Fal Y

’;‘“‘%Q HOKKAIDO UNIVERSITY

N

Estimation of Deterioration Levels of Transmission Towers via Deep Learning Maximizing Canonical Correlation

Title between Heterogeneous Features
Author(s) Maeda, Keisuke; Takahashi, Sho; Ogawa, Takahiro; Haseyama, Miki
Citation IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 12(4), 633-644
https://doi.org/10.1109/JSTSP.2018.2849593
Issue Date 2018-08
Doc URL http://hdl.handle.net/2115/71406
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
Rights any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
g creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.
Type article (author version)

File Information

bare_jrnl_v2_black.pdf

L

Instructions for use

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP



https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2018

Estimation of Deterioration Levels of Transmission
Towers via Deep Learning Maximizing Canonical
Correlation between Heterogeneous Features

Keisuke Maeda, Student Member, IEEE, Sho Takahashi, Member, IEEE, Takahiro Ogawa, Senior Member, IEEE,
and Miki Haseyama, Senior Member, IEEE,

Abstract—This paper presents estimation of deterioration lev-
els of transmission towers via deep learning maximizing the
canonical correlation between heterogeneous features. In the
proposed method, we newly construct a correlation-maximizing
deep extreme learning machine based on a local receptive field
(CMDELM-LRF). For accurate deterioration level estimation,
it is necessary to obtain semantic information that effectively
represents deterioration levels. However, since the amount of
training data for transmission towers is small, it is difficult to
perform feature transformation by using many hidden layers
such as general deep learning methods. In CMDELM-LREF, one
hidden layer, which maximizes the canonical correlation between
visual features and text features obtained from inspection text
data, is newly inserted. Specifically, by using projections obtained
by maximizing the canonical correlation as weight parameters of
the hidden layer, feature transformation for extracting semantic
information is realized without designing many hidden layers.
This is the main contribution of this paper. Consequently,
CMDELM-LREF realizes accurate deterioration level estimation
from a small amount of training data.

Index Terms—Deterioration level estimation, deep extreme
learning machine, canonical correlation analysis.

1. INTRODUCTION

LL countries have critical infrastructures such as power
grids, railways, tunnels, bridges and transmission towers.
In order to maintain these infrastructures, visual inspection
has usually been performed by inspectors. Visual inspection
is a labor-intensive and time-consuming process [1]. In order
to reduce costs, new techniques for supporting maintenance
inspection are required [2]-[6]. Some methods have been
proposed for supporting various inspection tasks for infras-
tructures including distress classification [7], [8], detection of
specific distresses [9]-[17], analysis of surface status [18]-[20]
and deterioration level estimation [21], [22].
Support for maintenance inspection of transmission towers
is important since inspection is performed by inspectors as-
cending towers, which is a dangerous inspection task [23].
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Transmission towers are constructed by using galvanized steel
and coated with rust-preventive paint to prevent corrosion [24].
However, recoating is necessary because the rust-preventive
paint deteriorates over time [21]. Thus, inspectors have to
determine the levels of deterioration of the transmission
towers by observing the surfaces of towers and estimating
the levels of deterioration based on their experience and
knowledge [25], [26]. However, determination of the levels
of deterioration might include errors due to ambiguity in
inspectors’ decision. Therefore, automatic and quantitative
analysis of the deterioration levels is necessary by using
machine learning technology.

Many researchers have proposed methods for estimating de-
terioration levels [21], [22] of infrastructures. Although these
methods estimate deterioration levels automatically, estimation
performance is limited, and we should note the following
points.

1) The classifiers used in the above methods are traditional
ones, Support Vector Machines (SVMs) [29]. Recently,
it has been reported that deep learning methods realize
high classification performance, and deep learning-based
classification methods for some tasks such as crack
detection have been proposed in the civil engineering
field [30]. Thus, the development of deep learning-
based methods for estimation of deterioration levels is
desirable.

2) The above methods only use visual characteristics of the
towers. In actual maintenance inspection, inspectors not
only take images of deterioration parts but also record
text data about the structure under inspection such as
the construction date, location and height of the tower.
Since these data would contribute to the improvement of
classification performance, collaborative use of images
and text data is necessary.

In order to overcome these problems, we focus on a deep
learning-based estimation method that is realized by using both
images and inspection text data. In image recognition fields,
several image classification methods with high performance
have been proposed such as Convolutional Neural Network
(CNN) [30]-[32], which requires a large number of training
images. When it is difficult to prepare many training images,
some researchers use CNN-fine-tuning instead of CNN trained
from scratch. However, it has been reported that the estimation
performance of CNN-fine-tuning might not be sufficient when
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Fig. 1. An overview of the proposed method, which consists of three procedures. The first procedure is visual feature extraction
using LRF [27]. The second procedure is construction of a hidden layer that maximizes the canonical correlation between
visual and text features, which is the main contribution of this paper. The third procedure is construction of the classifier of

DELM [28].

it is applied to a task for which it was not designed, that is, in
a case in which technical data with a property different from
that of the pre-trained data are used [33], [34]. We define
technical data as data requiring professional knowledge and
experience. In fact, similar tendencies have been observed,
as was also confirmed by experiments for which results are
shown in this paper. Therefore, a new approach based on deep
learning that can effectively handle a small amount of technical
data is necessary.

