twisted. Thus, topology substantially affects the phononmodes in afinite system
and introduces effects that are comparable with, or larger than, those originating from geometry.
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Appendix. Geometric parameters associatedwithMöbius band

Using the derivatives of position vector (3)with respect to x i
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The determinant g of geometric tensor is obtained as
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and the contravariantmetric tensor is derived as follows;
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