In this paper, we focus on ELM [35] series, which have
attracted much attention recently. The number of parameters
used in ELM series is small. Thus, it is not necessarily
to calculate optimal parameters from a huge amount of
training data. Thus, they can be trained by using a small
amount of training data. Furthermore, in order to improve
the performance from a small number of training images,
we newly consider the relationships between heterogeneous
features, i.e., images and text data. In most deep learning
techniques, many middle layers are necessary for transform-
ing visual information to semantic information. Since the
number of parameters to be tuned becomes larger, a large
amount of training data is required. On the other hand, we
focus on canonical correlation [36] for extracting semantic
information with fewer middle layers. In [37], Yeh et al.
reported that canonical variates obtained by calculating the
canonical correlation between heterogeneous sets of features
have better discriminative performance than original features if
the heterogeneous sets have semantic relevancy. Thus, based
on projection using the canonical correlation, it is expected
that visual information can be directly converted to semantic
information. Then we can calculate new features that are
suitable for representing deterioration levels without preparing
a large amount of training data.

In this paper, we present deterioration level estimation via
deep learning maximizing the canonical correlation between
heterogeneous features. In the proposed method, we use a
newly constructed correlation-maximizing deep extreme learn-
ing machine based on a local receptive field (CMDELM-LRF)
as shown in Fig. 1. CMDELM-LRF is an improved version of
DELM-LREF [38], which is our previously reported method. In
CMDELM-LREF, we insert a hidden layer that can maximize
the canonical correlation between visual features and text
features obtained from text data. Specifically, the parameters
of the hidden layers correspond to projections obtained by
maximizing the canonical correlation between visual features
and text features. Thus, by using the obtained projections as
weight parameters of the hidden layer of CMDELM-LRE,
it becomes feasible to obtain semantic information without
designing many hidden layers. The main contribution of the
proposed method is the construction of this deep learning
framework including the new hidden layer that is capable
of feature transformation in consideration of the canonical
correlation between heterogeneous features.

This paper is organized as follows. The proposed method is
presented in Section II. Experimental results for verifying the
effectiveness of the proposed method are shown in Section III.
Finally, concluding remarks are presented in Section IV. For
smooth explanation of the proposed method, abbreviations
used in this paper are shown in Table I.

II. CoRRELATION-MAXIMIZING DEEP EXTREME LEARNING MACHINE
wiITH LocAL RECEPTIVE FIELD

In this section, we explain the automatic estimation of
deterioration levels via CMDELM-LRE. The proposed method
consists of three procedures as shown in Fig. 1. First, visual
features are automatically extracted from images of the sur-
faces of the transmission towers based on LRF [27]. Second,
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TABLE 1. Abbreviations used in this paper.

Abbreviations Official name
CMDELM-LRF | Correlation-Maximizing Deep Extreme Learning Machine-Local Receptive Field
SVM Support Vector Machine
CNN Convolutional Neural Network
ELM Extreme Learning Machine
CCA Canonical Correlation Analysis
PCA Principal Component Analysis
LRF Local Receptive Field
DELM Deep Extreme Learning Machine
SVD Singular Value Decomposition
ELM-AE Extreme Learning Machine-Auto Encoder
KELM Kernel Extreme Learning Machine
DELM-LRF Deep Extreme Learning Machine-Local Receptive Field
ELM-LRF Extreme Learning Machine-Local Receptive Field

a hidden layer that maximizes the canonical correlation of
visual and text features is constructed. Third, a DELM-based
classifier [28] is constructed. Then we can obtain deterioration
levels based on outputs from the output layer of DELM.

A. Feature Extraction Based on LRF

Given a training image n (n = 1,2,..,N;N being the
number of training images), we extract visual features from
an input matrix I, € R%*% corresponding to image n.
Regarding the color channel, we perform the same processing
as in [27]. In order to extract visual features, the proposed
method performs two procedures, generation of feature maps
and pooling maps, as shown in Fig. 1.

First, we randomly generate an initial weight matrix
A € R”*®. Note that r X r means the size of the receptive
field, and @ is the number of feature maps. We orthogonalize
the initial weight matrix A using singular value decomposition
(SVD), and the orthogonal vector @ € R” (¢p=1,2,..,0) is
calculated, where A = [a', a2, ...,a%]. In the case of 2 < @,
we perform the following steps: 1) (A)T is orthogonalized via
SVD and 2) transposed back, which is the same manner as
that in [27]. Thus, an input weight matrix A% € R™", which
corresponds to @* column-wisely, for the ¢ th feature map is
obtained. By using the obtained input weight matrix A%, the
¢ th feature map c?(I,) is calculated as

Gy = YT )AL, ()
s=1 u=1
= L2 ),
o= L2 (dy—r+ ),

where ¢ (@), 17775779 and A%, represent the (i, j) th
element of c®,), (i+r—s, j+r—u) th element of I,, and (s, u)
th element of A, respectively. Consequently, the feature map
c¢?(I,) with a size of (d, —r+ 1) X (d,, — r + 1) is calculated.
Second, we calculate pooling maps by using the obtained
feature maps. The pooling size used in the proposed method
is e X e, and the size of the pooling map is the same as that of
size with the feature map (dj, —r + 1) X (d,, — r + 1). By using

a square/square-root pooling, the ¢ th pooling map «?(I,) is
calculated as:

pte g+te 2
Galy = | 2 Y{ant @)
i=p—e j=q—e
p = L2 ... (d-r+l),
q = 1’2 ’(dw_r+1)»

where Kﬁ,q(ln) represents the (p, g) th element of x?(I,). Note
that cf () is the zero-padded feature map. Square/square-
root péoling was also used in [39], [40], and its effectiveness
has been verified. We can obtain a visual feature vector
x/, € Ri=r+Dldv=r+® 1y aligning each pixel’s value of all
pooling maps. Finally, since the dimension of the visual feature
vector x;, is much higher than the number of training images,
we obtain the feature vector x, € R% by performing principal
component analysis (PCA) [41].

B. Construction of Hidden Layer Maximizing Canonical Cor-
relation

First, we calculate text features from text data. An example
of text data is shown in Table II. Inspectors record trans-
mission lines, type of towers, salt damage, area, inspection
date, voltage, construction date, height of towers and coating
year as text data. For transmission lines, type of towers, salt
damage and area, since inspection records are discrete values,
we obtain binary feature vectors whose element corresponding
to the inspection record becomes 1. Specifically, the dimension
of the binary features is Y\, D, as shown in Table II. On the
other hand, for the other five inspection items, we describe a
corresponding inspection record as the element of features. Fi-
nally, we obtain text feature vectors y, € R% dy = Z;‘zl D;+5)
by aligning the above features.

Second, we construct a hidden layer that maximizes the
canonical correlation between visual and text features. In
order to calculate the hidden layer’s weight matrices that
can consider the relationship between these features, we
obtain projection matrices ¥, and ¥, by applying canon-
ical correlation analysis (CCA) [36] to the visual feature
matrix X = [x1, X2, ..., xy] € R®Y and text feature matrix
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TABLE II. An example of text data. The transmission line represents the name of the line, and the salt damage represents
the degree of damage due to salt. The area represents the zone of towers such as a coastal zone.

Inspection item Inspection record Num. of dimension
Transmission lines A, B, .. D,
Type of towers Angle towers, pipe towers, ... D,
Salt damage A, B, C, .. Ds
Area C, D, .. Dy
Inspection date 03/10/2015, 03/03/2014, ... 1
Voltage (kV) 66, 275, 154, ... 1
Construction date 1966, 1977, 1983, ... 1
Height of towers (m) 56.4, 73.5, 72, ... 1
Coating year 2004, 2001, ... 1

Sum - dy=%1,D+5

Y =[y1,y2,..»¥N] € REO*N Specifically, we seek to maximize
the following objective function:

A YICxyy
W y) = arg max —— , 3)
Y ICxx . (YT Cryipy
where ¥, and i, are projection vectors, and
Cxy =XYT, “)
CXX = XXT, (5)
CYY = YYT (6)

In order to maximize Eq. (3), we solve the following Lagrange
problem:

A o
LWy = ¥ Cxxihy — ?(l/lx Cxxyx— 1)

A
- 0 Cryry = D, @

where A, = A, (= A), and A is defined below. Then we solve
the following eigenvalue problems:

CxxCxrCryCy¥x = Vi, (8)
CyyCryCxxCxyiy = 1Y, )

where A corresponds to the eigenvalue of this prob-
lem. Since we can obtain multiple eigenvalues A and
their corresponding eigenvectors ¢, and ¢, as solu-
tions of the above problem, we obtain the projection
matrices as ¥, = [y, %,...,(//ﬁf'"“]T € Rbed and P,
[l//yl, 1//5, ...,l/rf""“]T € R4 by aligning the d.., eigenvectors,
respectively. By setting the obtained projection matrices to the
hidden layer between LRF and DELM as shown in Fig. 1, we
can obtain the projected features £, € R%« and §, € R,
which can consider their relationships, as follows:

Xy =Yox,, (10

n =Yy (11)

In most deep learning methods, transforming visual infor-
mation to semantic information is realized by using many
middle layers. Then since the number of parameters to be
tuned is large, we have to prepare a large amount of training
data for avoiding over-fitting. On the other hand, directly

transforming visual information to semantic information is
realized by considering the canonical correlation between
visual and text features in our method. Thus, since the number
of hidden layers can be set to a smaller number, we can
construct networks by using a small amount of training data.

In our method, we use visual and text features. Since the dis-
tress images include unnecessary regions such as backgrounds,
the visual features contain many noisy information. On the
other hand, since the text features are calculated based on
actual maintenance inspection recorded by inspectors, they are
very high quality features. In order to calculate features with
higher representation ability using visual and text features,
it is necessary to project these heterogeneous features to a
comparable feature space. Therefore, we focus on CCA, which
is one of the most general methods which make it possible to
project two different features to the comparable feature space.
Furthermore, we can perform end-to-end learning of both
feature transformation and classification since the projection
matrix maximizing the canonical correlation obtained by CCA
can be integrated into the neural network. This is the reason
why we choose CCA.

C. Deterioration Level Estimation Based on DELM

Given feature vectors £, and §,, z\ = [£],57]7 (n =

1,2,...,N) is input into DELM. DELM consists of one input
layer, K hidden layers and one output layer, that is, the number
of layers of DELM is K + 2 as shown in Fig. 1. The aim
of training DELM is calculation of a weight matrix between
the (k — 1) th layer and k th layer. Specifically, (I) in the
case of k being smaller than K + 1, the weight matrix is
calculated by using ELM-Auto Encoder (ELM-AE), which
is an unsupervised learning method, and (II) in the case of
k = K+ 1, the weight matrix is calculated in the same manner
as that by ELM [35], which is a supervised learning method.

I kLk=23,..,K

In DELM, the relationship between the k th hidden layer’s
output matrix Z* = [z¥, 25, ..., z%] and the (k - 1) th hidden
layer’s output matrix Z*~! can be obtained as follows:

k k k-1
z, =GBz, ),

12)
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where Z* is obtained from training data and g% € RE*L™" g

a weight matrix between the k th and (k— 1) th hidden layers,
and G is a sigmoid function as the activation function.

In order to calculate the weight matrix ﬂk, we construct
ELM-AE layer by layer. The ELM-AE network model, which
consists of three layers, an input layer, a hidden layer and an
output layer, is shown in the lower right part of Fig. 1. These
layers have L*~! input nodes, L* hidden nodes and L¥~! output
nodes, respectively. Since ELM-AE is an auto encoder, input
features are equal to output features. Given an input vector
21 e R, the outputs h¥ € RY of hidden layers in ELM-
AE can be obtained as

Bt = GOWFZE! + %), (13)

WEWHT =1, (14)

YT = 1. (15)

ELM-AE has orthogonal random weight W¢ =
[wh, wh, ...,w’zk]T and random bias b* = [bX, b, ...,b’ik]T.

Thus, by using an input matrix Z*~! of ELM-AE and an
output matrix H* = [hX BE, . K17 € RV of the ELM-
AE’s hidden layer, the output weight B can be derived as
follows:

L _1
B = (CLZKL(pup;kn(kaH") HYT(ZFDT, - 16)
Vi

where KL(pllox) = plog - + (1 - p)logll_;ﬁ’:k is the KL
divergence. It has been reported that auto-encoders can obtain
features with high representation ability by regularizing the
hidden layers’ representation to be sparse [42]. KL divergence
is often used as a regularization term for the sparse represen-
tation of auto-encoders. The parameter px means the average
activation value (averaged over the training set) of the hidden
node ¥ of the k th hidden layer. We regularize the hidden layer
representation to be sparse by a pre-determine small value p
(sparsity parameter), which is the desired sparseness, in such
a way that the KL divergence encourages the above average
activation px to be small. Since KL divergence does not
remove the hidden nodes but controls the nodes, the activated
nodes according to the input data also changes. Since it is
possible to extract important information about which node
was activated, the representation ability is improved [42].
Furthermore, C; is a regularization parameter.

Consequently, we can obtain each layer’s output weight
B¢ (k = 1,2,..,K) of DELM by using the output weight
B of the ELM-AE. Although general deep learning meth-
ods determine parameters of networks by using the back
propagation approach, which has high computation costs and
requires a large number of training images, the proposed
method determines the weight matrix by using ELM-AE,
which is layer-by-layer unsupervised learning. In addition, the
parameters WX and b* are calculated on the basis of random
values. Thus, our method does not require a large number of
training images and the computation costs are smaller.

) k=K+1
The output weight matrix BX*! between the K th hidden

layer and the output layer is calculated by general ELM,
which is a supervised learning method. We try to minimize the
training error &, = [£,.1,&m0, - Enm]T (M being the number
of output nodes in the M-class problem) as well as the output
weights.

min R
BE+ RMxLEH

s.t. BK+lerl(+l —

1 C ¥
Lhpk+2 L L2 2
S8 + 5 ;ufnu, (17)

tn - §n,

where t, = [ty1, 2, - Inm]’ 1S @ vector whose m th element
is one, while the other elements become zero if the original
true class label is m. Furthermore, C, is a regularization
parameter. According to [43], Eq. (17) is equivalent to solving
the following optimization problem based on the Karush-
Kuhn-Tucker theorem:

1 OB\
5 _ LipK+l2 L2 2
R= 1B I+ 5 ;n&,n

N M
K+1 K+1
- Z Z an,m{(‘ym+ )Tzn - tn,m + é‘:n,m}’

n=1 m=1
(18)

min
BE+ eRMxLE

where yx™' = [BFHL BN f,:ﬂl’m]T is a vector of the
weights linking the hidden layer to the m th output node.
By taking derivatives with yX*! & and @,, where @ =
[, @z, ...,ay]" and @, = [@n1,@n2,...,@um]", the optimal
solution of BX*! can be obtained as

K+l _ keryt( L ke ket B
B =TZ"™) +Z%(Z™) s (19)

)
where T = [t,t,...,txy]. Consequently, we can obtain the
weight matrix BK+!.
Given new test data zX*!, by using the obtained X*!, the
output value v = [vy, va, ..., vy]" is obtained as

v :ﬂk+lzk+l- (20)
Furthermore, the final result class is obtained as
(21)

.....

class = arg max v,.
me(l,...M}
Thus, classification based on the proposed method can be
completed.

By regarding the classes as deterioration levels, estimation
of deterioration levels of transmission towers is realized. Con-
sequently, construction of CMDELM-LRF that can consider
the canonical correlation between visual and text features can
realize accurate deterioration level estimation.

ITI. EXPERIMENTAL RESULTS

In this section, the effectiveness of the proposed method is
verified. The experimental conditions are explained in III-A.
Evaluation of the performance of the proposed method is
explained in III-B. Furthermore, discussions of the novelty of
the proposed method are shown in III-C.

A. Experimental Conditions

In order to verify the effectiveness of the proposed method,
we used a dataset that was provided by Tokyo Electric Power
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TABLE III. Number of images used in this experiment.

Num. of images

Class A 1044
Class B 1351
Class C 748

Sum 3107

TABLE IV. Details of parameters used in the proposed
method.

Details Parameter Value
Input image size dh 20
dy 50
Receptive field size r 5
Pooling size e 3
. . d, 471
Num. of dimensions d, 364
o C 215
Regularization parameters 15
C 2
Sparsity parameter o 0.05
Num. of input weights (0] 35
Num. of hidden layers K 4
LT 394
L’ 591
Num. of hidden nodes L’ 472
L 377
L’ 301
Num. of classes M 3

Company Research Institute (TEPCO). The dataset has three
levels, class A, class B and class C. Class C is the most
dangerous level. The details of the number of images are
shown in Table III.

In the experiment, the number of layers K, the regularization
parameters C; and C,, and the dimension d,, which is the
number of dimensions selected by using PCA, are determined
in such a way that the proposed method outputs the best
estimation performance using the validation dataset. In ELM
series, the parameters of the sigmoid function are set to
random values. The details of the parameters are shown in
Table IV. The verification method was 5-fold cross validation.
We evaluated the performance of the proposed method by
using Recall, Precision and F-measure, which are defined as
follows:

Num. of correctly estimated samples

Recall = , 22
eea Num. of correct samples @2)
Precision = Num. of correctly e'stimatefi samples @3
Num. of all samples estimated into each level
2 x Recall x Precisi
F — measure — eca recision 24)

Recall + Precision

We also used sixteen comparative methods in this exper-

TABLE V. Details of methods used in the experiment.

Feature Projected feature

Methods Details Image Text Image Text

Ours CMDELM-LRF - - v v
Comp. 1 CMDELM-LRF - - v -
Comp. 2 CMDELM-LRF - - - v
Comp. 3 DELM-LRF [38] v - - -
Comp. 4 DELM-LRF - v - -
Comp. 5 DELM-LRF v v - -
Comp. 6 ELM-LRF + CCA - - v v
Comp. 7 ELM-LRF + CCA - - v -
Comp. 8 ELM-LRF + CCA - - - v
Comp. 9 ELM-LRF [27] v - - -
Comp. 10 DELM [28] v - - -
Comp. 11 KELM [44] v - - -
Comp. 12 ELM [35] v - - -
Comp. 13 SVM [29] v - - -
Comp. 14 | CaffeNet-CNN [45] N - - -
Comp. 15 VGG16-CNN [46] v - - -
Comp. 16 | Multilayer perceptron - - v v

iment as shown in Table V. DELM-LRF is our previously
reported method [38]. That method uses original features
obtained from images or text data. DELM, KELM, ELM
and SVM are constructed on the basis of visual features
extracted from Caffe-Net provided by Caffe [45]. In addition,
we compared our method with CNN-based methods in order
to verify the effectiveness of our method. In transmission
towers, since it is difficult to prepare a sufficient number
of training images, we used the fine-tuned CNN methods
as comparative methods. Specifically, we adopted the Caffe-
Net model [45] and the VGG16 model [46]. Especially, the
VGG16 model is one of the general and strong deep learning
methods. Furthermore, we used a multilayer perceptron-based
deep learning, which is one of the simple and benchmarking
deep learning methods. Moreover, the number of hidden layers
of our method and the above comparative methods is shown
in Table VI. From this table, we can confirm that CMDELM-
LRF needs less hidden layers than comps. 14 and 15, which
are benchmarking CNN-based methods.

B. Performance Evaluation

Recall, Precision and F-measure of the proposed method
and the comparative methods are shown in Table VII. The
performance of the proposed method is better than that of
comp. 5, and the performance of comp. 7 is better than that of
comp. 9. Thus, the effectiveness of feature transformation via
CCA, which can maximize the canonical correlation between
visual and text features, is verified. In addition, since the
proposed method improves comps. 1 and 2, the use of pro-
jected multimodal features is effective for deterioration level
estimation.

Since comps. 6-8 have five hidden layers, these methods are
also deep learning methods. The performance of the proposed
method and that of comp. 6 are better than the performance
of the other methods including comps. 9 and 11-13. Thus,
the effectiveness of deep learning-based methods is verified.
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TABLE VI. Network configurations used in the experiment are shown, and “conv
“fc” represent convolution layer, pooling layer, pca procedure, cca procedure, local response normalization layer, ELM-based

EEINNTS

, “poo

fully connected layer and general fully connected layer, respectively.

197, “pCa

LEIT

, “cca

LEIT3

, “norm”, “fc-elm” and

Ours and comps. 1 and 2 Comps. 3-5 Comps. 6-8 Comp. 9 Comp. 14 Comp. 15 Comp 16
conv conv conv conv conv convx2 conv
pool pool pool pool pool pool pool
pca pca pca pca norm convx2 pca
cca fc-elmx4 cca fc-elmx1 conv pool fcx4

fc-elmx4 - fc-elmx1 - pool convx3 -
- - - - norm pool -
- - - - conv X3 convx3 -
- - - - pool pool -
- - - - fex3 convx3 -
- - - - - pool -
- - - fcx3 -
Num. of hidden layers 8 7 5 4 13 21 7
TABLE VII. Recall, Precision and F-measure of all methods.
Class A Class B Class C Average

Method R P F R P F R P F R P F
Ours 0985 0902 0.939 | 0.799 0956 0.863 | 0.922 0.819 0.863 | 0.902 0.892 0.888
Comp. 1 | 0978 0.881 0.923 | 0.751 0.937 0.826 | 0.900 0.780 0.834 | 0.877 0.866 0.861
Comp. 2 | 0496 0.511 0.498 | 0.424 0.581 0.488 | 0.595 0.403 0479 | 0.505 0.499 0.488
Comp. 3 | 0987 0.890 0.933 | 0.593 0.952 0.721 | 0912 0.621 0.733 | 0.831 0.821 0.796
Comp. 4 | 0.765 0.594 0.668 | 0.512 0.792 0.620 | 0.703 0.591 0.637 | 0.660 0.659 0.642
Comp. 5 | 0.851 0.647 0.735 | 0.609 0.854 0.708 | 0.763 0.734 0.742 | 0.741 0.745 0.728
Comp. 6 | 0970 0.913 0.937 | 0.783 0931 0.840 | 0.896 0.793 0.830 | 0.883 0.879 0.869
Comp. 7 | 0959 0.913 0.931 | 0.810 0920 0.847 | 0.870 0.805 0.823 | 0.880 0.879 0.867
Comp. 8 | 0.561 0.700 0.619 | 0.620 0.714 0.662 | 0.770 0.519 0.620 | 0.651 0.644 0.634
Comp. 9 | 0.880 0.856 0.862 | 0.688 0.857 0.745 | 0.814 0.651 0.714 | 0.794 0.788 0.774
Comp. 10 | 0.498 0.427 0.460 | 0.331 0.522 0.405 | 0.511 0362 0.424 | 0.447 0.437 0.430
Comp. 11 | 0464 0.401 0.430 | 0.347 0.463 0.397 | 0430 0.354 0.388 | 0.414 0.406 0.405
Comp. 12 | 0485 0414 0.446 | 0.321 0476 0.383 | 0448 0.337 0.384 | 0.418 0.409 0.405
Comp. 13 | 0.127 0.546 0.204 | 0.909 0.432 0.585 | 0.034 0.288 0.060 | 0.357 0.422 0.283
Comp. 14 | 0.517 0362 0.426 | 0.363 0.464 0.407 | 0.163 0.207 0.182 | 0.347 0.344 0.338
Comp. 15 | 0.835 0.707 0.765 | 0.611 0.763 0.679 | 0.762 0.695 0.727 | 0.736 0.722 0.724
Comp. 16 | 0.944 0.818 0.872 | 0.592 0.896 0.708 | 0.920 0.693 0.788 | 0.819 0.802 0.789

Since the proposed method improves comp. 6, it is shown
that adding hidden layers contributes to improvement of the
performance. It should be noted that the contribution of feature
transformation via CCA is greater than that of the hidden
layers of DELM.

Furthermore, by comparing CMDELM-LRF with comps.
14-16, it is confirmed that our method is superior to other deep
learning methods including very deep networks. Especially,
although comp. 15 has a lot of hidden layers compared to our
method as shown in Table VI, the estimation performance of
our method is higher than that of the comparative method.
Therefore, the effectiveness of the CCA-based feature trans-
formation is verified.

From Table VII, it can be seen that comps. 6 and 7 have
better performance on class A. Comps. 6 and 7 are methods,
which combine ELM-LRF and CCA. In this experiment,
although images belonging to class A have no deterioration,

images belonging to classes B and C have deterioration. Thus,
in order to classify the adjacent deterioration levels such as
classes B and C, it is necessary to calculate features with
higher representation ability which can discriminate their small
difference. However, since comps. 6 and 7 are shallow neural
networks, their representation ability is lower compared to
deep neural networks such as CMDELM-LRF. This leads to
a decline of estimation performance of classes B and C. Fur-
thermore, in this experiment, since hidden layers’ parameters
are determined in such a way that the average of F-measure
is high, it is considered that parameters of comps. 6 and 7 are
tuned so as to distinguish class A from the other classes due to
the difficulties in classification of classes B and C. Therefore,
comps. 6 and 7 achieve high performance on class A.

In the proposed method, since we use random value-based
B~, we evaluate the correctness of B* indirectly by compar-
ing the estimation performance. Specifically, we compared
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Fig. 2. Examples of images [47] that were correctly estimated by the proposed method. It should be noted that the centering
50 x 50 (= d,, x dj) pixel images were used for the classification in this experiment.

CMDELM-LRF with a multilayer perceptron-based deep neu-
ral network (comp. 16), which was constructed via the back
propagation approach. Although it is known that the back
propagation approach generally provides an optimized param-
eter B, a large amount of training data is required in order to
obtain the optimal solution. Thus, the estimation performance
is limited since the number of training images used in this
experiment is small. As shown in Table VII, it is confirmed that
the estimation performance of CMDELM-LREF is higher than
that of comp. 16. This means that ELM-AE is more effective
than the back propagation approach for the calculation of g
when there is only a small amount of training data.

Examples of images that were correctly estimated by the
proposed method are shown in Fig. 2. From Fig. 2, it can be
seen that images of transmission towers have many variations.
Figures. 2 (b), (d) and (h) are distant-view images, and
the others are near-view images. The angles of subjects are
different as shown in Figs. 2 (a) and (c). Thus, the proposed
method can estimate various kinds of images correctly. In
general estimation methods such as [21], in order to cope with
such variations, the targets in images are clipped manually.
Although these are semi-automatic methods, our method is
a fully automatic estimation method since we can input
the original images into our method directly. Therefore, the
effectiveness of the proposed method is verified in terms of
practical application.

Furthermore, we compare computational complexity of the
proposed method with that of comps. 14 and 15. The con-
struction of hidden layers is shown in Table VI, and the
computational complexity of each procedure is shown in
Table VIII. Since a back propagation approach is generally
used for training of comps. 14 and 15, Table VIII also includes
the complexity of the back propagation. In Table VIII, & is
the index of a layer, and K is the number of layers. ®F is the
number of filters in the k th layer. ®~! is the number of input
channels of the (k — 1) th layer. df and di, are the size of the
output feature map. 7 and e* are the size of the convolutional
filter and that of pooling filter, respectively. d;, and d,,,, are the
dimensions of input features and output features, respectively.
Furthermore, L* is the number of nodes in the k th layer. N

means the number of images, and E,, is the number of epochs
for training of networks.

From this table, in the training step, the computational
complexity of comps. 14 and 15 is O(Z,’i‘ Dk g gl e Py
E,N Y8 LFL*!) since these methods adopt the back propa-
gation approach, which requires a lot of computational costs
for training. Note that K, is the number of convolution
layers, and k. is the index of a convolution layer. We can
ignore the computational complexity of the other procedures
since the other procedures have much lower complexity than
“convolution” and “back propagation” as shown in Table VIIIL.
In order to train effective deep networks, comps. 14 and 15
need a lot of epochs E,. Furthermore, since the number of
hidden layers K including K, of these methods are comparably
large as shown in Table VI, they have high computational
complexity. On the other hand, the complexity of the proposed
method is O(Z,’;‘ (Dk”‘ldzcd"fj @k r%%) and K, = 1 due to the
construction of only one convolution layer. In the proposed
method, since the size d],;” xd¥ of input images and filter size
r*e are low. From the above, it is confirmed that the proposed
method has extremely lower complexity than comps. 14 and
15 in the training step. Actually, the measured computational
time of the proposed method is much lower than that of recent
deep learning techniques such as comps. 14 and 15 as shown
in Table IX. Specifically, the cost of the proposed method,
CaffeNet and VG16 are 5.08 x 10! sec, 1.44 x 10* sec and
2.16 x 10° sec. Details of the computation costs of training
procedures are shown in Table IX. The proposed method was
trained by using a personal computer (CPU) with Intel (R)
Core (TM) CPU i7-3770 @3.40 GHz with 16 Gbytes RAM.
CaffeNet-CNN was trained by using a personal computer
(GPU) with Intel (R) Xeon (R) CPU E5-2699 v3@2.30 GHz
with 512 Gbytes RAM and GPU Tesla K80. From this table,
the cost of the training of DELM is much lower even if it is
trained by using CPU. This is because ELM-AE, which is a
layer-by-layer unsupervised learning method, is used for the
construction of DELM as mentioned in II-C.

Moreover, in the test step, since the complexity of all of

the proposed method and comps. 14 and 15 depend on the
number of convolution layers, a difference of computational
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TABLE VIII. Computational complexity of each procedure.

Procedure Computational complexity CMDELM-LRF Comp. 14 Comp. 15
Convolution O(@*didf D r* ) v v v
Pooling O((Dk‘ld,’idfvekz) Vv v v
PCA O(d2N) v - -
CCA O(dian) Vv - -
Norm O(d)k‘ld,’jd’fv,) - v -
Fe-elm oL L} v - -
Fc O(dindout) - ‘/ \/
Back propagation O(E,N ¥f LF'1¥) - v v

TABLE IX. Computation cost (sec) of the training procedures of ours, Caffe-Net and VGG16.

Procedure Ours Caffe-Net VGG16
Feature extraction 5.01 x 10T - -
Maximization of canonical correlation 2.62 x 107! - -
Construction of classifier 449%x 107" 144x10* 2.16x10°
Sum 508 x 10" 1.44x10* 2.16x 10°

TABLE X. Computation cost of test procedures of ours, Caffe-
Net and VGG16.

Method  Computation cost (sec)
Ours 7.35x 1071

Caffe-Net 1.31

VGG16 2.06

order of these methods may be slight. However, the proposed
method consists of one convolution layer, but comps. 14 and
15 consist of a lot of convolution layers. Therefore, since the
measured computational time of the proposed method is lower
as shown in Table X, we realize high speed computation.
From the above discussion, CMDELM-LREF is effective for
actual deterioration level estimation.

C. Discussion

In this subsection, we discuss the effectiveness of the use
of CCA, which is the main contribution of the proposed
method. Specifically, we discuss the reason why the projected
features obtained by CCA contribute to the improvement of
the estimation performance. In general classification tasks, it is
known that the stronger correlation between labels and features
is, the more discriminative features are [48]. Thus, in order to
evaluate the relationships between the estimation performance
and the use of the projected features or the original features,
we calculated the Pearson’s correlation coefficients between
features and labels in the training data. Specifically, we cal-
culated the correlation coefficients between class labels and
each dimension of features and constructed their histograms
as shown in Figs. 3 and 4. Note that a bin value of each
histogram is normalized by the total number of dimensions of
a target feature. For example, in case of Fig. 3 (a), since the
dimension d, of the original visual features is 471, frequency
of 471 coefficients is displayed. Figure 3 shows the histograms

of the correlation coefficients between the original features and
labels. Figures 3 (a), (b) and (c) correspond to the results of
comps. 3, 4 and 5, respectively. Similarly, Fig. 4 shows the
histograms of the correlation coefficients between the CCA-
based projected features and labels. Figures 4 (a), (b) and (c)
correspond to the results of comps. 1 and 2, and our method,
respectively.

These figures mean that the larger the number of values
close to 1 in the horizontal axis, the higher the correlation
with labels is. Furthermore, in order to quantitatively compare
the results in these figures, we calculated the variance of the
correlation coefficients (Var) and the average of the sum of the
absolute coefficient values (AveA). The larger these values are,
the higher the correlation between features and labels is. Their
discussions are shown below.

o Comparison between Figs. 3 (a) and 4 (a)
As shown in these figures and the values of “Var” and
“AveA”, we can confirm that the correlation between
the projected visual features and labels is higher. As is
clear from the experimental results of comps. 1 and 3,
the projected visual features are more effective than the
original visual features.

« Comparison between Figs. 3 (b) and 4 (b)
On the other hand, as shown in Figs. 3 (b) and 4 (b), it is
confirmed that the correlation between the projected text
features and labels is lower. Furthermore, as similar to
the above relationship, the performance of comp. 2 using
the projected text features is also lower.

From the above two points, it is verified that there actually ex-
ists the relationship between the correlation and the estimation
performance.

« Comparison between Figs. 3 (c) and 4 (c)
Figure 3 (c) has a histogram obtained by naturally inte-
grating Figs. 3 (a) and 3 (b). Similarly, Fig. 4 (c) has a
histogram obtained by integrating Figs. 4 (a) and 4 (b).
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Fig. 3. Pearson’s correlation coefficients between the original features and class labels. In addition, “Var” means the variance
of the coefficients, and “AveA” means the average of the sum of the absolute coefficient values. Figures 3 (a), (b) and (c)
correspond to the results of comps. 3, 4 and 5, respectively.
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Fig. 4. Pearson’s correlation coefficients between the CCA-based projected features and class labels. In addition, “Var” means
the variance of the coefficients, and “AveA” means the average of the sum of the absolute coefficient values. Figures 4 (a), (b)

and (c) correspond to the results of comps. 1 and 2, and our method, respectively.

It is confirmed that the aligning features of both the
projected visual and text features have higher correlation
with labels as shown in Figs. 3 (c) and 4 (c¢). Furthermore,
the values of “Var” and “AveA” are also higher than
those of the original features. In addition, our method
achieves higher performance than comp. 5. CCA is a
method calculating the projection in such a way that the
correlation between two kinds of features is maximized,
and it does not include a process to make the correlation
between features and labels high. Nevertheless, since
the projected features [¥,",¥, "] obtained via CCA are
strongly correlated with labels, the projection obtained
via CCA can realize not only the maximization of the
correlation between visual and text features but also the
calculation of the discriminative features. Consequently,
the effectiveness of the novelty of the proposed method
is verified.

From the above discussions, we can newly confirm that “Var”

and “AveA” can become evaluation indices for selection of

the CCA-based projected features and the original features. In
other words, by using these indices, we may select effective
features which provide further improvement of the estimation
performance. This will be addressed in our future work.

IV. CoNcLUSIONS

We have proposed deterioration level estimation via deep
learning that maximizes the canonical correlation between
heterogeneous features. Our CMDELM-LRF can transform
visual and text information to more semantic information
through the hidden layers. In CMDELM-LREF, by inserting one
hidden layer, which can maximize the canonical correlation
between visual and text features, feature transformation is
realized without designing many hidden layers. Therefore,
CMDELM-LRF could be trained by using a small amount
of training data. This is the main contribution of this paper.
The effectiveness of the proposed method was verified from
experimental results.
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We can provide the big contribution to the signal processing
field in the following points. As shown in the introduction,
since LRF calculates visual features based on random values,
and there are a few parameters to be optimally determined,
the combination use of ELM and LRF is effective for a small
amount of training data. In fact, it has been reported that
performance improvement was realized by applying the ELM-
LRF-based method [49]. On the other hand, it has also been
reported that heterogeneous features provided higher estima-
tion performance than only single visual features [50], [51].
Therefore, even if it is difficult to prepare a large amount of
training data, it is convinced that the performance will further
increase by integration of both ELM-LRF-based methods and
the use of heterogeneous features. However, in the recent
studies of ELM-LRF series, the methods, which can be applied
to single modality such as visual information, have only
been proposed. In other words, ELM-LRF-based methods
have not been extended for multimodal data. Therefore, we
have proposed CMDELM-LRF, which can effectively use
multimodal features, while retaining the advantages of ELM
and LRF. Consequently, although our method is constructed
by using the existing CCA, since it can integrate both ELM-
LRF-based methods and the use of heterogeneous features, we
can contribute considerably to the field of signal processing.

We used all text features in the construction of CMDELM-
LRF. However, since text data have various kinds of inspection
items, selection of text data to be used is required for extracting
more effective text features. Here, Wang et al. verified that
performing L, -norm on the projection matrices, which can
transform multimodal features to a common feature space, is
effective for the feature selection [52]. The feature selection
can provide relevant and discriminative features from coupled
feature spaces simultaneously. Thus, we will calculate the pro-
jection including the feature selection approach by introducing
the L, -norm to the CCA’s objective function as our future
work. This will lead to further improvement of the estimation
performance.
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